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Abstract
Control of wave energy converters requires knowl-

edge of some seconds of the future behavior of certain
physical quantities, in order to approach optimality. That
is why short time prediction of the oncoming waves is a
crucial problem in the field of wave energy, whose solu-
tion could bring great benefits to the effectiveness of the
devices and to their economical viability.

This study is proposed as a preliminary approach to
cope with this necessity, where wave forecasts are com-
puted on the basis of past observations collected at the
prediction site itself. Working on single point measure-
ments allows the treatment of the wave elevation as a
pure time series, so that a wide range of well established
techniques from the stochastic time series modelling and
forecasting field may be exploited. Among the proposed
solutions there are some cyclical models, based on an ex-
plicit representation of the a priori knowledge about the
real process. It is then shown how a lot simpler and more
effective solution can be obtained through classical AR
models, which are shown to be able to implicitly repre-
sent the cyclical behavior of real waves. As a compari-
son with AR models some results obtained with neural
networks are also provided.

Keywords: wave energy, control of wave energy converters,
wave forecasting, time series

Nomenclature
WEC = Wave Energy Converter
Hs = Significant wave height
η = Wave elevation
R2 = Predictability index
AR(n) = Auto Regressive model of order n
NN = Neural network
DHR = Dynamic Harmonic Regression
ωc = Cut-off frequency
x̂(l/k) = prediction of x(l) based on information up to k
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1 Introduction
Different approaches to wave energy extraction, ei-

ther in the operating principle (oscillating bodies, oscil-
lating water columns, etc...) and in the control technique
require knowledge of some seconds of the future behav-
ior of certain physical quantities, in order to approach
optimality. These quantities may be the wave excitation
force or the oscillation velocity in the case of oscillat-
ing bodies, excitation volume flux or air chamber pres-
sure in the case of oscillating water columns, overtop-
ping water flow in the case of an overtopping device,
and so on [1],[2]. They are all strictly dependant (in
some cases through a non causal transformation) on the
incident wave on the device [3]. That is why short time
prediction of the oncoming waves is a crucial problem
in the field of wave energy, whose solution could bring
great benefits to the effectiveness of the Wave Eenergy
Converters (WECs) and consequently to their economi-
cal convenience.

The first approach that may be found in literature, to
the best of the author’s knowledge, was provided by Bu-
dal and Falnes [4] and utilises the Kalman filter to adap-
tively estimate the frequency, phase and amplitude of
the wave excitation force acting on a heaving body, on
the basis of distant pressure measurements. Very strict
simplifying assumptions, requiring simple sinusoidal be-
havior of the excitation force and mono-directionality of
wave propagation, are applied and their validity in real
sea conditions is not tested. More recent solutions pro-
posed a wave prediction computed by means linear dig-
ital filters where the inputs are either distant pressure
measurements [2] or distant wave elevation [5]. Whereas
the former [2] gives a very interesting approach to the
design of the predicting filters (unfortunately not very
relevant results were provided and hypothesis of mono-
directionality is made), the study presented in [5] has the
peculiarity of dealing with multi-directionality, but in-
troduces a very high numerical complexity in the model.
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Finally, it is worth mentioning the preliminary study by
Voronovich [6], where the spatial prediction of wave el-
evation is provided by fitting an harmonic model to the
distant observations, but only results obtained in simpli-
fied conditions were provided.

The approach that will be followed in this study is
slightly different and was firstly presented by these au-
thors in [7]. In particular, focus is put on forecasting
the wave elevation based on past measurement collected
at the prediction site itself, so that the wave elevation is
treated as a univariate time series. The only study in lit-
erature following the same approach, at the best of the
authors knowledge, was presented in [8], where the in-
terest is however restricted to the prediction of some key
characteristics of the wave excitation force (e.g. time
until the next peak) in order to improve latching control
performance, and results were presented only on simu-
lated data.

Working on single point measurements (in particular
at the location of the wave absorber) allows for some
significant simplifications:

• multi-directionality does not need to be taken into
account (provided that a non-directional absorber is
assumed);

• wave spatial propagation laws have no effect and no
hypotheses need to be made about them;

• there is no need to separate the incident wave
(which is the one of interest) from the radiated wave
due to the device motion.

There are some drawbacks, however, and in particular:

• the approach is not valid for directional devices (or
non-directional absorbers arrays);

• it is still not clear how accurately the wave elevation
can be measured at the device location.

