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Abstract

In this note we consider the stability preserving propsrtédiagonal Padé ap-
proximations to the matrix exponential. We show that whilegdnal Padé ap-
proximations preserve quadratic stability when going froomtinuous-time to

discrete-time, the converse is not true. We discuss thecatmns of this result

for discretizing switched linear systems. We also show ttiatontinuous-time

switched systems which are exponentially stable, but naticatically stable, a
Padé approximation may not preserve stability.

Keywords: Padé Approximations, Quadratic Stability, Switched Linggstems
and Discretization.

1. Introduction

The Diagonal Padé approximations to the exponential fanare known to map
the open left half of the complex plane to the open interighefunit disk [3]. This
gives rise to a correspondence between continuous-tinéedtdl (linear time
invariant) systems and their discrete-time stable copatés (a fact that is often
exploited in the systems and control community [6]). Pesithp best known map
of this kind is the first order diagonal Padé approximant(&teown as the bilinear
or Tustin map [3]). The bilinear map is known not only to presestability, but
also preserve quadratic Lyapunov functions. That is, atipesiefinite matrixP
satisfyingAZP + PA; < O will also satisfyAjPA; — P < 0 whereAy is the mapping
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of Ac under the bilinear transform [6] with some sampling tim@]. This makes
it extremely useful when transforming a continuous-timéauwng system:

X = Ac(t)X, Ac(t) € o (1)
into an approximate discrete-time counterpart
X(k+1) = Ag(k)x(k), Ag(k) € o @)

because, the existence of a common positive definite matsatisfyingA:P +
PA: < O for all all A; € % implies that the sam satisfiesAjPA; — P < O for all
A4 € o73. Thus quadratic stability of the continuous-time switghsystem im-
plies quadratic stability of the discrete-time countetpdihis property is useful
in obtaining results in discrete-time from their contingeltme counterparts [6],
and in providing a robust method to obtain a stable disdrete-switching system
from a continuous-time one.

Our objective in this present note is to determine whether gihoperty is pre-
served by higher order (more accurate) Padé approximamisn Ehe point of

view of discretization, low order approximants are not alsvaatisfactory, and
one often chooses higher order Padé approximations inppétations. Later we
present an example of a exponentially stable continusus-iwvitching system for
which a discretisation based on a first order Pade approximit unstable, but,
discretizations based on second order approximationgaskegor any sampling
time. Also, it is well known that the first order Padé approation (the bilinear
approximation) can map a negative real eigenvalue to a wegagenvalue if the
sampling time is large. In such situations, while stabiigypreserved, qualita-
tive behavior is not preserved even for LTI systems; a narifatory continuous
mode is transformed into an oscillatory discrete-time molhethis context we
establish the following facts concerning general diag&zalé approximations.

(i) Consider an LTI syster®; : x = Acx and letZy : x(k+ 1) = Agx(k) be any
discrete-time system obtained fréta using any diagonal Padé approxima-
tion and any sampling time. W is any quadratic Lyapunov function fag
then,V is a quadratic Lyapunov function faiy.

(i) The converse of the statement in (i) is only true for fostier Padé approx-
imations.

Discretization error is zero, only at sampling instants.
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(ii) Consider a switched systefis; : X = Agc(t)X, Asc(t) € {Ac, ..., Acn} and
let X4 : X(k+ 1) = Agg(K)X(K), Asg(k) € {Ag1,..-,Aqn} be a discrete-time
switched system obtained frofc using any diagonal Padé approximations
and any sampling times. ¥ is any quadratic Lyapunov function faisc
then,V is a quadratic Lyapunov function f@igg.

(iv) The converse of the statement in (iii) is only true fosfiorder Padé ap-
proximations.

(v) Consider an exponentially stable switched syskgmx = Asc(t)X, Asc(t) €
{Act; .. Acn}. LetZq i X(k+1) = Asa(K)X(K), Asd(k) € {Ad1,...,Adn} be a
discrete-time switched system obtained frbgausing ap’th order diagonal
Padé approximation. Thekhgs may be unstable, even when= 1.

