Primitive digraphs with the largest scrambling index

Mahmud Akelbek ${ }^{\text {a,* }}$, Steve Kirkland ${ }^{\text {b,1 }}$
a Department of Mathematics, Weber State University, Ogden, UT 84408, USA
${ }^{\text {b }}$ Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

A R T I CLE INFO

Article history:

Received 3 April 2008
Accepted 14 October 2008
Available online 2 December 2008
Submitted by R.A. Brualdi

AMS classification:

05C20
05C50
Keywords:
Scrambling index
Primitive digraph

Abstract

The scrambling index of a primitive digraph D is the smallest positive integer k such that for every pair of vertices u and v, there is a vertex w such that we can get to w from u and v in D by directed walks of length k; it is denoted by $k(D)$. In [M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, preprint], we gave the upper bound on $k(D)$ in terms of the order and the girth of a primitive digraph D. In this paper, we characterize all the primitive digraphs such that the scrambling index is equal to the upper bound.

Published by Elsevier Inc.

1. Introduction

There are numerous results giving the upper bounds on the second largest modulus of eigenvalues of primitive stochastic matrices (see [3,5-8]). In [1], by using Seneta's [6] definition of coefficients of ergodicity, we have provided an attainable upper bound on the second largest modulus of eigenvalues of a primitive matrix that makes use of the so-called scrambling index (see below).

For vertices u, v and w of a digraph D, if $(u, w),(v, w) \in E(D)$, then vertex w is called a common outneighbour of vertices u and v. The scrambling index of a primitive digraph is the smallest positive integer k such that for every pair of vertices u and v, there exists a vertex w such that $u \xrightarrow{k} w$ and $v \xrightarrow{k} w$ in D. The scrambling index of D will be denoted by $k(D)$.

[^0]

Fig. 1. $D_{s, n}$.
The main result in [1] is the following.
Theorem 1.1 [1]. D be a primitive digraph with n vertices and girth s. Then

$$
\begin{equation*}
k(D) \leqslant K(n, s) . \tag{1}
\end{equation*}
$$

Equality holds if $D=D_{s, n}$ and $\operatorname{gcd}(n, s)=1$, where $D_{s, n}$ is a digraph as in Fig. $1, K(n, s)=k(n, s)+n-s$ and

$$
k(n, s)= \begin{cases}\left(\frac{s-1}{2}\right) n, & \text { when } s \text { is odd } \\ \left(\frac{n-1}{2}\right) s, & \text { when s is even } .\end{cases}
$$

In this paper, we characterize all the primitive digraphs D such that $k(D)=K(n, s)$.

2. Some results on scrambling index

For terminology and notation used here we follow [1,2].
Let $D=(V, E)$ denote a digraph (directed graph) with vertex set $V=V(D)$, arc set $E=E(D)$ and order n. Loops are permitted but multiple arcs are not. A $u \rightarrow v$ walk in a digraph D is a sequence of vertices $u, u_{1}, \ldots, u_{t}, v \in V(D)$ and a sequence of arcs $\left(u, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{t}, v\right) \in E(D)$, where the vertices and arcs are not necessarily distinct. A closed walk is a $u \rightarrow v$ walk where $u=v$. A cycle is a closed $u \rightarrow v$ walk with distinct vertices except for $u=v$. The notation $u \xrightarrow{k} v$ is used to indicate that there is a $u \rightarrow v$ walk of length k. The distance from vertex u to vertex v in D, is the length of a shortest walk from u to v, and denoted by $d(u, v)$. A p-cycle is a cycle of length p, denoted C_{p}. If the digraph D has at least one cycle, the length of a shortest cycle in D is called the girth of D, denoted $s(D)$. The number of arcs entering (leaving) a vertex u is called the in-degree (out-degree) of u, denoted $\operatorname{deg}^{-}(u)\left(\operatorname{deg}^{+}(u)\right)$.

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from each vertex u to each vertex v. If D is primitive, the smallest such t is called the exponent of D, denoted by $\exp (D)$. A digraph D is primitive if and only if it is strongly connected and the greatest common divisor of all cycle lengths in D is equal to one [2]. For a positive integer r, we define D^{r} to be the digraph with the same vertex set as D and $\operatorname{arc}(u, v)$ if and only if $u \xrightarrow{r} v$ in D. Consequently, the scrambling index is the smallest positive integer k such that each pair of vertices has a common out-neighbour in D^{k}.

We define the local scrambling index of u and v as

$$
k_{u, v}(D)=\min \{k: u \xrightarrow{k} w \text { and } v \xrightarrow{k} w, \text { for some } w \in V(D)\} .
$$

Then

$$
k(D)=\max _{u, v \in V(D)}\left\{k_{u, v}(D)\right\} .
$$

Lemma 2.1 [1]. Let p and s be positive integers such that $\operatorname{gcd}(p, s)=1$ and $p>s \geqslant 2$. Then for each $t, 1 \leqslant t \leqslant \max \{s-1,\lfloor p / 2\rfloor\}$, the equation $x p+y s=t$ has a unique integral solution (x, y) with $|x| \leqslant\lfloor s / 2\rfloor$ and $|y| \leqslant\lfloor p / 2\rfloor$.

