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Non-Abelian vortices of an SU(2) Chern-Simons-Higgs theory in 2 + 1 dimensions are constructed
numerically. They represent natural counterparts of the U(1) solutions considered by Hong, Kim, and Pac,
and by Jackiw and Weinberg. The Abelian embeddings are identified, for all values of the Higgs self-
interaction strength v, resulting in both attractive and repulsive phases. A detailed analysis of the
properties of the solutions reveals the existence of a number of unexpected features. For a certain range
of the parameter v, it is shown that the non-Abelian vortices have lower energy than their topologically
stable Abelian counterparts The angular momentum of these vortices is analyzed and it is found that
unlike the Abelian ones, whose angular momentum and energy are unrelated, there is a nontrivial mass-

spin relation of the non-Abelian vortices.
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L. INTRODUCTION

Self-dual Abelian Chern-Simons-Higgs (CS-H) vortices
were constructed by Hong, Kim, and Pac [1], and by
Jackiw and Weinberg [2] describing anyonic solitons in
2 + 1 dimensions. These excited considerable interest be-
cause of their relevance to high 7. superconductivity and
resulted in the development of a large body of literature,
including also the case when the Maxwell term was
present. For a complete review we refer to [3] (see also
the recent work [4]). Soon after [1,2] appeared, the non-
relativistic counterpalrt1 of that model was studied [5],
followed by the non-Abelian versions of the latter, in
[6,7]. The focus of the work on these nonrelativistic sol-
itons is their relevance to integrable systems. The present
work is concerned exclusively with the relativistic model.

The study of these Abelian CS-H vortices was motivated
by the discovery in [8] of topologically massive (non-
Abelian) Yang-Mills (YM) theories augmented by a
Chern-Simons (CS) term. Thus it is that even before the
discovery of the former [1,2], their non-Abelian versions
were considered. Early work employing a non-Abelian
Yang-Mills-CS-H (YM-CS-H) model featuring a pair of
Higgs fields in the adjoint representations of SU(2) was
carried out in [9,10] and in the adjoint representations of
SU(N) in [11]. Non-Abelian CS-H vortices with Higgs
field in the fundamental representation of SU(2) were
also discussed in [12]. Recently solutions in a supersym-
metric N = 2 non-Abelian CS-Higgs (CS-H) theory were
considered in [13], and more recently, vortex solutions to a

"These gauged Schrédinger equations are not precisely the
nonrelatitivistic limits of the ones considered here since they do
not involve a symmetry breaking self-interaction potential of the
scalar field.
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U(N) YM-CS-H system with adjoint representation Higgs,
describing the bosonic sector of a N' = 2 supersymmetric
model, were given in [14] where the moduli space ap-
proach of [15] was employed to study the vortex dynamics
at low energy.

To put our work in a larger context it should be remem-
bered that non-Abelian vortices with a particular topology
different from the one here are constructed in various
gauged Higgs models. (Mostly the YM connection in these
models enters via the usual quadratic YM term, but also in
some examples both this and the CS term. These choices
are irrelevant since the topology applied is insensitive to
these dynamical details.) In contrast to our model and like
that of [9], these models feature at least two adjoint repre-
sentation Higgs fields in addition to other scalar multiplets,
depending on the supersymmetry content. The most promi-
nent feature of these non-Abelian vortices is that they are
stabilized by Z, topology for gauge group SU(2), and more
generally they are the Zy strings for gauge group SU(N).
Exhaustive references to these works are given in the
review [16]. From the viewpoint of physical application
these strings have played a prominent role, describing flux
tubes starting and ending on confined monopoles, in the
context of dual confinement theory. In an important recent
development genuinely non-Abelian vortices in certain
N = 2 supersymmetric gauge theories were constructed
in [16-20].

Unlike the previous models supporting non-Abelian Z
vortices, the model employed in the present work has only
one adjoint Higgs field and one SU(2) gauge group and no
supersymmetry. Moreover, the solutions constructed do not
have Z, topology. It is the simplest possible SU(2) exten-
sion of the 2 + 1 dimensional Abelian CS-H model of
[1,2], with adjoint representation Higgs. The Abelian em-

© 2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.79.065036

NAVARRO-LERIDA, RADU, AND TCHRAKIAN

bedding of these SU(2) vortices in the self-dual limit are
none other than the self-dual vortices of [1,2]. Thus our
solutions have no relevance to dual confinement in QCD as
the Z, vortices do. Any relevance they have could be in
condensed matter physics, but our emphasis here is exclu-
sively on the analytic and numerical study of these solu-
tions and not on their physical application. Another aspect
in which our vortices differ from those studied to date is
that in the existing literature on this subject no numerical
constructions of non-Abelian CS-H vortices are presented.
Given the absence of analytic solutions in closed form, the
numerical analysis of this system is the pertinent one.

