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IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC
MICROWAVE BACKGROUND FROM QUaD
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ABSTRACT

We present an improved analysis of the final data set from the QUaD experiment. Using an improved technique
to remove ground contamination, we double the effective sky area and hence increase the precision of our cosmic
microwave background (CMB) power spectrum measurements by ∼30% versus that previously reported. In addition,
we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from
5% to 3.5% in temperature. The robustness of our results is confirmed through extensive jackknife tests, and by way
of the agreement that we find between our two fully independent analysis pipelines. For the standard six-parameter
ΛCDM model, the addition of QUaD data marginally improves the constraints on a number of cosmological
parameters over those obtained from the WMAP experiment alone. The impact of QUaD data is significantly greater
for a model extended to include either a running in the scalar spectral index, or a possible tensor component, or both.
Adding both the QUaD data and the results from the Arcminute Cosmology Bolometer Array Receiver experiment,
the uncertainty in the spectral index running is reduced by ∼25% compared to WMAP alone, while the upper limit on
the tensor-to-scalar ratio is reduced from r < 0.48 to r < 0.33 (95% c.l.). This is the strongest limit on tensors to date
from the CMB alone. We also use our polarization measurements to place constraints on parity-violating interactions
to the surface of last scattering, constraining the energy scale of Lorentz violating interactions to < 1.5×10−43 GeV
(68% c.l.). Finally, we place a robust upper limit on the strength of the lensing B-mode signal. Assuming a single flat
band power between � = 200 and � = 2000, we constrain the amplitude of B-modes to be < 0.57 μK2 (95% c.l.).
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1. INTRODUCTION

Observations of the polarization of the cosmic microwave
background (CMB) represent one of the most powerful probes
available for investigating the physics of the early universe (see
e. g., Challinor & Peiris 2009 for a review). The CMB polariza-
tion field can be decomposed into two independent modes: even
parity E-modes are generated, at the time of last scattering, by

12 Current address: CENTRA, Departamento de Fı́sica, Edifı́cio Ciência,
Piso 4, Instituto Superior Técnico - IST, Universidade Técnica de Lisboa, Av.
Rovisco Pais 1, 1049-001 Lisboa, Portugal
13 Current address: NASA Goddard Space Flight Center, 8800 Greenbelt
Road, Greenbelt, MD 20771, USA
14 Current address: Department of Physics and Astronomy, University College
London, Gower Street, London WC1E 6BT, UK
15 Current address: Infrared Processing and Analysis Center, California
Institute of Technology, Pasadena, CA 91125, USA

both scalar and tensor (gravitational wave) metric perturbations.
In contrast, odd parity B-modes are generated at last scattering
only by gravitational waves, a generic prediction of inflation
models. On small scales, B-modes are also expected to arise
from gravitational lensing of the E-mode signal by intervening
large-scale structures. A detection of B-mode polarization (on
any scale) has yet to be made.

After the initial detection of the much stronger E-mode
polarization (Kovac et al. 2002), steady improvements have
been made in measuring the E-mode signal by a number of
experiments (Leitch et al. 2005; Barkats et al. 2005; Readhead
et al. 2004; Montroy et al. 2006; Sievers et al. 2007; Page et al.
2007; Wu et al. 2007; Ade et al. 2008; Bischoff et al. 2008;
Nolta et al. 2009). Recently, a major step forward in precision
CMB polarization measurements was achieved with the high-
significance detection of a characteristic series of acoustic peaks
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in the E-mode polarization power spectrum with our initial
analysis of the final QUaD data set (Pryke et al. 2009, hereafter
Paper II). For our analysis presented in Paper II, in order to
mitigate against a strong polarized ground contaminant, we
employed the technique of lead–trail differencing. Although
this technique is extremely successful, it does have one major
disadvantage—the effective sky area is halved (while the signal
to noise is kept the same) resulting in a corresponding increase
of ∼40% in the uncertainties on the final power spectrum
estimates. The major improvement which we implement in this
new analysis is a technique to remove the ground contamination
while preserving the full sky area. Our analysis thus yields
constraints on all six possible CMB power spectra which are
approximately 30% stronger than those presented in Paper II.

We have also refined our modeling of the QUaD beams.
For our previous analysis, we modeled the beams as elliptical
Gaussian functions. In addition to the main lobe, there is a small
sidelobe component—with our increased sensitivity, we now
find it necessary to explicitly model this sidelobe component.
Accounting for the sidelobes results in a small (∼10%) increase
in the amplitude of our power spectrum measurements on small
scales (multipoles, � � 700).

Note that in this paper, we present the results obtained
from two independent analysis pipelines. These are arbitrarily
denoted as Pipeline 1 and Pipeline 2 and are derived from the
two pipelines used to analyze the data from our first year of
observations (Ade et al. 2008). The analysis presented in Paper II
was performed using Pipeline 2.

The paper is organized as follows. In Section 2, we briefly
summarize the QUaD observations and low-level processing
which are unchanged for this analysis. In Section 3, we present
our new technique for mitigating against contaminating ground
pickup and describe the details of our map making proce-
dure. A description of our improved beam modeling is given
in Section 4, and our treatment of the uncertainties is given in
Appendix A. The absolute calibration of QUaD is briefly de-
scribed in Section 5 with an error analysis given in Appendix B.
The results from our two independent power spectrum analy-
ses are presented in Section 6. In Section 7, we combine the
QUaD results with data from the WMAP, Arcminute Cosmol-
ogy Bolometer Array Receiver (ACBAR), and Sloan Digital
Sky Survey (SDSS) experiments to place constraints on the pa-
rameters of a number of cosmological models. Our conclusions
are presented in Section 8.

2. OBSERVATIONS AND LOW-LEVEL PROCESSING

The QUaD experiment and its performance are described in
Hinderks et al. (2009), hereafter referred to as Paper I. The low-
level data processing is described in Paper II. The initial low-
level processing of the raw data has not changed for the analysis
presented in this paper, so here we give only a brief summary
and refer the reader to Paper II for a detailed description.

The QUaD experiment was a 2.6 m Cassegrain radio telescope
which observed from the South Pole for three seasons from
2005 to 2007. The QUaD receiver consisted of 31 pairs of
(orthogonal) polarization sensitive bolometers (PSBs), 12 at
100 GHz and 19 at 150 GHz. These PSB pairs were arranged
on the focal plane in two orientation angle groups separated by
45◦. The raw time-ordered data (TOD), which were sampled at
100 Hz, were first deconvolved to correct for the finite response
times of the PSBs and electronics used to detect the incoming
signal. The time constants used for each detector were measured
using an external Gunn oscillator source as described in Paper I.

After deconvolution, the detector data were low-pass-filtered to
< 5 Hz.16 The data were then deglitched to remove cosmic
rays and other events. A relative calibration was then applied to
each detector using the “elevation nod” technique described in
Papers I and II.

Once deglitched and calibrated, the data were downsampled
to 20 Hz. For the analysis presented in this paper, we have
retained the exact same data cuts for bad weather, moon
contamination, and badly behaved detectors as were used in
Paper II. Out of a total of 289 days of observations during 2006
and 2007, after applying these data cuts, 143 remained for the
science analysis. Although fully code independent, the low-level
parts of our two analysis pipelines are algorithmically similar.

3. MAP-MAKING USING GROUND TEMPLATE
REMOVAL

Our improved technique for removing the ground signal relies
on redundancies in the scan strategy, so before describing our
templating procedure we turn first to the QUaD scan strategy
and examining the redundancies present within it.

3.1. QUaD Observing Strategy

QUaD observed a ∼100 square degree area of sky, centered
on R.A. 5.h5, decl. −50◦. The field is fully contained within
the shallow field observed by the 2003 flight of the Boomerang
experiment (hereafter referred to as B03, Masi et al. 2006).
The QUaD field also partially overlaps with B03’s deep field.
The observations employed a lead–trail scheme, whereby each
hour of observations was split equally between two adjoining
subfields, separated in R.A. by 0.h5—the lead field, centered on
R.A. 5.h25, and the trail field, centered on R.A. 5.h75.

The scanning strategy consisted of constant-elevation scans
back and forth over a 7.◦5 throw in azimuth, applied as a
modulation on top of sidereal tracking of the field center. Each
hour of observation was equally split between the lead and trail
fields. These half-hour sessions were further divided into four
“scan-sets,” consisting of 10 “half-scans” each, and the telescope
was stepped in elevation by 0.◦02 between scan-sets. After a
half-hour scanning of the lead field, the telescope pointing
returned to its starting position in azimuth and elevation, and
repeated the same scan pattern with respect to the ground,
but now scanning the trail CMB field. The trail field’s scan
pattern was thus a replica (in azimuth/elevation coordinates)
of the lead field’s. After an hour the pointing moved on to a
fresh part of sky and the process repeated. This scan pattern
was designed to facilitate the lead–trail differencing analysis
presented in Paper II, whereby each pair of lead–trail partner
scans is differenced point by point. Any ground signal, which is
stable in time over the half hour which separates the lead and trail
observations, will be completely removed by this differencing
at the expense of a reduction in the effective sky area by a
factor of 2.17

16 QUaD’s CMB observations employed a relatively slow scan speed of
0.◦25 s−1. For our observing declination (∼ − 50◦), the sky signal for
multipoles, � < 2000, appears in the timestream at < 1 Hz. The low-pass
filtering therefore removes none of the sky signal (for � < 2000), but it does
remove high-frequency noise introduced by the deconvolution procedure.
17 For a Gaussian field, such as the CMB, neglecting correlations between the
signal in the lead and trail fields, the fluctuations in the differenced field will be
amplified by a factor of

√
2, and the power spectrum will increase by a factor

of 2. The noise is amplified in a similar manner, and so the signal-to-noise ratio
in the differenced field remains unchanged from that achieved in the
non-differenced field.
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In addition to the lead–trail scheme, a further redundancy is
present in the scan strategy due to the movement of the CMB
field across the sky during each scan-set. The time elapsed from
when a given sky pixel is first visited on the first half scan of a
set to when it is last visited on the tenth half-scan is ∼6 minutes.
During this time the sky rotates by 1.◦5. Using only data from
a single scan-set, there is therefore scope for separating signals
originating on the ground from those originating on the sky, on
scales smaller than 1.◦5, corresponding to � ∼ 250 in multipole
space. One can achieve further separation of ground from sky
by combining the data from lead and trail partner observations.
For this work, we have made use of both the lead–trail and sky
rotation redundancies to separate the ground and sky signals,
and to reconstruct the CMB fields over the full sky area.

3.2. Ground Template Removal

Field differencing is a suboptimal use of the redundancy in
the scan strategy to mitigate against ground pickup. One can
retain more of the sky information by constructing and removing
estimates of the ground signal. To facilitate the removal of the
ground signal, we can model the TOD as

di = Si(θ ) + g(α) + ni + oscan , (1)

where Si(θ ) is the sky signal,

Si(θ ) = 1
2 [I (θ ) + Q(θ ) cos(2φi) + U (θ ) sin(2φi)] . (2)

Here, I,Q, and U are the Stokes parameters in the direction
θ on the sky, and φi is the polarization sensitivity angle (a
combination of detector orientation on the focal plane and
boresight rotation) of each detector.

In Equation (1), g(α) represents the ground signal as a
function of azimuth, α. In what follows, we will be constructing
and removing estimates of g(α) for each QUaD detector and for
each pair of lead and trail scan-sets independently. Within these
subsets of the data, the elevation is constant, and so the ground
signal estimates (which we refer to as ground “templates”) are
constructed as a function of azimuth only. However, since we
allow the templates to differ between detectors and between
lead–trail scan-set pairs, in practice, the ground signal, which we
remove from the data, does depend on elevation also. Moreover,
since templates are constructed for each detector individually,
our model also allows the ground signal to depend on frequency.

