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Abstract 

The present study deals with the influences of wave 
directionality on a generic point absorber. The work 
presented here, shows how the dynamic of 
axisymmetric wave energy converter can be affected 
when one consider a realistic wave spectrum. For this 
purpose a non linear numerical model was used. The 
fluid structure interactions are modelled by means of a 
bending method where the Froude-Krylov forces are 
non linear and the radiation-diffraction problem is 
solved by using a linear method. Mooring loads are 
modelled via a finite element method. A compliant 
catenary mooring system composed by 4 mooring lines 
is hence used. Different models of sea spectra are used 
to approximate a real sea spectrum. The differences 
between them are discussed and comparisons on the 
body motions are commented. 

Keywords: Point absorber, wave energy, random sea, 
mooring system. 

1 Introduction 

This paper focuses on wave directionality and its 
influence on the dynamic performances of a generic 
point absorber. A point absorber is optimized for 
efficient energy conversion. The resonant characteristic 
frequency of the system is at all times tuned to the 
characteristic frequency of the wave. Without caring 
any control system, wave energy developers have 
basically to match the peak frequency of the sea 
spectrum to the natural frequency of their device. This 
task could be easier if the frequency distribution of a 
sea state consist into a simple single peak spectrum but 
usually the corresponded spectrum is composed by 
several peaks of frequency (cf. Fig. 2) and is directional 
dependant. Moreover, as explained in [1], most of sea-
states are composed by two or more superimposed 
wave systems which are time dependant. Although, for 
practical reasons, one usually uses single peak 
spectrum for modelling a specific sea state. 

Regarding the incident wave train, five different 
spectral models were used to approximate a real sea-

state. First of all, a single peak spectrum was used to 
take into account the specific frequency distribution of 
the wave train. As low frequency waves may propagate 
faster than the wind waves, a swell component is 
usually added to the locally wind sea creating multiple, 
or at least double, peak spectra. Hence, a double peak 
spectrum was used in order to have both swell and 
wind sea waves regarding the frequency distribution. In 
a second step, a spreading function was added to both 
single and double-peaked spectra in order to take into 
account the directional dependence. Generally sea 
states are composed by more than one swell component 
and one wind wave component, that’s why a real 
directional wave spectrum was also considered. For this 
task, a numerical procedure was developed to fit this 
real 2D wave spectrum allowing the representation of 
simultaneous systems. 

The purpose of the present study is to assess how the 
results are influenced according to the spectral model 
used and whether the body motions can be affected by 
parametric instabilities which may arise when a more 
precise model than the single-peaked one is applied. A 
non linear time-domain hydrodynamic model is used 
for modelling the hydrodynamic loads. The Froude-
Krylov forces are computed on the instantaneous and 
exact wetted surface whereas the diffraction-radiation 
problem is solved by means of the boundary element 
method  (BEM) code ACHIL3D [5]. Mooring loads are 
computed by using a finite element method modelling a 
compliant catenary system composed by four mooring 
lines. Comparisons regarding the body dynamics are 
shown where the heave, roll, pitch and yaw motions are 
examined. 

2 Generic point-absorber 

1. Geometry and dimensions 

A generic point absorber is considered for the 
purpose of this study. The body is a generic point 
absorber represented as a truncated vertical cylinder 
with a diameter D and a draft d. Its dimensions were 
chosen to have a natural heave frequency equal to the 
peak frequency of the current sea state. 
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The natural heaving frequency of a floating body is 
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According to McCormick [2], the theoretical added 
mass expression mW for such a floating circular 
cylinder is the following: 
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We also know that the hydrostatic stiffness term K33 is 
as follow 
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So, using Eq.(2) and Eq.(3) we may write Eq. (1) as 
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As a point absorber is considered like a system in 
which the horizontal extent is much smaller than one 
wavelength, the radius was imposed. This latter 
assumption permits us to determine the best value 
regarding the draft d and to obtain the following: 
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2. Body dynamics 

