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Abstract—We identify common hypotheses on which a large
number of distinct mathematical models of WLANs employing
IEEE 802.11 are founded. Using data from an experimental
test bed and packet-level ns-2 simulations, we investigate the
veracity of these hypotheses. We demonstrate that several of these
assumptions are inaccurate and/or inappropriate. We consider
hypotheses used in the modeling of saturated and unsaturated
802.11 infrastructure mode networks, saturated 802.11e networks,
and saturated and unsaturated 802.11s mesh networks. In infra-
structure mode networks, we find that even for small numbers of
stations, common hypotheses hold true for saturated stations and
also for unsaturated stations with small buffers. However, despite
their widespread adoption, common assumptions used to incor-
porate station buffers are erroneous. This raises questions about
the predictive power of all models based on these hypotheses.
For saturated 802.11e models that treat differences in arbitration
interframe space (AIFS), we find that the two fundamental hy-
potheses are reasonable. For 802.11s mesh networks, we find that
assumptions are appropriate only if stations are lightly loaded and
are highly inappropriate if they are saturated. In identifying these
flawed suppositions, this work identifies areas where mathematical
models need to be revisited and revised if they are to be used with
confidence by protocol designers and WLAN network planners.

Index Terms—Carrier sensing multiple access/collision avoid-
ance (CSMA/CA), hypothesis testng, IEEE 802.11, stochastic
models.

I. INTRODUCTION

S INCE its introduction in 1997, IEEE 802.11 has become
the de facto WLAN standard. Its widespread deployment

has led to considerable research effort to gain understanding
of its carrier sensing multiple access/collision avoidance
(CSMA/CA) algorithm. This includes the use of simulation
tools, experiments with hardware, and the building of mathe-
matical models. In particular, analytical models have developed
significantly in recent years, and due to the speed with which
they can make predictions, they have been proposed as powerful
tools to aid protocol designers and WLAN network planners.

Despite the differences in the details of published models,
most of them share common hypotheses. In this article, we iden-
tify these common assumptions and investigate their validity.
This is an important task as authors do not typically check the
validity of these assumptions directly, but infer them from the
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accuracy of model predictions of coarse-grained quantities such
as long-run throughput or average MAC delay. If these models
are to be used with confidence for the prediction of quantities
beyond those validated within published articles, it is necessary
that their fundamental hypotheses be sound.

In the present article, we identify the following assumptions
that are adopted by numerous authors, often implicitly. For a
single station, define if the th transmission attempt
results in a collision, and if it results in a success. For
a station in an 802.11 network employing DCF, irrespective of
whether it is saturated (always having packets to send) or not,
many authors (e.g., [2]–[10]) assume the following.
(A1) The sequence of outcomes of attempted transmissions

forms a stochastically independent sequence.
(A2) The sequence consists of identically distributed

random variables that, in particular, do not depend on
station’s collision history.

For models where stations have nonzero buffers, in addition
define if there is at least one packet awaiting pro-
cessing after the th successful transmission or packet discard,
and if the buffer is empty. Then, the following are com-
monly assumed (e.g., [11]–[14]).
(A3) The sequence consists of independent random

variables.
(A4) The sequence consists of identically distributed

random variables that, in particular, do not depend on
backoff stage.

Many authors consider networks employing the 802.11 EDCA
in which stations have distinct arbitration interframe space
(AIFS) parameters. For a network with two distinct AIFS
values, let denote the sequence of the number of slots
during which stations with a lower AIFS value can decrement
their counters while stations with the higher AIFS observe the
medium as being continuously busy for longer. The commonly
adopted assumptions (e.g., [15]–[20]) are the following.
(A5) The sequence consists of independent random

variables.
(A6) Each element of the sequence is identically dis-

tributed, with a distribution that can be identified with
one derived in Section VI.

For 802.11s mesh networks, let denote the interdeparture
times of packets from an element of the network. That is,
is the difference between the time at which the th successful
transmission and the th successful transmission occurs
from a tagged station. If the station’s arrival process is Poisson,
then one pair of hypotheses (e.g., [21]) used to enable a tractable
mathematical model of 802.11s mesh networks is the following.

1063-6692/$26.00 © 2010 IEEE
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TABLE I
SUMMARY OF FINDINGS: �� � COLLISION SEQUENCE;

�� � QUEUE-OCCUPIED SEQUENCE; �� � HOLD SEQUENCE; �� � INTERDEPARTURE TIME SEQUENCE

(A7) The sequence consists of independent random
variables.

(A8) The elements of are exponentially distributed.
By performing statistical analysis on large volumes of

data collected from an experimental test bed, as described
in Section III, we investigate the veracity of the assumptions
(A1)–(A4), (A7), and (A8). Due to instrumentation difficulties,
we use data from ns-2 packet-level simulations to check (A5)
and (A6). Our findings are summarized in Table I.

Autocovariance, Runs Tests, maximum likelihood estimators,
and goodness-of-fit statistics lead us to deduce that (A1) and
(A2) are reasonable hypotheses for saturated stations and unsat-
urated stations with small buffers, but are not accurate for unsat-
urated stations with large buffers. Of greater concern for unsatu-
rated stations with large buffers is that we find (A4) is a dubious
and inaccurate assumption. In particular, the queue-busy prob-
ability is clearly shown to be a function of backoff stage. For
802.11e models that treat differences in AIFS, we find that (A5)
and (A6) are reasonable (albeit not perfect). For 802.11s mesh
networks, we find that (A7) and (A8) are appropriate for lightly
loaded unsaturated stations, but (A8) fails as stations become
heavily loaded. This is particularly true when stations are satu-
rated as interdeparture times coincide with MAC service times.
Although these are independent, which validates (A7), they are
not distributed exponentially, which contradicts (A8).

