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For a primitive stochastic matrix S, upper bounds on the second

largest modulus of an eigenvalue of S are very important, because

they determine the asymptotic rate of convergence of the sequence

of powers of the corresponding matrix. In this paper, we introduce

the definition of the scrambling index for a primitive digraph. The

scrambling index of a primitive digraph D is the smallest positive

integer k such that for every pair of vertices u and v, there is a vertex

w such that we can get to w from u and v in D by directed walks of

length k; it is denoted by k(D). We investigate the scrambling index

for primitive digraphs, and give an upper bound on the scrambling

index of a primitive digraph in terms of the order and the girth of

the digraph. By doing so we provide an attainable upper bound on

the second largestmodulus of eigenvalues of a primitivematrix that

make use of the scrambling index.

Published by Elsevier Inc.

1. Introduction

For terminology and notation used here we follow [1]. Let D = (V , E) denote a digraph (directed

graph) with vertex set V = V(D), arc set E = E(D) and order n. Loops are permitted but multiple arcs

are not. A u → v walk in a digraph D is a sequence of vertices u,u1, . . . ,ut , v ∈ V(D) and a sequence of

arcs (u,u1), (u1,u2), . . . , (ut , v) ∈ E(D), where the vertices and arcs are not necessarily distinct. A closed

walk is a u → vwalk where u = v. A cycle is a closed u → vwalk with distinct vertices except for u = v.

The length of a walkW is the number of arcs inW . The notation u
k−→ v is used to indicate that there

is a u → v walk of length k. The distance from vertex u to vertex v in D, is the length of a shortest walk
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from u to v, and denoted by d(u, v). A p-cycle is a cycle of length p, denoted Cp. If the digraph D has at

least one cycle, the length of a shortest cycle in D is called the girth of D, denoted s(D).

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from

each vertex u to each vertex v. If D is primitive the smallest such t is called the exponent of D, denoted

by exp(D). There are numerous upper bounds on the exponent of a primitive digraph. One of the well

known result on the exponent is due to Dulmage and Mendelsohn [2].

Proposition 1.1. Let D be a primitive digraph with n vertices, and s be the girth of D. Then

exp(D) � n + s(n − 2).

A digraph D is primitive if and only of its strongly connected and the greatest common divisor of

all cycle lengths in D is equal to one.

For a digraph D with n vertices, we define the adjacency matrix of D to be the n × n matrix A(D) =
(aij), where aij = 1 if there is an arc from vertex i to vertex j, and aij = 0 otherwise. For a posi-

tive integer r, the rth power of a digraph D, denoted by Dr , is the digraph on the same vertex set

and with an arc from vertex i to vertex j if and only if i
r→ j in D. It is easy to see that (D(A))r =

D(Ar).

For a positive integer r � 1, the (i, j)th entry of the matrix Ar is positive if and only if i
r→ j in

the digraph D. Since most of the time we are only interested in the existence of such walks, not

the number of different directed walks from i to j, we interpret A as a Boolean (0, 1)-matrix, unless

stated otherwise. We denote by J,O, and I the all 1’s matrix, the all 0’s matrix and the identity matrix,

respectively.

For vertices u, v and w of a digraph D, if (u,w), (v,w) ∈ E(D), then vertex w is called a common out-

neighbour of vertices u and v. The scrambling index of a primitive digraph is the smallest positive integer

k such that for every pair of vertices u and v, there exists a vertex w such that u
k→w and v

k→w in

D. In other words, it is the smallest positive integer k such that each pair of vertices has a common

out-neighbour in Dk . The scrambling index of D will be denoted by k(D). An analogous definition can

be given for nonnegative matrices. The scrambling index of a primitive matrix A is the smallest positive

integer k such that any two rows of Ak have at least one positive element in a coincident position, and

will be denoted by k(A). The scrambling index of a primitive matrix A can also defined as the smallest

positive integer k such that Ak(AT )k = J.

In 2006, Cho and Kim [5] introduced the competition index of a digraph. They define the row graph

R(A) of a Boolean matrix A. It is a graph whose vertices are the rows of A, and two vertices in R(A) are

adjacent if and only if their corresponding rows have a nonzero entry in the same column of A. The

competition index, denoted cindex(D), is the smallest positive integer q such that R(Aq) = R(Aq+m) for

some positive integer m. For a primitive digraph D, cindex(D) is the smallest integer q such that R(Ar)

is a complete graph for any r � q.

Cho andKim’s [5] definition of the competition index is the same as our definition of the scrambling

index in the case of primitive digraphs. In [5], the authors present the following result about the

competition index.

Proposition 1.2 (Cho and Kim). Let D be a primitive digraph of order n(�3) with girth s.

(1) If n is odd, then cindex(D) � n + (n−3)s
2

.

(2) If n is even, then cindex(D) � n − 1 + (n−2)s
2

.

In Section 2, we present the motivation to consider the scrambling index, and give an attainable

upper bound on the second largest modulus of the eigenvalues of a stochastic matrix S by using the

scrambling index. In Section 3, we give an upper bound on the scrambling index k(D) of a primitive

digraph D in terms of the order n and the girth s of D.
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2. Coefficients of ergodicity

The spectral radius of A is the largest modulus of the eigenvalues of A, denoted by ρ(A). For a

primitivematrix A, by the Perron–Frobenius theoremwe know that the spectral radius ρ(A) is a simple

eigenvalue of A and the modulus of every other eigenvalue is strictly less than ρ(A). Any primitive

matrix is diagonally similar to a scalar multiple of a stochastic matrix. Thus we will only consider

primitive stochastic matrices. For a primitive stochastic matrix S, the powers of S converge to a rank

one positive matrix, and the rate of convergence is governed by the second largest modulus of the

eigenvalues of S. There are numerous results giving the upper bounds on the second largest modulus

of eigenvalues of primitive matrices (see [4,7,9,11–13]).

In 1979, Seneta [9] introduced thegeneral concept of coefficients of ergodicity for ann × n stochastic

matrix andhe showed that coefficients of ergodicity provide anupper boundon themoduli of non-unit

eigenvalues of a stochastic matrix.

An explicit expression for a coefficient of ergodicity in terms of the entries of the given matrix is

the well known Dobrushin or delta coefficient, denoted by τ1(·), which according to Seneta [10], was

first introduced by Dobrushin [3] and Paz [6].

For an n × n stochastic matrix S, the coefficient of ergodicity is defined

τ1(S) = 1

2
max
i,j

n∑
l=1

|sil − sjl|. (1)

It is also shown (see [4,8,10]) that

|λ| � τ1(S), (2)

where λ is a non-unit eigenvalue of S. Seneta [10] had the following result.

Proposition 2.1. Let S be a stochastic matrix. Then τ1(S) < 1 if and only if no two rows are orthogonal, or

equivalently, if any two rows have at least one positive element in a coincident position.

By thePerron–Frobenius theoremweknowthat |λ| < 1 foranynon-unit eigenvaluesofS. In that case

the coefficient of ergodicity in (1) does not provide any new information. Therefore we are interested

in the case that τ1(S) < 1.

Seneta called a matrix that satisfies the conditions of Proposition 2.1 as a scrambling matrix. An

irreducible scramblingmatrix is also a primitivematrix. Motivated by Seneta’s work, we introduce the

scrambling index of a primitive digraph.

Definition 2.2. The scrambling index of a primitive matrix A is the smallest positive integer k such

that Ak is a scrambling matrix.