This study deals with real sea wave observations and
in section 2 an analysis of the available real data is
presented, particularly the energy distribution at differ-
ent frequencies, a quantification of the possible non-
linearities and a quite interesting measure of predictabil-
ity. Then sections 3 and 4 propose some possible fore-
casting models and compare the result achieved with
them. Conclusions are finally outlined in section 5.

2 Analysis
The data available for this study was provided by the

Irish Marine Institute and comes from a data buoy lo-
cated in Galway Bay, on the West Coast of Ireland (at
approximately 53o13′N,9o18′W ). The data consists of
20 minute records sets for each hour, collected at a sam-
pling frequency of 2.56Hz, for parts of years 2007 and
2008. The location is sheltered from the Atlantic Ocean
so that the wave height magnitude is generally small,
which makes it an ideal site for 1/4 scale WEC proto-
types.

An overall understanding of the main characteristics
and properties of the waves at the observed location is
provided in this section, so that the motivations for cer-
tain choices of the forecasting algorithms proposed in
section 3 will be much clearer. There was no data avail-
able from different offshore locations so that no general
conclusions may be drawn, but it is the opinion of these
authors that the tools and the considerations in the fol-
lowing will be very valuable when dealing with any kind
of wave elevation time series collected at any site.

In section 2.1, some overall statistics of the waves at
the considered location are shown, and their properties
are discussed relatively to the overall problem of wave
forecasting which this paper is focused on. Then, as the
water depth at the location is nearly 20m, the quantifi-
cation of possible non-linearities that may arise due to
relatively big waves or to irregularities in wind waves
is discussed in section 2.2. As the aim of the study is
wave forecasting treated as a time series problem, an in-
teresting general theory about predictability is presented
in section 2.3 where the feasibility of the problem is as-
sessed without referring to any particular solution but
just to the data itself.

2.1 Fourier analysis

The main tool for a first analysis of the waves is their
spectral distribution, the wave spectrum, which shows
how much energy is distributed at different frequency
components of the wave, which are supposed to be com-
pletely independent of each other. Although offering a
limited time-averaged information (a Wavelet transform
would offer a more complete information in the time do-
main [9]) it is still very valuable in order to provide some
overall characteristics of the sea conditions in different
situations.

A first analysis, which is interesting to carry out, over
the available hourly data sets, concerns the distribution
of the significant wave height Hs and the peak and mean
radian frequency of the spectrum, respectively ωpeak and
ωmean, and to assess if their behaviors are correlated to
each other in some way. The significant wave height is
a measure of the mean energy contained in the wave,
while the ωpeak and the ωmean can be a way to repre-
sent where the spectrum (and so the energy) of the wave
is more concentrated. From Fig.1, it is clear how high
energy wave systems show a much lower spread of the
spectrum, centered at a low frequency (about 1rad/s),
consisting of a well defined narrow peak (swell). The
lower the energy, on the other hand, the more the dis-
tance between the peak and mean frequency, which de-
notes a much flatter spectrum where the high frequency
wind waves have a similar energy content to the low fre-
quency swell. The two sample spectra of Fig. 2 are par-
ticularly illustrative in this respect.

2.2 Non-linearity analysis

Ocean waves, like most of the systems in the real
world, are not linear, and it would be helpful and valu-
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Figure 1: Big waves systems (high Hs) present well defined
low frequency swells, while in low energy waves the high fre-
quencies (wind waves) are also quite significant and can con-
tain more energy then the swell.
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Figure 2: Sample high and low energy spectra, respectively
occurred on the 5th of January and on the 1st of May 2007, at
the Galway Bay location.

able to quantify how far from linearity they are so that,
in the particular case of wave forecasting, an appro-
priate model can be chosen. Linearity in the case of
waves implies linear superposition of harmonic compo-
nents (sines and cosines), so that the distribution of the
wave elevation results to be perfectly symmetric with re-
spect to zero. While in the case of deep water this as-
sumption is reasonably valid (the wave elevation distri-
bution approximates a Gaussian [10]), in shallow water
locations (wave length comparable to the water depth)
higher order terms should be taken into account (refer
to Stokes [11]) and their effect is to produce higher and
narrower peaks then troughs, so that the distribution in
not Gaussian any more. A statistical analysis of higher
order momentum [12] (note that a Gaussian distribution
is completely defined up to the second order momentum)
can be utilised to detect the significance of such a non-
linearity. Fig. 3 shows the skewness and kurtosis indices
computed for each available data set and measuring, re-
spectively the asymmetry of the distribution (null skew-
ness denotes perfect symmetry [12]) and the peakedness
of the distribution (a Gaussian distribution has a kurtosis
equal to 3 [12]).

