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We investigate domain walls between topologically ordered phases in two spatial dimensions. We

present a method which allows for the determination of the superselection sectors of excitations of such

walls and which leads to a unified description of the kinematics of a wall and the two phases to either side

of it. This incorporates a description of scattering processes at domain walls which can be applied to

questions of transport through walls. In addition to the general formalism, we give representative

examples including domain walls between the Abelian and non-Abelian topological phases of Kitaev’s

honeycomb lattice model in a magnetic field, as well as recently proposed domain walls between spin

polarized and unpolarized non-Abelian fractional quantum Hall states at different filling fractions.
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Recently, there has been considerable interest in planar
systems which exhibit topological phases. It is of great
interest to have a clear understanding of the edges of such
systems and of domain walls between regions in different
phases. In fractional quantum Hall (FQH) systems, where
experimental support for the existence of a variety of
topological phases is strongest, observations are almost
entirely restricted to edge transport, and proposed devices
for probing the topological order rely on interference of
tunneling currents between edges [1–3]. In such experi-
ments, the electron density is usually not constant through-
out the sample, and islands with different filling fractions
form, separated by domain walls. In lattice models with
several topological phases, one may induce phase bounda-
ries by varying the local couplings.

We present a method to determine the degrees of free-
dom of boundaries between topological phases and their
relation to the bulk degrees of freedom, based on the
condensation of bosonic quasiparticles in auxiliary layered
systems. Our method is based on the topological symmetry
breaking procedure of Refs. [4–7]. In those papers, only
transitions between phases at equal topological central
charge were considered—this corresponds to a class of
transitions caused by perturbations which do not break
parity or time reversal. Here we incorporate transitions
which do change the central charge by adding an auxiliary
layer to part of the system before any Bose condensation.
The central charge is then locally the sum of the central
charges of the layers. This allows application in a greater
variety of physical settings. We work out two such appli-
cations, which involve Kitaev’s spin model on the honey-
comb lattice [8] and a domain wall between spin polarized
and unpolarized non-Abelian FQH liquids [9].

The excitations of topological phases fall into a spec-
trum topological sectors a, b, c, etc., distinguished by
topological quantum numbers. One such quantum number

is the topological spin. In ð2þ 1ÞD, this is a phase factor
�a ¼ e2i�ha , which acts on the wave function when an
excitation of type a is rotated by 2�. The kinematic
selection rules for fusion, decay, and scattering of topo-
logical excitations are summarized in fusion rules of the
form a� b ! P

cN
c
abc. Here the Nc

ab are integer coeffi-

cients which give the number of independent channels by
which a and b may fuse into c. Positive real numbers da,
the quantum dimensions, give a measure of the number of
topological degrees of freedom per a particle. A full de-
scription of the bulk of a topological phase requires the
structure of a ð2þ 1ÞD topological field theory (TQFT),
and the boundary of a topological medium can usually be
described by a ð1þ 1ÞD conformal field theory (CFT).
Here we will make use only of spins and fusion rules,
which are usually the same for bulk and boundary sectors.
One way to match two different phases I and II at a

domain wall is to treat them as independent systems with-
out interaction. The wall’s sectors are then simply pairs of
phase I and phase II sectors. However, this is not always the
situation observed in experiments. For example, Camino
et al. [10,11] created a setup with FQH states at filling
fractions � ¼ 1=3 and �0 ¼ 2=5. The boundary has exci-
tations of charge e=15 and cannot be explained as a simple
product of the � ¼ 1=3 and � ¼ 2=5 boundaries [12]. To
describe more general interfaces, we start with two layers
in phases I and III, which we allow to partially overlap as
indicated in Fig. 1. If we bring the layers close, we may
have some binding between degrees of freedom in phases I
and III in the overlap region. In particular, a bosonic
composite of excitations from the two layers could occur,
and, consequently, a condensate of such bosons may form.
This condensation will lead to a different phase for the
middle region, which we denote by II. If we are given
theories C1 and C3 describing phases I and III, i.e., fusion
rules and topological spins for these phases, the topological
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sectors of the layered system will initially be labeled by
pairs ðaI; bIIIÞ of labels from C1 and C3. We can now
proceed as follows.

