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Abstract 

The primary concern of this thesis is the analysis of long wavelength quasioptical 

receiver systems operating within the Terahertz and submillimetre wavebands. Specific 

attention is paid to the front-end coupling optics of the Band 5 and Band 9 receiver 

channels of the Atacama Large Millimetre Array (ALMA). The theory of Gaussian Beam 

Mode Analysis (GBMA) is expanded and developed as the basic analytical tool for the 

work presented. This technique is utilised to model both classical optics diffraction and 

interference patterns. An alternate method of describing these diffraction patterns is 

developed using the Angular Spectrum of Plane Waves (ASPW). The general GBMA 

technique is supplemented by the commercially available Physical Optics (PO) package 

GRASP9 developed by TICRA. A comprehensive analysis of the ALMA Band 5 front 

end optics was conducted in conjunction with the Group for Advanced Receiver 

Development (GARD). This analysis was developed to investigate the efficiency of 

various configurations of the optics and was supplemented by a rigorous measurement 

campaign at GARD. As part of our ongoing collaboration with the Space Research 

Organisation of the Netherlands (SRON) a series of theoretical and experimental 

analyses were performed with the aim of improving the cross polar efficiency of the 

ALMA Band 9 receiver.  

 

In addition to these investigations of long wavelength receiver optics the theory of 

GBMA was combined with mode-matching theory to describe the behaviour of 

standing waves in typical submillimetre receiver systems. The reflection and 

transmission amplitude response patterns of several standing wave cavities were 

predicted with this technique and compared with experimental measurements. The 

effect of minor alterations to the feed horn structures on the resonance profiles are 

studied in depth. The eigenmodes of these resonant cavities are also analysed. A 

complex stray light baffle structure is introduced within the cavity and its effect upon 

the system is quantified.  
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1. Introduction to Submillimetre Astronomy 

One of the constant endeavors of mankind has been to understand and decipher the 

meaning of the heavens. From the dawn of civilization records have shown that every 

major civilization has been concerned with the structure of the sky, interpreting what 

they saw in many different ways. Though methods of observation and interpretation 

have evolved significantly, the pursuits of modern astronomers and cosmologists are 

scarcely different from those early scientists. Knowledge of the movements of the Sun, 

Moon and stars was important in early times for survival; the timing of crop 

plantations, land and sea navigation and even the reading of divine meaning.  

 

In recent times the aim of astronomical observation has shifted to the search for the very 

structure of the Universe around us, and this has given birth to a wide variety of 

scientific disciplines. Giants of astronomy such as Copernicus, Tycho Brahe and Galileo 

all relied on what their naked eye could see and/or what rudimentary telescopes could 

magnify for them. It wasn’t until the discovery of radio waves and the eventual 

discovery of astronomical radio waves by Karl Jansky [1] that techniques for 

astronomical observations exploited other regions of the electromagnetic spectrum. The 

past century has been an extremely exciting time in the field of astronomy. As soon it 

was possible to detect or generate radiation from a certain region of the EM spectrum, 

developments were made to use this technology to detect signals from the sky. Vastly 

different methods of observation now exist for nearly every frequency and have been 

employed in equally disparate detection systems – examples include the Very Large 

Array (VLA) operating at radio frequencies, the Hubble Space Telescope at 

optical/Infrared, the XMM Newtown space observatory for X-ray, the Infrared 

Astronomical Satellite (IRAS) for Infrared and more recently the Herschel Space 

Telescope and the Planck Surveyor that have been designed to map the Universe in the 

submillimetre and far-infrared wavebands. Each of these telescopes has added a new 

layer to our understanding of the structure and mechanics of the greater Universe.  
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Every development adds a further layer of understanding to our knowledge of the 

Universe, as well as posing new questions.  

 

Observing at different wavelengths will reveal different information; that which was 

obscured or blocked in one region of the EM spectrum may be transparent in another. 

This is illustrated below in Figure 1-1. The Horsehead nebula is a star forming region 

located within the Orion constellation. In the left most image it can be seen that the 

nebula is mostly dark, with visible radiation from the region being obscured by dust.  