The resolution with which to construct the ground templates,
in general, needs to be determined through trial and error. In
practice, we find that the effect of changes in this parameter
on the resulting maps is imperceptible. This suggests that the
ground signal varies smoothly in azimuth and that a fairly
coarse resolution is sufficient to characterize it. For this analysis,
we have used a resolution of Δα = 0.◦1, midway between the
minimum and maximum resolutions we have investigated.

In Equation (1), we have split the noise component into a
random part (ni, which we model as a Gaussian random variable;
see Section 6.2) and an offset (oscan) which we model as a
constant for each half-scan. We have found that it is essential to
remove these offsets before constructing ground templates from
the data. Otherwise the resulting templates tend to be dominated
by the long-timescale part of the 1/f atmospheric noise (i.e., the
offsets) rather than the ground signal which we are attempting
to characterize.

Regardless of the technique employed to reconstruct maps
of the Stokes parameters (naive, maximum likelihood etc.), one

can recast the well-known map-making equation (e.g., Stompor
et al. 2002 and references therein),

AT N−1Am = AT N−1d , (3)

to reconstruct both the sky and the ground signals simply by
making the substitutions

m → m + g
A → (ACMB, AG) , (4)

where m is the reconstructed CMB map, g is the reconstructed
ground signal, and ACMB and AG are the “pointing matrices”
associated with the CMB and ground signals, respectively. For
a highly redundant scan strategy, Equation (3) should be soluble
exactly, and the CMB and ground signals should be completely
separable. However, for a scan strategy such as that used for
QUaD with limited revisiting of the same sky pixels at different
azimuths, this complete separation between sky and ground is
not possible. In this case, one can still separate the ground and
sky signals on smaller scales, but one loses all information on the
largest scales where the separation is degenerate. For QUaD, we
find that below � ∼ 200 our template removal procedure offers
essentially no improvement over field-differencing and that the
separation is near perfect by � ∼ 1000.

Attempting to simultaneously solve for the sky and ground
signals in the QUaD data by applying Equation (3), we find
that large-scale (ground signal) gradients are introduced to the
resulting CMB maps due to the degeneracy between the CMB
and the ground signal on the largest scales. One could certainly
modify the procedure (e.g., by marginalizing over the large-
scale CMB and ground-signal modes) to solve this problem.
For the analysis presented here, we adopt a simpler approach
and simply solve for the ground signal independently, subtract
this from the TOD, and then construct the CMB maps from
the ground-cleaned TOD. We account for the resulting filtering
of the CMB signal in our Monte Carlo analysis. Our analysis
assumes that the ground signal does not change between the
start of the lead scan set and the end of the corresponding trail
scan set (∼36 minutes). This is only a slight relaxation of the
assumption that was made for our previous analysis where we
assumed that the ground signal was constant over a 30 minute
timescale.

To apply the template removal, we proceed as follows. First,
we estimate and remove the atmospheric 1/f offsets, oscan, from
each half-scan. To estimate the offsets, we simply take the mean
of the data within each scan. Note however that we restrict the
azimuth range over which we calculate the offsets to the central
azimuth range where all the scans within a scan-set overlap. This
ensures that our estimated ground templates will be unbiased
over the full azimuth range.

After removing the offsets, templates of the ground signal
are constructed by simple binning of the timestream data in
azimuth. That is, for each ground template “pixel,” we construct

ĝ(α) = 1

Nhits

∑
i∈Δα

di , (5)

where the sum is over all data from the lead scan-set, and its
partner trail scan-set which falls in the azimuth range, Δα.

Although they will be unbiased estimates of the ground signal,
the templates constructed using Equation (5) will also contain
CMB signal and noise. The expectation value of the constructed
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Figure 1. Demonstration of the performance of the ground templating procedure described in the text. The figure shows maps of the Stokes U polarization over the
full QUaD sky area at 150 GHz, smoothed with a 5 arcmin Gaussian kernel. The map on the left is that obtained without removing ground templates and is heavily
contaminated by ground pickup. Note the similarity of the contamination between the lead and trail halves of the map. The map on the right is that obtained when we
include our templating procedure. Clearly the vast majority of the ground signal is successfully removed by this process. For the purposes of this illustration, in order
to highlight the success of the template removal, in both cases, only the mean of each scan was removed from the TOD before mapping. However, for our cosmological
analysis, we use maps which have had third-order polynomials removed from each scan (see Figure 2).

(A color version of this figure is available in the online journal.)

templates is

〈ĝ(α)〉 = g(α) +
1

Nhits

[∑
i∈Δα

Si(θ ) +
∑
i∈Δα

ni

]
, (6)

where Si(θ ), g(α), and ni are the quantities defined in Equa-
tion (1). In the limit of a highly redundant scan strategy and
uncorrelated noise, the terms in brackets will average to zero,
and the templates will contain only the ground signal.18 For a
realistic scan strategy and correlated noise, these terms will be
nonzero, and so removing the templates will have the effect of
filtering both large-scale CMB signal and long-timescale noise.
We correct for this filtering by including the template removal
procedure in our Monte Carlo simulations (Section 6.2).

Finally, to obtain estimates of the TOD which are free of
ground pickup, the templates are subtracted from the original
TOD:

dclean = d − AGĝ , (7)

where AG is the pointing matrix associated with the ground
signal, and ĝ is the estimated ground signal constructed using
Equation (5). This will result in TOD which is, in principle,
free of ground contamination and can thus be modeled as
in Equation (1) but now without the g(α) term. Once the
ground contamination has been removed, our map-making
proceeds as described in Paper II. Explicitly, we perform the
following operations. For each azimuth scan the best-fit third-
order polynomial is subtracted to remove the long-timescale
part of the atmospheric 1/f noise. For each PSB pair, the data
are then summed and differenced to yield temperature (si) and
polarization (di) TOD. Maps of the temperature (or Stokes I)
CMB field are then constructed from the summed data using a
simple weighted average

T = 1∑
i wi

∑
i

wisi , (8)

where the weights are given by wi = W (x)/vscan. Here, vscan is
the variance of the data across the parent half-scan—noisy data

18 For an experiment sensitive to absolute temperature, the first term in
brackets in Equation (6) would, in fact, average to the CMB monopole for a
highly redundant scan strategy. For an experiment sensitive to temperature
differences only (such as QUaD), this term would average to zero.

(e.g., due to bad weather) is thus downweighted. W (x), where x
denotes the fractional position within the scan, is an apodization
(the same for each scan) which we use to downweight the scan
ends. We apply this apodization to reduce the tiling effects
seen in our previous analysis (see Section 6.3 and Figure 15
in Paper II) whereby the interaction of the polynomial filtering
with different sky coverage for different detectors produced
visible step features in the final maps. The exact form used for
the apodization is not important.

We construct maps of the Stokes polarization parameters, Q
and U, as(

Q
U

)
=

( 〈cos2(2φi)〉 〈cos(2φi) sin(2φi)〉
〈cos(2φi) sin(2φi)〉 〈sin2(2φi)〉

)−1

×
(〈cos(2φi)di〉

〈sin(2φi)di〉
)

, (9)

where the angled brackets denote an average taken over all data
falling within each map pixel and the angle, φi is a combination
of the polarization sensitivity direction of each detector on the
focal plane and the “deck angle” (rotation about the telescope
boresight) of the observation. Note that to construct the averages
(e.g., 〈cos(2φi)di〉) on the right-hand side of Equation (9), we
also use inverse-variance weights as in Equation (8).

Note that the only difference between the approaches of our
two pipelines in applying the above operations is during the final
co-addition of the template-subtracted data into CMB maps:
Pipeline 1 uses HEALPix19 to pixelize the sky at a resolution
of ∼1.7 arcmin (Nside = 2048). Pipeline 2 works under the flat
sky approximation and pixelizes the sky into a two-dimensional
(2D) Cartesian grid with a spacing of 1.2 arcmin. Figure 1
shows an example of the performance of the template removal
procedure (for Pipeline 1) for the 150 GHz Stokes U polarization
map. Note that in order to highlight the success of the template
removal, for this demonstration, we have not applied the third-
order polynomial removal mentioned above to the TOD and
have only removed the mean from each scan.20

19 See http://healpix.jpl.nasa.gov/index.shtml and Górski et al. (2005).
20 In fact, the polynomial fitting procedure does remove the gross features of
the ground signal from the data although much remains—full field maps which
have not been subjected to template removal fail jackknife tests at high
significance regardless of whether we apply polynomial removal or not.

http://healpix.jpl.nasa.gov/index.shtml
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Figure 2. Maps of the T (top panels), Q (middle panels), and U (lower panels) Stokes parameters over the full QUaD sky area at 100 GHz (left) and 150 GHz (right).
For display purposes only, the maps have been smoothed with a 5 arcmin Gaussian kernel. Note the difference in the color stretch used to display the temperature and
polarization maps.

(A color version of this figure is available in the online journal.)

In Figure 2, we present the full set of maps (T, Q, and U at
100 and 150 GHz, again for Pipeline 1) over the full sky area as
estimated using the template removal procedure (now including
the third-order polynomial removal). For the purposes of visual
illustration only, we have smoothed each of the maps with a 5
arcmin Gaussian kernel in order to bring out the CMB structure.

We can quickly (and crudely) assess the relative amounts of
E- and B-mode power in the polarization maps by decomposing
the Q and U maps into E- and B-modes. We do this under the flat
sky approximation. To minimize the impact of the noisy edge
regions of the maps, and to reduce the effects of E/B mixing
due to the finite survey geometry, we apply an apodization to
our maps before Fourier transforming. (E/B mixing is fully
accounted for during our power spectrum estimation described
in Section 6.) The resulting E and B maps at 150 GHz are shown
in Figure 3. We clearly detect significantly more E-mode than B-
mode structure. The reconstructed B-mode map shows similar

levels of fluctuations to our polarization jackknife maps (see
Section 6.5) and is consistent with noise.

4. BEAM MEASUREMENTS AND MODELING

Our main set of observations for investigating the QUaD
beam shapes are a series of single day observations of the
QSO PKS0537−441. In Paper II, our beam model consisted
of elliptical Gaussian fits to these quasi-stellar object (QSO)
observations for each channel.

Given our increased sensitivity, we now include an additional
sidelobe component in our beam model. In order to measure the
sidelobes from the QSO data, we apply a sixth-order polynomial
filter to the TOD before mapping (with the QSO masked) and
co-add these data over all channels and over three days of
observations. The radially averaged beam profiles measured
from these maps reveal the presence of sidelobe structure at
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Figure 3. Apodized 150 GHz QUaD polarization maps decomposed into E-modes (left) and B-modes (right). Once again, the maps have been smoothed with a
5 arcmin Gaussian kernel. The data are clearly dominated by E-modes. The amplitude of fluctuations present in the B-mode map is consistent with noise. The slight
reduction in the amplitude of fluctuations toward the central R.A. of the field is due to the application of the apodization mask which downweights the “seam” between
the lead and trail halves of the map.

(A color version of this figure is available in the online journal.)

just below the −20 dB level, as predicted by the physical optics
(PO) simulations of QUaD presented in O’Sullivan et al. (2008).
Our two analysis pipelines model these observations in slightly
different ways though both are matched to the QSO data.

Pipeline 1 rescales the PO models. The beam profiles which
directly result from the PO simulations are not a perfect match
to the QSO observations. In particular, the predicted main lobe
widths are smaller than observed, while the predicted levels of
sidelobes are somewhat larger than observed. To match the PO
models to the QSO data, we parameterize the models using two
parameters: one which scales the main lobe width and one which
varies the amplitude of the sidelobes. We then use the observed
QSO radial profiles to fit for these parameters. The resulting
best-fit rescaled PO models are used to model the beam.

Pipeline 2 models the beams in a fully empirical manner and
is an extension of the model used in Paper II. Using the existing
elliptical Gaussian fits to the quasar data, a pure Gaussian
simulated beam, co-added across channels and observation
dates, is generated and subtracted from the measured QSO maps.
The residual after subtraction is the sidelobe component of the
beams. This residual is too noisy to be used directly, and so
it is radially averaged to produce an (assumed) azimuthally
symmetric sidelobe template. This sidelobe template is then
added to the original Gaussian elliptical models to produce a
fully empirical beam model.