Clearly, these findings give rise to serious concerns about the
appropriateness of many commonly adopted modeling assump-
tions. As these hypotheses are inaccurate or inappropriate, it is
hard to have confidence in the predictions of models based on
them beyond their original validation. Our aim in this article is
to draw attention to these deficits and guide the 802.11 mod-
eling community in its ongoing research effort. This is crucial
if these models are to be used by network designers.

The rest of this paper is organized as follows. In Section II,
we introduce two of the popular 802.11 modeling approaches:
p-persistent and mean-field Markov. In Section III, the instru-
mented test bed used to collect experimental data is introduced.
In Section IV, we treat the fundamental decoupling hypotheses,
(A1) and (A2), for saturated stations as well as unsaturated sta-
tions with both small and large buffers. In Section V, we con-
sider the additional queue decoupling assumptions, (A3) and
(A4), that are adopted when treating stations with buffers. In
Section VI, the assumptions (A5) and (A6) that lie behind the
treatment of different AIFS values in 802.11e are considered. In
Section VII, the mesh assumptions (A7) and (A8) that Poisson

input gives rise to Poisson output are treated. In Section VIII,
we discuss our findings.

II. POPULAR ANALYTIC APPROACHES TO 802.11 DCF AND

EDCA

At its heart, the 802.11 CSMA/CA algorithm employs binary
exponential backoff (BEB) to share the medium between sta-
tions competing for access1. As this BEB algorithm couples
stations service processes through their shared collisions, its
performance cannot be analytically investigated without judi-
ciously approximating its behavior. There are two popular mod-
eling paradigms: the p-persistent approach and the mean-field
Markov model approach. The former has a long history in mod-
eling random access protocols, such as Ethernet and Aloha [22],
and the latter has its foundations in Bianchi’s seminal papers [2],
[3]. While these approaches differ in their ideology and details,
we shall see that they share basic decoupling hypotheses. Irre-
spective of the paradigm that is adopted, most authors validate
model predictions, but do not directly investigate the veracity of
the underlying assumptions.

All of the models we shall consider are based on the assump-
tion of idealized channel conditions where errors occur only
as a consequence of collisions. With this environmental condi-
tioning, the key decoupling approximation that enables predic-
tive models in all p-persistent and mean-field analytic models of
the IEEE 802.11 random access MAC is that given a station is
attempting transmission, there is a fixed probability of collision
that is independent of the past.

In p-persistent models, this arises as each station is assumed
to have a fixed probability of attempted transmission per idle
slot that is independent of the history of the station and indepen-
dent of all other stations. In a network of identical stations,
the likelihood a station does not experience a collision given it is
attempting transmission is the likelihood that no other sta-
tion is attempting transmission in that slot: .
Thus, the sequence of collisions or successes is an indepen-
dent and identically distributed sequence. In the p-persistent ap-
proach, the attempt probability is chosen in such a way that
the average time to successful transmission matches that in the
real system, which is an input to the model. If this average is
known, this methodology has been demonstrated to make accu-
rate throughput and average delay predictions [4], [5].

1A brief overview of the DCF and EDCA algorithms is given in Appendix I.
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In the mean-field approach, the fundamental idea is similar,
but the calculation of , and thus , does not require external in-
puts. One starts by assuming that is given and each station al-
ways has a packet awaiting transmission (the saturated assump-
tion). Then, the backoff counter within the station becomes an
embedded semi-Markov process whose stationary distribution
can be determined [2], [3]. In particular, the stationary proba-
bility that the station is attempting transmission, , can be
evaluated as an explicit function of and other MAC parame-
ters ([3, Eq. (7)]). In a network of stations, as is known,
the fixed-point equation can be solved to
determine the “real” for the network and “real” attempt prob-
ability . Once these are known, network performance metrics,
such as long-run network throughput, can be deduced.

Primarily through comparison with simulations, models
based on these assumptions have been shown to make accurate
throughput and delay predictions, even for small number of
stations. This is, perhaps, surprising as one would expect that
the decoupling assumptions would only be accurate in networks
with a large number of stations. The p-persistent paradigm has
been developed to encompass, for example, saturated 802.11
networks where every station always has a packet to send
[4] and saturated 802.11e networks [8]. However, due to its
intuitive appeal, its self-contained ability to make predictions,
and its predictive accuracy, Bianchi’s basic paradigm has been
widely adopted for models that expand on its original range of
applicability. A selection of these extensions includes: [6], [7],
[9], [10], which consider the impact of unsaturated stations in
the absence of station buffers and enable predictions in the pres-
ence of load asymmetries; [11]–[14], which treat unsaturated
stations in the presence of stations with buffers; [15]–[17],
which investigate the impact of the variable parameters of
802.11e, including AIFS, on saturated networks; [18]–[20],
which treat unsaturated 802.11e networks; [21], which extends
the paradigm from single-hop networks to multiple-radio
802.11s mesh networks. Note that the work cited here is a
small, selective subcollection within a vast body of literature.
To appreciate just how large this literature is, as of November
2009, the p-persistent modeling paper [4] has been cited over
400 times according to ISI Knowledge and over 800 times
according to Google Scholar, while the mean-field modeling
paper [3] has been cited over 1300 times according to ISI
Knowledge and over 3200 times according to Google Scholar.

All of the extensions that we cite are based on the idealized
channel assumption as well as the decoupling approximation.
Some of these extensions require further additional hypotheses.
The purpose of the present article is to dissect these funda-
mental assumptions to determine the range of the applicability
of models based on them.

