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Density matrices are experimentally determined which describe H(n =2) atoms produced in
electron-transfer collisions between 20-100-keV protons and helium. The density matrix contains the
electron-transfer cross sections o, Tapys and g, 40 @8 well as the real and imaginary parts of the sopq

coherence. Experimentally, a monoenergetic proton beam traverses a helium gas cell producing hydro-
gen atoms H(n) via electron transfer. Within the gas cell an electric field is applied either axial or trans-
verse to the proton beam. The Stokes parameters describing the intensity and linear polarization of
Lyman-a radiation (122 nm) emitted by H(n =2) atoms are determined as a function of applied electric-
field strength. The density-matrix elements are determined from a linear least-squares fit of the Stokes
parameters to the set of five fitting functions which represent the contributions from individual density-
matrix elements. The density-matrix results are self-consistent. Separate determinations using axial or
transverse electric fields agree with each other. The general results indicate o, > O2py> T2, between

20 and 100 keV. The electric dipole moment {d ), has a value near zero at 20 keV rising to a maximum
of about 1.3 a.u. near 40 keV and remaining nearly constant through 100 keV. The (LX A ), moment
has a maximum of about 0.5 a.u. at 25 keV, passing through zero near 70 keV. These results compare
favorably with available experimental results and are qualitatively predicted by present theoretical mod-
els. Comparison with previous H(n =3) results indicates that the Runge-Lenz vector { A), is larger for

APRIL 1994

Measurement of the H(n =2) density matrix for 20—100-keV collisions of H* on He

Atomic Collisions Laboratory, Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

n =3 than for n =2 and that {LX A), has the same values for both n.
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I. INTRODUCTION

Collisions probe the interactions of atoms by determin-
ing the change in the population of atomic energy levels
caused by the collision. Modeling atomic collision pro-
cesses presents a great challenge because of the large
number of channels available in the collision. In an effort
to determine the important channels in collisions and in
order to further our understanding of the collision pro-
cess, this laboratory has undertaken a systematic study of
fundamental atomic collisions. The research has primari-
ly concentrated on collisions between protons and helium
[1-9]. The process where one electron is transferred
from the helium atom to the proton, forming a hydrogen
atom, is the dominant channel in this collision within the
considered energy range. The focus of the experimental
research in this laboratory has been the study of electron
transfer into excited states of hydrogen.

The electron-transfer process may be written as

HY+He—H(n)+He™",

where n is the principal quantum number used to label
the eigenstates of hydrogen. Because the scattering an-
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gles of the hydrogen atoms are not detected, the most
complete description of the collision uses a density matrix
[10] to describe the hydrogen atoms at the time of their
production. The density matrix contains cross sections
for the production of the various angular momentum
eigenstates of H(n) as well as coherences between these
eigenstates. The cross sections, diagonal density-matrix
elements, describe the probability of collisionally populat-
ing a particular eigenstate. The coherences, off-diagonal
density-matrix elements, are proportional to the phase
difference between two eigenstates, implicitly averaged
over scattering angles in the collision. The H(n =3) den-
sity matrix is described by 14 equal non-zero independent
parameters while the H(n =2) density matrix contains
only 5. Previous research [8] has determined the density
matrices describing H(n =3) for proton energies of
20-100 keV, while this work details the experimental
determination of H(n =2) density matrices for the same
energy range.

Experimental measurements of collisionally produced
coherence have been made since 1970. The H(n =2) sys-
tem has played an important role in experimental demon-
strations of coherence in beam-foil and proton-atom col-
lisions [11-15]. In these other experiments the intensity
of Lyman-a radiation (122 nm) emitted from the radia-
tive decay H(n =2—n =1) is measured as a function of
time after the collision. The measured intensity exhibits
quantum beats, an oscillation of the intensity due to
coherent population of H(n =2) energy levels with nearly
the same energy. These measurements are performed in
the presence of an electric field which Stark-mixes the
H(n =2) manifold. Stark mixing is necessary to observe
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any radiation due to population of the H(2s) eigenstate
since field-free radiative decay from H(2s) is forbidden
via an electric dipole transition. The effect of electric
fields on hydrogen atoms is a topic of continuing interest
in atomic physics [16—18]. Previous work in this labora-
tory used electric fields with a different experimental
method to determine cross sections and coherences. This
work uses the same experimental method, which is de-
scribed below.

In previous research [6] the H(n =3) density matrix
was determined by observation of Balmer-a radiation
(656 nm) emitted from the radiative decay
H(n =3—n =2). The atoms decay in an electric field
applied axially or transversely to the beam direction. A
measurement of the intensity and polarization of the
emitted light is analyzed to yield density-matrix elements
describing the excited atom.

The analysis of the experimental data is a statistical fit
to a set of fitting functions which represent the contribu-
tions to the experimental signal from individual density-
matrix elements. The fitting functions are numerically
calculated on a supercomputer using a sophisticated
analysis which accounts for the time evolution of hydro-
gen atoms in an electric field from the time of their for-
mation until the time of their radiative decay. This
analysis includes the effects of cascade, optical detection
efficiency, and inhomogeneities in helium gas density and
electric-field strength. Considerable effort has been made
to ensure that all possible systematic effects are account-
ed for in this analysis.

This experimental strategy is used in this work to
determine experimentally density matrices describing
H(n =2) produced in 20-100-keV electron-transfer col-
lisions of protons and helium. The organization of this
paper is as follows: The experimental apparatus, with
emphasis on the optical system used in the polarization
analysis of the Lyman-a radiation, is described in Sec. II.
A brief review of the data analysis is given in Sec. III,
with an emphasis on the difference between the n =3 ex-
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periment and the present experiment. Section IV con-
tains the results and their comparison with various
theoretical models, other experimental studies of
H(n =2), and previous research on H(n =3).

II. EXPERIMENTAL APPARATUS

A. General

The apparatus used in these experiments has previous-
ly been described [3,6], so only a brief outline will be
given here. Protons are accelerated to energies between
20 and 100 keV and sent into the collision region shown
in Fig. 1. Either an axial or a transverse electric field is
applied in the cell by electrodes which are not shown.
Beam currents, measured by a Faraday cup, are usually
about 1—2 A at the end of the line. He gas (of 99.999%
purity) for the collision is fed in at the end of the
chamber through a precision leak valve. The entrance
aperture of the cell serves to isolate the collision region
from the front part of the chamber. Condensable con-
taminants are removed with a liquid-nitrogen-filled cold
finger. The cell pressure is determined absolutely by a ca-
pacitance manometer and maintained at 1 to 3 mTorr.