 

 

The hot thin layer of gas around the nebula is observed at the infrared and the radio 

wavebands. At submillimetre wavelengths (rightmost image) information about the 

interior structure of this star forming region is revealed. The darker regions show that 

there is peak emission at submillimetre wavelengths, thus indicating the presence of 

dusty, star forming clouds.  

 

 

 

 

 

 

Figure 1-1 - The Horsehead Nebula (a.k.a. Barnard 33) in the Orion constellation viewed at different 

wavelengths [19] 
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The region of the EM spectrum that is of interest in this thesis is referred to as the 

submillimetre (or far-Infrared) waveband which is taken to lie at the upper frequency 

limit of the infrared band and just below the start of the microwave band – c.f. Figure 

1-2. This waveband has in recent times been grouped with the terahertz (THz) 

waveband, which is taken to lie between frequencies of 300 GHz and 3THz, though the 

limits are sometimes considered to be from 100 GHz to 10THz [2]. This waveband is one 

of the last explored regions of the EM spectrum in terms of astronomy, owing chiefly to 

the difficulty in developing sensitive detection and source techniques. Terahertz 

radiation propagation within receivers has also historically proved difficult to model. 

The waveband lies between two disparate optical regimes, one of which is well 

approximated by the technique of geometrical optics; where high frequency visible 

radiation is propagated using ray-tracing. At the other regime is the very low frequency 

radio spectrum; diffraction effects heavily dominate the propagation of radiation thus 

requiring solutions to Maxwell’s equations.  

 

Detection of submillimetre radiation requires a blend of both waveguide and optical 

techniques, yet even at the upper frequency limit of the band (> 3THz) modern 

sophisticated detectors are still in development. The optical modeling of the 

submillimetre band is usually referred to as ‘Quasioptics’ [3] and is based primarily on 

the propagation of Gaussian beam modes as solutions of the paraxial wave equation. 

The initial application of these Gaussian beam modes to approximate the propagation 

Figure 1-2 - Location of submillimetre band in the scheme of the electromagnetic spectrum 

Wavelength (m) 

Frequency (Hz) 
 

Submillimetre Band 
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of radiation was for laser optics at near-IR wavelengths [4]. Quasioptics provide an 

elegant and computationally efficient modeling technique for the submillimetre band; 

the application of which is one of the main subjects of this thesis.  

 

The importance of astronomical observations at submillimetre wavelengths is 

immediately apparent; with the equivalent blackbody temperature range for the 

waveband from 4K up to 480K (hf ≈kT). The submillimetre waveband thus permits the 

observation of continuum and line emission from ‘cool’ objects and diffuse media such 

as circumstellar and interstellar gas and dust. There are many important astronomical 

sources whose emission spectra peak within this frequency range and are considered 

elements of the ‘cool’ Universe. Temperatures of the dense interstellar medium gas 

range from 10K in cooler regions to approximately 100 or 200K in the hotter, denser 

parts. The corresponding frequencies thus range from about 200 GHz up to 4THz. There 

is significant emission from the Cosmic Microwave Background at sub-THz frequencies 

as well as high redshifted young galaxies obscured by dust. The same process that 

obscures these star forming extragalactic regions also obscures both protostars and 

protoplanetary disks. Also contained within this frequency range are many interesting 

molecular rotation and atomic transition lines which are observed using spectroscopic 

techniques [5]. 

 

Observation of the early, high-redshifted Universe is ideal for the submillimetre 

waveband. Radiation from distant sources is typically highly redshifted and obscured 

by interstellar dust, making observations at other wavebands (optical, UV, IR) difficult. 