Figure 4 shows the radially averaged profiles measured from
the QSO data along with the profiles as predicted using our
old elliptical Gaussian beam model and as predicted using our
current beam models. Our revised beam models are clearly
a superior description of the true beams and are in good
agreement—in terms of the resulting beam transfer functions,
the two beam models agree to within 4% at 100 GHz and to
within 2% at 150 GHz for � < 2000. A description of how we
account for the remaining uncertainties on our beams is given
in Appendix A.

5. ABSOLUTE CALIBRATION

We derive the absolute calibration of QUaD by cross cor-
relating our temperature maps with maps from B03 (Masi
et al. 2006). This analysis is done in spherical harmonic (a�m)
space following the calibration technique used by Boomerang
which, in turn, was calibrated against the WMAP 1st-year maps

Figure 4. QUaD beam profiles at 100 GHz (top panel) and 150 GHz (bottom
panel) as measured from the QSO PKS0537−441. The radial profiles as
predicted using our new beam models for both pipelines are overplotted as the
red and blue curves and show good agreement with the QSO data. Also shown
for comparison is the elliptical Gaussian beam model used for our previous
analysis in Paper II.

(A color version of this figure is available in the online journal.)

(Bennett et al. 2003).21 We apply a correction to the B03 maps
to account for the change in calibration (1.25% in tempera-
ture) between the 1- and 5-year WMAP analyses (Hinshaw et al.
2009). The B03 maps (which are essentially unfiltered) are first
passed through the QUaD simulation pipelines to ensure that
they are filtered in an identical manner to the QUaD maps. Tak-
ing the spherical harmonic transforms of the maps, the absolute
calibration factors for QUaD are then given by

S
quad
� = B

quad
�

〈
a b03−X

�m a∗ b03−Y
�m

〉
B b03

�

〈
a b03−X

�m a
∗ quad
�m

〉 , (10)

where the superscripts X and Y denote two noise-independent
145 GHz B03 maps, and B

quad
� and B b03

� are the beam transfer

21 We have also performed the calibration against the WMAP maps directly
and found consistent results. However, calibrating using the B03 maps
produces a more accurate result due to the larger overlap in angular scale of
B03 and QUaD.
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functions of the two experiments. This process produces an ab-
solute calibration factor (in μK/V) as a function of multipole, �.
We take our final absolute calibration factors to be the mean of
this value in the range 200 < � < 800, corresponding to the
overlapping scale range of the two experiments. The largest con-
tributors to our calibration error are the quoted B03 uncertainty
of 2% and a relative pointing uncertainty between QUaD and
B03. Our final calibration uncertainty is 3.4%. Further details
on how we estimate this uncertainty are given in Appendix B.

6. POWER SPECTRUM ANALYSIS

To estimate the CMB power spectra, as in Paper II, we
adopt a Monte Carlo (MC)-based technique whereby we rely
on accurate simulations of the experiment to correct for the
effects of noise, beams, timestream filtering, and the removal
of the ground templates. Before describing the MC simulations,
we first describe the differences between our two pipelines in
their approach to power spectrum estimation.

6.1. Power Spectrum Estimation

Both of our pipelines broadly follow the so-called pseudo-C�

technique (Hivon et al. 2002), extended to polarization (Brown
et al. 2005). Note that, for both pipelines, in order to minimize
edge effects, the T, Q, and U maps are first apodized with an
inverse-variance mask as described in Section 6.1 of Paper II.

Pipeline 1 works on the curved sky and uses fast spherical
harmonic transforms to estimate the pseudo-C� spectra. These
spectra are then corrected for the effects of the sky cut, noise
and filtering, and binned into band powers according to

Pb =
∑
b′

K−1
bb′

∑
�

Pb′� (C̃� − 〈Ñ�〉MC) . (11)

In this equation and throughout this section, we use bold
face to denote six-spectrum quantities, e.g., Pb is a 6 n band
vector, Pb = {P TT

b , P EE
b , P BB

b , P TE
b , P TB

b , P EB
b }, and Kbb′ is a

6 n band × 6 n band matrix, given by

Kbb′ =
∑

�

Pb�

∑
�′

M��′F�′Q�′b′ . (12)

In Equation (11), C̃� are the pseudo-C� spectra estimated from
the data maps, and 〈Ñ�〉MC are the noise power spectra as
measured from simulations.

Pb� is a binning operator which bins the raw pseudo-C� into
band powers, and Q�b is the inverse operator which “unfolds” a
band power into individual C�s. For this analysis, we use “flat”
band powers for which the quantity �(� + 1)C�/2π is constant
within each band. That is, the binning operator we use is

Pb� =
{

1
2π

�(�+1)
�

(b+1)
low −�

(b)
low

, if 2 � �
(b)
low � � < �

(b+1)
low

0, otherwise,
(13)

with the corresponding inverse operator given by

Q�b =
{

2π
�(�+1) , if 2 � �

(b)
low � � < �

(b+1)
low

0, otherwise,
(14)

where �
(b)
low denotes the nominal lower edge of band b.

The coupling matrix, M��′ , describes the mode-mixing effects
of the apodization mask and sky cut, and is given in Brown et al.
(2005) for the full set of six possible CMB spectra. Note that

the M��′ matrix fully encodes E/B leakage effects due to the
finite survey geometry and so our Pipeline 1 estimator explicitly
corrects the EE and BB spectra for this leakage in the mean.

F� is a transfer function which we use to describe the
combined effects of timestream filtering, beam suppression,
and filtering of the sky signal due to the removal of the
ground templates. This function will also encode any other
signal suppression effects which are present in our simulations
(e.g., pixelization effects). We estimate F� from our signal-only
simulations as described in Section 6.3.

Pipeline 2 works in the flat sky approximation and uses 2D
FFTs to estimate power spectra. This pipeline is described in
detail in Paper II. The power spectrum estimator for Pipeline 2
can effectively be written as

Pb = F−1
b

∑
�

Pb� (C̃� − 〈Ñ�〉MC) , (15)

where Fb is the binned equivalent of the per-multipole transfer
function, F�, and we have implicitly made the connection
between the flat sky and curved sky power spectra, C� ≈ P (k)
for � ≈ 2πk.

Note that (in addition to the flat sky approximation), the
primary difference between the two pipelines is that Pipeline 1
performs the correction for the mode-mixing effects induced by
the sky cut, whereas Pipeline 2 does not perform this correction.
Because of this difference, neither the recovered band powers
nor their uncertainties are directly comparable between the two
pipelines. A proper comparison of the two analyses requires the
use of the associated band power window functions (BPWFs;
Section 6.3) which fully encode the relation between underlying
true sky power and observed power for both pipelines.

In both analyses, we estimate the covariance matrix of our
power spectrum estimates from the scatter found in the power
spectra measured from simulations containing both signal and
noise:

〈ΔPbΔPb′ 〉 = 〈(Pb − Pb)(Pb′ − Pb′ )〉MC , (16)

where Pb denotes the average of each band power over all
simulations. Note finally that the covariance properties of the
power spectra estimates are dependent on whether the correction
for mode-mixing induced by the sky cut is applied or not. We
return to this issue in Section 6.6 where we compare the results
from our two analyses.

6.2. Simulations

In simulating QUaD, we follow the procedure described in
Section 5 of Paper II with some important differences, which
we now discuss. Algorithmically, both of our analysis pipelines
adopt the same approach to creating simulated timestreams
and only differ in the final map-making stage as described in
Section 3.2.

6.2.1. Signal Simulations

To create the signal component in the simulations, we first
generate model TT , EE, TE, and BB CMB power spectra using
CAMB (Lewis et al. 2000). The input cosmology consists of the
best-fitting ΛCDM model to the 5-year WMAP data set (Dunkley
et al. 2009). Note that the model spectra used include the effects
of CMB lensing, and so the input B-mode power is nonzero.
(For comparison, in Paper II, our input model was the best-fit
to the 3-year WMAP data set, and our input B-mode power was
set to zero.)
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Realizations of CMB skies are then generated from these
model spectra using a modified version of the HEALPix
software. These maps are generated at a resolution of 0.4 arcmin
(Nside = 8192). The simulated maps are then projected onto
a 2D Cartesian grid and convolved with the beam model for
each detector channel. The resolution used for this intermediate
map is 0.6 arcmin. The generation of the sky maps for each
detector and deck angle and interpolation to simulated TOD
then proceeds exactly as described in Section 5.1 of Paper II.

6.2.2. Noise Simulations

In order to simulate realistic noise, we must first measure the
noise properties from the real data. However, the undifferenced
data contain not only noise, but also the CMB and ground signals
(see Equation (1)). The instantaneous signal to noise in the
timestream is negligible, and so the CMB component can be
safely ignored. However, the same is not true for the ground
signal which, in some cases, is a very significant component
in the timestream, particularly in polarization. The data must
therefore be cleaned of the ground component before measuring
the noise power spectra.

One might think that the best way to achieve this would
be to measure the noise spectra from data which has been
template subtracted using Equation (7). Such a procedure
could, in principle, be iterated and is similar to procedures
suggested for measuring the noise properties of CMB data
when the signal component is non-negligible (e.g., Ferreira &
Jaffe 2000). However, as noted in Section 3.2, our template
removal procedure filters the noise in a non-trivial fashion. In
particular, because of the nonuniform azimuth coverage of the
scan strategy, the ground templates are noisier at each end than
they are in the central regions. The result is that after subtracting
the templates, the noise is no longer uniform, and this prohibits
its characterization through simple FFT-based power spectrum
estimators—since the noise is no longer a stationary Gaussian
random process, a power spectrum description will fail.

To avoid these complications, we have measured the noise
properties of the TOD from data which have been lead–trail
differenced. The differencing efficiently removes the ground
signal, while under the assumption that the noise is stationary
over a 30 minute timescale, the power spectra of the undiffer-
enced TOD are simply the spectra measured from the differ-
enced TOD divided by 2. For each pair of lead–trail observa-
tions, we therefore assign the power spectra measured from the
differenced data, appropriately normalized to each of the lead
and trail scan-sets. Simulated noise-only timestreams are then
generated exactly as described in Section 5.2 of Paper II.

Examining the QUaD data and comparing them to simulated
data obtained using the above process, there are occasions where
our assumption of stationarity over a 30 minute timescale is not
satisfied. However, for the majority of the data the assumption
is good, and it is only ever a poor one for our temperature
analysis. Moreover, a thorough comparison of the statistics
of the simulated and real data indicates that our procedure
provides an excellent description of the noise properties of
the undifferenced data when averaged over each day for both
temperature and polarization. Further averaging over tens of
pixels and hundreds of observation dates will result in these rare
failures of our noise model having a negligible impact on the
results.

Once generated, both the signal-only and noise-only simu-
lated TODs are processed into T, Q, and U maps in an identical
manner to that used for the real data. In particular, note that both

the ground template subtraction and polynomial filtering are ap-
plied also to the simulated data, and so the effects of filtering
on both the signal and on the noise are fully accounted. Finally,
to obtain simulated maps containing both signal and noise, we
simply add the signal-only and noise-only maps. Since all of
our data processing steps are linear operations, this final step
results in simulated maps no different than those which would
have been obtained if we had instead summed the signal-only
and noise-only TODs, and is computationally more efficient.