Let D be a primitive digraph, and let s and p be two different cycle lengths in D and $\operatorname{gcd}(s, p)=1$, where $2 \leqslant s<p \leqslant n$. For $u, v \in V(D)$, we can find a vertex $w \in V(D)$ such that there are directed walks from u to w and v to w such that both walks meet cycles of lengths s and p. Denote the lengths of these directed walks by $l(u, w)$ and $l(v, w)$. We say that w is a double-cycle vertex of u and v, and we let

$$
l_{u, v}=\max \{l(u, w), l(v, w)\} .
$$

Lemma 2.2 [1]. Let D be a primitive digraph, and let s and p be two different cycles lengths in D. Suppose that $2 \leqslant s<p \leqslant n$ and $\operatorname{gcd}(s, p)=1$. Then

$$
\begin{equation*}
k_{u, v}(D) \leqslant \min \{|y| s,|x| p\}+l_{u, v} \tag{2}
\end{equation*}
$$

where (x, y) is the integer solution of the equation $x p+y s=r$ with minimum absolute value and where $|l(u, w)-l(v, w)| \equiv r(\bmod s)$.

Corollary 2.3 [1]. Let D be a primitive digraph of order n with a Hamilton cycle, and let the girth of D be s, where $1 \leqslant s \leqslant n-1$ and $\operatorname{gcd}(s, n)=1$. If $k(D)=K(n, s)$, then D contains a subgraph isomorphic to $D_{s, n}$.

Lemma 2.4 [1]. Let $D=D_{s, n}$. Then for all vertices u and v in $D, l_{u, v}(D) \leqslant \max \left\{n-s,\left\lfloor\frac{n}{2}\right\rfloor\right\}$.
Let r be the positive integer that is defined as follows:

$$
r \equiv \begin{cases}\frac{n}{2}(\bmod s), & \text { if } s \text { is odd and } n \text { is even } \tag{3}\\ \frac{n-s}{2}(\bmod s), & \text { if both } s \text { and } n \text { are odd }\end{cases}
$$

Corollary 2.5 [1]. Suppose that $\operatorname{gcd}(s, n)=1$, and $s \geqslant 2$. Then for $u, v \in V\left(D_{s, n}\right)$, without loss of generality take $u>v, k_{u, v}\left(D_{s, n}\right)=K(n, s)$ if and only if $u=n$ and
(1) $v=n-r-t$ for some $t \in\left\{0,1,2, \ldots, \frac{n-2 r}{s}\right\}$, when s is odd.
(2) $v=n-\frac{s}{2}$, when s is even.

Lemma 2.6 [1]. Let D be a primitive digraph with a Hamilton cycle and let the girth of D be s, where $\operatorname{gcd}(n, s)=1,2 \leqslant s<n$. Then either the cycle C_{s} is formed from s consecutive vertices on the Hamilton cycle or there is another cycle of length p such that $\operatorname{gcd}(s, p)=q$, where $q \leqslant \frac{s}{2}$ when s is even and $q \leqslant \frac{s}{3}$ when s is odd.

Lemma 2.7 [1]. Let D be a primitive digraph with n vertices, and suppose that s is the girth of D with $s \geqslant 2$. If there is another cycle of length $p, s<p \leqslant n$, such that $\operatorname{gcd}(s, p)=1$, then

$$
\begin{equation*}
k(D) \leqslant K(n, s) \tag{4}
\end{equation*}
$$

Furthermore, if $p<n$, then $k(D)<K(n, s)$.

Let D be a primitive digraph and $L(D)=\left\{s, a_{1}, \ldots, a_{r}\right\}$ be the set of distinct cycle lengths of D, where $s<a_{1}<\cdots<a_{r}$.

Lemma 2.8 [1]. Let D be a primitive digraph with n vertices, and s be the girth of D with $s \geqslant 2$. Let $L(D)=\left\{s, a_{1}, \ldots, a_{r}\right\}$. If $\operatorname{gcd}\left(s, a_{i}\right) \neq 1$ for each $i=1,2, \ldots, r$, Then

$$
k(D)<K(n, s) .
$$

Corollary 2.9 [1]. Let D be a primitive digraph of order n, and s be the girth of D with $s \geqslant 2$. If there is a cycle of length $p, s<p \leqslant n$, such that $\operatorname{gcd}(s, p)<s / 3$ or $\operatorname{gcd}(s, p) \leqslant s / 3$ and $C_{s} \cap C_{p} \neq \emptyset$, then

$$
k(D)<K(n, s) .
$$

3. Characterization of primitive digraphs with $k(D)=K(n, s)$

3.1. Properties of a primitive digraph D with $k(D)=K(n, s)$

Let D be a primitive digraph with n vertices, s be the girth of D, and $k(D)=K(n, s)$. Then by Lemmas 2.7 and 2.8 there is a cycle of length $p, s<p \leqslant n$, such that $\operatorname{gcd}(s, p)=1$ and $p=n$. Since D contains a Hamilton cycle, then by Corollary $2.3 D$ contains $D_{s, n}$ as a subgraph. From the above, we conclude the following.

Theorem 3.1. Let D be a primitive digraph with n vertices, let the girth of D be $s \geqslant 2$, and suppose that $k(D)=K(n, s)$. Then
(1) There is no cycle of length $p, s<p<n$, such that $\operatorname{gcd}(s, p)=1$.
(2) D contains $D_{s, n}$ as a subgraph and $\operatorname{gcd}(s, n)=1$.

In the following we only consider primitive digraphs that contain $D_{s, n}$ as a subgraph, and we label the digraph D as in Fig. 1. For $D_{s, n}$, by Corollary 2.5 we know all the pairs of vertices $u, v \in V\left(D_{s, n}\right)$ such that $k_{u, v}\left(D_{s, n}\right)=K(n, s)$.

