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Let §(n) be a finite symmetric group of degree n and let F' be a perfect
field of characteristic p > 0. We use Z = Z(F'8(n)) to denote the centre of
the group algebra F'8(n). If X is a subset of 8(n) then Xt denotes its sum in
F8(n). Asis well known {KT | K a conjugacy class of §(n)} forms an F-basis
for Z. We use Z, to denote the F-subspace of Z spanned by the p-regular
class sums. The map z — 2P is a semi-linear transformation on Z, with respect
to the automorphism A — AP of F'. Its image Z? is an F-subalgebra of Z, and
its kernel {z € Z | 27 = 0} is an ideal of Z. Our main result is:

Theorem 1. Let p = 2. Then Z* = Zy. So z € Z is a square in Z if and
only if z 1s an F-linear combination of 2-reqular class sums.

A p-block of 8§(n) is an indecomposable F-algebra, which is a direct sum-
mand of F'§(n). Each p-block B of §(n) has an associated weight w and p-core
«. So w is an integer between 0 and n/p, while « is a partition of n—wp which
has no p-hooks. See [JK81, 2.7 and 6.1] for definitions and proofs. The num-
ber k(B) of irreducible characters associated to B equals the F-dimension of
the centre Z(B) of B, while the number I(B) of irreducible Brauer characters
equals the F-dimension of Zy N Z(B). Set Z(B)?> = {2* | z € Z(B)}. The
following is a block version of Theorem 1:

Theorem 2. Let B be a 2-block of 8(n), of weight w. Then dim(Z(B)?) equals
the number P(w) of partitions of w.

Proof. We have Z(B)? = Z* N Z(B), since Z(B) is commutative and unital.
So Z(B)? = Zy N Z(B), by Theorem 1. But dim(Zy N Z(B)) = I(B) = P(w),
by [O80, 3.6]. This proves the result. O
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It seems unlikely that one could find an explicit formula for a square root
of a 2-regular class sum (but see the proof of Proposition 9). We can at least
show:

Theorem 3. Each 2-reqular class of 8(n) occurs with odd multiplicity in the
square of some involution class.

In fact, for each 2-regular class of §(n), we can explicity describe a class
of involutions for which this theorem holds. Our methods could be used to
compute the square of any involution class sum of §(n).

For the rest of this paper we fix g € 8§(n) and D a Sylow p-subgroup of
Cs(n)(9), and set C = Cgn) (D). We use g, (g,) to denote the p-part (p-regular
part) of g. So g, has p-power order, g, has p'-order and g = g,9y = g gp-

Our notation for subgroups, centralizers and normalizers is standard.

Proposition 4. C = (g,) x N, for some group N.

We defer the proof of Proposition 4 to the end of the paper, and proceed
immediately to the proof of two corollaries. Corollary 6 will be needed in the
proof of Theorem 1, while Corollary 5 may be of independent interest.

Let a € F$§(n) and = € 8§(n). We use (a,z) to denote the coefficient of x in
a. Set Q(x) := {y € 8(n) | y* = z}. If z has p'-order, we use z'/? to denote
the unique element of (x) that has p'-order.

Corollary 5. Z, is a subalgebra of Z.

Proof. Let K and £ be p-regular classes of §(n), and suppose that g, 7# 1.
It is enough to show that (KXTLT,g) = 0. Note that g ¢ N, where N is the
normal subgroup of Cg,)(D) given by Proposition 4. Now

(KTLT,g9) = (CNK)T(CNL)T,9),
using the Brauer homomorphism, see [K91, (54)],
= 0, as N contains every 2-regular element of C.
The corollary follows. O

Let m be a nonnegative integer. The proof of Corollary 5 actually shows
that the F-subspace of Z spanned by the class sums of elements of §(n) whose
p-parts have order p™ or less is a subalgebra of Z.

Corollary 6. Z7 C Z,,.

Proof. Let K be a conjugacy class of 8(n), and suppose that g, # 1s@). It is
enough to show that ((7)?, g) = 0. By [K91, (55)], we have

(KPP, g9) = (KTQ(g,) ", 0,/")-
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Now, D acts by conjugation on C and €2(g,), and centralizes g;,/ P Thus
(KH)?,9) = (CNK)*(CNQAg)*,g,/").
But Proposition 4 implies that C N €(g,) is empty. The result follows. O
Corollary 6 implies the following, cf. [K91, (59)]:
Proposition 7. {z € Z | 2 =0} = {2z € Z | 2Q(13()) " = 0}.

The analogues of Corollaries 5 and 6 hold for the alternating group A(n)
also.

