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Abstract. In this paper, we investigate certain ideals in the center of a symmetric algebra
A over an algebraically closed field of characteristic p > 0. These ideals include the
Higman ideal and the Reynolds ideal. They are closely related to the p-power map on
A. We generalize some results concerning these ideals from group algebras to symmetric
algebras, and we obtain some new results as well. In case p = 2, these ideals detect odd
diagonal entries in the Cartan matrix of A. In a sequel to this paper, we will apply our
results to group algebras.
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1. Introduction

Let A be a symmetric algebra over an algebraically closed field F of characteristic p > 0, with symmetrizing
bilinear form (. | .). In this paper we investigate the following chain of ideals of the center ZA of A:

ZA ⊇ T1A
⊥ ⊇ T2A

⊥ ⊇ . . . ⊇ RA ⊇ HA ⊇ Z0A ⊇ 0;
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here Z0A :=
∑

B ZB where B ranges over the set of blocks of A which are simple F -algebras. Thus Z0A is
a direct product of copies of F , one for each simple block B of A. Furthermore, HA denotes the Higman
ideal of A, defined as the image of the trace map

τ : A −→ A, x 7−→
n

∑

i=1

bixai;

here a1, . . . , an and b1, . . . , bn are a pair of dual bases of A. Moreover, RA is the Reynolds ideal of A,
defined as the intersection of the socle SA of A and the center ZA of A. The ideals TnA⊥ (n = 0, 1, 2, . . .)
were introduced in [6 II]; they can be viewed as generalizations of the Reynolds ideal. In fact, RA is their
intersection. These ideals are defined in terms of the p-power map A −→ A, x 7−→ xp, and the bilinear form
(. | .). The precise definition will be given below. Motivated by the special case of group algebras [8,9], we
show that

Z0A ⊆ (T1A
⊥)2 ⊆ HA,

so that (T1A
⊥)2 fits nicely into the chain of ideals above. When p is odd then

(T1A
⊥)2 = Z0A.

The case p = 2 behaves differently and turns out to have some interesting special features. We show that,
in this case,

(T1A
⊥)3 = (T1A

⊥)(T2A
⊥) = Z0A,

but that (T1A
⊥)2 6= Z0A in general. We prove that, in case p = 2, the mysterious ideal (T1A

⊥)2 is a
principal ideal of ZA. It is generated by the element ζ(1)2 where ζ : ZA −→ ZA is a certain natural
semilinear map related to the p-power map. The map ζ was first defined in [6 IV].

Moreover, in case p = 2, the dimension of (T1A
⊥)2 is the number of blocks B of A with the property

that the Cartan matrix CB = (cij) of B contains an odd diagonal entry cii. A primitive idempotent e in A
satisfies eζ(1)2 6= 0 if and only if the dimension of eAe is odd.

At the end of the paper, we investigate the behaviour of the ideals TnA⊥ under Morita and derived
equivalences, and we dualize some of the results obtained in the previous sections. In a sequel [2] to this
paper, we will apply our results to group algebras of finite groups. We will see that a finite group G contains
a real conjugacy class of 2-defect zero if and only if the Cartan matrix of G in characteristic 2 contains an
odd diagonal entry. We will also prove a number of related facts.

2. The Reynolds ideal and its generalizations

In the following, let F be an algebraically closed field of characteristic p > 0, and let A be a symmetric
F -algebra with symmetrizing bilinear form (. | .). Thus A is a finite-dimensional associative unitary F -
algebra, and (. | .) is a non-degenerate symmetric bilinear form on A which is associative, in the sense that
(ab|c) = (a|bc) for a, b, c ∈ A. We denote the center of A by ZA, the Jacobson radical of A by JA, the socle
of A by SA and the commutator subspace of A by KA. Thus KA is the F -subspace of A spanned by all
commutators ab − ba (a, b ∈ A). For n = 0, 1, 2, . . .,

TnA := {x ∈ A : xpn

∈ KA}

is a ZA-submodule of A, so that
KA = T0A ⊆ T1A ⊆ T2A ⊆ . . .

and
∞
∑

n=0

TnA = JA + KA

(cf. [7]). For any F -subspace X of A, we set

X⊥ := {y ∈ A : (x|y) = 0 for x ∈ X}.
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Then
ZA = KA⊥ = T0A

⊥ ⊇ T1A
⊥ ⊇ T2A

⊥ ⊇ . . .

is a chain of ideals of ZA such that
∞
⋂

n=0

TnA⊥ = SA ∩ ZA.

We call RA := SA ∩ ZA the Reynolds ideal of ZA, in analogy to the terminology used for group algebras.
For n = 0, 1, 2, . . . and z ∈ ZA, there is a unique element ζn(z) ∈ ZA such that

(ζn(z)|x)pn

= (z|xpn

) for x ∈ A.