Proposition 3.2 [4]. The t th power of a cycle of length p is the disjoint union of $\operatorname{gcd}(p, t)$ cycles of length $p / \operatorname{gcd}(p, t)$.

Definition 3.3. If the digraph D contains at least two different cycles, then the distance between two different cycles in D is defined as follows

$$
d\left(C^{\prime}, C^{\prime \prime}\right)=\min \left\{d(u, v) \mid u \in C^{\prime}, v \in C^{\prime \prime}\right\},
$$

where C^{\prime} and $C^{\prime \prime}$ are different cycles in D.
Lemma 3.4. Let $D=D_{s, n}, \operatorname{gcd}(n, s)=1$, and let t be a positive integer such that $t \mid s$. Then
(i) The digraph D^{t} contains a Hamilton cycle and t disjoint cycles of length s / t.
(ii) Every cycle of length s / t is formed from s / t consecutive vertices on the Hamilton cycle in D^{t}. Denote the t cycles of length s / t in D^{t} by $H_{1}, H_{2}, \ldots, H_{t}$ in order as in Fig. 2, and we say that H_{i} and $H_{(i+1)(\bmod t)}$, where $i=1,2, \ldots, t$, are neighbour cycles in D^{t}. We also have the following:
(iii) The distance between two neighbour cycles of length s / t in D^{t} is either $\left\lceil\frac{n-s}{t}\right\rceil$ or $\left\lceil\frac{n-s}{t}\right\rceil+1$.

Proof. (i) Since $\operatorname{gcd}(s, n)=1$, then $\operatorname{gcd}(t, n)=1$. Therefore by Lemma 3.2, we know that D^{t} contains a Hamilton cycle and t disjoint cycles of length s / t.
(ii) For vertices $i, 1 \leqslant i \leqslant t$, we have $i+p t \in C_{s}, 0 \leqslant p \leqslant \frac{s}{t}-1$. Also we have

$$
i \xrightarrow{t} i+t \xrightarrow{t} i+2 t \xrightarrow{t} \cdots \xrightarrow{t} i+\left(\frac{s}{t}-1\right) t \xrightarrow{t} i .
$$

Fig. 2. D^{t}.

Therefore every cycle of length s / t is formed from s / t consecutive vertices on the Hamilton cycle in D^{t}.
(iii) There are two different types of directed paths of length t in $D_{s, n}$. One type contains the arc $1 \rightarrow s$, and the other type does not contain the arc $1 \rightarrow s$. Observing D^{t}, we know that every arc in the Hamilton cycle in D^{t} corresponds to a directed path of length t in $D_{s, n}$ that does not contain the arc $1 \rightarrow s$, and all the other arcs, we call them shortly s-arcs, correspond to directed paths of length t in $D_{s, n}$ that contain the arc $1 \rightarrow s$. Also notice that if $u_{1} \rightarrow u_{2}$ is an s-arc, then $1 \leqslant u_{1} \leqslant t$ and $s-(t-1) \leqslant u_{2} \leqslant s$.

Let $d\left(H_{i}, H_{(i+1)(\bmod t)}\right)=q$ for some i, then there exist a vertex $u \in H_{i}$ and a vertex $v \in H_{(i+1)(\bmod t)}$ such that $d(u, v)=q$ in D^{t}. From the digraph D^{t}, we know that $\operatorname{deg}^{+}(u)=2$ and $\operatorname{deg}^{-}(v)=2$. Hence u is the starting vertex of an $s-\operatorname{arc}$ and v is the ending vertex of an $s-\operatorname{arc}$. Therefore $1 \leqslant u \leqslant t$ and $s-(t-1) \leqslant v \leqslant s$.

Since in D^{t}, we have $u \xrightarrow{q} v$, then in $D_{s, n}$ we have $u \xrightarrow{q t} v$ and this directed walk does not go through the $\operatorname{arc} 1 \rightarrow s$.

In $D_{s, n}$, the directed path from vertex u to vertex v without going through the arc $1 \rightarrow s$ is of the form $u \xrightarrow{l_{1}} 1 \xrightarrow{1} n \xrightarrow{n-s} s \xrightarrow{l_{2}} v$, where $l_{1}, l_{2} \leqslant t-1$. Thus

$$
\begin{aligned}
& n-s+1 \leqslant q t \leqslant n-s+1+(t-1)+(t-1), \text { and } \\
& n-s+1 \leqslant q t \leqslant n-s+(t-1)+t .
\end{aligned}
$$

Hence

$$
\left\lceil\frac{n-s}{t}\right\rceil \leqslant q \leqslant\left\lceil\frac{n-s}{t}\right\rceil+1 .
$$

Therefore the distance between any two neighbour cycles of length s / t is $\left\lceil\frac{n-s}{t}\right\rceil$ or $\left\lceil\frac{n-s}{t}\right\rceil+1$.

3.2. The case s is even

Lemma 3.5. Let D be a primitive digraph that contains $D_{s, n}$ as a subgraph, where s is the girth of $\operatorname{Dgcd}(n, s)=$ 1 and s is even. If D contains another cycle of length p, where $s \leqslant p<n$. Then $k(D)<K(n, s)$.