There is another possible non-linearity to take into ac-
count, which unfortunately is less quantifiable and can
only be analysed through visual inspection. This is due
to the interactions occurring between different harmonic
components of the wave system, which are neglected in
classical linear wave theory and in Fourier-Wavelet anal-
ysis. An higher order spectral analysis through the bis-
pectrum [10] revealed to be quite effective in order to
detect these interactions, but as previously stated, a real
quantification would be hard to carry out and probably
not really significant. This non-linearity is known to be
more present in wind waves, that is at high frequency and
low energy, that are less interesting from a wave energy
point of view. A low-pass filtering of the wave eleva-
tion time series, in particular, may help to reduce their
effect so that they should not be taken into account in the
forecasting model. As an example compare Fig. 4 and
Fig. 5, where the bispectrum is shown for two sample
data sets. Relevant portions in off-diagonal parts of the
graphs indicate interactions between different frequen-
cies, and it is clear how in the low energy system very
significant energy exchanges appear between high and
low frequency wave systems. In the case of an high en-
ergy wave, on the other hand, most of the bispectrum is
concentrated near the 45 degrees line, so that no relevant
exchanges of this sort are expected.

It is important to say, however, that both the effects
are not expected to be as relevant in deep water off-shore
locations, where wave energy devices would most likely
be located.

2.3 Predictability

As the focus of this study is on the multi-step-ahead
prediction of the wave elevation time series, it would be a
very valuable information to analyse the predictability of
the time series, that is how accurately it can be predicted
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Figure 3: Third and fourth order statistical analysis, respec-
tively through indices of kurtosis and skewness, for all the
available data sets.
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Figure 4: Bispectrum for an high energy wave system mostly
concentrated around the 45 degrees line, apart from some small
interactions revealed between the peak frequency and very low
frequencies (0.2−0.3 rad/s).
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Figure 5: Bispectrum in the case of small waves shows signifi-
cant interactions between high and low frequency components.
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Figure 6: Predictability indices R(k)2 estimated for data sets
with different energy. It dies down very quickly in any case,
with the highest energy wave system showing a slightly better
predictability.

based only on past values, without making any assump-
tions on the actual model behind it or the forecasting
techinque which will eventually be adopted. Such a mea-
sure is based, in the most general case, on the amount
of information that past behavior of the signal contains
about its future values. A simpler measure of predictabil-
ity then the very general approach proposed in literature
(based on the mutual information notion [13]) will be
adopted here, which supposes that a linear relationship
exists that relates the future values of the wave eleva-
tion to the past. This is, of course, a limiting assumption
but it is still effective, as it will be shown, to provide at
least some qualitative deductions. In particular, a pre-
dictability index R2(k) is estimated, defined as the ratio
of the variance of the optimal k-step-ahead prediction,
η̂(t + k/t), to the variance of the real wave elevation,
η(t):

R2(k) , E{η̂(t + k/t)2}
E{η(t)2} = 1− σ̂2

k
E{η(t)2} (1)

where it is supposed that the wave elevation η(k) has a
zero mean and, in the second formulation, the optimal
k-step-ahead prediction error variance, σ̂2

k , E{ê(t +
k/t)2}, is introduced. A very efficient algorithm for
the estimation of R(k)2, under the assumption of a lin-
ear univariate time series, was proposed in [14] and it
is adopted here for the analysis of the available wave
data. Fig. 6 shows the estimated predictability index
R2(k), for a forecasting horizon of almost 20 seconds
(exactly 50 samples), of four wave systems of differ-
ent energy, which is expressed in terms of the significant
wave height Hs. As expected from any real world time
series, it is a non-increasing function of the prediction
horizon. All the wave systems show a relatively poor
predictability, which dies out very quickly after 2− 4
seconds (5− 10 samples), with a slightly better behav-
ior of the highest energy waves. This would be ex-
pected because of the better regularity of the high energy
wave components, which corresponds to low frequency
waves (as seen in section 2.1), while low energy and high
frequency waves are more affected by non-linearities
and irregularities (strong energy exchanges with low fre-
quency swell, from the bispectrum of Fig. 5).
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Figure 7: Predictability of a high energy and a low energy
data set when low-pass filtering with different cut-off frequen-
cies ωc is applied. The better predictability of low frequency
components is clear in the case of high energy systems.

