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Let G be a finite group. In this paper we investigate the permutation module of G

acting by conjugation on its involutions, over a field of characteristic 2. This develops

the main theme of [10] and [8]. In the former paper G. R. Robinson considered the

projective components of this module. In the latter paper the author showed that each

such component is irreducible and self-dual and belongs to a 2-blocks of defect zero. Here

we investigate which 2-blocks have a composition factor in the involution module. There

are two apparently different ways of characterising such blocks. One method is local

and uses the defect classes of the block. This gives rise to the definition of a strongly

real 2-block. The other method is global and uses the Frobenius-Schur indicators of the

irreducible characters in the block. Our main result is Theorem 2. The proof of this

theorem requires Corollaries 4, 15, 18 and 20.

J. A. Green proved a number of results about p-blocks, using the observation that the

group algebra of G is a module for the group G×G. Here we shall exploit the additional

fact that the group algebra is a module for the wreath product of G with a cyclic group

of order 2. This was also an essential tool in [8].

Throughout this paper k will be an algebraically closed field of characteristic 2. There

are various reasons why we limit ourselves to characteristic 2. Our wreath product group

is an extension of G× G by a group of order 2. It is thus fairly uninteresting, from the

point of view of blocks over a field of characteristic not equal to 2. In addition, the prime

2 is useful for studying the contragradient operator and real blocks, as pairing arguments

of various kinds can be employed.
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Recall also the following classical result. The Frobenius-Schur indicator ν(χ) of a

generalized character χ of G is the integer 1
|G|

∑

g∈G χ(g2). If χ is absolutely irreducible

then ν(χ) = 0 or 1,−1, depending on whether χ is not real-valued, or χ is real-valued and

a χ-module affords a symmetric, respectively anti-symmetric non-degenerate G-invariant

bilinear form. Then Frobenius and Schur proved that |Ω| =
∑

ν(χ)χ(1G).

The reader may be interested to know that in odd characteristic, the geometric

type (quadratic or sympletic) of an irreducible self dual module is determined by the

Frobenius-Schur indicator of a real valued character which contains the Brauer character

of the module with odd multiplicity. It is an open problem as to whether there is an

analogous Frobenius-Schur indicator in characteristic 2. See [11] for details.

A component of a module is a direct summand of the module that is indecomposable.

Following Green, a 2-block of G is a component of kG, considered as a G×G-module in

the usual way. For the rest of the paper we use B to denote a 2-block of G.

A defect class of B is a conjugacy class of G whose sum appears with non-zero multi-

plicity in the block idempotent 1B, and on which the central character ωB of B does not

vanish. Defect classes are known to exist and to consist of elements of odd order.

The irreducible complex characters, Brauer characters and indecomposable modules

of G are partitioned among its 2-blocks. We use Irr(B), IBr(B) and Pic(B) to denote,

respectively, the set of irreducible characters, the Brauer characters and the principal

indecomposable characters of G that belong to B. We use ψ to indicate the irreducible

Brauer character associated to Ψ ∈ Pic(B). If M is a G-module, M↓H denotes the

restriction of M to H ≤ G and M↑K denotes the induction of M to K ≥ G. Identical

notation applies to the restriction and induction of characters. See [9] for any additional

unexplained notation.

The contragradient map o is defined by (
∑

αgg)
o =

∑

αgg
−1. It is a k-algebra involu-

tary anti-automorphism of kG. A block B is said to be real if Bo = B. A conjugacy class

C of G is said to be real if it coincides with the class Co of the inverses of its elements.

It is one of the main results of [5] that each 2-block has at least one defect class that is

real.
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A real conjugacy class of G is said to be strongly real if it is the trivial class or if its

elements are inverted by involutions. This leads to the following key definition:

Definition 1. A strongly real 2-block is a real 2-block that has a strongly real defect class.

It turns out that if B is strongly real then each of its real defect classes is strongly

real. This was proved by Gow in [4]. Notice that the principal 2-block is strongly real;

the identity class is a strongly real defect class.