This defines a map ζn = ζA
n : ZA −→ ZA with the following properties:

Lemma 2.1. Let m, n ∈ {0, 1, 2, . . .}, and let y, z ∈ ZA. Then the following holds:
(i) ζn(y + z) = ζn(y) + ζn(z) and ζn(y)z = ζn(yzpn

).
(ii) ζm ◦ ζn = ζm+n.
(iii) Im(ζn) = TnA⊥.
(iv) ζA

n (z)e = ζeAe
n (ze) for every idempotent e in A.

Proof. (i), (ii) and (iii) are proved in [7, (44)-(47)].
(iv) Recall that eAe is a symmetric F -algebra; a corresponding symmetric bilinear form is obtained

by restricting (. | .) to eAe. Note that ez = eze ∈ eZAe ⊆ Z(eAe) and that, similarly, ζA
n (z)e ∈ Z(eAe).

Moreover, for x ∈ eAe, we have

(ζA
n (z)e|x)pn

= (ζA
n (z)|ex)pn

= (ζA
n (z)|x)pn

= (z|xpn

)

= (z|expn

) = (ze|xpn

) = (ζeAe
n (ze)|x)pn

,

and the result follows.

We apply these properties in order to prove:

Lemma 2.2. Let m, n ∈ {0, 1, 2, . . .}. Then

(TmA⊥)(TnA⊥) ⊆ ζm+n((TnA⊥)pn(pm
−1)) ⊆ Tm+nA⊥.

Proof. Let y, z ∈ ZA. Then Lemma 2.1 implies that

ζm(y)ζn(z) = ζm(yζn(z)pm

) = ζm(ζn(ypn

z)ζn(z)pm
−1)

= ζm(ζn(ypn

zζn(z)pn(pm
−1))) ∈ ζm+n((TnA⊥)pn(pm

−1)).

Thus the result follows from Lemma 2.1 (iii).

Let B1, . . . , Br denote the blocks of A, so that A = B1 ⊕ · · · ⊕ Br. Each Bi is itself a symmetric F -algebra.
If a block Bi is a simple F -algebra then Bi

∼= Mat(di, F ) for a positive integer di, and thus ZBi
∼= F . We

set
Z0A :=

∑

i

ZBi

where the sum ranges over all i ∈ {1, . . . , r} such that Bi is a simple F -algebra. Then Z0A is an ideal of ZA
and an F -algebra which is isomorphic to a direct sum of copies of F . Its dimension is the number of simple
blocks of A. We exploit Lemma 2.2 in order to prove:
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Theorem 2.3. (i) (T1A
⊥)2 ⊆ RA.

(ii) (T1A
⊥)(T2A

⊥) = (T1A
⊥)3 = Z0A.

(iii) If p is odd then (T1A
⊥)2 = Z0A.

Proof. (i) Lemma 2.2 implies

(T1A
⊥)2 ⊆ ζ2((T1A

⊥)p(p−1)) ⊆ ζ2((T1A
⊥)2).

Iteration yields
(T1A

⊥)2 ⊆ ζ2(ζ2((T1A
⊥)2)) = ζ4((T1A

⊥)2) ⊆ ζ6((T1A
⊥)2) ⊆ . . . .

Thus

(T1A
⊥)2 ⊆

∞
⋂

n=0

Im(ζ2n) =

∞
⋂

n=0

T2nA⊥ = SA ∩ ZA = RA,

by Lemma 2.1 (iii).
(ii) It is easy to see that TnA = TnB1⊕· · ·⊕TnBr and TnA⊥ = TnB⊥

1 ⊕· · ·⊕TnB⊥
r for n = 0, 1, 2, . . .

where TnB⊥
i = {x ∈ Bi : (x|TnBi) = 0} for i = 1, . . . , r. So we may assume that A itself is a block.

If A is simple then JA = 0, so TnA = KA and TnA⊥ = ZA for n = 0, 1, 2, . . .. Hence

ZA = (T1A
⊥)(T2A

⊥) = (T1A
⊥)3

in this case.
Now suppose that A is non-simple. Then JA is not contained in KA, so T1A 6= KA. This means that

T1A
⊥ is a proper ideal of ZA. Since ZA is a local F -algebra this implies that T1A

⊥ ⊆ JZA ⊆ JA. Thus
we may conclude, using (i), that (T1A

⊥)3 ⊆ (RA)(JA) = 0. Hence Lemma 2.2 yields

(T1A
⊥)(T2A

⊥) ⊆ ζ3((T2A
⊥)p2(p−1)) ⊆ ζ3((T1A

⊥)3) = ζ3(0) = 0.

(iii) Suppose that p is odd. As in the proof of (ii), we may assume that A is a block, and that A is
non-simple. Then Lemma 2.2 and (ii) imply that

(T1A
⊥)2 ⊆ ζ2((T1A

⊥)p(p−1)) ⊆ ζ2((T1A
⊥)3) = ζ2(0) = 0,

and the result is proved.