Proposition 8. Z(FA(n))y is a subalgebra of Z(FA(n)) and Z{FA(n)? C
Z(FA(n),.

Proof. Suppose that g is an element of A(n). If p # 2, then D is a Sylow
p-subgroup of C'NA(n) = Cyn)(g). In particular,

Cam)(D) = (gp) x M, for some group M,

using Proposition 4. Thus Z(FA(n))? C Z(FA(n))y and Z(FA(n))y is a
subalgebra of Z(F.A(n)), exactly as in the proofs of Corollaries 5 and 6.

Suppose now that p = 2. Let K be a conjugacy class of A(n). Then either
K is a conjugacy class of §(n), or the elements of K have cycle type a, where
« is a partition of n into unequal odd parts (see [JK81, 1.2.10]). In the former
case we have

(K*)? € Zy N Z(FA(n)) = Z(FA(n))s,

using Corollary 6. In the latter case K has 2-defect zero. It is a theorem
of Brauer that the class sums of 2-defect zero classes span an ideal Z; of
Z(FA(n)). Since Z, is contained in Z(FA(n))y, it follows that (K1)? €
Z(FA(n))y in this case also.

The proof that Z(FA(n))« is a subalgebra of Z(F.A(n)) proceeds in a similar
fashion. O

Let u = (u1, po, - - -, pi) be a partition of n. So py + -+ + py = n and pg >
pg >+ > g > 0. We use |u| =t to denote the number of parts of p. The
conjugacy classes of §(n) are parametrized by the partitions of n. The class
corresponding to p contains (1,..., pu1)(p1+1, ..., p+pe) ... (n—pm+1,...,n).
Clearly this class is p-regular if and only if u; is coprime to p, for i =1,... 1.

Let K be an arbitrary integral domain. In [M83], G. E. Murphy defines
elements L, in K8(n) by

Ly = (Lu) + (20) + - + (u=1Lu),
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where u is any integer between 2 and n, and each (v, u) is a transposition. For
convenience, we set Ly 1= Ig(,).

Suppose that 1 < i < j <woru<i<j<mn. Then trivially L, (i,j) =
(,7) Ly. In particular

L,L,=L,L,,
for all u,v € {1,...,n}. Also for 1 < u < n, it can be shown that
LyLy1 (u,u+1)=(u,u+1) Ly Lyr1, and
(Lu + Lust) (w4 1) = (w04 1) (Ly + Lusa).

Now 1, L, L,+1 and L, + L, generate, as an algebra, the ring of symmetric
polynomials in L, and L,,; over any commutative ring. It follows that the
transposition (u,u + 1) commutes with any symmetric polynomial in L, and
Ly,i. Since {(u,u+ 1) | 1 < u < n} generate §(n), we conclude that any
symmetric polynomial in Ls,..., L, lies in the centre Z(K8(n)) of K8(n).

Let P(n,p) denote the number of partitions of n into parts which are con-
gruent to 1 modulo p.

Proposition 9. dim(Z?) > P(n,p).

Proof. Let p = (u1, po,...) be a partition of n. Suppose that pu; > 1 for
i=1,...,7. Set X* as the sum, in K8(n), of all distinct products of the form

(Lua ) (L) (L )

where w1, uo, . . ., u, runs over all sets of r elements from 2, 3, ..., n. If all parts
of p are 1, then set X* := Ig,.

The main result of [M83, 1.9] is that if g is an element of §(n) of cycle type
i, then the coefficient of g in X* is 1, while if A = (A1, Ag,...) is the cycle
type of any element of §(n) which occurs in X*#, then either |u| < |A] or g < A,
where < is the dominance relation on partitions. Murphy uses these facts to
show that {X* | 4 a partition of n} forms a K-basis for Z(K8(n)).

Now consider when K = F'is a field of characteristic p. Let u be a partition
of n with p; = 1(modp), for i = 1,...,|p[. Set \; = (u; — 1)/p + 1, for
i=1,...,|u|. Let A be the partition of n whose first [p| parts are Ay, ..., A,
and whose remaining parts equal 1. Using the fact that the L, commute, and
the binomial theorem modulo p, we see that

(XM = X+,
The proposition now follows from the linear independence of the X*. O

We now give the proof of our main theorem.
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proof of Theorem 1. Clearly P(n,2) equals the number of 2-regular classes of
8(n). So Proposition 9 implies that dim(Z?) > dim(Zy). But Z? C Zy, by
Corollary 6. The theorem follows. O

A partition is called 2-singular if at least one of its parts is even.

Corollary 10. dim{z € Z | 2? = 0} equals the number of 2-singular partitions
of n.