We have allowed the three-dimensional device to 
undergo arbitrary six-degrees-of-freedom motions. In a 
first step we define an initial inertial frame of reference 
R0 linked to the physical space, assimilated to a 
Galilean referential. The origin O of this referential is 
fixed to the center of mass of the body at the initial 
time. A rigid motion moving R0 to a new referential Rb 
is then carried out to place the body in space. 
The Newton’s second law leads to the two Eqs. (6) and 
(7), where G is the center of gravity of the system, fbG 
the total force acting on the body and MbG the torque. 
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Eq. (6) corresponds to the translation motion of the 
centre of gravity in body-fixed coordinates and Eq. (7) 
describes the attitude dynamics of the body in the 
body-fixed frame. The body orientation has been 
described by using a quaternion Q=[q0, q1, q2, q3]. 

In vectorial settings Eqs. (1) and (2) may be expressed 
as 

+ =Mv τ τCoriolis  

Where 

- [ ], , , , , ,
Tb b

G Obv u v w p q r = Ω = v is the 

generalized velocity vector decomposed in the 
body-fixed frame. 

- M the inertia matrix. 

- τCoriolis the Coriolis forces.  
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generalized vector of external forces and 
moments. τ is composed by the pressure forces 
due to the fluid-structure interactions, and the 
mooring loads. 

Therefore, using Eqs. (1) and (2) the motion 
decomposition leads to the following coupled system 
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Eq. (8) corresponds to the Newton’s second law, Eqs. 
(9) and (10), giving the generalised velocity 
components of the body. Eq. (9) gives the translation 
displacement and Eq. (10) the rotational motion. Eq. 
(11) is redundant because a quaternion rotation has 
always a unit length. However, the numerical 
resolution of Eq. (10) does not maintain precisely this 
length and a renormalization is then necessary. 

3. Fluid-structure interactions 

In this paper we used a time-domain non-linear 
potential-flow method. The fluid is considered 
homogeneous, incompressible, inviscid and with an 
irrotational flow. Surface tension is not taken into 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

980



3 

account and the depth is considered infinite and a 
linearized free surface and body boundary conditions 
are used.  
This method is particularly useful for the prediction of 
large-amplitude motions for single or multi-body 
devices in a prescribed or arbitrary sea state   [3] and 
[4]. The fluid forces acting on the body can be non-
linear with respect to certain motion variables, e.g. the 
quadratic component of the Bernoulli’s equation. 
Froude-Krylov forces contain “geometric” non-
linearities as the forces are computed by integrating 
over the exact instantaneous position and wetted 
surface. 

� Froude-Krylov forces 

The Froude-Krylov forces are the loads introduced 
by the unsteady pressure field generated by undisturbed 
waves. In this model, the Froude-Krylov forces are 
completely nonlinear. The pressure of the incident 
wave-train is integrated on the instantaneous wetted-
surface S(t) defined by the intersection between the 
non-disturbed incident free-surface and the shifted 
floating body, as follow 
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F t P t P t t dS= +∫∫ n  

with 

2

2

stat

II
dyn

P gz

P
t

ρ

φφρ ρ

= −

 ∇∂= − − ∂

 

Where Pstat and Pdyn  are  the hydrostatic pressure and 
the dynamic pressure, respectively. n corresponds to 
the normale of the wetted surface S(t) and ρ to the 
water density. 
The pressure of the incident wave field Iφ  is, for this 

study, derived from Airy wave theory.  
A robust geometry processing is essential for large 
amplitude motions. Consequently, an automatic 
remeshing routine is used for this task. At each time 
step, the underwater geometry is represented by a 
number of panels. As the body moves, its new location 
and orientation are updated in the global coordinate 
system and the new waterline is found from the 
intersection with the instantaneous free surface. The 
underwater portion of each panel is then repanelized 
using the transfinite method. 

� Radiation forces 

The radiation forces are the hydrodynamic forces 
associated with the motion of the floating body. The 
linear radiation forces have been expressed as a 
convolution product according to the well-known 
Cummins’ decomposition 

( )
0

( ) ( ) ( )
t

radF t v t t dτ τ τ∞= − − −∫µ K v  

where µ∞ is the added masses matrix and K the impulse 
response function for the radiation forces which are 
previously computed by the BEM code ACHIL3D. 