Theorem 2.3 extends [M2, Theorem 9] from group algebras to symmetric algebras. We will later improve on
part (i). But first we note the following consequence.

Corollary 2.4. Suppose that A is a block, and denote the central character of A by ω : ZA −→ F . Moreover,
let m, n ∈ {1, 2, . . .} and x, y ∈ ZA. Then

ζm(x)ζn(y) = ω(x)p−m

ω(y)p−n

ζm(1)ζn(1).

In particular, we have
(TmA⊥)(TnA⊥) = Fζm(1)ζn(1),

so that dim(TmA⊥)(TnA⊥) ≤ 1.

Proof. Theorem 2.3 (i) implies that ζm(x)pn

∈ RA ⊆ SA. Thus

ζm(x)pn

y = ω(y)ζm(x)pn

.

Similarly, we have xζn(1)pm

= ω(x)ζn(1)pm

. So we conclude that

ζm(x)ζn(y) = ζn(ζm(x)pn

y) = ζn(ω(y)ζm(x)pn

) = ω(y)p−n

ζm(x)ζn(1)

= ω(y)p−n

ζm(xζn(1)pm

) = ω(y)p−n

ζm(ω(x)ζn(1)pm

) = ω(y)p−n

ω(x)p−m

ζm(1)ζn(1).
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The remaining assertions follow from Lemma 2.1 (iii).

We can generalize part of Corollary 2.4 in the following way.

Proposition 2.5. Let m, n ∈ {1, 2, . . .}. Then

(TmA⊥)(TnA⊥) = ZA · ζm(1)ζn(1)

is a principal ideal of ZA. If p is odd, or if m + n > 2, then the dimension of (TmA⊥)(TnA⊥) equals the
number of simple blocks of A.

Proof. It is easy to see that we may assume that A is a block. In this case the assertion follows from Corollary
2.4 and Theorem 2.3.

In the next two sections, we will handle the remaining case p = 2 and m = n = 1. Here we just illustrate
this exceptional case by an example.

Let G be a finite group. Then the group algebra FG is a symmetric F -algebra; a symmetrizing bilinear
form on FG satisfies

(g|h) =

{

1, if gh = 1,
0, otherwise,

for g, h ∈ G. An element g ∈ G is called real if g is conjugate to its inverse g−1, and g is said to be of p-defect
zero if |CG(g)| is not divisible by p. We denote the set of all real elements of 2-defect zero in G by RG. For
a subset X of G, we set

X+ :=
∑

x∈X

x ∈ FG.

It was proved in [8, Proposition 4.1] that R+
G = ζ1(1)2 ∈ (T1FG⊥)2, in case p = 2.

Example 2.6. Let p = 2, and suppose that G is the symmetric group S4 of degree 4. Then FG has no
simple blocks; in fact, FG has just one block, the principal one. Thus Z0FG = 0. On the other hand, RG

is precisely the set of all 3-cycles in S4. Thus 0 6= R+
G ∈ (T1FG⊥)2. (In fact, (T1FG⊥)2 is one-dimensional,

by Corollary 2.4.) This example shows that (T1A
⊥)2 6= Z0A, in general.

3. Odd Cartan invariants

Let F be an algebraically closed field of characteristic p = 2, and let A be a symmetric F -algebra with
symmetrizing bilinear form (. | .). In this section, we will prove some remarkable properties of the ideal
(T1A

⊥)2 of ZA. We start by recalling some known facts concerning symmetric bilinear forms over F .

Lemma 3.1. Let V be a finite-dimensional vector space over F , and let 〈. | .〉 be a non-degenerate symmetric
bilinear form on V . Then either 〈. | .〉 is symplectic (i.e. 〈v|v〉 = 0 for every v ∈ V ), or there exists an
orthonormal basis v1, . . . , vn of V (i.e. 〈vi|vj〉 = δij for i, j = 1, . . . , n).

Proof. This can be found in [4, Hauptsatz V.3.5], for example.

If 〈. | .〉 is symplectic then there exists a symplectic basis v1, . . . , vm, vm+1, . . . , v2m of V , i.e.

〈vi|vm+i〉 = 〈vm+i|vi〉 = 1 for i = 1, . . . , m,

〈vi|vj〉 = 0 otherwise,

(cf. [4, Hauptsatz V.4.10]). Thus there exist only two types of non-degenerate symmetric bilinear forms on
a finite-dimensional vector space V over F , a symplectic one and a non-symplectic one. In the symplectic
case, the dimension of V has to be even.
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We now apply Lemma 3.1 to the symmetrizing bilinear form (. | .) on A. For ease of notation, we set
ζ := ζ1 : ZA −→ ZA.

Lemma 3.2. With notation as above, we have

(ζ(1)|ζ(1)) = (dim A) · 1F .