Lyman-a light emitted from excited H atoms in the
target cell is observed by the optical detection system
shown in Fig. 2. Contributions to the signal from col-
lisions with background gas in front of the target cell are
removed by an automated subtraction technique wherein
target gas is periodically routed to the region upstream of
the cell, and the difference taken between signals mea-
sured both with gas in the cell and with gas admitted
upstream of the cell. In order to account for pressure
changes in the background subtraction and for possible
beam drifts, optical signals are normalized to both the
beam current, integrated during the measurement time
from the Faraday cup, and to the cell pressure, deter-
mined from integration of the current from an ion gauge.
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FIG. 2. Overview of the optical system. All dimensions are
given in cm.

A correction for the 5-10 % beam attenuation occur-
ring with target gas in the cell has been measured with
+10% precision and is included in the data analysis. A
correction for the additional proton acceleration provid-
ed by the axial electric field was also included. Careful
checks of the signal linearity with respect to pressure
were compared to computer simulations using known
values of experimental cross sections to ensure single-
collision conditions in the gas cell.

We measure the intensity and polarization of the
Lyman-a light as a function of the electric field applied in
the target cell. Electric fields of £280 V/cm in the axial
case and £400 V/cm in the transverse case are selected
from a standard set and applied in random order. As
mentioned before, each nonzero-field optical measure-
ment is followed by a zero-field optical measurement for
normalization.

Light is emitted in all directions from excited atoms in
the beam. Only light that passes through the two limit-
ing apertures reaches the detector. The limiting aper-
tures define the viewing region, the region of the beam
which is in view of the detector. Between the two limit-
ing apertures are three light baffles which eliminate
reflections from the aperture tube. Just prior to the
second limiting aperture is a LiF vacuum window which
allows a pressure difference between the optical chamber
and the gas cell. The 2-mm-thick window transmits
about 50% of the incident Lyman-a radiation, and has a

transmission cutoff at a wavelength of 105 nm.

The light is incident on a reflection linear polarizer
which consists of a plane mirror made from optical glass
SF6 oriented at 60° angle of incidence. Its reflectance is
about R =25% and its polarization is P =81.2+2.4%.
The azimuthal alignment between the reflection polarizer
and the z axis is better than 0.5°. After reflecting from
the linear polarizer, the light is incident on an electron
multiplier (EM) which multiplies photoelectrons given off
by its first dynode, pulses from which are counted. The
EM (Hamamatsu Model R2363) is insensitive to light
with a wavelength greater than about 160 nm.

In order to analyze the experimental measurements, we
need to know the exact location of the viewing region
with respect to the entrance plate of the gas cell. In other
words, we need to know the solid angle subtended by the
optical system as a function of position along the proton
beam. In Fig. 2 the shaded area indicates the region il-
luminated by the entire viewing region. The sold lines on
the fold-out views of the mirror and detector indicate the
region illuminated by the central point of the viewing re-
gion.

The technique to experimentally determine the viewing
region was developed in a previous experiment [6]. A
light-emitting diode (LED) is placed on a linear transla-
tor and moved along the proton beam, simulating light
emission from discrete points along the beam, and ob-
served by a photomultiplier, sensitive to visible light, re-
placing the EM. A calculation of the viewing region
based on known aperture sizes agreed well with this mea-
surement and was used in the fitting function.

B. Polarimeter

1. Determination of the Stokes parameters

We experimentally determine the intensity and linear
polarization of the Lyman-a radiation emitted from
H(n =2) atoms. The Meuller calculus [19-22] is used to
mathematically treat the polarization of the light as it
traverses the optical system. Optical elements are
represented as 4X4 matrices and a light beam is
represented by a four-element vector of Stokes parame-
ters. The Stokes parameters completely describe the po-
larization of a light beam and are defined as

Sol [Ig+Ioy
Si | | Ip—1Iog

= Sy | " [as—Ins | M
S3 L, —1Iy,

where S, may also be presented as I 5 +1 35 or I, +1,.
The variables I, represent the intensity of light linearly
polarized at an azimuthal angle of 6 depress with respect
to the z axis and I, (I},) represents the intensity of light
having negative (positive) helicity, that is, right (left)
handedness.

To determine S, S, and S,, we need to measure the
intensity of light polarized at 0°, 45°, 90°, and 135°. This
is accomplished using a rotatable reflection polarizer
whose Mueller matrix is [20]
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Mlin pol( 0° )
1 P 0 0
P 1 0 0

0 0 V1—P%osA, V'1—PZinA,
0 0 —V'1—PZ%inA, V1—PZ%osA,
(2)

=R

The reflectance R is the ratio of reflected to incident in-
tensity using unpolarized light. The polarization P of the
linear polarizer is the value of S, /S, for light reflected
from the polarizer with unpolarized light incident. The
symbol A, represents the phase difference between the 0°
and 90° components of the electric field of the light
caused by the reflection. A perfect linear polarizer would
have R =0.5, P=1, and A,=0. In principle, this could
be done with a reflection from a plane surface of a dielec-
tric oriented at the Brewster angle. In practice, this is
very difficult to achieve in the far ultraviolet (UV) be-
cause (i) the short wavelength places great demands upon
the polishing of a perfectly flat surface and (ii) most ma-
terials have a complex index of refraction in the far UV.
(An absorbing medium does not have a Brewster angle.)
Because of these limitations, the linear polarizer is only a
partial polarizer (P <1).

Rotation changes 6, the angle between the proton
beam axis (z axis) and the linear polarizer’s polarization
axis. The variation of 6 is shown in Fig. 2 with an orien-
tation of 6=0°. The Mueller matrix for the linear polar-
izer transforms under rotation as

I, =€o(0)R {Sy+PS;cos26+ PS,sin20

CLINE, van der BURGT, WESTERVELD, AND RISLEY 49

Mjin 5ol ) =R(8)My, poi(0°)R(—6) (3)

where the rotation matrix R(6) is

1 0 0 0
0 cos26 —sin260 0

R(O= 10 sin20 cos20 0 “@
0 0 0 1

In the apparatus, the angle 0 is adjustable in 45° steps.
Since rotation necessitates breaking vacuum, and since
the detector degrades when exposed to air, its detection
efficiency will depend on the angle 6 (not a functional
dependence, but one which change each time the detector
is rotated and exposed to air).