It can be first transformed in order to remove the 
convolution product by using Prony’s method [6]. This 
method has been developed by Clément for the 
computation of impulse response of radiation forces. 
This method computes couples of variables (αi, βi) 
defining the following approximation of the real 
function K of the Eq. (14) 
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K being a real function, either (αi βi) are real, either 
they are complex and systematically associated with 
their complex conjugates. So, if 
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the computation of the convolution product in the 
equation gives the following result 
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� Diffraction forces 

The diffraction forces are associated with the 
disturbance introduced into the wave system by the 
presence of the floating body. Like the radiation forces, 
the diffraction forces are based here on linear time-
domain theory. The diffracted wave forces are 
computed as 

 ( ) ( )( )diffF t t dτ η τ τ
+∞

−∞
= −∫ 7K  

where η is the free-surface elevation of the incident-
wave train at a given reference point and K7 the 
impulse response function for the diffraction forces 
given by ACHIL3D. 
 
The reader is referred to [7] for further details 
concerning the hydrodynamic model. 

4. Mooring loads 

A passive station-keeping system is taken into 
account in this study for counteracting the horizontal 
environmental forces so that the wave energy device 
remains within specified position tolerances. Hence, in 
the same time, the system must be compliant enough to 
allow the wave frequency motion and must transfer the 
resulting horizontal forces to the seabed. To ensure 
those properties, a multi-point compliant catenary 
mooring system is used (cf. Fig. 1).  

 
Figure 1: Mooring system arrangement. 
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As optimal mooring configuration for a point 
absorber is beyond the scope of this study, we have 
chosen a typical configuration, usually used for 
offshore structures and especially for SPAR platforms 
[8]. Hence, a 4 lines mooring system has been chosen. 

A finite element method (FEM) was used to model 
the mooring lines. As in [9], it solves the equation of 
motion of a cable with negligible bending and torsonial 
stiffness given by the following equation: 

( ) ( ) ( )( ) ( ) ( )( ),
, , , 1 ,CL

t s
T t s t s t s e t s

t s
ρ

∂ ∂= + +
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v
t f

�
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where s, v and t are, respectively, the distance along the 
unstretched cable, velocity and tangential vector. ρCL is 
the mass per unit length of the unstretched cable, T the 
tension, e the strain and f the sum of the external loads 
acting on the cable. 

According to Hooke’s law we may get 
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with E is the young’s modulus, A the cross sectional 
area of the cable and r the position vector. 
The external forces term f gathers the hydrostatic and 
hydrodynamic forces acting on the cable plus the 
gravity as follow: 

n tD D FKS= + + +f f f f f
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The effect of gravity on the mass of the cable leads to: 

S c CAρ=f g
� �

 

with ρc is the density of the cable and g the 
gravitational acceleration. 

The formulation for the hydrodynamic drag forces is 
derived from the so-called Morison’s equation 
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2
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where CDn and CDt are, respectively the normal and 
tangential drag coefficients for the cable. d is the 
diameter of the cable and ρw the density of the water. 
The Froude-Krylov forces include the buoyancy effect 
plus the effect due to the acceleration of the fluid aw: 

( )FK ww CAρ= − +f g a
� � �

 

3 Random sea modelling 

Data from Monterey Bay in California (station 
46042) and provided by the National Data Buoy Center 
(NDBC) were used. Two-dimensional spectra and 
standard meteorological data over a year (January-
December 2007) have been collected with a sampling 
period about 1 hour. For the present study only one sea 
state is considered with the properties given in Table 1. 
Usually parametric spectra are used for representing 

sea-states. Scatter diagrams are provided for many 
different locations around the world giving the peak 
frequencies and the significant wave heights from past 
years. However those data don’t provide any 
information about the shape of the spectrum, that’s why 
we have chosen the spectrum of Fig. 2. Indeed, this 
spectrum has three main frequency peaks which cannot 
be well fitted by the common parametric spectra. As 
this kind of spectrum is not rare in the nature, it is a 
good example for assessing the influence of the sea-
state description on a generic wave energy device. 