The only topological charge relevant to our purposes is
the vortex number, pertaining exclusively to the embedded
Abelian subsystem. Therefore we expect that the non-
Abelian solutions we find are generically unstable. In
fact they are sphaleronlike configurations with directions
of instability. Some of these may decay into unit vorticity
Z, Abelian vortices since our gauge group is SU(2)/Z, and
71 (SU2)/Z,) = Z,. Not unexpectedly the non-Abelian
solutions we find bifurcate from the corresponding
Abelian embedding vortex, and interestingly, the non-
Abelian vortex has lower energy than the Abelian one for
certain parameter ranges.

Another interesting question we addressed is that of the
value of the angular momentum of the non-Abelian vorti-
ces, which is the only global quantity exclusively charac-
terizing these, relative to the known values for their
Abelian counterparts [1,2].

Finally, as a byproduct of the present work we have
constructed the non-self-dual version of the Abelian solu-
tions of [1,2] by departing from the Bogomol’nyi limit
away from the critical value of the Higgs self-interaction
strength. (Surprisingly, no such analysis seems to have
appeared to date.) The resulting solutions exhibit the
same properties of mutual attraction and repulsion that
are seen in the usual Abelian Higgs model itself [21]. It
appears that to date this particular result has not appeared
in the literature. After constructing these Abelian vortices,
we proceed to construct the fully non-Abelian solutions,
both for the value of the Higgs self-interaction parameter
for which the Abelian embedding is self-dual and for other
values of this parameter.

The paper is structured as follows: in the next section we
present the model, impose rotational symmetry, and dis-
cuss the residual one-dimensional system. Then in Sec. III
we carry out the numerical constructions and summarize
our results in Sec. I'V.

II. THE MODEL

A. The action and the general Ansatz

The CS-Higgs model on a 2+ 1 dimensional
Minkowski spacetime is described by the following
Lagrangian:
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L = Qcg + TrD,PDHD — V(|D], ) (1)

in which the CS density is
Ocs = Sermrrra (F,, —2a.4) 2
s =58 TAp\ Fuv = 340 (2)

and the symmetry breaking Higgs self-interaction potential
is that employed in [1,2]

— (A2 Trd2(n? + B2, 3)

The dimensions of the various constants appearing above

are [y]=L7', [A]=L, and [k] = L' and the index

pm =0, i, with i = 1, 2. The Lagrangian (1) usually enters

the more complicated models as the basic building block

(see e.g. [14] and the references therein). Therefore one

can expect the basic features of its solutions to be generic.
The static Hamiltonian of the Lagrangian (1) is

H o = 5[ Tr(Do®* + D; @) + V(|@], 7)]
= ATe([Ap, @F + D;@%) + V(@ p)] 4

We take the static “spherically”” symmetric SO(4) YM
field in three spacetime (i.e. two Euclidean) dimensions, in
one or another chiral representation of SO (4), such that
our Ansatz is expressed in terms of the representation
matrices

. 1/1 =
300 = 4< 75)[%7;;]

«, B = 1) 2) 3) 4) (5)

Yo = (Vi Yur), with the index M = 3, 4 being the gamma

matrices in four dimensions and s, the chiral matrix.
Our rotationally symmetric Ansatz for the Higgs field ®

and the YM connection A,, = (A, A,) is
O = —(e)"n;3f) — 73,
AO = _(SX)MI’le;il) 2(+)

=67 emton, + earin I

+[azs+ (fs ! ”)(m |, ©)

in which the functions (&M, &%) = &, (Y™, x°)
(AM, AS) = A, parametrize the YM connection in terms of
three sets of isotriplets E X, and g,, the isotriplet
(¢M, $3) = ¢ parametrizing the Higgs field. All four iso-
triplets depend only on the two-dimensional spacelike
radial variable r, & is the two dimensional Levi-Civita
symbol, and n; = (cosne, sinng) is the unit vector en-
coded with the winding (Vortex) number n = 1 in the
(x1, x5) plane (with r? = x7 + x3).

Having stated the Ansatz (6) in terms of the gamma
matrices in four dimensions, we adopt henceforth the
simpler labeling 5 = (&M 83), = (M X, 95 =
(M, $3), and A, = (AM, A3), with M = 1, 2 now.

= ¥, and
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B. The residual system and a consistent truncation

The parametrization used in (6) results in SO(3) gauge
covariant expressions for the YM curvature F,, =
(F;j, Fip) and the components of the covariant derivative
of the Higgs field D, ® = (D;®, DyP), expressed exclu-
sively in terms of the covariant derivatives of the three
wiplets & = (%, &), ¥ = (¥, x). and & = (¢, ¢?),
these covariant derivatives in the residual one-dimensional
space being defined as

D&% = 3,69 + e ALET,
D x* = 0,x" + e®AV X",
D" = a,0° + st AL .