III. EXPERIMENTAL APPARATUS

The experimental apparatus is set up in infrastructure mode.
It employs a PC acting as an access point (AP), another PC, and
nine PC-based Soekris Engineering net4801 embedded Linux
boxes acting as client stations. For every transmitted packet, the
client PC records the transmitting timestamp (the time when it

receives an ACK), the number of retry attempts experienced,
and the absence or presence of another packet in station’s buffer,
but otherwise behaves as an ordinary client station. All stations
are equipped with an Atheros AR5215 802.11b/g PCI card with
an external antenna. All stations, including the AP, use a version
of the MADWiFi wireless driver modified to allow packet trans-
missions at a fixed 11-Mb/s rate with RTS/CTS disabled and a
specified queue size. The 11-Mb/s rate was selected as in the
absence of noise-based losses the MAC’s operation is rate-in-
dependent, and more observations of transmission can be made
at higher rates for an experiment of given real-time duration.
The channel on which experiments were conducted was con-
firmed to be noise-free by use of a spectrum analyzer and by
conducting experiments with single transmitter–receiver pairs.

All stations are equipped with a 100-Mb/s wired Ethernet port
that is solely used for control of the test bed from a distinct PC.
In the experiments, UDP traffic is generated by the Naval Re-
search Laboratory’s MGEN in Poisson mode. All UDP packets
have a 1000-byte payload and are generated in client stations
before being transmitted to the AP. At the AP, tcpdump is used
to record traffic details.

Hoeffding’s concentration inequality (described in
Section IV) was used to determine how many observations were
necessary to ensure statistical confidence in estimated quanti-
ties. Consequently, saturated and large buffer experiments were
run for 2 h while small buffer experiments were run for 4 h.

Care must be exercised when performing experiments with
IEEE 802.11 devices. Bianchi et al. [23] and Giustiniano et
al. [24] report on extensive validation experiments that clearly
demonstrate that cards from many vendors fail to implement the
protocol correctly. The precision of our experimental apparatus
was established using the methodology described in [23] with
additional statistical tests.

For example, to check if the backoff counters are uniformly
distributed, the sequence of transmission times of a single satu-
rated station with fixed packet sizes were recorded. The backoff
counter values were inferred from this sequence by evaluating
the intertransmission times less the time taken for a packet trans-
mission and then dividing this
quantity by the idle slot length. When the contention window is
32 or 64, Fig. 1 reports on a comparison of the protocol’s backoff
distribution with empirical distributions based on sample sizes
of 8 706 941 and 7 461 686, respectively. With a null hypothesis
that the distributions are uniform, Pearson’s -test (described
in Appendix II) gives p-values of 0.7437 and 0.2036 so that the
null hypothesis would not be rejected.

There is one place where our 802.11 cards do not implement
the standard correctly, but it does not impact on our deductions;
both ACKTimeout and EIFS are shorter than suggested in the
standard. While this must be taken into account when, for ex-
ample, predicting throughput, it has no impact on the aspects of
the MAC’s operation that are of interest to us.

For added confirmation, all of the results that are reported
here based on experimental data were shadowed in parallel
by ns-2-based simulations that gave agreement in every case.2

Thus, we are satisfied that none of the observations reported

2Data from these simulations are not shown due to space constraints.
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Fig. 1. Comparison of protocol’s uniform backoff distribution and empirical
distribution for contention windows of size 32 and 64 based on sample sizes of
8 706 941 and 7 461 686, respectively. Pearson’s � does not reject the hypoth-
esis that the distributions are uniform. Experimental data.

in this article are a consequence of peculiarities of the cards,
drivers, or experimental environment.

IV. ASSUMPTIONS (A1) AND (A2)

For a single station, define if the th transmission at-
tempt results in a collision, and if it results in a success.
The two key assumptions in [2]–[5] are effectively these: (A1)
the sequence consists of independent random variables;
and (A2) the sequence consists of identically distributed
random variables. That is, there exists a fixed collision proba-
bility conditioned on attempted transmission, ,
that is assumed to be the same for all backoff stages and inde-
pendent of past collisions or successes.

The assumptions (A1) and (A2) are common across all
models developed from the p-persistent and mean-field
paradigms. Here, we investigate these for saturated stations,
for unsaturated stations with small buffers, and for unsaturated
stations with big buffers. All network parameters correspond to
standard 11-Mb/s IEEE 802.11b [25].

We begin by investigating (A1), the hypothesized indepen-
dence of the outcomes (success or collision) in the sequence

Fig. 2. Saturated collision sequence normalized autocovariances. Experi-
mental data.

TABLE II
NUMBER OF ATTEMPTED TRANSMISSIONS � . EXPERIMENTAL DATA

of transmission attempts. We draw deductions regarding
pair-wise independence from the normalized autocovariance
of the sequence obtained experimentally,
where is the number of attempted transmissions that a
single tagged station makes during the experiment. For each
experiment, is recorded in Table II. Assuming is
wide-sense stationary, the normalized autocovariance, which
is a measure of the dependence in the sequence, is always 1
at lag 0, and if the sequence consisted of independent
random variables, as hypothesized by (A1), then for a suffi-
ciently large sample it would take the value 0 at all positive
lags. Nonzero values correspond to apparent dependencies in
the data.

Experiments were run for a saturated network with ,
5, and 10. As the number of stations is increased, the number of
attempts by the tagged station decreases due to the backing-off
effects of the MAC. Fig. 2 reports the normalized autocovari-
ances for these sequences at short lags. The plot quickly con-
verges to zero, indicating little dependence in the success per
attempt sequence, even for .

The (A1) and (A2) assumptions are also adopted in unsat-
urated models with small buffers [6], [7], [9], [10] and big
buffers [11]–[14]. From experimental data for unsaturated
networks large station buffers, Fig. 3 plots the normalized
autocovariances of the attempted transmissions for , 5,
and 10 with both small and large buffers. As in all unsaturated
models that we are aware of, packets arrive at each station as a
Poisson process with rate packets per second. In the big buffer
experiments, the overall network load is kept constant at 500
packets per second, equally distributed amongst the stations,
corresponding to a network-wide offered load of 4.25 Mb/s. In
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Fig. 3. Unsaturated small and big buffer collision sequence normalized auto-
covariances. Note the short y-range. Experimental data.

the small buffer experiments network load is kept constant at
800 packets per second. Again, we only show short lags as the
autocovariance quickly drops to zero, indicating little pair-wise
dependency in the sequence and supporting the
(A1) hypothesis.