Proof. Let C_{p} be the cycle of length p in the primitive digraph D.
Case 1: Suppose $\operatorname{gcd}(s, p)=r$, with $r<\frac{s}{3}$. Then by Corollary 2.9 we have $k(D)<K(n, s)$.
Case 2: Suppose $\operatorname{gcd}(s, p)=\frac{s}{3}$. If $C_{s} \cap C_{p} \neq \emptyset$, we are also done by Corollary 2.9. If $C_{s} \cap C_{p}=\emptyset$, consider $D^{\frac{s}{3}}$. There are $\frac{s}{3}$ cycles of length 3 and $\frac{s}{3}$ cycles of length $\frac{3 p}{s}$. Let $p^{\prime}=\frac{3 p}{s}$. For $u, v \in V\left(D^{\frac{s}{3}}\right), l_{u v} \leqslant n-3$. Hence

$$
\begin{aligned}
k_{u, v}\left(D^{\frac{s}{3}}\right) & \leqslant\left(\frac{3-1}{2}\right) p^{\prime}+n-3 \\
& =p^{\prime}+n-3 .
\end{aligned}
$$

Since $p \leqslant n-s, p^{\prime} \leqslant \frac{3 n}{s}-3$, we have

$$
k_{u, v}(D) \leqslant \frac{s}{3}\left(n+p^{\prime}-3\right) \leqslant \frac{n s}{3}+n-2 s<k(n, s)+n-s .
$$

Case 3. $\operatorname{gcd}(s, p)=\frac{s}{2}$. Since s is even, then n is odd. We know there is only one pair of vertices $u, v \in V\left(D_{s, n}\right)$ such that $k_{u, v}\left(D_{s, n}\right)=k(n, s)+n-s$, and they are vertex n and $n-\frac{s}{2}$. Consider the digraph $D^{\frac{s}{2}}$. It is easy to see that vertices n and $n-\frac{s}{2}$ are consecutive vertices on the Hamilton cycle in the digraph $D^{\frac{s}{2}}$, and there are $\frac{s}{2}$ cycles of length 2 and $\frac{s}{2}$ cycles of length p^{\prime} respectively, where $p^{\prime}=\frac{2 p}{s}$ and p^{\prime} is odd (since $p=\frac{s}{2} p^{\prime}$). Let $p^{\prime}=2 t+1$ for some nonnegative integer t. For vertex $n-\frac{s}{2}$, we can find a vertex w such that the directed walk from vertex $n-\frac{s}{2}$ to vertex w is a path through both cycles of length 2 and p^{\prime}, and $l\left(n-\frac{s}{2}, w\right) \leqslant n-p^{\prime}$. Since in $D^{\frac{s}{2}}$, we have $n \xrightarrow{1} n-\frac{s}{2}$. Then $l(n, w)-l\left(n-\frac{s}{2}, w\right)=1$ and $l(n, w) \leqslant n-p^{\prime}+1$. Therefore in the digraph $D^{\frac{s}{2}}$, we have

$$
\begin{aligned}
& n^{l(n, w)+2 t} w \text { and } \\
& n-\frac{s}{2} \xrightarrow{l\left(n-\frac{s}{2}, w\right)+p^{\prime}} w .
\end{aligned}
$$

Thus $k_{n, n-\frac{s}{2}}\left(D^{\frac{s}{2}}\right) \leqslant n$; and hence

$$
k_{n, n-\frac{s}{2}}(D) \leqslant\left(\frac{s}{2}\right) n<k(n, s)+n-s .
$$

Case 4. $\operatorname{gcd}(s, p)=s$. Suppose $p=t s$, where $1 \leqslant t<\frac{n}{s}$.
If $t=1$, then $p=s$. If the cycle C_{p} is formed from s vertices that are not consecutive on the Hamilton cycle, then by Lemma 2.6 , there exists another cycle of length q such that $\operatorname{gcd}(s, q) \leqslant \frac{s}{2}$. For this case, from the previous results we know that $k_{n, n-\frac{s}{2}}(D) k(n, s)+n-s$.

If the cycle C_{p} is formed by joining vertex i to vertex $(i+s-1)(\bmod n)$, where $i \neq 1$, then consider the subgraph $D_{p, n}$. Note that since $i \neq 1$, although $p=s$, but $C_{p} \neq C_{s}$. Therefore $D_{p, n} \neq D_{s, n}$. $\operatorname{In} D_{p, n}$, the upper bound is attained for only one pair of vertices, and they are vertex $i-1$ and vertex $(i+s-2)(\bmod n)$. Since $i-1 \neq n$, we have $k_{n, n-\frac{s}{2}}\left(D_{p, n}\right)<K(n, s)$. Therefore in the digraph D, we also have

$$
k_{n, n-\frac{s}{2}}(D)<k(n, s)+n-s .
$$

Now suppose that $t>1$, then $s<\frac{n}{2}$. If $C_{s} \cap C_{p} \neq \emptyset$, there is at least one vertex w belonging to the cycle C_{p} such that $s+1 \leqslant w \leqslant n-\frac{s}{2}-1$. Otherwise the cycle C_{p} only has to contain vertices between vertex s to vertex 1 and n to $n-\frac{s}{2}+1$. But there are only $s+\frac{s}{2}$ such vertices and $s+\frac{s}{2}<p$. Hence for vertex $n-\frac{s}{2}$, we have $l\left(n-\frac{s}{2}, w\right)<n-\frac{3 s}{2}$. Then $l(n, w)<n-s$ and $l(n, w)-l\left(n-\frac{s}{2}\right)=\frac{s}{2}$. In $D_{s, n}$, when $n>\frac{35}{2}$, we get

$$
\begin{aligned}
& n \xrightarrow{n-s} s \xrightarrow{\left(\frac{n-1}{2}\right) s} s \text { and } \\
& n-\frac{s}{2} \xrightarrow{n-\frac{3 s}{2}} s \xrightarrow{\frac{s}{2} n} s .
\end{aligned}
$$