In a wave energy context, however, one might be in-
terested in forecasting only the high energy components,
so that a low pass filter can be applied to the time se-
ries and a focus would be put exclusively on the low fre-
quency components. In Fig.7, the estimated predictabil-
ity index R(k)2 is shown for the pre-filtered wave system
with the highest energy (Hs = 2.3652m) when different
cut-off frequencies ωc are applied. It is clear how the
overall predictability significantly improves with respect
to the non-filtered waves. Moreover, the smaller the cut-
off frequency, i.e. the lower the frequencies we limit the
analysis to, the better the predictability of the time se-
ries, so that more accurate predictions, and further in the
future, should be expected. The same improvement is
not shown in the case of low energy waves, and this may
be explained with the fact that low-pass filtering cuts out
most of the energy of the signal, so that the harmonic
components left in it have relatively small amplitude.
This, however, might not be a problem in a wave en-
ergy context, as the actual energy that is lost, although
being a great part of all the available energy, might still
represent a reasonable and negligible loss compared to
high energy wave systems.

3 Models
3.1 Cyclical models

From linear wave theory [1], a real ocean sea state
may be modelled as a linear superposition of waves with
different frequencies and propagating in different direc-
tions:

η(x,y, t) =
∫ +∞

0
dω

∫ +π

−π
A(ω,β )cos(ωt−kxcosβ −kysinβ +ϕi(ω))dβ

(2)

where k is the wave number and β represents the direc-
tion of propagation in the x-y plane. If a specific location

(x0, y0) is considered, the following simplified expres-
sion can then be obtained:

η(x0,y0, t) =
∫ +∞

0
dω

∫ +π

−π
A(ω,β )cos(ωt +φ(ω,β ))

(3)
where the directionality information is obviously lost
and the constant terms kx0 cosβ and ky0 sinβ are in-
cluded in the phase φ(ω,β ).

From this knowledge about the real process it is quite
straightforward to choose, as a forecasting model for
the wave elevation, a simple cyclical model, as it was
also presented in [7], where the frequency domain is of
course discretised:

η(t) =
m

∑
i=1

ai cos(ωit)+bi sin(ωit)+ζ (t) (4)

An error ζ (t) has been introduced and the phase and am-
plitude information for each harmonic component is now
contained in the parameters ai and bi.

The model (4) is completely characterised by the pa-
rameters ai,bi and by the frequencies ωi. It could then
be fitted to the data through some non-linear estimation
procedure (the model is non-linear in the frequencies in
particular) and utilised to predict the future behavior of
the wave elevation time series. It needs, however, to
be adapted to the time variations of the wave spectrum,
which is non-constant at all, so that the first approach [7]
has been to choose the frequencies in the model design
phase and to keep them constant during its utilisation and
estimation. In this way the model becomes perfectly lin-
ear in the parameters ai,bi and can be easily estimated
and on-line adapted to the spectral variations of the sea.

The problem of choosing the frequencies can be di-
vided in two sub-problems:

1. Choice of the range: This is a quite easy matter, as
statistical information about the location can be
utilised to properly define an upper and lower
bound for the range. At this point, one may decide
to include the range of higher frequencies where the
low energy wind waves are, or to simply consider a
narrower range including only the swell.

2. Distribution of the frequencies in the range: A ro-
bust choice would be a constant spacing between
the frequencies over all the range, but a more effi-
cient non-homogeneous distribution was also pro-
posed in [7]. The latter however suffer from the
problem of specificity, so that if the wave spectrum
changes the frequencies might not be appropriate
any more. If the frequencies are kept constant, then
it would not be a proper choice.

Once the frequencies are determined, a model for the
amplitudes has to be chosen. In [7], it was pointed out
how they have to be adaptive to the wave, as constant
amplitudes gave very poor results. Two adaptive models
are proposed here, in particular:
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Structural model: based on Harvey’s structural model
[15], the model (4) is expressed in the following
discrete time form:

η(k) =
m

∑
i=1

ψi(k)+ζ (k) (5)

[
ψi(k +1)
ψ∗i (k +1)

]
=

=
[

cos(ωiTs) sin(ωiTs)
−sin(ωiTs) cos(ωiTs)

][
ψi(k)
ψ∗i (k)

]
+

+
[

wi(k)
w∗i (k)

]
, i = 1, ...m

(6)

where it can be verified that ψi(0) = ai and ψ∗i (0) =
bi. From equation (6), then, the following state
space form, which is more familiar to work with,
is easily derived:

x(k +1) = Ax(k)+w(k)
η(k) = Cx(k)+ζ (k)

(7)

where

x(k) , [ψ1(k) ψ∗1 (k) ...ψm(k) ψ∗m(k)]T (8)

w(k) , [w1(k) w∗1(k) ...wm(k) w∗m(k)]T (9)