We need the following result on blocks of symmetric groups:

Proposition 11. Let B be a p-block of 8(n), of weight w. Then Z(B) =
Z(By), where By is the principal p-block of $(pw).

Proof. The principal p-block By of 8(pw) has empty core and weight w. M.
Enguehard [E90] has shown that there exists a perfect isometry between any
two p-blocks of finite symmetric groups that have the same weight. This
implies, among other things, that the centres of B and B, are isomorphic. [

Let B be a p-block of §(n), let J(B) denote the Jacobson radical of Z(B),
and let p' denote the exponent of a defect group of B. Using Proposition 11,
and (59) of [K91], we see that

t

2P =0, for each z € J(B).
This can be sharpened to:
Theorem 12. There exists z € J(B) with 2%~ # 0.

First we need two lemmas.
Let G be a finite group. For each positive integer m, define

Q= {2 €G 2" =16}
A = {z€G|o(z)=p"} = Qn\Qn-1
Ap ={z€G|zy, €Ay}

Lemma 13. Let e be an idempotent in Z(FG). Then

el = (e,1g) A} + (terms involving non p-elements of A,,).

Proof. Let x € G have order p™. It follows from a well-known result of lizuka

(see [K91, (61)]) that the support of e A} is contained in A,,. So it is enough
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to show that (e A}, x) = (e,1g). We have
(eA) x) = eQ+ z) — (eQUt |, x)
) — (2P by (55) of [K91]
1G) _ (6 xptfl)p—ﬂ-l
1

e,1g), as (e, 1g) € GF(p) and as e is supported

e

(
= (¢
= (e,
= (e,

on the p-regular elements of G.
O

Lemma 14. Let ¢ be an m-cycle, where m > 2, and let t be a transposition
that does not commute with c. Then tc is an (m — 1)-cycle, an (m + 1)-cycle,
or a product of two commuting cycles whose combined length is m.

Proof. This is a routine calculation. O

Proof of Theorem 12. Let e be the unique idempotent in Z(B), and let w
denote the epimorphism B — F which has kernel J(B). Using Proposition
11, we may assume that B is the principal p-block of §(n).

Let 7 be the class of transpositions in 8(n), and let m be a positive integer.

We may write

te =1 + j,

where i = w(7")e € GF(p)e and j € J(B). If m is a positive integer then
(T+€)pm = " + ij =4 + jpm

So the proposition will follow if we show that (rte)?" " # (r+e)?'
Let u be a (p*')-cycle in §(n). Then u!/? is also a (p'*!)-cycle. Using [K91,
(55)], and the fact that (r7eQ;}, u) € GF(p), we see that

(tTe)!™ u) = (tTe,u).
It follows that
(15) (TFe),u) = (FTe) ™ u) = (e ,u) — (e, u)
= (tTe A u).
Let \; denote the class of p'-cycles in 8§(n). Suppose that ¢t € 7 and z € A,

and tz = u. Then z = tu contains a p'-cycle in its cycle decomposition. So z
is a p'-cycle, using Lemma 14. It then follows from Lemma 13 that

(16) (tTeAf,u) = (e,1) (TN, u).
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A direct calculation shows that
(17) Ht,)erx X |til=u} =p" — 1.
We conclude from (15), (16) and (17) that

(TFe),u) = (TFef ™ ,u) = —(e, 1),

But (e,1) # Og, by a theorem of Brauer. So (rte)” ' # (rte)”’. This
completes the proof. O

Let J(Z) denote the Jacobson radical of Z, and let p* denote the p-exponent
of 8(n). Suppose that p = 2. If n = 4 then 2" 't! = 0, for all z € J(Z),
while if n = 6, there exists z € J(Z) with 2#"~" # 0. So Theorem 12 is best
possible. On the other hand, the dihedral group Dg of order 8 has 2-exponent
4, yet 22 = 0 for each z € J(Z(FDg)). So Theorem 12 does not generalize to
all finite groups.

Corollary 18. Let J(Z) denote the Jacobson radical of Z, and let p* denote
the p-exponent of 8(n). Then dimp(J(Z)?"") is greater that or equal to the
number of p-blocks of §(n) that have weight greater than or equal to p'~.

Proof. Suppose that B is a p-block of §(n), of weight w > p'~!. Now by [JK81,
6.2.39], a defect group D of B is isomorphic to a wreath product of a cyclic
group of order p and a Sylow p-subgroup of a Symmetric group of degree w.
But w < p’. So the p-adic decomposition of w contains p'~! with non-zero
multiplicity. It follows that D has a direct factor isomorphic to a Sylow p-
subgroup of §(p*). Hence D has exponent p'. The corollary now follows from
Theorem 12. O

Theorem 19. Let p be an odd prime. Then ZP < Z.