The detector acts as an inefficient partial polarizer.
The detection efficiency may be represented as a row vec-
tor:

e(y)=gy(O)1 €cos2y esin2y 0), (5)

where €, is the detection efficiency of the detector for
Lyman-a photons and the 6-dependence has been made
explicit. The sensitivity of the detector to the linear po-
larization of the light is represented by €. The angle be-
tween the z axis and the polarization axis of the detector
is v, indicated in Fig. 2. With the linear polarizer at 6
and the detector at y, the measured intensity is

T, =€(¥) [Miig p(6)S]
:E(Y)[R(O)Mlmpol(oa)R(_e)S] , (6)

which can be expanded to

+€ cos(2y )[ PSycos20+S,cos?20+ S,V 1— P%sin*26 cosA,

+5,5in20 c0s26(1—V'1—P%cosA, ) —S;V 1— P%in20 sinA, |

+e&sin(2y )[ PSsin20+ S ;sin26 cos26(1— V' 1— P%cosA, )

+S,sin*20+ 5,V 1 — P2 cos?26 cosA, +S;V 1 — P2cos20sinA, ]} . 7

To simplify this, we first remove the effects of the
detector’s polarization sensitivity. By setting 6=0°, Eq.
(7) becomes

Iy, =€o(0°)R {Sy+PS; +e(cosy (PS,+S,)
+e(siny )(SgcosA+S;sinA)} . (8)

The additional factors in the &(siny) term make it negli-
gible in comparison with the e(cosy) term. This was
confirmed in an experimental test. For 6=0°, we see that
¥ =45° removes the dependence on €. In general, terms
containing € drop out if y =0+45°. Setting the detector
angle such that y =6+ /4, we simplify the measured in-
tensity for 0°, 45°, 90°, and 135°.

[
Iy =¢y(0°)R { Sy PS, +eV' 1—P?[S,cosA, +S;sinA, 1} ,

I, =¢€o(45°)R {Sy+PS, +eV'1—P?[S cosA,

—S8;sinA, ]},
)
Ior =€o(90°)R {Sy—PS, +eV 1—P?[S,cosA,
—S;sinA, 1},
I35 =¢o(135°)R {Sy—PS, +eV'1—P?[S;cosA,
+S;sinA, ]} ,

where the y subscript has now been dropped. The terms
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multiplied by €V 1— P? are neglected.

Determining the Stokes parameters S;,, S;, and S,
from measurements of the four quantities given in Eq. (9)
requires a knowledge of g, at each different 6. Since this
is not known, we perform relative measurements at each
6 to cancel out the g, factor. Since our intensity measure-
ments are not absolute, we define Sy(0)=1. By symme-
try, S,(0)=0. With these simplifications, we invert Eq.
(9) to obtain the Stokes parameters in terms of the mea-
sured relative intensities:

So(E)=1{Iy,(E)[1+PS,(0)]+Ioy, (E)[1—PS;(0)]} ,
1
S\(E)= 5 {Ip,(E)[1+PS,(0)]

So(E)= ;{45 (E)+1 135, (E)}

(10)

1
S2(E)=EF{I45°,(E)—II35°,(E)} .

[Note that the factor of 1 in Eq. (10) differs from the orig-
inal definitions of the Stokes parameters in Eq. (1) be-
cause of the artificially imposed condition S,(0)=1.]
Measurements at 0° and 90° will yield S, and S;, while
measurements at 45° and 135° will yield S, and S,. Be-
fore we can calculate the Stokes parameters from our rel-
ative intensity measurements, we need to know P and
§,(0). The determination of S,(0) is discussed in Sec.

IIIB2. Figure 3 shows the Stokes parameters S, S,
and S, as a function of axial and transverse electric-field
strengths for 50-keV proton energy.

In a test to determine P, a perfect linear polarizer
(P=1) is placed between the glass linear polarizer and
the detector. This perfect linear polarizer was not used in
the experimental measurements because it has a very
small reflectance (R <1%). It consists of four gold (Au)
reflectors oriented to produce a 60° angle of incidence.
The Au linear polarizer is mounted onto the front of the
detector so that they can be rotated together without
changing the angle between them. We determine the po-
larization P of the glass linear polarizer by measuring the
light intensity as the Au linear polarizer is rotated with
respect to it. The light source is a H,-filled ionization
gauge tube located directly across from the optical
chamber. The H, gas in the tube is excited by electrons
which are emitted in all directions from the tube’s fila-
ment. The predominant wavelength of emission in the
far UV is Lyman-a [23], and the polarization of the light
is negligible [24]. Fitting the observed results to an equa-
tion obtained from the Mueller matrices for the two po-
larizers yielded P =0.81%0.2.

The reflectance R of the glass linear polarizer is es-
timated by removing the mirror and positioning the
detector to intercept directly the light beam from the ex-
cited atoms. Comparing the measured intensity in this
setup to the measured intensity with the mirror in place
allows a rough estimate for R of 25%.
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FIG. 3. Stokes parameters S;(E) for 50 keV
proton energy, shown with combined fit.
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2. Polarimeter imperfections

We can check the alignment of the optical system with
respect to the z axis by taking advantage of the sym-
metries of the Stokes parameters. For transverse electric
fields, S, and S, are symmetric with respect to zero-
electric-field strength and S, and S; are antisymmetric
[25]. A misalignment between the optical system and the
z axis would mix the linear polarizations S| and S,. For
a small misalignment angle @, the measured S| and S} (in
terms of the source’s S| and S,) are

St =5,+2as$, ,

) (11)
S2=S2—2aS1 .

Since S, <<§, the effect on S] will be much smaller than
the effect on S5. If we symmetrize S5, we find

Shymm = LS5 (+E)+Sy(—E)]=—2aS(£E),  (12)

where the antisymmetry (symmetry) of S, (S;) has been
used. Now if we divide our experimental S, by the
predicted S5, we can find o using

.
2

’
S 2symm

Slﬁt

where the average is taken over all electric-field strengths
(transverse-field direction only) and over all energies.
The result is =0.89°11.12".

Because the optical system does not contain a
wavelength-selective filter, light of all wavelengths be-
tween 105 nm (LiF vacuum window cutoff) and 160 nm
(approximate limit of detector sensitivity) is detected.
Within the considered wavelength range, the Lyman-a
measurement may be contaminated by He " spectral lines
at 164 nm (n =3—n =2) and 122 nm (n =4—n =2).
The detector is ten times more sensitive to 122-nm pho-
tons than to 164-nm photons so the He " (n =3—n =2)
transition is ignored. However, any He"(n =4) ions pro-
duced in the collision which then decay to n =2 will be
detected. An estimate of this contribution, made from
other measurements [26] indicates that the largest rela-
tive contribution is at higher proton energies, 100 keV in
our case. At this energy the cross section for photon
emissions from the He™ (122 nm) transition is roughly
three times less than the H(2p ) cross section. It should
be noted that y? is largest for the three highest proton en-
ergies, possibly indicating a systematic influence from
He™ emission. It is possible to alter the fitting-function
program to calculate the fitting function for He™ emis-
sion in an electric field. However, the size of the effect
does not justify the amount of effort needed to do the cal-
culation.

The error propagation from I4.(E) to S;(E) uses stan-
dard statistical techniques [27] which involve taking
derivatives of Eq. (10) with respect to I,4,(E). Only the
results of the error propagation are given here. To sim-
plify the equations, the electric-field dependence is not
shown explicitly. Errors in P, S,(0), and the correction
to proton current for axial electric fields are negligible
compared to the statistical error in the intensity measure-
ment.