It is precisely these processes that enhance the emission of these objects in the 

submillimetre domain. For a young redshifted galaxy the majority of the optical and UV 

radiation emitted from forming stars is absorbed by the surrounding interstellar matter 

and re-radiated at longer wavelengths falling within the terahertz band as continuum 

thermal emission [6]. An example of how submillimetre observations can provide a 

more complete picture of the young Universe is illustrated below in Figure 1-3.  
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The optical picture has been taken with the Hubble Space Telescope (HST) while the 

contour plot (in white) shows carbon monoxide (CO) line emission taken from the 

Caltech Millimetre Array (CMA) The figure illustrates well the point that at optical 

wavelengths the precise details of star forming regions are hidden while they are 

revealed at longer wavelengths. Identifying the origin of the intense star formation 

produced in galaxy mergers such as this one is an important step towards 

understanding the formation of galaxies in the early Universe [7]. CO is one of the most 

important molecules observable at submillimetre/terahertz wavelengths, showing one 

of the strongest observed line intensity profiles for any molecule The relevant 

observable transitions occur at frequencies of 115 GHz, 230 GHz and 345 GHz, which 

are all within the submillimetre waveband and it is highly abundant within galactic 

clouds with a long transition lifetime, making it an important tracer for the interstellar 

medium comparable with the classic radio 21cm emission line [8]. CO line emission can 

serve as both a measure of the total amount of H2 gas available for future star formation 

as well as previous stellar mass assembly by serving as a dynamical mass tracer [9]. An 

excellent example of the use of CO line emission is given by [10]. The submillimetre 

Figure 1-3 - Optical and submillimetre observations of the AntennaeI (NGC 4038/89), a pair of 

interacting galaxies [110] 
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galaxy (SMG) GN10 has remained difficult to detect by either the Hubble Space 

Telescope (optical) or the IRAS (near IR). Successful and accurate detection of CO 

emission lines redshifted to z = 4.05 at a frequency of 91.4 GHz has been conducted by 

the Institut de Radioastronomie Millimetrique (IRAM) Plateau de Bure Interferometer 

(P dBI). The internal structure of this galaxy has been revealed, showing that it is a very 

active ‘proto-cluster’ region with significant star formation activity. These submillimetre 

galaxies provide critical information about young galactic structure and reveal more 

detail about the processes behind star formation. Submillimetre galaxies are extremely 

massive and are the most luminous, heavily star-forming galaxies in the Universe [9]. 

The SMG GN10 is only one of a host of recently detected young galaxies at high 

redshifts which have been up until recently obscured but are now observable at 

submillimetre wavelengths. There are still many unanswered questions about these 

SMGs and many others just being posed – are they isolated galaxies or the product of 

galactic mergers? Where do they fit in the galactic evolution sequence? With 

submillimetre observations of increased resolution and wider bandwidths there is no 

doubt that many of these questions will be answered in the near future.  

 

It is believed that the chief processes of stellar formation, evolution and demise are 

known, with most of the unobservable processes described theoretically. However, star 

formation is also understood to be very complex and observations are required to 

determine those processes that are dominant and those that are insignificant and can be 

neglected [11]. Specifically, observational evidence is required to improve 

understanding of the mechanisms that drive the birth and, to a lesser extent the death of 

stars. Pre-stellar cloud cores are crucial to understanding the initial conditions behind 

the gravitational collapse that typifies a newly born star. Before, during and after stellar 

birth these cloud cores are typically obscured to all but the submillimetre band. 

Submillimetre observations will also allow a more comprehensive insight into the 

differences between high and low mass star formations. Protostellar objects, or recently 

born stars are usually cloaked by a thick envelope of dust and gas left over from after 
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Class 0: Main accretion phase? 

Age: <104 years 

Class I: Late accretion phase? 

Age: < 105 years 

Class II: Optically thick disk 

Age: ~106 years 

Class III: Optically thin disk 

Age: <107 years 

the star was formed. Current knowledge of these envelopes is limited, especially for the 

youngest and most obscured protostars, known as ‘Class 0’ objects. These objects are 

typically cold objects prior to the formation of the star, and the bulk of the energy 

emitted is at submillimetre wavelengths. The advent of precise submillimetre 

observations will reveal the complex behavior inherent in these stellar clouds. The 

processes of gravitational infall that ignite the star, bipolar outflows that remove excess 

angular momentum for the infalling  cloud and the rotational kinematics will be better 

understood when imaged at these wavelengths 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stars at the end of their main life cycle will also be revealed in greater detail. Stars with 

a main-sequence mass of 0.8 – 8M
☉

 become White Dwarfs, evolving via the Red Giant 

and Post Asymptotic Giant Branch (Post AGB). At the end of the Red Giant phase and 

during the Post AGB phase these stars eject the bulk of their mass in the form of a cool 

molecular wind in a relatively short space of time, thus enriching the surrounding ISM 