Let S be a primitive stochastic matrix with scrambling index k(S) = k and λ be an eigenvalue of S;

then Sk is also a primitive stochastic matrix and λk is an eigenvalue of Sk . By applying Proposition 2.1

and (2) to the matrix Sk , we have the following result.

Theorem 2.3. Let S = (sij) be an n × n primitive stochastic matrix with scrambling index k(S) = k and

suppose that λ is a non-unit eigenvalue of S. Then

|λ| � (τ1(S
k))1/k (3)

and

τ1(S
k) < 1,

where τ1(S
k) = 1

2
maxi,j

∑n
l=1

∣∣∣s(k)il
− s

(k)
jl

∣∣∣ .
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Formula 3 in Theorem 2.3 gives an attainable upper bound on themodulus of non-unit eigenvalues

of primitive stochastic matrix. For a stochastic matrix S, we denote the maximum modulus of the

non-unit eigenvalues of S simply by ξ(S). Consider the following example.

Example 2.4. Let A be the following n × n (n � 3) stochastic matrix

A =
⎡
⎢⎣ a 1 − a OT

1×(n−2)

0 1 − a a
n−2

eT
n−2

en−2 O(n−2)×1 O(n−2)×(n−2)

⎤
⎥⎦ ,

where a ∈ R, 0 < a < 1, en−2 is an (n − 2)-dimensional column vector with all entries 1 and On×n is an

n × n zero matrix. Then

A2 =
⎡
⎢⎣ a2 1 − a a(1−a)

n−2
eT
n−2

a (1 − a)2 a(1−a)
n−2

eT
n−2

aen−2 (1 − a)en−2 O(n−2)×(n−2)

⎤
⎥⎦ .

It is easy to see that A is a primitive stochastic matrix and that the scrambling index of A is k(A) = 2.

The eigenvalues of A are 1,±
√
a − a2i and 0 with multiplicity n − 3. Then ξ(A) =

√
a − a2. By Theorem

2.3 we get τ1(A
2) = (a − a2). Comparing ξ(A) with τ1(A

2), we have ξ(A) = (τ1(A
2))1/2.

3. Scrambling index of a primitive digraph

In this section, we introduce the scrambling index of a primitive digraph and give an upper bound

on the scrambling index in terms of the order and the girth of the digraph.

3.1. Introduction

Definition 3.1. The scrambling index of a primitive digraph D, denoted by k(D), is the smallest positive

integer k such that for every pair of vertices u and v, we can get to a vertexw from both u and v in the

digraph D by directed walks of length k.

For a vertex u ∈ V(D), we define the local scrambling index of vertex u as

ku(D) = min{k : u has common out�neighbour with every other vertex in Dk}.
For u, v ∈ V(D)(u /= v), define

ku,v(D) = min{k : u k→w and v
k→w, for some w ∈ V(D)}.

Then

k(D) = max
u∈V(D)

{ku(D)},

and

k(D) = max
u,v∈V(D)

{ku,v(D)}.

From the definitions of k(D), ku(D) and ku,v(D), we have

ku,v(D) � ku(D) � k(D).

The scrambling index gives another characterization of primitivity. For a primitive digraph D, by the

definition of the scrambling index and the exponent it is easy to see that k(D) � exp(D).
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3.2. The local scrambling index

We begin with a useful lemma.

Lemma 3.2. Let p and s be positive integers such that gcd(p, s) = 1 and p > s � 2. Then for each t, 1 �
t � max{s − 1, �p/2�}, the equation xp + ys = t has a unique integral solution (x, y) with |x| � �s/2� and

|y| � �p/2�.

Proof. First consider the case that s is even. Then p is odd. We proceed by contradiction. Suppose that

(x1, y1) is an integral solution of equation xp + ys = t with minimum absolute value of x1. We claim

that |x1| �
⌊
s
2

⌋
and |y1| �

⌊ p
2

⌋
.

Suppose to the contrary that |x1| >
⌊
s
2

⌋
, so that |x1| � s+2

2
. Consider the case that x1 � s+2

2
, so that

y1 < 0. Since x1p + y1s = t, we have

y1s = t − x1p. (4)

If s − 1 = max{s − 1, �p/2�}, then t � s − 1. By (4) we have

y1s � s − 1 − x1p � s − 1 − sp

2
− p.

Solving for y1 we obtain

y1 � −p

2
+
(
1 − 1

s
− p

s

)
.

Since 1 − 1
s − p

s < 1, then y1 � − ⌊ p
2

⌋
.

If
⌊ p
2

⌋ = max
{
s − 1,

⌊ p
2

⌋}
, then t � p−1

2
. By (4) we have

y1s � p − 1

2
−
(
s + 2

2

)
p,

solving for y1, gives us

y1 � −p

2
− p + 1

2s
.

Since p+1
2s

> 0, then y1 � − ⌊ p
2

⌋
. Let x′ = x1 − s and y′ = y1 + p, then x′p + y′s = t, |x′| < |x1| and |y′| �

|y1|, contradicting with the minimality of |x1|. The arguments for the case that x1 � − s+1
2

and for the

case that s is odd are similar and omitted.

Next we consider the uniqueness. Suppose for i = 1, 2 that (xi, yi) is an integral solution of the

equation xp + ys = t for some t, where |xi| � �s/2� and |yi| � �p/2�. Then
xip + yis = t,

where i = 1, 2, and hence

(x1 − x2)p + (y1 − y2)s = 0. (5)

Since gcd(s, p) = 1, one of s and p is odd. Without loss of generality, suppose s is odd. Since |xi| �
�s/2�, i = 1, 2, then |x1 − x2| � |x1| + |x2| < s. Suppose gcd((x1 − x2), s) = l, then 1 � l � |x1 − x2|. Let
s = ls′ and x1 − x2 = x′l. It is easy to see that s′ � 2, otherwise s′ = 1, then s = l, but we have l �
|x1 − x2| < s. Substitute s = ls′ and x1 − x2 = x′l in (5), we have x′lp + (y2 − y1)ls

′ = 0. Cancelling by l

weget x′p + (y2 − y1)s
′ = 0. Since gcd(x′, s′) = 1, then x′|(y2 − y1), p =

(
y2−y1

x′
)
s′ and gcd(s, p) = s′. This

is a contradiction to gcd(s, p) = 1. �

Henceforth,we say (x, y) is a solution of equation xp + ys = twithminimumabsolute value tomean

that |x| � �s/2�, |y| � �p/2� and xp + ys = t.

Let D be a primitive digraph, and let s and p be two different cycle lengths in D. Suppose that

gcd(s, p) = 1, and that 2 � s < p � n. For u, v ∈ V(D), we can find a vertexw ∈ V(D) such that there are
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directed walks from u tow and v tow such that both walks meet cycles of lengths s and p. Denote the

lengths of these directed walks by l(u,w) and l(v,w). We say that w is a double-cycle vertex of u and v,

and we let

lu,v = max{l(u,w), l(v,w)}.
Note that any vertex is a double-cycle vertex, and that there are many possible lu,v’s. However, when

using lu,v, for specificdigraphswewillmakeagoodchoiceof thedouble-cyclevertexw andgoodchoices

of l(u,w) and l(v,w). In particular,wedonotnecessarily choosew so as tominimizemax{l(u,w), l(v,w)}.
Without loss of generality, suppose that l(u,w) � l(v,w) and l(u,w) − l(v,w) ≡ r(mods), where r ∈
{0, 1, 2, . . . , s − 1}. Then

l(u,w) − l(v,w) = ts + r (t ∈ Z, t � 0),

l(u,w) − (l(v,w) + ts) = r. (6)

When r ∈ {1, 2, . . . , s − 1}, since (s, p) = 1, by Lemma 3.2 there exist x, y ∈ Z with x � ⌊
s
2

⌋
and y � ⌊ p

2

⌋
such that either

xp − ys = r or ys − xp = r.