(N

That the residual one-dimensional system of fields result-
ing from the imposition of this symmetry is entirely ex-
pressed in terms of the SO(3) covariant quantities (7) is a
consequence of the consistency of the Ansatz (6), which
has been verified explicitly.

The Euler-Lagrange equations arising from the variation
of the gauge field are

) SijFij + [q), [Ao, (p]] = O, (8)
KSiijO - [(D, qu)] = O,

the first of which being the Gauss law equation. The Higgs

equation is

Dl’Di(I) - [Ao, [Ao, (I)]:l - )\nzq)(nz + (I)Z)(nZ + 3(1)2) =0.
©))

With the notation (7), the gauge field equations (8) reduce
to the following set of ordinary differential equations:

=D.E=—[16P% - (6.0)

Kr Lo (10)
D= ~19PE - (6.5H9)
together with the constraint equation
- > K - N
$XD,§ =T Ex X (1n
r

The Higgs equation reduces to
I T I I
D.(rD,¢) = —[1£7¢ — (6.1 + AIxI*¢ — (6. X)X]
= X2r@? = 1$P)@? = 31 = 0. (12)

In (12), we have rescaled the vacuum expectation value
(VEV) nas n = %v to simplify the expression. We note
that the winding number » in the Ansatz does not appear
explicitly in the equations of motion (10) and (12), nor in
the constraint equation (11). It will appear only in the
boundary value of the function & at the origin.

That (11) is a constraint equation is easily verified by
acting on it with D, and employing the other three field
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equations. In what follows we shall set the triplet of

functions A, = 0, removing some of the SO(3) gauge
degeneracy in the residual system. That this is a consistent
truncation is obvious since there is no curvature in one
dimension.

Substituting (6) in (1) yields the following reduced one-
dimensional Lagrangian:

L=200 & = %+ mad]+ rld x 32
. 1 - - R .
= (116, + 116 x E7) — XridPw? ~ 1P,
(13)

The equations of motion (10) and (12), with all covariant
derivatives replaced by the ordinary derivatives D,(ZJ —
% = d;,, etc., follow from the variation of (13) with re-

spect to the three triplets y, 5, and (E, respectively.
It turns out that the Ansatz (6) can be consistently
truncated further by setting

b = (vhiM, vy),
(14)

E=(ck™ a), ¥ = (dkM, b),

where kM is a constant unit length 2-vector.” We are thus
left with only six radial functions a(r), b(r), c(r), d(r),
h(r), and g(r) resulting in the truncated version of the
reduced Lagrangian (13)

Ltrunc = _g[(abr - ba,) + (Cdr - dCr) + I’lbr]
1

+ v2r(bh — dg)* — vz[r(hf + g%) +—(ah — cg)?
r

TR + g1 — (R + g2)]2] (15)

leading to the static energy density functional resulting
from (15)

—

1
Htrunc = Evzl:r(bh - dg)2 + l"(/’l% + g%) + —(ah - Cg)2
r

R+ D)1 — (R + g2)]2]. (16)

C. The Abelian case

It is natural at this stage to isolate the Abelian embed-
ding of this system, which will play an essential role in the
construction of the non-Abelian solutions. The Abelian
embedding results from the truncation

c=d=g=0,
for which the constraint (11) is identically satisfied.

2Using different constant unit length 2-vectors in E, X, and d:
does not lead to a consistent truncation.
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The remarkable feature of this Abelian case is that the
Gauss law equation is an algebraic equation enabling the
elimination of the electric component A, of the Maxwell
field A, = (A;, Ag). This results in the reduction of the
static Hamiltonian becoming identical with that of the
usual Abelian Higgs model, subject to an additional pro-
viso restricting the symmetry breaking Higgs self-
interaction potential to be of the form (3), namely, the
natural case chosen in [1,2].

The Gauss law equation now reduces to

K a,
b 20%0% 1’ 17
leading to the reduced one-dimensional Lagrangian

Ly = g[bar — (a + 1)b,] + v?rb*h?
a’h?
- v2<rh3 + —> — XS — 2P (18)
r

The Gauss Law constraint (17) can now also be derived
from the variation of (18) with respect to b(r).

Next, using integration by parts, we replace the term
(a + 1)b, in (18) by ba,, whence (18) can be expressed as

Ly = —UZ{[K—2 LA 1)2]
4v* ri?

27,2
+<rh%+—ah)}5
-

To establish the topological lower bound of H,, defined by
(19), we consider the two inequalities

(ﬁh, ¥ %)2 =0,

2
F A rh(h? — 1)] = (),

—Hare (19)

[ 2
v? 2./rh
which lead to the final inequality

Hyy = =v’[a(h® — 1), + kAa,(h* — 1)]. (20)

Now for this inequality to present a topological lower
bound on the energy, the right-hand side of (20) must be
a total derivative. This is only possible if we choose the
constants subject to

kA= 1. 21

Saturating (20) with (21) yields precisely the Bogomol'nyi
equations satisfied by the self-dual Chern-Simons vortices
of [1,2], which is relevant here because our numerical
analysis will depart from these vortices, first to the non-
self-dual case analogous to the corresponding Abelian
Higgs vortices [21], and finally to the non-Abelian vortices.