These results are quite subtle, but we believe that theyvgrertant for a number
or reasons. Discretization of switched systems is a relgtivew research direc-
tion in the control systems community. To the best of our kieolge, few papers
exist on this topic; for example see [7]. In the context oftsstudies, our results
say that quadratic stability is robust with respect to diej®adé approximations.
That is, quadratic stability is always preserved, even whensampling time is

poorly chosen. This is an important fact when building saboils of switched

linear systems. Our results also indicate that Padé appatiins do not, in gen-
eral, preserve the stability properties of exponentidiyt 6ot quadratically) stable
systems. In such cases, building a (stability preservimggrete-time simulation

model of such systems that preserve stability is non-trasi@ remains an open
guestion.

The consequences of our observations go beyond numemealagion. In many
applications one converts a continuous-time switchedegygb a discrete-time
equivalent before embarking on control design. Our resodtieate that one must
exhibit extreme caution in discretizing a continuous-tsnétched system model.
In particular, care is needed in assuming that propertidseadriginal continuous-
time problem are inherited from properties of the-disctime approximation [4].
In fact, stability of the discrete-time model does not neseety imply stability of
the continuous-time oneven for discrete-time systems that are quadratically sta-
ble. Our results also pose questions for model order reducfiswitched linear
systems. Again this is a relatively new area of study of adersible interest in the
VLSI community. In such applications, where the ultimatgegcbve is numeri-
cal simulation, stability may be preserved in the reductibthe continuous-time
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model to another lower order continuous-time model, onhjtfto be lost in the
discretization step.

2. Mathematical Preliminaries

The following definitions and results are useful in devehgpthe main result,
Theorem 1, which is given in Section 3.

Notation : A square matriX\ is said to beHurwitz stable if all of its eigenvalues
lie in the open left-half of the complex plane. A square nxafy is said to be
Schur stable if all its eigenvalues lie in the open interior of the unitaidhe no-
tationM* is used to denote the complex conjugate transpose of a djsoeiEe
matrix M; M is hermitian ifM* = M. A hermitian matrixP is said to be positive
(negative) definite ik*Px> 0 (x*Px < 0) for all non-zera« and we denote this by
P> 0 (P < 0). In all of the following definitionsP = P* > 0.

A matrix P is aLyapunov matrix for a Hurwitz stable matriXd; if A;P+ PA: <
0. In this case)V(x) = X*Px is a quadratic Lyapunov function (QLF) for the
continuous-time LTI system(t) = AcX(t). A matrix P is a Stein matrix for a
Schur stable matriRy if AjPAg —P < 0. In this caseV (x) = x*Pxis aquadratic
Lyapunov function for the discrete-time LTI systemx(k+ 1) = Agx(K).

Given a finite set of Hurwitz stable matriceg a matrixP is acommon Lyapunov
matrix (CLM) for o if A{P+PA; < Oforall Acin <. In this case, we say that the
continuous-time switching system (1)qgsadratically stable (QS) with Lyapunov
functionV (x) = x*PxandV is acommon quadratic Lyapunov function (CQLF)
for .

Given a finite set of Schur stable matriceg a matrixP is acommon Stein ma-
trix (CSM) for o7y if AjPAy—P < 0 for all Ay in .2%. In this case, we say that
the discrete-time switching system (2pisadratically stable (QS) with Lyapunov
functionV (x) = x*PxandV is acommon quadratic Lyapunov function (CQLF)
for «7y.

Our primary interest in this note is to examine the invaren€ quadratic Lya-
punov functions under diagonal Padé approximations to thgixnexponential.
Recall the definition of the diagonal Padé approximatiorieégexponential func-
tion.



Definition 1. (Diagonal Padé Approximation$][12]: The pt" order diagonal
Padé approximation to the exponential functidrisethe rational function @ de-
fined by

where 0 (20K
p—k)!p!
Qp(S) == kZOCkSk and q( - W . (4)

Thus thep™™ order diagonal Padé approximationd®", the matrix exponential
with sampling timeh, is given by

Cp(Ach) = Qp(Ach)Qp (—Ach) (5)
whereQp(Ach) = 3¢ _c(Ach)k.