A , diag
{[

cos(ωiTs) sin(ωiTs)
−sin(ωiTs) cos(ωiTs)

]}
(10)

C , [1 0 1 0 . . . 1 0] ∈ℜ1×2m

(11)

Dynamic Harmonic Regression (DHR): Introduced
by Young [16], it expresses a cyclical model of
the type of eq. (4), where the ai and bi parameters
evolve according to a Generalised Random Walk:
[

xi(k +1)
x∗i (k +1)

]
=
[

α β
0 γ

][
xi(k)
x∗i (k)

]
+
[

δ 0
0 1

][
εi(k)
ε∗i (k)

]

xi = ai for i = 1, . . . m

xi−m = bi for i = m+1, . . . 2m
(12)

where x∗i models a slope for the evolution of each
parameter xi. The disturbance terms εi and ε∗i are
still assumed to be Gaussian noises and introduce
the variability in the model. A particular form of
(12) was implemented in this study where the dy-
namic matrices are chosen in order to represent
Harvey’s local linear trend [15]:
[

xi(k +1)
x∗i (k +1)

]
=
[

1 1
0 1

][
xi(k)
x∗i (k)

]
+
[

1 0
0 1

][
εi(k)
ε∗i (k)

]

(13)

for i = 1, 2, ... 2m. A state space form, then,
can easily be derived, resulting in the following
model:

x(k +1) = Ax(k)+ ε(k)
η(k) = C(k)x(k)+ζ (k)

(14)

where

x(k) , [x1(k) x∗1(k) ...x2m(k) x∗2m(k)]T (15)

ε(k) , [ε1(k) ε∗1 (k) ...ε2m(k) ε∗2m(k)]T (16)

A , diag
{[

1 1
1 0

]}
∈ℜ4m×4m (17)

C(k) , [cos(ω1Ts) 0 . . . cos(ωmTs) 0
sin(ω1Ts) 0 . . . sin(ωmTs) 0]

(18)

Both the models have the advantage of a state space
representation, which is particularly suited to the appli-
cation of the Kalman filter for a recursive on-line adap-
tion. The initialisation is provided through means of reg-
ular least squares on a number of past observations and
then the Kalman filter is applied on-line, once a proper
covariance matrix for the state and output disturbances is
provided. When the estimate of the model’s parameters,
x̂(k/k), is available at any instant k, the l-steps-ahead
prediction η̂(k + l/k), based on the information up to k,
is obtained through the free evolution of the model:

η̂(k + l/k) = C(k + l)Al x̂(k/k) (19)

There are, however, some strong limitations to this
approach with cyclical models, that also emerged in [7],
and that will be highlighted also in the results, section 4:

• The use of constant frequencies requires, for the
sake of robustness, a dense and complete set, which
adds considerable complexity to the model, and

• It is not clear how to choose the covariance matrices
for the Kalman filter implementation

In the next section 3.2, it will be shown how AR models
implicitly overcome these difficulties in a very effective,
and simple, way.

3.2 Auto Regressive (AR) models

As a pure time series problem is under study, there
is the advantage of the existence of a well established
theory, from the time series field, which it is possible to
utilise as well. As a comparison with the cyclical mod-
els, where the a priori knowledge that we have about the
real system is explicitly taken into account, it is particu-
larly interesting to analyse the properties of classical AR
models.

The wave elevation η(k) is supposed to be linearly
dependant on a number n of its past values:

η(k) =
n

∑
i=1

aiη(k− i)+ζ (k) (20)

where a disturbance term ζ (k) has been also included. If
the parameters ai are estimated and the noise is supposed
to be Gaussian and white, the best prediction of the fu-
ture wave elevation η̂(k + l/k) at instant k is then given
by:

η̂(k + l/k) =
n

∑
i=1

âi(k)η̂(k + l− i/k) (21)
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where, obviously, η̂(k + l− i/k) ≡ η(k) if k + l− i ≤ k
(i.e. the information is already acquired and there is no
need of prediction).