(i) We find the bosonic sectors. Bosons always have
trivial spin, i.e., �ða;bÞ � �a�b ¼ 1. Further requirements

exist for bosons a with da > 1; cf. [7]. (ii) We assume that
a condensate of bosonic quasiparticles forms. This causes a
change in the topological spectrum and fusion rules. We
denote the theory describing the condensed phase by T.
The spectrum and fusion of T can be found in a way which
resembles the branching and fusion analysis for conven-
tional symmetry breaking phase transitions. Sectors of the
C1 � C3 theory branch into T sectors according to branch-
ing rules of the form ðaI; bIIIÞ ! P

cN
c
ða;bÞc

T , where the

Nc
ða;bÞ are integer branching multiplicities. Some C1 � C3

sectors may branch to the same T sector and become
identified, while others may split into multiple T sectors.
In particular, the condensed sectors always branch to the T
vacuum, while sectors which are related by fusion with a
condensed boson are identified and sectors which are
invariant under fusion with a condensed boson split.
Branching must commute with fusion, and hence it con-
serves quantum dimensions. Details and worked examples
of the determination of T sectors and fusion are given in
Ref. [7]. (iii) While all T sectors have good fusion rules,
some do not inherit well defined spin factors from the
uncondensed theory, basically because they have nontrivial
braiding interaction with a condensed excitation. Excita-
tions from such T sectors pull strings in the condensed
medium and are confined. In effect, this means that they are
expelled from the bulk and can propagate only on the
boundary of the condensed medium. (iv) T sectors which
do inherit well defined topological spins from the uncon-
densed theory survive in the bulk and define a theory C2,

which describes the fusion and braiding of excitations of
phase II.
We now make the crucial observation that, after con-

densation, excitations in all parts of the system can be
labeled by sectors of the T theory. More precisely, the
bulk excitations of phase II correspond to unconfined T
sectors, while those of phases I and III are labeled as before
by pairs ðaI; 1Þ and ð1; bIIIÞ of C1 � C3 labels (with the
vacuum label 1 in the layer that cannot be excited in those
phases). These pairs correspond to T sectors by the branch-
ing rules. This yields unique T sectors (i.e., no splitting)
whenever C1 and C3 do not themselves have bosonic
sectors. Boundary excitations correspond to confined T
sectors. We can now understand all of the kinematics of
processes that may occur when excitations are moved
toward or through walls. For example, any C1 particle
that is identified with a nonconfined T particle can pass
through the phase boundary unnoticed and vice versa,
while aC1 particle that corresponds to a confined T particle
cannot enter the region in phase II. Reversely, T particles
which are confined in phase II but which can be obtained
from a C1 sector by branching can pass into the area in
phase I after being driven out of phase II. Hence, the true
boundary excitations are labeled by confined T sectors
which do not correspond to C1 sectors. For processes
involving three or more excitations, we need to use the
fusion rules of T. Any process allowed by these rules
could, in principle, occur. For example, a C1 particle
corresponding to a confined T sector c could hit the phase
boundary and split into a boundary excitation a and a bulk
excitation b of phase II, provided that c 2 a� b according
to the fusion rules of T. The fusion rules of T are valid
throughout. For instance, the fusion channel of two parti-
cles in phase I should be preserved even if one of the
particles is moved into the region in phase II. The full
topological state of the multiphase system should be char-
acterized by specifying the amplitudes for the T-fusion
channels obtained on successive fusions of all of the qua-
siparticles that are present. To actually perform the fusions
involved, it will usually be necessary to bring the quasi-
particles from the bulk regions to the boundary.
There are many applications of these general ideas. For

example, coset models in CFT can be analyzed in terms of
Bose condensates [7]. The construction of these models by
condensation parallels Fig. 1, where phase I is a Gk phase,
phase III is a Hk0 phase with the opposite chirality, and in
the overlap region we obtain a phase with the topological
order of the Gk=Hk0 coset, after condensation of all avail-
able bosons. We continue with two concrete applications of
a slightly different, but related, type.
Kitaev’s honeycomb model [8] is a model of spins living

on the sites of a honeycomb lattice and interacting through
nearest neighbor Ising-like interactions. The model is ex-
actly solvable and displays two types of phases [17]: three
equivalent gapped Abelian topological phases, with the
same topological order as the Z2 toric code and central
charge c ¼ 0, and a gapless phase, which becomes gapped

FIG. 1. Side view of two overlapping layers supporting topo-
logical phases I and III. If we bring the layers close together, a
condensate may form in the overlap region leading to a phase II.
The theory T on the left boundary describes excitations that can
be divided into bulk excitations of phase I and of phase II and
excitations that can propagate only along the boundary. On the
right boundary, a similar situation occurs for the same theory T,
now with III replacing I. The subset of T excitations that are
strictly confined to the left and right boundaries is therefore
different, in general.
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when a Zeeman term is added to the Hamiltonian and then
displays non-Abelian topological order described by the
Ising TQFTat c ¼ 1=2. The Abelian phase has four sectors
with Z2 � Z2 fusion rules, and the Ising model has three
sectors labeled 1, �, and c , with 1 denoting the vacuum
and with nontrivial fusion rules given by �� � ¼ 1þ c ,
�� c ¼ �, and c � c ¼ 1.