We use 1G both for the identity element of G and its trivial character. The involutions

in G, together with 1G, form a G-set Ω := {g ∈ G | g2 = 1G} under conjugation. We

denote the kG-module with permutation basis Ω by kΩ. Our main result in this paper

is:

Theorem 2. Let B be a 2-block of G. Then the following are equivalent:

(i) kΩ has a B-composition factor;

(ii)
∑

χ∈Irr(B) ν(χ)χ(1G) > 0;

(iii) B is strongly real.

Let g be an element of G. There is a unique decomposition of < g > into a direct

product of a cyclic 2-group E and a cyclic 2′-group O. So g = g2g2′ = g2′g2, for some

g2 ∈ E and g2′ ∈ O. We call g2 the 2-part, and g2′ the 2′-part, of g. Both are uniquely

determined by g.

In our first lemma we compute the multiplicity of an irreducible kG-module as a

composition factor of kΩ.

Lemma 3. Let P be an irreducible kG-module, let P be the projective cover of P , and let

Φ ∈ Pic(G) be principal indecomposable character of P . Then P occurs with multiplicity

ν(Φ) as a composition factor of kΩ. In particular, ν(Φ) ≥ 0.

Proof. The number of solutions in G to the equation x2 = g, for fixed g ∈ G, is given

by
∑

χ∈Irr(G) ν(χ)χ(g). Let g ∈ G be 2-regular and let x ∈ G satisfy x2 = g. As

x2 and x2′ commute, we have g = x2
2x

2
2′ = x2

2′x
2
2. So x2

2 = 1G and x2
2′ = g2′. It
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follows that x2 ∈ Ω(CG(g)), while x2′ = g
1/2
2′ is uniquely determined. Conversely, given

any involution t ∈ CG(t), then tg
1/2
2′ is a solution to x2 = g in G. We conclude that

∑

χ∈Irr(G) ν(χ)χ(g) = |Ω∩CG(g)| coincides with the Brauer character of kΩ. The lemma

follows once we note that the virtual Brauer character of the restriction of the generalized

character
∑

χ∈Irr(G) ν(χ)χ to 2-regular elements is given by
∑

Ψ∈Pic(G) ν(Ψ)ψ. �

Our Corollary shows that (i) ⇐⇒ (ii) in Theorem 2.

Corollary 4. The dimension of the sum of all submodules of kΩ that belong to B is

given by
∑

χ∈Irr(B)

ν(χ)χ(1G). In particular
∑

χ∈Irr(B)

ν(χ)χ(1G) ≥ 0.

Proof. Both statements follow from Lemma 3 and the fact that

∑

χ∈Irr(B)

χ(1G)χ =
∑

Ψ∈Pic(B)

ψ(1G)Ψ.

�

Let P , P and Φ be as in Lemma 3. Suppose that t ∈ Ω. The Frobenius-Nakayama

reciprocity formula [9, 3.1.27] shows that P occurs with multiplicity < ΦCG(t), 1CG(t) >

as a composition factor of kCG(t)↑
G. Then, using the previous lemma, we get (c.f. [10,

Lemma 1])

ν(Φ) =< Φ, 1G > +
∑

t

< ΦCG(t), 1CG(t) >,

where t ranges over a set of representatives for the conjugacy classes of involutions in G.

We now proceed to the main construction needed for the proof of Theorem 2.

The wreath product group GoΣ is the semi-direct product of G×G with the symmetric

group Σ on two symbols. Here the conjugation action of the involution σ ∈ Σ on G×G

is given by (g1, g2)
σ = (g2, g1), for all g1, g2 ∈ G. We shall use the notations

g := (g, g) ∈ G o Σ, for each g ∈ G, and

X := {x | x ∈ X} ⊆ G o Σ, for each X ⊆ G.

We highlight the following crucial fact:

Lemma 5. The centralizer of σ in G o Σ is G× Σ.
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Let R be a commutative ring. Then the group algebra RG is a right RG o Σ-module.

For, RG is a RG×G-module via x · (g1, g2) = g−1
1 xg2, for each x ∈ RG and g1, g2 ∈ G.

The action of σ on RG is given by the contragradient involution x · σ = xo. In more

detail we have:

Lemma 6. The RGoΣ-module RG is isomorphic to the permutation module (RG×Σ)↑GoΣ.