6.3. Transfer Functions and Band Power Window Functions

We estimate the transfer function from our suite of signal-only
simulations. In the absence of noise, the mean of the recovered
pseudo-C� spectra will equal their expectation values:

〈C̃�〉MC =
∑
�′

M��′F�′C�′ , (17)

where C� are the input model spectra used to create the sim-
ulations. For a small-area survey such as QUaD, the unbinned
coupling matrix, M��′ , is singular, and so Equation (17) cannot
be solved directly. In Pipeline 1, we iteratively solve this equa-
tion to provide an estimate of F�. With a reasonable starting
guess, convergence is typically reached in just a few iterations.
For Pipeline 1, the BPWFs, Wb�, defined by (Knox 1999),

〈Pb〉 =
∑

�

Wb�

�

�(� + 1)

2π
〈C�〉 , (18)

are given by

Wb�

�
= 2π

�(� + 1)
F�

∑
b′

K−1
bb′

∑
�′

Pb′�′M�′� . (19)

Pipeline 2 calculates its BPWFs numerically as described in
Section 6.6 of Paper II. In order to calculate the transfer func-
tions, Pipeline 2 simply takes the ratio of the mean band powers
recovered from signal-only simulations and the expectation val-
ues for each band power:

Fb =
∑

� Pb�〈C̃�〉MC

〈Pb〉 . (20)

Figure 5 shows the derived transfer function from Pipeline 1.
(The transfer function from Pipeline 2 is similar.) As mentioned
earlier, this function encapsulates all effects due to timestream
filtering, beam suppression and the filtering due to removal
of the ground templates. To demonstrate the relative size of
these effects, we also plot the transfer function derived from
special simulations with these three effects included in isolation.
Of particular interest is the transfer function describing the
ground-removal procedure—this curve in effect encapsulates
the lossiness of the technique. On scales where this curve is
� 0.5, we gain an improvement over the field-differencing
technique. We see that below � ∼ 200, there is a little gain
from our template-removal technique over field-differencing.
The amount of the signal retained then climbs rapidly and is
effectively unity by � = 1000.

Figure 6 shows the BPWFs, plotted as Wb�/�, for CBB
� from

both our pipelines for the 150 GHz channel. These functions
describe the response of our band power measurements to the
true sky signal at each multipole. The negative wings in the
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Figure 5. Total transfer function, F� (black curve), as measured in our Pipeline
1 analysis for the 150 GHz channel. Also shown are the transfer functions
for timestream filtering (green), ground-template removal (blue), and beam
suppression (red) in isolation. The dashed curve shows the suppression of signal
due to map pixelization for a HEALPix resolution, Nside = 2048. The total
transfer function is the product of these four individual curves.

(A color version of this figure is available in the online journal.)

Figure 6. BPWFs for Pipeline 1 (top panels) and Pipeline 2 (bottom panels) for
the CBB

� power spectrum. The blue curves show the response to true BB power,
and the red lines show the response to EE power.

(A color version of this figure is available in the online journal.)

BPWFs of Pipeline 1 are a direct result of the application of the
correction for mode-mixing effects as described in Section 6.1.

The expectation values for our EE band powers assuming the
best-fit ΛCDM model to the WMAP 5-year data are shown in
Figure 7. Note that the apparent improvement in going from
Pipeline 2 to Pipeline 1 in terms of the agreement between the
true sky power and the band power expectation values does not
come without a price—as a result of applying the mode-mixing
correction, the error bars for Pipeline 1 are enhanced with respect
to the Pipeline 2 errors. The covariance properties also change
between the two analyses such that the total information content
is preserved.

We emphasize that, in terms of either the accuracy or the
precision of the recovery of true sky power, neither analysis
is superior. This is clear from the fact that one can transform
between the band power estimates and covariances of the two
analyses via a simple and exact matrix operation. Whether

Figure 7. Expectation values for the ΛCDM E-mode power spectrum for both
pipelines at 150 GHz. The mapping of true sky power to observed band powers
for both pipelines is fully encoded in their associated BPWFs (Figure 6).

(A color version of this figure is available in the online journal.)

to apply the mode-mixing correction is simply a matter of
preference and is only relevant for visual interpretation of the
results—one can choose to have smaller error bars or one can
choose to have band powers which better trace the underlying
true sky power but one cannot have both.

6.4. Power Spectrum Results

We apply the procedures described in Section 6.1 to estimate
the six possible CMB power spectra (TT, TE, EE, BB, TB,
EB) from the QUaD maps. In addition to the 100 and 150 GHz
auto-spectra, we also estimate the 100–150 GHz cross spectra as
described in Paper II. In the case where the noise is uncorrelated
between the two frequency channels, the cross spectra do not
require the noise-debiasing step. Although in practice we do
apply this correction, the correction is modest for the cross
spectra, so these measurements will be much less sensitive to
the details of our noise model. The power spectrum results from
Pipeline 1 are presented in Figure 8. We make strong detections
of the TT , TE, and EE spectra which show good agreement with
those predicted by the best-fitting ΛCDM model to the 5-year
WMAP results. The BB, TB, and EB spectra are consistent with
null within the noise. The results from Pipeline 2 show a similar
agreement with the ΛCDM model.

6.5. Jackknife Tests

We have subjected our analysis to the same set of systematic
tests as performed in Paper II. These tests involve splitting the
data into two roughly equal parts. Maps made from the two data
subsets are subtracted, and the power spectra of the residual
maps are calculated. Any deviation of these “jackknife” spectra
from null would indicate systematic contamination in the data.
For a detailed description of the various ways in which we split
the data, we refer the reader to Section 7 of Paper II.

The strongest test is the so-called “deck jackknife” test where
we split the data according to the boresight rotation angle
(deck angle) of the observations. This test, in particular, will
be strongly sensitive to any residual ground contamination
remaining in the data after applying the procedure described
in Section 3. In Figure 8, the deck jackknife spectra are plotted
alongside the spectra measured from the undifferenced maps. It
is clear from this figure that the power measured in the deck-
differenced maps is small compared to the measured signals in
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Figure 8. Full set of power spectrum results from Pipeline 1 where the quantity plotted in the y-direction is �(� + 1)C�/2π . The red curves are the spectra predicted by
the best-fit ΛCDM model to the WMAP 5-year data (Dunkley et al. 2009). The blue points show the power spectra measured from our deck angle differenced maps
and represent a stringent test for residual ground contamination—see the text of Section 6.5 for details.

(A color version of this figure is available in the online journal.)

TT , TE, and/or EE. The other data splits which we consider are
splitting the data according to orientation of the PSB pairs on
the focal plane (see Section 2), a split between the forward and
backward scans and a split in observation dates which roughly
separates the data into the 2006 and 2007 observing seasons.
We also take the difference of the 100 and 150 GHz maps. This

“frequency jackknife” test is not strictly a test for systematic
effects in the data. Rather, it is a strong test for “foreground”
(i.e., non-CMB) astrophysical emission.

The cancellation of the signal apparent in Figure 8 is visually
impressive. To investigate whether the differenced spectra
are formally consistent with null, as in Paper II, we have
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Table 1
Jackknife PTE Values from χ2 Tests

Jackknife TT TE EE BB TB EB

Deck Angle:
100 GHz 0.000 0.415 0.883 0.933 0.598 0.917
150 GHz 0.008 0.295 0.963 0.988 0.258 0.423
Cross 0.000 0.028 0.780 0.197 0.287 0.527

Scan Direction:
100 GHz 0.008 0.017 0.122 0.812 0.478 0.518
150 GHz 0.080 0.665 0.755 0.153 0.515 0.485
Cross 0.000 0.608 0.155 0.783 0.487 0.263

Split Season:
100 GHz 0.743 0.287 0.350 0.655 0.840 0.413
150 GHz 0.000 0.387 0.242 0.022 0.340 0.647
Cross 0.273 0.065 0.110 0.160 0.630 0.850

Focal Plane:
100 GHz 0.173 0.872 0.690 0.813 0.703 0.672
150 GHz 0.530 0.397 0.910 0.988 0.933 0.715
Cross 0.270 0.012 0.493 0.105 0.735 0.578

Frequency Difference 0.000 0.362 0.418 0.588 0.208 0.783

performed χ2 tests against the null model. Note that we
compare this statistic with the χ2 distribution as measured from
our simulations rather than against the theoretical χ2 curve,
calculating the “probability to exceed” (PTE) the observed
value by random chance. Low numbers therefore indicate a
problem. The PTE values for each of our measured spectra
(from Pipeline 1) are presented in Table 1.

Examining the table, the PTE values for all the spectra bar
TT reveal no significant problems, the numbers being consistent
with a uniform distribution between 0 and 1. In contrast, many
of our TT jackknife spectra are clearly inconsistent with a
null signal. The failure is perhaps excusable in the case of the
frequency difference (since there are astrophysical reasons why
this test might fail) but taken as a whole, the statistics for TT (and
to a lesser extent, some of the TE numbers) suggest that there is
some degree of residual systematics present in our temperature
maps. The PTE statistics for Pipeline 2, although not identical,
show the same general pattern of jackknife failures for the TT
spectra. Comparing to our previous results, there were hints
of a problem with the TT jackknife tests in Paper II but to a
lesser extent than is apparent now. This is possibly due to the
fact that with our increased sensitivity we can measure both
the signal and systematics to greater precision. Alternatively,
it could indicate that the template removal procedure is not as
effective as field-differencing in removing the ground.

These jackknife failures indicate that residual systematic ef-
fects in our temperature maps are significant with respect to
the errors on the jackknife spectra. However, the jackknife er-
rors contain only noise, whereas the errors on our measured TT
and TE CMB power spectra also contain considerable sample
variance. To assess how significant the residual systematics are,
in Figure 9, we plot the measured TT and TE jackknife band
powers alongside the signal band powers for the 150 GHz chan-
nel. Clearly, when compared to the sample variance-dominated
signal spectra, the degree of residuals is much less significant.
Repeating the χ2 analysis using the signal covariance matri-
ces in place of the jackknife covariance matrices, we find that
the residual contamination is negligible. In summary, although
our TT jackknife tests indicate the presence of residual sys-
tematics, they also clearly demonstrate that these residuals are
irrelevant compared to both the measured sky signal and its as-

Figure 9. Signal and jackknife TT (top panel) and TE (bottom panel) power
spectra for the 150 GHz channel. The black points show the measured signal
spectra, and the colored points are the jackknife spectra. The levels of power
measured in the jackknife maps are negligible when compared to the sample
variance driven errors on the signal spectra.

(A color version of this figure is available in the online journal.)

sociated sample variance. Note this is also true for the levels
of foreground contamination in our maps since our frequency
difference test is sensitive to foregrounds.

6.6. Examination of Final Power Spectra

To produce a set of final power spectra, we combine the single
frequency and 100–150 GHz cross spectra shown in Figure 8
following the procedure described in Section 9 of Paper II. The
final estimates of the power spectra are shown in Figure 10 for
both of our analysis pipelines. Once again, the model curves
plotted are the best-fitting ΛCDM model to the WMAP 5-year
results. We have performed χ2 tests of all spectra, and both
analyses show perfectly acceptable agreement with this model
and with each other. Pipeline 1 χ2 and PTE values are given in
Table 2.

Comparing the two sets of results presented in Figure 10,
we see that the nominal error bars are smaller for Pipeline 2
and that Pipeline 2’s points appear to trace a slightly smoothed
version of Pipeline 1’s points. Both of these effects are simply
a result of the differing BPWFs as discussed in Section 6.3.
Note that neighboring band powers in Pipeline 1 are ∼10%
anti-correlated, whereas they are ∼10% positively correlated in
Pipeline 2. Correlations between non-adjacent band powers are
negligible for both analyses.

Figure 11 shows a comparison with our previous results from
Paper II. Note that we perform this comparison using Pipeline
2, since this pipeline is an extension of the analysis presented in
Paper II and so is directly comparable. Two effects are apparent
in this figure. First, the uncertainties on all of our power spectra
have been reduced by ∼30% as a result of the increase in sky
area afforded by our template-based ground removal technique.
Second, implementing the improved beam models described in
Section 4 has resulted in a slight increase in the amplitude of our
power spectrum measurements for multipoles, � ∼> 700. This
impacts mostly on the high signal-to-noise measurements of the
TT spectrum on small scales.