Figure 1-4 – Quasi-continuous evolutionary cycle for low mass stars [112], adapted to 

include earliest stage Class 0 object [15]. 
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and galactic space. The exact processes of these mass ejections are still not well 

understood, but will be ideally observable at submillimetre wavelengths. 
 

 

Dust extinction is a process that also obscures the formation of planets and planetary 

systems. The evolution of planets about recently formed stars is still largely described 

theoretically. This can be attributed mainly to the lack of direct observations of planets 

either in formation or ‘completion’, outside of our own Solar System. Indeed, the 

concept of the formation of our own planetary system as a result of the mutual accretion 

of matter in the ‘protoplanetary disk’ about our Sun is natural; the orbital angular 

momentum vectors of each planet are all nearly in line with one another and that of the 

Sun itself [12]. Up until very recently, direct observation of extrasolar planets was not 

possible [13]. As such, current theories about planetary formation are borne out of local 

and indirect observations of protoplanetary disks and T-Tauri stars. T-Tauri stars are 

Main Sequence (MS) stars of spectral class G, K and M, originally identified by their 

prominent characteristics; Balmer emission lines, excess UV and IR emission and 

outflows. These are the defining characteristics of the presence of circumstellar 

accretion discs [12]. In the nearest star forming region of Orion over 200 protoplanetary 

disks have been detected using the HST. Yet, as with previously described objects, 

specific details within these regions are obscured to all but the THz region. 

Observations of some of these protoplanetary disks has already been conducted with 

the Submillimetre Array (SMA) exposing new details and allowing further 

characterisation of the complex planet formation model [14]. The observed spectral 

energy distribution from such thermal processes reveals information about the emission 

mechanisms and the temperature distribution. Additionally it gives a measure of the 

mass of the emitting dust, be it from young galaxies, dying stars, protoplanetary 

structures or circum stellar disks.  

 

Other examples of high redshifted and/or dust obscured objects that are observable at 

terahertz wavelengths include absorption lines of Quasi-Stellar Objects (QSO’s), which 



9 

 

are used as background continuum sources, the driving forces behind Active Galactic 

Nuclei (AGN) and the Magellanic Clouds [15].  Since only a small amount of dust is 

required to absorb a sufficient amount of short wavelength photons, emission processes 

such as brehmstrahlung, synchrotron radiation and inverse Compton scattering have 

spectral energy distributions within the submillimetre band Of course one of the most 

important and topical observations in this band is the CMBR. Peak emission from the 

CMBR occurs at a temperature of 2.73K which is just below the submillimetre limit. This 

does not however exclude the use of submillimetre observations to characterise the 

CMBR at wavelengths near its peak. This has already been achieved with novel 

measurements by the Balloon Observations Of Millimetric Extragalactic Radiation and 

Geophysics (BOOMERanG). Future work with more advanced devices (PLANCK) will 

add even more detail to the results from the first observations of the CMBR by both 

COBE and WMAP.  

1.1 Observing at Submillimetre Wavelengths 

Research and development of submillimetre astronomy has exploded in recent years. 

This is primarily due to the recent development of the required technologies for these 

wavelengths. There are today many telescopes and devices, both ground-based and 

space-borne that provide almost complete coverage of the submillimetre range, with 

more technologies on the way.  