) (13)

av

For axial electric fields we know Iy, Iy, 07 , and
o°r
0%90‘, . The covariance matrix containing the experimen-
r
tal variances and covariances of S, and S is

2 2
o
SO O-SOSI
Coxiat= | 2 2 |- (14)
05,5, U5,

The variances are

o}, =40}, [1+PS,(0)P+0}, [1-PS| (0]} ,

(15)

1
afql=ﬁ{a§m[1+PSI(0)]2+0§W’[l—PSl(O)]Z} ,

and the covariance term is
1
agosl=Egaﬁm[1+Psl(0)]2—a§90,,[1—PS1<0)]2} i

(16)

For transverse electric fields we know Is,, I35,
U%W , and Uf,mn . The covariance matrix containing the
r r

experimental variances and covariances of S and S, is

2 2
g g
So SoS,

Ctransverse = 2 2 . ( 1 7)
05y, 95,

The variances are

p— 2 2
o o +o
So 4{ Iyse, Il]5°r} ’

2 _ 1 2 2
o5 = o o
Sy 4p? { Iyse, Il35°r} ’

and the covariance term is

1
0§052:E{0%45°r—0%l35°r} ) (19)

III. DATA ANALYSIS

A. Fitting functions

The theoretical analysis was developed in a previous
experiment [6] to determine the H(n =3) density matrix.
A brief outline is given here with emphasis on the
differences for H(n =2).

We observe an ensemble of H(n =2) atoms which are
produced in collisions having various scattering angles.
A convenient formalism [10] describing such an ensemble
is the density matrix o,, which is shown in Fig. 4. Vari-
ous symmetries in the experiment [6] limit the number of
nonzero independent density-matrix elements to five real
parameters: Sg, Po, P+1> Relsgpg), and Im(sypy), where
the o designation has been dropped to simplify notation.
Note that p.,=p,;=p_;, and Re(sypy) and Im(syp,)
are taken from the upper triangle of the density matrix.
The diagonal density-matrix elements represent cross sec-
tions for electron transfer into particular 2/m; states.
Nondiagonal elements represent coherences between
these states, implicitly averaged over scattering angles.
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FIG. 4. H(n=2) density matrix. A blank indicates a
density-matrix element which is identically zero due to symme-
try.

The density-matrix elements are determined from an
analysis of the experimentally determined Stokes parame-
ters, which are a linear combination of contributions
from individual density-matrix elements. These individu-
al contributions are referred to as fitting functions. For
each density-matrix element there is a fitting function for
each Stokes parameter for both electric-field directions.
The value of the fitting function for density-matrix ele-
ment o, at electric-field strength E for Stokes parame-
ter S; is f i&‘,’g' Y(E), where the superscript indicates axial or
transverse electric-field direction. We also calculate
fitting functions for H(n =3) atoms which cascade
through n =2 to n =1. The H(n =3) density-matrix ele-
ment o35 produces cascade fitting functions g,-(j‘,‘g’)(E )
with the same notation as before. Cascade from H(n >3)
is less significant and is therefore neglected.

The fitting functions for a particular density-matrix
element are calculated by assuming that element to be the
only nonzero element. Doing so produces five basis den-
sity matrices which describe the production of H(n =2)
atoms. The fitting-function calculation allows for pro-
duction of H(n =2) atoms at all points inside the gas cell.
These atoms are time evolved in the presence of an exter-
nal electric field and their decay to H(n =1) via electric
dipole radiation is calculated at all points within the
viewing region from which the Stokes parameters are
determined. These calculations are performed on the
basis of hyperfine angular momentum states where the
Hamiltonian is phenomenological and the radiative decay
rates are included as imaginary diagonal terms. Stark in-
teraction terms due to the electric field are included as
off-diagonal elements of the Hamiltonian. All of the val-
id equations for delay of H(rn =3—n =2) have been
given previously [6]. These same equations are used with
the substitution of H(n =2—n =1). The analysis ac-
counts for inhomogeneities in target gas density, electric-
field strength, and detection efficiency, as well as the vari-
ation of angles of emission from different points inside
the viewing region. The cascade fitting functions are cal-
culated analogously, starting with 14 H(n =3) basis den-
sity matrices and calculating their decay through n =2 to
n =1. The analysis assumes that the applied electric field
has no effect on the collision process—a valid assump-
tion considering the relative size of the applied electric
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field and the electric field produced within the collision
by the proton and He ion.

B. Fitting procedure

1. General

The purpose of the fitting procedure is to fit statistical-
ly the experimentally determined Stokes parameters to
the fitting functions, extracting the five unknown
density-matrix elements as the coefficients of the fit.
Standard statistical methods are used in the fit [27], in-
cluding the covariance matrix for the measured Stokes
parameters. These methods were used in a previous ex-
periment [6].

The five n =2 fitting functions f{"(E) are put into the
form of a matrix F(E). For each electric-field strength,
the best estimate for the Stokes vector from the fit is re-
lated to the density-matrix elements by

Sﬁt=Fo,col , (20)

where 0 contains the density-matrix elements in a

column vector. The fitting procedure determines o
from the measured Stokes vector S™* and its associated
covariance matrix C by minimizing the difference be-
tween S and $™*, The quantity to be minimized in the
fit is

XZ = E ( s;neas _ S?t )Wij ( S;neas — S?t ) , 21)

ij
where W is the inverse of the covariance matrix. This
problem has an exact solution and y? is a minimum when

o°'=(F"WF) " 'FTws™e (22)
and

C ca=(FTWF)™!. (23)

C,co is the covariance matrix for the density-matrix ele-

ments and is used to propagate errors in linear combina-
tions of density-matrix elements.

It is possible to allow each n =3 cascade fitting func-
tion to vary freely, introducing an additional 14 un-
knowns to be determined from the fit. This leads to large
uncertainties in the n =3 density-matrix elements, since
the cascade contributions are so small. Instead, the en-
tire n =3 density matrix is represented by one fitting
function as follows. Since the n =3 density matrix is
known from previous research, we can construct the fol-
lowing n =3 cascade fitting function at each electric-field
strength:

glo=Sgleloy. , (24)
Lj

where the n =3 density matrix elements o3 are normal-
ized to the T 35450 element. The fitting function g/®?

represents the contribution to the Lyman-a signal from
all H(n =3) atoms which cascade through n =2 to n =1.
This fitting function can be used with the five n =2 fitting
functions in a six-parameter fit or may be combined with
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the 2s fitting function f, ,-(;"Z'S’(’)SO as follows: To combine the
contribution from the n =3 manifold with the 2s fitting
function, we need to know the ratio o;, /0,, because the

n =3 fitting function is normalized to the o 35950 element.

The ratio o5, /0,, is determined separately (see below).
We construct a new 2s fitting function,

o
fle0 =flan fgla0—= (25)
2s
This new 2s fitting function replaces the old one in the fit,
incorporating the correction for cascade from n =3, so
we have a five-parameter fit to determine the n =2
density-matrix elements.