HS TP θm 
2.68 m 10.81s 314° 

Table 1: Sea state properties. 

For this purpose, we decided to model the current 
sea-state by means of five different spectral models. 
The two first models use standard one-dimensional 
spectrum to which a directional spreading function was 
added in order to take into account the directional 
dependence of the wave propagation. Then, a 
numerical method, called partitioning method, was 
used which is able to represent sea-states composed by 
many simultaneous wave systems. Those models are as 
follows: 

� Frequency spread. 

The choice of the spectral models was carried out by 
comparing, for both 1D and 2D spectra, the most 
popular ones and by choosing the one which best fits 
the real spectrum regarding the mean squared error. 
Hence, for the single peak spectrum we have compared 
the JONSWAP spectrum with the Bretschneider 
spectrum (also known as the Modified Pierson-
Moskowitz spectrum). Considering the double peak 
spectrum, the Ochi-Hubble spectrum was compared to 
the Torsethaugen spectrum. For the current sea state, 
Fig. 2 shows that the Bretschneider spectrum and the 
Ochi-Hubble spectrum seem to be the more relevant 
models to approximate the real spectrum. These results 
are in accordance to [10] and seem consistent as both 
Bretschneider spectrum and Ochi-Hubble spectrum 
were developed by using the same data set. 
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Figure 2: Spectral models and real data. 
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� Directional spread. 

For the purpose of the directional spread, the 
directional wave spectrum DWS is assumed to be 
composed by a parametric spreading function D(f,θ) is 
that the directional spectrum is described by  

( ) ( ) ( ), . ,DWS f S f D fθ θ=   

where S(f) is the one-dimensional energy spectral 
density function, f and θ being the frequency and the 
direction. 

The direction spreading function can be modeled 
using a variety of parametric models [11]. Due to 
specifications of sites, no single model is universally 
accepted. Here the angular spreading function used is 
the cosine power ‘2s’ model describes as follows: 

( ) ( ) ( )2, cos
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msD f G s
θ θ

θ
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is defined such as 

( ), 1D f d
π

π

θ θ
−

=∫  

where Γ is the Gamma function, θm the mean wave 
direction and s the spreading parameter which is, a 
priori, a function of frequency and wind speed. 

This spreading function was proposed by Longuet-
Higgins & al. [12]. Here the value of the parameter ‘s’ 
controls directional spreading around the mean wave 
direction. 

Figure 3: Stages in the segmentation process. 

� Partitioning method 

For the purpose of extracting all the significant wave 
systems from the real 2D spectrum, a numerical 
method has been developed in Matlab by means of the 
image processing toolbox. An approach similar to [1] 

was used where the process can be divided into three 
stages: spectrum segmentation, wave system 
identification, and analytical fitting. 

Spectrum segmentation 
This stage aims to catch all the spectral regions 

associated to a local peak of energy. First of all, an 
energy threshold is used to avoid any non relevant peak 
of energy [13]. The 2D spectrum is then converted into 
intensity image in order to find the regional maxima. 
The intensity image is then modified by using 
morphological reconstruction and by superposing the 
regional maxima with the image. This is done to 
facilitate the computation of the boundaries of the 
regional maxima performed by a watershed method as 
in [14] which determines the boundaries of each area 
containing a peak of energy (Fig. 3). 