If

xp − ys = r, (7)

then from (6) and (7) we have

xp + l(v,w) + ts = ys + l(u,w).

That is

u
l(u,w)+ys−→ w and v

l(v,w)+xp+ts−→ w. (8)

When r = 0, from (6) we have l(u,w) = l(v,w) + ts, where t ∈ Z and t � 0. Hence

u
l(u,w)−→ w and v

l(v,w)+ts−→ w. (9)

Therefore by (8) and (9) we obtain ku,v(D) � ys + l(u,w).

Similarly, if ys − xp = r, then we have

ku,v(D) � xp + l(u,w). (10)

From the above we have the following lemma.

Lemma 3.3. Let D be a primitive digraph, and let s and p be two different cycles lengths in D. Suppose that

2 � s < p � n and gcd(s, p) = 1. Then

ku,v(D) � min{|y|s, |x|p} + lu,v, (11)

where (x, y) is the integer solution of the equation xp + ys = r with minimum absolute value and where

|l(u,w) − l(v,w)| ≡ r(mod s).

Note that the number ku,v(D) not only depends on lu,v, it also depends on r. Since k(D) =
maxu,v{ku,v(D)}, we have

k(D) � max
u,v

{min{|y|s, |x|p} + lu,v}, (12)

where x and y satisfy the conditions of Lemma 3.3. By Lemma 3.2 we have |y| � ⌊ p
2

⌋
and |x| � ⌊

s
2

⌋
.

Theorem 3.4. Let D be a primitive digraph, let p and s be different cycles lengths of D. Suppose that

gcd(p, s) = 1 and 2 � s < p � n. Then

k(D) � min

{⌊
p

2

⌋
s,

⌊
s

2

⌋
p

}
+ max

u,v
u /=v

{lu,v}, (13)
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where lu,v = max{l(u,w), l(v,w)}, l(u,w) and l(v,w) are the lengths of directed walks from u to w and v to

w that meet with cycles of lengths p and s.

3.3. The scrambling index of a primitive digraph with a Hamilton cycle

In this section we consider the scrambling index of primitive digraphs with a Hamilton cycle.

Theorem 3.5. Let D be a primitive digraph of order n with a Hamilton cycle, and let the girth of D be s,

where 1 � s � n − 1. If gcd(n, s) = 1, then

k(D) � n − s +
⎧⎨
⎩
(
s−1
2

)
n, when s is odd,(

n−1
2

)
s, when s is even.

Proof. When s = 1, it is easy to see that k(D) � n − 1. Next we consider the case that s � 2. For u, v ∈
V(D), there exist vi, vj ∈ Cs such that u

l→ vi and v
l→ vj , where 0 � l � n − s. Then ku,v(D) � kvivj (D) + l.

Therefore it suffices to show that kvi ,vj (D) �
(
s−1
2

)
n when s is odd and kvi ,vj (D) �

(
n−1
2

)
s when s is

even for all vi, vj ∈ Cs. If vi = vj , then kvi ,vj = 0. Next we consider the case where vi /= vj .

Case 1. s is odd. Since (s,n) = 1, by Lemma 3.2 for each t ∈ {1, 2, . . . , s − 1}, there exist positive

integers x and y such that

xn − ys = t or ys − xn = t,

where x � ⌊
s
2

⌋
and y � ⌊

n
2

⌋
.

Suppose d(vi, vj) = t, where 1 � t � s − 1. If xn − ys = t, then

vi
t−→ vj

ys−→ vj and

vj
xn−→ vj.

Therefore we have

kvi ,vj (D) � xn �
(
s − 1

2

)
n.

If ys − xn = t, since vi
t−→ vj and vi, vj ∈ Cs, then vj

s−t−→ vi. We also have xn − (y − 1)s = s − t. Therefore

we get

vj
s−t−→ vi

(y−1)s−→ vi and

vi
xn−→ vi.

Thus kvi ,vj (D) � xn �
(
s−1
2

)
n.

Case 2. s is even. Then n is odd. First consider all the pairs of vertices vi and vj such that vi

s
2−→ vj .

The integer solution of equation xn + ys = s
2
with minimum absolute value is x = s

2
and y = − n−1

2
.

If vi

s
2−→ vj , we have vj

n− s
2−→ vi. Since

s
2
n −

(
n−1
2

)
s = s

2
, then(

n − 1

2

)
s −

(
s

2
− 1

)
n = n − s

2
.

Therefore

vj
n− s

2−→ vi

(
s
2
−1

)
n−→ vi and

vi

(
n−1
2

)
s

−→ vi.

In that case kvi ,vj (D) =
(
n−1
2

)
s.
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1

n

n−1

s+1

s

2

3

s−1

Fig. 1. Ds,n .

Next suppose d(vi, vj) = r < s
2
, where s > 2. By Lemma 3.2 there exist positive integers x and y

with x � s
2
and y � n−1

2
such that either xn − ys = r or ys − xn = r. We claim that if xn − ys = r, then

y � n−1
2

− 1. To see this note that if y = n−1
2

, then xn − ys = (
x − s

2

)
n + s

2
and

∣∣(x − s
2

)
n + s

2

∣∣ > r. Anal-

ogouslywefind that ifys − xn = r, then x � s
2

− 1.Hencekvi ,vj (D) �
{(

n−1
2

− 1
)
s,
(
s
2

− 1
)
n
}

+ s
2

− 1 <(
n−1
2

)
s. �

Denote

k(n, s) =
⎧⎨
⎩
(
s−1
2

)
n, when s is odd,(

n−1
2

)
s, when s is even

and

K(n, s) = k(n, s) + n − s.

Let Ds,n denote a digraphwith a Hamilton cycle and unique cycle of length s, where the Hamilton cycle

is 1 → n → n − 1 → · · · → 2 → 1 and the cycle of length s is 1 → s → s − 1 → · · · → 2 → 1 as shown

in Fig. 1.

Corollary 3.6. Let D be a primitive digraph of order n with a Hamilton cycle, and let the girth of D be s,

where 1 � s � n − 1 and gcd(s,n) = 1. If k(D) = K(n, s), then D contains a subgraph isomorphic to Ds,n.

Proof. By Theorem 3.5, we know that kvi ,vj (D) � k(n, s) for vi, vj ∈ Cs. We claim that the cycle of length

s is formed from s consecutive vertices on the Hamilton cycle. Otherwise for any two vertices u and v

of D, we can get to vertices s1 and s2 on the cycle Cs by directed walks of lengths less than n − s. Then

ku,v(D) < k(n, s) + n − s. This is contradiction to k(D) = K(n, s).