Figure 12 shows our measured power spectra from Pipeline
1 in comparison with the published results from a number of
other CMB experiments.
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Figure 10. Final power spectrum results obtained from an optimal combination of the 100 GHz, 150 GHz and cross-frequency power spectra. Spectra from both
pipelines (again, plotted as �(� + 1)C�/2π ) are shown in comparison to the expected spectra in the concordance ΛCDM model. Note the TT power spectrum is plotted
with a log scale in the y-axis. For clarity, the two sets of points have been slightly offset in the horizontal direction.

(A color version of this figure is available in the online journal.)

Table 2
χ2 Tests of the Combined Spectra Against the ΛCDM and Null Models.

Spectra vs. ΛCDM vs. Null

χ2 for 23 d.o.f.:
TT 15.71 1512.86
TE 27.10 116.38
EE 24.87 413.81
BB 37.00 37.87
TB 28.99 · · ·
EB 22.25 · · ·
PTE Values:
TT 0.830 < Machine precision
TE 0.208 7.9 × 10−15

EE 0.303 < Machine precision
BB 0.024 0.019
TB 0.145 · · ·
EB 0.445 · · ·

The QUaD power spectra data, along with the associ-
ated band power covariance matrices and BPWFs (for both
of our analysis pipelines) are available for download at
http://quad.uchicago.edu/quad.

6.7. Acoustic Oscillations in the E-Mode Power Spectrum

We have assessed the significance with which we detect the
acoustic oscillations in the EE power spectrum by repeating the
analysis of Section 9.3 in Paper II. For this test, we compare our
EE measurements against both the ΛCDM model and against a
heavily smoothed version of the ΛCDM curve. The results of

this test are shown in Figure 13. The QUaD detection of acoustic
oscillations in the E-mode power spectrum is now beyond
question—the probability that the true E-mode spectrum is a
smooth curve has dropped from 0.001 with our previous analysis
to < 10−14. We have also repeated our Paper II analysis where
we used “toy models” of the E-mode spectrum to fit the peak
spacing, phase and amplitude of the acoustic oscillations. With
our previous measurements, we constrained the peak spacing to
be Δ�s = 306 ± 10, the phase to be φ = 13◦ ± 33◦ and the
amplitude to be a = 0.86 ± 0.17. Repeating the analysis with
our new measurements, we find Δ�s = 308 ± 7, φ = 6◦ ± 22◦,
and a = 0.96 ± 0.10. For comparison, when we perform the
analysis with the QUaD band power values replaced by their
expectation values in the ΛCDM model, we find Δ�s = 310,
φ = 13◦, and a = 0.99. These results confirm that the
polarization peak spacing and the phase relationship between
the temperature and polarization acoustic oscillations are as
expected in the ΛCDM model. Passing this (non-trivial) test
further strengthens the foundations of this model.

7. COSMOLOGICAL INTERPRETATION

The QUaD results presented in this paper are the most precise
determination of the CMB polarization, and of its correlation
with the CMB temperature, at angular scales � > 200, to date.
Within the standard ΛCDM model, given a precise measurement
of the TT power spectrum (e.g., from WMAP), the TE and EE
spectra on all but the very largest scales are deterministically
predicted. Nevertheless, sufficiently accurate measurements of
these spectra can still tighten constraints on cosmological

http://quad.uchicago.edu/quad
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Figure 11. Comparison of our final power spectra from Pipeline 2 with the field-differenced analysis of Pryke et al. (2009). The uncertainties on our band power
measurements have been reduced by ∼30%, and our new beam models result in a small increase in amplitude in the measured spectra for multipoles, � ∼> 700. For
clarity, the two sets of points have been slightly offset in the horizontal direction.

(A color version of this figure is available in the online journal.)

Figure 12. QUaD measurements of the TT , TE, EE, and BB power spectra compared to results from the WMAP (Nolta et al. 2009), ACBAR (Reichardt et al. 2009),
BICEP (Chiang et al. 2009), B03 (Piacentini et al. 2006; Montroy et al. 2006), CBI (Sievers et al. 2007), CAPMAP (Bischoff et al. 2008), MAXIPOL (Wu et al.
2007), and DASI (Leitch et al. 2005) experiments. The BB measurements are plotted as 95% upper limits. The smooth black curves in each panel are the power spectra
expected in the best-fit ΛCDM model to the WMAP 5-year data.

(A color version of this figure is available in the online journal.)
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Figure 13. QUaD’s measurements of the EE spectrum (black points) compared
to the ΛCDM model (red curve) and a model without peaks (green curve).
The data are incompatible with the no-peak scenario—the probability that the
smooth curve is correct is < 10−14.

(A color version of this figure is available in the online journal.)

parameters. In particular, precise measurements of the TE
and EE acoustic peaks and valleys can help constrain the
cosmological parameters which determine this peak pattern.

Beyond the standard ΛCDM model, power spectrum mea-
surements from small-scale experiments such as QUaD can add
further information. Two such extensions to the ΛCDM model
which are well motivated in the context of single-field slow-roll
inflation models are a possible tensor component in the primor-
dial perturbation fields and a scale dependence (or “running”)
in the scalar spectral index. Placing constraints on tensor modes
through measurements of the large-scale B-mode polarization
induced by a gravitational wave background from inflation is
a major goal of ongoing and future CMB polarization exper-
iments. Although the scales probed by QUaD’s polarization
measurements are too small to constrain this B-mode signal di-
rectly, QUaD can help through its ability to constrain the scalar
spectra index, ns, since this parameter is correlated with the
tensor-to-scalar ratio. For a ΛCDM model extended to include
a running in ns, measurements of the high-� temperature power
spectrum can be useful in constraining both ns and the degree
of running.

In this section, we constrain cosmological models by adding
the QUaD temperature and polarization data (i.e., our new
measurements of the TT , EE, TE, and BB spectra) to the results
of two other CMB experiments—the WMAP 5-year analysis
(Nolta et al. 2009) and the final results from the ACBAR
experiment (Reichardt et al. 2009). We will also investigate
the effect of adding large-scale structure data by including
measurements of the present-day matter power spectrum, P (k),
from the SDSS Luminous Red Galaxy (LRG) fourth data release
(Tegmark et al. 2006).

In this paper, we focus on what the QUaD data set taken as a
whole adds to parameter constraints. In addition to investigating
further extensions to the ΛCDM model, we will fully explore
the consistency of our temperature-only and polarization-only
parameter constraints in a future paper (S. Gupta et al. 2009, in
preparation). See also Castro et al. (2009) for temperature-only
and polarization-only constraints obtained using our previous
power spectrum results of Paper II.

7.1. Methodology

To obtain our constraints, we perform a Monte Carlo Markov
Chain (MCMC) sampling of the cosmological parameter space.

To do this, we use the publicly available CosmoMC package
(Lewis & Bridle 2002), which in turn uses the CAMB code
(Lewis et al. 2000) to generate the CMB and matter power
spectra.22

We make use of the publicly available WMAP likelihood
software from the LAMBDA23 Web site. We marginalize over
a possible contribution to the temperature power spectrum
from the Sunyaev–Zel’dovich (SZ) effect following the WMAP
analysis (Dunkley et al. 2009). To do this, we use the SZ
templates from Komatsu & Seljak (2002; also available from
the LAMBDA Web site) and the known frequency dependence
of the SZ effect. In order to avoid possible contamination from
residual point sources, we exclude the ACBAR band powers
above � = 2000. For the same reason, we do not include our
own TT measurements at � > 2000 (Friedman et al. 2009).

Marginalization over the WMAP beam uncertainty is included
in the WMAP likelihood code, and we also marginalize over the
quoted ACBAR calibration and beam uncertainties. We take the
latter to be a 2% error on a 5 arcmin (FWHM) Gaussian beam
as assumed in the ACBAR CosmoMC data file. For QUaD,
we marginalize over our 3.5% calibration uncertainty and over
the uncertainty in our beam. As described in Appendix A, our
beam uncertainties are dominated by uncertainties in the level
of our sidelobes rather than in the effective FWHM of our main
lobe beams. We therefore marginalize over the full �-dependent
beam uncertainty shown in Figure 19. Where we include the
SDSS LRG data, we marginalize over both the amplitude of the
matter power spectrum and over a correction for scale-dependent
nonlinear density evolution using the methods described in
Tegmark et al. (2006).

We model the likelihood functions for the QUaD auto-spectra
as offset log-normal distributions (Bond et al. 2000). The re-
quired noise offsets are derived from our signal-only and noise-
only simulations. (We model the TE likelihood as a Gaussian
distribution.) We include all covariances apparent (above the
numerical noise) in our simulation-derived covariance matrix
(Equation (16)). In addition to same-spectrum covariances, this
includes nonzero TT–TE, EE–TE, TT–EE, and EE–BB correla-
tions.

Note that, for our main MCMC analysis, we do not include our
measurements of the parity-violating spectra, TB and EB, since
these spectra are expected to vanish in standard ΛCDM models
and its usual variants. However, in Section 7.7, we will use these
spectra to constrain possible parity-violating interactions to the
surface of last scattering (see e.g., Lue et al. 1999) following
our previous work (Wu et al. 2009).

Finally, in Section 7.8, we use our polarization measurements
to place a formal upper limit on the strength of the lensing B-
mode signal.

Our basic ΛCDM cosmological model is characterized by the
following six parameters (where h = H0/(100 km s−1Mpc−1),
with H0 being Hubble’s constant in units, km s−1Mpc−1): the
physical baryon density, Ωbh

2; the physical cold dark matter
(CDM) density, Ωch

2; the ratio of the sound horizon to the
angular diameter distance at last scattering, θ = rs/DA; the
optical depth to last scattering, τ ; the scalar spectral index, ns;

22 Note that we have used the 2008 June version of the CAMB software. This
version included a revised model of the reionization history as compared to
previous versions of CAMB. In particular, the mapping between the optical
depth, τ , and the reionization redshift, zre, changed at the ∼10% level—see
Lewis (2008) for details. This should be borne in mind when comparing our
results to previous analyses such as Dunkley et al. (2009) and Reichardt et al.
(2009) who used pre-March 2008 versions of the CAMB software.
23 http://lambda.gsfc.nasa.gov/

http://lambda.gsfc.nasa.gov/
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Table 3
Basic Six Parameter Constraints

Parameter WMAP WMAP+ACBAR WMAP+QUaD WMAP+ACBAR+QUaD WMAP+ACBAR+QUaD+SDSS

Ωbh
2 0.0228+0.0006

−0.0006 0.0229+0.0006
−0.0006 0.0227+0.0005

−0.0005 0.0227+0.0005
−0.0005 0.0227+0.0005

−0.0005
Ωch

2 0.109+0.006
−0.006 0.111+0.006

−0.006 0.108+0.006
−0.006 0.109+0.005

−0.005 0.108+0.004
−0.004

θ 1.0406+0.0030
−0.0031 1.0422+0.0027

−0.0027 1.0403+0.0024
−0.0025 1.0415+0.0022

−0.0023 1.0414+0.0022
−0.0022

τ 0.090+0.017
−0.017 0.090+0.017

−0.017 0.090+0.017
−0.017 0.089+0.017

−0.017 0.088+0.017
−0.016

ns 0.965+0.014
−0.014 0.966+0.013

−0.013 0.962+0.013
−0.013 0.962+0.013

−0.013 0.962+0.012
−0.012

As 3.11+0.04
−0.04 3.12+0.04

−0.04 3.11+0.04
−0.04 3.11+0.04

−0.04 3.11+0.03
−0.03

ΩΛ 0.74+0.03
−0.03 0.74+0.03

−0.03 0.75+0.03
−0.03 0.75+0.03

−0.03 0.75+0.02
−0.02

Age 13.68+0.14
−0.14 13.63+0.12

−0.12 13.69+0.12
−0.12 13.66+0.11

−0.11 13.66+0.10
−0.10

Ωm 0.26+0.03
−0.03 0.26+0.03

−0.03 0.25+0.03
−0.03 0.25+0.03

−0.03 0.25+0.02
−0.02

σ8 0.80+0.04
−0.04 0.80+0.03

−0.03 0.79+0.03
−0.03 0.79+0.03

−0.03 0.79+0.02
−0.02

zre 10.5+1.4
−1.4 10.5+1.4

−1.3 10.5+1.3
−1.3 10.5+1.3

−1.3 10.4+1.4
−1.3

H0 72.1+2.6
−2.6 72.3+2.5

−2.5 72.5+2.5
−2.5 72.4+2.4

−2.4 72.7+1.7
−1.7

Note. We quote the scalar amplitude as As ≡ ln
[
1010As

]
for a pivot point of ks


 = 0.013 Mpc−1.

and the scalar amplitude, As = ln
[
1010As

]
. Here, As is

the amplitude of the power spectrum of primordial scalar
perturbations, parameterized by Ps(k) = As(k/ks


)ns−1. We
discuss the choice of pivot-point, ks


, in the following section.
Other parameters which we quote and which are derived from
this basic set, are the dark energy density, ΩΛ (assumed here to
be a simple cosmological constant), the age of the universe, the
total matter density, Ωm, the amplitude of matter fluctuations
in 8 h−1Mpc spheres, σ8, the redshift to reionization, zre and
the value of the present day Hubble constant, H0. For all our
analyses, we assume a flat universe and include the effects
of weak gravitational lensing. We impose the following broad
priors on our base MCMC parameters: 0.005 < Ωbh

2 < 0.100;
0.01 < Ωch

2 < 0.99; 0.5 < θ < 10.0; 2.7 < As < 4.0;
0.5 < ns < 1.5; 0.01 < τ < 0.80. There is also a prior
imposed on the age of the universe (10 < Age(Gyr) < 20) and
on the Hubble constant (40 < H0(km s−1Mpc−1) < 100).