Wave system identification 
The purpose of this stage is to locate wind sea peaks 

from swell peaks (cf. Fig. 4 and table 2). As in [15], 
wind sea and swell are identified regarding the 
separation frequency fS: 

( )2 cos
s

W W m

g
f

Uβ π θ θ
=

−
 

where g is the acceleration of gravity, UW the wind 
speed and θW the wind direction. Thus, a peak is 
classified as wind sea if: 

( )cos
2

P S

W m

f f

πθ θ

>

 − ≤

  

Once every sea system are identified, neighboring swell 
and wind sea peaks that belong to the same swell or 
wind sea system are considered mutual and are 
combined. Thus, two sea systems are considered 
mutual if they satisfy the both following conditions: 

,1 ,2 ,1 ,2p p p p ff fθθ θ κ κ   − ≤ ∩ − ≤     

Where θp is the peak direction and [κθ, κf] are spread 
factors adjusted to optimize performance of the 
partitioning process. 

Analytical fitting  
An analytical fitting process is performed in the least 

square sense in order to have a parametric 
representation of the real sea spectrum. The directional 
wave spectrum is modeled as in Eq.(19) with the cosine 
2s spreading function (Eq.(20)) for the directional 
spreading and with a JONSWAP spectrum for the one-
directional wave spectrum S(f): 
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a) Initial spectrum 

 
b) Peaks isolation. 

 
c) Spectrum partitioning. 
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 1 2 3 4 5 6 7 8 

type wind sea wind sea wind sea wind sea wind sea wind sea swell swell 

θm(o) 329.1 308.5 329.1 288 277.7 329.1 144 143.7 

ωP(rad/s) 0.93 1.18 1.37 1.6 1.78 2.03 0.44 0.6 

Table 2: Characteristics of each wave system extracted by the partitioning method. 
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This fitting process is carried out into two steps. The 
first step consists of using the cosine 2s function and of 
finding the best set [s,θm] to fit the real spectrum in the 
least square sense for the directional distribution. Then, 
the second step uses the set [α, fP, γ] which is iteratively 
computed in order to find the best values for fitting the 
real spectrum regarding the frequency distribution. 

Finally, an overlap correction is carried out for each 
wave system. Indeed, each wave sea system extracted 
may overlap the surrounding sea system. So, for each 
sea system, a correlation matrix is computed with its 
neighborhood providing a correction factor.  

Computation of Froude-Krylov and diffraction forces 
The random wave is modeled as a linear 

superposition of a large number of elementary Airy 
waves with amplitudes related to the wave spectrum. 

After sampling the directional wave spectrum into 
equally spaced directions and into equally spaced 
frequencies, the amplitude a of each component of the 
wave of angular direction θ and frequency f is selected 
randomly via a Rayleigh distribution with root mean 
square rms as mentioned in [16] equal to 

( ) ( )2 ,rms S f D f fθ θ= ∆ ∆  

either with the Bretschneider spectrum, or with the 
Ochi-Hubble spectrum. 

Then, as the incident wave train is modeled as a 
linear superposition of monochromatic waves, one can 
synthesize a representative sample of the waves for a 
sea state defined by the couple (HS,TP) by using 

( )
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1 1
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wN N
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i j

j i i j ij

w
x y t a
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∑∑
 

where η is the free surface elevation and wj the 
angular frequency of the jth wave component for one 
angular direction.  φij represents the phase uniformly 
distributed on the interval [0,2π] as an independent 
stochastic variable. 

As it is a linear approach, the total velocity potential 
of the incident wave-train Iφ  used in Eq. (9) is 

expressed as a linear superposition of elementary 
potentials of each component. Hence, for each direction 
and each frequency a velocity potential is associated as 
follow 

( ) ( )
( )
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1 1

, , ,
2

sin cos cos

wN N
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I i
i j

j i i j ij

w ch k z h
x y t a
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θ

φ θ
π
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= =

+ 
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 

+ − +

∑∑
 

As for the velocity potential, the total diffraction is 
expressed as a linear superposition of elementary 
forces. Indeed, ACHIL3D computes for each direction 
an associated impulse response function K7i. So, the 
total diffraction force is expressed as 

( ) ( )7
1

( )
N

diff i i
i

F t K t d
θ

τ η τ τ
=

= −∑  

4 Results 

Different models were used to simulate the same 
sea-state. For each simulation, the point absorber has 
six degrees of freedom. Fig. 5 shows the motions of a 
moored point absorber in random waves. Results for 
different spectral models with same statistical 
properties (Hs, TP) are presented in Fig. 5.  