Much is known about diagonal Padé maps in the context of L$lesys. In par-
ticular, the fact that such approximations map the openhigiit of the complex
plane to the interior of the unit disc is widely exploited iystems and control.
This implies the well known fact that these maps presentglgteof LTI systems

as stated formally in the following lemma.

Lemma 1. [3] ( Preservation of stability)Suppose that Ais a Hurwitz stable
matrix and, for any sampling time } 0, let Ay = Cp(Ach) be a diagonal Padé
approximation of &" of any order p. Then fis Schur stable.

A special diagonal Padé approximation is the first order @ppration. This is
also sometimes referred to as the bilinear (or Tustin) foans

Definition 2. (Bilinear transform)[3][12]: The first order diagonal Padé ap-
proximation to the matrix exponential with sampling times hiefined by:

Ci(Ach) = (I +Ac2) (I —Acg) o (6)

This approximation is known to not only preserve stabiliiyt also to preserve
guadratic Lyapunov functions [1, 2, 6]; namelyHfis a Lyapunov matrix foA
then itis also a Stein matrix fé¥y = C1(Ach). The converse statement is also true.
Actually, we have the following known result which is a s dase of Lemma 3
below.



Lemma 2. [2] (Preservation of Lyapunov functionsSuppose that Ais a Hur-

witz stable matrix and, for any sampling time>hO, let Ay = C1(Ach) be the
first order diagonal Padé approximation (bilinear transifoy of €<". Then P is a
Lyapunov matrix for Aif and only if P is a Stein matrix for A

As we shall see, bilinear transforms play a key role in stagyeneral diagonal
Padé approximations. In particularcamplexversion of this map that inherits
some of the above properties will be very useful in what feo

Lemma 3. (The complex bilinear transfornet A. be a Hurwitz stable matrix
and for any complex numbarwith R€A ) > 0, define the matrix

Ag= Al +A)(A* 1 —Ag) L. (7)

Then P is a Lyapunov matrix forAf and only if P is a Stein matrix for A

Proof : Consider any matriP = P* > 0. WhenAy is given by (7), the Stein
inequalityAjPAq — P < 0 can be expressed as

(A 1=A) (AT +A)* PA+A) (A" 1 —A) 1 —P < 0.

Post-multiplication byA *| —A¢ and pre-multiplication byA *1 —A¢)* results in the
following equivalent inequality

(A1+A) PAT+AC) — (A*1 =Ac)"P(ATI —Ac) <0,
which simplifies to
(A+A7)(PAc+A:P) < 0.

SinceA +A* > 0 this last inequality is equivalent to the Lyapunov inegyal
PAc + AP < 0. ThusP is a Lyapunov matrix foA; if and only if it is a Stein
matrix forAy. H

The final basic result that we shall need concerns commom &tatrices for
discrete-time systems. A proof of this (well known) lemmagigen in the Ap-
pendix.

Lemmad. If P is a CSM for A,---,An then P is a Stein matrix for the matrix
product[]", A.



3. Main Result

We now present the main result of the paper: Theorem 1. A naisequence of
this result is that common quadratic Lyapunov functiongpaeserved by all diag-
onal Padé discretizations for all sampling times. Thusdeatic stability is pre-
served under all diagonal Padé discretizations of a quadHtststable continuous-
time switched system. This result is stated formally in dlarg 1.

Theorem 1. Suppose that Ais a Hurwitz stable matrix andAis any p" order
Padé approximation to%e" for any h> 0. If P is a Lyapunov matrix for Athen,
P is a Stein matrix for A

Proof: Consider any matriP which is a Lyapunov matrix foA;. Recall that
Aq = Qp(Ach)le(—Ach). Since the coefficients of the polynom{@}, are real,

n m

Qu(sh) = KHP T (e +9) [] i+ 9" +9

=1 1=

for somek # 0, where In+n = p, the real numbers-haj,j = 1,---,n are the
real zeros ofQp and the complex numbershAj, —hA*, i = 1,--- ,mare the non-
real zeros ofQp. Since all the zeros dp have negative real parts ([3][12]) we
must havex; > 0 for all j andRe&(Aj) > O for alli. It now follows thatAy can be
expressed as