We have seen graphs similar to Figs. 2 and 3 for a range of
offered loads, which are not shown due to space constraints.
These support the (A1) hypothesis that the sequence of collision
or success at each attempted transmission is close to being a
pair-wise independent one.

Before investigating the (A2) hypothesis on its own, we use
the Runs Test (described in Appendix III) to jointly test (A1)
and (A2). Given a binary-valued sequence, , this
test’s null hypothesis is that it was generated by a Bernoulli
sequence of random variables. The test is nonparametric and
does not depend on . The Runs Test statistics for
each of our nine collision sequences range from 11.6617 for
the saturated two-station sequence to 68.5831 for the unsatu-
rated big-buffer two-station sequence. The likelihood that the

data was generated by a Bernoulli sequence is a decreasing func-
tion of the test value, and if this value is 2.58, there is less than
1% chance that it was generated by a Bernoulli sequence. Even
the lower end of the range gives a p-value of 0, leading to rejec-
tion of the hypothesis that the collision sequences are i.i.d. The
reason for this failure will become apparent when we demon-
strate that depends heavily on an auxiliary variable

, the backoff stage at which attempt was made, and that,
as is clear from the DCF algorithm, cannot form an i.i.d.
sequence.

To investigate the (A2) hypothesis on its own, we reuse
the same collision sequence data with
some additional information. For each attempted transmission

, we record the backoff stage at which
it was made. Assume that there is a fixed probability that
the tagged station experiences a collision given it is attempting
transmission at backoff stage . A consequence of Assumption
(A2) is that for all backoff stages . The maximum
likelihood estimator for is given by

(1)

where if , and 0 otherwise. The numer-
ator in (1) records the number of collisions at backoff stage ,
while the denominator records the total number of attempts at
backoff stage . As is a sequence of bounded random vari-
ables that appear to be nearly independent (although not i.i.d.),
we apply Hoeffding’s inequality [26] to determine how many
samples we need to ensure we have confidence in the estimate

Using this concentration inequality, to have at least 95% confi-

dence that requires
attempted transmissions at backoff stage . If we have less than
185 observations at backoff stage , we do not have confidence
in the estimate’s accuracy, so it is not plotted.

Starting with the saturated networks, Fig. 4 plots the estimates
for the tagged station as well as the predicted value from [2],

[3]. For , we only report backoff stages 0 to 3 due to lack
of observations. It can be seen that the are similar for all . To
quantify this, with for

for , and for . Note that
while the estimated values are not identical to those predicted
by Bianchi’s model, they are close. These observations support
the (A2) assumption for saturated stations, even for .

For unsaturated WLANs, we do not include theoretical pre-
dictions for comparison as, unlike the saturated setting, there
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Fig. 4. Saturated collision probabilities. Experimental data.

Fig. 5. Unsaturated, small buffer collision probabilities. Experimental data.

are a large range of distinct models to choose from. Plotting the
predictions from any single model would not be particularly in-
formative and could reasonably be considered unfair. The sig-
nificant thing to note is that all of the models we cite assume that

for all backoff stages , so that if varies as a function
of , none can provide a perfect match.

Fig. 5 is a plot of the estimates for each backoff stage
for the tagged station in the unsaturated three-packet buffer case
with 5, and 10, with a network arrival rate of 800 packets
per second, equally distributed among the stations, corre-
sponding to an offered load of 6.8 Mb/s. In comparison to the
saturated setting, the absolute variability estimates are similar
with as has been defined, giving for

for , and for . This
suggests that (A2) is reasonably appropriate. There is, however,
clear structure in the graphs. For each , the collision proba-
bility appears to be dependent on the backoff stage. The colli-
sion probability at the first backoff stage is higher than at the

Fig. 6. Unsaturated big-buffer collision probabilities. Experimental data.

zeroth stage. For stations that are unsaturated, we conjecture
that this occurs as many transmissions happen at backoff stage
0 when no other station has a packet to send, so collisions are
unlikely and is small. Conditioning on the first backoff stage
is closely related to conditioning that at least one other station
has a packet awaiting transmission, giving rise to a higher con-
ditional collision probability at stage 1, so that .

Fig. 6 is analogous to Fig. 5, but for stations with 100-packet
station buffers. The networks are unsaturated with the queues
at each station repeatedly emptying. As with the small buffer
case, we again have that and conjecture that this occurs
for the same reasons. In comparison to the values reported in
Figs. 4 and 5, the absolute variability is similar with
for for , and for ,
but with being the average of , relative variability of
the estimates in Fig. 6 is consistently higher than the saturated
case: versus 0.17 for versus 0.23 for

, and versus 0.22 for . This suggest that (A2)
is not as good an approximation in the presence of big station
buffers.

In this section, we have investigated the veracity of the as-
sumptions of independence and identical distribution of the out-
comes of the collision attempt sequence. The findings are sum-
marized in Table I. In the next section, we consider the addi-
tional hypotheses introduced to model buffering.

V. ASSUMPTIONS (A3) AND (A4)

To model stations with buffers serving Poisson traffic, the
common idea across various authors, e.g., [11]–[14], is to treat
each station as a queueing system where the service time dis-
tribution is identified with the MAC delay distribution based
on a Bianchi-like model. The assumptions (A1) and (A2) are
adopted, so that given conditional collision probability , each
station can be studied on its own, and a standard queueing theory
model is used to determine the probability of attempted trans-
mission , which is now also a function of the offered load.
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Fig. 7. Unsaturated, big-buffer, queue-non-empty sequence normalized auto-
covariances. Experimental data.

For symmetrically loaded stations with identical MAC parame-
ters, the same network coupling equation as used in the saturated
system, , identifies the “real” operational
conditional collision probability .