Proof. By Lemma 3.1, there exists an F -basis

a1, . . . , am, am+1, . . . , a2m, a2m+1, . . . , an

of A such that
(ai|am+i) = (am+i|ai) = 1 for i = 1, . . . , m,

(ai|ai) = 1 for i = 2m + 1, . . . , n,

(ai|aj) = 0 otherwise,

(and either n = 2m or m = 0). Then the dual basis b1, . . . , bn of a1, . . . , an is given by

am+1, . . . , a2m, a1, . . . , am, a2m+1, . . . , an.

Thus (ζ(1)|ai)
2 = (1|a2

i ) = (ai|ai) = (ai|ai)
2 for i = 1, . . . , n, so

ζ(1) =

n
∑

i=1

(ζ(1)|ai)bi =

n
∑

i=1

(ai|ai)bi =

n
∑

i=2m+1

ai

and

(ζ(1)|ζ(1)) =

n
∑

i,j=2m+1

(ai|aj) =

n
∑

i=2m+1

(ai|ai) = (n − 2m) · 1F = n · 1F = (dim A) · 1F ,

and the result is proved.

The next statement holds in arbitrary characteristic. It is essentially taken from [11, Corollary (1.G)].

Lemma 3.3. Let e be a primitive idempotent in A, and let r ∈ RA. Then er = 0 if and only if (e|r) = 0.

Proof. If er = 0 then 0 = (er|1) = (e|r). Conversely, if (e|r) = 0 then

(eAe|ere) = (eAe|r) = (Fe + J(eAe)|r) ⊆ F (e|r) + (JA · r|1) = 0.

Thus 0 = ere = er since the restriction of (. | .) to eAe is non-degenerate.

Now we choose representatives a1 = e1, . . . , al = el for the conjugacy classes of primitive idempotents in A.
(This means that Ae1, . . . , Ael are representatives for the isomorphism classes of indecomposable projective
left A-modules.) Moreover, we let al+1, . . . , an denote an F -basis of JA + KA. Then a1, . . . , an form an
F -basis of A.

Let b1, . . . , bn denote the dual basis of a1, . . . , an. Then r1 := b1, . . . , rl := bl are contained in (JA +
KA)⊥ = SA ∩ ZA = RA, so they form an F -basis of RA. Moreover, Lemma 3.3 implies that eirj = 0 for
i 6= j and eiri 6= 0 for i = 1, . . . , l.

Lemma 3.4. With notation as above, we have

ζ(1)2 =

l
∑

i=1

(dim eiAei) · ri.
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Thus eiζ(1)2 = (dim eiAei) · eiri for i = 1, . . . , l.

Proof. Lemma 2.1 (iii) and Theorem 2.3 (i) imply that ζ(1)2 ∈ (T1A
⊥)2 ⊆ RA. By making use of Lemma

2.1 (iv) and Lemma 3.2, we obtain

ζ(1)2 =

l
∑

i=1

(ζ(1)2|ei)ri =

l
∑

i=1

(ζ(1)ei|ζ(1)ei)ri

=

l
∑

i=1

(ζeiAei(ei)|ζ
eiAei(ei))ri =

l
∑

i=1

(dim eiAei) · ri.

Since eirj = 0 for i 6= j the result follows.

The next theorem is the main result of this section.

Theorem 3.5. For a primitive idempotent e in A, the following assertions are equivalent:
(1) dim eAe is even.
(2) eζ(1)2 = 0.
(3) (e|ζ(1)2) = 0.

Proof. We may assume that e = ei for some i ∈ {1, . . . , l}. Then eiζ(1)2 = (dim eiAei) · eiri with eiri 6= 0,
by Lemma 3.4. This shows that (1) and (2) are equivalent. Since ζ(1)2 ∈ RA, Lemma 3.3 implies that (2)
and (3) are equivalent.

The Cartan matrix C := (cij)
l
i,j=1 of A is defined by

cij := dim eiAej for i, j = 1, . . . , l.

Thus C is a symmetric matrix with non-negative integer coefficients, the Cartan invariants of A. Hence
Theorem 3.5 has the following consequence.

Corollary 3.6. With notation as above, ζ(1)2 6= 0 if and only if the Cartan matrix of A contains an odd
diagonal entry cii. More precisely, for a block B of A, we have ζ(1)21B 6= 0 if and only if the Cartan matrix
of B contains an odd diagonal entry.

In order to illustrate Corollary 3.6 recall that, by Example 2.6, the group algebra FG, for G = S4, satisfies
ζ(1)2 = R+

G 6= 0. Thus the Cartan matrix of FG contains an odd diagonal entry, by Corollary 3.6. Indeed,
the Cartan matrix of FG is

C :=

(

4 2
2 3

)

,

as is well-known. More substantial examples will be presented in [2].
It may be of interest to note that the existence of odd diagonal Cartan invariants in characteristic 2 is

invariant under derived equivalences (cf. [5]).