Suppose vs, vs−1, . . . , v1 are the s consecutive vertices on the Hamilton cycle that form the cycle Cs,

and let the Hamilton cycle be v1 → vn
n−s→ vs → vs−1 · · · v1. Then there is an arc from vertex v1 to vertex

vs. Otherwise any arc from v1 to vi, 2 � i � s − 1, will produce a cycle with length less than s. This is a

contradiction, since the girth of D is s. �
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Next we consider the digraph Ds,n, and throughout in this paper we label Ds,n as in Fig. 1. By the

definition of the digraph Ds,n it is obvious that Ds,n is primitive if and only if gcd(s,n) = 1. Cho and Kim

[5] have obtained the formula for k(Ds,n) when n is even and s > n/2. We will find the exact value of

k(Ds,n) for all cases and give the list of all pairs of verticesu and v ofDs,n such that ku,v(Ds,n) = k(Ds,n). For

Ds,n, if s = 1, it is very easy to see that kn,i(Ds,n) = n − 1 for each i /= n, and for all i, j /= n, ki,j(Ds,n) < n − 1.

Lemma 3.7. Suppose that gcd(s,n) = 1, and s � 2. For vertices u, v ∈ V(Ds,n),u, v /= n, then ku,v(Ds,n) <

K(n, s).

Proof. For a pair of vertices u and v in Ds,n, if u, v /= n, then there are vertices s1 and s2 on cycle

Cs such that l(u, s1) = l(v, s2) < n − s. By Theorem 3.5, we know that ks1,s2 (Ds,n) � k(n, s). Therefore

ku,v(Ds,n) � ks1,s2 (Ds,n) + l(u, s1) � k(n, s) + l(u, s1) < k(n, s) + n − s = K(n, s). �

By Lemma 3.7 we know that the upper bound on the scrambling index for the digraph Ds,n is

achieved for vertex n and some vertex (or vertices) u( /= n) in Ds,n. Also notice that for vertices n and

u( /= n), the local scrambling index kn,u(Ds,n) is attained with s as the double-cycle vertex. Therefore for

vertices n and u ( /= n) in Ds,n, we always choose vertex s as the double-cycle vertex. Below we explain

how to find kn,u(Ds,n).

Remark 3.8. We consider the following two cases.

(a) Vertex u is not on the cycle Cs. From the digraph we know that there are unique directed paths

from vertices n and u to vertex s, and d(n, s) = n − s, d(u, s) = u − s, d(n,u) = n − u.

Suppose d(n,u) ≡ d′(mods), so that d(n,u) = d′ + ts for some nonnegative integer t. If d′ = 0, then

d(n,u) = t′s for some positive integer t′. Hence d(n, s) = d(u, s) + t′s. In that case we have

n
d(n,s)−→ s and

u
d(u,s)−→ s

t′s−→ s.

Since the directedwalks fromvertices n and u to vertex s are unique, thenwe have kn,u(Ds,n) = d(n, s) =
n − s.

If d′ � 1, then by Lemma 3.2, there exist unique positive integers x and y with minimum absolute

value such that xn − ys = d′ or ys − xn = d′, where |x| � ⌊
s
2

⌋
and |y| � ⌊

n
2

⌋
. Without loss of generality

suppose that xn − ys = d′. Then

n
d(n,s)−→ s

ys−→ s and

v
d(u,s)−→ s

xn+ts−→ s.

Hence kn,u(D) = ys + d(n, s).

(b) Vertex u is on the cycle Cs. Then d(n, s) = n − s, and there are exactly two different directed paths

from vertex u to vertex s. They are u
u−1→ 1

1→ s and u
u−1→ 1

1→n
n−s→ s. Let d1 = u and d2 = n − s − u.

Suppose di ≡ d′
i
(mods), so that di = d′

i
+ ts for some nonnegative integer t, where i = 1, 2. For each

d′
i
, i = 1, 2, similar to (a),we canfinddirectedwalks fromverticesn andu to vertex sof the same lengths.

Denote the lengths of these directed walks by f (i)
n,u, i = 1, 2. In that case, kn,u(D) = min{f (i)

n,u, i = 1, 2}.

Lemma 3.9. Let D = Ds,n. Then for all vertices u and v in D, lu,v(D) � max
{
n − s,

⌊
n
2

⌋}
.

Proof. Let u, v ∈ V(D) and w be a double-cycle vertex of vertices u and v.

Case 1. If u, v ∈ Cs, then either d(u, v) � ⌊
s
2

⌋
or d(v,u) � ⌊

s
2

⌋
. Without loss of generality, suppose

we have d(u, v) � ⌊
s
2

⌋
. Then let w = v. We have lu,v(D) � ⌊

s
2

⌋
<
⌊
n
2

⌋
.

Case 2. If u, v /∈ Cs, take w = s. Then lu,v(D) � n − s.
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Case 3. If u ∈ Cs, v /∈ Cs, consider the following two cases. If s �
⌈
n+1
2

⌉
, take w = s. Then d(v, s) �

n − s, d(u, s) � s − 1 � n − s.

If s >
⌈
n+1
2

⌉
and d(v,u) � ⌊

n
2

⌋
, then let w = u. Otherwise we have s >

⌈
n+1
2

⌉
and d(u, v) � ⌊

n
2

⌋
.

From the digraph we know that d(v, s) � n − s and d(u, s) � d(u, v) � ⌊
n
2

⌋
. In that case let w = s, and

we have lu,v � max
{
n − s,

⌊
n
2

⌋}
. �

Theorem 3.10. Let D = Ds,n and gcd(s,n) = 1, where 2 � s � n − 1. Then

k(D) = K(n, s). (14)

Proof. For a pair of vertices u and v in D, if u, v /= n, then by Lemma 3.7 we have ku,v(D) < K(n, s).

Next we consider all the pairs of vertices n and u, and show that kn,u(D) = K(n, s) for some vertices

u in D. We consider the following three cases.

Case 1. s is odd and n is even. We have(
n

2

)
s −

(
s − 1

2

)
n = n

2
.

Let n
2

≡ r(mods), so that n
2

= r + t′s for some nonnegative integer t′. Then(
n

2
− t′

)
s −

(
s − 1

2

)
n = r (15)

and (
s − 1

2

)
n −

(
n

2
− t′ − 1

)
s = s − r. (16)

Case 1.1. d(n,u) ≡ r(mods). Since n
2

= r + t′s,n = 2r + 2t′s. Let h = 2t′, then n = 2r + hs. From the di-

graph we know that d(n,u) ≡ r(mods) when u = n − r − ts, where t ∈ {0, 1, 2, . . . ,h}. When t ∈ {0, 1, 2,
. . . ,h − 1}, vertex n − r − ts /∈ Cs and d(n, s) − d(u, s) = r + ts. Using Remark 3.8 (a) and (15) we have

kn,n−r−ts(D) =
(
s − 1

2

)
n + n − s.

Suppose that t = h, so that n − r − ts = r. Since r < s, vertex r ∈ Cs. Then as in Remark 3.8 (b) there are

two different directed walks from vertex r to vertex s; they are r
r→ s and r

r+n−s−→ s.

For the directed path whose length is r, if n − s > r, then n − s − r = r + (2t′ − 1)s or n − s − (r +
(2t′ − 1)s) = r. Then by (15) we have

n
n−s−→ s

(
s−1
2

)
n

−→ s and

r
r−→ s

(
n
2
−t′

)
s+(2t′−1)s−→ s.

If n − s < r, then n = 2r, r − (n − s) = s − r and(
s − 1

2

)
n −

(
n

2
− 1

)
s = s − r. (17)

Therefore by (17) we have

n
n−s−→ s

(
s−1
2

)
n

−→ s and

r
r−→ s

(
n
2
−1

)
s−→ s.