We wish to consider a situation with an island in the
Abelian phase surrounded by a medium in the Ising phase.
To achieve this, we take a large disk in the Ising phase
(phase I) and place a small disk on top of it, which is in a
suitable phase III so that a Bose condensate can form,
leaving the bulk of the small disk in the Z2 � Z2 phase
(phase II). The addition of the phase III layer should lower
the central charge by 1=2, and so we use an opposite
chirality Ising model for phase III. We then take a conden-
sate in the bosonic ðc ; c Þ sector. This example has been
worked out in Sec. X of Ref. [7]. Condensation leads to the
identifications ð1; 1Þ � ðc ; c Þ, ðc ; 1Þ � ð1; c Þ, ð�; 1Þ �
ð�; c Þ, and ð1; �Þ � ðc ; �Þ, while the remaining sector
splits: ð�;�Þ ¼ ð�;�Þ1 þ ð�;�Þ2. Hence, the T theory
has 6 sectors, and one finds that it has Ising� Z2 fusion
rules. The sectors ð�; 1Þ and ð1; �Þ are confined because
they cannot be assigned a consistent spin (the correspond-

ing identified Ising� Ising sectors have spins that differ by
a sign). The unconfined sectors ð1; 1Þ, ð�;�Þ1, ð�;�Þ2, and
ðc ; 1Þ correspond precisely to the toric code sectors 1, e,
m, and em, respectively, given in Table I.

Let us now look at the wall in between the phases. Of the
nontrivial excitations in the interior bulk, the fermionic
ðc ; 1Þ excitation can freely move out through the wall into
the exterior region, and the other two bulk excitations

cannot. This corresponds well to the results of Ref. [19],
where it was shown that free fermionic excitations occur
throughout the phase diagram. The confined excitations are
expelled from the interior. One, the ð�; 1Þ excitation, can
move into the exterior region, while the other, the ð1; �Þ
excitation, is strictly confined to the wall. Now consider a
� excitation hitting the boundary. From the T theory’s
fusion rules, we see that ð�; 1Þ ¼ ð1; �Þ � ð�;�Þ1 ¼
ð1; �Þ � ð�;�Þ2. Hence, the � particle can split into a
boundary excitation and either an e- or an m-type toric
code excitation. This corresponds well with the results of
Ref. [20], where �-like excitations were exhibited in the
toric code using superpositions of e- and m-type excita-
tions. Pushing another � particle through the phase bound-
ary will allow the confined ð1; �Þ excitations to annihilate,
yielding either ð1; 1Þ or ðc ; 1Þ. If the two � particles had
fusion channel 1, then the two toric code particles that form
will have fusion channel 1, respectively, em � ð1; c Þ,
conserving T charge.
Now we turn to the interface between the Moore-Read

(MR) Pfaffian FQH state at filling � ¼ 1=2 or 5=2 [21] and
the non-Abelian spin-singlet (NASS) state of Ardonne and
Schoutens at � ¼ 4=7 or 18=7 [22]. This was recently
considered in Ref. [9]. We will again realize it as a
single-layer–two-layer boundary. We concentrate on the
non-Abelian parts of the MR and NASS theories here and
leave out the Uð1Þ factors (these can be put back in at any
point). Consider a disk with C1 ¼ Ising, corresponding to
MR, with on top of that a smaller disk with C3 ¼ Mð4; 5Þ.
The latter CFT is the minimal model with c ¼ 7=10 cor-
responding to a tricritical Ising model. We give the field
content of the Ising andMð4; 5Þ theories in Tables I and II.
For the Mð4; 5Þ fusion rules, we refer to Ref. [23].
The ðc ; �00Þ current is the only bosonic channel in the

Ising �Mð4; 5Þmodel. Table III shows what happens to the
various sectors in the model when it condenses. Of the
initial 18 sectors, 16 become pairwise identified [because
they are equivalent modulo fusion with (c , �00)], and the
other two split, giving a total of 12 T sectors, listed at the
top of the table. An analysis along the lines of Ref. [7]
shows that the fusion rules of T are given by T ¼ Z2 �
Mð4; 5Þ. The T sectors that are not confined correspond to
the sectors of the NASS state; see also Table II. The full T
theory does not admit a consistent braid group representa-
tion, since the confined sectors cannot be assigned unam-

TABLE I. Ising and toric code spins and quantum dimensions.

Ising

c ¼ 1=2 1 � c
hi 0 1=16 1=2
di 1

ffiffiffi
2

p
1

Z2 toric code

c ¼ 0 1 e m em
hi 0 0 0 1=2
di 1 1 1 1

TABLE II. NASS (phase II) and Mð4; 5Þ (phase III).

