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Abstract

The ability to track the location of a subject in their home allows the provision of a
number of location based services, such as remote activity monitoring, context sensitive
prompts and detection of safety critical situations such as falls. Such pervasive monitoring
functionality offers the potential for elders to live at home for longer periods of their lives
with minimal human supervision.

The focus of this thesis is on the investigation and development of a home room-
level localisation technique which can be readily deployed in a realistic home environment
with minimal hardware requirements. A conveniently deployed Bluetooth® localisation
platform is designed and experimentally validated throughout the thesis. The platform
adopts the convenience of a mobile phone and the processing power of a remote location
calculation computer. The use of Bluetooth® also ensures the extensibility of the platform
to other home health supervision scenarios such as wireless body sensor monitoring.

Central contributions of this work include the comparison of probabilistic and non-
probabilistic classifiers for location prediction accuracy and the extension of probabilistic
classifiers to a Hidden Markov Model Bayesian filtering framework. New location
prediction performance metrics are developed and significant performance improvements
are demonstrated with the novel extension of Hidden Markov Models to higher-order
Markov movement models. With the simple probabilistic classifiers, location is correctly
predicted 80% of the time. This increases to 86% with the application of the Hidden
Markov Models and 88% when high-order Hidden Markov Models are employed.

Further novelty is exhibited in the derivation of a real-time Hidden Markov Model
Viterbi decoding algorithm which presents all the advantages of the original algorithm,
while producing location estimates in real-time. Significant contributions are also made
to the field of human gait-recognition by applying Bayesian filtering to the task of motion

detection from accelerometers which are already present in many mobile phones. Bayesian




filtering is demonstrated to enable a 35% improvement in motion recognition rate and even
enables a floor recognition rate of 68% using only accelerometers. The unique application
of time-varying Hidden Markov Models demonstrates the effect of integrating these freely

available motion predictions on long-term location predictions.
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Nomenclature

AOA Angle of Arrival. The angle from which an incoming signal arrives at a receiver.

AP Access Point. The stationery element of a localisation system. Position of a Mobile

Device is usually calculated relative to an Access Point.

BER Bit-Error-Rate. The proportion of bits transmitted across a communications link

which arrive in an erroneous state.

BSC Basestation Computer. The computer in an RF localisation system which is
responsible for retrieving or providing location-indicative signals from or to a mobile

device.

cdf cumulative distribution function. A distribution function which illustrates the
probability of a random variable taking on a value less than or equal to some value

of interest.

CID Cell ID. The identification number of the cellular basestation to which a mobile phone

is currently connected.

CRSSI Cellular Received Signal Strength Indication. An indicator of the strength of the

cellular network signal incident on a mobile phone.

DCT Discrete Cosine Transform. Represents a sequence of data points as a sum of cosine
functions with different fundamental frequencies. Commonly used for compression of

images or sound.

EA Empirical Accuracy. A localisation accuracy measure which weights the accuracy of
each room by the length of time typically spent in that room over a significant period

of time. Hence, when the empirical accuracy over a short period of time is evaluated it
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will correspond to the correct room classification of the system over a significant period

of time.

EKF Extended Kalman Filters. Kalman filters which use linear approximations of non-

linear process and/or measurement models.

EM Electromagnetic. A self-propagating wave which has electric and magnetic compo-

nents.

FAF Floor Attenuation Factor. A factor used in a path loss model to account for RF

signal attenuation due to inter-floor obstructions.

FFT Fast Fourier Transform. A computationally efficient technique of calculating the
discrete Fourier transform, which can be used to transform time-domain signals into

the frequency-domain representation.

GA General Accuracy. Similar to mean recognition rates. A measure of long-term
symbolic localisation accuracy which assumes that equal periods of time is spent in

each time in a typical week.

GFSK Gaussian Frequency Shift Keying . A technique of encoding bits as a smooth
change in carrier frequency. Used by the Bluetooth® protocol.

GMM Gaussian Mixture Model. A probabilistic classifier in which the posterior densities

are represented as a linear combination of several component densities.

GP Gaussian Process. A non-parametric regression and modelling technique which derives

predictions from training data with Gaussian priors over its outputs.

GPS Global Positioning System. World-scale localisation system which uses radio signals

from several satellites to estimate position.

GSM Global System for Mobile Communications. A globally accepted standard for digital

cellular communications.

HMMs Hidden Markov Models. Implementation of a Bayes’ filter, used when the

unobservable states are discrete.

IR Infrared. Electromagnetic radiation with a wavelength just above that of visible light,

sometimes employed in optical communications.

IVM Informative Vector Machine. A sparse representation of Gaussian Processes. Uses
what is referred to as a differential entropy score to decide on the most informative

vectors.
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Nomenclature

kNN Ek-Nearest Neighbour. A classification algorithm which predicts class membership

based on the majority class vote of the k£ nearest training samples.

LDA Linear Discriminant Analysis. A probabilistic classifier which approximates the data
in different classes by a Gaussian distribution, all parameterised by the same covariance

matrix and different means.

LoS Line of Sight. Direct radio wave propagation between a transmitter and a receiver

without obstructions.

LQ Link Quality. A measurement available from many wireless communication devices.

Usually related to bit-error-rate.

LQI Link Quality Indicator. A measurement similar to LQ, available from many wireless

communication devices. ZigBee®

MAF Moving Average Filter. A low-pass filter which produces a filtered sample from the

mean of the current and previous /N samples.
MD Mobile Device. The non-stationery element to be localised in a localisation system.

MRR Mean Recognition Rate. A measure of the performance of a classifier which uses
the mean of the recognition rate of each individual class. It is identical to the average

of the diagonal terms of the confusion matrix.

MTD Mean Transition Delay. A localisation system dynamic performance measure which

quantifies the average delay between a room transition occurring and it being detected.

NBC Naive Bayes Classifier. A maximum likelihood Bayes classifier which assumes the

input features are conditionally independent given the class.

PAF Partition Attenuation Factor. A factor used in a path loss model to account for the

attenuation in signal due to partitions.

PDE Predicted Distance Error. A measure of the dynamic performance of a localisation
system which indicates the prediction error distance derived from the sequence location

predictions.

PDIF Predicted Distance Increase Factor. A measure of the dynamic performance of a
localisation system which presents the predicted travel distance as a ratio of the actual

travel distance.

PIR Passive Infrared. A sensor which measures the infrared light radiating from objects.
Such sensors can be used to predict the location of a moving inhabitant in their home

environment.
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Nomenclature

PL Path Loss. Transmission power lost over a given transmission path.

PLF Polarisation Loss Factor. Path loss related to the angular difference in polarisation

between the transmitting and receiving antennas.

PSR Potential Support Ratio. The ratio of potential workers (aged 15-64 years) to people

aged 65 or over in the population.

QDA Quadratic Discriminant Analysis. A probabilistic classifier which approximates the
data in different classes by a Gaussian distribution, parameterised by the mean and

covariance of each class.

RF Radio Frequency. The waves in the electromagnetic spectrum which correspond to

the rate of transmission and reception of data through an air interface.

RFID Radio Frequency Identification. Uses small passive or active tags attached to an

object to transmit small pieces of information about that object via radio frequencies.

ROC Receiver Operating Characteristic curves allow the graphical consideration of the
tradeoff between true positive rates and false positive rates for a binary probabilistic

classifier, for a range of threshold classification probabilities.

RSSI Received Signal Strength Indication. An indicator of level of the received signal
strength of a radio signal relative to some reference point. Not necessarily measured in

dBm, units are device specific.

RTT Round Trip Time. A measure of distance between a transmitter and a receiver.
Round trip time is approximately twice the Time of Flight between the transmitter and

receiver.

RVM Relevance Vector Machine. A stochastic machine learning technique which uses

sparse sets of basis functions to approximate functions.

SNR Signal to Noise Ratio. A ratio of the information bearing signal intensity to the

background noise intensity.

SVMs Support Vector Machines. A classification method which creates a decision
hyperplane maximising the distance between the hyperplane and a subset of vectors

from the training set, or “Support Vectors”

TCE Transition Count Error. A measure of the dynamic performance of a localisation
system which simply compares the predicted number of room transitions with the actual

number of room transitions for a period of time.
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TCIF Transition Count Increase Factor. A measure of the dynamic performance of a
localisation system which presents the number of predicted room transitions as a ratio

of the actual room predictions.

TDNN Time-Delay Neural Network. The application of Neural Networks to speech
recognition tasks by creating a set of feature vectors from the original feature vector

which is a time-shifted combination of the previous feature samples.

TDOA Time Difference of Arrival. A method of predicting transmitter-receiver seperation
using the difference in travel time of two signals with different propagation speeds, such

as RF and ultrasonic signals.

TOA Time of Arrival. A method of predicting transmitter-receiver separation by

observing the time of arrival of a wave, knowing the time the wave was transmitted.
TOF Time of Flight. See Time of Arrival.
T-R Transmitter-Receiver

UKF Unscented Kalman Filters. Kalman filters which use linear approximations of non-

linear process and/or measurement models.

WLAN Wireless Local Area Network. The standard method of creating a short
range wireless connection to a network, usually based on the IEEE 802.11 wireless

communication protocol.
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CHAPTER 1

Introduction

Much recent work highlights the growing issue of the aging population (Scanaill et al.,
2006, Department of Economic and Social Affairs, Population Division, 2009). Population
aging refers to the rising median age of a population. Hence, along with the social and
economic implications of a persistently growing global population, there are also challenges
associated with the changing age distribution within the population. When considering
the age pyramid of Figure 1.1, a shift in the age of the population of Europe over the next
50 years is evident (Giannakouris, 2008). The implications of this shift is that the median
age of the European population will change from 40.4 years in 2008 to an estimated 47.9
years in 2060.

When viewing this effect on a global scale, Figure 1.2 illustrates how the proportion of
the population over the age of 60 grew from 8% in 1950 to 11% in 2009. It also projects
that the population over the age of 60 will to grow from 11% at present to 22% of the
population by 2050 (Department of Economic and Social Affairs, Population Division,
2009). This will have a severe impact on the global Potential Support Ratio (PSR),
which is the number of people in the age range 15-64 for every person aged 65 and older.
Assuming that people in the age range 15-64 are capable of caring for an elderly person,
it indicates the capacity for a population to care for the elderly. As a population ages, the
PSR generally decreases (Department of Economic and Social Affairs, Population Division,
2009), leading to a lower ability for a population to care for its older members. Figure 1.3
indicates how the PSR changed from 1950 to 2009 and how it is expected to decrease by
the year 2050. By the year 2050 the PSR is expected to reach a mere 4 potential carers
for every person over the age of 65.

Population aging is a significant challenge facing the global population. To cope with
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Fig. 1.3: Global Potential Support Ratio in 1950, 2000 and projected into 2050, taken
from Department of Economic and Social Affairs, Population Division (2009).

the falling human resources and, as a result, growing financial shortcomings of all health
care systems, a more efficient health care paradigm needs to be developed. Assistive
technology has been proposed as an efficient technique for caring for the aging population
without the costly need to commit elders to care facilities (Scanaill et al., 2006). These
technologies can enable elders to live safely in their own homes for a larger portion of
their lives with monitoring and interaction facilities provided by the home environment
itself. Daily activity and motion monitoring technologies are a fundamental part of these
home care technologies. As such, this thesis is committed to developing a relatively
inexpensive technique of unobtrusively monitoring an elder’s movements throughout their
home environment. The availability of this movement information is envisioned to allow
family members and/or part-time caregivers to assess and communicate with the elder on
how their day-to-day behaviours are affecting their health and their ability to continue to

benefit from independent living.

1.1 Smart Home Health Monitoring

Recent technological advances have spurred the emergence of semi-automated home
environments, referred to as smart homes. The predominant benefit of smart homes
is that they use technology to make the activities of everyday life more convenient for
their inhabitants. Recently the importance of smart homes has been heightened by the
fact that they can be used to actively provide health care services to an elder. The
availability of health care services to an elder in their own home means that elders who
would traditionally require attention from carers can have much of their supervision needs
fulfilled by their smart home. This omnipresent monitoring facility is envisaged to allow

elders to live in their own homes for longer periods of their lives before requiring a more
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specialised care environment.