Each time the MAC successfully transmits a packet, it checks
to see if there is another packet in the buffer awaiting processing.
Define if there is at least one packet awaiting pro-
cessing after the th successful transmission or discard, and

if the buffer is empty. As it is technically challenging
to fully model these queueing dynamics while still obtaining
tractable equations that can be solved more quickly than a sim-
ulation can be run, authors typically employ a second queueing-
based decoupling assumption that can be distilled into the fol-
lowing two hypotheses: (A3) the sequence consists of in-
dependent random variables; and (A4) the sequence con-
sists of identically distributed random variables, with

. The value of is identified with the steady-state proba-
bility that an associated M/G/1 or M/G/1/B queueing system has
a nonempty buffer after a successful transmission (e.g., [27]).

Clearly, (A3) and (A4) are more speculative than (A1)
and (A2), as both disregard obvious dependencies in the real

sequence, where is the number of suc-
cessful transmissions from the tagged station. These occur
as if there are two or more packets awaiting processing after
a successful transmission, there will still be another packet
awaiting transmission after the next successful transmission,
and in the presence of station buffers, the longer a packet has
been awaiting transmission, the more likely it is to have another
waiting in its buffer.

To investigate (A3), we evaluate the normalized autocovari-
ance of the empirical sequences for
5, and 10 with , and

, respectively. These autocovariances are
reported in Fig. 7, where it can be seen that there is a small
amount of correlation structure, but that by lag 5 this is less
than 0.2, and so we do not regard it as significant. As one would
expect, this is a function of the load. As stations become more

Fig. 8. Unsaturated, big-buffer, queue-non-empty probabilities. Note the large
y-range. Experimental data.

heavily loaded, we have seen this correlation structure become
more prevalent, until stations are saturated, whereupon the
correlation disappears as for all .

To jointly test (A3) and (A4), again we use the Runs Test
statistic described in Appendix III. In comparison to the colli-
sion sequences, the test statistics are even more extreme with
397.46 for , 171.39 for , and 130.23 for .
Thus, this test leads to p-values of 0 in all cases and the rejec-
tion of an i.i.d. queue-busy sequence. As with the collision se-
quences, it will be clear that this happens as depends
on the backoff stage of the th successful transmission.

To investigate (A4), let denote the backoff stage at the th
successful transmission. With denoting the probability there
is another packet awaiting transmission after a successful trans-
mission at backoff stage , its maximum likelihood estimator is

(2)

Although (A3) does not appear to hold at short lags, we can
again use Hoeffding’s bound to heuristically suggest we need
at least 185 observations at a given backoff stage in order to be
confident in its accuracy.

Fig. 8 shows these estimates for all stations in each net-
work. They show a strong increasing trend as a function of
backoff stage. This is as one might expect, given that the longer a
packet spends while awaiting successful transmission, the more
likely it is that there will be another packet awaiting processing
when it is sent. Note that this dependency on backoff stage raises
questions over all buffered models that adopt the assumption
(A4). These findings are summarized in Table I.

VI. ASSUMPTIONS (A5) AND (A6)

The 802.11e standard, ratified in 2005, enables service
differentiation between traffic classes. Each station is equipped



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

with up to four distinct queues, with each queue effectively
being treated as a distinct station. Each queue has its own MAC
parameters including minimum contention window ,
retry limit, transmission opportunity (TXOP), and arbitration
interframe space (AIFS). To model the first three of these,
no additional modeling assumptions are necessary beyond
(A1)–(A2) for saturated stations or for unsaturated stations
with small buffers (e.g., [10]). For unsaturated stations with
large buffers, no additional assumptions are necessary beyond
(A1)–(A4) (e.g., [14]). However, to capture the full power of
802.11e’s service differentiation, one must model AIFS, and
this requires additional innovation and hypotheses [15]–[20].

Consider stations, each of which is serving one
of two traffic classes with distinct AIFS values: class one
stations with and class 2 stations with

, where is the length of an idle slot and is a
positive integer. After every attempted transmission, class-1 sta-
tions decrement their backoff counters by a minimum of be-
fore class-2 stations see the medium as being idle. If the backoff
counter of a class-1 station becomes 0 during these slots, it
attempts transmission, and once it is complete, class-1 stations
can decrement their counters by at least another before class-2
stations see the medium as being idle.

Consider a network of homogeneous saturated class-1 sta-
tions and homogeneous class-2 stations. To model the impact of
different AIFS values, using the terminology in [15], we have
the notion of hold states for class-2 stations. A class-2 station
is in a hold state if class-1 stations can decrement their coun-
ters while it cannot. As all class-2 stations have the same AIFS
value, they all experience the same class-1 preemption. Once in
a hold state, they cannot begin to decrement their backoff coun-
ters again (while class-1 stations continue to do so) unless all
class-1 stations are silent for consecutive slots.

Given class-2 stations have just entered a hold state, let
represent the hold time: the number of slots that

pass before class-2 stations escape the hold states. Let de-
note the sequence of observations of hold times. Implicitly, the
commonly adopted assumptions used to treat AIFS are: (A5)
the sequence consists of independent random variables;
and (A6) each element of the sequence is identically dis-
tributed with the same distribution as defined in (3) and which
we now derive.

Within the analytic modeling context, this escape from hold
states can be formalized mathematically. Let denote the sta-
tionary probability a class-1 station attempts transmission. De-
fine , which is the stationary probability that all
class-1 stations are silent (no class-1 station is attempting trans-
mission). Let denote the sequence of hold states. After
a transmission, whether successful or not, class-2 stations enter
a hold state, and this process starts in hold state . If
the medium is idle (no class-1 stations attempt transmission),
which happens with probability , the station moves to hold
state , otherwise it is reset to , and so forth. The
process stops the first time that the hold state is reached,
whereupon all class-2 stations see the medium as being idle
and can decrement their counters. This system forms a Markov
chain, portrayed in Fig. 9, with the transition
matrix

Fig. 9. Markov chain for modeling a difference in AIFS of� slots.