We also investigate models extended to include both a running
in the scalar spectral index, nrun = dns/d ln k, and/or a possible
tensor contribution. Assuming a power law for the tensor modes,
Pt ∝ knt , we parameterize their amplitude by the tensor-to-
scalar ratio, r = Pt /Ps . We adopt a uniform prior measure for
r between 0 and 1. For the running spectral index model, we
adopt a prior of −0.5 < nrun < 0.5 on the running.

7.2. Choice of Scales (“Pivot Points”) for the Presentation of
Results

For the primordial power spectrum parameterization which
we have chosen, we need also to choose a scalar pivot point,
ks

, the wavenumber at which ns and As are evaluated. Within

standard ΛCDM, ns is modeled as independent of scale, and
we can map constraints on As obtained at one pivot point to an
arbitrary new pivot point, ks



′, using

As(k
s


′) = As(k

s

) (ks



′
/ks


)ns−1. (21)

For models including a running in the spectral index, both ns
and As are dependent on scale. For these models, we can map
constraints from an old to a new pivot point using

As(k
s


′) = As(k

s

) (ks



′
/ks


)ns (ks

)−1+ 1

2 nrun ln(ks


′/ks


), (22)

ns(k
s


′) = ns(k

s

) + nrun ln(ks



′
/ks


). (23)

Correlations between the two parameters, ns and nrun, are
dependent on the pivot point at which one chooses to present
results. In particular, there is a scale at which the uncertainties
on these two parameters become uncorrelated (Copeland et al.
1998). Choosing to present results at this “decorrelation scale”
has the attractive feature that the marginalized one-dimensional
(1D) constraint on ns is not degraded by allowing the running to
be nonzero. Finelli et al. (2006) presented parameter constraints
from CMB and large-scale structure data using a pivot point of
ks

 = 0.01 Mpc−1, whereas Peiris & Easther (2006) identified a

decorrelation scale of ks

 ≈ 0.02 Mpc−1 using the WMAP 3-yr

data.
In order to find the decorrelation pivot point, we have followed

the analysis of Cortês et al. (2007) who describe a technique to
fit MCMC chains for the decorrelation scale. They found a
decorrelation scale of ks


 = 0.017 Mpc−1 using the WMAP 3-yr
data set. Repeating their analysis using the WMAP 5-yr data, we
find ks


 = 0.013 Mpc−1. For simplicity, we choose to present our
main results on As and ns at this decorrelation scale for all of the
models and data set combinations which we have investigated.

For models including a possible tensor component, we still
quote our constraints on As and ns at ks


 = 0.013 Mpc−1, but
for the tensor-to-scalar ratio, r, we use a tensor pivot point of
kt

 = 0.002 Mpc−1. We do not attempt to remap our constraints

on r to a more optimal pivot point, since the only meaningful
data contributing to a constraint on r are the WMAP temperature
power spectrum on very large scales (for which, a tensor pivot
point of kt


 = 0.002 Mpc−1 is appropriate). Note also that for
these models, we enforce both the first and second inflation
consistency equations (e.g., Lidsey et al. 1997): r = −8nt and
dnt

d ln k
= nt [nt − (ns − 1)]. Additionally, enforcing the second

equation ensures that the first consistency equation holds to
linear order in Δ ln k on all scales (Cortês et al. 2007).

7.3. The Concordance ΛCDM Model

In Table 3, for each data set combination, we list the mean
recovered values for each parameter, along with their associated
68% confidence limits, marginalized over all other parameters.
In Figure 14, we plot the marginalized 1D constraints for the
WMAP, WMAP + QUaD and WMAP + ACBAR combinations.
Clearly, the WMAP data dominate when we add either the
ACBAR or the QUaD data, as was found in our previous analysis
(Castro et al. 2009). However, the addition of either of these data
sets does provide additional information on Ωbh

2, Ωch
2, and θ .

The biggest improvement in constraints is in θ where the WMAP
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Figure 14. 1D likelihood distribution for our base MCMC parameters for the
basic six-parameter ΛCDM model. The constraint on the scalar amplitude is
presented at a pivot point of ks


 = 0.013 Mpc−1.

(A color version of this figure is available in the online journal.)

+ ACBAR + QUaD combination tightens the limits by ∼25%
compared to WMAP alone. This additional constraining power
comes mostly from the QUaD data.

The mean values of these parameters also shift a little, but the
only significant discrepancy is perhaps in the recovered value
of θ . Here, we find the WMAP + ACBAR combination prefers
a somewhat higher value (in agreement with ACBAR’s own
analysis; Reichardt et al. 2009), whereas the addition of QUaD
data does not change the WMAP-only preferred mean value but
simply tightens the constraint.

Note that in comparison to the WMAP team’s own analysis
(Dunkley et al. 2009), we recover slightly different mean values
for τ and more significantly different values for zre. This is due
to the different reionization model used in the later version of
the CAMB software which we have used. We note in passing
that the majority of the constraining power in the QUaD data
comes from the measurements of the polarization power spectra
as found with our previous analysis (Castro et al. 2009).

7.4. Running Spectral Index Model

The 1D and 2D marginalized constraints on our base param-
eters for the running spectral index model, as obtained from
our WMAP + QUaD runs are shown in Figure 15 along with the
constraints using only the WMAP data. The recovered parameter
values and their uncertainties are listed in Table 4.

The impact of QUaD data is greater for this model—the
QUaD data add significantly to the constraints on Ωbh

2, Ωch
2,

θ , and nrun, reducing the marginalized 1D errors on these
parameters by up to 20%. Adding both the QUaD and ACBAR
data has an even greater impact, reducing the errors on these
parameters by up to a third compared to the WMAP-only
uncertainties. Of particular interest are the constraints in the
ns–nrun plane since many theories of inflation predict both

a deviation from ns = 1 and/or a small negative running.
Constraints from the WMAP + ACBAR + QUaD combination
are shown in the left panel of Figure 16, together with the
constraints from WMAP alone. Our 1D marginalized constraint
on the running from the combined data set is nrun = 0.046 ±
0.021, 2.2σ away from the nrun = 0 model. Adding the LSS
data to the mix improves the constraints even further, in our
analysis tightening the 1σ error on nrun from 0.021 to 0.018. The
significance of a nonzero running is also reduced on addition of
the LSS data.

Comparing Tables 3 and 4, we see also that the 1D marginal-
ized constraint on the spectral index, ns, is not weakened by al-
lowing a nonzero running. This is due to our use of the decorrela-
tion pivot scale as described in Section 7.2. The results also show
that the constraints on ns obtained for the standard six-parameter
ΛCDM model are robust to marginalization over a possible run-
ning. For example, with the WMAP + ACBAR + QUaD com-
bination, the constraint on ns goes from ns = 0.962 ± 0.013 to
ns = 0.965 ± 0.013 when we allow for a possible nonzero run-
ning. For comparison, if instead, we use the WMAP-preferred
pivot point (ks


 = 0.002 Mpc−1), the marginalized 1D constraint
on ns is degraded to ns = 0.962 ± 0.019 in the presence of
running.

Hints of a negative running in the spectral index have been
observed in previous CMB analyses (e.g., Dunkley et al. 2009;
Reichardt et al. 2009). With the addition of the new QUaD
data, this suggestion of a negative running not only persists,
but is strengthened. We do, however, stress that the combined
result shown in the left panel of Figure 16 is still consistent
with zero running at the 3σ level. Nevertheless, it is worth
examining the implications for inflation models if the running
was as large and as negative as the best-fit value returned from
our analysis of the combined CMB data set. In this respect,
Malquarti et al. (2004) have pointed out that an observed
running of nrun � −0.02 would effectively rule out large field
inflation models. More generally, Easther & Peiris (2006) have
demonstrated that for a large negative running, single field slow-
roll inflation models will last less than 30 e-folds after entering
the horizon. This amount of inflation is insufficient if inflation
happened at the GUT scale. Consequently, an observation of
nrun ∼ −0.05 would require inflation theory to move beyond
the simplest models, e.g., by considering multiple fields and/
or modifications to the slow-roll formalism (e.g., Chung et al.
2003; Makarov 2005; Ballesteros et al. 2006).

7.5. Tensor Modes

Our constraints for the ΛCDM model including a possible
tensor component are listed in Table 5 in terms of the mean
recovered parameter values and their uncertainties. For r, we
quote the 95% one-tail upper limit, since, as expected, no
detection of tensors is made. For our WMAP-only analysis, we
recover a slightly weaker limit (r < 0.48) than that obtained by
the WMAP team themselves (r < 0.43; Dunkley et al. 2009).24

Adding either the ACBAR or QUaD data, this is reduced to
r < 0.40.

The WMAP + ACBAR + QUaD combination produces a
constraint on tensor modes of r < 0.33, the strongest from
the CMB alone to date. Note that this constraint does not come
from our upper limits on the BB spectrum. It is, in fact, driven

24 Repeating our MCMC analysis using the 2008 pre-March version of
CAMB and adopting WMAP’s choice of both scalar and tensor pivot points,
we recover a result consistent with the WMAP analysis.
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Figure 15. 1D and 2D likelihood distributions recovered for the base MCMC parameters for the ΛCDM model extended to include a possible running in the scalar
spectral index. The constraints on ns and As are shown for the decorrelation pivot point of ks


 = 0.013 Mpc−1. In the 2D panels, we indicate the regions of parameter
space which enclose 68% and 95% of the likelihood as the inner and outer contours respectively. The results for the WMAP + QUaD combination are shown overplotted
on the WMAP-only results. Adding the QUaD data tightens the constraints on Ωbh

2, Ωch
2, nrun and θ by up to 20%.

(A color version of this figure is available in the online journal.)