In the axial fit we use the experimental data from axial
electric fields—namely, Sy(E) and S,(E)—with axial
fitting functions. In the transverse fit we use the experi-
mental data from transverse electric fields—namely,
So(E), S,(E), and S,(0)—with transverse fitting func-
tions. Here, S(0) supplements the other transverse-field
measurements to give a better determination of the 2p
density-matrix elements. While S,(0) is not actually mea-
sured, it is used in the fit and its assigned standard devia-
tion is the same as the measured standard deviation in
So(0). All of the above data and their associated fitting
functions are used in the combined fit. Figure 3 shows the
Stokes parameters with the fitted line from the combined
fit to 50-keV data.

2. Determination of S ;(0)

The combined fit is used to determine S,(0). An initial
value is assigned to S;(0) in Eq. (10) to determine the
Stokes parameters from the relative experimental intensi-
ty measurements. The Stokes parameters determined
with axial and transverse electric fields are used with
their respective fitting functions in a combined fit and y?
is noted. Then S,(0) is varied in steps of 0.001, at each
value recalculating the Stokes parameters and repeating
the fit, each time noting the value of y*. This process
continues until the value of S,(0) is found which pro-
duces a minimum in y2. This is the experimentally deter-
mined value for §,(0). This value is then used in the
separate axial and transverse fits as well as in the com-
bined fit to determine the density-matrix elements. Table
I lists the values of S;(0) versus proton energy.

Figure 5 shows a graph of x? versus S,(0) for 50-keV
combined data. The standard deviation in S,(0) is deter-
mined from the graph [27] by finding the value of S,(0)
where (unreduced) x?>=x2;,+1. Using this procedure,
we find

§,(0)=0.1844+0.0067

for 50 keV proton energy. The standard deviation in
§,(0) is expected to be nearly the same for all proton en-
ergies.

3. Statistical F tests

We perform statistical F tests [27] to determine the
significance of each of the fitting functions in the fit. An
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FIG. 5. From 50-keV combined fit, y? versus S;(0). The dot-
ted lines indicate positions of y2;, and of y2;,+1.

F test is a comparison of values of y? from two different
fits, one normal and one excluding a single fitting func-
tion. The statistical F, is defined as

2

F=2X

Xy

where Ay? is the change in the unreduced y? between the
two fits and y?2 is the reduced y? for the normal fit. If the
considered fitting function is important in the fit, then x>
will increase dramatically when it is excluded, producing
a large F value. A value of F <2 indicates that the in-
clusion of the considered fitting function in the fit is sta-
tistically insignificant. In Table II we show F values from
five- and six-parameter fits using combined data from 50
keV proton energy. While the F value for the Im(syp,)
fitting function permits us to exclude it from the fit, its
physical significance requires us to include it, at least in
certain cases. When the Im(syp,) fitting function is in-
cluded in axial data fits, its standard deviation is never
less than 1.2, whereas its absolute value, from combined
fitting, never exceeds 0.7. In transverse and combined

, (26)

TABLE 1. Values of S,(0) for all proton energies.

Proton energy (keV) S,(0)
20 0.090
25 0.174
30 0.188
35 0.196
40 0.202
50 0.184+0.007
50 0.193
60 0.190
80 0.150
100 0.157
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TABLE II. Results from F tests using five- and six-parameter
fits.

Fitting function excluded x: F
None (five parameters) 1.88
So 1343 46 000
Re(sopo) 11.5 327
Im(Sopo) 1.80 <0
Do 32.7 1049
P+1 7.6 195
None (six parameters) 1.83
Cascade 2.05 8.5

fitting, however, including the Im(s,p,) fitting functions
produces significant results, with the standard deviation
typically being smaller than the absolute value of the pa-
rameter. Therefore, we include the Im(syp,) fitting func-
tion in transverse and combined fits but exclude it from
axial fits. While the F value for the cascade fitting func-
tion is statistically significant, six-parameter fits including
it indicate an absolute value comparable to its standard
deviation. Since it is possible to determine o, /o, from
the experiment, it is more reasonable to add the cascade
fitting function (scaled by o3, /) to the s, fitting func-
tion and then to perform five-parameter fits.

4. Evaluation of errors

The statistical fits provide error estimates for the
density-matrix elements. The source of these errors is the
counting statistics of the initial intensity measurements.
Because there are sources of experimental error other
than counting statistics, the standard deviations of the
Stokes parameters are underestimated, causing x? to be
greater than unity in the fits. Table III shows the values
for X2 from combined, axial, and transverse fits. To pro-
vide a better estimate of the experimental error, the co-
variance matrix for the density-matrix elements is multi-
plied by x2. Note that outlying points (more than ten
standard deviations from the fitted line) are automatically
discarded. This amounts to less than 1% of the experi-
mental data.

A test of the validity of multiplying the covariance ma-
trix of the density-matrix elements by y* is possible be-
cause of the symmetry of the Stokes parameters. For

TABLE III. Values of x? from combined, axial, and trans-
verse fitting.

Energy (kev) Xombined Xaxial Xiransverse
20 2.54 1.21 4.01
25 1.86 1.89 1.68
30 1.76 1.55 1.92
35 1.78 1.70 1.64
40 1.99 1.37 2.20
50 1.88 1.41 1.87
50 2.07 1.32 2.80
60 3.15 1.45 4.09
80 2.98 1.47 3.88
100 3.14 1.34 3.39

transverse electric fields we know that S, should be sym-
metric with respect to zero-electric-field strength. We
can compare the difference between S, with positive and
negative electric-field strengths to the standard deviation
for S, calculating a quantity analogous to 2. Doing so
yields a value of 2.2 for the reduced sum of the square of
the difference divided by the standard deviation. This
quantity is to be compared with the average y>=2.7 for
transverse fits. The nearness of these two numbers indi-
cates that it is valid to multiply the covariance matrix of
the density-matrix elements by y>.

To evaluate critically the standard deviations of the
density-matrix elements, a variety of fits are performed
using fitting functions with different values for the follow-
ing experimental parameters: width of the viewing re-
gion, distance from the entrance plate to the center of the
viewing region, and variation of the optical detection
efficiency within the viewing region. The width of the
viewing region is changed by =1 mm. The distance from
the entrance plate to the viewing region is changed by
+0.5 mm. The optical detection efficiency is varied
linearly by +25% within the viewing region. For each of
these cases the combined 50-keV data are fit using the al-
tered fitting function, and the change in the density-
matrix elements from normal fitting is noted. The largest
such change for each density-matrix element is compared
with its error estimate from the previous paragraph.
Changing the width of the viewing region has the least
effect on the fit, while changing the optical detection
efficiency within the viewing region has the greatest
effect. The largest change in the density-matrix elements
relative to their standard deviations is 2.9 for Re(syp,),
0.6 for Im(sgy,pq), 2.2 for p,y, and 2.5 for p,,. It is not
possible to gauge the effect on s, since the density matrix
is always normalized to s,; however, its behavior should
be similar to the other even-parity elements. To provide
a more accurate estimate of the standard deviations of
the density-matrix elements, we multiply the standard de-
viations for the sy, Re(sgpy), pg and po,; by 2.5. The
Im(syp,) standard deviation is not adjusted.