Proposition 3.7. Let A′ be a symmetric F -algebra which is derived equivalent to A. Then the Cartan
matrix of A′ contains an odd diagonal entry if and only if the Cartan matrix of A does.

Proof. It is known that the Cartan matrices C = (cij)
l
i,j=1 of A and C ′ = (c′ij)

l
i,j=1 of A′ have the same

format, and that they are related by an equation

C ′ = Q · C · Q>
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where Q = (qij)
l
i,j=1 is an integral matrix with determinant ±1 (cf. [5]). Thus

c′ii =

l
∑

j,k=1

qijqikcjk ≡

l
∑

j=1

q2
ijcjj (mod 2)

for i = 1, . . . , l. If c′ii is odd then cjj has to be odd for some j ∈ {1, . . . , l} (and conversely).

4. The Higman ideal

Let F be an algebraically closed field, and let A be a symmetric F -algebra with symmetrizing bilinear form
(. | .). Moreover, let a1, . . . , an and b1, . . . , bn denote a pair of dual bases of A. In the following, the F -linear
map

τ : A −→ A, x 7−→

n
∑

i=1

bixai,

will be of interest (cf. [3, §66]). We record the following properties of this trace map τ :

Lemma 4.1. (i) τ is independent of the choice of dual bases.
(ii) τ is self-adjoint with respect to (. | .).
(iii) Im(τ) ⊆ SA ∩ ZA = RA and JA + KA ⊆ Ker(τ).

Proof. (i) Let a′
1, . . . , a

′
n and b′1, . . . , b

′
n be another pair of dual bases of A. Then b′i =

∑n
j=1(aj |b

′
i)bj and

ai =
∑n

j=1(ai|b
′
j)a

′
j for i = 1, . . . , n. Thus

n
∑

i=1

b′ixa′
i =

n
∑

i,j=1

(aj |b
′
i)bjxa′

i =

n
∑

j=1

bjx

n
∑

i=1

(aj |b
′
i)a

′
i =

n
∑

j=1

bjxaj

for x ∈ A.
(ii) Let x, y ∈ A. Then, by (i), we get

(τ(x)|y) =

n
∑

i=1

(bixai|y) =

n
∑

i=1

(x|aiybi) = (x|τ(y)).

(iii) Let x, y ∈ A. Then

τ(x)y =
n

∑

i=1

bixaiy =
n

∑

i,j=1

bix(aiy|bj)aj =
n

∑

i,j=1

(ai|ybj)bixaj

=

n
∑

j=1

ybjxaj = yτ(x).

Hence Im(τ) ⊆ ZA. In order to prove Im(τ) ⊆ SA, we choose a1, . . . , an appropriately. Indeed, we may
assume that a1+JA, . . . , ar+JA form an F -basis of A/JA, that ar+1+(JA)2, . . . , as+(JA)2 form an F -basis
of (JA)/(JA)2, that as+1 + (JA)3, . . . , at + (JA)3 form an F -basis of (JA)2/(JA)3, etc. Then b1, . . . , br are
contained in (JA)⊥, b1, . . . , bs are contained in ((JA)2)⊥, b1, . . . , bt are contained in ((JA)3)⊥, etc.

Now let x ∈ A and y ∈ JA. Then bixaiy ∈ (JA)⊥ · A · A · (JA) = 0 for i = 1, . . . , r, bixaiy ∈
((JA)2)⊥ ·A · (JA) · (JA) = 0 for i = r + 1, . . . , s, bixaiy ∈ ((JA)3)⊥ ·A · (JA)2 · (JA) = 0 for i = s + 1, . . . , t,
etc. We see that τ(x)y = 0, so Im(τ) ⊆ SA.

Since τ is self-adjoint (i.e. τ∗ = τ) we conclude that

Ker(τ) = Ker(τ∗) = Im(τ)⊥ ⊇ (SA ∩ ZA)⊥ = JA + KA.
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Thus HA := Im(τ) is an ideal of ZA contained in RA, called the Higman ideal of ZA. By Lemma 4.1, it is
independent of the choice of dual bases. In the following, we write

1A = e1 + · · · + em

with pairwise orthogonal primitive idempotents e1, . . . , em of A.

Lemma 4.2. With notation as above, we have (τ(ei)|ej) = (dim eiAej) · 1F for i, j = 1, . . . , m.

Proof. We consider the decomposition A =
⊕m

i,j=1 eiAej . For i, j = 1, . . . , m, let Xij be an F -basis of eiAej .

Then X :=
⋃m

i,j=1 Xij is an F -basis of A. We denote the dual basis of X by X∗. For x ∈ X , there is a
unique x∗ ∈ X∗ such that (x|x∗) = 1. Then the map X −→ X∗, x 7−→ x∗, is a bijection. Moreover, for
i, j = 1, . . . , m, X∗

ij := {x∗ : x ∈ Xij} is an F -basis of ejAei. Thus

τ(ei)ej = ejτ(ei)ej =
∑

x∈X

ejx
∗eixej =

∑

x∈Xij

ejx
∗eixej =

∑

x∈Xij

x∗x

and
(τ(ei)|ej) = (τ(ei)ej |1) =

∑

x∈Xij

(x∗x|1) =
∑

x∈Xij

(x∗|x) = |Xij | · 1F = (dim eiAej) · 1F ,

so the result is proved.