Aa= <,|j(“” +Ac)> <i|jml()\il+Ac)()\i*l+Ac)> (iﬂ()\ilAc)(/\i*lAc)>l (Jlj(ajl AC)>1

which, due to commutativity of the factors, can be expressed

A= [ [ (at + A @] —Ac)l> <m<Ai|+Ac><Ai*l—Ac)l> (m <Ai*|+Ac)<Ai|—Ac>1> 4
(Pen-men-a) (7] f

HenceAyq is a product of bilinear terms of the forfd 1 + Ac)(A*I — Ac) ! where
RgA) > 0. SinceP is a Lyapunov matrix foA, it follows from Lemma 3 thaP

is a Stein matrix for each of the bilinear terms. Thysis a product of a bunch
of matrices each of which haas a Stein matrix. It now follows from Lemma
4 thatP is a Stein matrix foAy. B

The above theorem is illustrated in Figure 3. If we denotectirerex cone of all

positive definite matrices satisfyingl P+ PA; < 0 by Za., and the convex cone
of all positive definite matrices satisfyinfgfj PA. — P < 0 by .#5,, this theorem
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Figure 1: lllustration of Theorem 1.

establishes the fact thats, C .75,. In other words, our main theorem states that
if Aq is a diagonal Padé approximationed$" for anyh > 0 then a Lyapunov ma-
trix for A¢ is also a Stein matrix fofyg. Lemma 2 tells us that the converse of this
statement is true fop = 1; namely forp = 1 we have thatZy, = .#,. However,
the converse of this statement is not necessarily true for2; that is, forp > 2,

a Stein matrix forAq is not necessarily a Lyapunov matrix f8g, and in general
Zn is strictly contained in”p,. This is demonstrated in the following example.

Example 1: Consider the Hurwitz stable matrix:

1.56 —100
AC:[ 0.1 —4.44}

Now consider the matridy obtained under the"d order diagonal Padé approxi-
mation ofe’" with the discrete time stelp= 2:
Ay = —0.039 04205
~ | —0.0004 —0.0138

The matrix

p_ 2.3294 —-0.0138
~ | —0.0138 27492

is a Stein matrix fory but is not a Lyapunov matrix foi..

The following corollary is easily deduced from the main trezn. This is probably
the most useful result in the paper. It says that quadradioilgy is preserved
under all diagonal Padé discretizations of a quadraticddiple continuous-time
switched system.



Figure 2: Two Padé approximations.

Corollary 1. Suppose that P- P* > 0is a CLM for a finite set of matricegz.
Then P is CSM for any finite set of matriceg, where each Ain <7 Iis a
diagonal Padé approximation of'@ of any order for some An <% and h> 0.

Proof : If Pis a CLM for <7 then,P is an Lyapunov matrix for everf in <. It
now follows from Theorem 1, tha& is a Stein matrix for everjy in «%. Hence
Pis a CSM foray.

The last corollary shows that the diagonal Padé approxamapreserve quadratic
stability for switching systems. Thus, quadratic stapitf a continuous-time
switching system implies quadratic stability of a corrasiag discrete-time switch-
ing system obtained via a diagonal Padé discretizatiors ireasily deduced by
extending the situation in Figure 3 to multiple matricesg(Figure 3).

However, it is very important to note that the corollary does imply the con-
verse. Namely, intersection of the discrete time sé{g and.”»,, does notimply
the intersection of the corresponding continuous time $et®ct this converse is
not true in general as the following example illustrates.

Example 2: Consider the Hurwitz stable matrices:
156 -100 -1 0
Aet = { 0.1 —4.44} A= { 0 -01 }
Since the matrix produ@.1Ac has negative real eigenvalues it follows that there
is no CLM [9] for {Ac1,Ac2}. Now consider the matricefy;, Aq2 obtained under

the 29 order diagonal Padé approximation &¥" with the discrete time step
h=2:

Agt— ~0.039 Q4205 Agy— 01429 0
17| —0.0004 —0.0138 |’ 2= 0 08187
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These matrices have a CSM

2.3294 —-0.0138

Fi=1 00138 27492 |-

Comment : Example 1, together with Corollary 1, illustrate the foliog facts,
Let <7 be a finite set of Hurwitz stable matrices a# the corresponding finite
set of Schur stable matrices obtained under diagonal Pgaé@xamations fol
fixed p andh. If Pis a CLM for <7 thenP is a CSM for.«7g. However, as
the example demonstrates, the existence of a CSM#Apdoes not imply thg
existence of a CLM for.