...
...

...
...

...
...

...
...

...

With , we define to be the
first time that the consecutive idle slots are observed. Using
the form of the Markov chain, we have

(3)

Thus, is solely a function of and can be readily
calculated from in (3), albeit not in closed form unless
or .

Due to experimental instrumentation difficulties, the results
in this section are based exclusively on ns-2 simulations. In
order to determine how many slots the lower class stations have
spent in hold states, it is necessary to know the start and finish
times of every packet transmitted on the medium. In an exper-
imental setup, no one station is in possession of this informa-
tion, and due to the time-scales involved, accurate reconcilia-
tion of the time-line from data recorded at each station is partic-
ularly challenging. In simulation, however, this data is readily
accessible.

For a saturated network, the methodology used to measure
is as follows. For each station in the network, a timestamp

is recorded at the start and end of every transmission. These
timestamps are collected from all stations and combined into
a single ordered list: , where is the start time
of the th packet and is the end time. Define

for each . The hold times are determined
from this sequence by first identifying the indices at which the
hold states are delineated: and

for each . The hold states are then the sum of the
hold times between transmission, with the final term making a
contribution of slots

where the empty sum is defined to be zero.
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Fig. 10. Autocovariance for period of hold states for class-2 stations in a net-
work of five class-1 and five class-2 saturated station with � � �, 12, 20, and
32. ns-2 data.

To consider the independence assumption (A5), we assume
that the sequence of observed hold times are
wide-sense stationary and plot this data’s autocovariance func-
tion, thus investigating pair-wise dependence. For a network of
five class-1 saturated stations and five class-2 saturated stations
that are identical apart from , where

, 2, 4, 8, 12, 16, 20, and 32, these plots suggest that
the sequences have little dependence at short lags. Fig. 10 is
a representative graph shown for , 12, 20, and 32, with

, and
, respectively. These values, particularly the

smaller ones, are typical of those proposed for traffic differenti-
ation in the 802.11e standard [28]. As the autocovariance is less
than 0.2 by lag 5, the independence assumption (A5) is not un-
reasonable for differences in AIFS values that are proposed in
the standard.

To test the assumption (A6) that the probability density of
hold-state idle periods has the form given in (3), rather than
use any specific model prediction for the distribution, as it is a
function of single parameter , we estimate based on the
following observation. Given , if the likelihood that all class-1
stations do not transmit is i.i.d., then . This
suggests using the following estimate of :

Note that, in using this estimate, we are ensuring that
coincides with the empirical observation. However, unless

the model is accurate, for calculated from (3)
need not coincide with the empirically observed value.

Figs. 11 and 12 show a sample of plots for a 10-station net-
work, with five saturated stations in class 1 and five saturated
stations in class 2, for and

. Conditioned on having a good estimate of
, the accuracy of the distribution-predicted (3) appears to be

remarkable. This apparent accuracy can be explored quantita-
tively through a test statistic. We use the Kolmogorov–Smirnov
test (described in Appendix II), but do not give p-values, as our

Fig. 11. Empirical and predicted probability density for the length of a hold
period for class-2 stations in a network of five class-1 and five class-2 saturated
station with � � �. ns-2 data.

Fig. 12. Empirical and predicted probability density for the length of a hold
period for class-2 stations in a network of five class-1 and five class-2 saturated
station with � � ��. ns-2 data.

distribution is purely discrete. Fig. 13 plots
against for , 4, 8, and 12. It is clear from the graph that
the discrepancies are small for moderate values of sample size.
However, is not converging to 0 as be-
comes large. This suggests that the predicted distribution of is
accurate for all practical purposes, even though the distribution
is not a perfect fit. These findings are summarized in Table I.

VII. ASSUMPTIONS (A7) AND (A8)

The 802.11s standard is a draft amendment to enable wire-
less mesh networks (WMNs). One approach to building a mul-
tihop, multiradio mathematical model of a WMN that employs
802.11 is to build on the mean-field Markov ideas, but with more
involved coupling that captures medium access dependencies
across the mesh. In order to do so, it is necessary to make hy-
potheses about the stochastic nature of the departures process
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Fig. 13. Largest discrepancy between empirical and predicted distributions,
��� �� ��� � � ����, as a function of sample size �. � � �, 4, 8, and 12.
ns-2 data.

Fig. 14. Saturated interdeparture-time-sequence normalized autocovariances.
Experimental data.

from mesh points, as these form the arrivals processes to other
parts of the mesh.

Let denote the interdeparture times of packets from an
element of the network. That is, is the difference between the
time at which the th successful transmission and the th
successful transmission occurs from a tagged station. One hy-
pothesis (e.g., [21]) is that if the arrivals process to the station
is Poisson, then the departure process is also Poisson. That is:
(A7) is a stochastically independent sequence; and (A8)
the elements of are exponentially distributed.

Having observed interdeparture times, ,
we investigate these hypotheses. These times were recorded in
the same experiment as the collision data used in Section IV, so

where is reported in Table II. Figs. 14–16
report the autocovariance for saturated arrivals, unsaturated ar-
rivals with small buffers, and unsaturated arrivals with large sta-
tion buffers for networks of , 5, and 10 stations, respec-

Fig. 15. Unsaturated, small-buffer, interdeparture-time-sequence normalized
autocovariances. Experimental data.

Fig. 16. Unsaturated, big-buffer, interdeparture-time-sequence normalized au-
tocovariances. Experimental data.

tively. There is little dependency beyond short lags, suggesting
that the independence hypothesis (A7) is not inappropriate.