In this case let f
(1)
n,r = k(n, s) + n − s.

For the directed path whose length is n − s + r, by (15) we have

n
n−s−→ s

(
n
2
−t′

)
s−→ s and

r
n−s+r−→ s

(
s−1
2

)
n

−→ s.
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Let f
(2)
n,r =

(
s−1
2

)
n + n − s + r. ThereforebyRemark3.8 (b),wehavekn,r(Ds,n) = min{f (1)

n,r , f
(2)
n,r } = k(n, s) +

n − s.

Case 1.2. d(n,u) /≡ r(mods). Then d(n,u) /= n
2
, and by Lemma 3.9 we have lnu � {

n
2

− 1,n − s
}
. By

Lemma 3.3 and (16) we have

kn,u(D) �
(
n

2
− t′ − 1

)
s + lnu < k(n, s) + n − s

as desired.

Case 2. s is odd and n is odd. We have(
n − 1

2

)
s −

(
s − 1

2

)
n = n − s

2
.

Let n−s
2

≡ r(mods), so that n−s
2

= r + t′s for some nonnegative integer t′. Then(
n − 1

2
− t′

)
s −

(
s − 1

2

)
n = r, (18)

and (
s − 1

2

)
n −

(
n − 1

2
− t′ − 1

)
s = s − r. (19)

Case 2.1. d(n,u) ≡ r(mods). Since n−s
2

= r + t′s, we have n = 2r + (2t′ + 1)s. Let h = 2t′ + 1, then n =
2r + hs. From thedigraphweknow that d(n,u) ≡ r(mods)whenu = n − r − ts, where t ∈ {0, 1, 2, · · · ,h}.
When t ∈ {0, 1, 2, · · · ,h − 1}, vertex n − r − ts /∈ Cs, and d(n, s) − d(u, s) = r + ts. Using Remark 3.8 (a)

and (18), we have

kn,n−r−ts(D) =
(
s − 1

2

)
n + n − s.

When t = h, then n − r − ts = r. Since r < s, vertex r ∈ Cs. Then as in Remark 3.8(b), there are two

different directed walks from vertex r to vertex s, and they are r
r→ s and r

r+n−s−→ s.

For the directed path whose length is r, since n − s − r = r + 2t′s, then by (18) we have

n
n−s−→ s

(
s−1
2

)
n

−→ s and

r
r−→ s

(
n−1
2

−t′
)
s+2t′s

−→ s.

Let f
(1)
n,r = k(n, s) + n − s.

For the directed path whose length is n − s + r, since n − s + r − n − s = r, then by (18) we have

n
n−s−→ s

(
n−1
2

−t′
)
s

−→ s and

r
n−s+r−→ s

(
s−1
2

)
n

−→ s.

Let f
(2)
n,r =

(
s−1
2

)
n + n − s + r. Therefore kn,r(D) = min{f (1)

n,r , f
(2)
n,r } = k(n, s) + n − s.

Case 2.2. d(n,u) /≡ r(mods). We know from Lemma 3.9 that lnu � max
{
n−1
2

,n − s
}
. Therefore by

Lemma 3.3 and (19) we get

knu(D) � max

{
n − 1

2
,n − s

}
+
(
n − 1

2
− t′ − 1

)
s < k(n, s) + n − s,

as desired.

Case 3. s is even and n is odd. We have(
s

2

)
n −

(
n − 1

2

)
s = s

2
. (20)
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Case 3.1. d(n,u) ≡ s
2
(mods). If n > 3s

2
, then n − s

2
> s. Let d(n,u) = s

2
+ t′s for some nonnegative

integer t′. Then(
s

2

)
n −

(
n − 1

2
− t′

)
s = s

2
+ t′s. (21)

If u /∈ Cs, then by Remark 3.8(a) and (21) we have

kn,u(D) =
(
n − 1

2
− t′

)
s + n − s.

When t′ = 0, then u = n − s
2
and kn,n− s

2
(D) = k(n, s) + n − s.

If u ∈ Cs, then t′ � 1. Otherwise if t′ = 0, then u = n − s
2
. Since n − s

2
> s, then u /∈ Cs, this is a

contradiction. In that case, kn,u(D) =
(
n−1
2

− t′
)
s + n − u =

(
n−1
2

)
s + n − s − (t′ − 1)s − u < k(n, s) +

n − s.

If n < 3s
2
, then n − s

2
< s, so that vertex n − s

2
∈ Cs. There is only one vertex such that d(n,u) ≡

s
2
(mods). It is vertex n − s

2
. By Remark 3.8(b), there are two directed walks from vertex n − s

2
to vertex

s, and their lengths are n − s
2
and n − s

2
+ n − s. For the directed walk whose length is n − s

2
we have

n
n−s−→ s and n − s

2

n− s
2−→ s.

Since n − s
2

− (n − s) = s
2
, then by (20) we have f

(2)

n, n
2
−s

=
(
n−1
2

)
s + n − s

2
.

For the directed path whose length n − s
2

+ n − s, we have n − s
2

n− s
2
+n−s−→ s and n

n−s−→ s. Note that

d
(
n − s

2
,n
) = n − s

2
. By (20) we have(

n − 1

2

)
s −

(
s

2
− 1

)
n = n − s

2
. (22)

Then

n
n−s−→ s

(
n−1
2

)
s

−→ s and

n − s

2

n− s
2
+n−s−→ s

(
s
2
−1

)
n−→ s.

Therefore f
(2)

n, n
2
−s

= (
s
2

− 1
)
n + n − s + n − s

2
= k(n, s) + n − s. Thereforekn,n− s

2
(D) = min

{
f
(1)

n, n
2
−s
, f

(2)

n, n
2
−s

}
= k(n, s) + n − s.

Case 3.2. d(n,u) /≡ s
2
(mods). Then

kn,u(D) �
(
n − 1

2
− 1

)
s + max

{
n − s,

n − 1

2

}
< k(n, s) + n − s. �

Let r be the positive integer that is defined as follows:

r ≡
{ n

2
(mods), if s is odd and n is even,

n−s
2

(mods), if both s and n are odd.
(23)

From the proof of Theorem 3.10, we know all the pairs of vertices u and v in Ds,n such that ku,v(Ds,n) =
K(n, s).

Corollary 3.11. Suppose that gcd(s,n) = 1, and s � 2. Then for u, v ∈ V(Ds,n), without loss of generality

take u > v, ku,v(Ds,n) = K(n, s) if and only if u = n and

(1) v = n − r − ts for some t ∈
{
0, 1, 2, . . . , n−2r

s

}
, when s is odd.

(2) v = n − s
2
, when s is even.
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3.4. Upper bounds on the scrambling indices for arbitrary primitive digraphs

In this section we consider upper bounds on the scrambling indices for general primitive digraphs.

Lemma 3.12. LetDbe aprimitive digraphwith aHamilton cycle and let the girth ofDbe s,wheregcd(n, s) =
1, 2 � s < n. Then either the cycle Cs is formed from s consecutive vertices on the Hamilton cycle or there

is another cycle of length p such that gcd(s, p) = q, where q � s
2
when s is even and q � s

3
when s is odd.

Proof. In the following we give the proof for the case that s is even. The case that s is odd is similar.