D. The global charges

On the question of the magnetic and electric fluxes, the
situation is as follows. For the generic Abelian case, the
operative equations are the Maxwell equations, and of
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these the Gauss law equation is [2]
V-E— kB = p, (22)

where E; = F;y and B = F|, = 1 ¢,;F;;. The density p is
the Oth component of the U(1) current expressed in terms
of the complex Higgs field such that its volume integral
over d*x is the electric flux. The volume integral of the
divergence term V - E, after converting it to a “surface”
(line) integral, vanishes. This can be seen readily from the
results of the foregoing asymptotic analysis. As a result of
the vanishing of V - E in (22) for our model, it is clear that
the magnetic flux [ Bd’x is inversely related to the electric
flux.

The only topological charge in this system is the mag-
netic flux, and hence also the electric flux. These are
defined in the context of the Abelian subsystem of the
SU(2) model at hand, and these respective charges are
the only global quantities pertaining to the solutions
studied. The non-Abelianness therefore has no influence
in this sector. There is, however, the angular momentum, or
the spin, of these solutions, which presents another global
quantity characterizing our solutions. Unlike the magnetic
and electric charges, however, which are not influenced by
the non-Abelianness, the angular dependence is indeed
dependent on the gauge group.

The angular momentum density is

j = T¢,0 = (xg)iTiO = ()?S)irTrDiq)DOCD, (23)

which, for the fields subjected to the Ansatz (6), and further
truncated according to (14), readily yields

T =312$ X 1)+ (¢ X &) = v ah — cg)(bh — dg).
(24)

Remarkably enough, the total angular momentum, which is
given by the integral

J= Zw/jrdr, (25)

can be expressed as a difference of two boundary integrals3
(thus in this one-dimensional case it reduces to the integral
of a total derivative). It follows from the field equations (8),
that the integral (25) can be written as

J= kT ff-DrEdF kT (&) = 1EOP)

= K;(I’lz - p%) (26)

Note that p; appearing in (26) is an asymptotic parameter
appearing in (30) below, and that the Abelian embedding

*A similar property of the total angular momentum has been
noticed in 3 + 1 dimensions for various models with gauged
fields, see e.g. [22] and the references there. However, in contrast
to the model here, for all known d = 4 cases, the contribution to
J of the inner boundary term vanishes.
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solution is consistent with the value p; = 0 of this parame-
ter. Thus in this limit, the expression (26) coincides with
the angular momentum given in [1,2], i.e. J = k7wn?/4,
which holds for both self-dual and non-self-dual solutions.
It is clear that the angular momentum of the non-Abelian
vortices differs essentially from that of its Abelian counter-
parts and that it can only be evaluated numerically, which
will be described in the following section.

We further define the energy of the solutions as the
integral of (16), namely,

E = 27Ter00dr = ZW[HmmCdr. (27)

III. NUMERICAL RESULTS

A. General features

Although an analytic or approximate solution appears to
be intractable here we present arguments for the existence
of nontrivial solutions of the field equations (10)—(12).

For the full non-Abelian system the asymptotic expan-
sion of the solutions near the origin that guarantees regu-
larity and differentiability is

& Aboh2v?\
- n h n + 2n+4
a(r) . 4(n + 1)( d’ K )r 06,
hZ 2
b(r) = by + MV on 0(r2n+2),
K
d d’ +2
— n n n + n+4
=" 2)( 0 2h%,v2)r o™,
d(r) = d,r" + O(r"*?), h(r) = h,r" + O(r"*?),
d, Kk 510 dnk 3d2 k2 d? k2
-t - )
s =g v U I an2vt)
+ 0(r*). (28)

All higher order terms in this expansion are fixed by the
coefficients by, d,,, h,. Thus, at the origin one uses the
following set of boundary conditions:

a|r=() =-n arb|r=0 =0,
(29)
c|r=0 = d|r=0 = hlr:O = O» arglr:O = 0.
At infinity, the finite energy requirements impose
g = cosq, h = sina, a = p; cosq,
(30)

¢ = p; sina, d = p,sing, b = p,cosea,

where «, p;, p, are arbitrary constants fixed by numerics.
Physically, p; and p, correspond to the asymptotic ampli-
tudes of the effective scalars y and E respectively, while «
somehow characterizes the angle of the Higgs field with
respect to the Abelian solution, since @ = 7/2 in that
limit.