Proof. The elements of G form an RG oΣ-invariant basis of RG. Moreover if g1, g2 ∈ G,

then g2 = g1 · (g1, g2). So G is a transitive G o Σ-set. The stabilizer of 1G ∈ RG in G o Σ

is G× Σ. The lemma follows from these facts. �

Suppose that E is a block algebra of RG. Set E∗ := E + Eo. Then E∗ is an RG o Σ-

submodule of RG. If E 6= Eo, we have E∗ = E↑GoΣ. If E = Eo, it is still useful to

distinguish between the RG×G-module E and the RG oΣ-module E∗, even though the

underlying R-modules are the same.

Lemma 7. Let E1, . . . , Er be the real blocks and Er+1, E
o
r+1, . . . , Er+s, E

o
r+s be the nonreal

blocks of RG. Then there is a unique indecomposable decomposition of RG as RG o Σ-

module:

RG = E∗
1 ⊕ . . .⊕ E∗

r+s.

Proof. This follows from the indecomposable decomposition of RG into a direct sum of

its blocks algebras, as R(G×G)-module. �

As a particular case, consider when R = C. Let χ ∈ Irr(G) and let M be a CG-

module that affords χ. We use E(χ) to denote the corresponding Wedderburn component

EndC(M) of CG. Clearly E(χ) has G × G-character χ ⊗ χ : (g1, g2) → χ(g−1
1 )χ(g2),

for g1, g2 ∈ G. Suppose now that χ = χ is real valued. Then χ ⊗ χ = χ ⊗ χ has two

(irreducible) extensions to GoΣ. These will be denoted by χ+1 and χ−1. Here if ε ∈ {±1}

then χε(g1, g2)σ = εχ(g1g2), for all g1, g2 ∈ G. When χ 6= χ, the next lemma shows why

it is useful to denote the induced G o Σ-character (χ⊗ χ)↑GoΣ by χ0.

Lemma 8. Let χ be an irreducible character of G and let E(χ)∗ be the corresponding

G o Σ-component of CG. Then E(χ)∗ has character χν(χ).
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Proof. This is obvious when ν(χ) = 0. So we may assume that χ = χ. Then

< χ±1↓G×Σ, 1G×Σ >=
1

2|G|

∑

g∈G

(

χ(g−1)χ(g) ± χ(g2)
)

= (1 ± ν(χ))/2.

The result now follows from Lemma 6 and Frobenius reciprocity. �

Recall the following result [7, Theorem 1] of Green. A modern proof is [9, 5.10.8].

Lemma 9. Let D be a defect group of B. Then B has vertex D, as indecomposable

k(G×G)-module.

We use this to make a preliminary observation about the vertices of the component

B∗ of the G o Σ-module kG. This will be refined in Proposition 14.

Lemma 10. Let D be a defect group of B. If B is not real then D is a vertex of B∗; if

B is real then there exists e ∈ NG(D), with e2 ∈ D, such that D < eσ > is a vertex of

B∗.

Proof. Suppose first that B is not real. So B∗ = B↑GoΣ. It then follows from Lemma 9

that B∗ has vertex D.

Suppose then that B is real. Lemma 6 shows that B∗ is G× Σ-projective. We choose

a vertex V of B∗ so that V ≤ G × Σ. Now B∗ is a quasi-permutation module, G×G

is a normal subgroup of G o Σ, and B∗↓G×G = B is indecomposable. A variant of

Lemma 9.7 of [2] then implies that V ∩ (G×G) = V ∩ G is a vertex of B. Using

Lemma 9, we may choose D so that V ∩ G = D. As G o Σ/G × G is a 2-group, and as

B∗↓G×G is indecomposable, Green’s indecomposability theorem [6, Theorem 8], implies

that V 6≤ (G×G). The last statement of the lemma follows from this. �

It is easy to compute the stabilizer subgroup of an element g of the G oΣ-set G in the

group G×Σ. This subgroup will be denoted CG×Σ(g). We hope that the reader will not

confuse this group with CG×Σ(g) = CG(g) × Σ.