When $n<\frac{3 s}{2}$, we have

$$
\begin{aligned}
& n \xrightarrow{n-s} s \xrightarrow{\left(\frac{n-1}{2}\right) s} s \text { and } \\
& n-\frac{s}{2} \xrightarrow{n-\frac{s}{2}+n-s} s \xrightarrow{\left(\frac{s}{2}-1\right) n} s .
\end{aligned}
$$

Note that $\frac{n-1}{2} \geqslant \frac{n-1}{s} \geqslant t$ and let $\frac{n-1}{2}=t+t^{\prime}$. Then $\left(\frac{n-1}{2}\right) s=p+t^{\prime} s$, where $p=s t$. Hence

$$
\begin{aligned}
& n \xrightarrow{l(n, w)} w \xrightarrow{p+t^{\prime} s} w \text { and } \\
& n-\frac{s}{2} \xrightarrow{l\left(n-\frac{s}{2}, w\right)} w \xrightarrow{\frac{s}{2} n} w .
\end{aligned}
$$

Therefore $k_{n, n-\frac{s}{2}}(D) \leqslant l(n, w)+p+t^{\prime} s<k(n, s)+n-s$.
If $C_{s} \cap C_{p}=\emptyset$, for vertex $n-\frac{s}{2}$ we can find a vertex $w \in C_{p}$ such that $l\left(n-\frac{s}{2}, w\right) \leqslant n-s-p$. Then $l(n, w) \leqslant n-s-p+\frac{s}{2}$ and $l(n, w)-l\left(n-\frac{s}{2}, w\right)=\frac{s}{2}$. Since $\frac{n-1}{2} \geqslant \frac{n-1}{s} \geqslant t$, let $\frac{n-1}{2} \equiv t^{\prime}(\bmod t)$. For a nonnegative integer h we have $\frac{n-1}{2}=t h+t^{\prime}$. If $p^{\prime}=0$, then $\left(\frac{n-1}{2}\right) s=h t s=h p$, and so

$$
\begin{aligned}
& n \xrightarrow{l(n, w)} w \xrightarrow{h p} w \text { and } \\
& n-\frac{s}{2} \xrightarrow{l\left(n-\frac{s}{2}, w\right)} w \xrightarrow{\frac{s}{2} n} w .
\end{aligned}
$$

Therefore $k_{n, n-\frac{s}{2}}(D) \leqslant h p+l(n, w)<k(n, s)+n-s$.
If $t^{\prime} \neq 0, t>t^{\prime}>0$, we know that

$$
\frac{s}{2} n-\left(\frac{n-1}{2}\right) s=\frac{s}{2}
$$

or equivalently

$$
\left(t h+t^{\prime}\right) s-\frac{s}{2} n=-\frac{s}{2}
$$

Adding $\left(t-p^{\prime}\right) s$ on both sides, we get

$$
h t s+t^{\prime} s+\left(t-t^{\prime}\right) s-\frac{s}{2} n=-\frac{s}{2}+\left(t-t^{\prime}\right) s
$$

or

$$
(h+1) t s-\left(\frac{s}{2} n+\left(t-t^{\prime}-1\right) s\right)=\frac{s}{2}
$$

Therefore we have

$$
\begin{aligned}
& n \xrightarrow{l(n, w)} w^{\frac{s}{2} n+\left(t-t^{\prime}-1\right) s} w \text { and } \\
& n-\frac{s}{2} \xrightarrow{l\left(n-\frac{s}{2}, w\right)} w \xrightarrow{(h+1) p} w .
\end{aligned}
$$

Then $\quad k_{n, n-\frac{s}{2}}(D) \leqslant \frac{s}{2} n+\left(t-t^{\prime}-1\right) s+l(n, w) \leqslant \frac{s}{2} n+\left(t-t^{\prime}-1\right) s+n-s-p=\left(\frac{n-1}{2}\right) s+n-s-$ $t^{\prime} s<k(n, s)+n-s$, as desired.

Theorem 3.6. Let D be a primitive digraph of order n and girth s, where s is even. Then $k(D)=K(n, s)$ if and only if $D=D_{s, n}$ and $\operatorname{gcd}(n, s)=1$.
3.3. The case s is odd

Lemma 3.7. Let D be a primitive digraph that contains $D_{s, n}$ as a $\operatorname{subgraph}$, where $\operatorname{gcd}(n, s)=1, s$ is odd and $s \geqslant 3$. If D contains a cycle of length p with $\operatorname{gcd}(s, p) \leqslant \frac{s}{3}$, then $k(D)<K(n, s)$.

Proof. Case 1. $\operatorname{gcd}(s, p)=l, l<\frac{s}{3}$. Then by Corollary $2.9 k(D)<k(n, s)+n-s$.
Case 2. $\operatorname{gcd}(s, p)=\frac{s}{3}$. If $C_{s} \cap C_{p} \neq \emptyset$, we are done by Corollary 2.9. If $C_{s} \cap C_{p}=\emptyset$, consider $D^{\frac{s}{3}}$. There are $\frac{s}{3}$ cycles of length 3 and $\frac{s}{3}$ cycles of length $\frac{3 p}{s}$, let $p^{\prime}=\frac{3 p}{s}$. For $u, v \in V\left(D^{\frac{s}{3}}\right)$, we have $l_{u v} \leqslant n-3$. Hence

$$
k_{u, v}\left(D^{\frac{s}{3}}\right) \leqslant\left(\frac{3-1}{2}\right) p^{\prime}+n-3=p^{\prime}+n-3 .
$$

Since $p \leqslant n-s$ and $p^{\prime} \leqslant \frac{3 n}{s}-3$, we get

$$
k_{u, v}(D) \leqslant \frac{s}{3}\left(n+p^{\prime}-3\right) \leqslant \frac{n s}{3}+n-2 s<k(n, s)+n-s .
$$

Next we consider a primitive digraph D that contains $D_{s, n}$ as a subgraph, where $\operatorname{gcd}(s, n)=1$ and s is odd, and where the digraph D also contains another cycle of length p with $\operatorname{gcd}(s, p)=s$.