Suppose the Hamilton cycle of D is

1 → n → n − 1 → · · · → 2 → 1.

If D contains an arc from vertex i to vertex i + s − 1(modn) for some i, then the cycle Cs is formed

from s consecutive vertices on the Hamilton cycle. Otherwise the cycle Cs includes s vertices that are

not all consecutive on the Hamilton cycle. Suppose (u, v) is an arc on cycle Cs, and that u and v are

not consecutive vertices on the Hamilton cycle. Then there is a directed path from vertex v to vertex u

through the Hamilton cycle. This directed path with the (u, v) arc forms a directed cycle. Denote this

directed cycle by Cuv. Suppose p is the length of Cuv; then s < p < n.

If gcd(s, p) = q, q � s
2
, then we are done. Otherwise, suppose the arcs (ai, a

′
i
), i = 1, 2, . . . ,m, are all

the non-consecutive arcs on the cycle Cs in order, and pi is the length of cycle Caia′
i
. Then

s = m +
m−1∑
i=1

(a′
i − ai+1) + a′

m − a1

and

pi =
{
a′
i
− ai + 1, when a′

i
> ai,

n − (ai − a′
i
) + 1, when a′

i
< ai.

Summing the pi we obtain

m∑
i=1

pi = m +
m−1∑
i=1

(a′
i − ai+1) + a′

m − a1 + tn = s + tn,

where t is the number of cycles Caia′
i
with a′

i
< ai. Therefore t � m � s.

Weclaim that t < s. Ifm < s, then clearly t < s. Ifm = s, thena′
i
= ai+1 for i = 1, 2, . . . ,m − 1, a′

m = a1,

and the cycle Cs is a1 → a2 → · · · → am → a1.Without loss of generality, suppose that a1 = max{ai, i =
1, 2, · · · ,m}. We have am < a1, so t � m − 1 < s. Hence t < s.

Since s|pi, i = 1, 2, . . . ,m, then s|tn and gcd(s,n) = 1, so s|t. But t < s, a contradiction. �

Lemma 3.13. Let D be a primitive digraph with n vertices, and suppose that s is the girth of D with s � 2.

If there is another cycle of length p, s < p � n, such that gcd(s, p) = 1, then

k(D) � K(n, s).

Proof. We consider the following three cases.

Case 1. p = n. By Theorem 3.5, we have the result.

Case 2. p = n − 1. Then the cycle Cs and the cycle Cp have at least s − 1 and at most s common

vertices.

If the cycle Cs and the cycle Cp have s common vertices, then we consider the subgraph of D that

contains Cs and Cp. As in the proof of Theorem 3.5 we have kij(D) � k(n − 1, s) for i, j ∈ Cs. Hence

k(D) � k(n − 1, s) + n − s < k(n, s) + n − s.

If the cycles Cs and Cp have s − 1 common vertices, then only one vertex of the cycle Cs does not belong

to the cycle Cp, and we have kij(D) � k(n − 1, s) + 1 for i, j ∈ Cs.
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1

n−1

n

n−2

2

Fig. 2. D1.

When s � 4, we have k(D) � k(n − 1, s) + 1 + n − s < k(n, s) + n − s.

When s = 2, the digraph D has a spanning subgraph D1 as in Fig. 2. For D1, k(D1) = 2n − 4. Hence

k(D) � 2n − 4 < 2n − 3.

When s = 3, the digraph D has a subgraph D2 as in Fig. 3. For u, v ∈ V(D2), we have lu,v � n − 3. By

Theorem 3.4 we get k(D2) � ⌊
s
2

⌋
(n − 1) + lu,v � 2n − 4. Hence k(D) � 2n − 4 < 2n − 3.

Case 3. p � n − 2. For u, v ∈ V(D), we can find vertices s1, s2 ∈ Cs such that

u
n−s−→ s1 and v

n−s−→ s2.

If there exists a vertexw ∈ Cs ∩ Cp, then ls1,s2 � s − 1. Otherwise ls1,s2 � n − p. Then lu,v � n − s + ls1,s2 ,

and by Lemma 3.3 we have

ku,v(D) � min

{⌊
p

2

⌋
s,

⌊
s

2

⌋
p

}
+ lu,v.

Case 3.1. s is even. Then

ku,v(D) �
(
p − 1

2

)
s + lu,v. (24)

Case 3.1.1. If Cs ∩ Cp /= ∅, we have lu,v � n − s + ls1,s2 � n − 1. Then

ku,v(D) �
(
p − 1

2

)
s + n − 1

1

n−1

n−2 n

2

q

Fig. 3. D2.
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s2

s1

w

Fig. 4. D3.

�
(
n − 3

2

)
s + n − 1

=
(
n − 1

2

)
s − s + n − 1 <

(
n − 1

2

)
s + n − s.

Case 3.1.2. If Cs ∩ Cp = ∅, we have lu,v � n − s + ls1,s2 � n − s + n − p. We consider the following

two cases.

(a) p < n − 2 and s > 2. Then

ku,v(D) �
(
p − 1

2

)
s + n − p + n − s

= p

(
s

2
− 1

)
+ n − s

2
+ n − s

< (n − 2)

(
s

2
− 1

)
+ n − s

2
+ n − s

=
(
n − 1

2

)
s − s + 2 + (n − s) �

(
n − 1

2

)
s + n − s.

(b) p � n − 2 and s = 2. In that case we need to show that ku,v(D) < 2n − 3 for u, v ∈ V(D). Suppose

vertices s1 and s2 are inCs. Then there isavertexwonthecycleCp such thatmax{l(s1,w), l(s2,w)} �
n − p. Without loss of generality, suppose that l(s1,w) = max{l(s1,w), l(s2,w)}.

If l(s1,w) < n − p, and l(s1,w) and l(s2,w) have the same parity, then ks1,s2 (D) < n − p < n − 2.

Otherwise l(s1,w) = 2t + 1 + l(s2,w) for some nonnegative integer t. Then

s1
p−1−→ s1

l(s1,w)−→ w and

s2
2t−→ s2

l(s2,w)−→ w
p→w.

Hence ks1,s2 (D) � l(s1,w) + p − 1 � n − 2. In that case, for vertices u, v ∈ V(D), there exist vertices s′
and s

′′
on the cycle Cs such that max{l(u, s′), l(v, s′′

)} < n − 2. Then ku,v(D) � n − 2 + n − 2 = 2n − 4 <

2n − 3.

If l(s1,w) = n − p, then the digraph D has a spanning subgraph D3 as in Fig. 4. We have

s1
p−1−→ s1

n−p−→w and

s2
n−p−1−→ w

p−→w.

Hence ks1,s2 (D) = n − 1.

If for vertices u, v, there exist vertices s′ and s
′′
on the cycle Cs such that



1126 M. Akelbek, S. Kirkland / Linear Algebra and its Applications 430 (2009) 1111–1130

max{l(u, s′), l(v, s′′
)} < n − 2, thenku,v(D) < n − 2 + n − 1 = 2n − 3.Otherwisemax{l(u, s′), l(v, s′′

)} =
n − 2. Without loss of generality, suppose that l(u, s′) = n − 2. Then vertex v is on the directed walk

fromvertex u to vertex s′. If l(v, s′′
) has the same parity as n − 2, then ku,v(D) = n − 2. Otherwise n − 2 =

2t + 1 + l(v, s′) for some nonnegative integer t. We have

u
n−2+p−→ s′ and

v
l(v,s′)−→ s′ 2t+p+1−→ s′.