Single peak spectrum was used by using a 
Bretschneider spectrum and double peak spectrum via a 
Ochi-Hubble spectrum. Then, a spreading function was 
added to both of them in order to take into account the 
wave directional properties. Finally, by means of a 
partitioning method, we have modeled the incident 
wave train by taking into account simultaneous swell 
and wind sea systems (cf. Fig. 4) approximating the 
bidimensional real spectrum provided by NDBC. 

For each model, one simulation about 300s was 
launched. The equations of motion formulated using 
quaternion Eqs. (8) to (10) are solved using a fourth-
order Runge-Kutta (RK4) method with a time step 
dt=0.01s. 
The body dimensions were chosen in order to have a 
natural period in heave about 10.81s (corresponding to 
the peak period of the current sea state), by using Eq. 
(5). The resulting dimensions are: a diameter D is equal 
10 m and a draft d is equal to 27 m. 

 

(35) 

(37) 

(34) 

(36) 

(32) 

(33) 
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Concerning the mooring system, a water depth about 
50 m was assumed. According to Fitzgerald [17], the 
length of each line was fixed to 250 m in order to have 
a ratio between the length and the water depth (also 
called the scope) equal to 5. The mooring lines 
properties (Table 3) were chosen according to [18]. 
For the random wave modelling, each directional 
spectrum was sampled into 180 equally spaced 
directions (∆θ=2°) and each one-directional wave 
spectrum into 225 equally spaced frequencies (∆f=0.01 
rad/s). The value of the spreading parameter for both 
the 2D Bretschneider spectrum and the Ochi-Hubble 
spectrum was set to s=12 as it is the common value 
used for practical purposes [11]. 

Regarding the spectral models, the results show that 
even when one takes into account the influences of the 
wind, some peak frequencies may missed regarding the 
real frequency spectrum (cf. Fig. 2). So, it means that 
the natural frequency of the body tuned regarding the 
peak frequency may not longer be optimal for this sea 
state. 

 About the body motion, the results show (Fig. 5) 
that, whatever spectral model, the dynamic behaviors 
are very close despite the fact that the sway, roll and 
yaw motions are exited when wave directionality is 
taken into. Nevertheless, it is clear that the directional 
spread has a bad influence on the performances. It 
denotes that whether a wave energy converter is only 
tuned by taking into account a one-directional wave 
spectrum, the performance may be overestimated. 

Regarding the one-directional spectra, the results 
show that the influence of a double peak spectrum is 
not very relevant for the present generic point absorber. 
Indeed, the dynamic behavior is slightly the same with 
a Bretschneider spectrum or with a Ochi-Hubble 
spectrum.  Nevertheless, when the directional spread is 
considered a different behavior is observed. The results 
show that pitch and roll amplitudes are larger for the 
Bretschneider spectrum than for the Ochi-Hubble 
spectrum. This phenomenon can be explained by the 
yaw motion which is larger with the Bretschneider 
spectrum. Indeed, regarding the yaw motion, it appears 
that the heaving buoy has a very long natural yaw 
period. It is linked to the small mooring stiffness which 
tends to give a very low frequency motion to the point 
absorber where the hydrodynamic damping is very 
small resulting in a very slow transient motion. 

Length (m) l 250 
mass per unit length (Kg/m) ρ0 61 
Density of the cable (Kg/m3) ρC 7800 
Axial stiffness (MN) EA 100 
Normal drag coefficient CDn 2.5 
Tangential drag coefficient CDt 0.5 

Table 3: Mooring lines properties. 

The results also show that the directional spread may 
significantly influence the behavior of the generic point 
absorber. As sway, roll, and yaw motions are involved 
for a bidimensional spectrum, it tends to reduce the 

motion amplitude of the heave and pitch. So despite its 
axisymmetric geometry, the generic point absorber 
moored to the sea bed via four compliant mooring lines 
tends to be directional dependent.  