We may assume that e1, . . . , em are numbered in such a way that a1 := e1, . . . , al := el represent the conjugacy
classes of primitive idempotents in A. We choose an F -basis al+1, . . . , an of JA + KA, so that a1, . . . , an

form an F -basis of A. We denote the dual basis of a1, . . . , an by b1, . . . , bn. As above, r1 := b1, . . . , rl := bl

form an F -basis of RA = SA ∩ ZA.

Lemma 4.3. With notation as above, we have

τ(ei) =

l
∑

j=1

(dim eiAej) · rj for i = 1, . . . , l.

Proof. Let i ∈ {1, . . . , l}. Then τ(ei) ∈ HA ⊆ RA, so

τ(ei) =
l

∑

j=1

(τ(ei)|ej)rj =
l

∑

j=1

(dim eiAej) · rj

by Lemma 4.2.

In the following, suppose that char F = p > 0. We know from Theorem 2.3 that (T1A
⊥)2 ⊆ RA. We are

going to show that, more precisely, (T1A
⊥)2 ⊆ HA. In the proof, we will make use of the following fact.

Lemma 4.4. Let C = (cij) be a symmetric n× n-matrix with coefficients in the field F2 with two elements.
Then its main diagonal c := (c11, c22, . . . , cnn), considered as a vector in Fn

2 , is a linear combination of the
rows of C.

Proof. Arguing by induction on n, we may assume that n > 1. If c = 0 then there is nothing to prove. So
we may assume that cii = 1 for some i ∈ {1, . . . , l}. Permuting the rows and columns of C, if necessary, we
may assume that c11 = 1. We now perform elementary row operations on C. For k = 2, . . . , n, we subtract
the first row, multiplied by ck1, from the k-th row. The resulting matrix C ′ has the entries

0, ck2 − ck1c12, . . . , ckn − ck1c1n
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in its k-th row and the entries
c1k, c2k − c21c1k, . . . , cnk − cn1c1k

in its k-th column. We now remove the first row and the first column from C ′ and end up with a symmetric
(n − 1) × (n − 1)-matrix D with diagonal entries

ckk − ck1c1k = ckk − c2
1k = ckk − c1k (k = 2, . . . , n).

On the other hand, if we subtract the first row of C from c then we obtain the vector

c′ := (0, c22 − c12, . . . , cnn − c1n).

Thus the vector d := (c22 − c12, . . . , cnn − c1n) coincides with the main diagonal of D. By induction, d is a
linear combination of the rows of D, so c is a linear combination of the rows of C.

As Gary McGuire kindly pointed out to us, a different proof of Lemma 4.4 can be found in [1, Proposition
4.6.2]. We apply Lemma 4.4 in the proof of the following result which is a refinement of Theorem 2.3 (i).
The special case of group algebras was first proved in [8, Lemma 5.1].

Theorem 4.5. We always have (T1A
⊥)2 ⊆ HA.

Proof. If p is odd then, by Theorem 2.3 (iii), we have

(T1A
⊥)2 ⊆ Z0A =

∑

B

ZB =
∑

B

HB ⊆ HA

where B ranges over the simple blocks of A; in fact, if B = Mat(d, F ) for a positive integer d then HB = ZB.
Thus we may assume that p = 2. Then Lemma 2.2 gives us elements α1, . . . , αl in the prime field of F

such that
l

∑

j=1

(dim eiAej) · αj = (dim eiAei) · 1F for i = 1, . . . , l.

Thus Lemma 3.4 and Lemma 4.3 imply that

ζ(1)2 =

l
∑

i=1

(dim eiAei) · ri =

l
∑

i,j=1

(dim eiAej) · αjri =

l
∑

j=1

αjτ(ej) ∈ HA.

Hence Proposition 2.5 implies that (T1A
⊥)2 = ZA · ζ(1)2 ⊆ HA.

5. Morita invariance

Let F be an algebraically closed field of characteristic p > 0, and let A be a symmetric F -algebra. In this
section we investigate the behaviour of the ideals TnA⊥ of ZA under Morita equivalences. These results will
be used in [2].

Proposition 5.1. Let e be an idempotent in A such that AeA = A. Then the map

f : ZA −→ Z(eAe), z 7−→ ez = ze,

is an isomorphism of F -algebras mapping TnA⊥ onto Tn(eAe)⊥, for n = 0, 1, 2, . . ..