 

Space borne telescopes have the excellent advantage of unobscured observation, but are 

restricted by mechanical considerations for successful launch into orbit and are 

consequently much smaller in size than their ground based counterparts. The most 

recent and most advanced space missions that will operate at submillimetre frequencies 

are the Herschel Space Observatory and the Planck Surveyor. The Herschel Space 

Observatory developed by the European Space Agency is the world’s largest 

astronomical telescope developed for space based observations. Herschel will carry out 

imaging and spectroscopy in the submillimetre band using three instruments. The 
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Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel is a very high 

resolution spectrometer with a continuous frequency coverage from 480 to 1250  GHz in 

five bands, while a sixth band will provide coverage for 1410-1910  GHz. The Spectral 

and Photometric Imaging Receiver (SPIRE) instrument is a submillimetre camera and 

spectrometer. SPIRE comprises a three-band imaging photometer operating at 250, 350 

and 500 µm and a Fourier Transform Spectrometer (FTS) covering 200-670 µm. The 

Photodetector Array Camera and Spectrometer (PACS) instrument is an imaging 

photometer and integral field line spectrometer operating between 60 and 210 µm 

[16].The Planck Surveyor has been developed to map the anisotropies of CMBR with 

high angular resolution and temperature sensitivity. The Planck Surveyor will observe 

over a total of nine frequency channels, using two instruments; the Low Frequency 

Instrument (LFI) with a frequency range of 27 GHz to 77 GHz and the High Frequency 

Instrument (HFI) which covers a frequency range of 84 GHz to 1THz [17]. At the time of 

writing the various instruments on board Herschel have made their first test 

astronomical observations. A sample of these images taken from [16] are illustrated 

below in Figure 1-5, Figure 1-6 and Figure 1-7. 

 

 

 

 

 

 

 

 

Figure 1-5 – Composite image from Spitzer telescope overlaid with spectra measured from 

HIFI of DR21 star forming region 
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Ground-based observatories are typically limited by atmospheric absorption. This is 

expected with any ground-based telescope, but at the THz waveband absorption is 

more severe, with only specific frequency windows allowed. An example of these 

transmission windows at the Chajnantor Plain in the Atacama Desert, Chile is displayed 

below in Figure 1-8. This site represents one of the ideal ground sites available for 

Submillimetre astronomy as it is very dry, with almost non-existent interfering weather 

conditions and is extremely flat with a height above sea level of approximately 5000 m.  

 

 

 

 

 

Figure 1-6 – SPIRE images of M74 spiral galaxy at its three operational wavelengths. 

Figure 1-7 – Leftmost image from Spitzer of NGC6543 overlaid with component spectra of far-IR 

Nitrogen line taken with PACS  
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However, despite the drawback of atmospheric absorption, ground based 

submillimetre observatories have the distinct mechanical advantage of size over their 

space based relatives. The mechanical constraints for ground based observatories are 

much more generous than those for satellite telescopes. The larger the collecting area of 

the telescope the greater the accuracy and the sharper the spatial resolution.  

 

The largest single telescope operating in the submillimetre domain is the James Clerk 

Maxwell Telescope (JCMT), at Mauna Kea in Hawaii. The JCMT has a primary reflector 

of 15m diameter made up of 276 individual lightweight reflector panels that are 

individually adjusted with stepper motors to maintain an accurate parabolic shape 

while the antenna is moved through different elevations. The Caltech Submillimetre 

Observatory (CSO) is another single dish reflector telescope located on Mauna Kea. 

These two telescopes were combined to form the first Submillimetre interferometer 

observatory. There is a new single aperture telescope being developed by the Caltech 

group, called the Cornell Caltech Atacama Telescope (CCAT) which will take over from 

the CSO, which will be dismantled in the near future [18].  

 

The Submillimetre Array (SMA) is also located on Mauna Kea. It is the first purpose 

built interferometer for Submillimetre observing, consisting of eight 6-meter diameter 

antennas. The interferometric array method of detection allows individual telescopes to 

Figure 1-8 - Zenith transmission as a function of frequency under typical conditions at the Chajnantor 

Plain (ALMA site) 3 curves represent the 25%, 50% and 75% percentiles [15]. 
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act together to provide very high angular resolution observations. A single dish 

telescope has an angular resolution limited by its diameter D (θ ≈ 1.22λ / D). Even the 

largest radio telescopes, when operating at their shortest operating wavelengths have 

an angular resolution of only one arc-minute. To achieve the much smaller angular 

resolution required to accurately distinguish the fine detail of observable objects in the 

sky, the principles of interferometry are used to synthesize a much larger aperture. A 

much larger equivalent telescope can be achieved using several such telescopes together 

over large distances or ‘baselines’ and combining their signals using methods of 

aperture synthesis. This is the operating principle of the Very Long Baseline Array 

(VLBA), the world’s largest radio interferometer, combining single dish antennas from 

all over the globe using extremely accurate signal synchronization. 