Table 4
Parameter Constraints for the Running Spectral Index Model

Parameter WMAP WMAP+ACBAR WMAP+QUaD WMAP+ACBAR+QUaD WMAP+ACBAR+QUaD+SDSS

Ωbh
2 0.0221+0.0009

−0.0009 0.0221+0.0007
−0.0007 0.0219+0.0007

−0.0007 0.0219+0.0006
−0.0006 0.0223+0.0006

−0.0006
Ωch

2 0.116+0.009
−0.009 0.120+0.008

−0.008 0.117+0.008
−0.008 0.120+0.008

−0.008 0.111+0.004
−0.004

θ 1.0399+0.0030
−0.0031 1.0414+0.0027

−0.0027 1.0399+0.0024
−0.0024 1.0409+0.0023

−0.0023 1.0413+0.0022
−0.0022

τ 0.093+0.018
−0.018 0.095+0.019

−0.019 0.095+0.019
−0.018 0.096+0.019

−0.019 0.096+0.019
−0.018

ns 0.964+0.014
−0.014 0.967+0.014

−0.014 0.963+0.013
−0.013 0.965+0.013

−0.013 0.967+0.013
−0.013

As 3.16+0.06
−0.06 3.18+0.05

−0.05 3.17+0.06
−0.06 3.19+0.05

−0.05 3.15+0.04
−0.04

nrun −0.031+0.028
−0.028 −0.040+0.023

−0.023 −0.038+0.024
−0.024 -0.046+0.021

−0.021 −0.028+0.018
−0.018

ΩΛ 0.70+0.05
−0.05 0.69+0.05

−0.05 0.70+0.05
−0.05 0.69+0.05

−0.05 0.74+0.02
−0.02

Age 13.81+0.18
−0.18 13.78+0.14

−0.15 13.82+0.14
−0.14 13.82+0.13

−0.13 13.72+0.11
−0.11

Ωm 0.30+0.05
−0.05 0.31+0.05

−0.05 0.30+0.05
−0.05 0.31+0.05

−0.05 0.26+0.02
−0.02

σ8 0.81+0.04
−0.04 0.83+0.03

−0.03 0.81+0.04
−0.04 0.83+0.03

−0.03 0.79+0.02
−0.02

zre 11.2+1.6
−1.6 11.4+1.6

−1.6 11.4+1.6
−1.6 11.7+1.6

−1.6 11.2+1.5
−1.5

H0 68.9+4.0
−4.0 68.0+3.4

−3.4 68.5+3.5
−3.6 67.5+3.2

−3.2 71.4+1.9
−1.9

Note. The pivot point used for As and ns is ks

 = 0.013 Mpc−1.
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Figure 16. Left panel: 68% and 95% confidence regions in the ns–nrun plane, marginalized over all other parameters, for the WMAP + ACBAR + QUaD combination
as compared to those obtained from WMAP alone. The constraints are shown for a pivot point of ks


 = 0.013 Mpc−1. No tensor component was allowed for either set
of constraints. The constraints tighten by about one-third. The mean recovered values also shift further away from the simple {ns, nrun} = {1, 0} model. Right panel:
marginalized constraints on the inflation parameters, r and ns from WMAP data alone and adding in the ACBAR and QUaD data sets. No running in the spectral index
was allowed for these fits and the tensor-to-scalar ratio, r is presented for a tensor pivot point of kt


 = 0.002 Mpc−1. Once again, the inner and outer contours indicate
the regions of parameter space enclosing 68% and 95% of the likelihood, respectively. The 95% upper limit on r is reduced from r < 0.48 to r < 0.33. This constraint
is driven by the preference of the additional data sets for a lower spectral index than is recovered from the WMAP data on its own.

(A color version of this figure is available in the online journal.)

Table 5
Parameter Constraints Including a Possible Tensor Component

Parameter WMAP WMAP+ACBAR WMAP+QUaD WMAP+ACBAR+QUaD WMAP+ACBAR+QUaD+SDSS

Ωbh
2 0.0235+0.0008

−0.0008 0.0234+0.0007
−0.0007 0.0232+0.0007

−0.0007 0.0231+0.0006
−0.0006 0.0229+0.0006

−0.0006

Ωch
2 0.104+0.007

−0.007 0.106+0.007
−0.007 0.103+0.007

−0.007 0.105+0.006
−0.006 0.107+0.004

−0.004

θ 1.0421+0.0033
−0.0033 1.0433+0.0028

−0.0028 1.0412+0.0026
−0.0026 1.0423+0.0023

−0.0023 1.0419+0.0022
−0.0023

τ 0.094+0.018
−0.018 0.092+0.018

−0.018 0.093+0.018
−0.018 0.091+0.017

−0.017 0.088+0.017
−0.017

ns 0.990+0.023
−0.023 0.986+0.021

−0.020 0.982+0.020
−0.020 0.978+0.018

−0.018 0.973+0.015
−0.015

As 3.07+0.05
−0.05 3.08+0.04

−0.04 3.08+0.04
−0.04 3.09+0.04

−0.04 3.09+0.03
−0.04

r <0.48 (95% c.l.) <0.40 (95% c.l.) <0.40 (95% c.l.) <0.33 (95% c.l.) <0.27 (95% c.l.)
ΩΛ 0.78+0.03

−0.03 0.77+0.03
−0.03 0.78+0.03

−0.03 0.77+0.03
−0.03 0.76+0.02

−0.02

Age 13.52+0.18
−0.18 13.51+0.16

−0.16 13.57+0.15
−0.15 13.57+0.13

−0.13 13.61+0.11
−0.11

Ωm 0.22+0.03
−0.03 0.23+0.03

−0.03 0.22+0.03
−0.03 0.23+0.03

−0.03 0.24+0.02
−0.02

σ8 0.77+0.04
−0.04 0.78+0.04

−0.04 0.76+0.04
−0.04 0.78+0.03

−0.03 0.78+0.02
−0.02

zre 10.5+1.4
−1.4 10.5+1.4

−1.4 10.5+1.4
−1.3 10.4+1.4

−1.3 10.3+1.3
−1.3

H0 75.8+3.8
−3.8 75.2+3.4

−3.4 75.5+3.4
−3.4 74.8+3.1

−3.1 73.8+1.8
−1.9

Note. The pivot point used for As is ks

 = 0.013 Mpc−1, while the pivot point used for the tensor-to-scalar ratio, r, is kt


 = 0.002 Mpc−1.

by a preference of the small-scale data (particularly the QUaD
EE and TE data) for a somewhat lower spectral index compared
to that preferred by WMAP alone—a lower ns allows more of
the large-scale TT power observed by WMAP to come from
scalar perturbations and therefore the maximum allowed tensor
contribution is reduced. Our CMB-only constraints in the r–ns
plane are plotted in the right panel of Figure 16.

7.6. Running Spectral Index and Tensor Modes

When we allow for both a running in the spectral index and a
tensor contribution the constraints weaken considerably versus
either on their own. In the left panel of Figure 17, for the
WMAP + ACBAR + QUaD combination, we plot constraints
in the nrun–ns plane with and without marginalization over a
possible tensor component. The right panel of this figure shows
the corresponding constraints in the r–ns plane with and without
marginalization over a possible running in the spectral index.
For this model, the addition of QUaD and ACBAR data still

improves the constraints on the spectral index running (and
indeed, still strongly suggests a small negative running), but
the constraints in the r–ns plane in the presence of running do
not improve on the WMAP-only result. This degradation in the
constraints on r when we allow for a running in the spectral
index is further demonstrated in Table 6 where we quote the
1D marginalized constraints on the parameters {r, ns , nrun} for
the tensors-only, running-only, and tensors + running models.
In this table, we present the results for the WMAP + ACBAR +
QUaD combination and for the case where we add in the SDSS
LRG data.

7.7. Constraints on Parity Violation

In the preceding sections, we used the QUaD TT , EE,
TE, and BB spectra to constrain the parameters of standard
ΛCDM models and its usual extensions. For that analysis,
we did not use our measurements of the cross-polarization
spectrum (EB) or the correlation of temperature with B-modes
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Figure 17. Left panel: constraints are shown (as 68% and 95% confidence regions) in the nrun–ns plane with and without marginalization over a possible tensor
component. These fits are for the WMAP + ACBAR + QUaD combination. Allowing a nonzero tensor component weakens the constraints considerably. However, the
addition of both QUaD and ACBAR to WMAP still favors a small negative running. Right panel: the 68% and 95% central confidence regions in the r–ns plane (for
WMAP + ACBAR + QUaD) with and without marginalization over a possible running in the spectral index. Allowing the spectral index to run degrades the constraints
to such an extent that the addition of QUaD and/or ACBAR data yields no improvement over the WMAP-only constraints. ns is evaluated at ks


 = 0.013 Mpc−1 (for
both panels), and r is evaluated at kt


 = 0.002 Mpc−1.

(A color version of this figure is available in the online journal.)

Table 6
Constraints on Inflationary Parameters

Parameter Tensors Running Tensors + Running

CMB Only:
r < 0.33 (95% c.l.) < 0.60 (95% c.l.)
dns/d ln k −0.046+0.021

−0.021 −0.063+0.025
−0.025

ns 0.978+0.018
−0.018 0.965+0.013

−0.013 0.997+0.026
−0.025

CMB + LSS:
r < 0.27 (95% c.l.) < 0.61 (95% c.l.)
dns/d ln k −0.028+0.018

−0.018 −0.052+0.023
−0.023

ns 0.973+0.015
−0.015 0.967+0.013

−0.013 0.999+0.024
−0.024

(TB), since these spectra are expected to vanish in a universe
which respects parity conservation (which the above models
do). In this section, we use these two spectra (along with
the TE, EE, and BB measurements) to constrain a possible
parity-violation signal on cosmological scales. In the presence
of parity-violating interactions, a rotation in the polarization
direction of CMB photons will be induced as they propagate
from the surface of last scattering. If parity-violating effects
are present on cosmological scales, there will therefore be a
net local rotation of the observed Stokes parameters, Q and
U, in the measured polarization map. This will mix E and B
modes resulting in nonzero expectations for the TB and EB
power spectra. Parameterizing the parity-violation effect with
a rotation angle, Δα, the expectation values for the TB and EB
spectra in terms of the cosmological TE and EE spectra are
given by

CT B
� = CT E

� sin (2Δα) (24)

CEB
� = 1

2CEE
� sin (4Δα) . (25)

In addition, assuming that primordial and lensed B-modes
are negligible (which is an excellent assumption given our
sensitivity), the expectation value for the BB spectrum is

CBB
� = CEE

� sin2(2Δα) . (26)

We used our previous results to place a constraint of Δα =
0.◦53 ± 0.◦82 ± 0.◦50 (Wu et al. 2009), where the two quoted
uncertainties are the random and systematic components, re-
spectively.25

Here, we repeat this analysis with our new measurements. The
analysis is model independent in the sense that we construct our
estimator for Δα in terms of the observed power spectra and
do not assume a cosmological model for the EE or TE signals.
For details of our estimator and analysis (which has not changed
since our previous work), we refer the reader to Wu et al. (2009).

We apply the estimator to the real QUaD data and assign error
bars due to random noise and sample variance by processing the
suite of simulations containing both signal and noise through
the analysis. The result is shown in Figure 18, where we plot
both the results from simulations and from the real data. Note
that our simulations contain no parity-violating signals and so
should scatter about zero, which they do. We take the scatter in
the results from the simulations as our random error. Adding in
the systematic error, our final result is

Δα = 0.64 ± 0.50 (random) ± 0.50 (systematic) . (27)

25 The parity-violation effect is completely degenerate with an error in the
calibration of the polarization coordinate system of the experiment. As
described in Wu et al. (2009), we are confident in our calibration to at least 0.◦5.
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Figure 18. Constraints on possible parity-violation interactions on cosmological
scales, parameterized in terms of the parity-violation rotation angle, Δα. The
histogram shows the estimates of Δα as measured from our suite of signal +
noise simulations. The vertical red line shows Δα as measured from the real
QUaD data. The full and dashed blue lines show the 68% and 95% confidence
regions about the central value as estimated from the scatter in the simulation
results.

(A color version of this figure is available in the online journal.)

The random error has been reduced by ∼40% with respect to
our previous analysis in line with expectations.

Our result can be compared to the limits obtained from the
WMAP 5-year data (Δα = −1.7 ± 2.1; Komatsu et al. 2009) or
to the limits obtained from the combination of the WMAP 5-year
data and the B03 results (Δα = −2.6 ± 1.9; Xia et al. 2008).
We note that both of these quoted results include random errors
only and do not include estimates of the systematic errors on
the WMAP and B03 polarization calibration angles. Even when
we include this systematic uncertainty for QUaD, our result is
clearly a marked improvement over these previous analyses.