Lemma 3.8. Let D be a primitive digraph that contains $D_{s, n}$ as a subgraph, where $\operatorname{gcd}(s, n)=1, s$ is odd and $s \geqslant 3$. Suppose that the digraph D also contains another cycle of length p with $\operatorname{gcd}(s, p)=s$. If $C_{s} \cap C_{p} \neq \emptyset$, then $k(D)<K(n, s)$.

Proof. Suppose that $p=t s$ and that u is a vertex of $D_{s, n}$ such that $k_{n u}(D)=\left(\frac{s-1}{2}\right) n+n-s$.
If $u \notin C_{s}$, then in the digraph $D_{s, n}$ we have

$$
\begin{aligned}
& n \xrightarrow{n-s} s \xrightarrow{\left(\frac{s-1}{2}\right) n} s \text { and } \\
& u \xrightarrow{u-s} s \xrightarrow{m s} s,
\end{aligned}
$$

where m is a positive integer such that $m s-\left(\frac{s-1}{2}\right) n=n-u$.
If there is a vertex w such that $s+1 \leqslant w \leqslant u$ and it belongs to the cycle C_{p}, then choose w as the double-cycle vertex of u and n. Then we have $l(u, w)<u-s, l(n, w)<n-s$ and $l(n, w)-l(u, w)=n-u$. Also since $m s>n>p$ and $p=t s$, then $m s=p+t^{\prime} s$ for some nonnegative integer t^{\prime}. Then

$$
\begin{aligned}
& n \xrightarrow{l(n, w)} w \xrightarrow{\left(\frac{s-1}{2}\right) n} w \text { and } \\
& u \xrightarrow{l(u, w)} w \xrightarrow{p+t^{\prime} s} w .
\end{aligned}
$$

Thus $k_{n, u}(D) \leqslant\left(\frac{s-1}{2}\right) n+l(n, w)<k(n, s)+n-s$.
Otherwise there is an arc from vertex $j, u<j \leqslant n$, to vertex $i, 1 \leqslant i \leqslant s$. Then we can get from vertex n to a vertex i on the cycle C_{s} in less than $n-s$ steps. Therefore $k_{n, u}(D)<k(n, s)+n-s$.

Next consider $u \in C_{s}$. If $p=s$, suppose that the cycle C_{p} is formed from s consecutive vertices as in Fig. 3.

If $v=u+1$, then $l(n, w)<n-s$ and $l(u, w)=s \neq n-s$. Therefore $k_{n, u}(D)<k(n, s)+n-s$. If $v \neq$ $u+1$, then consider the subgraph $D_{p, n}$. In $D_{p, n}$, for some vertex v^{\prime} we have $k_{v-1, v^{\prime}}\left(D_{p, n}\right)=K(n, s)$. Since $v-1 \neq u, n$, then $k_{n, u}\left(D_{p, n}\right)<k(n, s)+n-s$. Therefore $k_{n, u}(D)<k(n, s)+n-s$.

If the cycle C_{p} is not formed from s consecutive vertices, then by Lemma 2.6 , there exists a cycle of length q such that $\operatorname{gcd}(s, q) \leqslant \frac{s}{3}$. In that case, by Lemma 3.7, we have $k(D)<k(n, s)+n-s$.

If $p>s$, then take the first vertex w on cycle C_{p} from vertex n as the double-cycle vertex of u and n. Since $p \geqslant 2 s, l(n, w) \leqslant n-2 s$. Since $l(u, n)<s$, then $l(u, w)<n-s$.

In the digraph $D_{s, n}$, there is a vertex $u^{\prime}, u<u^{\prime}<n$, such that $d(u, n)=d\left(n, u^{\prime}\right)=n-u^{\prime}, k_{n, u^{\prime}}(D)=$ $k(n, s)+n-s$ and

$$
\begin{aligned}
& n \xrightarrow{n-s} s \xrightarrow{\left(\frac{s-1}{2}\right) n} s \text { and } \\
& u^{\prime} \xrightarrow{n^{\prime}-s} s \xrightarrow{m s} s,
\end{aligned}
$$

Fig. 3. $D_{s, n} \cup\{v \rightarrow v+s\}$.
where $m s-\left(\frac{s-1}{2}\right) n=n-u^{\prime}$. Since $m s>n>p$, then $m s=p+t s$ for some nonnegative integer t. In the digraph D we have

$$
\begin{aligned}
& n \xrightarrow{l(n, w)} w \xrightarrow{p+t s} w \text { and } \\
& u \xrightarrow{l(u, w)} w \xrightarrow{\left(\frac{s-1}{2}\right) n} w,
\end{aligned}
$$

where $l(u, w)-l(n, w)=n-u^{\prime}$. Therefore $k_{n, u}(D) \leqslant\left(\frac{s-1}{2}\right) n+l(u, w)<\left(\frac{s-1}{2}\right) n+n-s$.
Lemma 3.9. Let D be a primitive digraph that contains $D_{s, n}$ as a subgraph, suppose that s is odd, $s \geqslant 3$, and that there is another cycle of length p such that $C_{s} \cap C_{p}=\emptyset$ and $\operatorname{gcd}(s, p)=s$. If the cycle of length p is not formed from p consecutive vertices on the Hamilton cycle, then $k(D)<K(n, s)$.