1.2 The Atacama Large Millimetre Array 

The main submillimetre instrument under scrutiny in this thesis is the Atacama Large 

Millimetre Array (ALMA). When completed, ALMA will be the world’s largest 

interferometric array completely devoted to ground based submillimetre astronomy. 

The array represents a massive collaboration between the European Southern 

Observatory (ESO), the National Radio Astronomy Observatory (NRAO), the National 

Research Council of Canada and the National Astronomical Observatory of Japan 

(NAOJ). The array will be comprised of up to 66 12 meter on-axis Cassegrain antennas. 

The development of these antennas has been contracted to three companies: the AEC 

Consortium working under the ESO, Vertex RSI working under the NRAO and the 

Mitsubishi Electrical Company working under the NAOJ. Each company has produced 

a prototype 12 meter antenna that has been rigorously tested to ensure they meet the 

required ALMA standards. As the name suggests, the array will be located in the 

Atacama Desert in Chile; specifically on the Chajnantor Plain of the Chilean Andes in 

the District of San Pedro de Atacama, with a height of 5000m above sea level 

(23°01’9.42”S 67°45’11.44”W). As previously mentioned in Section 1.1 of this chapter this 
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location provides the best possible observing for submillimetre frequencies – c.f. Figure 

1-8 above. 

 

These antennas will make up two separate array systems. The main 12 metre array is 

made up of fifty 12 metre antennas that will, through the use of dedicated transporters, 

be reconfigured into arrays of varying area. The smallest baseline area for this area is 

160 x 250 metres, and the largest configuration baseline separation between antennas is 

approximately 15 kilometres. The other array, known as the Atacama Compact Array 

(ACA), will be made up of four 12 metre antennas and twelve 7 metre antennas.  The 

specifications of both of these arrays are summarized below in Table 1-1.  

 

Parameter 12m Array ACA 

Antennas 50(12 m) 12(7m) & 4(12m) 

Total Collecting Area 5650 m2 460m2 & 450m2 

Angular Resolution 0.02”  5.7” 

Baseline Lengths 15 – 16000m 

Surface Accuracy <25µm <20 µm & <25 µm 

Table 1-1 Parameters of the 12 m array and the ACA: component arrays of the ALMA [19]. 

 

The quality of the reflector surfaces is crucial to the performance of the array as a whole.  

ACA 

12M 

Array 

Figure 1-9 - Artist’s rendering of the two ALMA antenna arrays 
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To this end, a r.m.s. surface accuracy requirement of less than 25 µm has been placed on 

the 12 meter antennas, and less than 20 µm for the 7 meter antennas. The antennas 

themselves  will have 2” absolute pointing over the entire sky and a 0.6” offset pointing 

and will be able to fast switch over a 2 degree range in less than 1.5 s [20], [21]. 

 

The array will operate over a frequency range of 30 GHz to 950 GHz, spread over ten 

separate receivers. These receiver channels or bands are chosen to best match the zenith 

atmospheric transmission windows at the Chajnantor Plain (c.f. Figure 1-8). The 

development of the optics, mixers and local oscillators for each of these bands has been 

contracted out to receiver developers around the globe. All bands are designed to 

receive dual polarised signals, and all but two of the lowest frequency bands will be 

cooled down to 4K to reduce noise and to facilitate the operation of the complex 

superconductor-insulator-superconductor (SIS) mixers and ensure extremely low 

receiver noise. Cooling of the receivers is achieved through use of a Dewar flask 

cryostat and receivers will have a modular design that will allow for easy insertion and 

removal. A more detailed description of the analysed receivers is given in later 

chapters. 