For hypothesis (A8) and unsaturated stations with large
buffers, due to space constraints, we only report the interde-
parture time distributions for the network. These are
representative of our observations of other networks sizes.
Fig. 17 plots the logarithm of one minus the empirical cumu-
lative distribution function of the interdeparture times from
the tagged station. Also plotted is the exponential distribution
corresponding to the empirical mean. It can be seen that they
overlay each other nearly perfectly, suggesting that (A8) is a
good hypothesis in this case. Note that this implies that in the
lightly loaded, unsaturated big-buffer setting, the statistics of
a Poisson arrivals process is largely unaffected when passing
through an 802.11 network element.

Fig. 18 reports the equivalent quantity for the small buffer ex-
periment with , but here the network arrival rate of 800
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Fig. 17. Unsaturated big-buffer interdeparture time distribution (log y-scale),
� � �. Experimental data.

Fig. 18. Unsaturated small-buffer interdeparture time distribution (log y-scale),
� � �. Experimental data.

packets per second is chosen to be in the regime near satura-
tion. For , after the successful transmission of a packet,
56% of the time there is another packet awaiting transmission
by the time the medium is sensed idle. The effective transition
between underloaded and saturated can be seen as short interde-
parture times possess the features of MAC service times (convo-
lutions of uniform distributions), whereas longer interdeparture
times follow an exponential distribution. With a larger number
of stations and the same offered load shared evenly across sta-
tions, this effect is less pronounced, and the interdeparture times
look exponentially distributed. This effect is independent of the
buffering used and can also be observed within big buffer exper-
iments when traffic loads are closer to saturation. Thus, again the
evidence supports the assumption (A8) assumption if the net-
work is away from saturation.

However, Fig. 19 reports the same plot for a saturated net-
work. Clearly, the interdeparture times are not exponentially dis-
tributed. This is unsurprising as when stations are saturated, the

Fig. 19. Saturated interdeparture time distribution (log y-scale), � � �. Ex-
perimental data.

interdeparture times correspond to the MAC service times and
BEB service times are not well approximated by an exponen-
tial distribution. Qualitatively, the and net-
works show the same features, where the (A8) assumption is
appropriate for lightly loaded unsaturated networks, but inaccu-
rate for saturated networks. This can be statistically substanti-
ated through the use of a Kolmogorov–Smirnoff test. The null
hypothesis that the interdeparture times are exponentially dis-
tributed is rejected unless one trims the data by conditioning
solely large interdeparture times or if the load is sufficiently
light.

VIII. DISCUSSION

Table I summarizes our conclusions. It seems appropriate at
this stage to discuss another fundamental assumption: (A0) all
stations in the WLAN observe the same sequence of busy and
idle slots on the medium. This assumption is a cornerstone of
all CSMA/CA models that allow idle slots to be of distinct
real-time length from collisions and successful transmissions,
as is the case in 802.11 networks, and include collisions in their
considerations. Both p-persistent models and all of the mean-
field models described here are based on this premise, which is
true in the absence of hidden nodes and interfering neighboring
WLANs.

In order to model situations where (A0) is false, such
as relay topologies that do not have multiple radios and so
cannot mitigate interference at noncommunicating distances,
new approximations are necessary (e.g., [29]–[32]). Some
of these models also use mean-field ideas, usually inspired
by percolation theory, and typically assume away the BEB
aspect of 802.11. This approach gives insight into scenarios
that are distinct from those that are amenable to analysis by
the models studied in the present paper, and, as suggested
to us by an anonymous referee, the appropriateness of these
multihop mean-field approximations would be deserving of an
experimental investigation as they facilitate mathematical study
of situations that are otherwise analytically intractable. We do
not pursue this in the present article due to space constraints.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

This validation of the standard decoupling assumptions, (A1)
and (A2), for saturated networks helps to explain why the pre-
dictions in [2]–[5] are so precise. Even though intuitively one
expects the main model assumptions to be valid for large net-
works, in fact they are accurate even for small networks. As the
assumptions are reasonable, deductions from that model should
be able to make predictions regarding detailed quality-of-ser-
vice metrics.

The (A1) assumption continues to hold for both the unsatu-
rated setting with either small or big buffers, suggesting that the
attempt sequences have little dependencies. With small buffers,
the (A2) assumption that collision probabilities are independent
of backoff stage appears to be valid for stations that are not sat-
urated. There is, however, some structure with , but this
is not quantitatively significant. For larger buffers, this discrep-
ancy is more apparent in both relative and absolute terms, sug-
gesting that (A2) is an imprecise approximation in that setting.
For large buffer models, this inaccuracy is less dramatic than the
failure of the additional queueing decoupling assumption (A3)
and (A4).

Our investigations indicate that while (A3) is reasonable at
lighter loads, neither (A3) or (A4) are appropriate in general. In
particular, contradicting (A4), the probability that the queue is
nonempty after a successful transmission is strongly dependent
on backoff stage. Despite the apparent inappropriateness of the
assumptions (A3) and (A4), models based on them continue to
make accurate predictions of goodput and average delay. One
explanation is that with an infinite buffer, unless the station is
saturated, the goodput corresponds with the offered load. Thus,
to have an accurate goodput model, it is only important that the
model be accurate when offered load leads a station to be nearly
saturated. Once saturated, (A4) is true as Bianchi’s model is re-
covered. Thus, for goodput, the inaccuracy of the approximation
(A4) is not significant if this phase transition is predicted by the
model. However, one would expect that for more subtle quan-
tities the adoption of (A4) would lead to erroneous deductions.
Clearly, caution must be taken when making deductions from
big buffer models that incorporate these hypotheses. Extrapola-
tions of that kind from these models should be made with care
by network designers.

The hold-state hypotheses that were introduced to incorporate
802.11e AIFS differentiation in saturated networks are labeled
(A5) and (A6). The independence hypothesis (A5) appears to
be appropriate. The distributional assumption (A6) appears to
be accurate for any difference in AIFS once one has a good
estimate of the probability that no higher class station attempts
transmission in a typical slot. This lends confidence to the use
of these models for network design and detailed predictions.