Proof. Since the cycle of length p is not formed from p consecutive vertices on the Hamilton cycle, then there exists an arc from vertex i to vertex j, where $s+1 \leqslant i<j \leqslant n$ and $j>i+1$. Then for any two vertices $u, v \in V(D)$, we can get to vertices $s_{1}, s_{2} \in C_{s}$ in less than $n-s-1$ steps. Therefore $k(D) \leqslant$ $k(n, s)+n-s-1$.

The only remaining case is that D is a digraph constructed from $D_{s, n}$ by adding an arc from vertex u to vertex $u+m s-1$, where s is odd, $s \geqslant 3, s<u<n-m s+1$ and m is a positive integer such that $1 \leqslant m \leqslant \frac{n-u+1}{s}$.

Recall that in (3) we define the positive integer r as follows

$$
r \equiv \begin{cases}\frac{n}{2}(\bmod s), & \text { if } s \text { is odd, } n \text { is even, } \\ \frac{n-s}{2}(\bmod s), & \text { if both } s \text { and } n \text { are odd. }\end{cases}
$$

In both cases $n-2 r$ can be divided by s. Let

$$
\begin{equation*}
h=\frac{n-2 r}{s} . \tag{5}
\end{equation*}
$$

Note that in $D_{s, n}, h+1$ is the number of pair of vertices whose local scrambling indices are $K(n, s)$.

Lemma 3.10. Let D be a digraph constructed from $D_{s, n}, s \geqslant 3$, by adding an arc from vertex u to vertex $u+m s-1$, where $s<u<n-m s+1$. Then $k_{n, n-r-t s}(D)=K(n, s)$ if and only if $u=n-r-t s+1$ and $\frac{n+h}{2}-t-1 \equiv 0(\bmod m)$.

Proof. For the digraph $D=D_{s, n}$, the local scrambling index of n and $n-r-t s$ is $K(n, s)$ when $0 \leqslant t \leqslant$ $\frac{n-2 r}{s}$. We only consider those pairs of vertices.

Suppose that $u=n-r-t s+1$ for some t. From the digraph we know that

$$
\begin{aligned}
& n \xrightarrow{r+t s-m s} n-r-t s+m s \text { and } \\
& n-r-t s \xrightarrow{n-m s} n-r-t s+m s
\end{aligned}
$$

and $n-m s-(r+t s-m s)=n-r-t s=r+(h-t) s$, since $n=2 r+h s$. When n is even,

$$
\left(\frac{n+h}{2}-t\right) s-\left(\frac{s-1}{2}\right) n=r+(h-t) s
$$

Suppose $m-1-q$ is the smallest nonnegative integer such that $\left(\frac{n+h}{2}-t+m-1-q\right) s$ can be divided by $p=m s$, where $0 \leqslant q \leqslant m-1$. Then

$$
n \xrightarrow{r+t s-m s} n-r-t s+m s{ }^{\left(\frac{n+h}{2}-t+m-1-q\right) s} n-r-t s+m s
$$

and

$$
n-r-t s \xrightarrow{n-m s} n-r-t s+m s{ }^{\left(\frac{s-1}{2}\right)} \xrightarrow{n+(m-1-q) s} n-r-t s+m s .
$$

Therefore $k_{n, n-r-t s}(D)=\left(\frac{s-1}{2}\right) n+n-s-q s$.
Since $\left(\frac{n+h}{2}-t+m-1-q\right) s$ can be divided by $p=m s$, then

$$
\frac{n+h}{2}-t-1 \equiv q(\bmod m) .
$$

Therefore if $\frac{n+h}{2}-t-1 \equiv 0(\bmod m)$, we have

$$
k_{n, n-r-t s}(D)=K(n, s) .
$$

If $\frac{n+h}{2}-t-1 \not \equiv 0(\bmod m)$, then $k_{n, n-r-t s}<K(n, s)$.
Next we consider all other pairs of vertices n and u such that $k_{n, u}\left(D_{s, n}\right)=K(n, s)$.
If $u \neq n-r-t s+1$, let $v=u+m s-1$. Consider the following three cases.
Case 1. $n-r-t s+1<u$. We have

$$
\begin{aligned}
& n \xrightarrow{n-v} v \text { and } \\
& n-r-t s \xrightarrow{n-r-t s+n-v} v .
\end{aligned}
$$

In addition we have $n-r-t s+(n-v)-(n-v)=n-r-t s=r+(h-t) s$. Then we obtain

$$
\begin{aligned}
& n \xrightarrow{n-v} v \stackrel{\left(\frac{n+h}{2}-t+m-1-q\right) s}{\longrightarrow} v \text { and } \\
& n-r-t s \xrightarrow{n-r-t s s n-v} v\left(\frac{s-1}{2}\right)^{n+(m-1-q) s} v .
\end{aligned}
$$

Therefore $\quad k_{n, n-r-t s}(D)=n-r-t s+(n-v)+\left(\frac{s-1}{2}\right) n+(m-1-q) s<n-m s+\left(\frac{s-1}{2}\right) n+(m-1$ $-q) s=\left(\frac{s-1}{2}\right) n+n-s-q s \leqslant k(n, s)+n-s$.