Finally, the last model using simultaneous wave 
systems (Fig. 6) shows that the behavior is slightly the 
same as for the previous spectral models. Nevertheless, 
the motion period is affected. Indeed the motion period 
with the real spectrum is about 7,5s whereas it was 
close to the peak period for both Bretschneider 
spectrum and Ochi-Hubble spectrum. This can result of 
the large number of peaks not taken into account with 
the previous models and which are present in the real 
bidimensional spectrum changing radically the 
excitation forces. It signifies that, regarding its natural 
period, the device is no longer optimal for this sea-state 
whereas it was optimal with the parametric models. 
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Figure 4: Number of simultaneous wind sea systems and 

swell systems. 

Conclusions 

The aim of this study is to show how the usual 
spectral models composed by a single peak spectrum 
may influence the performances of a moored generic 
point absorber.  

Five different models were used in order to highlight 
the influence of the directional spread and of 
simultaneous wind sea and swell systems. The results 
show that the directional spread significantly affect the 
behavior of the generic point absorber as sway, roll and 
yaw motions are excited. It also shows that 
simultaneous sea systems may affect the behavior of a 
point absorber and that an accurate description of the 
sea state seems very useful to assess the performance of 
a wave energy device. 

It also shows that mooring system may play an 
important role regarding the dynamic behavior of a 
point absorber. The present study only deals with a 
single device; however one has to keep in mind that 
even if a single device has a good behavior with an 
adapted mooring system, additional problems may 
occur for an array of devices with a completely 
different mooring system.  

It also seems relevant to use a refined model to 
describe a sea state regarding the dynamic stability of 
wave energy devices. For instance parametric 
instabilities like parametric rolling may be found out 
when an accurate description of the sea state is used 
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coupled to a numerical model allowing a full 
description of the body dynamic. 

Finally, it turns out that any device must be 
considered as a non directional device as soon as a 
mooring system embedded to the sea bed is used. 
However, in order to have a good picture of the 
influences that wave directionality has on a wave 
energy converter, a better investigation must be done. 
For instance, a computation over several years could be 
performed where comparisons on the absorbed power 
regarding the different models could be carried out. 
This is what we intend to do in the future. 

Acknowledgements 

The authors are grateful for the financial support 
provided by Enterprise Ireland. 

References 
[1] M.-A. Kerbiriou, M. Prevosto, C. Maisondieu, A. H. 

Clément, and A. Babarit, “Influence of sea-states 
description on wave energy production assessment.” in 
7th European Wave and Tidal Energy Conference, 2007. 

[2] M. E. McCormick, Ocean Wave Energy Conversion. 
John Wiley and Sons, 1981. 

[3] J.-C. Gilloteaux, G. Bacelli, and J. Ringwood, “A non-
linear potential model to predict large-amplitudes-
motions: application to a multi-body wave energy 
converter.” in Proc. 10th WREC, 2008. 

[4] J.-C. Gilloteaux, A. Babarit, G. Ducrozet, M. Durand, 
and A. Clement, “A non linear potential model to predict 
large amplitude motions: application to the searev wave 
energy converter,” Pr. of the 26th Int. Conf. OMAE, 
2007. 

[5] A. Clément, “Hydrodynamique instationnaire linéarisée : 
'mise en oeuvre d'une méthode de singularités utilisant 
un modèle différentiel de la fonction de green.',” 
Laboratoire de Mécanique des Fluide de l'Ecole Centrale 
de Nantes, Tech. Rep. LHN-9703, 1997. 

[6] G. Duclos, A. H. Clément, and G. Chatry, “Absorption 
of outgoing waves in a numerical wave tank using a self 
adaptive boundary condition,” Int J. Offshore Polar 
Engng, vol. 11, no. 3, pp. 168–175, 2000. 

[7] J.-C. Gilloteaux, “Simulation de mouvements de grande 
amplitude. application à la récupération de l'énergie des 
vagues.” Ph.D. dissertation, Ecole Centrale de Nantes, 
2007. 