A wide variety of services can be provided to an elder by their smart home, including;
monitoring of activity patterns (Tapia et al., 2004, QuietCare Systems, 2009), provision
of activities to keep the elder proactive (Nawyn et al., 2006), detection of safety critical
conditions like falls (Chen et al., 2005) and medication adherence promotion (Nugent et al.,
2005, Lundell et al., 2006). As with most smart home functionalities, these technologies
require some technique to detect the current context or activities of the user. To infer
the context of the user a number of sensors are typically employed. These sensors can be

anything from simple contact switches on furniture to RFID proximity sensors.

1.2 Home Localisation Techniques

A variety of sensing modalities are relevant to a home care smart home system. This thesis
focuses on the location sensing component of smart home systems, since the context related
to a particular detected activity can be influenced strongly by the location of the activity
(Ofstad et al., 2008). To date a variety of elder care smart home systems have been
proposed, many of which utilse location as the main form of context. One of the most
obvious uses which can be made of location information is to allow monitoring of an elder’s
activity patterns over long periods of time. One commercially available elder monitoring
system is QuietCare Systems (2009). The QuietCare system uses Passive Infra-Red (PIR)
motion detectors in each room to infer the current location of the elder. Then deviations of
the elder’s movement and activity patterns from typical healthy patterns can be detected
and a caregiver can be informed.

A context sensitive medication prompting system is presented by Lundell et al. (2006)
that infers the subject’s context from their room-level location, also based on PIR sensors.
Based on the subject’s location, different prompting devices throughout the environment
are used to remind the subject to take medication. A portable wristwatch-like prompting
device is used when the elder is in a location where no other form of prompting device is
available. Furthermore medication prompts are sent only at times when the elder’s motion
patterns indicate that they would otherwise miss a dose. For example if the elder exhibits
a motion pattern which, based on baseline data, indicates they may leave the house at
a time close to their usual medication time, they are prompted to take their medication
before they leave the house. This reduces occurrences of missed doses.

Another piece of work, which uses PIR sensors to infer location, but with resolution
finer than room level is presented in Chan et al. (2002). It is achieved by placing several
PIR sensors in each room, one sensor for each location of relevance within the room. That
particular work is focused on assessing the subject’s levels of mobility, which is indicative

of motor behavioural disorders. Statistics of a patients motion patterns over a typical 24
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hours are visible from the trial data. However, it is indicated that PIR based location
predictions are not reliable when a caregiver enters the environment due to PIR sensor’s
inability to differentiate between different people.

A system which uses an ultrasound location tracking technique is presented in Helal
et al. (2003). With their high-accuracy tracking technique, the authors developed a
remote monitoring application, similar to that provided by the QuietCare system. This
application provides location markers on an environment map, in real-time, to interested
parties with the necessary software. The authors also present an attention capture
application which provides interactive displays to an elder to gauge their reactivity to
certain types of prompts. The location information is integrated into the decision of which
environmental display to use to engage the inhabitant, which is similar to the approach
taken by Lundell et al. (2006). Finally the authors propose an indoor navigation system to
assist visually impaired subjects. Navigation requires a high accuracy tracking technique
such as ultrasound to allow useful directions. As such, the tracking system which we will
later present is not suitable for precise indoor navigation.

One further use of indoor location is outlined by Chen et al. (2005). This paper
describes a sensor for detecting falls of an elder. When a fall is detected it is necessary
to be able to pinpoint the location in which the fall occurred to allow emergency
personnel to quickly locate and assist the individual. Not much information is given
about the localisation technique, except that it uses estimates of the portable fall sensor’s
transmission radio signal strength at several Basestation computers to triangulate the
subject’s location.

As this section highlights, there are a number of smart home systems which utilise
location information. Localisation techniques of varying resolution are employed in differ-
ent situations. However in a home environment room-level location is typically sufficient,
which explains the ubiquity of PIR localisation techniques in many implementations to
date. Many of these location-based smart home systems require an array of sensors to be
installed throughout the home environment, typically at a level of one sensor per room.
Hence, the location sensing element of these systems have high installation overhead, a
trait which overshadows the obvious benefit of such systems.

The work presented in this thesis aims to develop and implement a location sensing
technique with minimal hardware requirements to reduce the installation overhead of
location-based smart home systems. To date, a vast body of research has been conducted
on efficient localisation in office environments. Such techniques, however, have rarely
been applied to home environments, which have significantly different topologies than
office spaces. Hence this thesis conducts a summary of general localisation theory before
presenting a comprehensive review of the indoor localisation systems developed to date.

A major limitation of referring to prior localisation research for the development of this
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home localisation technique is that localisation systems generally produce predictions with
resolution inappropriate for a home environment. As will be presented later, room-level
or symbolic location predictions are more relevant to human context sensing than exact

spatial coordinates, as used in most prior indoor localisation techniques.

1.3 Aims and Scope of Thesis

From the discussion of the previous sections it can be understood that the location sensing
elements of smart homes have not been rigorously developed in the past. The simplest
approach, such as PIR sensors, or the most expensive approach, such as ultrasound, has
generally been adopted. This thesis contributes to both the fields of localisation and
home monitoring technologies by building a localisation system specifically for the task of
room detection in a home environment with minimal hardware requirements, rather than
adopting existing generic home localisation technologies for this task.

For this reason it is necessary to review all existing literature in relation to
technologies suited to indoor localisation. Then the optimal technology on which
to build the localisation system must be selected. However, the simple deployment
and experimentation of a localisation platform is not likely to produce results entirely
representative of a realistic home deployment. Hence, it is necessary to explore the
performance of the localisation system over significant periods of time corresponding to
that which would be encountered in a home deployment.

Assuming the availability of a reliable long-term home localisation evaluation platform,
it is possible to explore further augmentations to the base localisation deployment. The
most significant augmentation which can be applied is the inclusion of Bayesian filtering,
which has frequently been shown to increase coordinate location predictions (Kotanen
et al., 2003, Ladd et al., 2002, Rodas et al., 2008). Along with Bayesian Filtering, further
improvements based on observations of the available signals and constraints within the
home environment, can be considered.

The aim of thesis is to develop a room-level home localisation system. The system
must be cheap in terms of hardware costs, power costs and maintenance costs for the
elders, who generally do not have extensive electronic engineering training. To minimise
hardware costs the system must use intelligent signal processing techniques, using all of the
signals available from the equipment present in the test environment. Power costs can be
minimised by utilising a hardware platform developed for low power transmissions. Using
low power hardware introduces deficiencies in the quality of the signals available from the
hardware. This places the onus on the processing algorithms to robustly handle the signals
to enable accurate location predictions while minimising battery drain. Finally the overall

system should minimise the maintenance cost to the elder by using only devices from
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which they can obtain alternative functionality. For example, it is beneficial to include
the localisation functionality into a mobile phone rather than a custom wrist-mounted
tag. This both allows alternative functionality to be derived from the device, increasing
the perceived usefulness, and reduces the assistive stigma.

The scope of the thesis extends as far as predicting location of an elder within their
home during the day. This is due to the fact that detecting an elder’s location outside of the
home has a well defined solution in GPS and the movements which occur throughout the
night are relatively low-magnitude and are better addressed with alternative technologies
(Behan et al., 2008).

1.4 Contributions of this Thesis

The general focus throughout this thesis is on the development of a localisation system
capable of determining the room-level position of an elder inhabitant. A general
localisation platform is developed with the emphasis on cheap deployment and reliable
long-term performance. It is concluded that predicting location from Bluetooth® signals
arriving at a Basestation computer within the environment from a user’s mobile phone
is the most efficient and long-term reliable solution. In this context, the core novel

contributions of the research presented in this thesis are as follows:

1. The deficiencies in the accuracy metrics of previous indoor localisation work is
highlighted. The majority of previous indoor localisation work focuses on error
distances, i.e. the discrepancy between the true position and the predicted position,
in metres. This work describes techniques of assessing the ability of a system to
resolve the more human-relevant symbolic location. Not only is the ability of the
system to correctly predict symbolic location over long periods of time assessed,
but the effect this has on activity indicators such as distance travelled and room

transition times are also presented.

2. Erroneous location predictions are reduced by incorporating user movement ten-
dencies by modelling the user’s movements using a Hidden Markov Model. This
also constrains the predictions to movements between rooms which are topologically
possible since the user tends not to quickly transition between rooms which are not
connected by doors. It is shown that all of the localisation performance measures
developed in this thesis are improved for the Bluetooth® localisation system by
utilizing a Hidden Markov Model framework. The Hiddden Markov Models are also
extended to second and third order models to investigate if making reference to

predictions further into the past improve current predictions.

3. Typically the Viterbi HMM-decoding algorithm involves a backtracking step which
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requires starting at the final state prediction and iteratively backtracking over the
most likely previous states. This work proposes a short-term backtracking algorithm
which has not been considered for localisation in the past. This backtracking allows
globally optimal location predictions to occur in almost real-time with relatively

small worst-case prediction delays.

4. To enable HMM state predictions based on motion types, it was necessary to develop
a novel technique for motion prediction. This technique uses accelerometer data
to predict the type of motion which the user is undertaking. While detecting
motion type from accelerometer signals is not novel in itself, the application of
this accelerometer frequency component technique has not been applied to realistic
situations where the motion type can change arbitrarily. Furthermore, Bayesian
filtering has been shown to improve accelerometer frequency component motion

detection.

5. The availability of motion predictions allows the dynamic adjustment of HMM
parameters, namely the transition probability matrices. This, in theory, should
allow different room transition probabilities for different situations. For example,
when a user is stationary, the probability of transitioning to other rooms should
be zero, leading to higher localisation accuracies. In practice, however, it is found
that motion predictions do not increase accuracy, since the training motion data is
subject to misclassifications due to the inability to generate 100% reliable motion
labels.

Besides these contributions, other less significant contributions of this thesis include:

1. A comprehensive literature review of the technologies previously utilised for indoor
localisation is presented. Furthermore, a review of the classification algorithms suited
to the task of symbolic location recognition is presented and their decision boundary

composition is illustrated on a synthetic Gaussian mixture dataset.

2. A small home localisation scenario is considered to allow the determination of the
most suitable wireless technology for our home localisation system. For power-
efficiency, Bluetooth® and a communication protocol which forms part of the
ZigBee® standard are considered. The optimal method of obtaining training data
corresponding to human movement for such hardware is empirically confirmed.
The traditional remote localisation scenario of multiple Basestation computers and
our minimal approach to localisation are compared. It is shown that only slight
reductions in localisation accuracy is possible while halving the quantity of deployed

hardware infrastructure.
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3. The novel localisation system developed in this thesis is compared to the commonly
employed PIR home localisation technique. The comparison is enabled by deploying
both a PIR localisation system and a novel technique of obtaining room labels which
utilises an RFID reader and RFID tags on doors between rooms. It has been shown
that in a realistic test environment the Bluetooth® platform has higher accuracy
and when multiple occupancy occurs in the environment the Bluetooth® platform

has a lower reduction in localisation accuracy.

4. Experiments investigating the benefits of increasing signal diversity on the lo-
calisation accuracy have been conducted. Higher signal diversity is achieved by
using a second Bluetooth® beacon cohabited with the Basestation Computer, but
with a different radiation profile or by placing alternative “dumb” Bluetooth®
transceivers throughout the environment. It is shown that the availability of cheap
Bluetooth® transceivers throughout the environment significantly contributes to
higher localisation accuracy; an approach previously impossible due to the inability

to retrieve Bluetooth® signal readings on a cheap mobile device.

5. Improvements to the deployed base localisation algorithms are presented. The
additions which are considered are; signal smoothing, lagged preprocessing, sparse
classifiers, integration of user location preferences and uncertainty rejection. User
location preference integration and prediction uncertainty rejection has been impos-
sible for a majority of localisation techniques in the past due to their maximum
likelihood treatment of the coordinate localisation problem. Since we take a discrete
probabilistic approach to localisation, integration of such relevant information is an

incremental addition.

1.5 Thesis Organisation
This thesis is organised into 8 chapters as follows:

Chapter 2 provides a summary of localisation theory and a comprehensive summary of
indoor localisation systems, grouped by the technology on which the systems are

built on.