Lemma 11. Let g ∈ G. If g is not G-conjugate to g−1, then CG×Σ(g) = CG(g). If

gt = g−1, for t ∈ G, then CG×Σ(g) = CG(g) < tσ >.
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Proof. These statements follow from the fact that g · σ = g−1. �

For H ≤ G and M a kG-module, let MH denote the sum of all the trivial H-

submodules of M↓H . The relative trace map TrG
H : MH →MG is defined by TrG

H(m) =
∑

m · g, for m ∈MH . Here g ranges over any set of representatives for the right cosets

of H in G. We write TrG
H(M), instead of TrG

H(MH), for the image of the trace map on

MH .

The reader is warned that B∗ is generally not a G× Σ-algebra, in the sense of Green

[7]. In particular, there is no Mackey-type decomposition of a product of the form

TrG×Σ
X (a)TrG×Σ

Y (b), for X, Y ≤ G× Σ. However, we do have the following useful result.

Lemma 12. Let A be a k-algebra and a kG-module such that each element of G acts on

A as a k-algebra automorphism or as a k-algebra anti-automorphism. Suppose also that

AG is contained in the centre Z(A) of A. Then AG a subalgebra of Z(A). Also TrG
H(A)

is an ideal of AG, for each H ≤ G.

Proof. Write the G-action on A in exponential form. It is obvious that TrG
H(A) is a

k-subspace of A. Let a ∈ A, z ∈ AG and g ∈ G. Suppose that g acts as a k-algebra anti-

automorphism. Then agz = (zg−1

a)g = (za)g = (az)g. Similarly agz = (az)g, if g acts as

a k-algebra automorphism. It follows that the map a→ az is a kG-endomorphism of A.

In particular, if a ∈ AH , then TrG
H(a)z = TrG

H(az). Taking H = G, we get that AG is a

subalgebra of Z(A). More generally, we can conclude that TrG
H(A) is an ideal of AG. �

We will apply this Lemma to the algebra B∗ and the group G×Σ. Denote by Z∗(kG)

the σ-fixed point subalgebra of Z(kG). It has k-basis {(C ∪Co)+}, where C ranges over

the conjugacy classes of G. Note that Z(kG) = kGG and Z∗(kG) = kGG×Σ.

Corollary 13. Let P be a 2-subgroup of G and let q ∈ NG(P ) with q2 ∈ P . Then

(i) TrG×Σ
P (kG) is an ideal of Z∗(kG) with k-basis {(X ∪ Xo)+}. Here X ranges

over the set of non-real conjugacy classes of G such that P contains a Sylow

2-subgroup of CG(x), for some x ∈ X.
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(ii) Tr
G×Σ
P<qσ>(kG) is an ideal of Z∗(kG) with k-basis {(X ∪Xo)+} ∪ {Y +}. Here X

has the same meaning as in (i), while Y ranges over the the set of real conjugacy

classes of G such that P contains a Sylow 2-subgroup of CG(y), and ypq = y−1,

for some y ∈ Y and p ∈ P .

Proof. Lemma 12 implies that both Tr
G×Σ
P (kG) and Tr

G×Σ
P<qσ>(kG) are ideals of Z∗(kG).

In general, suppose that G is a finite group, H is a subgroup of G, and M is a

permutation kG-module. Then it is well know that the k-space TrG
H(M) has basis of

the form {O+}. Here O ranges over the G-orbits on the permutation basis such that H

contains a Sylow 2-subgroup of the stabilizer subgroup of some element of O in G. The

Corollary follows by applying this, and Lemma 11, to the group G×Σ, its subgroups P

and P < qσ > and the module kG. �

We can now identify the vertices of B∗.

Proposition 14. Suppose that B is real. Then B has a real defect class. Let c ∈ G

belong to a real defect class of B, let D be a Sylow 2-subgroup of CG(c) and let D < e >

be a Sylow 2-subgroup of C∗
G(c). Then 1B ∈ TrG×Σ

E (kG), for E ≤ G × Σ if and only if

D<eσ> ≤G E. Also D < eσ > is a vertex of B∗.

Proof. To show that B has a real defect class, we repeat the original argument of Gow,

from [4, Lemma 1.2], for the convenience of the reader. Write 1B =
∑

λKK
+, where K

runs over the conjugacy classes of G and λK ∈ k, for each class K. Then

1k = ωB(1B) =
∑

λK ωB(K+).