7.8. Limits on the Lensed B-Mode Signal

Although QUaD has not made any detection of B-modes,
it is the most sensitive small-scale CMB polarization experi-
ment to date. We can therefore place the leading upper limit
on the presence of a small-scale B-mode signal. The signal ex-
pected to dominate on the scales at which QUaD is sensitive is
that induced by gravitational lensing of E-modes by interven-
ing large-scale structure. As well as measuring cosmological
B-modes from inflation, future polarization experiments will
target this lensing signal from which useful information can be
gained on dark energy and massive neutrinos (e.g., Kaplinghat
et al. 2003; Smith et al. 2006).

Assuming a single flat band power between � = 200 and
� = 2000, we find �(� + 1)CBB

� /2π = 0.17 ± 0.17 μK2 with
a 95% upper limit of 0.57 μK2. The errors quoted are estimated
from the scatter in the results obtained from the suite of
simulations containing both signal and noise. For comparison,
the ΛCDM expectation value for this band power is 0.058 μK2.
Alternatively, assuming the ΛCDM shape for the lensing signal,
and simply fitting for its amplitude between � = 200 and
� = 2000, our constraint on the amplitude26 is 2.5 ± 4.5 with a
95% upper limit of 12.5.

Note that although we have used all of our BB band powers
to obtain the above constraints, the window function of our

26 Our normalization convention is such that the amplitude of the lensed
B-mode signal in the concordance ΛCDM model is unity.

estimator is strongly skewed towards lower multipoles where
the band power uncertainties are much smaller. The effective
range of multipoles to which our upper limits apply is, in fact,
170 < � < 400 rather than the nominal 200 < � < 2000 range.

Although our 2σ upper limits are an order of magnitude larger
than the expected ΛCDM signal, they are, in turn, roughly an
order of magnitude better than previously reported limits on the
amplitude of the B-mode signal in this angular scale range.

8. CONCLUSIONS

We have presented a re-analysis of the final data set from
the QUaD experiment, a CMB polarimeter which observed the
CMB at 100 and 150 GHz from the South Pole between 2005
and 2007. A major part of this re-analysis was the development
of a new technique for removing ground contamination from
the data. The ground signal seen in QUaD data is polarized
and, if not removed, contaminates all of the CMB power
spectrum measurements. Our new procedure, which is based
on constructing, and subsequently subtracting, templates of the
ground signal has allowed us to reconstruct maps of the T, Q,
and U Stokes parameters over the full sky area. Although the
method is not entirely lossless, it provides, on average, a 30%
increase in the precision of the power spectra compared to our
previous analysis which used field-differencing to remove the
ground.

Through further detailed analysis of calibration data, we
have also significantly improved our understanding of the
QUaD beams. We have implemented new beam models which
explicitly incorporate the effects of sidelobes, resulting in an
increase of ∼10% in the amplitude of our power spectra
measurements for multipoles, � � 700. The shift in power
is most relevant for our high-� temperature power spectrum
measurements where the signal-to-noise is high.

We have presented results using our two independent anal-
ysis pipelines. Though there are significant differences in the
approach between the two pipelines, the final results agree
very well. Testing the power spectra against the best-fit ΛCDM
model to the WMAP 5-year data, we find good agreement. Our
measurements of the E-mode polarization spectrum, and of the
cross-correlation between the E-modes and the CMB tempera-
ture field, are the most precise at multipoles � > 200 to date. Our
measurement of the temperature power spectrum at � > 1000 is
among the best constraints on temperature anisotropies on small
angular scales and is competitive with the final ACBAR result
(Reichardt et al. 2009).

We have subjected our results to the same set of rigorous
jackknife tests for systematic effects as was performed in our
previous analysis (Pryke et al. 2009). We find no evidence for
residual systematic effects in our polarization maps. Although
formally, many of our TT jackknife tests fail, the inferred
levels of residual systematics are negligible compared to our
sample-variance driven error bars. Moreover, the very small
level of power seen in our frequency difference maps and power
spectra indicate that foreground contamination is also negligible
compared to our uncertainties.

We have used our power spectra measurements, in combi-
nation with the WMAP 5-year results and the ACBAR results
to place constraints on the parameters of cosmological models.
For the standard six-parameter ΛCDM model, the QUaD data
add only marginally to the constraints obtained from the WMAP
data alone. The impact of the QUaD data is greater in a model
extended to include a running in the spectral index, reducing
the uncertainties in Ωbh

2, Ωch
2, θ , and nrun by up to 20%. The
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addition of both QUaD and ACBAR data is more powerful still,
improving the constraints on these four parameters by up to
one-third. For a ΛCDM model extended to include a possible
tensor component, we find that the addition of both ACBAR
and QUaD data reduces the upper limit on the tensor-to-scalar
ratio from r < 0.48 to r < 0.33 (95% c.l.). This is the strongest
limit to date on tensors from the CMB alone. The improvement
is driven by a tendency of the QUaD data to prefer a somewhat
smaller spectral index than is inferred from WMAP data alone.

We have used our measurements of the TB and EB power spec-
tra to put constraints on possible parity-violating interactions on
cosmological scales. Following our previous analysis (Wu et al.
2009), we constrain the rotation angle due to such a possible
“cosmological birefringence” to be 0.◦64 ± 0.◦50 ± 0.◦50 where
the errors quoted are the random and systematic contributions.
Our result is equivalent to a constraint on isotropic Lorentz-
violating interactions of k

(3)
(V )00 < 1.5 × 10−43 GeV (68% c.l.).

Finally, we have placed an upper limit on the strength of the
lensing B-mode signal using our measurements of the BB power
spectrum. Assuming the concordance ΛCDM shape for lensing
B-modes, we constrain its amplitude (where the normalization is
such that the ΛCDM model has amplitude = 1) to be 2.5 ± 4.5
with a 95% upper limit of 12.5. Alternatively, assuming a
single flat band power for � > 200 we find a 95% upper
limit of �(� + 1)CBB

� /2π < 0.57 μK2 for the amplitude of
B-modes.
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APPENDIX A

BEAM UNCERTAINTIES

As described in Section 4, our new beam models involve ei-
ther fitting the QUaD PO beam models to QSO data (Pipeline 1)
or measuring the sidelobes directly from QSO maps under
the assumption that the sidelobes are azimuthally symmetric
(Pipeline 2). Although the predicted radially averaged beam
profiles from both of these approaches appear to match the data
very well, the fits are not perfect and are subject to an uncertainty
in the sidelobe levels. There is also an uncertainty on the width
of the main lobe, dominated by small temperature-dependent

Figure 19. Fractional uncertainties on our beam transfer functions. The dashed
curves show the errors due to the 2.5% uncertainty in the width of the main lobe
beams. The dotted curves show the sidelobe uncertainties and the full curves
show the total uncertainties. The corresponding curves for the combined spectra
are similar to the 150 GHz curves shown in red. At 150 GHz, the uncertainty
in the level of the sidelobes dominates the beam uncertainty for the full �-range
presented in this paper.

(A color version of this figure is available in the online journal.)

variations. Based on the fluctuations in the beam widths seen
in our “rowcal” data,27 we estimate the remaining uncertainty
on the main lobe width to be 2.5% of the effective FWHMs
of 5.2 and 3.8 arcmin at 100 GHz and 150 GHz, respectively.
We obtain the uncertainty on the level of our sidelobes from
the errors returned from fitting our PO simulations to the QSO
observations in Pipeline 1.

To propagate these errors onto uncertainties in the transfer
functions of Section 6.3, for the error in the main lobe, we
simply note that the effect of a fractional error, δ, in the FWHM
of a Gaussian beam is well approximated by

ΔB2
�

B2
�

= exp
[
σ 2

b (δ2 + 2δ)�(� + 1)
] − 1 , (A1)

where σb = θFWHM/
√

8 ln 2 is the beam width. For the errors in
the sidelobes, we take the minimum and maximum sidelobe
levels as returned from the fits of the PO models to the
data, co-add the resulting beam models across detectors and
radially average to produce the minimum and maximum allowed
radial profiles, B(θ ), for each frequency. Taking the Legendre
transform of these profiles,

B� = 2π

∫
B(θ )P� cos(θ ) dcos(θ ) , (A2)

we estimate the error in our beam transfer functions due to the
uncertainty in the sidelobes as

ΔB2
� = B2

max,� − B2
min,� . (A3)

We take the quadrature sum of the errors due to the main lobe and
sidelobe uncertainties to be the final error. These uncertainties
are shown in Figure 19 along with the quadrature sum. Since

27 These calibration data consisted of scanning each row of pixels in the focal
plane across the bright H ii region, RCW38 and were taken daily throughout
the QUaD observations. Although RCW38 is not a true point source, the
fluctuations in the per-channel beam widths put a tight constraint on
temperature dependent seasonal fluctuations in our main lobe beams.
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Table 7
Absolute Calibration Uncertainties for QUaD

Source Uncertainty(%)

Statistical error in calibration ratio 0.60
�-dependence of calibration ratio 1.10
Uncertainty in B03 B� 1.10
Uncertainty in QUaD B� 0.75
Pointing uncertainty 1.62
Internal consistency (jackknifes) 1.20
B03 calibration error 2.00
Total uncertainty 3.38

our combined spectra are dominated by the 150 GHz channel,
the curves for the combined spectra are approximately the same
as the 150 GHz curves.

APPENDIX B

ABSOLUTE CALIBRATION UNCERTAINTY

As described in Section 5, our calibration is performed
by taking the ratio of cross spectra between the QUaD and
B03 temperature maps. This process is subject to several
uncertainties.

First, there is a statistical error in the calibration ratio,
predominantly due to noise in the B03 maps. To estimate this
error, we perform Monte Carlo simulations of the absolute
calibration process. Assuming white noise and a ΛCDM power
spectrum, we use the B03 hit maps along with their stated
sensitivities to produce simulations of the B03 maps. We do the
same thing for QUaD and apply a known μK → V calibration to
the simulated QUaD maps. Each pair of simulated maps is then
passed through the absolute calibration analysis. The scatter in
the calibration factors recovered from these simulations is 0.6%,
and we take this as the statistical uncertainty in our calibration.

Our calibration ratio as a function of multipole is not perfectly
flat but fluctuates about a mean value. Although some of this
scatter will be due to noise (which is included in our estimate of
the statistical error), we conservatively also include this scatter,
which we measure to be 1.1%, in our error budget. In addition,
we have also performed the calibration analysis using each of the
jackknife splits described in Section 6.5. Although the scatter
found in the recovered calibration numbers does not indicate
any significant inconsistencies, we also include this scatter in
our error budget.

To propagate the errors in the B03 and QUaD beam transfer
functions onto our calibration, we repeat the analysis but with
the beam functions shifted by their quoted errors. Doing this
for each of the B03 and QUaD beams, we take the resulting
shifts in the calibration numbers as the error due to uncertainty
in the beams. We find a 1.1% shift due to the uncertainty in the
B03 beam function and a 0.75% shift due to the uncertainty in
QUaD’s beam.

A further source of error is the relative pointing uncertainty
between the QUaD and B03 maps. There is a clear pointing
offset seen between the QUaD and B03 maps, and so we have
shifted the B03 maps before performing the calibration analysis.
We find the appropriate shift (which we model as a simple shift
in R.A. and decl.) by fitting for it in map space. To quantify
the error, we repeat the analysis with the B03 maps shifted
(away from the best fit) according to the errors returned from
our map-based fit. Applying the shift in a number of different
directions (the eight compass points), we find the maximum

shift in the resulting calibration factor is 1.6%. We take this
number as our error due to the B03/QUaD relative pointing
uncertainty.

Finally, QUaD also inherits the stated uncertainty in the B03
calibration which is 2% (Masi et al. 2006). We add this and each
of the errors derived above in quadrature to arrive at our final
calibration uncertainty of 3.4%. Our absolute calibration error
budget is summarized in Table 7.
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