The properties of such a very simple forecasting
model become clearer if an explicit solution of the dif-
ference equation (21) is provided [17]:

η̂(k + l/k) =
n

∑
i=1

bi(k) fi(l) (22)

Here, the coefficients bi(k) depend only on the forecast-
ing origin (so they stay constant at each instant for the
complete prediction time horizon) and are function of
the initial conditions (the past n observations), whereas
fi(l) are functions of the lead time l and, in general,
they include damped exponential and damped sinusoidal
terms completely determined by the roots pi of the trans-
fer function ϕ(z) describing eq. (20) in the Z-domain:

η(z) =
ζ (z)
ϕ(z)

, ζ (z)
∏n

i=1(z− pi)
(23)

The general shape of the prediction function is therefore
completely determined by the poles, pi, while the partic-
ular realisation of this general structure is determined, at
each sampling instant, by the past values of the time se-
ries. It is particularly interesting to analyse the shape of
the forecasting function (22) in the case of m/2 (when m
is even) couples of complex-conjugate poles pi and p∗i :

η̂(k + l/k) =
m/2

∑
i=1

ci(k)|pi|l sin(∠pik +ϕi(k)) (24)

An AR model with only complex-conjugate poles is im-
plicitly a cyclical model, where the frequencies are re-
lated to the phase, ∠pi, of each pole and the amplitude
and phase of each harmonic component are related to the
last n observations of each time instant k, so that they
adapt to the observations.

Note, then, that an adaptivity mechanism is already
present even if the AR model is only estimated once on
a batch data set. Only the frequencies are fixed, while
amplitudes and phases are automatically updated on the
basis of the recent past information.

A further degree of adaptivity can be introduced with
an on-line estimation of the AR model parameters, ai,
which would introduce an on-line adaptivity of the fre-
quencies as well. This is not considered in this paper,
however, as it would go beyond its main scope.

3.3 Neural networks

It was shown in section 2.2 how the non-linearities
appearing in the big low frequency waves, due to the rel-
atively small water depth, are not really relevant. The
study may therefore end with the cyclical and AR mod-
els provided through sections 3.1 and 3.2, particularly
if the high frequency components are filtered out. It is
however interesting, in the authors opinion, looking at a
comparison with a most widespread tool for time series
modelling and forecasting such as neural networks.

For the problem under study, a non-linear relationship
of the following type is created through a multilayer per-
ceptron [18]:

η(k) = NN(η(k−1), η(k−2), . . . η(k−n)) (25)

so that the dependance between the current wave ele-
vation and n past values is realised. The model is then
trained through the back propagation algorithm on a set
of batch data and utilised for multi-step-ahead predic-
tion.

This is, of course, not the only possibility and many
others could be considered. For example, a priori knowl-
edge about the process (which would always be a more
appropriate approach) may be included and a non-linear
relationship of the following type may be considered in-
stead:

η(k) = NN(cos(ω1Tsk +ϕ1), . . . cos(ωnTsk +ϕn))
(26)

but some of the limitations outlined in section 3.1, when
cyclical models where considered, due to an appropriate
choice of the frequencies, are still present. Here, there is
a greater problem of how to consider the initial phases ϕi
of the input harmonics, so the possibility was discarded.

In section 4, results will be shown and compared with
the cyclical and AR models, for different neural network
topologies, with two hidden layers and different numbers
of inputs (regression order n).

4 Results
The possible forecasting models proposed in section

3 were tested on a significant sample data set, appropri-
ately chosen among all those available (refer to section
2), representing different sea conditions. In particular,
a single 20 minute data set for the 5th of January 2007
and the 1st of May 2007 have been chosen to provide
differences between a high energy situation with a well
defined swell and a low energy case, where the small
swell is comparable with the high frequency wind waves
(refer to Fig. 2).

The prediction accuracy is measured with the follow-
ing goodness-of-fit index, which depends on the fore-
casting horizon l:

f it(l) =
(

1− ||η(k + l)− η̂(k + l/k)||2
||η(k)||2

)
·100 (27)

Here || · ||2 is the Euclidean norm operator (root sum
squared) over all the sampling instants k of the simu-
lation (a 20 minutes data set), η(k+ l) is the wave eleva-
tion and η̂(k + l/k) is its prediction based on the infor-
mation up to instant k. A 100% value for f it(l) means
that the wave elevation time series is perfectly predicted
l steps in the future.

Starting from the cyclical models outlined in section
3.1, Table 1 shows their ability to predict the January
data set with different choices of the frequency spac-
ing dω and for both the Harvey and the DHR model.
The cases when almost all the spectrum is considered
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Hs = 2.31m ωc = 2rad/s ωc = 1.2rad/s
model dω f it(5) f it(5) f it(10)

Harvey
0.1 12.54% 37.13% 25.49%
0.05 19.89% 41.91% 30.94%
0.01 24.97% 48.54% 31.28%

DHR
0.1 −59.87% −47.43% −88.70%
0.05 −59.01% −46.59% −86.29%

Table 1: Cyclical models on January high energy data set

Hs = 0.31m ωc = 3.5rad/s ωc = 1.2rad/s
model dω f it(5) f it(5) f it(10)