Chapter 3 is a second background chapter which describes the variety of direct and
probabilistic classification techniques which are considered for applicability to the

problem of estimating home location from RF signal input features.

Chapter 4 presents the candidate hardware platforms suitable for low-power localisation.
It compares Bluetooth® and the ZigBee® physical layer hardware for outdoors and

indoors signal resolution and the localisation accuracy possible with each platform.
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Bluetooth® is formalised as the base localisation hardware platform on which to

build the localisation algorithms in the following chapters.

Chapter 5 improves upon prior work by illustrating the deficiencies of traditional
localisation accuracy measures. It continues by comparing this thesis’ localisation
system with the PIR home localisation technique by employing a novel room-label
acquisition technique. It then demonstrates the effect of increasing diversity in the
available signals on localisation accuracy. Finally, further augmentations to the

original classification algorithms are evaluated.

Chapter 6 generates further accuracy metrics which quantify the effects of location
prediction errors on estimation of the amount of motion a user exhibits and the delay
in room transition predictions. It then shows how Hidden Markov Models and the
Viterbi algorithm improves both the location prediction accuracy and the transient
effects, such as location jitter and prediction delay. Improvements to the Viterbi
algorithm are proposed such as using higher order transition models and short-time

decoding of the state sequence to permit almost real-time location predictions.

Chapter 7 presents the generation of motion-type predictions from the accelerometer
signals available from the mobile localisation device. These motion predictions
are then utilised by the HMM to inform which transition probabilities are more
appropriate for a given motion type. The effect of this modification to the HMM

framework is illustrated.

Chapter 8 concludes with a summary of the work completed as part of this thesis, the
contributions it made to the field and the relevant areas of work which remain to be

investigated.
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Literature Survey

In the past decade, the possibility for mobile communication devices to estimate their
location indoors by analysing their received Radio Frequency (RF) signals has been
explored. Despite the somewhat unpredictable nature of RF propagation in an indoor
environment it is still one of the most hardware-efficient methods of estimating indoor
location. Location can be modelled as a function of certain traits of a received RF signal
such as received intensity, time of flight and received angle. Some of these traits are
easier than others to deduce, but as a result, are less dependable due to their affordable
availability. For example signal intensity is a reading widely available as standard on RF
receivers, but it sometimes has poor correlation with position due the low spatial resolution
of the signal.

An important predictor of the success of data transmission between a transmitter and
a receiver is the signal strength at the receiver. If the signal strength, hence the signal to
noise ratio, of the signal at the receiver is high, then it is more likely that the information
will be successfully received. Conversely, a low signal strength will mean it is less likely for
the signal to be successfully received. Over the many decades since radio transmission was
invented, many signal propagation models have been developed to allow the prediction of
the radio signal strength for a receiver at a particular point within an environment. Since
the received signal strength varies a function of the position of the receiver relative to
the transmitter, it is a commonly used parameter in the calculation of the position of the
receiver. Hence radio propagation models are important for many localisation systems,
and as such must be understood before the localisation methods can be presented.

This chapter begins by presenting the large-scale propagation mechanisms which

influence RF transmission and how distance may be modelled from the resultant received

11



CHAPTER 2. LITERATURE SURVEY

signal intensity. Section 2.2 follows on by presenting the techniques which utilise these
models to predict the position of a device based on RF signal properties. Section 2.3
then summarises the RF localisation systems developed to date and which technique each

system employs.

2.1 Radio Wave Propagation

The behaviour of radio waves in a given environment strongly influences the accuracy of
RF-based localisation systems. For example, the well-known Global Positioning System
(GPS) is highly dependent on the interaction of the radio signals with obstacles. The
presence of buildings in the Line of Sight (LoS) of the Mobile Device (MD) and the
orbiting satellites can cause highly inaccurate predictions of the MD position. That is, of
course, if GPS is even detectable in such conditions, which is not always the case. It is
vitally important for the development and deployment of a localisation system to be able
to understand and predict the behaviour of a radio signal in a specific environment.
There are two types of variations which can occur in radio waves. They are large-
scale path-losses and small-scale fading. Large scale path losses refers to signal strength
variations which occur over large distances (hundreds of meters). In contrast, small-scale
fading refers to the variations which occur with small changes in time and distance, even
of the order of wavelengths. Figure 2.1 illustrates the progression of the received signal
intensity due to large-scale and small-scale effects occur over over increasing transmitter-
receiver separation. The large-scale signal is a low-pass-filtered version of the raw signal,
which incorporates both large-scale and small-scale effects. Hence, the rapid fluctuations
in the raw signal are due to small-scale effects and the gradually changing trend of the

raw signal is due to large-scale path loss (or slow fading).
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Fig. 2.1: Large Scale and Small Scale Fading with increasing Transmitter-Receiver
separation, taken from Rappaport (2002).

This section will form a basis for understanding how the behaviour of a radio signal can
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be predicted and subsequently utilised in the localisation techniques presented in Section
2.2. Section 2.1.1 illustrates the basic laws of radio-wave propagation which contribute to
their complicated indoor behaviour. Section 2.1.2 builds on these mechanisms to develop
propagation models, which can be used to predict the signal intensity of the received signal

at a given position.

2.1.1 Propagation Mechanisms

There are 3 propagation mechanisms which can influence wireless signal transmission.
They are Reflection, Diffraction and Scattering and will be explained in sections 2.1.1.2,
2.1.1.3 and 2.1.1.4 respectively. But before these propagation impediments are explained,

the simple case when no obstructions are present must be considered.

2.1.1.1 Free Space Propagation

Free space propagation refers to the transmission of radio waves when the area around,
and in the LoS of the transmitter and receiver, is free of obstructions. In this case the
waves will be able to travel from the transmitter directly to the receiver with the only
factor effecting the signal strength being the degradation due to distance traversed.

A free space propagation model describes how the received power decays as a function
of increasing Transmitter-Receiver (T-R) separation. The Friis free space equation is the
expression used to predict the received power P,.(d) for a T-R separation distance d, given

that the transmitted power is P;,

P.GG, [ X \?

where G and G, are the transmitter gain and receiver gain respectively and A is the
wavelength of the radiowave in meters. L is the system loss factor (L > 1), which applies
to losses not due to propagation behaviour, such as internal hardware losses for example.
L =1 when it is assumed that there are no system losses, hence shall be ignored.

The antenna gains G, and G are related to the effective aperture A.. The effective
aperture is derived from the apparent physical area to the front of the antenna from which
it receives the energy from arriving electromagnetic waves and is expressed in units of m?.

The antenna gain is related to the effective aperture as follows,

(2.2)

13
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where f is the carrier frequency in Hz, w. is the carrier frequency in radians per second
and c is the speed of light [m/sec|. From equations (2.2) and (2.3) it is understandable why
the lengths of antennas are different for communication systems of different frequencies;
the dimensions of the antenna are chosen to maximise the gain of a received signal at a
given frequency.

Another influence the antenna configuration has on the transmission power is the
polarisation of the antenna. Polarisation refers to the orientation of the oscillations of
the EM waves relative to their direction of travel. There are two types of polarisation;
horizontal and vertical. Horizontal polarisation refers to when the EM field oscillates in
the horizontal plane and vertical polarisation refers to EM field oscillations which occur
in the vertical plane. Over long distances of transmission, atmospheric and environmental
effects can cause distortions leading to a mixture of horizontally and vertically polarised
waves arriving at a receiver.

In the ideal case of an antenna with perfectly horizontal polarisation, the maximum
efficiency transmission, hence maximum received signal intensity, occurs when the
receiving antenna is also horizontally polarised. Hence, if either of the antennas are
rotated by ¢ = 90° relative to each other there is an antenna polarisation mismatch;
one is horizontally and the other is vertically polarised. In this theoretical scenario with
perfect polarisation the transfer of power will be zero. The expression for the dependence
of the amount of energy lost during transmission on the relative antenna orientation is

described by the Polarisation Loss Factor (PLF),

PLF = cos*(¢). (2.4)

Hence, the orientation of an antenna influences received signal intensity in two ways.
Firstly, changing the orientation can influence the effective aperture of the antenna,
resulting in a different antenna gain. Secondly, changing the orientation of the antenna
can change the polarisation of the antenna. It has been demonstrated how changing the
relative polarisation angle of the transmitting and receiving antennas influences the PLF,
hence influences the received signal intensity. The application of this phenomenen to this
work will be demonstrated in Chapter 5.

Following on from the Friis free space equation (2.1), which predicts the RF power
received at the end of the transmission path, we can define the Path Loss (PL), as the RF

power lost over the transmission path, assuming PLF is negligible;
P, L [4nd\?
PL=—=—"—"+|—1]. 2.5
P GG, ( A > (25)

When the antenna gains, Gy and G, and hardware losses, L, are assumed to be negligible

and set equal to 1, path loss can be represented, in decibels, as;

14
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PL(dB) = 1010g[d2(;\127r)1, (2.6a)
where  P.(d)[dBm| = P,[dBm| — PL(d)[dB]. (2.6b)

However, this can only be considered a valid predictor of path loss for values of d which
fall within the far-field (or Fraunhofer region) of the transmitter. The Fraunhofer region of
a transmitting antenna is the region beyond the Fraunhofer distance dy. The Fraunhofer
distance is defined to be;

df = —V (2.7&)

where D is the largest physical dimension of the antenna. There are two further conditions

which the Fruanhofer distance, dy, must satisfy. They are;
dy > D (2.7b)

and
df > . (2.7(3)

If we consider the path loss for a transmission system like Bluetooth®or Wireless LAN

(f = 2.4GHz) we get the path loss profile illustrated in figure 2.2.
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Fig. 2.2: Path Loss with increasing transmitter-receiver separation distance for f =~
2.4GHz.

It is clear from Equation (2.1) that the Friis equation does not hold for d = 0. At
d = 0 the received power will be co. Hence, it is useful to define a reference distance dy,
known as the received power reference distance. Now the power at the point d, P,(d), can

be related to the power at the reference point dy, P, (dp). The value of P,.(dp) can easily be
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predicted from Equation (2.1) or it can be determined empirically from the environment by
averaging the power readings taken at several different points at the distance dy radially
from the transmitter. This makes using a reference distance even more useful since it
eliminates the need for knowledge of the transmission wavelength, like in Equation (2.6a).
The reference distance must be chosen so that it lies within the far-field region, dy > dy.
Also dy must be smaller than any practical distance used in the communication channel.

So dy must satisfy the equation;

d>dy > dy. (2.8)

Since we ensure d is always greater than the reference distance dgy, this equation will
always hold. Also since the power decreases as the square of the distance increases (see
Equation (2.1)), we can relate the power at the distance d to the power at the reference

dp thusly;

Py(d)d® = P,(do)dg. (2.9)

This can be rearranged to give an expression for the power at a given distance, P,(d);

2
Pu(d) = R(d@(‘ﬁ;’) . (2.10)

In a typical mobile radio communications channel, P, can change by many orders
of magnitude over the range of coverage. For this reason it is often more convenient to
represent the received power in units of dBm or dBW. Converting Equation (2.10) to units

of dBm (decibels with a 1 milliwatt reference level) gives;

P,
P.(d)[dBm)] = 1010g< ; éﬁol)>+2o 1og(ci?> d > dy > dy (2.11)

It is generally accepted (Rappaport, 2002) that for a 1-2GHz mobile transmission system,
dg is chosen to be 1m indoors and 100m or 1km outdoors. The reason for choosing values
which are multiples of 10 is to make the path loss computations simple in dB units.

Now that the expected behaviour of radio waves in an un-obstructed environment
have been presented, an understanding of the complicated behaviour when obstructions

are present can be developed.

2.1.1.2 Reflection

Reflection is a propagation mechanism which occurs when an electromagnetic wave
propagating through one transmission medium impinges upon another. Provided the
interface between the mediums is flat and large compared to the electromagnetic

wavelength, reflection can occur. Otherwise scattering occurs (see Section 2.1.1.4).
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[T 777777
€2

Fig. 2.3: Angles of Incidence, Reflection and Transmission, modified from Rappaport
(2002).