Now λK = λKo and ωB(K+) = ωB(Ko+), as B is real. It follows that the contribution

of a nonreal class K and its inverse class Ko to the above sum is 2λK ωB(K+) = 0k. So

there must exist a real class C such that λC ωB(C+) 6= 0k. Each such C is a real defect

class of B.

Now fix a real defect class C of B. So λC 6= 0k, using the notation of the previous

paragraph. Suppose that 1B ∈ TrG×Σ
E (kG), where E ≤ G × Σ. Then Corollary 13
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implies that there exists c ∈ C and D a Sylow 2-subgroup of CG(c) and D < e > a Sylow

2-subgroup of C∗
G(c), such that D<eσ> ≤ E.

Mackey’s Theorem implies that (B∗)G×Σ ⊆
∑

TrG×Σ
P∩(G×Σ)(kG). Here P ranges over

the vertices of B∗. Corollary 13 implies that each subspace TrG×Σ
P∩(G×Σ)(kG) is an ideal

of Z∗(kG). But 1B is a primitive idempotent in Z∗(kG). So by Rosenberg’s Lemma [9,

5.1.1], there exists a vertex V of B∗ such that 1B ∈ TrG×Σ
V ∩G×Σ(kG).

The last two paragraphs imply that D < eσ > ≤G V . But |D < eσ > | = |V |, as a

consequence of Lemma 10. It follows that 1B ∈ Tr
G×Σ
D<eσ>(kG), and also that D < eσ >

is a vertex of B∗. �

Our Corollary shows that (ii) =⇒ (iii) in Theorem 2.

Corollary 15. Suppose that there exists g ∈ G such that
∑

χ∈Irr(B)

ν(χ)χ(g) > 0. Then

B is real. Let D < eσ > be a vertex of B∗. Then there exists d ∈ D such that g2 is

G-conjugate to (de)2. In particular, if g can be chosen to be 2-regular, then B is strongly

real.

Proof. When B is the principal 2-block of G, the result is true. So assume otherwise.

The hypothesis implies that B is real, as it forces ν(χ) 6= 0, for some χ ∈ Irr(B).

Let (R,F, k) be a 2-modular system for G. Suppose that B̂ is the block algebra of

RG such that B = B̂/J(R)B̂. Then Lemma 8 shows that the G o Σ-character of B̂∗ is

χB :=
∑

χ∈Irr(B) χ
ν(χ). Now B̂∗ and B∗ have the same vertices, as both are trivial source

modules [9, 4.8.9]. So D < eσ > is a vertex of B∗. As χB((1G, g)σ) =
∑

χ∈Irr(B) ν(χ)χ(g),

the hypothesis is that χB((1G, g)σ) 6= 0. It then follows from a theorem of Green [9,

4.7.4] that the 2-part of (1G, g)σ is contained in a vertex of B̂∗. But ((1G, g)σ)2 =

(1G, g2)(g
−1/2
2′ , g

1/2
2′ )σ and

(

(g
−1/2
2′ , g

1/2
2′ )σ

)(1G ,g
2′

)

= σ. In particular ((1G, g)σ)2 is G o Σ-

conjugate to (1G, g2)σ. So there exists g1, g2 ∈ G and d ∈ D such that (1G, g2)σ =

(deσ)(g1,g2) = (g−1
1 deg2, g

−1
2 deg1)σ. This gives g−1

2 = g−1
1 de, and hence also g2 = [(de)2]g1 .

Suppose that g2 = 1G. Then (de)2 = 1G. So de is an involution that belongs to

D < e > \D. Then, using Proposition 14, we see that each real defect class of B is

strongly real, whence B is strongly real. �
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Let K be a field and let τ be a field automorphism of of K. Suppose that γ is a

K-representation of G. Then we may form the representation γτ of G by applying τ to

the matrix entries in γ(g), for each g ∈ G. If M is the KG-module corresponding to γ,

we let M τ denote the KG-module corresponding to γτ . This construction also applies if

τ is an automorphism of a subfield K0 of K, and γ is realisable over K0.