Let us now concentrate on the numerical resolution of
Egs. (10) and (12), together with the constraint given by

PHYSICAL REVIEW D 79, 065036 (2009)

Eq. (11). In order to do so, we employ a collocation method
for boundary-value ordinary differential equations,*
equipped with an adaptive mesh selection procedure [23].
Typical mesh sizes include 10°~10* points. The solutions
have a relative accuracy of 1077,

It is worth noticing that Egs. (10)—(12) may be rescaled
by

202 202
b—""b  d—Tod,  r——ar Ao,
K K pAY, K
(31)

such that dependence on « and v disappears, remaining
just a dependence on v, which encodes the Higgs self-
coupling parameter. For that reason, without loss of gen-
erality, we will assume in what follows that k = 2v? and
v = 1 and A will be rewritten as v/2. With this convention,
the Abelian solutions approach the self-dual limit for v =
1. For numerical reasons we further introduce a compacti-
fied radial coordinate defined by 7 = r/(1 + r).

After a detailed analysis of the equations, one finds that
for a fixed integer n and a nonvanishing real », the regular
solutions to (10)—(12) depend on just one numerical free
parameter. We have chosen it to be p, so the two remaining
constants in (30), namely, p; and «, are not free but are
given by numerics. For that reason, in our numerical
scheme the boundary conditions at infinity were chosen
to be

d— p,h =0, bh—dg =0, g+n=1 (32

To summarize, the numerical solutions are constructed by
using the boundary conditions (29) and (32) with the
following input parameters: the winding number n, the
Higgs self-coupling constant v, and the asymptotic value
p» of the electric non-Abelian potential.5

Our procedure to generate non-Abelian solutions in the
{n, v, p,} parameter space was as follows: for fixed integer
n, one starts from the corresponding self-dual Abelian
solution (v =1 and p, = 0), which corresponds to the
solution in [1,2]; moving v from 1 while keeping p, = 0
one generates non-self-dual Abelian solutions; moving p,
from zero® while keeping » = 1 one generates non-
Abelian solutions with v = 1; finally, the general solutions
are found when moving both » and p,. Also, nontrivial
solutions are likely to exist for any value of the winding

“Some of the solutions were also constructed by using a
standard Runge-Kutta ordinary differential equation solver. In
this approach we evaluate the initial conditions at » = 107> for
global tolerance 107 !2, adjusting for shooting parameters %,,, by
and integrating towards r — oo. We have noticed very good
agreement between the results obtained with these two different
methods. The accuracy of the solutions was also monitored by
computing a virial relation satisfied by the system (15).

It is interesting to remark that these are also the usual input
parameters for the dyonic Yang-Mills-Higgs (YMH) solutions in
3 + 1 dimensions, see e.g. [24].

®As we will show later for large values of v there are non-
Abelian solutions with p, = 0 in addition to the Abelian ones.
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n=1, v=2.0, p,=0.7
1.0 ‘

0.0 0.2 0.4 0.6 0.8 1.0
r/(1+1)

FIG. 1. A typical non-Abelian solution with » = 2.0 and p, =
0.7 is shown for n = 1.

number n; however, in practice, numerics becomes more
involved with increasing n. Similarly, we have found non-
Abelian solutions for arbitrarily large values of v.

In Fig. 1 we show the functions a, b, c, d, g, and h for a
typical non-Abelian solution (with » = 2.0 and p, = 0.7)
for n = 1. The remarkable non-Abelian nature of these
solutions is inferred from the significant deviation from
zero of the functions ¢, d, and g.

B. The energy of the solutions

Let us analyze the energy of the solutions. In Fig. 2 we
show the energy per vortex number of the Abelian solu-
tions (p, = 0) versus v for n = 1, 2, 3. In the self-dual
limit (¥ = 1) the curves coincide. Below v = 1 the energy
per vortex number decreases with n for fixed v while above
v =1 it increases monotonically with n. This can be
interpreted by saying that force between vortices is attrac-
tive below the self-dual limit (v = 1), while it is repulsive
above v = 1. We also include for comparison the energy
per vortex number of non-Abelian solutions with p, = 0.5.
In that case there is no fixed self-dual limit where all the
curves merge but curves cross in pairs at several values of
v.

The effect of non-Abelianity is exhibited in Figs. 3. In
Fig. 3(a) the energy per vortex number is presented as a
function of the parameter p, for several values of v forn =
1, 2, 3. Starting from the corresponding Abelian solution
(p = 0) we move’ p, for fixed n and v. We observe
numerically that solutions exist only in the range® | p,| = 1.

"Recall that the energy is an even function of p, and thus
similar solutions exist when p, — —ps.

8Physically, that means the amplitude of the electric potential
at infinity is always smaller than the asymptotic value of the
Higgs field, a feature present also in 3 + 1 dimensional gauged
Higgs models, see e.g. [24].
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p,=0.0,0.5

E/(n)

FIG. 2. Energy per vortex number E/n versus the Higgs self-
coupling constant v for Abelian (p, = 0.0) and non-Abelian
(p2 = 0.5) solutions with n = 1, 2, 3. In the Abelian case, the
curves meet for » = 1, the self-dual limit.