When reflection occurs some of the incident energy is reflected back into the original
medium and some is transmitted into the second medium. If the second medium is a
perfect dielectric, some of the energy is reflected and some is transmitted with no energy
loss occurring. Alternatively, if the second medium is a perfect conductor, all of the energy
is reflected. Again no energy loss occurs.

Figure 2.3 illustrates how the signal behaves in what is known as the plane of incidence.
The plane of incidence is a flat plane in a 3-dimensional space in which the lines of
incidence, reflection and transmission all exist. The line of incidence represents the
direction from which the electromagnetic waves arrive at the interface. 6; is the angle
which the incident wave makes with the interface between two mediums. Similarly, the
angle of reflection (6,) shows the angle of the reflected energy relative to the interface, after
the wave is reflected by the interface. And finally 6; is the angle which the transmitted
energy travels relative to the interface after passing through the interface. It should be
clear from the diagram that 6; = 0,.

The electric field intensity of the reflected and transmitted waves are related to the
incident waves by the Fresnel reflection coefficient (I'). The electric field intensity of the
reflected waves (E,) can be determined from the field intensity of the incident waves (E;)

by using the Fresnel reflection coefficient,

E, =TE;. (2.12)

However, the Fresnel reflection coefficient will be different depending on the polarisation of
the wave. The Fresnel reflection coefficients for vertically (I',) and horizontally polarised

(T'y,) waves are
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i 79 sin 0 + 1y sin 6;

2 sin 92 —m sin Gt

T, = (2.14)

EE

N 79 sin 0; + 1y sin 6,

where 7); is referred to as the intrinsic impedance of the ith medium. Since waves can
contain both vertically and horizontally polarised components, the overall reflected energy
is calculated using superposition.

It is also possible to calculate the angle of incidence which would result in no energy
being reflected. The Brewster angle (0p) is the incident angle which will result in a Fresnel
reflection coefficient of 0, hence no reflected energy. The Brewster angle is calculated to
be;

€1
€1+ €2

sin(fp) = (2.15)

&, is the permittivity of the n'* medium relative to the permittivity of free space (go);

Em
a—— 2.16
e = (216)

where ¢, is the actual permittivity of the medium m = 1,2. The relationship between
the relative permittivity and the intrinsic impedance of a material is ; = p;/ 771'27 where p;
is the permeability of the material. Hence, with Equations (2.15) and (2.16) the angle of
incidence which results in no reflected energy can be calculated.!

A useful application of the Fresnel reflection coefficient is that a transmission model
which incorporates ground reflections can be developed, called the Two-Ray Model. This
model can be used to predict the Electromagnetic (EM) signal intensity at the receiver for
an outdoor transmission system over several kilometers. This model takes into account,
not just the direct Line of Sight path to the receiver, but also a ground reflected path. If
we consider a transmitter situated h; meters above the ground, and a receiver d meters
away, h, meters above the ground (see Figure 2.4), an expression for the ground reflection
model can be developed. From the principle of superposition the energy arriving at the
receiver is calculated to be |Eror| = |Fros + Er|.

The two transmission paths in Figure 2.4 are referred to as dg for the direct T-R path
and d, for the total reflected T-R path. Hence the two energy components arriving at the

receiver are

!Note equations (2.15) and (2.16) only apply for vertically polarized waves
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Fig. 2.4: Ground reflection model, reproduced from Rappaport (2002).

Eod, d
Eros = dOdO CoS (wc <t — d)) (2.17)

E ,
E. =T ;:ZO Cos<wc<t—dc)> (2.18)

where Fj is the free space electric field at a reference distance dg. Assuming a small

angle of incidence, due to large T-R separation distance, Rappaport (2002) shows that
the reflected wave is 180° out of phase with the incident wave. Hence, assuming perfect
horizontal polarisation, the Fresnel reflection coefficient is I' = —1 and the total electric

field incident on the receiver can be expressed as the sum of Equations 2.17 and 2.18,

9 s (wc <t - dj)) + (—1)E§f° cos (wc (t - dc’">> (2.19)

Rappaport (2002) explains how the path difference is calculated from

Eror =

2hihy
d

when d is very large compared with h;+ h,.. With some simplifying assumptions the power

A=d, —dg~ (2.20)

incident on the receiver can be calculated to be

hihy
at -

It can be seen from Equation (2.21) that at large distances (d > \/h;h, )the power falls

P, = PG,G, (2.21)

off with distance raised to the fourth power. This fall off in power is much more rapid
than that experienced in free space. The path loss for the Two-Ray model is then defined

as;

PL(dB) =40logd — (10log G; + 10log G + 201og h; + 201log h,.) (2.22)
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Note this equation applies for large propagation distances. It starts to break down over
small distances or in a cluttered environment like that which would be found indoors. The
two-ray model is one example of a simple ray tracing model used to estimate the signal
strength throughout the environment. Of course other, more complicated ray tracing
models can be employed in real environments, such as the one presented in McKown and

Hamilton (1991).

2.1.1.3 Diffraction

Diffraction allows radio waves to propagate behind obstructions, like walls, hills or even
around the earth. The region behind an obstruction is often referred to as the shadowed
region, and exhibits severely degraded signal intensity. The received EM field intensity
decreases rapidly as the receiver moves deeper into the shadowed region. However there
is often enough signal strength to retain a useful signal at the receiver.

Huygens’ principle attempts to explain why this occurs. It states that every point on
a wavefront can be considered as a point source for the production of wavelets. These
wavelets can combine to produce a new wavefront. The diffraction phenomenon is a result
of these new wavefronts propagating into the shadowed region behind the obstruction. To
understand how this occurs one must consider a transmitter and a receiver separated
by a transparent plane as illustrated by Figure 2.5. The concentric circles illustrate
where Fresnel zones cross the plane. Fresnel zones are the paths the radio waves travel
which result in constructive and destructive interference alternately. So the path difference
between the direct LoS path and the diffracted path is known as the excess path length,
denoted

(2.23)

where n is the Fresnel zone number.

In Figure 2.5 the first circle on the plane represents where the first fresnel zone crosses
the plane. Since this is the first fresnel zone, the path difference will be A/2, so it will
cause destructive interference. Similarly the second Fresnel zone exhibits constructive
interference, the third, destructive interference and so forth. The lower order Fresnel
zones have the most significant influence on the net received signal strength. This means
that the higher order zones have less effect on the received signal strength and can be
ignored.

The radius of the loci which cross the plane can be calculated using the expression:

. n)\dldg
Ty = ’/dl d (2.24)

where 7, is the radius of the n'® Fresnel zone, \ is the wavelength of the transmitted
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Fig. 2.5: Fresnel zones as they interact with a transparent plane between the transmitter
and receiver, reproduced from Rappaport (2002).

wave, d; the distance between the plane and transmitter and ds is the distance between
the plane and the receiver. Note that the radius of a locus is dependent on the distances d;
and dg, and it will be at a maximum if the plane is located in the centre of the transmitter
and receiver. The radius will be smaller if the plane moves away from the centre. Hence,
equation (2.24) shows that the level of shadowing is dependent not only on the frequency
of the transmitted wave, but also on the relative position of the obstruction.

The knife-edge diffraction model is used used to estimate the signal attenuation due
to obstructions in the direct line of sight of the transmitter and receiver. Estimating the
total effect of diffraction over some terrain is a complicated and computationally intensive
process, so it is generally simplified to a knife-edge obstruction between the transmitter
and receiver. Figure 2.6 shows a typical knife-edge diffraction geometry.

The excess path length (A), which is the difference in travel distance between the direct

path and the diffracted path is calculated from the geometrically derived expression;

h? (dy + ds
A~ 2( i ) (2.25)

and the corresponding phase difference at the receiver is calculated to be;

¢

2
_ Y AN N 27rh<d1 +d2>' (2.26)

AN 2\ didy

The angle between the transmitted ray and the diffracted ray («) can be approximated to
be:

di +da
~ h . 2.2
« < dds > (2.27)

Equation (2.26) is generally normalised using the Fresnel-Kirchoff diffraction parameter
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Fig. 2.6: Knife-edge diffraction, modified from Rappaport (2002).

v which is a dimensionless quantity, defined as:

2(dy + d2) 2dyds
—h — e 2.2
Y Mids O\ Ndi +da)’ (2.28)

leading to the more convenient phase difference expression of

¢ = gv2. (2.29)

It is clear that the received signal intensity will be a vector sum of all the waves arriving
at R. The presence of a knife-edge obstruction means that the received signal intensity will
be degraded as a function of the dimensions of the obstruction relative to the transmission
LoS, like its height and its distance from the transmitter and receiver. The Fresnel-Kirchoff
diffraction parameter accounts for these dimensions, hence the diffraction gain is related

to the Fresnel-Kirchoff parameter by the function;

Ga(dB) = 201log |F(v)]. (2.30)

In real situations, graphical models can be employed to calculate the diffraction gain
described by this function. An approximate mathematical solution for G4(dB) is given in
Rappaport (2002), and the graphical solution is illustrated in Figure 2.7.

This model only applies when one obstruction is present. However, it can be extended
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Fig. 2.7: Knife-edge diffraction gain as a function of the Fresnel-Kirchoff diffraction
parameter, from Rappaport (2002).

to more complicated scenarios. For example, when the terrain corresponds to two knife-
edges, they can be approximated by one dominant knife-edge, as illustrated in Figure
2.8. The overall diffraction gains can then be approximated by determining the Fresnel-
Kirchoff diffraction parameter associated with the equivalent knife-edge and determining
the gain from Figure 2.8. For more than 2 knife-edges this technique becomes extremely

complicated and further methods must be employed, as outlined in Rappaport (2002).

Single Knife Edge
Equivalent

Fig. 2.8: Approximating two knife-edges with a single knife-edge, reproduced from
Rappaport (2002).
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Fig. 2.9: Scattering of an incident wave.

2.1.1.4 Scattering

Another mechanism which influences the amount of energy arriving at the receiver is
scattering. Scattering is similar to reflection in that the waves bounce off a reflective
surface. However in scattering the reflections are more diffused. The energy is reflected
out in several different directions, as illustrated in Figure 2.9.

If the incident surface has flat areas with dimensions larger than the incident
wavelength, reflection will occur. Otherwise the surface is considered to be a rough surface
and scattering occurs. Surface roughness is measured using the Rayleigh criterion which
gives a maximum height for surface protrusions before the surface is considered rough and
reflection becomes scattering. The maximum height of protrusions for reflection to occur

is hp;

hy = 8si)\n€i’ (2.31)
where 0; is the incident angle of a wave, of wavelength A\. So when the height of the actual
surface protrusions is larger than hj, then the surface is considered rough and is modelled
as a scatterer. Then the reflection coefficient (I') used in Equation (2.12) is scaled by
a scattering loss factor, ps, to allow for fewer waves reflected towards the receiver. p, is
calculated by assuming that the surface height h is a Gaussian distributed random variable

with a local mean and standard deviation op, (Rappaport, 2002) as follows,

ps = exp {—8(7”’";%) ] (2.32)

So when it is determined that h > h,, the reflection coefficient must be modified using the
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expression,

Trough = psl. (2.33)

Scattering is important in understanding the behaviour of the received signal strength,
not only in terms of lost reflected energy, but also in terms of extra energy arriving at a
given receiver. Sometimes more energy can reach the receiver because of scattering effects.
Scattered waves can bounce off a scatterer in several directions and reach a receiver,
whereas a simple reflector at that point may not have delivered as much energy to the
receiver. So it is important to be aware that scattering effects can cause an increase in

received signal strength as well as a decrease.

2.1.2 Radio Propagation Models

Many methods have been developed to predict the amount of EM energy arriving at a
receiver given the amount of transmitted energy. Since most localisation systems utilise
some form of signal strength reading to perform their task, an understanding of the

behaviour of the signal strength for different receiver locations is useful.

2.1.2.1 Log-Distance Path Loss

The variations of the received signal strength throughout a free-field environment can be
approximated using the Log-Distance Path Loss Model. A free-field environment is an
environment in which there are no obstructions between the transmitter and receiver for
all positions of the receiver. This means that for all receiver azimuth angles the transmitter
is placed at, the path loss profile over distance will be the same.