Proof. Certainly f is a homomorphism of F -algebras. Let z ∈ ZA such that 0 = f(z) = ez. Then
0 = AezA = AeAz = Az, so that z = 0. Thus f is injective. Since AeA = A the F -algebras A and eAe
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are Morita equivalent; in particular, their centers are isomorphic. Hence f is an isomorphism of F -algebras.
Lemma 2.1 (iv) implies that f ◦ ζA

n = ζeAe
n ◦ f , so

f(TnA⊥) = f(ζA
n (ZA)) = ζeAe

n (f(ZA)) = ζeAe
n (Z(eAe)) = Tn(eAe)⊥

by Lemma 2.1 (iii).

We mention two consequences of Proposition 5.1.

Corollary 5.2. Let d be a positive integer, and let Ad denote the symmetric F -algebra Mat(d, A). Then the
map

h : ZA −→ ZAd, z 7−→ z1d,

is an isomorphism of F -algebras mapping TnA⊥ onto (TnAd)
⊥, for n = 0, 1, 2, . . ..

Proof. We denote the matrix units of Ad by eij (i, j = 1, . . . , d). Then the map

f : A −→ e11Ade11, a 7−→ ae11,

is an isomorphism of F -algebras. This implies that f(ZA) = Z(e11Ade11) and f(TnA⊥) = Tn(e11Ade11)
⊥

for n = 0, 1, 2, . . .. On the other hand, Proposition 5.1 implies that the map

g : ZAd −→ Z(e11Ade11), z 7−→ ze11 = e11z,

is an isomorphism of F -algebras such that g((TnAd)
⊥) = Tn(e11Ade11)

⊥ for n = 0, 1, 2, . . .. Now observe
that h is an isomorphism of F -algebras such that g◦h is the restriction of f to ZA. Thus h(TnA⊥) = (TnAd)

⊥

for n = 0, 1, 2, . . ..

Corollary 5.3. Let B be a symmetric F -algebra which is Morita equivalent to A. Then there is an isomor-
phism of F -algebras ZA −→ ZB mapping TnA⊥ onto TnB⊥, for n = 0, 1, 2, . . ..

Proof. Let e be an idempotent in A such that eAe is a basic algebra of A, and let f be an idempotent in
B such that fBf is a basic algebra of B. Then AeA = A and BfB = B. Moreover, eAe and fBf are
isomorphic since A and B are Morita equivalent. Thus Proposition 5.1 yields a chain of isomorphisms

ZA −→ Z(eAe) −→ Z(fBf) −→ ZB

mapping TnA⊥ onto TnB⊥, for n = 0, 1, 2, . . ..

It would be interesting to know whether Corollary 5.3 extends to symmetric F -algebras which are derived
equivalent (cf. [5]).

Question 5.4. Suppose that A and B are derived equivalent symmetric F -algebras. Is there an isomorphism
of F -algebras ZA −→ ZB mapping TnA⊥ onto TnB⊥, for n = 0, 1, 2, . . .?

6. Some dual results

Let F be an algebraically closed field of characteristic p > 0, and let A be a symmetric F -algebra. For
n = 0, 1, 2, . . .,

TnZA := {z ∈ ZA : zpn

= 0}

is an ideal of ZA. In this way we obtain an ascending chain of ideals

0 = T0ZA ⊆ T1ZA ⊆ T2ZA ⊆ . . . ⊆ JZA ⊆ ZA

11



of ZA such that
∞
∑

n=0

TnZA = JZA.

This ascending chain of ideals turns out to be related to the descending chain of ideals

ZA = T0A
⊥ ⊇ T1A

⊥ ⊇ T2A
⊥ . . . ⊇ RA ⊇ 0

of ZA considered before.

Proposition 6.1. Let n ∈ {0, 1, 2, . . .}. Then (TnA⊥)(TnZA) = 0.

Proof. Let y ∈ ZA and z ∈ TnZA, so that zpn

= 0. Then Lemma 2.1 (i) implies that

ζn(y)z = ζn(yzpn

) = ζn(y0) = ζn(0) = 0.

Hence (TnA⊥)(TnZA) = (Im ζn)(TnZA) = 0, by Lemma 2.1 (iii).

The result above is essentially [9, Proposition 4]. We conclude that

TnZA ⊆ {z ∈ ZA : z(TnA⊥) = 0} ⊆ {z ∈ ZA : zζn(1) = 0}.

In [2], we will see that these inclusions are proper in general, even for group algebras of finite groups. If n
is sufficiently large then TnZA = JZA and TnA⊥ = RA, and certainly

JZA = {z ∈ ZA : z · RA = 0}.