When the limit p, = *1 is approached the solution
tends to the trivial solution

(33)

This limit requires some explanation. When |p,| — 1 the
sequence of solutions tends to (33) in a pointwise way. In
fact, as we can see from Fig. 3(a) and subsequent ones, the
energy for the limiting solution seems to depend on », and
it is obviously nonvanishing. A naive computation of the
energy using (33), however, yields zero. The explanation of
this apparent contradiction may be understood by analyz-
ing Fig. 4. There the energy density (& = 27H ) of a
sequence of solutions with |p,| — 1 is presented. We ob-
serve that the energy density spreads and tends to zero as
|p2| — 1 but its integral remains finite. Moreover, if one
concentrates on functions {a, b, ¢, d, g, h} for the sequence,
one observes that for any finite value of r the sequence
tends to the corresponding limiting value although that is
not necessarily true for the value at infinity.

For small values of v we find only one solution for each
value of p,. However, for large values of » we find several
solutions for the same value of p, (the larger n is, the
smaller » needs to be) with a different value of the energy,
in general. In Fig. 3(a) that is clearly seen forn = 3, v = 2
where in the range 0.63 < |p,| < 0.75 three different non-
Abelian solutions coexist for each value of p,.

Figures 3(b) and 3(c) show the energy per vortex number
versus p; and «, respectively. It is clearly seen that the
curves look much more complicated when using p; or « as
a free parameter. Moreover, contrary to what happens when
using p, as a free parameter, we do not observe any a priori
bound for p; and «.
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FIG. 3. (a) Energy per vortex number E/n versus the magni-

tude p, of the electric potential at infinity for solutions with n =
1, 2, 3 and several values of v. For v = 2, n = 3, one notices the
existence of several solutions with the same p,. (b) Energy per
vortex number E/n versus p; for solutions with n = 1, 2, 3 and
several values of v. (c) Energy per vortex number E/n versus «
for solutions with n = 1, 2, 3 and several values of ».
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FIG. 4. Energy density & for a sequence of solutions with
|po]l — 1 forn =1 and v = 2.0.

C. The angular momentum

The angular momentum of the solutions of Fig. 3(a) is
exhibited in Fig. 5. Showing independence of » for the
Abelian case (p, = 0) we observe that the angular mo-
menta of solutions with the same value of p, but different
values of v are different in general. As the masses of these
solutions also change with changing p, it is useful to
consider the behavior of the angular momentum as a
function of the energy.

That is shown in Fig. 6. For small values of v, the
angular momentum J is an increasing function of the
energy E. In fact, we observe that J = 0 solutions seem
not to exist, except in the limit when the energy also
vanishes. As v is increased, the curves develop a kink but
the angular momentum still remains to be an increasing
function of the energy. However, as v is enlarged more, one
may find regions where the angular momentum becomes a
decreasing function of the energy. Finally, for very large
values of » the angular momentum monotonically de-
creases with increasing energy. This strange effect has
been reported previously in other theories (for instance,
in d = 3 + 1 Einstein-Maxwell-dilaton theory [25], asso-
ciated to counterrotation).

D. The issue of p, = 0 solutions

Unexpectedly, the multiplicity of solutions in p, we
observe in Fig. 3(a) as a function of » happens also at p, =
0 (although it cannot be seen there). Thus, the condition
p, =0 (ie. |y| =0 as r— o0) does not characterize
Abelian solutions.” These non-Abelian p, = 0 solutions
exist for any value of the vorticity n. In Fig. 7 we show this

This is a unique feature of d = 2 + 1 CS-H theories. In the
better known d = 4 + 1 YMH case, |Ay| = 0 at infinity implies
a vanishing electric potential.

065036-7



NAVARRO-LERIDA, RADU, AND TCHRAKIAN
3.0

n=3 N

g
=

n=2

J/(n 1/2)

—
o

FIG. 5. Angular momentum per vortex number J/n versus p,
for the same set of solutions as Fig. 3(a).
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FIG. 6. Angular momentum per vortex number J/n versus
energy per vortex number E/n for solutions with n = 1 and
several values of ».

for solutions with n = 3. It is clear how the curves get
more complicated as v increases with the appearance of
non-Abelian p, = 0 solutions. Concerning Fig. 7 and the
subsequent one Fig. 9, one should notice that only half of
the complete curves are presented for the sake of clarity.
Since the energy is an even function of p, the complete
pictures would include also the mirror symmetric images,
with respect to the p, = 0 line.

There is also one further feature one should mention. As
a general rule, there are (almost always'®) non-Abelian
solutions with lower energy than the connected Abelian
solution for fixed values of n and ».