O

4. A Converse Result

We have seen that P is a Lyapunov matrix fo; then, for any positive integer
p, P is a Stein matrix for the™" order Padé approximation ef<" for all h > 0
that is,

Ag(h)*PAg(h)—P <0 forallh >0,

whereAq(h) is a diagonal Padé approximation (of any fixed orde®¥8. The
next lemma tells us that to achieve a converse result we mesifowing addi-
tional condition to hold,

i Palh)PAy(h) P

h—0 h

<0. (8)

Lemma 5. Suppose that, for all b- 0, the matrix A(h) is a Padé approximation
(of any fixed order) to". Then P is a Lyapunov matrix for:Af and only if P is
a Stein matrix for g(h) for all h > 0 and (8) holds.

Proof: In view of our previous results, we can prove this result ifshew that

iom Aa()PAG(h) — P

h—0 h

— PA.+AP. 9)
To demonstrate this limit, first recall thag(h) = Qp(Ach)Qp(—Ach) 1 and

QplAch) =1+ (Ach) +FPDp(Ac)
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whereDy, is a polynomial. Hence
Iim Qp(—Ach) =1
and
iy Qo(Ach) PQp(Ach) — Qp(—Ach)“PQy(~Ach)

h—0 h

— PA.+ AP

Since
Aq(h)*PAg(h) — P = Qp(—Ach) ™ [Qp(hAc)*PQp(hAc) — Qp(—Ach)*PQp(—Ach)] Qp(—Ach) !

we obtain the desired result (W

5. Implications of Main Result

The starting point for our work was the recently publishe@grg6]. One of
the main results of that paper was the fact that the bilineaastorm preserves
guadratic stability when applied to continuous-time shétd systems. We have
shown that this property also holds for general diagonaéRgubroximations (al-
though the converse statement is not true). This is an impbdbservation due
to the fact that while the bilinear transform is stabilitgperving, it is not always
a good approximation to the matrix exponential. Our resaysghat “more ac-
curate" approximations are also stability preserving wingng from continuous-
time to discrete-time.

Two potential applications of this result are immediaterstistable discrete-
time LTI systems can be obtained from their continuous-taoenterparts in a
manner akin to that described in [6]. Secondly, our resultside a method to
discretize quadratically stable linear switched systerm manner that preserves
stability; see [7] for a recent paper on this topic. That iI8eg a quadratically
stable switched linear system, a discrete-time countegbdained using diagonal
Padé approximations to the matrix exponential, will alsabadratically stable.
Since this property is true for all orders of approximatiand for all sampling
times, then our main result says tlmatadratic stability is robustly preserved un-
der Padé discretizations or any order.

In the context of the previous comment, it is important tolireathat the ro-
bust stability preserving property of Padé approximatisns unique feature of
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guadratically stable systems. It was recently shown thatquadratic Lyapunov
functions may not be preserved under the bilinear transfeitm sampling time

h = 2. This fact was first demonstrated in [6], where it was protreat unlike
guadratic Lyapunov functionsg-norm and 1-norm type Lyapunov functions are
not necessarily preserved under the bilinear mapping it In fact the situ-
ation may be worse as the following example illustrates.

Example 3: Consider a continuous-time switching system describedLpw(th
e = {Ac1,Ac2, Ac3} Where

1900 0 0 ~19 0 0 1900 0 1875
A= 0 -9 0 |, Ae=| -10 -9 0 |, As= 0 9 875 |.