From the equation for predicting received power with reference to the received power at
some distance (2.10), we can develop an expression for signal strength lost with reference
to signal strength lost at some reference distance. This is referred to as the distance-

dependent path loss model (Seidel and Rappaport, 1992);

2
PL(d) :PL(dg)(i) , (2.34)

where PL is the mean path loss at distances d and dy. The exponent of 2 here is referred to
as the free-field path loss exponent. This exponent will be different for indoor environments
since the signal intensity will decay at different rates due to reflective, diffractive and
scattering interactions with objects in the environment. Since the path loss exponent will
be different for different environments we denote it to be the variable n. Now the distance

path loss equation, in decibels, becomes
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PL(d)[dB] = PL(do)[dB] + 10nlog (jﬂ). (2.35)

Rappaport (2002) gives examples of typical values for the path loss exponent. For
example, in a free-field scenario a value of n = 2 would be expected and in a direct Line
of Sight scenario typical values would be 1.6 < n < 1.8. Indoors, the lower n and, as a
result, lower path loss can be explained by the mechanisms of reflection and scattering.
The signal can reflect and scatter off the walls, floors and ceilings increasing the received
signal strength, which means the signal will degrade more slowly for increasing distance,
assuming direct LoS. Alternatively, for an obstructed LoS indoors, the path loss exponent
is shown to be 4 to 6. The increased path loss exponent can be explained by diffraction
and the attenuation of signals transmitted through walls. Section 2.1.1.3 explained how

the diffracted signal received can suffer severely reduced gain.

2.1.2.2 Log Normal Shadowing

Equations (2.34) and (2.35) calculate the mean value of the path loss at a given T-R
seperation distance. The mean value is more significant than a single value because, due
to small scale fading and measurement noise, a single measurement can vary greatly from
the true mean value. Figure 2.1 illustrates how small scale signal strength can vary around
the mean value. To model the instantaneous measured path loss, another term is added to
the log-distance path loss model to account for the randomness of the received signal. It is
assumed that at any distance d, the measured path loss PL(d) is a random variable with
a mean of PL(d). And it has a log-normal distribution; which means that it is a normal
distribution on a logarithmic scale. Hence, a model describing a single instantaneous signal

strength measurement can be generated by modifying Equation (2.35) as follows;

PL(d)[dB] = PL(d)[dB] + X, (2.36a)
= PL(d)[dB] = PL(do) + 10nlog (;2) + X, (2.36b)

where X, is a zero-mean Gaussian distributed random variable measured in dB, with a
standard deviation o, also in dB. The random variations described by X, are referred to
as Log-Normal Shadowing. The parameters n and o are usually determined using linear
regression. The reference distance path loss PL can be determined in one of 3 ways. It
can be determined by measuring the path loss at the reference distance. It can also be
calculated using the free space model for a distance d = dy or by using linear regression as
described in Chen and Kobayashi (2002). Some typical values for n and X, are presented
in Seidel and Rappaport (1992) and Faria (2006).
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2.1.2.3 Attenuation Factor Model

The log-distance path loss model (2.35) gives better signal strength prediction accuracy
than the free space path loss model (2.6a) since it utilises a parameter n which is tuned
to the deployment environment. The log-normal shadowing model (2.36b) can give even
better prediction of measured signal strength by statistically describing the small scale
variations which impinge on the transmitted wave. However none of these models can
account for the large scale attenuation of a signal due to obstructions in the environment.
Partitions such as walls and doors have a significant impact on the received signal strength.
A path loss exponent, n, of 4 to 6 gives reasonable overall prediction accuracy in the
presence of these partitions, but its predictions are based only on T-R distance. So it will
predict the same path loss for a given distance regardless of the number of partitions in
the transmission LoS. Whereas in reality the presence of these partitions will significantly
affect the path loss.

One type of model which utilises information about the presence of these partitions is
the Attenuation Factor Model. This model uses a fixed value for the path loss due to a
single partition, Partition Attenuation Factor (PAF). Now for multiple partitions we just
need to multiply the number of partitions by the PAF to determine the total path loss
due to partitions. We will obviously need a different path loss exponent, which negates
the losses due to partitions, and only accounts for direct LoS losses. A simple partition
attenuation factor model which accounts for partition losses, assuming all partitions cause

the same level of attenuation is given by,

PL[dB] = PL(dy)[dB] + 10nlog (j) + Z PAF, (2.37)
0

where > PAF indicates that we sum the partition attenuation factors of all partitions
in the direct LoS ray drawn between the transmitter and receiver. An example of how
PL(dy), n and PAF can be estimated for a given environment is provided in Chen and
Kobayashi (2002). The partition attenuation factor model gives better prediction accuracy
than the log-distance path loss model because the path loss exponent has its dependency
on the number of partitions removed, and the Y PAF term accounts for these influences.

The case when there are multiple floors in the environment must also be considered.
One method of accounting for inter-floor path loss is to use a path loss exponent which is
calculated to account for the effects of multiple floors but negates the effects of partition
losses. We achieve this type of path loss exponent by using regression on data from several

floors, using 3D distances rather than just same floor distances;

ﬁ[dB] = ﬁ(do)[dB] + 10nyF log <50) + Z PAF, (238)
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where n s is the multiple floor attenuation factor (Rappaport, 2002). As with the PAF we
can remove the dependency of n on the number of floors by introducing a Floor Attenuation
Factor (FAF);

PL[dB] = PL(dy)[dB] + 10ngF log (j) + FAF, (2.39)
0

where ngp is the same floor path loss exponent, ignoring floor attenuation, and FAF is the
attenuation due to floors for a specified number of floors separating the transmitter and
receiver. Typical values of FAF for an office building is presented in Seidel and Rappaport
(1992). Finally we can remove the dependency of n on both partition and floor attenuation
losses by using FAF and PAF to account for these losses and using n to account for the

remaining propagation variations;

PLAB] = PL(do)[dB] + 10n15 log (;) L AP+ Y PAF,  (2.40)
0

where nr,s is the path loss exponent for LoS propagation throughout the environment

negating the effects of partition and floor obstructions.

2.1.2.4 Soft Partition and Concrete Wall Attenuation Factor Model

The Partition Attenuation Factor model in Equation (2.38) predicts the signal strength in
the presence of partitions assuming that all partitions have the same attenuation factor.
This assumption is not necessarily true in a real-life environment. Concrete partitions will
attenuate the signal more than soft partitions like wooden walls, doors, or office partitions.
A model presented in Seidel and Rappaport (1992) assigns separate attenuation factors
to concrete partitions and soft partitions in an effort to better predict the path loss.

The Soft Partition and Concrete Wall Attenuation Factor Model assumes free space
propagation so the authors use a model similar to that in Equation (2.6a) and do not
use a path loss reference distance. Since free-space propagation is assumed, the path loss
exponent is now fixed at 2. Then terms to describe the attenuation due to soft partitions

and concrete partitions are added;

PL(d)[dB] = 201log (47;61> +p x AF(soft)[dB] + q x AF(concrete)[dB], (2.41)

where p is the number of soft partitions and ¢ is the number of concrete partitions in the
T-R LoS. For the conducted experiments the T-R separation distance and resultant path
loss for multiple positions are logged. At each position the number of soft and concrete
partitions in the T-R LoS are also logged. Again linear regression is used to determine the

soft partition attenuation and concrete partition attenuation factors. If the assumption of
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free space propagation was discounted, a path loss exponent could be included to account
for attenuation due to environmental propagation effects like reflection, diffraction and

scattering.

2.1.2.5 Distance Dependent Path Loss Exponent

To provide more flexible representation of the path loss exponent over increasing distance,
work by Cheung et al. (1998) proposed using two different path loss exponents. One path
loss exponent ni is used for the region near the transmitter, in which propagation losses
are similar to that occurring in free space. The further away region has a greater path loss
exponent no to allow for the increasingly noticeable influence of reflections, diffractions
and scattering from obstructions. The distance at which a change in propagation loss
occurs is defined as dy,. Hence taking these observations into account, the new expression

for path loss, modified from Cheung et al. (1998), is

ny
PLidB] — PL(dy)dB] + 101og (CZ) U(dyy — d)
dpp\ ™ d\"
+10[log (=2} +log(— | |U(d—dy) (2.42)
do dop
+FAF + ) PAF,

where U(.) is a unit step function. This technique of propagation modelling is shown to
have signal strength prediction accuracy superior to that of Equation 2.37.

However, the downside to algorithms which involve floor and partition attenuation
factors is that they require information about the number of partitions present. This
information is not available online. Instead these types of models are used to obtain a signal
strength map or fingerprint of the environment offline. Then fingerprinting techniques, as
described in Section 2.2.1.3, are used to predict location. In contrast, expressions which do
not involve attenuation factors such as Equation 2.35 allow online triangulation techniques
to be employed. The propagation models presented thus far are relatively simplistic.
Recently a family of more complicated propagation models have been proposed for offline

generation of location fingerprints.

2.1.2.6 Simulation Models

Since the 1980s, empirical simulation models have been developed to aid in planning
wireless network deployment. They capitalise on the computational power becoming
increasingly available in typical computers. This allows tracing of several hundreds of
paths each ray could possibly take from the transmitter, and combining the energy from

each path to estimate the energy arriving at each position in the simulation environment.
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One example of such a model is presented in Ikegami et al. (1991).This work focuses
on modelling the mean strength of 200, 400 and 800 MHz signals in urban environments,
namely downtown Kyoto and Kyoto University. It assumes reflection and diffraction to be
the dominant effects. Reflection attenuation is estimated, from experimental data, to be
6dB. Diffraction effects are calculated using building heights estimated from the number
of stories in the building. This technique works well in this particular test environment,
however, it is stated not to work as well in a city where the building heights exceed the
transmitter height, due to the way in which diffraction is modelled.

However useful this method is outdoors, it is not applicable to indoor environments.
One technique which focuses on indoor signal propagation is presented in McKown and
Hamilton (1991). The employed method models the signal in terms of reflections from
and transmissions/diffractions through walls in a 2 dimensional map of the environment.
Each ray can be traced for up to 6 reflections before termination. The chosen number
of reflections permitted for each ray leads to a trade off between the execution time and
accuracy.

The previous two techniques for signal strength simulation both utilise some form of
theoretical propagation modelling. Another technique, which utilises mostly experimental
data in the simulation, is presented in Pechac and Klepal (2001). Experimental data is
used to build a “motif” for how a signal behaves upon colliding with particular types
and shapes of walls. These motifs are templates for the radiation pattern probability
of the signal resulting from the wave incident on the surface. Every ray traced from
the transmitter has all of its transmissions, reflections, diffractions and scattering at all
surfaces estimated via these motifs. A bitmap of the environment is formed and the energy
at each square is proportional to the number of rays passing through that square. The
benefit of using motifs is that all radio transmission phenomena are approximated by the
motifs and the ability to theoretically model them is not necessary. This technique can
also be easily extended to the 3D case with the availability of sufficient computational
power.

These simulation models permit fine grained modelling and visualisation of the signal
strength throughout a situation where it would be impractical to manually obtain signal
readings throughout the entire environment. Availability of these readings throughout
the environment permits the employment of fingerprinting based localisation techniques,
as will be explained in Section 2.2. Bahl and Padmanabhan (2000b) illustrated that in
a Wireless Local Area Network (WLAN) localisation system, a dataset generated from
a simple propagation model, like that in Equation 2.37, produces inferior accuracy to
that obtained using an empirical training dataset. However, in a more recent paper
Widyawan et al. (2007b) demonstrated the localisation accuracy possible when data from

a simulation model is utilised. It showed that the associated accuracy is competitive with
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that achievable with a manually obtained dataset, and the calibration effort for a large
environment is significantly lower.
So far the propagation modelling algorithms only consider large scale path loss effects.

Other, less significant, propagation effects are also present in any transmission.

2.1.2.7 Small Scale Fading

Small scale fading refers to the rapid fluctuations in the received signal over short periods
of time or travel distance. As alluded to in Section 2.1, small scale fading does not
significantly influence the signal strength over a long period of time. Small scale fading
models are mainly concerned with understanding how speed of the transmitter, receiver
or objects in the environment influence received signal in terms of apparent frequency and
arrival time of signal components from different directions. In a human tracking system,
however, the subject’s speed is insignificant compared to the speed of RF wave travel,
hence relative T-R speed will not influence signal strength intensity.