We use this to define the Frobenius twist of a module or character. The Frobenius

automorphism Fr of k is given by λ → λ2, for λ ∈ k. Every C-representation of G

can be realized over Q(ζ), where ζ is a primitive |G|th root of unity. There is Galois

automorphism Fr of Q(ζ) given by ζ → ζ2ζ
2
2′, for ζ ∈ Q(ζ). In either case, if M is a

G-module, with Brauer or ordinary character χ, then the Frobenius twist module MFr

has character χFr : g → χ(g2
2′g2), for each g in the domain of definition of χ.

Note that {χFr | χ ∈ Irr(B)} is the set of irreducible characters in a 2-block BFr of G.

If M is an indecomposable kG-module, then M belongs to B if and only if MFr belongs

to BFr.

We identify G and G and let B be the 2-block of G corresponding to B. There is

a unique 2-block of G × Σ that covers B. We denote this block by B × Σ. Clearly

(B × Σ)Fr = BFr × Σ.

Lemma 16. The Brauer induced block (BFr × Σ)GoΣ is defined. It is the unique 2-block

of G o Σ that covers the block B ⊗ B of G×G.

Proof. Let D be a defect group of B. Then D × Σ is a defect group of BFr × Σ. Since

CGoΣ(D × Σ) = CG(D) × Σ is contained in G × Σ, the induced block (BFr × Σ)GoΣ is

defined [9, 5.3.6].

Let B⊗2 be the unique 2-block of G o Σ that covers the 2-block B ⊗ B of G× G. So

χ+1 belongs to B⊗2, whenever χ ∈ Irr(B).

Now CGoΣ(σ) = G×Σ. Each Brauer character of G×Σ can be identified with a Brauer

character of G. Using Brauer’s second main theorem [9, 5.4.2], we have

(1) χ+1(gσ) =
∑

θ∈IBr(G)

dσ
χ,θθ(g), for all g ∈ G of odd order,
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where the dσ
χ,θ are algebraic integers with the property that dσ

χ,θ = 0, unless θ belongs to

a 2-block B1 of G such that (B1 ×Σ)GoΣ = B⊗2. On the other hand, the definition gives

(2) χ+1(gσ) = χ(g2) = χFr(g) =
∑

θ∈IBr(G)

dχFr,θθ(g), for all g ∈ G of odd order.

But the irreducible Brauer characters of G are linearly independent on the 2-regular

classes of G. So (1) and (2) imply that dσ
χ,θ = dχFr,θ, for all θ ∈ IBr(G). As dχFr,θ 6= 0,

for some θ ∈ IBr(BFr), we conclude that (BFr × Σ)GoΣ = B⊗2. �

The following lemma is a key step in the proof of Theorem 2.

Lemma 17. Restriction ↓G×Σ
G establishes a multiplicity preserving bijection between the

components of B∗↓G×Σ that have a vertex containing Σ and the components of kΩ that

belong to BFr.

Proof. Let M be a component of B∗↓G×Σ that has a vertex V containing Σ. Then Σ is

contained in the kernel of M , as M is a trivial source module. Thus M coincides with

the inflation of the indecomposable G-module M↓G to G× Σ. In addition, M↓G has a

vertex V/Σ.

The orbits of G × Σ on the G o Σ-set G are {C ∪ Co | C a conjugacy class of G}.

Lemma 6 and Mackey’s theorem imply that

kG↓G×Σ =
∑

C,Co

k(C ∪ Co).

Also k(C ∪ Co) = kCG×Σ(c)↑
G×Σ, for each c ∈ C ∪ Co. Now Lemma 11 implies that

Σ ≤ CG×Σ(c) if and only if c ∈ Ω. Then by the Krull-Schmidt theorem M is a component

of kCG×Σ(t)↑
G×Σ, for some t ∈ Ω. But (kCG×Σ(t)↑

G×Σ)↓G = kCG(t)↑
G. We conclude that

M↓G is a component of kΩ.