Hence ku,v(D) � n − 2 + p � n − 2 + n − 2 < 2n − 3.

Case 3.2. s is odd (s � 3). Then

ku,v(D) �
(
s − 1

2

)
p + lu,v. (25)

Case 3.2.1. If Cs ∩ Cp /= ∅, we have lu,v � n − 1. Then we consider the following two cases.

(a) p < n − 2. Then

ku,v(D) �
(
s − 1

2

)
p + n − 1

<

(
s − 1

2

)
(n − 2) + n − 1

=
(
s − 1

2

)
n + n − s.

(b) p = n − 2. In that case we have lu,v � n − s + s−1
2

. Hence

ku,v(D) �
(
s − 1

2

)
(n − 2) + n − s + s − 1

2

=
(
s − 1

2

)
n + n − s − s − 1

2

<

(
s − 1

2

)
n + n − s.

Case 3.2.2. If Cs ∩ Cp = ∅, we have lu,v � n − s + ls1,s2 � n − s + n − p. Since s � 3, then p < n − 2.

We consider the following two cases.

(a) p < n − 2 and s > 3. Then

ku,v(D) �
(
s − 1

2

)
p + n − p + n − s

= p

(
s − 1

2
− 1

)
+ 2n − s

< (n − 2)

(
s − 1

2
− 1

)
+ 2n − s

�
(
n − 1

2

)
s + n − s.

(b) p < n − 2 and s = 3. In that case we need to show that ku,v(D) < 2n − 3 for u, v ∈ V(D). Since

gcd(s, p) = 1, then there exists a positive integer m such that p = 3m + 1 or p = 3m + 2. Let the cycle

Cs be s1 → s2 → s3 → s1. For a vertex s on the cycle Cs we can find a vertex w on the cycle Cp such

that the directed walk from vertex s to vertex w does not contain the other two vertices of the cycle

Cs and l(s,w) � n − p − 2. Without loss of generality, suppose s = s3; then l(s1,w) = l(s3,w) + 2 and

l(s2,w) = l(s3,w) + 1. Hence l(s2,w) � n − p − 1 and l(s1,w) � n − p.

(b.1) p = 3m + 1. Since p − 3m = 1, we have
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s1
3m−→ s1

l(s1,w)−→ w and

s2
l(s2,w)−→ w

p−→w.

Therefore ks1,s2 (D) � l(s2,w) + p � n − p − 1 + p = n − 1.

Also since 3(m + 1) − p = 2, we have

s1
l(s1,w)−→ w

p−→w and

s3
3(m+1)−→ s3

l(s3,w)−→ w.

Therefore ks1,s3 (D) � l(s1,w) + p � n − p + p = n.

For u, v ∈ V(D), we can find vertices s′, s′′
on the cycle C3 such that l(u, s′) = l(v, s

′′
) � n − 3. If s′ = s

′′
,

then ku,v(D) � n − 3. If s′ = s1 and s
′′ = s2, then ku,v(D) � ks1,s2 (D) + n − 3 � n − 3 + n − 1 = 2n − 4 <

2n − 3. If l(u, s1) = l(v, s3) < n − 3, then ku,v(D) < ks1s3 (D) + n − 3 = n + n − 3 = 2n − 3.

So the only remaining case is l(u, s1) = l(v, s3) = n − 3. For the directed walks from vertices u and

v to vertices s1 and s3, one of them does not go through the cycle C3. Otherwise l(u, s1) = l(v, s3) =
n − 3 − ts < n − 3 for some nonnegative integer t.Without loss of generality, suppose that the directed

walk from vertex u to vertex s1 does not go through the cycle C3, and that l(u, s1) = n − 3. Then the

directedwalk from v to s3 also passes through the vertex s1, andwehave l(v, s1) = n − 5. Since l(u, s1) =
n − 3 > n − p, the directed walk from vertex u to vertex s1 also passes through the cycle Cp. Hence

u
n−3+p−→ s1 and

v
n−5−→ s1

3(s+1)−→ s1.

Therefore ku,v(D) � n − 3 + p < 2n − 5.

(b.2) p = 3m + 2. Since p − 3m = 2 we get

s1
3m−→ s1

l(s1,w)−→ w and

s3
l(s3,w)−→ w

p−→w.

Therefore ks1,s3 (D) � l(s3,w) + p � n − p − 2 + p = n − 2.

Also since 3(m + 1) − p = 1, we have

s1
l(s1,w)−→ w

p−→w and

s2
3(m+1)−→ s2

l(s2,w)−→ w.

Therefore ks1,s2 (D) � l(s1,w) + p � n − p + p = n.

For u, v ∈ V(D), we can find vertices s′, s′′
on the cycle C3 such that l(u, s′) = l(v, s

′′
) � n − 3. If s′ = s

′′
,

then ku,v(D) � n − 3. If s′ = s1 and s
′′ = s3, then ks1,s3 (D) � n − 3 + n − 2 = 2n − 5 < 2n − 3.

If s′ = s1 and s
′′ = s2, and l(u, s1) = l(v, s2) < n − 3, then ks1,s2 (D) < 2n − 3.

So theonly remaining case is l(u, s1) = l(v, s2) = n − 3. For thedirectedwalks fromverticesu and v to

vertices s1 and s2, one of themdoes not go through the cycle C3. Otherwise l(u, s1) = l(v, s2) = n − 3 − ts

for some nonnegative integer t. Without loss of generality, suppose that the directed walk from vertex

u to vertex s1 does not go through the cycle C3, and that l(u, s1) = n − 3. Then the directed walk from v

to s2 also passes through the vertex s1, and we have l(v, s1) = n − 4. Since l(u, s1) = n − 3 > n − p, the

directed walk from vertex u to vertex s1 also passes through the cycle Cp. Hence

u
n−3+p−→ s1 and

v
n−4−→ s1

3(s+1)−→ s1.

Therefore ku,v(D) � n − 3 + p < 2n − 5. �
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From the proof of Lemma 3.13 we have the following result.

Corollary 3.14. Let D be a primitive digraph with n vertices, and suppose that s is the girth of D with s � 2.

If there is another cycle of length p, s < p � n − 1, such that gcd(s, p) = 1, then

k(D) < K(n, s).

Let D be a primitive digraph with n vertices, and let L(D) = {s, a1, . . . , ar} be the set of distinct cycle

lengths of D, where 2 � s < a1 < · · · < ar � n. Next we consider the case that gcd(s, ai) /= 1 for each

i = 1, 2, . . . , r.

Lemma 3.15. Let D be a primitive digraph with n vertices, and s be the girth of D with s � 2. Let L(D) =
{s, a1, a2, . . . , ar−1, ar}. If gcd(s, ai) /= 1 for each i = 1, 2, . . . , r, Then

k(D) < K(n, s).

Proof. Since gcd(s, ai) /= 1 for each i = 1, 2, . . . , r, then s is not a prime number and s � 6. There exists a

directed cycle of length p, s < p � ar , such that gcd(s, p) � s
3
. Otherwise, if gcd(s, ai) is equal to either s

or s
2
foreach i, thengcd(s, a1, a2, . . . , ar) � s

2
. This is a contradiction to the fact thatgcd(s, a1, a2, . . . , ar) =

1. Suppose gcd(s, p) = t, where 2 � t � s
3
.

We know that if D is primitive, then Dt is also primitive. Further Dt contains t cycles of length s
t ,

and t cycles of length p
t . Let s

′ = s
t and p′ = p

t , then gcd(s′, p′) = 1 and s′ < p′ � n
t . For u, v ∈ V(Dt) we

can find vertices s1, s2 ∈ Cs′ such that

u
n−s′−→ s1 and v

n−s′−→ s2.