The 802.11s mesh network assumptions (A7) and (A8) hold
true for lightly loaded, unsaturated networks where stations can
have either large or small buffers. In particular, the output of
an unsaturated 802.11 station with Poisson arrivals again ap-
pears to be nearly Poisson so long as saturation is not being ap-
proached. If the station is saturated, however, the interdeparture
times correspond to MAC delays, which are not similar to an
exponential distribution. If stations are close to being saturated,
short interdeparture times are similar to MAC delays, whereas
long interdeparture times correspond to long interarrival times

and are Poissonian. The impact of this non-Poisson traffic on the
accuracy of unsaturated model predictions must be investigated
before they can be used with confidence.

We also make a comment regarding experimentation. It was
challenging to emulate the fundamental explicit hypothesis of
all the models that we investigated: that of idealized channel
conditions where errors occur only as a consequence of colli-
sions. As 802.11 operates in an unlicensed range of the spectrum
and other devices are free to operate in this range, these devices
lead to interference. There are extensions to the WLAN mod-
eling paradigms that include failed transmissions due to noise on
the medium, e.g., [33]. This approach assumes that packet losses
due to noise are i.i.d. and independent of all other stochastic pro-
cesses in the model. Whether this assumption is appropriate is
dependent on the particular environment at hand and, clearly,
cannot be subject to general validation.

Due to the failure of several of these fundamental hypotheses,
clearly there is more work to be done on analytic modeling of
802.11. In particular, models that incorporate buffers at stations
are based on flawed hypotheses, but are important for network
designers. We suggest that it is an important challenge for the
analytic modeling community to revisit and revise models based
on these inappropriate assumptions.

Based on the observations in this article, for example, a nat-
ural alternative to (A3) and (A4) is to use the approximation
that: (A3 ) given is an independent sequence;
and (A4 ) given . As a first step in
this direction, in [34], negative consequences of adopting the
assumptions (A3) and (A4) are identified. A typical validation
scenario employed by modelers is to consider a symmetrically
loaded network. While this is unlikely to occur in practice, math-
ematically it leads to homogeneous fixed-point equations whose
solutions can be quickly identified by standard numerical tech-
niques. For stations that are asymmetrically loaded, results in
[34] demonstrate that a model based on these assumptions pro-
vides inaccurate throughput predictions. That this is a conse-
quence of (A3) and (A4) is established by considering the set-
ting where all stations can buffer one packet beyond the MAC, as
it is then possible to analyze a model based on (A3 ) and (A4 ).

Finally, we expect that other researchers will have alternate
hypotheses that they wish to check. To facilitate this research,
all the data used in the present study is available at: http://www.
hamilton.ie/kaidi/.

APPENDIX I
BRIEF OVERVIEW OF 802.11’S BEB ALGORITHM

On detecting the wireless medium to be idle for a period
DIFS, each station initializes a counter to a random number se-
lected uniformly in the range . Time is
slotted, and this counter is decremented once during each slot
that the medium is observed idle. The countdown halts when
the medium becomes busy and resumes after the medium is idle
again for a period DIFS. Once the counter reaches zero, the sta-
tion attempts transmission, and if a collision does not occur, it
can transmit for a duration up to a maximum period TXOP (de-
fined to be one packet except in the Quality-of-Service MAC ex-
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tension 802.11e). If two or more stations attempt to transmit si-
multaneously, a collision occurs. Colliding stations double their
contention window (CW) (up to a maximum value), select a new
backoff counter uniformly, and the process repeats. If a packet
experiences more collisions than the retry limit (11 in 802.11b),
the packet is discarded. After the successful transmission of a
packet or after a packet discard, CW is reset to its minimal value

, and a new countdown starts regardless of the presence
of a packet at the MAC. If a packet arrives at the MAC after
the countdown is completed, the station senses the medium.
If the medium is idle, the station attempts transmission imme-
diately; if it is busy, another backoff counter is chosen from
the minimum interval. This bandwidth saving feature is called
post-backoff. The revised 802.11e MAC enables the values of
DIFS (called AIFS in 802.11e), , and TXOP to be set
on a per-class basis for each station. That is, traffic is directed
to up to four different queues at each station, with each queue
assigned different MAC parameter values.

APPENDIX II
TESTING GOODNESS OF FIT

Given a sequence of observations of independent and identi-
cally distributed random variables , we wish to test
the hypothesis that the have common distribution . For
discrete-valued random variables taking distinct values, we
use Pearson’s -test (e.g., [35]) Assume a null hypothesis that

has a distribution such that , where is
a collection of parameters estimated from the data. For each
possible outcome , define

and

For large sample sizes , the test statistic has a distribu-
tion with between and degrees of freedom.
We use the later, more stringent test to determine the p-value

.
For real-valued random variables and unbounded random

variables with a discrete distribution, we evaluate the Kol-
mogorov–Smirnov statistic (e.g., [35] and [36]). We can use the
former to determine a test for goodness of fit, but exact critical
levels are not possible to determine for the latter [37]. Let

denote the empirical distribution given observations. The
distance is the greatest discrep-

ancy between the two distributions. It is used in the Kol-
mogorov–Smirnov test based on the observation that if the
null hypothesis that are identically distributed were true,
then is of order and, in particular,

. If is continuous, we also have the
following weak convergence result:

where is a Brownian bridge [38] from which a p-value can
be determined.

APPENDIX III
RUNS TEST FOR BINARY VALUED RANDOM VARIABLES

If are binary-valued random variables, then the null hy-
pothesis that the sequence is independent and identically dis-
tributed can be efficiently tested using the Runs Test [39], [35].
Given a sequence of observations , a run is defined
to be a maximal nonempty segment of the sequence consisting
of adjacent equal elements. Let be the number of runs in

, and define

Then, under the null hypothesis, is asymp-
totically normally distributed. Thus, given the sequence of ob-
servations , one evaluates , and the p-value for the
null hypothesis is ,
where is a normally distributed random variable.
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