Let B1 be the 2-block of G such that B1
Fr × Σ contains M . As Σ ≤ V , Lemma 5

forces CGoΣ(V ) ≤ G×Σ. So by a Theorem of Nagao-Green [9, 5.3.12], the induced block

(B1
Fr × Σ)GoΣ contains B∗. But (B1

Fr × Σ)GoΣ = B⊗2
1 , by Lemma 16. So B∗ belongs

to B⊗2
1 . This forces the G × G-module B to belong to B1 ⊗ B1. It follows easily that

B = B1.
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We can reverse the above argument to show that if N is a BFr-component of kΩ, then

the inflation of N to G×Σ is a component of B∗↓G×Σ that has a vertex containing Σ. �

Corollaries 4 and 15 give the implication (i) =⇒ (iii) of Theorem 2. Our next result

gives a direct proof of this and also produces some information on the vertices of the

components of kΩ.

Corollary 18. Suppose that some component of kΩ belongs to B. Then B is strongly

real. More precisely, let c ∈ G belongs to a real defect class of B, let D be a Sylow

2-subgroup of CG(c), and let E be a Sylow 2-subgroup of C∗
G(c) that contains D. Suppose

that N is a component of kΩ that belongs to B. Then there exists t ∈ Ω ∩ (E\D) such

that N has a vertex V ≤ CD(t).

Proof. Clearly NFr is also a component of kΩ. Also V is a vertex of NFr, as G-module.

Let M be the inflation of NFr to G×Σ. Then Lemma 17 implies that M is a component

of B∗↓G×Σ. Now M has vertex V × Σ. As M is a component of B∗↓G×Σ, it follows that

some vertex of B∗ contains V × Σ.

We established in Proposition 14 that D < eσ > is a vertex of B∗. Then by the

previous paragraph there exists (g1, g2) ∈ G×G such that (V ×Σ)(g1 ,g2) ≤ D < eσ >. In

particular σ(g1,g2) = (g−1
1 g2, (g

−1
1 g2)

−1)σ belongs to D < eσ >. Choose d ∈ D such that

de = g−1
1 g2. Then t := de belongs to Ω. So E = D < t > splits over D. In particular B

is strongly real. Also V (g1,g2) ≤ CD(tσ). So V ≤G CD(t). �

An important special case is that of a real 2-block of defect zero. The next result was

proved by R. Gow (in unpublished work), unifying results in [4] and [10]. Gow’s proof

used a pairing argument on L. L. Scott’s ‘orbital characters’ defined with respect to the

involution module. Our proof uses Alperin-Scott modules.

Theorem 19. Suppose that B is a real 2-block of defect 0. Let χ be the unique irreducible

character in B. Then ν(χ) = +1. Let C be a real defect class of B and let t ∈ Ω. Then

< χ↓CG(t), 1CG(t) >= 1 or 0, depending on whether or not t inverts an element of C.
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Proof. Note that χ is the unique principal indecomposable character in B. The fact that

ν(χ) = +1 appears in [10] and independently in several other places. Here it is a simple

consequence of Lemma 3. It also follows from that lemma that the G-character of CΩ

contains χ with multiplicity 1.

Let c ∈ C and let t ∈ Ω be such that ct = c−1. The proof will be completed by showing

that < χ↓CG(t), 1CG(t) >6= 0.

Now Z(B∗) = (B∗)G×Σ is spanned by 1B. Also B∗ has a trivial source. So B∗↓G×Σ has

a unique Scott component, and this component has socle spanned by 1B. Proposition

14 implies that 1B ∈ TrG×Σ
E (kG), for E ≤ G× Σ if and only if <tσ> ≤G E. It follows

that the Scott component of B∗↓G×Σ has vertex < tσ >.

An easy calculation shows that CG(t) × Σ coincides with the normalizer of < tσ > in

both CG(t) o Σ and G × Σ. The Green correspondence preserves Scott modules. Then,

using a result of D. Burry [9, 4.4.7], and the previous paragraph, the Scott module

S(CG(t) o Σ;< tσ >) has multiplicity 1 as a component of B∗↓CG(t)oΣ. The restriction

of S(CG(t) o Σ;< tσ >) to CG(t) × CG(t) has a projective Scott component. We deduce

that B↓CG(t)×CG(t) has a Scott component.

Let B̂ be a lift of B to a G × G-module over a field of characteristic 0. Then B̂

has character χ ⊗ χ. Thus < (χ ⊗ χ)↓CG(t)×CG(t), 1CG(t)×CG(t) > is the number of Scott

components of B↓CG(t)×CG(t). But this inner product is

∑

c1,c2∈CG(t)

χ(c−1
1 )χ(c2) =< χ↓CG(t), 1CG(t) >

2 .