Proof. Let T be the class of transpositions in §(n). So 7+ € Z,. Suppose that

there exists z € Z with 22 = 7. Then 2# = (77)?'"" lies in the GF(p)-span

of the block idempotents of Z, using [K91, (59)]. So (2#')? = 2*'. However,
(P = (P £ P =

by the proof of Theorem 12. This contradiction shows that no such z exists. [

proof of Theorem 3. Let g be a 2-regular element of §(n) and let ¢ be an in-

volution which inverts g. If X is a (g)-orbit on {1,...,n}, then so too is

Xt. So either X is stabilized by (t), or ¢ contains the |X|-transpositions

{(z,xt) | x € X} in its cycle decomposition. Suppose that X is stabilized

by (t). Then t fixes some point, say zo, in X, since |X| is odd and (t)
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is a 2-group. It follows from the fact that ¢ inverts g that ¢ contains the
(|X| —1)/2-transpositions {(zog’, zogXI7) | j = 1,...(]X|—1)/2} in its cycle
decomposition.

Suppose that g has a; orbits of size i, and that exactly b; of these are
stabilized by (t). Then the number of transpositions in t is

1—1 ai—bi, aii—bi
(20) Sl )y st

Moreover,

(21) D (e —b:)/2 <) ai(i—1)/2,

with equality if and only if b; = a;, for all 4.

Given a set X’ of representatives for the orbits of (g) on {1,...,n}, there is
a unique involution s which inverts g and centralizes all members of X'. Let
T be the conjugacy class of §(n) which contains s, and suppose that t € T
inverts g. By (20), the cycle decomposition of s, and hence ¢, consists of
>-;ai(i — 1)/2 transpositions. But then (21) implies that ¢ fixes an element
from each (g)-orbit. We deduce that

{teTlg =g =[]

equals the number of sets of representatives for the orbits of (g) on {1,...,n}.
A standard argument gives

(T)%9) = {teTlg' =g }1p
The theorem now follows from the fact that [[:% is odd. O

It remains to prove Proposition 4. First we need some notation for subgroups
of 8(n). Much of this is taken from [R93, 1.6].

Let X and Y be finite sets. We use 8§(X) to denote the group of all per-
mutations of X. By convention all permutations act on the right. Let H be a
subgroup of §(X). If h € H and gy, € Y, we can define a permutation h(y) of
X x Y via

— (th,y), if Y = Yo,
(xz,y)h(yo) := { (1), iy, for all (z,y) € X x Y.
The map h — h(yo) gives an injection H — §(X xY'), whose image we denote
by H(yo). We let HY denote the group generated by {H(yo) | vo € Y}. So
HY isomorphic to the external direct product of |Y| copies of H.

Suppose that we have a collection of disjoint finite sets {X, | y € Y} and
groups {H, < 8(X,) | y € Y}, indexed by the elements of Y. Then [] ., Hy
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denotes the group generated by {Hy(y) | y € Y'}. So ],y Hy is an embedding
of the external direct product of the groups Hy in §(U,X,).

Let K be a subgroup of §(Y). For k € K, we can define a permutation k*
of X x Y via

(z,y)k* :== (z,yk), forall (z,y)e X xY.

The map k — k* gives an injection K — §(X x Y), whose image we denote
by A(K, X) (and A(K,n), if | X| =n). In particular, A(K, X) = K.

The wreath product HUK of H with K is the subgroup of §( X xY") generated
by HY and A(K,X). A quick calculation shows that h(yy)¥" = h(yok), for
each 1o € Y, h € H and k € K. It follows that HY is a normal subgroup of
H1K. We call HY the base group of H! K. Also HY N A(K, X) = {1}. So
H ! K is isomorphic to a semi-direct product of HY with K.

If m is a positive integer, we will use Z,, to denote the cyclic subgroup
of §(m) generated by an m-cycle. The following is crucial to be proof of
Proposition 4:

Proposition 22. Let m and n be positive integers with h.c.f.(m,n) = 1. Then
Zm 18(n) = A(Zpy,n) x N, for some group N.

Proof. Let h be a generator of Z,,. A typical element of Z,, 1 8§(n) is of the
form [, h(i)*0c*, with o € 8(n ), and 0 < oy <m-—1, fori =1,...,n.
Define 6 : Z,,2 8(n ) — Zpm, by

o] [ ni)*o) = [ n.
i=1 i=1
Then @ is a group homomorphism, since h(i)° = h(io), fori =1,...,n, and
o € 8(n).
Consider the generator ¢ := [[', h(é) of A(Z,,,n). Since h.cf.(m,n) =1,
it follows that #(d) = A" is a generator of Z,,. So 6 is onto, and ker(f) N
A(Zy,n) = {1}. But A(Z,,,n) is central in Z,, 2 8§(n). We conclude that

Zn18(n) = A(Zy,n) x N,  where N = ker(6).