[8] X. Chen, J. Zhang, and W. Ma, “On dynamic coupling 
effects between a spar and its mooring lines.” Ocean 
Engineering, vol. 28, pp. 863–887, 2001. 

[9] O. Aamo and T. I. Fossen, “Finite element modelling of 
moored vessels,” Mathematical and Computer 
Modelling of Dynamical Systems, vol. 7, pp. 47–75, 
2001. 

[10] B. Roger, “Oregon offshore wave power feasibility 
demonstration project, phase 1.5,” EPRI, Tech. Rep., 
2005. 

[11] M. Tucker and E. Pitt, Waves In Ocean Engineering, 
O. E. Series, Ed. Elsevier Science Ltd, 2001, vol. 5. 

[12] M. Longuet-Higgins and al, “Observations of the 
directional spectrum of sea waves using the motions of a 
floating buoy,” Journal of Physical Oceanography, 
vol. 5, pp. 750–760, 1963. 

[13] J. Hanson and O. Philips, “Automated analysis of ocean 
surface directional wave spectra,” Journal of 
Atmospheric and Oceanic Technology, vol. 18, pp. 277–
293, 2001. 

[14] J. Hanson and R. Jensen, “Wave system diagnostics for 
numerical wave models,” in 8th International workshop 
on wave hindcasting and forecasting, 2004. 

[15] J. Aarnes and H. Krogstad, “Partitioning sequences for 
the dissection of directional ocean wave spectra: A 
review,” Part of work package 4 (Wp4) of the EnviWave 
(EVG-2001-00017) research programme under the EU 
Energy, Environment and Sustainable Development 
programme, Tech. Rep., 2001. 

[16] M. Tucker, P. G. Challenor, and C. D.J.T., “Numerical 
simulation of a random sea: a common error and its 
effect upon wave group statistics,” Applied Ocean 
Research, vol. 5, pp. 118–122, 1984. 

[17] J. Fitzgerald and L. Bergdahl, “Considering mooring 
cables for offshore wave energy converters,” in 7th 
European Wave and Tidal energy Conference, 2007. 

[18] J. Fitzgerald, “Including moorings in the assessment of a 
generic offshore wave energy converter: A frequency 
domain approach.” Marine Structures, vol. 21, pp. 23–
46, 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

986



9 

time (s)

he
av

e
(m

)

0 50 100 150 200 250 300

-4

-2

0

2

4

Bretschneider 1D

0 50 100 150 200 250 300

-4

-2

0

2

4

Ochi-Hubble1D

 

0 50 100 150 200 250 300
-30

-20

-10

0

10

20

30
Bretschneider1D

time (s)

pi
tc

h
(°

)

0 50 100 150 200 250 300
-30

-20

-10

0

10

20

30 Ochi-Hubble1D

 
 

time (s)

he
av

e
(m

)

0 50 100 150 200 250 300

-4

-2

0

2

4

Bretschneider 2D

0 50 100 150 200 250 300

-4

-2

0

2

4

Ochi-Hubble2D

 

0 50 100 150 200 250 300
-30

-20

-10

0

10

20

30
Bretschneider2D

time (s)

pi
tc

h
(°

)

0 50 100 150 200 250 300
-30

-20

-10

0

10

20

30 Ochi-Hubble2D

 

0 50 100 150 200 250 300
-30

-20

-10

0

10

20

30
Bretschneider2D

time (s)

ro
ll

(°
)

0 50 100 150 200 250 300
-30

-20

-10

0

10

20

30 Ochi-Hubble2D

 

0 50 100 150 200 250 300
-30

-20

-10

0

10

20

30
Bretschneider2D

time (s)

ya
w

(°
)

0 50 100 150 200 250 300
-30

-20

-10

0

10

20

30 Ochi-Hubble2D

 
Figure 5: Heave, roll, pitch and yaw motion of the generic point absorber for the 1D and 2D Bretschneider and Ochi-Hubble 

spectra. 
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Figure 6: Heave, roll, pitch and yaw motion of the generic point absorber for the real 2D spectrum. 
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