Case 2. $n-r-t s>v$. We have

$$
\begin{aligned}
& n \xrightarrow{n-v} v \text { and } \\
& n-r-t s \xrightarrow{n-r-t s-v} v,
\end{aligned}
$$

and $n-v-(n-r-t s-v)=r+t$. Also

$$
\left(\frac{n-h}{2}+t\right) s-\left(\frac{s-1}{2}\right) n=r+t s
$$

Then

$$
\begin{aligned}
& n \xrightarrow{n-v} v \stackrel{\left(\frac{s-1}{2}\right) n+(m-1-q) s}{\longrightarrow} \text { and } \\
& n-r-t s \xrightarrow{n-r-t s-v} v \xrightarrow{\left(\frac{n-h}{2}-t+m-1-q\right) s} v \text {. }
\end{aligned}
$$

Therefore $k_{n, n-r-t s}(D)=n-v+\left(\frac{s-1}{2}\right) n+(m-1-q) s<n-m s+\left(\frac{s-1}{2}\right) n+(m-1-q) s=\left(\frac{s-1}{2}\right) n+$ $n-s-q s \leqslant k(n, s)+n-s$.

Case 3. $u \leqslant n-r-t s \leqslant v$. Choose v as the double-cycle vertex of n and $n-r-t$. Then

$$
\begin{aligned}
& n \xrightarrow{n-v} v \text { and } \\
& n-r-t s{ }^{n-r-t s-u+1} v .
\end{aligned}
$$

If $n-v>n-r-t s-u+1$, since $n-v-(n-r-t s-u+1)=r+t s-(v-u+1)=r+(t-m) s$ and $v>m s$, then

$$
\begin{aligned}
k_{n, n-r-t s}(D) & \leqslant\left(\frac{s-1}{2}\right) n+n-v+(m-1-q) s \\
& =\left(\frac{s-1}{2}\right) n+n-s-v+m s-q s \\
& <k(n, s)+n-s .
\end{aligned}
$$

If $n-v<n-r-t s-u+1$, then $n-r-t s-u+1-(n-v)=-r-t s+v-u+1=-r-t s+m s=$ $s-r+(m-1-t) s$. Then

$$
\left(\frac{s-1}{2}\right) n-\left(\left\lfloor\frac{n}{2}\right\rfloor-t^{\prime}\right) s=s-r+(m-1-t) s
$$

for some integer t^{\prime}. Therefore

$$
\begin{aligned}
k_{n, n-r-t s}(D) & \leqslant\left(\frac{s-1}{2}\right) n+n-v+(m-1-q) s \\
& =\left(\frac{s-1}{2}\right) n+n-s-v+m s-q s<k(n, s)+n-s
\end{aligned}
$$

Lemma 3.11. Let D be a digraph constructed from $D_{s, n}(s \geqslant 3)$ by adding arcs from vertex u_{i} to vertex $u_{i}+m_{i} s-1$, where $u_{i}>s, m_{i} \geqslant 1, i=1,2$ and $u_{1} \neq u_{2}$. Then $k(D)<K(n, s)$.

Proof. Let $D_{i}, i=1,2$, be the subgraph of D that contains $D_{s, n}$ and the cycle of length $m_{i} s$, then by Lemma 3.10, we know that there is at most one pair of vertices, vertex n and vertex $u_{i}-1$, such that $k_{n, u_{i}-1}\left(D_{i}\right)=K(n, s)$. Since $u_{1} \neq u_{2}$, In the digraph D, we have $k_{n, u_{i}-1}(D)<K(n, s)$.

Concluding the above results, we have the following theorem.

Theorem 3.12. Let D be a primitive digraph of order n and girth s, where s is odd and $s \geqslant 3$. Then $k(D)=$ $K(n, s)$ if and only if $\operatorname{gcd}(n, s)=1$ and $D=D_{s, n}$ or, $D=D_{s, n} \cup\{n-r-t s+1 \rightarrow n-r-t s+m s\}$ for some $m \in \mathbb{N}$ and some $t \in\left\{1,2, \ldots, \frac{n-2 r}{s}-1\right\}$ such that $\frac{n+h}{2}-t-1 \equiv 0(\bmod m)$, where r and h are as in (3) and (5).

References

[1] M. Akelbek, S. Kirkland, Coefficients of ergodicity and the scrambling index, preprint.
[2] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, vol. 39, Cambridge University Press, Cambridge, 1991.
[3] D.J. Hartfiel, U.G. Rothblum, Convergence of inhomogeneous products of matrices and coefficients of ergodicity, Linear Algebra Appl. 277 (1998) 1-9.
[4] M. Kutz, The Angel Problem, Positional Games, and Digraph Roots, Ph.D. thesis, Freie Universitat Berlin, 2004.
[5] U.G. Rothblum, C.P. Tan, Upper bounds on the maximum modulus of subdominant eigenvalues of nonnegative matrices, Linear Algebra Appl. 66 (1985) 45-86.
[6] E. Seneta, Coefficients of ergodicity: structure and applications, Adv. Appl. Prob. 11 (1979) 576-590.
[7] E. Seneta, Nonnegative Matrices and Markov Chains, Springer-Verlag, New York, 1981.
[8] C.P. Tan, Coefficients of ergodicity with respect to vector norms, J. Appl. Prob. 20 (1983) 277-287.

[^0]: * Corresponding author.

 E-mail addresses: amahemuti@weber.edu (M. Akelbek), kirkland@math.uregina.ca (S. Kirkland).
 ${ }^{1}$ Research supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada under Grant OGP0138251.