Case 1. Cs′ ∩ Cp′ /= ∅ in Dt . There exists a vertex w ∈ Cs′ ∩ Cp′ , then ls1,s2 � s′ − 1.

When s′ is even, then

ku,v(D
t) �

(
p′ − 1

2

)
s′ + n − 1

=
(
p − t

2t

)
s

t
+ n − 1.

Thus

ku,v(D) � tku,v(D
t) � ps

2t
− s

2
+ tn − t.

When s′ is odd, Then

ku,v(D
t) �

(
s′ − 1

2

)
p′ + n − 1

=
(
s − t

2t

)
p

t
+ n − 1.

Thus

ku,v(D) � tku,v(D
t) � ps

2t
− p

2
+ tn − t.

Since p > s, ps
2t

− p
2

+ tn − t <
ps
2t

− s
2

+ tn − t. Let k(t) = ps
2t

− s
2

+ tn − t, where 2 � t � s
3
. Note that

k(t) is concave up as a function of t on the interval
[
2, s

3

]
. Hence it attains its maximum at one of the

end points. When t = 2, we have k(2) = ps
4

− s
2

+ 2n − 2 <
(
n−1
2

)
s + n − s.

Suppose that t = s
3
. If s is odd, then s > 7 and k

(
s
3

) = 3p
2

− s
2

+ sn
3

− s
3
. Since p � n, we get

3p

2
− s

2
+ sn

3
− s

3
� 3n

2
+ sn

3
− 5s

6
<

(
s − 1

2

)
n + n − s. (26)

If s is even, then s � 6 and k
(
s
3

) = 3p
2

− s
2

+ sn
3

− s
3
. Similarly we have
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3p

2
− s

2
+ sn

3
− s

3
� 3n

2
+ sn

3
− 5s

6
<

(
n − 1

2

)
s + n − s.

Case 2. Cs′ ∩ Cp′ = ∅ in Dt . Then we can find a vertex w in Cp′ such that

s1
n−tp′
−→ w and s2

n−tp′+ s′
2−→ w.

When s′ is even, we have

ku,v(D
t) �

(
p′ − 1

2

)
s′ + 2n − tp′ − s′

2

=
(
p − t

2t

)
s

t
+ 2n − p − s

2t
.

Hence

ku,v(D) � tku,v(D
t) � ps

2t
+ 2nt − pt − s. (27)

When s′ is odd, we have

ku,v(D
t) �

(
s′ − 1

2

)
p′ + n − tp′ + s′

2
+ n − s′

= sp

2t2
− p

2t
+ n − p + s

2t
+ n − s

t
.

Thus

ku,v(D) � tku,v(D
t) � sp

2t
+ 2nt − pt − p

2
− s

2
. (28)

Since ps
2t

+ 2nt − pt − p
2

− s
2

� ps
2t

+ 2nt − pt − s,weconsider theexpression ps
2t

+ 2nt − pt − s. Letk(t) =
ps
2t

+ 2nt − pt − s. Then k(t) is concave up on any compact subinterval of R+
, so it attains its maximum

at one of the end points.

If s � 8, then there exists a directed cycle of length p, such that gcd(s, p) � s
4
. Otherwise gcd(s, ai)

is equal to one of s, s
2

or s
3
. Then gcd(s, a1, a2, . . . , ar) � s

6
. This is a contradiction to the fact that

gcd(s, a1, a2, . . . , ar) = 1. Thus we check at the two end points t = 2 and t = s
4
.

If t = 2, ku,v(D) � ps
4

+ 4n − 2p − s = p(s−8)

4
+ 4n − s. When s = 8, ku,v(D) � 4n − 8 < 5n − 12(

=
(
n−1
2

)
s + n − s

)
. When s > 8,

ku,v(D) � p(s − 8)

4
+ 4n − s

� (n − s)(s − 8)

4
+ 4n − s

<

(
s − 1

2

)
n + n − s.

If t = s
4
, we have ku,v(D) � p(8−s)

4
+ ns

2
− s. When s = 8, ku,v(D) � ns

2
− s <

(
s−1
2

)
+ n − s. When s > 8,

ku,v(D) � ns

2
− p(s − 8)

4
− s � ns

2
− (s + 2)(s − 8)

4
− s

= ns

2
− s(s − 2)

4
+ 4 <

(
s − 1

2

)
n + n − s.

There is only one remaining case, namely t = 2 and s = 6. In that case, there exists a cycle of length

p such that gcd(s, p) = 2. Otherwise gcd(s, ai) = 3 for all i = 1, 2, . . . , r, and gcd(s, a1, . . . , ar) /= 1. This

is a contradiction. Since s = 6, then p � 8. We have t = 2 and s′ = 3, then by (28), we get ku,v(D) �
4n − p − 3 � 4n − 11 < 4n − 9

(
=
(
n−1
2

)
s + n − s

)
. �
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From the proof of Lemma 3.15, we get the following corollary.

Corollary 3.16. Let D be a primitive digraph of order n, and s be the girth of D with s � 2. If there is a cycle

of length p, s < p � n, such that gcd(s, p) < s/3 or gcd(s, p) � s/3 and Cs ∩ Cp /= ∅, then
k(D) < K(n, s).

From Lemmas 3.13 and 3.15, we have the main result of this paper.

Theorem 3.17. D be a primitive digraph with n vertices and girth s. Then

k(D) � K(n, s). (29)

Since k(Ds,n) = K(n, s), the upper bound in (29) is attainable. Comparing upper bounds on k(D) in

Theorem 3.17 with Cho and Kim’s [5] result on cindex(D), the upper bounds on k(D) and cindex(D) are

the same when n is odd and s is even, and for all other cases, the upper bounds on k(D) are less than

the upper bounds on cindex(D).

When s = n − 1,K(n,n − 1) =
⌈

(n−1)2+1
2

⌉
.

Theorem 3.18. Let D be a primitive digraph of order n. Then

k(D) �
⌈

(n − 1)2 + 1

2

⌉
. (30)

Equality holds if and only if D = Dn−1,n.

Proof. For a primitive digraph D, we have s � n − 1. Then by Theorems 3.10 and 3.17, we get the

inequality in (30). When s = n − 1, apart from labeling of the vertices, there are only two primitive

digraphs; they areDn−1,n andDn−1,n ∪ {2 → n}. By Theorem 3.10, we know that k(Dn−1,n) = K(n,n − 1).

LetD′ = Dn−1,n ∪ {2 → n}. ByCorollary 3.11,weknowthat there is only onepair of vertices inDn,n−1 that

can attain the upper bound, and they are vertex n and some vertex u( /= 1). Similarly, there is only one

pair of vertices that can attain the upper bound in D′ − {1 → n}, and they are vertex 1 and some vertex

v ( /= n). Therefore kn,u(D
′) < K(n, s) and k1,v(D

′) < K(n, s), and we can conclude that k(D′) < K(n, s). �

Remark. In a subsequent paper, we will give the characterization of primitive digraphs Dwith k(D) =
K(n, s).
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