Harvey
0.1 −10.27% 39.47% 23.44%
0.05 −4.90% 45.78% 31.55%
0.01 4.66% 55.82% 42.63%

DHR
0.1 −40.58% −35.25% −100.63%
0.05 −40.19% −33.64% −96.67%

Table 2: Cyclical models on May low energy data set

(cut-off frequency ωc = 2rad/s) or when part of the
lower energy spectrum is filtered out (ωc = 1.2rad/s)
are shown. It is clear how the performance is quite poor
when a wider range of frequencies is considered, while
better prediction is achieved when focusing only on the
low frequencies (together with a reduced complexity due
to the narrower range considered). The accuracy, how-
ever, never goes past 50% for 5 sample-ahead predic-
tions, corresponding to nearly 2 seconds. Moreover, the
complexity of the models can be very high, e.g. a spac-
ing of dω = 0.01 with a range [0.3,1.2]rad/s generates
a state space model of order 182 for the Harvey’s cycli-
cal model and 364 for the DHR! Consequently, it can
be concluded that, although different adjustments of the
estimation procedure (particularly the initial choices for
the covariance matrices required by the Kalman filter)
may lead to better results, the solution does not seem to
be very valuable.

Moving to AR models, then, Table 3 and Table 4
show a far better accuracy (a comparison with cyclical
models is depicted in Figure 9), which improves with
the regression order and if only low frequencies are con-
sidered. In particular, acceptable predictions may be ob-
tained up to 30 samples in the future (nearly 12 seconds)
when only the low frequencies are considered, partic-
ularly with regression orders 16 and 32 (higher orders
did not show any significant improvement), so that the
model remains computationally light with respect to the
cyclical models. In the case of the low energy wave
system the accuracy is even better then for high energy
data (January) if only the low frequencies are considered.
This is probably due to the non-linearities appearing in
big waves at the considered location, as explained in sec-
tion 2.2.

It is worth noting that these results have been ob-
tained with static AR models, estimated only from a
batch time series with regular least squares, and no adap-
tivity or recursive on-line estimation has been imple-
mented (which was fundamental for the cyclical mod-
els). Here, in fact, as mentioned when describing the AR
model in section 3.2, it was pointed out how also a static

Hs = 2.31m ωc = 2rad/s ωc = 1.2rad/s
model f it(5) f it(5) f it(30)

8 92.31% 97.94% 0.57%
16 98.31% 97.96% 53.38%
32 98.31% 97.96% 67.94%

Table 3: static AR models on January high energy data set

Hs = 0.31m ωc = 3.5rad/s ωc = 1.2rad/s
model f it(5) f it(5) f it(30)

8 40.47% 98.97% 24.95%
16 80.15% 99.00% 77.77%
32 98.53% 99.00% 81.96%

Table 4: static AR models on May low energy data set

AR(n) model provides cyclical components with ampli-
tudes and phases time-varying on the basis of the last n
observations.

It is particularly interesting also to show, Fig. 8,
for the AR(16) model estimated on the January data set
when ωc = 1.2rad/s, how its poles all lie approximately
on the unit circle in the Z-plane and the corresponding
frequencies are all contained in the significant part of the
spectrum (in the interval [0.3 , 1.2]rad/s). This occurs
in every situation as soon as the AR order is kept rea-
sonably low. For order 32, for example, some of the
frequencies, depending on the data set, are estimated out
of the expected bound and, more in particular, close to
the maximum π ∗ fs.

The focus can now be moved to the results obtained
with neural networks, to see if they can better the perfor-
mance of the simple AR models. Some structures where
trained and the results obtained are shown in Table 5 and
Table 6, respectively, for the January and May sample
data sets. A comparison of these results with Table 3 and
Table 4 regarding AR models highlights how neural net-
works offer great accuracy over short forecasting horizon
(5 samples), but they reveal problems when predicting
further in the future, as it can be clearly seen in Fig. 10,
where 20-step-ahead forecasts obtained with an AR(16)
model are also plotted as a comparison. The main rea-
son for this behavior lies in the fact that the AR model
implicitly takes into account of the real process cyclical
dynamics and it is easier to choose the structure with ref-
erence to these characteristics, while neural networks are

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

real part

im
ag

in
ar

y 
pa

rt

Z complex plane

 

 

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ω [rad/s]

S
(ω

) 
[m

2  s
/r

ad
]

 

 

AR model frequencies
data set spectrum

poles
unit circle
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model estimated on the January data set when only the frequen-
cies up to ω = 1.2rad/s are considered.
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Figure 9: For 10 samples ahead the prediction with an AR(16)
model is almost perfect, whereas a Harvey cyclical model
shows a good prediction of the phases but an overestimation
of the amplitudes.