0 0 -010 -1875 0 -010 0 0 -010

Using the ideas in [8] (also see Theorem 2 in the next sectiagn be shown

that this continuous-time switching system is globally @xgentially stable. It

follows from the results of Dayawansa and Martin [5] thasthwitching system

has a Lyapunov function (though this is not necessarily tatar). Now consider

a discrete-time approximation to the above system. We asshat switching is

restricted to only occur at multiples of the sampling time 0.25. Using the first

order Pad’e approximation, we obtain a discrete-time $witg system described
described by (2) with7g = {Ag1, Ad2, Ag3} Where

1,1 |
that is,
—0.40 0 0 —0.40 0 0 —0.40 0 137
Aqy = 0 —0.06 0 ,Aga~ | —035 -0.06 0 , Agz =~ 0 —-006 101 |.
0 0 098 —-1.37 0 Q98 0 0 098

We now claim that the discrete-time switching system isainist To see this we
simply consider the incremental switching sequefAgg— A4 — Agz; then the
dynamics of the system evolve according to the product

Ad = Ad1A42AG3.

Since the eigenvalues @{; are approximately{ —0.002 —0.060, —1.035}, then
with one eigenvalue outside the unit disc, this switchinguesce, repeated peri-
odically results in an unstable system.
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Clearly, by selecting a smaller sampling time one obtainsteebapproximation

to the continuous-time system. However, selecting an gu@te sampling time
is difficult for switched systems since sampling time is ulyu@lated to solution

growth rates. While this is simple to calculate for an LTItgys, bounds on the
solution growth rates are usually very difficult to calcel&ir a switched system.
On the other-hand, were the original system quadratictdlyls, then our main re-
sult implies that stability can never be lost by a bad or ukyuehoice of sampling

time.

5.1. A further comment on the counter example

Example 3 in the previous section indicates that our maialtesd its corollary
do not, in general, extend to switched systems which arerexgally stable,
but which do not have a quadratic Lyapunov function. An ies¢éing question
therefore to ask is how one discretizes a general, expa@ilgrgiable, switching
system. In this section we give a preliminary result in thiection. Specifically,
we take a closer look at Example 3, and ask the question aswamhe might
discretize the system in the example so that exponentialisfas preserved irre-
spective of choice of sampling time. Our results can be sunsexhas follows:

(i) Even ordered Padé discretizations preserve expomnetdlaility for the sys-
tem class illustrated by Example 3. This is true for any eveleed ap-
proximation, and for any sampling time.

(i) Odd ordered Padé discretizations preserve exporietdiaility provided the
sampling time is smaller that a computable bound.

The above items say that even ordered Padé discretizatiessrpe stability in a
robust manner; odd ordered ones do not. Example 3 is an egarhalswitching
system of the form (1) where every matiy in .o/ has real negative eigenvalues
and every pair of matrices ie; haven— 1 common eigenvectors (namely all such
matrix pairs are pairwise triangularizable). It is showf8hthat such systems are
exponentially stable. This result follows from the followitheorem in [8] which
we give here to aid our discussion.

Theorem 2. [8] Suppose?” = {vi,...,Vnt1} IS @ set of vectors iR" with the
property that any subset of n vectors is linearly independeet

M ={M:i=01--.n}
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where My =[v1 --- vy and
Mi = [V1 ... Vne1 Vie1 ... Vi for I=212---,n, (10)

thatis, M is obtained by replacing the i-th column ingMiith the vector y ;. Let
< be any finite subset of the following set of matrices:

{MDM~1: M € .# and D is diagonal negative definile (11)
Then the continuous-time switching system (1) is globalipeentially stable.

Recently a discrete-time version of this result was obtaj@8]. Namely a discrete-
time switching system is exponentially stable if every pdimatrices ine7y share
n—1 common eigenvectors, and if all eigenvalues are realdéntie unit circle,
and positive [10] (i.e. there is no oscillatory behavior).

In both the discrete-time case and the continuous-time tdassame type of Lya-
punov function is used to prove stability. Since Padé agprations are eigen-
vector preserving, it immediately follows that any approations that map real
negative eigenvalues to positive ones, will, by invoking #fioove result, preserve
exponential stability.

Using the above observations we obtain our next result. Sordee this result,
consider any positive integg@rand let

a.— largest real zero a@,
P71 —if Qp has no real zeros

Since all real zeros o®, must be negative, we must haag < 0. Whenp is
odd, Qp must have at least one real zero; henges finite. Whenp is even, we
show later tharQ,, does not have any real zeros; hemge= —o for evenp. To
illustrate, 1 L1

Q) =1+35s, Qa9 =1+55+55
hence

Theorem 3. Suppose that; is set of matrices satisfying the hypotheses of The-
orem 2 and let

a =min{a : a is an eigenvalue of Aand A € <%} .