19%e have observed, however, some small regions where that is
not the case.
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FIG. 7. Energy E versus p, for solutions with n =3 and
several values of ».

Let us analyze further these p, = 0 solutions. In Fig. 8
we exhibit the energy E of p, = 0 solutions for n = 1. The
picture is similar for any other value of n (although there
are more kinks as n increases). Plotting the Abelian branch
of solutions we observe there is a value of v (v = 75.0,
54.2, 55.6 for n = 1, 2, 3, respectively) at which the non-
Abelian p, = 0 branch branches off (represented by a
large dot in Fig. 8). Following the non-Abelian branch
we observe it crosses the Abelian branch at another value
of v. That means it is possible to find two different solu-
tions with the same values of {n, v, p,, E}. Above that value
we observe the existence of non-Abelian p, = 0 solutions
with energy lower than the corresponding energy of their
Abelian counterparts.

E/m

0 25 50 75 100

FIG. 8. Energy FE versus the Higgs self-coupling parameter v
for p, = 0 solutions with n = 1. For a range of v, the non-
Abelian solutions have a lower energy than their Abelian coun-
terparts.
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FIG. 9. Energy E versus p, for n = 3, v = 30 solutions. A
branch disconnected from the Abelian solution (starting point at
p» = 0) is shown.

E. Disconnected branches

Even more strange situations may happen for large
values of the Higgs self-coupling constant ». There we
have found numerical evidence for the existence of dis-
connected non-Abelian branches. In general, all these non-
Abelian solutions reported above are obtained by continu-
ous variation of the free parameter p, in the range |p,| =
1. However, by fine-tuning v and p, it is possible to reach a
region of the parameter space where the corresponding
Abelian solution cannot be reached by just moving p,,
i.e., one can move p, from —1 to 1 (passing through 0)
without reaching the Abelian solution. An example of
these disconnected branches is presented in Fig. 9 for n =
3 and v = 30.

IV. SUMMARY AND DISCUSSION

We have constructed non-Abelian vortices in a SU(2)
Chern-Simons-Higgs theory in 2 + 1 dimensions directly
generalizing the Abelian model proposed in [1,2]. These
solutions are constructed numerically and sit above the
previously known [1,2] Abelian embeddings. Our study
is directed in three main directions:

(1) To investigate the dependence of the energies of the
non-Abelian vortices on the various parameters char-
acterizing them. Some of these parameters, denoted
as pi, p2, and «, are the asymptotic values of the
various fields describing the model, and since they
are not independent of each other—such relations
being only seen via the numerical process—we have
chosen to focus on the most convenient one, namely
P», corresponding to the asymptotic value of the
electric potential. In particular, the known Abelian
embedding solutions possess the value p, = 0.
Physically, the most significant parameter is the

PHYSICAL REVIEW D 79, 065036 (2009)

Higgs self-interaction strength v of the symmetry
breaking Higgs potential. We find it very convenient
and interesting therefore to compare the energies of
the non-Abelian vortices with those of the Abelian
ones versus the coupling v in the p, = 0 case (see
Fig. 8). We observe that for a range of values of v the
energies of the non-Abelian vortices are lower than
those of their Abelian counterparts.

The question of stability is a subtle one. Normally,
when a new field is introduced in a classical system,
the energy of the system becomes smaller than the
original one. Examples of this are the Skyrme model
after (diagonal) purely magnetic gauging with SU(2)
[26] or with U(1) [27,28], and the U(1) gauging of
the Goldstone soliton on R? [29]. In both these
examples the gauged soliton is topologically stable
against its own energy lower bound. On the other
hand, when in [27,28] the system supporting a topo-
logically stable soliton of the (purely magnetically)
U(1) gauged soliton is augmented with an electric
field such that the topological lower bound on the
energy of the new system is still bounded only by the
lower bound of the purely magnetic system, then it
turns out that the energy of the electrically charged
system is higher than the purely magnetic charged
one. This is not the situation in the case at hand,
where the non-Abelian solution is a sphaleron.
Accordingly, as observed in Fig. 8, the non-
Abelian solution bifurcates'' from the Abelian one
with energy higher than that of the former and then
develops a cusp and returns to cross the Abelian
branch after which its energy is lower. This may
have implications on the stability of some non-
Abelian solutions. We have not carried a quantitative
stability analysis here since that would go beyond the
scope of the present work and will return to this
elsewhere soon.