Let
Fix(H {re X |zh ==z, forall h € H},

) =

ov(H) := {z € X | zh # z, for some h € H}.
) =
)

Lemma 23. Cgx) (H) = CS(Mov ))(H) x 8(Fix(H)). If Fix(H) = ¢ then

Csxxv)(HY) = Cgix)(H)Y.
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Proof. Both statements are obvious. O

Lemma 24. Suppose that K acts transitively on Y. Then
Cs(XXy)(A(K, X)) = Cg(y)(K) I S(X)

Proof. 1t is clear that Cgy)(K)18(X) C Cgxxv)(A(K, X)).

For each z € X, the set x x Y := {(z,y) | y € Y} is a A(K, X)-orbit on
X x Y. Moreover, each A(K, X)-orbit equals x x Y, for some z € X.

Let z € X and 0 € Cgxxy)(A(K,X)). The previous paragraph implies
that (z X Y)o = zo; x Y, for some 0; € §(X). So for y € Y we have

(.',E,y)O' = (.’,EO'l, yaw)a

where o, € 8(Y) depends on . An easy calculation shows that o, € Cgy)(K).
So 0 = 0} [[,ex 0x lies in Cgy)(K) 1 §(X). The lemma follows. O

Corollary 25. Suppose that H fizes no element of X and that K acts tran-
sitively on Y. Then Cgxxyy(HU1K) = A(Cgx)(H),Y).
Proof. We have
Csxxy)(HU1K) = CS(XXY)(HY) N Csxxy)(A(K, X)),
using the definition of wreath product,
= Csx)(H)" NCy(K)18(X), by Lemmas 23 and 24,
= (c(yo) | ¢ € Csx)(H), 40 € V) NA(8(X),Y)
= A(Cs(x)(H),Y),
U
Recall that g is an element of S§(n) and that D is a Sylow p-subgroup of

C = Cs(ny(9).- We use the above results to compute Cg, (D). Suppose that g
has a; cycles of length 7 in its cycle decomposition, for i = 1,2, ..., n.

Lemma 26. C = [] Z; 1 8(a:).

=1
Proof. This is 4.1.19 of [JK81]. O
If n is an integer, write n, for the p-part of n and n, for the p-regular part
of n. So n = nyny, and n, is a power of p, while n,y is coprime to p. Let
a; = Y b;;jp’ be the base p-expansion of a;, and let P(a;) be a Sylow p-subgroup
of 8(a;). It is know that

(27) P(a) = [[ P,
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where P(p’) is a Sylow p-subgroup of §(p?). Here we restrict j to those values
for which b;; # 0. Also P(p’) is a transitive subgroup of 8(p’), and the centre
Z(P(p’)) of P(p’) coincides with Cgi)(P(p?)).

See (9) in [O86] for another version of the following lemma:

Lemma 28. D = [] [[(A(Z,,iy) LP(p))% x [ A(P(as),i).

ip#l J ip=1
Proof. This follows from Lemma 26, (27), and the definition of the wreath
product. Note that A(Z;,,4,) is a Sylow p-subgroup of Z;. a

Proposition 29.

Csw (D) =[] 1122, 280y),p")"

ip#Al J
< TTTI@P@)) 18@)™ x (3 iba).

Proof. Suppose that 1 <7 <n and 4, # 1. Then
Cs(ipi) (A(Zs, iy ) VP(P7)) = A(Csw)(A(Ziy,iy)),p’), by Corollary 25
= A(Cs,)(Zs,) 18(iy), "), by Lemma 24
= A(Z;, 18(iy), p).
If i, = 1, we have A(P(a;),7) = {1s(ib;0)} X H A(P(p?),4)% , and A(P(p?),1)
has no fixed points for 7 > 0. Also J>0

Cs(ipi) (A(P(p’), 1)) = Csiy(P(p?)) 18(3), by Lemma 24
= Z(P(p")) 18(3).
The proposition now follows from repeated applications of Lemma 23. O
proof of Proposition 4. It follows from Propositions 22 and 29 that
HHA iy Iy D P x M
ip#L

for some subgroup M of 8(n). Also, the projection of g, onto each factor
A(Z;,,iyp’) generates that factor. The proposition now follows from standard
properties of finite abelian groups. O
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