Small scale fading also describes instantaneous fluctuations in the received signal
intensity due to multipath effects like reflection and scattering. However small scale
multipath effects are so difficult to predict and are so insignificant over long periods of time,
that they are usually mitigated in localisation systems by using average signal strength
values rather than instantaneous values. Small scale variations in received signal strength
are usually modelled in a statistical fashion, as discussed in Section 2.1.2.2.

For radio localisation systems the consequences of small scale variations in the signals
are usually ignored and the signal strength due to large scale propagation effects are used to
interpret the current position. The aforementioned propagation models are commonly used
for distance estimation in triangulation techniques or signal strength dataset acquisition

for fingerprinting techniques, as will be described in the following section.

2.2 Positioning Theory

The field of RF localisation is concerned with determining the position of a piece of radio
communication hardware by analyzing information about the radio signals sent to or
received from a piece of communication hardware. The hardware to be localised is often
referred to as the Mobile Device (MD). When the signals from an MD are analysed by
some other piece of hardware this is known as remote positioning, since the location of
the MD is determined remotely from the device being localised. If the position of the MD
is calculated and stored on the MD, based on signals arriving from a stationery Access
Point (AP) this is known as local positioning. When this MD is carried by a person, they
can be offered location based services from either the local or remote localisation system.

There are two ways of presenting the calculated positions; relatively or absolutely.
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Relative positioning presents the position of an MD in relation to some reference position
within an environment. Alternatively absolute positioning presents the position of an MD
in relation to some absolute frame of reference. An example of absolute positioning is the
coordinate output of a GPS module, whereas relative positioning would say that a user is
20m north of some landmark. It is possible to translate from relative to absolute position
and vice versa if we know the position of the landmark which the MD is relative to.
There are two main categories which a localisation technique can fall under, they are
Direct Techniques and Sequential Bayes Filtering Techniques. These techniques will be

the subject of the following subsections.

2.2.1 Direct Techniques

Direct localisation techniques are techniques in which the current position is derived from
each sample without reference to previous or future location predictions.

There are three main categories which a direct localisation technique can fall within;

e Proximity
e Triangulation

e Scene Analysis/Fingerprinting

Each method of localisation has advantages and disadvantages in terms of installation
and configuration effort, accuracy and reliability (Hightower and Borriello, 2001). There is
no one localisation system ideal for every situation, each one has its ideal application. The
following subsections will describe how each of these methods can be used to determine

location.

2.2.1.1 Proximity

Arguably one of the simplest methods of determining the location of an object or a human
is by using the Proximity method. This method is used when the only reading available
from some sensing hardware is a binary detected /not-detected reading. Hence, the location
is approximated to be the same as the position of the detecting sensor. As a result,
the higher the detecting range of the sensor, the higher the uncertainty of the location
prediction. Proximity localisation techniques do not lend themselves to accurate coordiate
location predictions, instead symbolic location predictions are usually generated. Symbolic
location refers to a location which has some meaning relevant to the actions which usually
take place in that location, such as a room or area within a room.

Proximity sensing methods are well suited to the detection of room-level location when
the signal to be sensed is readily attenuated by walls. Typical technologies suitable for
this purpose are IR and Radio Frequency Identification (RFID). Example of IR proximity
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sensing techniques can be seen in Want et al. (1992, 1995) and Abowd et al. (1997). A
disadvantage of IR proximity technologies is the dependence of IR on LoS transmission.
Obstructions within the room have a severe impact on the likelihood of detection for IR
transmissions. RFID transmissions overcome this limitation by using RF transmissions,
which are less succeptible to obstructions, but as a result are more likely to “leak” into
adjacent rooms. Due to its reliability, RFID has replaced IR for symbolic localisation
systems. Examples of localisation using RFID can be found in Cox et al. (2003) and
Callaghan et al. (2006).

Proximity localisation using RFID technology can obtain finer resolution location
predictions by placing a larger number of sensors or tags throughout the deployment
environment. Koch et al. (2007) suggested fixing an array of RFID tags under a carpet
throughout an entire environment, then an RFID reader fixed on a subject’s foot can
resolve location with high resolution, using only proximity readings. Another piece of work
by Kulyukin et al. (2008) uses similar densities of RFID tags on the floor but this time
the RFID reader is attached to an elder’s stroller. The resolution of location predictions
is sufficiently high to allow navigation to take place. However, this high resolution comes
at the expense of high installation effort.

It is not just short range communication technologies which can be used for proximity
localisation. Any technologies which can detect other devices with little or no indication
of the signal intensity can be considered to be proximity technologies. For example
Google Maps’ positioning system uses cell ID localisation which approximates the location
of a user to be the location of the detected cell tower. In urban areas this can give
accuracy within 200m but this can increase to approximately 3 km in areas with sparse
cell tower deployment. Some bluetooth positioning systems also could be considered
proximity localisation sytems due to the lack of signal strength intensity readings on
some Bluetooth® chips (see Anastasi et al. (2003) for example).

When a person or object is detected at multiple sensors or receivers at once, higher
localisation accuracy can be obtained by using the centroid algorithm. This algorithm
simply calculates the coordinate position of the object to be the geometric mean of
the coordinate positions of all the sensors which detected the object (see Hightower and
Borriello (2004) for example). These proximity localisation methods are employed when
only binary presence readings are available or when signal strength or timing resolution
is not high enough to permit T-R distance estimation. When such readings are available,
higher accuracy can be obtained by using Triangulation or Fingerprinting methods, hence

proximity techniques are rarely employed in recent work.
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2.2.1.2 Triangulation

Triangulation refers to using the geometric properties of a triangle to determine the
position of an MD relative to a number of stationery APs. Figure 2.10 illustrates an
example where the location of devices A and B are known, and we want to calculate the
relative position of device C. Triangulation will directly give the relative position of device
C. From this and knowledge of the absolute positions of A and B the absolute position of
device C can be calculated. Using triangulation methods, there are two ways the position

of device C can be calculated: Lateration or Angulation.

Fig. 2.10: Triangulation localisation methods can calculate the position of circle C given
the known locations of squares A and B and some other information, either distances, d;
and dy or angles 6; and 6s.

Lateration (or Trilateration as it is sometimes called) is used when the distances
between the MD and some APs are known. In Figure 2.10 the positions of A and B
and the distances d; and dy are known. The distances d; and dy can be used to calculate
the position of C relative to A and C, using simple geometry. In the situation where
there are only two APs the result will be two possible locations of C. This is because two
positions will satisfy separation distances d; and da, as illustrated in Figure 2.11(a). If
the distance, ds, to another AP, D, at a known location is available, the position of C can
be deduced. Figure 2.11(b) shows that the only possible position of C can be determined
using information about the third AP.

This suggests that in an unconstrained 2-dimensional space, a minimum of 3 access
points will be needed for lateration. But in a constrained space, like indoors, the
environment configuration can be used to reduce the number of APs required. For example
if both A and B are placed against the perimeter wall of a building and it is assumed that
the MD won’t be detected outside the building (for example in a multi-storey building), it
can be assumed that one location of C is invalid and a confident position prediction using
only 2 APs is possible.

For lateration to successfully work in an unconstrained space the number of access

points required, N, is;
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(b)

Only 2 APs 3 APs

Fig. 2.11: Lateration used to predict the position of C using 2 fixed APs and 3 fixed
APs. (a) Using only 2 APs results in two possible locations of C for the measurements d;
and dy. (b) The availability of 3 APs removes uncertainty.

N=D+1, (2.43)

where D is the number of dimensions in which localisation must be performed in. D is the
minimum number of APs required to unambigiously predict a position, as corroborated
by Khan et al. (2006). Also if more APs are available they will provide better accuracy.
The first step in lateration is the estimation of the distances di, do and ds. Many
methods of distance estimation can employed in a lateration-based localisation system.

The most used methods are:

Signal Strength Most radio transmission devices have a Received Signal Strength
Indication (RSSI) reading built-in and visible to the application layer. This RSSI
value can usually be converted to a received signal intensity value, measured in
dBm. With this signal intensity value a propagation model like the ones described
in Section 2.1.2 can be used to determine the T-R separation distance. Examples of
systems which use RSSI based lateration are described in Hightower et al. (2001),
Feldmann et al. (2003), Castano et al. (2004), Orooji and Abolhassani (2005), Sugano
et al. (2006), Jin et al. (2006) and Tarrio et al. (2008). RSSI is the most commonly
used distance indicator due to its common availability, even though it gives poor
accuracy due to unpredictable multi-path effects. When less standard transmission

hardware is used further readings are possible, resulting in higher distance estimation
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accuracy.

Time of Arrival (TOA), sometimes known as Time of Flight (TOF), allows for the
prediction of the T-R separation distance by observing the time a signal takes to
reach the receiver after transmission. The time the signal was transmitted must also
be known, usually included in the data packet sent within the signal, so the T-R
propagation time can be determined. With knowledge of the propagation time, and
the speed of propagation of the wave, the T-R separation distance can be calculated.
TOF is generally more accurate for distance estimation than signal strength since
the time it takes for the RF wave to travel is less suceptible to obstructions (Kupper,
2005) but it requires very accurate clock synchronization between the transmitter
and receiver to allow calculation of the transmission time. Also statistical methods
must be employed to prune out secondary signals due to multi-path effects. TOA is
used in GPS (Kupper, 2005). It is also used in ultrasonic systems such as the Active
Bat localisation system (Ward et al., 1997, Harter et al., 1999) and Hexamite’s
ultrasonic positioning sytem (Helal et al., 2003).

Round Trip Time (RTT) is a measure of the time it takes for a signal to reach a
receiver and a response to be sent back to the orignial transmitter. When there are
no delays present in the receiver hardware it is equal to twice the TOF. RTT is an
improvement over TOF since it does not require the transmitter and receiver to have
synchnonised clocks. However, it is an inaccurate distance measure in the situation
when there is a delay between when the receiver receives a packet and when it sends
the response packet. RT'T has been proposed for application to cellular network
localisation (Jami et al., 1999) and WLAN localisation using auxilliary hardware
(Izquierdo et al., 2006). The Active Bat localisation system may also be considered
a RTT technique since it sends an RF pulse when it wants an ultrasonic pulse sent
back. Then the RTT is a combination of RF transmission in one direction and

ultrasonic in the other direction.

Time Difference of Arrival (TDOA) predicts distances from information about the
difference in arrival time for different signals which were sent at the same time. Such
signals include RF, ultrasonic, infrared or acoustic. This technique only works when
the different signals have significantly different transmission speeds. Knowledge of
the propagation times of each signal and the recieve time difference between the
two signals allows accurate resolution of transmission distance, assuming the time
resolution of the readings is high enough. The Cricket location support system
(Priyantha et al., 2000) uses the TDOA of RF and ultrasonic signals from a number
of beacon transmitters at known locations to estimate the receiver’s position. Work

on a similar technique by Savvides et al. (2001) indicates that TDOA using RF
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and ultrasonic is more reliable than using RF signal strength distance estimation.
This increased reliability, however, comes not just at the cost of extra signals but of

sophisticated hardware capable of deducing times of arrival with sufficient resolution.

Angulation is a form of triangulation in which information about the angles of the
device at unknown position, C in Figure 2.10, relative to devices A and B are detectable.
This is usually derived from the angle from which a signal arrives at the device or the Angle
of Arrival (AOA). Again if the positions of A and B are known, then the position of C is
deducible. Unlike lateration, angulation can work with only 2 APs, regardless of whether
the localisation problem is 2-dimensional or 3-dimensional, provided the available angle
readings include elevation as well as azimuth angles. If elevation readings are unavailable
for the nodes A and B then only 2-dimensional localisation is possible.

Work by Niculescu and Nath (2003) uses an adapted form of the Cricket localisation
system, called the Cricket Compass, which uses an array of ultrasonic sensors. This
array of sensors allows the detection of the phase difference between a signal arriving
at the different sensors. From this information the AOA, and as a result, location can
be derived. Boushaba et al. (2007) use AOA to allow the nodes in a sensor network to
localise themselves, however they use a Medusa node, like that used by Savvides et al.
(2001), adapted to estimate AOA.