As an additional test, the following parameters are
changed by one standard deviation to judge the effect on
the fit: the polarization P of the reflection polarizer, the
variation of proton current with axial electric field, and
the ratio o, /0, used to scale the cascade fitting func-
tion. None of these changes has a significant effect on the
density-matrix elements. Changing S,(0) by one stan-
dard deviation changes py and p; by one standard devi-
ation.

5. Determination of 0 3, /0 5, and o

During the time it takes to acquire data for all of the
proton energies, there is a drift in the detection efficiency
of the optical system. This means that our measurements
should not be compared between different proton ener-
gies on an absolute scale. For this reason the determined
destiny matrices from each proton energy are normalized
to the 2s element. Since all of the determined n =2 den-
sity matrices are normalized to the 2s element, we have
no information about the variation of the electron-
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transfer cross section o, with energy. The experimental
technique to determine o, as a function of proton energy
was developed previously to determine the energy depen-
dence of o, [28]. Using measurements of S(+400
V/cm) as a function of proton energy for transverse elec-
tric fields with the transverse fitting functions and with
the density matrices determined from combined fitting,
we determine o, as a function of proton energy.

The scale for the cross sections is arbitrary since we do
not perform absolute intensity measurements. To bring
our o, cross-section measurements onto an absolute
scale, we normalize them to an absolute measurement.
For this purpose we use our previously determined o
cross sections which were brought onto an absolute scale
by normalization to an absolute measurement of o ;; at 60
keV [29]. We form the ratio o3, /0, where o, is on an
arbitrary scale and require that the ratio should approach
a limit of 2°/33=0.296 as the energy increases. The n 3
dependence of cross sections is a well-known result from
the Born-Oppenheimer approximation at high energies
[30]. The ratio is fit to an empirical model of the form
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04,/0,,=A[0.296—B/(T°—D)],

where T is the kinetic energy of the proton in the col-
lision. The value of A from the fit is used to normalize
properly the o,, cross section to bring it onto an absolute
scale. This also provides a determination of o5, /o, for
lower energies where the cross-section ratio deviates from
the n ~3 scaling law. The energy-dependent o, can also
be used to normalize properly the energy-dependent den-
sity matrices, which are all relative to o ;.

IV. RESULTS
A. Tabular results

The density-matrix elements from the fits are shown in
Table IV. For each element the values and standard de-
viations are shown for the combined data fit, the axial
data fit, and the transverse data fit. The standard devia-
tions have been adjusted as discussed above. The axial
and transverse determinations agree, all diagonal ele-
ments are positive, and the Schwartz inequality [31] for
the sop, element is obeyed. This indicates that the results

TABLE 1V. Density-matrix elements from combined (c), axial (a), and transverse (¢) fitting.

Energy (keV) Fitting So Re(sgpg) Im(sqpg) Po P+1

20 c 1.000£0.063 —0.03£0.28 —0.68+0.36 0.954+0.039 0.567+0.031
1.000£0.067 —0.03+0.21 0.975+0.029 0.584+0.025

t 1.00+0.11 0.3+1.4 —1.03+0.75 0.93+0.16 0.56+0.11
25 c 1.000£0.032 0.16£0.13 —0.54+0.19 0.606+0.020 0.219%0.015
1.000£0.053 0.19+0.15 0.630+0.022 0.236%+0.018
t 1.000+0.042 0.11£0.054 —0.44+0.29 0.593+0.062 0.204+0.041
30 c 1.000+0.020 0.243+0.075 —0.43+0.12 0.384+0.011 0.131+0.009
1.000£0.030 0.258+0.076 0.392+0.012 0.132+0.010
t 1.000+0.029 0.38+0.37 —0.56+0.20 0.388+0.038 0.124+0.025
35 c 1.000+0.016 0.208+0.057 —0.162+0.097 0.280+0.008 0.091+0.006
1.000£0.025 0.210£0.059 0.289+0.009 0.088+0.007
t 1.000+0.020 0.30+0.26 —0.25+0.15 0.286+0.023 0.086+0.015
40 c 1.000£0.015 0.275+0.051 —0.148+0.096 0.2241+0.008 0.063+0.006
1.000£0.020 0.288+0.046 0.230%+0.007 0.067%0.006
t 1.000+0.021 0.24+0.26 —0.11+0.15 0.216+0.022 0.062+0.015
50 c 1.000£0.011 0.272+0.037 —0.156+0.071 0.158+0.006 0.054+0.004
1.000+0.017 0.284+0.035 0.164+0.006 0.057+0.004
t 1.000+0.015 0.261+0.17 —0.141+0.11 0.158+0.014 0.050+0.009
50 c 1.000£0.013 0.274+0.043 —0.072+0.079 0.161+0.007 0.052+0.005
1.000+0.018 0.281+0.037 0.167+0.006 0.052+0.004
t 1.000+0.019 0.22+0.22 0.00+0.14 0.163+0.018 0.048+0.012
60 c 1.000+0.014 0.278+0.042 —0.105+0.087 0.144+0.006 0.041+0.005
1.000£0.016 0.290+0.031 0.147£0.005 0.044+0.004
t 1.000£0.021 0.2740.23 —0.10+0.15 0.135+0.018 0.042+0.012
80 c 1.000£0.014 0.279+0.039 0.040+0.082 0.107£0.006 0.045+0.004
1.0001+0.017 0.286+0.029 0.109£0.005 0.047£0.004
t 1.000+0.020 0.21+0.20 0.12+0.13 0.105+0.016 0.042+0.011
100 c 1.000£0.015 0.269+0.042 0.14210.082 0.108+0.007 0.040+0.005
1.000+0.018 0.272+0.029 0.108+0.005 0.044+0.004
t 1.000£0.020 0.20+0.18 0.23£0.12 0.103£0.015 0.040+0.010
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TABLE V. Absolute cross section o, and the ratio o, /0.

Energy (keV) 0, (107 cm?) 03, /02

20 2.66+0.14
25 4.631+0.25 0.148+0.009
30 6.74%0.35 0.180%0.011
35 8.141+0.43 0.2031+0.012
40 8.85+0.48 0.2211+0.013
50 8.481+0.46 0.2521+0.016
50 8.50%0.46 0.252+0.016
60 7.62+0.43 0.262+0.017
80 5.00x0.26 0.283+0.019

100 3.1940.17 0.285%+0.019

are self-consistent.