Also, if n is large and A = FG for a finite group G then ζn(1) = G+
p where Gp denotes the set of p-elements

in G (cf. [7, (48)]), and it is known that

JZFG = {z ∈ ZFG : zG+
p = 0}

(cf. [7, (59)]). However, it is easy to construct an example of a symmetric F -algebra A such that

JZA 6= {z ∈ ZA : zζn(1) = 0}

for all sufficiently large n.
For n = 0, 1, 2, . . ., the ideal TnZA of ZA is related to a semilinear map κn : A/KA −→ A/KA first

constructed in [6 IV]; κn is defined in such a way that

(zpn

|x) = (z|κn(x))pn

for z ∈ ZA and x ∈ A/KA;

here we set (z|a +KA) := (z|a) for z ∈ ZA and a ∈ A. Also, we set (a +KA)pn

:= apn

+KA for a ∈ A. We
recall the following properties of κn (cf. [7, (50) - (53)]).

Lemma 6.2. Let m, n ∈ {0, 1, 2, . . .}, let x, y ∈ A/KA, and let z ∈ ZA. Then the following holds:
(i) κn(x + y) = κn(x) + κn(y), zκn(x) = κn(zpn

x) and κn(zxpn

) = ζn(z)x.
(ii) κm ◦ κn = κm+n.
(iii) Im(κn) = TnZA⊥/KA.

Our next result is a dual version of Theorem 2.3. For simplicity, we concentrate on the case where A
is a non-simple block. (If A is a simple block then T1ZA = 0, so T1ZA⊥ = A. Moreover, we have
T2A

⊥ = T1A
⊥ = ZA in this case.)

Proposition 6.3. Suppose that A is a non-simple block. Then the following holds:
(i) (T1A

⊥)(T1ZA⊥) ⊆ KA for p 6= 2.
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(ii) (T2A
⊥)(T1ZA⊥) ⊆ KA and (T1A

⊥)(T2ZA⊥) ⊆ KA for p = 2.
(iii) (T1A

⊥)(T1ZA⊥) ⊆ JZA⊥ for p = 2. Moreover, in this case we have (T1A
⊥)(T1ZA⊥) ⊆ KA if

and only if ζ(1)2 = 0.

Proof. (i) Let y ∈ ZA and x ∈ A/KA. Then ζ1(y)κ1(x) = κ1(ζ1(y)px) = 0 since ζ1(y)p ∈ (T1A
⊥)p = 0 by

Theorem 2.3 (iii). Thus
(T1A

⊥)(T1ZA⊥/KA) = (Im ζ1)(Im κ1) = 0,

and (i) is proved.
(ii) Let x, y be as in (i). Then ζ2(y)κ1(x) = κ1(ζ2(y)2x) = 0 since ζ2(y)2 ∈ (T2A

⊥)2 = 0, by Theorem
2.3 (ii). Thus

(T2A
⊥)(T1ZA⊥/KA) = (Im ζ2)(Im κ1) = 0.

Similarly, we have ζ1(y)κ2(x) = κ2(ζ1(y)4x) = 0 since ζ1(y)3 ∈ (T1A
⊥)3 = 0 by Theorem 2.3 (ii). Thus

(T1A
⊥)(T2ZA⊥/KA) = (Im ζ1)(Im κ2) = 0,

and (ii) follows.
(iii) Again, let x, y be as in (i). Then

ζ1(y)κ1(x) = κ1(ζ1(y)2x) = κ1(ζ1(y)κ1(yx2)) ∈ κ1((Im ζ1)(Im κ1)).

Iteration yields

(Im ζ1)(Im κ1) ⊆ κ1((Im ζ1)(Im κ1)) ⊆ κ1(κ1((Im ζ1)(Im κ1))) = κ2((Im ζ1)(Im κ1)) ⊆ . . . .

Thus

(T1A
⊥)(T1ZA⊥/KA) = (Im ζ1)(Im κ1) ⊆

∞
⋂

n=0

Im(κn) =

∞
⋂

n=0

TnZA⊥/KA = JZA⊥/KA,

and the first assertion of (iii) is proved. Now note that (T1A
⊥)(T1ZA⊥) ⊆ KA if and only if

0 = ((T1A
⊥)(T1ZA⊥)|ZA) = (T1A

⊥|T1ZA⊥)

if and only if T1A
⊥ ⊆ T1ZA if and only if z2 = 0 for all z ∈ T1A

⊥. But (T1A
⊥)2 = Fζ1(1)2 by Corollary

2.4, so z2 = 0 for all z ∈ T1A
⊥ if and only if ζ1(1)2 = 0.

Note that, in the situation of Proposition 6.3 (iii), we have ζ1(1)2 = 0 if and only if all diagonal Cartan
invariants of A are even, by Lemma 3.4. Also, we have

dim(T1A
⊥)(T1ZA⊥) + KA/KA ≤ 1.

There is the following dual of Proposition 6.1.

Proposition 6.4. Let n ∈ {0, 1, 2, . . .}. Then (TnZA)(TnZA⊥) ⊆ KA.

Proof. Let z ∈ TnZA and x ∈ A/KA. Then

zκn(x) = κn(zpn

x) = κn(0x) = 0.

Thus (TnZA)(TnZA⊥/KA) = (TnZA)(Im κn) = 0, and the result follows.
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