NASS 1 �" �# �3 � c 1 c 2 c 12

c ¼ 6=5 hi 0 1
10

1
10

1
10

3
5

1
2

1
2

1
2

di 1 ð1þ ffiffiffi
5

p Þ=2 ð1þ ffiffiffi
5

p Þ=2 ð1þ ffiffiffi
5

p Þ=2 ð1þ ffiffiffi
5

p Þ=2 1 1 1

Mð4; 5Þ 1 � �0 �00 �� ��0

c ¼ 7=10 hi 0 1
10

3
5

3
2

3
80

7
16

di 1 ð1þ ffiffiffi
5

p Þ=2 ð1þ ffiffiffi
5

p Þ=2 1 ð1þ ffiffiffi
5

p Þ= ffiffiffi
2

p ffiffiffi
2

p

PRL 102, 220403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
5 JUNE 2009

220403-3



biguous spins. We recall (cf. [6]) that this is no problem,
since the full T theory has only a strictly one-dimensional
interpretation.

In Table III, we have also indicated which T sectors
correspond to excitations in the various planar regions and
which are strictly confined to particular walls. More pre-
cisely, we give the T sectors that extend from the I/II wall
into the exterior MR (phase I) region in the fourth row and
the sectors that extend from the wall into the interior NASS
(phase II) region in the fifth row. Excitations in the three
remaining sectors occur only on the I/II wall. The c 12

sector of the NASS phase is identified with the MR-sector
c , which means that the c or c 12 excitations can propa-
gate right through the wall. Again, the fusion rules of the T
theory fix the kinematically allowed channels by which
particles which hit the wall can split. For instance, from the
T fusion rule �� �� ¼ �" þ �#, we find that a �" coming

from the interior region can split into a � going into the
MR region and a �� staying in the wall. However, since ���
�� ¼ �" þ �# þ c 1 þ c 2, the �" excitation may instead

split into two wall excitations �� and ��. This scenario may
also be turned around; two strict boundary excitations may
fuse into a state that is not confined. Obviously, there are
many more possible processes, and we refrain from listing
them all here.

A final comment concerns the relaxation of qubits near a
wall [24]. If we encode a topological qubit in the NASS
phase, for example, in the fusion channel of a pair of
excitations, the qubit may relax to the lowest energy state
by transferring a neutral excitation to the boundary. For
example, for pairs of �-type excitations, we have the
fusion rules �3 � �3 ¼ 1þ � and �# � �" ¼ c 12 þ �3,

so these pairs can relax under emission of a � excitation. A
� excitation may convert into one of the pairs ð��; ��Þ,
ð ��; ��Þ, or ð ��; ��0Þ, which are all strictly confined to the
interface. Alternatively, we may have � ! ð��; �Þ, where
�� is confined to the wall but � can enter the MR region.

In conclusion, one may describe phase separated topo-
logical phase media using auxiliary layers and Bose con-
densation. An important question is how to fix the

appropriate auxiliary theory when the jump in central
charge between phases exceeds 1. It would also be of
interest to study how our results relate to those of Gils
et al. [25].
We thank Professor K. Schoutens for useful discussions.
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TABLE III. Field content of the T theory resulting from a ðc ; �00Þ condensate in the Ising �Mð4; 5Þ model and governing the
kinematics of the NASS and MR states and the domain wall between them. The following rows give the correspondence between T
sectors and sectors of the different phases and walls. Note that the quantum dimensions of the T sectors are consistent with all fusion
rules and with the decomposition of the MR andMð4; 5Þ sectors. One reads off that the excitations ��, ��0, and �� are strictly confined to
the I/II boundary. The same T theory would live on a domain wall between NASS and Mð4; 5Þ phases, where � and �� would be
strictly confined to the II/III boundary.

T theory 1 �" �# �3 � c 1 c 2 c 12 � �� ��0 ��

Corresponding sectors

in Ising �Mð4; 5Þ
ð1; 1Þ ð�; ��Þ ð1; �Þ ð1; �0Þ ð�; ��0Þ ð1; �00Þ ð�; 1Þ ð1; ��Þ ð1; ��0Þ ð�; �Þ
ðc ; �00Þ ðc ; �0Þ ðc ; �Þ ðc ; 1Þ ð�; �00Þ ðc ; ��Þ ðc ; ��0Þ ð�; �0Þ

di 1 ð1þ ffiffiffi
5

p Þ=2 ð1þ ffiffiffi
5

p Þ=2 ð1þ ffiffiffi
5

p Þ=2 ð1þ ffiffiffi
5

p Þ=2 1 1 1
ffiffiffi
2

p ð1þ ffiffiffi
5

p Þ= ffiffiffi
2

p ffiffiffi
2

p ð1þ ffiffiffi
5

p Þ= ffiffiffi
2

p
Phase I: MR 1 c �

Phase II: NASS 1 �" �# �3 � c 1 c 2 c 12

Confined on I/II wall �� ��0 ��

Phase III: Mð4; 5Þ 1 � �0 �00 �� ��0

Confined on II/III wall � ��
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