General trends are that the even-parity elements are
best determined from axial data. Axial data also pro-
duces better results for Re(sop,) but transverse data are
needed to determine Im(yp,). The diagonal elements
obey s,>po>p+; at all proton energies, showing a ten-
dency of electron capture toward states of low angular
momentum.

The absolute cross section o, and the ratio o3, /0
are shown in Table V. The relative density-matrix ele-
ments in Table IV were multiplied by o, to find their
energy-dependent behavior. The error in the absolute
value of these cross sections is limited by the 20% error
in the original absolute measurement [29].

B. Graphical results

The density matrix may be interpreted [1,3], as defining
a charge-density distribution D(r) and a current density
distribution [3,32] j(r) for the electron in the H(n =2)
atom. These distributions provide a graphical view of the
H(n =2) atom at the time of its formation. Figures 6
and 7 display D (r) and j(r) for different proton energies.
Figure 6 shows a clear asymmetry in the electronic
charge-density distribution, indicating a nonzero electric
dipole moment. This is due to the influence of the prod-
uct He™ ion during the collision, which pulls the electron
back between the projectile and target nuclei. Figure 7
indicates a change in direction of current flow in the
atom around 70 keV, with the largest current flow at 25
keV. These observations are confirmed by calculating the
expectation values of various operators of physical
significance.

The density-matrix elements, diagonal and nondiago-
nal, respectively, describe populations of and coherences
between angular momentum eigenstates of the H(n =2)
atom. While the density-matrix elements provide a com-
plete description of the H(n =2) atom, they have little
physically intuitive meaning. Instead, density-matrix ele-
ments are often combined in physically meaningful com-
binations which offer some insight into the collision pro-
cess. Various parameterizations have been suggested
[33-35].

We compare our results to the results of other experi-
mental research. There are several measurements of o,
and 0,,, to be discussed below. Measurements of o,,

2623

and off-diagonal density-matrix elements are fewer and
more recent, because they are more difficult to determine.
Hippler et al. [26] and Teubner et al. [26] have measured
the linear polarization of Lyman-a radiation over a wide
range of proton energies between 1 and 300 keV. This
measurement is related to a combination of 2p, and 2p
cross sections. In addition, using our method, Hippler
et al. [27,38] have determined the complete H(n =2)
density matrix for proton energies between 5 and 25 keV.
The method of DeSerio et al. [15] detects Lyman-a
quantum beats in the presence of an external electric
field. By assuming values for o, and T, the values of

Re(sopy) and Im(sgp,) are determined for proton ener-
gies between 135 and 235 keV.

We also make comparison with the theoretical calcula-
tions of Slim et al. [39], Shingal and Lin [40], Jain, Lin,
and Fritsch [41], and Dubé [42]. Slim et al. use the semi-
classical impact parameter method with a basis set of
traveling atomic orbitals centered on the target and on
the projectile. Their calculations are able to treat the
helium target as a two-electron atom, whereas all of the
other calculations assume only one electron is active in
the collision. Shingal and Lin and Jian, Lin, and Fritsch
both use the atomic-orbital plus method. Jain, Lin, and
Fritsch use a fairly small basis set supplemented by pseu-
dostates, while Shingal and Lin use a much larger basis
set. Dubé uses the continuum distorted wave—post col-
lision interaction (CDW-PCI) theory, a high-energy ap-
proximation which produces some relevant results for the
considered energy range.

Using the density-matrix elements from combined
fitting, we calculate various quantities to aid our under-
standing of the collision process. The electric dipole mo-
ment of the H(n =2) atoms is given by

6 Re(sypy)
(d)z=———0ﬂ-

oy @7)

where Tr(o,) is the trace of the H(n =2) density matrix.
From Fig. 8 we see that positive values for the electric di-
pole moment agree with our interpretation of the asym-
metry in the charge-density distribution. Comparison
with other experimental research is very good, but
theoretical calculations provide only qualitative estimates
of the energy dependence of the electric dipole moment.
In particular, the CDW-PCI approximation of Dubé
greatly underestimates the magnitude of {(d),.

A first-order moment of the current distribution which
is proportional to the current flow in the z direction far
from the z axis is given by

—21Im(sypg)

= . 8
(LXA), Tr(o,) (28)

The vector LX A is proportional to the integral of
rX(rXj) over the entire atom. From Fig. 9 we see that
our observations about the magnitude and change in
direction of the current flow are confirmed. The compar-
ison with other experiments is good for higher energies,
but there is no agreement at lower energies. The align-
ment A,, of the p states (see Fig. 10) is proportional to
the electric quadrupole moment of the atom [for
H(n =2)] and is given by
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_ P+17Po

(29)
Pot2p4

20
Our measurements compare favorably with the measure-
ments of Hippler et al. [26] and Teubner et al. [36] but
there is no consensus among theoretical calculations. A
measure of how nearly the Schwartz inequality [8] is ex-
ceeded is given by the coherence parameter R‘oPo’

log , |
=% (30)

SoPo
\/U‘osoai’opo

Values for RSoPo near unity in Fig. 11 indicate that the
phase difference between the s, and p, states remains

(a)

nearly constant in the implicit average over scattering an-
gles. The agreement with lower-energy measurements is
good, but among the theoretical calculations only those
of Shingal and Lin show the correct energy dependence.
The average coherences [8] Tr(p?) of the entire density
matrix is equal to Tr(o3) when Tro,=1 and is a measure
of how nearly the density matrix approximates a pure
state. In general, the average coherence for an unnormal-
ized density matrix is

Tr(p?)=— . 31)
g

The range of values for Tr(p?) are from 1 for a complete-

ly incoherent state to unity for a completely coherent

(b)

FIG. 6. Electronic charge-density distribution D(r) for the H(n =2) atoms. In this display the atoms are moving toward the
right. The height indicates the probability to find the electron at that position in the xz plane. The scale is between 110 atomic units
in each direction. (a) 20, (b) 40, and (c) 100 keV.
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state. The high values for Tr(p?) in Fig. 12 at higher pro-
ton energies indicate the dominance of the 2s state at
those energies. For lower proton energies lower values for
the average coherence near its lower limit indicate that,
in the average over impact parameter, the state of the

(a) 20 keV
0
0

(b) 40 keV

o

(c) 100 keV

o+

FIG. 7. Electronic current-density distribution j(r) for the
H(n =2) atoms. In this display the atoms are moving toward
the right. The horizontal axis is the z axis and the vertical indi-
cates the distance from the z axis. Each graph shows the region
between *5 atomic units. (a) 20, (b) 40, and (c) 100 keV.
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FIG. 8. Electric dipole moment (d), of the H(n =2) atoms.
The symbols are as follows: @, present results; ®, Hippler et al.
[37,38]; A, DeSerio et al. [15]; - . - - Jain, Lin, and Fritsch
[41]; — - -, Dubé [42]; — — —, Slim et al. [39]; and
Shingal and Lin [40].