Hs = 2.31m ωc = 2rad/s ωc = 1.2rad/s
inputs structure f it(5) f it(5) f it(20)

10
3−5−1 76.29% 93.90% 4.40%
3−7−1 90.71% 92.90% 0.88%
4−6−1 87.55% 86.05% −70.52%

15
3−5−1 83.11% 83.75% −151.79%
3−7−1 80.49% 96.99% 40.81%
4−6−1 78.29% 93.23% 11.45%

Table 5: Neural networks results on January high energy data
set

a pure black box where the choices for the regression or-
der, the structure and the estimation algorithm can only
be guessed and improved with experimental simulations.

More effort can be put into finding a proper structure
for a neural network which may be comparable or even
more accurate than an AR model, but it is the authors
opinion that before undertaking such a task, the needs
and the requirements for the forecasts must be specified
so that it is possible to evaluate what is, in real applica-
tions of wave energy (e.g. control and optimisation of
wave energy converters), the required accuracy.

A clearer comparison between the performance of
some of the different models is shown in Fig. 11 and
in Fig. 12, where the goodness-of-fit index is shown for
all the forecasting horizons from 1 to 50 samples (ap-
proximately 0.39 to 19.53 seconds).

5 Conclusion
This study was focused on the problem of short term

wave prediction, which is a central topic in the wave en-
ergy field, in order to allow a better effectiveness and
economic viability of any WEC. It was treated as a pure

Hs = 0.31m ωc = 3.5rad/s ωc = 1.2rad/s
inputs structure f it(5) f it(5) f it(20)

10
3−5−1 47.85% 93.22% −11.42%
3−7−1 48.63% 96.91% 46.01%
4−6−1 49.99% 95.53% 16.65%

15
3−5−1 55.73% 98.49% −57.89%
3−7−1 54.31% 94.61% 31.55%
4−6−1 49.09% 94.25% 12.80%

Table 6: Neural networks on May low energy data set
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Figure 10: The 20-sample-ahead prediction of an high energy
wave system, with a ωc = 1.2rad/s, for an AR(16) model is al-
most perfect, and outperforms a neural networks with 15 inputs
and a 3−5−1 structure.
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univariate time series forecasting problem and several
possible solutions were proposed. Real data from the
Galway bay were available for testing the proposed so-
lutions, and some interesting analysis was provided in
section 2. In particular, a very valuable tool for the pre-
dictability analysis, independently from any particular
solution, was proposed in section 2.3, whose application
showed how lower frequency waves are easier to predict
and, from a wave energy point of view, high frequency
components, which carry lower energy (as revealed by
the Fourier analysis provided in section 2.1), should be
filtered out before the prediction.

The most straightforward models outlined were har-
monic models where the wave elevation is explicitly rep-
resented as a sum of sines and cosines, on the basis
of linear wave theory. It was underlined how many is-
sues (particularly the high complexity of the resultant
models) arise due to the problem of the choice of fre-
quencies when they are kept constant, so that reasonable
predictions are only achieved for 5-10 samples (2-4 sec-
onds) in the future, if only low frequencies are predicted.
Cyclical models with adaptive frequencies could have
been considered, but then they become non-linear and
the complexity will be even higher.

Then, an analysis of AR models, in section 3.2, high-
lighted how they implicitly represent cyclical models
where the frequencies are easily estimated with linear
least squares (as they are related to the regression co-
efficients). The amplitudes and phases of each harmonic
component is, moreover, implicitly adaptive to the recent
observations due to the regression terms of the model,
so that only a batch estimate of the model offered very
good accuracy up to 30 samples-ahead (almost 12 sec-
onds) predictions for the low frequency components of
the waves. It was shown also how the frequencies are
automatically estimated in the significant range of the
sample spectrum of the training data set.

A comparison with neural networks, finally, showed
how it would not be very appealing, in the authors opin-
ion, to further undertake this more complicated direc-
tion, even because they do not offer any possibility of
analysis and extraction of the characteristics of the real
process from the model, which would instead be very
straightforward with AR models.

It is fundamental, of course, that further work should
be made in order to provide some indications and con-
straints about the required accuracy of the forecasts (and
required prediction horizon), so that the capability of
the proposed models can be properly judged. Such a
work will involve a study of the inter-connections be-
tween wave absorbers, wave excitation and control ar-
chitecture, and will be fundamental before any further
attempt to improve the results of this work is eventually
undertaken.
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