Instead of detecting a signal’s angle of arrival, Khan et al. (2006) proposes an
alternative technique of estimating the angle between nodes by estimating the angle at
which a main node transmitted a signal successfully to a given node. A master node
of known position and orientation transmits a reset beacon to all other nodes. Then it
begins to transmit a narrow directional signal rotating around its axis. The slave nodes
note when they hear each transmission. From these times they can work out the period
of one rotation. They can also work out how long it took to detect the first transmission
after the reset signal. The ratio of this initial transmission time to the period of rotation is
proportional to the angle of this node relative to the master node. Hence each node knows
its angle relative to the master node. This can be considered a hybrid technique since it
also uses signal strength to estimate distance between master and slave. The position of
each node is then estimated from one angle and one distance reading.

In theory, triangulation localisation methods are capable of resolving location with
high accuracy, limited only by the accuracy of the distance or angle estimates. However,
in practice the distance and angle estimates are not sufficiently reliable to allow accurate
localisation. Hence another localistion method, fingerprinting, is more frequently employed

in practice.
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2.2.1.3 Fingerprinting

Fingerprinting is a method of predicting location which does not necessarily involve
knowledge of the propagation characteristics of the environment or the location of the
reference devices (usually wireless Access Points). Instead the device to be tracked is
moved to coordinate or symbolic locations of interest and a training set of AP identities
and corresponding signal strengths is obtained in each location. Obtaining such a set of
training samples for an entire environment makes up the offline phase of fingerprinting-
based localisation. In the second phase, the online phase, samples are obtained and
compared to the offline training samples using a variety of methods to estimate the
most likely location. These methods can generally be considered to be either direct or
probabilistic methods. Examples of direct fingerprinting methods can be found in Bahl and
Padmanabhan (2000b), Krumm et al. (2003), Mantoro and Johnson (2005), Varshavsky
et al. (2006), di Flora and Hermersdorf (2008) and Kelly et al. (2008d) and examples of
probabilistic methods can be found in Castro et al. (2001), Ladd et al. (2002), Roos et al.
(2002b) and Youssef et al. (2003).

Generating a fingerprint for an environment can be performed in two ways: empirically,
by obtaining real data at every position in the environment or mathematically, by using
propogation models, like those outlined in Section 2.1.2. As explained in Section 2.1.2.5
propagation models capable of executing online are not as accurate as ones which can
only execute offline. This is due to the ability of offline models to describe more complex
phenomena such as wall and floor attenuation?. Hence, generation of propagation models
offline before the execution of a fingerprinting algorithm leads to better localisation
accuracy than using propagation models online, for example when using triangulation. The
disadvantage, however, is that fingerprinting requires more offline preprocessing and online
storage of data than triangulation. Also changes in the environment such as changing AP
or furniture positions requires the generation of a new training dataset.

A strong reason fingerprinting is favoured over triangulation is that it allows the use of
signals in localisation which are not readily modelled in a given environment. For example
Otsason et al. (2005) uses Global System for Mobile Communications (GSM) signals to
estimate position indoors. GSM signals are extremely difficult to model indoors since they
usually originate from cell towers over a kilometer away and they can be influenced by
walls, windows and outdoor foliage as well as environmental factors such as diffraction
through the atmosphere. Hence an empirical training dataset is used. Castro et al.
(2001) uses an empirical dataset using Signal to Noise Ratio (SNR) instead of the typical
RSSI reading. This allows the signal intensity throughout the environment to incorporate

interference levels. Interference varies as a function of location so it should be incorporated

2To the author’s knowledge no localisation systems exist which are capable of estimating the number
of partitions in the T-R LoS online.
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into the location indicative readings, something which is not possible with models due to
its unpredictability. Finally, the system developed as part of this thesis uses GSM signal
intensity and Bluetooth® Link Quality (LQ) readings along with RSSI. These signals are
extremely difficult to model, hence empirical fingerprinting is used.

Fingerprinting is the most popular direct localisation technique since its prediction
accuracy does not rely on propagation models which are sufficiently simple to run online.
It can use sophisticated propagation models which depend on information only available
offline or even mitigate understanding of propagation mechanisms by permitting the use
of empirical training datasets. Regardless of these strengths, fingerprinting still has
deficiencies in predicting movements which correspond to human behaviour. For this
reason, more recent localisation research employs Sequential Bayes’ Filters to provide

location predictions which correspond to human movement behaviours.

2.2.2 Sequential Bayes’ Filters

Direct localisation techniques perform sufficiently accurately when stable noise-free
readings are available from the device to be localised. However, when only noisy readings
are available location jitter can occur. This is when an individual’s predicted location
moves rapidly from one sample to the next. Sequential Bayes’ Filters provide a natural
mechanism to fuse information about an individual’s most likely previous location and
possible movements to provide sequences of location predictions which are realistic for a
subject travelling with typical human behaviour.

Sequential Bayesian filtering is a recursive approach for modelling the probability
density function (pdf) of some system’s internal states over time. The states are estimated

based on two probabilistic models:

Process Model. This model describes the relationship between the internal state of the
system at one discrete instant in time and the next. In localisation this is also

referred to as the motion model.

Measurement Model. This model describes an externally viewable measurement as a
function of the internal state of the system. In localisation this typically relates RSSI

from multiple APs to the device’s location.

From a localisation perspective, the goal is to estimate the posterior pdf of the location,
I, at discrete time ¢, given the available measurements, R;, at discrete time ¢, that is to

estimate

p(le | Re). (2.44)
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This can be recursively estimated in two steps. The first step, before any signal reading is
obtained, is to use the previous location to predict the current location using the motion

model, which is derived from the Chapman-Kolmogorov equation (Ristic et al., 2004),

e | Rir) = [ o0 | le)pllos | Bea)iln, (2.45)

This prediction is based on the first-order Markov assumption that the current state (or

location) is dependent only on the previous state (Zaruba et al., 2007), ie.:

p(lt | lt_l, -u;lO;Rt—h ...,RO) = p(lt ‘ lt—1)~ (246)

Next, when a new sample, Ry, is obtained, this prior probability can be combined with
the motion model, p(R; | l;), to correct the location prediction. Using Bayes’ rule this

correction takes the form,

p(Re | 1)p(le | Ri—1)

I | Re) = , 2.47
plle | Fe) p(Re | Ri—1) (2.47)

where the normalising constant is
p(Re | Re1) = /P(Rt | 1t)p(le | Re—1)dly. (2.48)

This recursive prediction (Equation 2.45) and correction (Equation 2.47) algorithm
forms the optimal Bayesian filtering process. However, this is merely a conceptual
explanation of Bayesian filtering, the integrals present in this algorithm make it
computationally intractable. Instead some simplifications and approximations must be
made to allow this algorithm to execute in discrete computer operations. Next some

discrete approximations of this algorithm are presented.

2.2.2.1 Kalman Filters

A Kalman filter is capable of optimally predicting the continuous-valued multivariate state
of a system by implementing a form of Bayes’ filtering. Optimal prediction is possible in the
case when certain assumptions are true. These assumptions are that the posterior density
is unimodal Gaussian and that the prediction and motion models are linear. The unimodal
Gaussian assumption is necessary to allow the posterior density to be parameterised
entirely by its mean and covariance. The mean value and covariance of the state vector
must be calculated for both motion model based prediction and measurement model based
correction at every iteration of the algorithm. Without presenting the mathematical basis
(a comprehensive explanation can be found in Welch and Bishop (1995)), the Kalman
filter is implemented using matrix algebra as follows.

The mean value of the state is predicted using the motion model,
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I; = Al;_1 + Buy, (2.49)

where A corresponds to the motion model and B specifies the contribution from an input,
ug, to the state evolution. w; may not necessarily be known in a localisation problem
and A is equivalent to the state-transition matrix in control theory. The corresponding
covariance matrix, P, , must also be updated based on the previous covariance matrix and

the motion model noise covariance matrix, @), as follows:

P = AP, AT + Q. (2.50)

P, represents the uncertainty in the location estimate [,". The larger the elements of this
covariance matrix, the wider the spread of the location distribution (Fox et al., 2003),
hence the greater uncertainty in the location estimate, f; . When new measurements, Ry,
become available this prediction can be corrected using the measurement model, which

incorporates the output matrix, H. First the Kalman gain must be calculated:

Ky=P H'(HPHT + M)™, (2.51)

where M denotes the measurement noise covariance matrix. With this Kalman gain, the

state mean and covariance predictions are corrected using the expressions,

~

i = I7 + KR — HI) (2.52)
P = (I-KH)P (2.53)

Since most realistic systems, especially location estimation systems, typically do not
have linear measurement models the Kalman filter is not applicable. Instead, Extended
Kalman Filters (EKF) (Kotanen et al., 2003) or Unscented Kalman Filters (UKF)
(Orderud, 2005) use linear approximations to satisfy the linear requirements of Kalman
filtering. In these cases the underlying assumption of linear functions is no longer valid
and these filters are no longer optimal Bayes’ filters. Furthermore Kalman filters can only
be employed when measurement models are available. As explained in Section 2.2.1.3
accurate propagation models are not always available. In such situations optimal Bayes’
filtering is not possible using Kalman filters. Instead alternative discrete Bayes’ filter

approximations are necessary.

2.2.2.2 Particle Filters

The main disadvantage of Kalman filters is that they assume the location can be

approximated by a unimodal Gaussian distribution. This is certainely not the case in
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a real system in which the ambigous signal strength readings could be the result of a
number of different locations. Hence, the location is more appropriately approximated
by a multi-modal distribution. As an example, if a user was equally likely to be in two
positions distant from each other, a Kalman filter would estimate the most likely location
to be the Euclidian mean of those two locations, hence it would be entirely wrong (Zaruba
et al., 2007).

To provide a multi-modal density approximation and to overcome the mathamatical
intractability of the integrations in the pure Bayes’ filter, a Monte Carlo sampling
approach can be employed. Monte Carlo filters (also referred to as particle filters) use
repeated random sampling to approximate the results of exact Bayes’ filtering. The entire
distribution is represented by a set of weighted random samples. At each step in the
filtering process each sample value and weight is modified according to the motion and
measurement models. Similar to the Kalman filter each iteration has two steps: prediction
and correction.

At the start of the first step, prediction, a large set of samples and corresponding
weights, (lii_)l, wii_)l), exists. Each sample is resampled randomly according to the motion
model p(ly | l;—1). The resulting set of samples, corresponding to Equation 2.45, is denoted
(Zaruba et al., 2007):

{(lgi),w?)) i€ [1,N]7w£i) = l/N}. (2.54)

The second step, update, changes the weights of each sample according to the
measurement model and a new measurement, R;. Each sample’s weight is adjusted
according to w,ﬁ“ = p(R; | l:gl)) The weights are then normalised to ensure they sum
to 1. From this set, NV samples are randomly drawn according to the normalised weight
distribution. Resampling is permitted to ensure it is possible to get N samples while still
giving greater importance to samples with higher weights. The resulting set of samples,

corresponding to the posterior distribution p(l; | R;) in Equation 2.47, is denoted:

{(lf),wt‘i)) i€ [1,N],w£i) = 1/N}. (2.55)

This set of samples can then be used in the next iteration’s prediction step and the
recursive process continues in this manner. The main factor which influences accuracy
in a particle filter is the number of particles chosen, N. The more particles available the
higher the posterior density representation flexibility but also the higher the iteration
computation time. Due to the increasing computational power available in modern
computers, particle filters are commonly used for coordinate location tracking. It has been
successfully applied to WLAN (Zaruba et al., 2007, Widyawan et al., 2007a), Bluetooth®
(Rodas et al., 2008) and ZigBee® (Ren et al., 2007) technologies.
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Along with the multi-modal capability of particle filters, other advantages lie in
their ability to use empirical measurement models and their ability to easily incorporate
information about the environment layout into the motion models. When the task is
to track coordinate position Kalman and particle filters perform extremely well. Kalman
filters perform optimal prediction under the linear assumptions and particle filters perform
better with more computational power. However, neither of these techniques can optimally

predict location when the location state-space is truly discrete in nature.