It then follows from the previous paragraph that < χ↓CG(t), 1CG(t) >6= 0. �

We can now prove that (iii) =⇒ (ii) in Theorem 2. This completes the proof of that

theorem.

Corollary 20. Suppose that B is strongly real. Then ν(B) > 0.

Proof. Let c ∈ G belong to a real defect class C of B. Fix a Sylow 2-subgroup D of

CG(c) and a a Sylow 2-subgroup E of C∗
G(c) that contains D. Write E = D < t >, where

t ∈ Ω.

13



We need a version of Brauer’s first main theorem. Let N be the normalizer of D in G

and let b be the Brauer correspondent of B with respect to (G,N,D). Now b is a real

2-block of N , as (bo)G = (bG)o = B, and b is the unique block of kN such that bG = B.

If 1B =
∑

K λKK
+, then 1b =

∑

K λK(K ∩ CG(D))+. Here K ranges over the classes of

G. Also ωB(K+) = ωb ((K ∩ CG(D))+), for each conjugacy class K of G. It follows that

C1 := C ∩ CG(D) is a real defect class of b.

Set N := N/D and let µ be the natural k-algebra projection kN → kN . Let C be

the conjugacy class of N that contains c = Dc. Then µ(C+
1 ) = C

+
, by [9, 5.8.9]. It

follows that µ(1b) 6= 0. Write µ(1b) =
∑s

i=1 1βi
, where β1, . . . , βs are distinct blocks of

N . As 1bo = 1b, it follows that there is a permutation τ of {1, . . . , s} such that βo
i = βiτ ,

for i = 1, . . . , s. If i 6= iτ , an easy argument shows that 1βi
+ 1βiτ

is supported on the

non-real classes of N . But C is a real class of N whose sum appears with non-zero

multiplicity in µ(1b). We deduce that there exists i such that βi is a real 2-block of N

and C
+

appears with non-zero multiplicity in 1βi
. Set β := βi.

Now β has a trivial defect group, by [9, 5.8.7(ii)], and CN (c) is odd, by [9, 5.8.9(ii)].

It follows that C is a real defect class of β. Let χ be the unique irreducible character

in β. Now t is an involution in N that inverts an element of C. So by Theorem 19

we have < χC
N

(t), 1C
N

(t) >= 1. The preimage of CN (t) in N is CN(Dt) := {n ∈ N |

tn ∈ Dt}. Inflating χ to N , we get < χCN (Dt), 1CN (Dt) >= 1. But CN(t) ≤ CN(Dt). So

< χCN (t), 1CN (t) >6= 0. Let M be the unique irreducible β-module. Then we have just

shown that M is a b-composition factor of kCN (t)↑
N . We deduce from Lemma 17 that

b∗↓N×Σ has a component with a vertex that contains Σ.

J. L. Alperin proved in [1] that b is a component of B↓N×N . So b∗ is a component of

B∗↓N×N . This and the previous paragraph show that B∗↓N×Σ has a component with a

vertex that contains Σ. Applying Lemma 17, we deduce that kΩ has a B-composition

factor. We conclude from Corollary 4 that ν(B) > 0. �

We conclude our paper with a small application of Theorem 2. R. Gow proved the

following result in [3, 5.6]:
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Proposition 21. Let B be a real 2-block, let c ∈ G belong to a real defect class of B, let

D be a Sylow 2-subgroup of CG(c) and let D < e > be a Sylow 2-subgroup of C∗
G(c). Then

B contains a real-valued irreducible character of height 0 and Frobenius-Schur indicator

−1 if and only if D < e > /D′ does not split over D/D′.

It is known that each real 2-block has a real-valued irreducible character of Frobenius-

Schur indicator +1. So Theorem 2 and Proposition 21 combine to give:

Corollary 22. Let B, D and D < e > be as in Proposition 21. Suppose that D < e >

/D′ splits over D/D′ but D < e > does not split over D. Then B contains a real-valued

irreducible character of height greater that 0 and Frobenius-Schur indicator −1.
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