Apart from the question of stability illustrated by the
branch structure of Fig. 8, there is another interesting
property of the dependence of the energy on the
parameters fixing the numerical solution, illustrated
by the branch structure of Fig. 9. The latter describes
a branch of solutions that is disconnected from the
Abelian branch, plotted against the parameter p,.
This phenomenon is strictly one that appears for
large values of v. While the generic solutions are
found to be connected to the Abelian embeddings,
out of which they grow as their non-Abelianness
manifests itself, in the high v regime there appear
disconnected branches. An explanation for this may
be the fact that as v grows, the contribution of the

" Bifurcations are a typical occurrence in sphaleron and spha-
leronlike solutions, e.g. the bi-sphaleron [30,31] in the standard
model that bifurcates from the Klinkhamer-Manton sphaleron.
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Higgs potential term must vanish, resulting in the

constraint |$|> = 1. Thus the dynamics changes
from that of a Higgs model to one of a O(3) sigma
model.'? As it happens, the U(1) gauged embedding
of this sigma model does indeed support topologi-
cally stable solitons [32], so that the energy of the
vortices of its SO(3) gauged extensions are also
bounded from below, albeit with higher energy
than the SO(2) gauged soliton [32]. This passage
from a Higgs model to a sigma model has a note-
worthy precedent, namely, that of the sphalerons
[33] of the standard model in the high Higgs cou-
pling regime, where the limiting solutions describe
the bi-sphalerons [30,31] coinciding with the (right)
SU(2) gauged techniskyrmions [34] of the O(4)
sigma model. In the bi-sphaleron case, this is asso-
ciated with the excitation of some extra function in
the Ansatz of the matter fields. Therefore, we antici-
pate the possible existence of new solutions of the
model considered in this work as well, which would
be found beyond the truncation (14).

(ii) Given that the only topological charge in this model
is the magnetic charge or the vortex number pertain-
ing to the Abelian subsystem, it is important to find
some other global quantity that characterizes the
non-Abelian vortices exclusively. This is the angular
momentum of the vortex, which in addition to the
globally defined magnetic and electric charges per-
taining to the Abelian embedding and the energy,
provides a global quantity that characterizes the non-
Abelian vortex. This quantity differs essentially in
the Abelian and the non-Abelian cases (see Eq. (26))
and gives a quantitative measure of the non-
Abelianness of the SU(2) vortices.

The value of the angular momentum in the Abelian
cases is independent of the coupling constant v. In
that case it is also independent of the energy, whether
or not the value of v is the critical one when the
Bogomol’nyi bound is saturated as in [1,2]. In the
non-Abelian case by contrast, the angular momen-
tum does depend on the energy. This yields a mass
versus spin plot (see Fig. 6). Not unexpectedly, it
turns out that the only spinless solutions are those
with vanishing mass, i.e. trivial solutions with van-
ishing static energy. For a given value of v, namely,
for a given physical model, this spin-energy behavior
is studied again, when varying our favored parameter
Pp2. We observe that for small values of v the spin
increases with energy, while for large v there exist
regions where the spin decreases with increasing

21t is interesting to note that the nonrelativistic SU(2) solitons
presented in [7] were also arrived at via the O(3) sigma model,
which likely correspond to the high Higgs coupling limit of our
solutions.
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energy. Concerning this, we recall our comment
above where it is pointed out that the Higgs model
at hand becomes a sigma model in the limit of very
large v.

(iii) Since the solutions we constructed pertain to the
model in which the Higgs coupling constant v is
not restricted to the critical Bogomol’'nyi value, it
is reasonable to inquire about the properties of the
Abelian embedding vortices with respect to v. It
turns out that there exist both attractive and repulsive
phases of like charged vortices for noncritical values
of v for v < v iica and v > vyiiea, respectively,
with noninteracting vortices for ¥ = v cq- This is
also not surprising and is the same as the situation is
for the usual Abelian Higgs vortices.

Finally we comment on the reason for our choice of the
simplest SU(2) CS-H model, unlike the SU(N) model of
[11] and the more general supersymmetry inspired models
employed in [13,14]. In our view, the present SO (4) =
SU-(2) CS-H model in 2 + 1 dimensions is the first mem-
ber of a hierarchy of the SO (D + 2) CS-H model in D +
1 dimensions. It is planned to study the D =4 and 6
examples in the near future. Also, on general grounds,
we expect the basic features of the model considered
here to be generic for CS-H configurations with non-
Abelian matter fields, and thus to give an idea of the
situation in a more general case.

More immediately, we intend to revisit the problem of
the present model augmented with the SU(2) YM term, to
construct the corresponding non-Abelian vortices numeri-
cally. Apart from its intrinsic value, such a numerical
investigation would reveal some detailed properties of
the analytic results of [35]. The latter work was carried
out in the context of giving a rigorous proof of the result of
Julia and Zee [36] which states that the vortices of the
Abelian Higgs model in 2 + 1 dimensions cannot carry
electric charge. These authors went further to extend the
proof of the Julia and Zee theorem of the Abelian Higgs
model, to the SU(2) non-Abelian Higgs model in 2 + 1
dimensions, i.e. that the electric charge vanishes also in
that case. One would expect that in the limit of the CS term
vanishing the (non-Abelian) electric field vanishes.
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