2.2.2.3 Discrete Approaches

Discrete approaches allow tracking by segmenting the state-space into discrete locations.
One example is a grid-based approach which divides the localisation environment into
equally sized cells (Burgard et al., 1996). Then the Bayes’ filter update equations are
performed on each individual cell using summations instead of integrations. The cell of
highest probability at the end of each iteration is assumed to be the true location. The
advantage of this method is that it can also represent arbitrarily shaped distributions. It
is also assumed to be an optimal Bayes’ filter when the state space is truly discrete (Ristic
et al., 2004). The disadvantage of grid-based techniques is the storage requirements for
the grid and the computational complexity of updating the entire grid on every iteration
(Fox et al., 2003). There is a predictable tradeoff between the tracking accuracy due to
grid granularity and the storage and computational complexity due to grid size.

To overcome the prohibitive computational burden of grid-based approaches topological
approaches have been proposed. Topological approaches segment the environment into
locations of meaningful significance to the user, or symbolic locations, such as different
rooms or hallways. Now each cell corresponds to an entire symbolic location and
the computational complexity is significantly lower than a full grid-based approach.
Furthermore the motion model is easily derived from the connectivity of locations, due to
doorways or adjacency for example. Topological approaches have been said to efficiently
represent the localisation environment and perform sufficiently well when the sensors
provide only very imprecise location information. Hence, as will be presented in Section 6
this approach is adopted to augment the accuracy of the system developed in this thesis.
Examples of discrete Bayes’ filter techniques can be found in Krumm and Horvitz (2004)
and Kelly et al. (2008a).

Thus far this chapter has presented fundamentals of RF positioning theory and the RF
propagation theory on which it builds. The next section summarises the most prominent
indoor localisation systems, both commercial and academic, which have been developed

to date.
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2.3 Existing Localisation Systems

To date, a wide variety of position estimation techniques have been developed. Outdoors,
location predictions are readily available to the consumer from global systems such as GPS
and the upcoming Galileo (EU GPS), GLONASS (Russian GPS) and Compass (Chinese
GPS) systems. There are two major issues with using these global scale positioning systems
indoors. The first issue is connectivity. It is usually difficult for a receiver to detect signals
from enough satellites to predict location, especially in multi-storey buildings. The second
issue is reliability. Even if enough connections are available indoors, the signal is generally
so distorted by multi-path effects that the position estimate is extremely inaccurate.

To address the challenge of indoor localisation a wide variety of alternative techniques
have been investigated. Most of these techniques utilise relatively short-range radio
transmissions to estimate position. These short-range radio transmission protocols,
such as WLAN, Bluetooth® and cellular networks are particularly applicable to indoor
localisation since they are typically available in indoor scenarios. Other research attempts
to achieve higher accuracy or reliability using hardware more customised to the localisation
problem, relying on transmissions such as Ultrasonic, RFID and IR. These different
techniques will be compared in terms of accuracy, localisation technique employed, location
estimate type (coordinate or symbolic), release type (commercial or academic), location
availability (local or remote) and infrastructure requirements. It is necessary to note
the infrastructure, or quantity of installed hardware, present when each technique was
tested since it is difficult to directly compare localisation techniques deployed in different
environments.

One of the most ubiquitous indoor communication and prominent localisation tech-

nologies, WLAN, shall be presented first.

2.3.1 WLAN

WLAN is a communication protocol frequently employed in indoor localisation. This
is primarily due to its high deployment density in commonly inhabited areas such as
offices, universities and urban homes. RADAR (Bahl and Padmanabhan, 2000b) was one
of the first non-robot indoor localisation systems which relied on WLAN infrastructure
already present in an office environment. Since then many authors have tried to improve
upon RADAR’s accuracy with varying degrees of success. Most WLAN-based localisation
systems are able to calculate and store their positions locally. This is due to the fact that
most WLAN positioning systems are implemented on laptops which have sufficient storage
capacity and computational power to represent and analyse an entire environment’s data
locally. A simple summary of the most prominent WLAN-based localisation systems can
be found in Tables 2.1 and 2.2.
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From these tables it can be seen that until the year 2005, WLAN localisation systems
typically used fingerprinting techniques to estimate location. Furthermore, triangulation
is not widely employed due to the poor accuracies associated with oversimplified online
propagation models. In more recent years particle filtering techniques have experienced
increased adoption. These techniques are capable of achieving higher accuracy from the
same training and test data using Monte Carlo Simulations of a Bayes’ filter. As explained
in Section 2.2.2.2; these techniques require high levels of computational power to achieve
the desired levels of accuracy. As a result, particle filtering techniques are growing in
popularity in line with the increasingly available laptop processing power.

Another trend observable from these tables is that proximity and Kalman filtering
techniques have not been applied to any of the systems surveyed. Prioximity techniques
are rarely, if ever, applied to WLAN localisation systems because their relatively low
accuracy is only acceptable in situations when the resolution of the signals available from
the technology (such as RSSI) is extremenly low or gives binary readings. Kalman filters
are rarely applied to realistic indoor localisation scenarios due to the non-linear nature
of indoor RF propagation. One final observation is that WLAN is such a mature wire
replacement technology that it has spawned some commercial localisation systems such
as Ekahau and Skyhook WPS. The same can not be said for other wire replacement
technologies such as Bluetooth® or IEEE 802.15.4. As will be presented in the next
section, cellular network localisation is also experiencing some commercial interest due to

its ubiquity.

2.3.2 Cellular Network

Cellular network localisation is a technique that is now widely used due to the prevalence of
mobile phones and cellular network towers. However, only low levels of position accuracy
can be achieved with commonly available handsets. Enhanced performance is available
to the cellular network operator using the link management readings available at the
basestations®, however, these measurands are generally unavailable to the user. Typically
available cellular network devices only indicate the RSSI of the currently strongest cell
tower. For this reason a commonly available commercial cellular network localisation
product, Google Mobile Maps, only uses the proximity localisation technique. This system
has no official accuracy claims, but due to the range of cellular network basestations this
technique can have position error of anything up to 3 km, assuming the position of the
cell tower is correct in the database, which is not always the case. A similar technique,
implemented in Intel’s Place Lab (Lamarca et al., 2005) achieves its best accuracy of

107.2m in a dense urban area, namely downtown Seattle. This indicates that higher

3Examples include; RSSI from multiple basestations, basestation timing advance and time difference of
arrival at multiple basestations. See Jami et al. (1999) for more examples.
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accuracy for such systems is obtained with higher AP density, but the error distances are
prohibitively high for indoor localisation.

More accurate location prediction techniques are possible with specialised hardware or
in simulations which do not account for the limited visibility of cellular signals on most
mobile phones (see Table 2.3). Otsason et al. (2005) use laptops with GSM receivers or
hacked mobile phones to obtain RSSI readings from the 6 strongest cellular basestations.
With this specialised hardware accuracy levels similar to that of WLAN is possible.
A UK-based company, Path Intelligence, is implementing a shopping centre surveying
technology. This technology uses custom cellular network detectors to detect the cellular
signals emanating from customers in the area. Phone identifier numbers along with the
corresponding AOAs are used to triangulate each user’s position and movements allowing
shopping centre planners to better understand customer behaviour. However, since this
technique can remotely estimate a user’s location without permission, it is generating
significant levels of customer concern, in spite of its anonymity preservation measures.
Furthermore, these location predictions are not readily available to the user, making this
technique a planning tool rather than a technique for a user to retrieve their location.

Cellular localisation has received increased attention in recent years due to the high
availability of cellular devices and the presence of cellular signals in most locations.
Recently some mobile phones using the Android operating system allow access to detailed
cellular readings, such as the 6 strongest cell towers and their RSSI. Theoretically, this
would allow more accurate techniques such as cellular fingerprinting (like Otsason et al.
(2005)) or cellular triangulation (like Orooji and Abolhassani (2005)) to be performed
locally on mobile phones. However, in general, the high transmission range and the low
signal resolution and low access point visibility on commonly available cellular devices
leads to poor resolution cellular localisation. Another commonly available communication

protocol sometimes used for indoor localisation is Bluetooth®.

2.3.3 Bluetooth

Bluetooth is a communication protocol, based on the IEEE 802.15.1 standard, which
is as commonly available as cellular mobile communications due to its inclusion on most
mobile phones, PDAs and laptop computers. In theory, Bluetooth® localisation is capable
of accuracy similar to that of WLAN. In practice, however, this is not possible since
Bluetooth® devices do not have RSSI resolution as high as WLAN. Due to Bluetooth’s
use of power control in an attempt to maintain consistent received signal strengths over
increasing distances (Bluetooth® Special Interest Group, 2001), RSSI is typically a very
poor indicator of distance (Bielawa, 2005). Hence, the accuarcy of the triangulation
techniques highlighted in Table 2.4 is very dependent on the implementation of the

Bluetooth® specification in a particular device. In reality, high RSSI resolution is only
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possible from the higher priced Bluetooth® chips. In fact most mobile phone Bluetooth®
chips do not provide any RSSI information to the application layer. Hence, to estimate
position locally on a typical mobile phone prior to the findings of this thesis, proximity
was the only viable technique (see Cheung et al. (2006) for an example).

Proximity localisation also overcomes another restriction of the Bluetooth® protocol;
namely connectivity. Unlike WLAN, it is difficult to obtain RSSI readings from
Bluetooth® devices unless a connection is formed. There is also the restriction that a
device can only connect as the master to 7 slave devices and a device can only be the
slave to a single master. This means that if a remote device connects as the master to a
number of APs, no other remote devices will be able to connect to those APs as a master
at the same time, allowing only one device’s location to be processed at a time. Recent
work by Rodas et al. (2008) has demonstrated success with obtaining RSSI without forming
connections by using the Linux platform and a specific Bluetooth® adapter. However, this
type of system configuration is not particularly common, meaning dedicated computers
must be used for APs.

The limited connectivity of the Bluetooth® protocol is one reason why minimal AP
localisation is the focus of this PhD thesis. Using a single AP allows the system to
remotely track the location of up to 7 subjects in a particular environment without the
connectivity issues associated with multiple AP Bluetooth® localisation. This allows the
use of Bluetooth® to track subjects while still being more power conservative than WLAN.
Another low power communication protocol which has been used for localisation in the
past is the IEEE 802.15.4 protocol.

2.3.4 IEEE 802.15.4/ZigBee®

The IEEE 802.15.4 standard describes a wireless communication protocol for low power
consumption, low data rate communications. As such, the ZigBee® communication
protocol, which builds on the IEEE 802.15.4 specification is intended to be even more
power conservative than Bluetooth®, while still providing some of the same functionality.
It also experiences less connectivity restrictions than Bluetooth®. However, in spite of its
disadvantages, Bluetooth® is a protocol more commonly available in mobile devices due
to its earlier inception®. As a result IEEE 802.15.4 and ZigBee® localisation generally
requires dedicated devices which would not otherwise exist within a given environment.
Due to IEEE 802.15.4’s high RSSI resolution, triangulation is the most commonly
employed localisation technique (see Table 2.5). Even though IEEE 802.15.4 has RSSI
resolution higher than WLAN devices, its use in localisation systems is not as common.
The main reason for this is the availability of IEEE 802.15.4 devices. Since IEEE 802.15.4

4The original Bluetooth® specification was developed in 1994, whereas the IEEE 802.15.4 standard was
completed in 2003 and the ZigBee® specifications were completed in 2005.
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CHAPTER 2. LITERATURE SURVEY

APs rarely already exist in typical deployment scenarios, dedicated IEEE 802.15.4 APs
must be installed for localisation. However, due to the similarities in resolution between
IEEE 802.15.4 and WLAN, and the ubiquity of WLAN APs, WLAN is usually the more
practical choice. Hence all of the ZigBee® localisation work to date is purely academic,
as evident in Table 2.5. Furthermore, due to IEEE 802.15.4’s relative immaturity, there
are very few commercial devices with computation and IEEE 802.15.4 communication
functionality integrated into a portable form-factor, hence, remote localisation is generally
employed in practice.

Half of the IEEE 802.15.4 localisation techniques surveyed in Table 2.5 use triangula-
tion to convert distance estimates to location estimates, even though distance estimates
based on RSSI generally result in poor localisation accuracy. One localisation technology
which achieves extremely high localisation accuracy using triangulation techniq