14



Consider any positive integer p and define

hy — { op/a if Qp has a real zero 12)

0 if Qp has no real zeros
Let.o7y be any finite subset of
{Cp(hAc) : Ac € % and0 < h < hp}

Then the discrete-time switching system (2) is globallpegptially stable.

Proof : We first show that all the eigenvalues of the matricesgymust be posi-
tive, real and less than one. So, consider any malyin <7y. This matrix can be
expressed a84 = Cp(Ach) whereA; is in <% andh < ap/a. From the descrip-
tion of <% we haveA. = MDM~! whereD is diagonal with negative diagonal
elementsg,---,an. Consider any =1,---,n. Sincea; is an eigenvalue of,

it follows from the definition ofa that aj > o; henceha; > ha. Recalling the
requirement thalt < a,/a and noting thatr < 0 we must havéa > ap; hence

SinceQp(s) # 0 for s> ap wherea ) p < 0 andQp(0) =1 > 0, it follows from the
continuity of Qp thatQp(s) > 0 for s > ap; henceQp(hai) > 0. Since—ha; > 0,
we also haveQp(—hai) > 0. HenceCp(hai) = Qp(hai)/Qp(—hai) > 0. Since
haj < 0 andCp maps the open left half plane into the open unit disk, we migst a
haveCp(hai) < 1. SinceAq = Cp(Ach) andAc = MDM 1, we have

Ag=MAML
whereA\ is diagonal with diagonal elements
Nii :Cp(hai), i=1---,p

HenceCp(hay), . ..,Cp(hap), are the eigenvalues 8§ and these eigenvalues are
positive, real and less that one.
We will now show that o B

dy = {1 Ac€ o} (13)
where.«Z, is a set of matrices which satisfy the hypotheses of Theoremhhis
will imply that the continuous-time switching system

x=A)x(t)  At) € o (14)
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is globally exponentially stable. Relationship (13) tells that the state of the
discrete-time system (2) corresponds to the stdte-&t 1,2- - - of the continuous-
time system (14) switching at these times; this will implatihe discrete-time
switching system is globally exponentially stable. To agkithe above goal,
considerany=1,---, pand we let = In[Cp(haj)] . Thend; is negative real and

Cp(hai) = . (15)

Now considerd; = MDM~1 whereD is the diagonal matrix with negative diago-
nal elementsiy, -, &p. SinceAc = MDM~! we also have = MAM~* where
N\ is diagonal with diagonal elements

/’\ii:eai7 |:177p
It follows from (15) thatA = A; hence
Ay = €.

Sincer is a finite set of matrices satisfying the hypotheses of Téradz, it now
follows that.e7y can be expressed as (13) whergis a finite set of matrices satis-
fying the hypotheses of Theorem 2. As explained above thasimplies that the
discrete-time switching system is globally exponentiatiyble.ll

Note thata is the most negative eigenvalue of the matriceszn In the example

of the previous sectiom = —19 whereast, = a1 = —2; henceh, = —2/ —19=
0.1053. In this exampleh = 0.25 > hy and so the hypotheses of the above the-
orem are not satisfied. It is easily verified that had we, innkple 2, discretized
with h < 0.1053, the corresponding discrete-time switching would &ehbeen
exponentially stable.

Before proceeding to the next result, we briefly digress tmsthat for p even,
the polynomialQ, has no real zeros (hentg = « wheneverp is even). This
conclusion is evident from the following theorem. Througtihe paper, the order
of a diagonal Padé approximatigo has been defined the order of the polynomial
Qp. But for a more general casB(z) is a rational approximation te of order
‘qf, if &—R(z) =CA*L+ 0 (22) with C # 0. Theorem 4 provides the maximum
attainable order of such rational approximations underesoomditions.

Theorem 4. [11] Suppose that a rational approximation to the exporartinc-
tion is given by Rz) = F(z) /Q;(z), where the subscripts k and j denote the orders
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of the polynomials Pand Q respectively. Let Qhave only m different complex
zeros. If in addition Q has a real zero then, the order g of R satisfies

g<k+m+1

If Qj has no real zeros then,
g<k+4+m.