’

H(n =2) atoms varies greatly. All of the theoretical cal-
culations predict the same energy dependence, but there
is no quantitative agreement between theory and experi-
ment.

For completeness we also show in Fig. 13 the ratio
095/0,, in comparison with measurements of Hippler
et al. [26] and the various theories. This graph shows
more clearly the dominance of electron transfer to states
of lower angular momentum at higher proton energies.

08 1

(L), ¢ (a.u)

proton energy (keV)

FIG. 9. First-order moment {LX A), of j(r). The symbols
are the same as those in Fig. 8.
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FIG. 10. Alignment A,, of the p states of H(n =2). The
symbols are the same as those in Fig. 8 with the addition of O,
Teubner et al. [36].

C. Absolute cross sections

There are numerous measurements of the cross sec-
tions o, and o,, [43]. In the older experimental
methods, the proton current, He gas density, and abso-
lute light intensity emitted from excited H(n =2) atoms
are measured to compute the cross sections. Quench
electric fields are used to observe H(2s) atoms. Most of
the studies ignore polarization effects and make no
correction for cascade from higher-lying states [44-51].

08

06

RsOpO

1 I

1
20 40 60
proton energy (keV)

ot

80 100

FIG. 11.

same as in Fig. 8.

Coherence parameter R‘ol’o' The symbols are the

proton energy (keV)

FIG. 12. Average coherence Tr(p?) of H(n =2). The sym-
bols are the same as those in Fig. 8.

Some of those using electric fields to observe radiation
from H(2s) atoms neglect the effect of the electric fields
on H(2p) atoms [44,46,49]. For these reasons these stud-
ies are not used for comparison. The only older experi-
ment where some correction is made for all of the above
effects is that of Hughes et al. [52]. Figure 14 shows the
absolute o,, cross sections, and Fig. 15 shows the abso-
lute and 0,, cross sections as a function of proton energy.
The agreement with Hippler et al. [38] is good, as is the
agreement with Hughes et al. above 50 keV. Below that

st/dzp

L L L L s s
0 20 40 60 80 100
proton energy (keV)

FIG. 13. Cross-section ratio o,,/0,,. The symbols are the
same as those in Fig. 8.
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0 (10718 cm2)

L )

102

proton energy (keV)

FIG. 14. Absolute cross sections o,,. The symbols are as fol-
lows: @, 2s (present results); B, 2s (Hippler et al. [38]); A, 2s
(Hughes et al. [52]); O, 2p (present results); O, 2p (Hippler et al.
[38]); A, 2p (Hughes et al. [S2]). One standard deviation for the
present results is nearly the size of the symbols.

energy the disagreement is undoubtedly due to the cas-
cade correction of Hughes et al., who assumed n ~3 scal-
ing [30] for low proton energies.

The scaling between o;; and o, is shown in Fig. 16
where it can be seen that n ~3 scaling is only valid for en-
ergies beyond 100 keV. The best theoretical predictions
of Figs. 14-16 are those of Shingal and Lin [40]. While
most of the other theories predict the correct qualitative
behavior, only Shingal and Lin predict the quantitative
variation of these quantities.

10’
proton energy (keV)

FIG. 15. Absolute cross sections o,,. The symbols are the
same as those in Fig. 14.

O3s/02g

01t ]

20 40 60 80 100
proton energy (keV)

FIG. 16. Ratio of o3 to o,,. The symbols are the same as
those in Fig. 14.

D. Comparison of H(n =2) and H(n =3)

Using previous density-matrix results [8] for H(n =3),
we can now investigate the n dependence of various col-
lision parameters. Since the angular momentum vector L
and the Runge-Lenz vector [53] A are constants of the
motion for hydrogenic systems [35], it is appropriate to
compare expectation values of combinations of these
operators between different n manifolds [54,55].

The ratio 03,/0,,, shown in Fig. 17, approaches a
100-keV limit of about 0.23, contradicting a model [56]

051

Gap/ozp

01} ]

0.0 4

20 40 60 80 100
proton energy (keV)

FIG. 17. Cross-section ratio 03,/0,,. The symbols are the
same as in Fig. 8.
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alignment Ay

proton energy (keV)

FIG. 18. Alignment A,,. The symbols are as follows: @,
n =2 (present results); B, n =2 (Hippler et al. [37,38]); A, n =2
(Teubner et al. [36]); O, n =3 (Ashburn et al. [8]); O, n =3
(Brower and Pipkin [29]); ——, n =2, (Dubé [42)); - - - -,
n =2 (Shingal and Lin [40]); — — —, n =2 (Jain, Lin, and
Fritsch [41]); — — —, n =2 (Slim et al. [39]); ++++,n =3
(Dubé [42]); X X X X, n =3 (Jain, Lin, and Fritsch [41]); «x %,
n =3, (Shingal and Lin [40]); VVVV, n =3 (Slim et al. [39)).

for scaling of o, which predicts 03, /0,,=0.35. Com-
parison with other experimental research [56-60] is
difficult since absolute cross sections have typical errors
of 20%, making cross-section ratios very uncertain.

The p-state alignment A4, is shown for » =2 and 3 in
Fig. 18. The difference between the n =2 and 3 measure-
ments is surprising since all theories predict the same

/ ~

12+ / S—_

A e —

A T~

] . o

w " u e J
or /'I n Tl

/ [ ]
08¢t */ ™

(A2

20 40 60 80 100
proton energy (keV)

FIG. 19. Dependence of { A), on n. The symbols are as fol-
lows: @, present n =2 results; B, n =3 (Ashburn er al. [8));
,n=2,and - . - ., n =3 (Shingal and Lin [40)); - - —,
n=2,and — — —, n =3 (Slim et al. [39]).

08} E

<LXA>z,s

20 40 60 80 100
proton energy (keV)

FIG. 20. Dependence of (LX A),, on n. The symbols are
the same as in Fig. 19.

value for the alignment regardless of n at sufficiently high
energy in the range investigated here.

The n dependence of { A), and (LX A), is shown
in Figs. 19 and 20. For n =2 and 3, { A), seems to be
converging at some energy above 100 keV. The energy
dependence of (LX A ), is similar for both n =2 and 3
for all energies. This unusual result may be useful in un-
derstanding the collision process.

While the available theories shown in Figs. 16-20 pre-
dict the energy dependence of the various quantities stud-
ied, they do not convey much physically intuitive infor-
mation about the collision process. We hope that our re-
sults will provide an incentive for some new theoretical
model based on the n scaling of simple collision parame-
ters.
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FIG. 2. Overview of the optical system. All dimensions are
given in cm.



(b)

FIG. 6. Electronic charge-density distribution D(r) for the H(n =2) atoms. In this display the atoms are moving toward the

right. The height indicates the probability to find the electron at that position in the xz plane. The scale is between +10 atomic units
in each direction. (a) 20, (b) 40, and (c) 100 keV.