A Pade approximatioR/Q); is a special case of the rational approximations con-
sidered in the above theorem and its ordegis j + k [11], wherek and j denote
the orders of the polynomialk andQ;. Hence, ifQ; has onlym different com-
plex zeros and at least one real zero, it must safisfk < k+m+1, that is,

j<m+1.

If Qj had a real zero whejis even, it must have two real zeros and, siQgénas
at leastm complex zeros, this yields the contradiction that m+ 2. Hence, for
a Padé approximatiof/Q; with j even,Q; has no real zeros.

Comment: The above results tell us that for even order Padé approixinsaive
havehp = . This yields the next result.

Theorem 5. Suppose that; is a finite set of matrices satisfying the hypotheses
of Theorem 2 and p is any even positive integer. Then, for ampkng time,
the discrete-time switching system (2) obtained under therger diagonal Padé
approximation is globally exponentially stable.

The key point in the proof of the last theorem is that even mdéadé polyno-
mials do not have real zeros. It immediately follows thab#ity is preserved
for any choice of sampling interval. Odd ordered Padé patyiats, on the other
hand, have some real zeros, and these zeros can causetiicukensuring that
negative real eigenvalues map to positive ones. To prestabdity in this case
one must select a sampling time that is small enough. Tan#itesthis point let
us consider again the Example 3. We assume that switchirgisated to only
occur at multiples of the sampling tinte= 1 (which is chosen to illustrate the
assertions in Theorem 3). As can be seen from the Table 1rshéndd odd order
approximations lead to an unstable discrete time switchystem.
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Order| Amax(Ad1Ad2A43) | Comment
1 2.5819 Unstable
2 0.5957 Stable
3 1.0710 Unstable
4 0.6539 Stable

Table 1: Stability of some even and odd approximations far&ple 3

Comment : The results of this section indicate that the selection alblst Padée

discretizations is guided strongly by the knowledge of thhadunov function for

the original switched system. This suggests the followmigresting open ques-
tion. Namely, to determine if in choosing a discretizatioathod for exponen-

tially stable continuous-time switched systems, knowéedfja Lyapunov func-

tion for the original continuous-time system is required.

6. Conclusions

In this paper we have shown that diagonal Padé approxinsatitihe matrix ex-
ponential preserves quadratic Lyapunov functions betveeerinuous-time and
discrete-time switched systems. We have also shown thabtheerse is not true.
Namely, it does not follow that the original continuous-¢irsystem is quadrati-
cally stable even if the discrete-time system has a quadcgépunov function.
Furthermore, it is easily seen that such approximationsaldin general) pre-
serve stability when used to discretize switched systemsate stable (but not
guadratically stable). Our results suggest a number ofastig research direc-
tions. An immediate question concerns discretization oedlihat preserve other
types of stability, see for example [13, 14]. Since geneealéPapproximations
can be thought of as products of complex bilinear transfopamsmmediate ques-
tion in this direction concerns the equivalent map for ottygres of Lyapunov
functions. Namely, given a continuous-time system with sdtyapunov func-
tions, what are the mappings from continuous-time to disetiene that preserve
the Lyapunov functions. A natural extension of this quastioncerns whether
discretization methods can be developed for exponents#iple switched and
nonlinear systems but which do not have a quadratic Lyapturastion.
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Appendix 1: Proof of Lemma 4

Suppose thaP is a common Stein matrix for two matricdg andA,, that is,
AIPA; < P and ASPA; < P

Pre-multiply the first inequality byA5 and post-multiply it byA, and use the sec-
ond inequality to obtain

ASAPAI A, < AsPAy < P,

that is,
(AaA2)"P(A1A2) < P,

which implies thatP is a Stein matrix for the produé;A,. This shows that the
statement of the lemma is true for= 2. Now assume that it is true fon = k
and then leMy = [T, A.. SinceMy.1 = MyAy, 1, it follows from the result for
two matrices thaP is a Stein matrix foMy, 1. Hence by induction the proposed
lemma is true for alm. So it can concluded that if all the constituent matrices of
a product have a CSM thenP is a Stein matrix for the productll
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