 

The chief scientific goals specified for the ALMA Observatory are summarized below 

[20].   

• To detect CO line emission to determine the redshift of star-forming galaxies, 

enabling ALMA to build up a history of the star forming process.  

• To image the gas and dust kinematics in protostellar and protoplanetary 

disks around young Sun-like stars. 

• To image the redshifted dust continuum emission from young evolving 

submillimetre galaxies at epochs as early as z=10.  

• To probe the cold dust and molecular gas of nearby galaxies, allowing 

detailed studies of the ISM within different environments and how such 

environments influence the physical and chemical processes of the ISM. Such 
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interesting environments will include dusty objects such as protostellar 

disks, protostellar outflows, circumstellar envelopes surrounding Red Giant 

and post-AGB stars, AGN’s and Quasars.  

• To image the molecular gas dynamics at the centre of our own galaxy, the 

Milky Way, thus revealing the tidal, magnetic and turbulent processes of star 

formation at the extreme environment of a galactic core. 

• To reveal in detail the exact process of star formation from the gravitational 

collapse of molecular clouds and determine the chemical composition of the 

gas and dust within these coulds.  

• To image the formation of molecules and dust grains in circumstellar shells 

about evolved stars as well as novae and supernovae.  

• To refine the dynamical and chemical models of the atmospheres of planets 

within our own Solar System and provide unobscured images of comets, 

asteroids, Centaurs and Kuiper Belt Objects.  

 

1.3 Content of Thesis 

This thesis is devoted primarily to the analysis and measurement of the optical systems 

within the submillimetre astronomical receiver systems, specifically the Band 5 and 

Band 9 receiver channels of the ALMA Telescope. Other work presented includes a 

detailed performance study of the currently available optical modeling software 

packages that are utilised by telescope developers. A theoretical analysis into the 

complex beam scattering process within quasioptical waveguide and scalar feed horn 

structures is also presented. Below is a summary of the thesis layout by chapter, 

detailing original work by the author. 

• Chapter 2 - Preliminaries. This chapter contains the mathematical tools 

required to interpret the work conducted within the thesis. The 

fundamentals of Gaussian Beam Mode Analysis (GBMA) are derived, and 

this forms the basis of quasioptical analysis for submillimetre optical 
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systems. The theory of GBMA is extended to modeling the diffraction 

patterns from a Michelson interferometer. Fresnel diffraction patterns are 

also predicted with a verification performed using the theory of Angular 

Spectrum of Plane Waves. This chapter also contains summaries of the 

optical software packages (GRASP9, MODAL & ZEMAX) that are used and 

tested in this thesis. A description of the mathematical principles behind the 

approximations made by each of these software packages is provided. An 

application of Gaussian Beam Mode Analysis to the modeling of 

interferometers is novel and interesting in that both the near field and 

farfield behaviour of the interfering beams is automatically recovered within 

the analysis. 

• Chapter 3 – Far-Infrared Optics and Design Software Verification Tools. This 

chapter is an extension of work previously conducted for an ESA Study by 

combined efforts of research groups at the Space Research Organisation of 

the Netherlands (SRON), the UK Astronomy Technology Centre, the 

University of Cambridge and the National University of Ireland, Maynooth 

(NUIM) [22]. The test case scenarios employed in this report have been 

extended in this chapter to include two software packages, ZEMAX and 

MODAL and results are compared against those of the GRASP optics 

package. The Author has taken important optical test cases and reviewed 

and evaluated the performance of all optical packages and their various 

advantages and disadvantages in analyzing a specific example. 

• Chapter 4 – Standing Wave Analysis of Waveguide and Feed Horn Structures. An 

extension to the theoretical framework behind standing waves in 

quasioptical system components is presented in this chapter. The effect of 

small scale mechanical errors within feed horn structures is theoretically 

simulated using methods established by the NUI Maynooth research group. 

A corrugated to corrugated horn cavity and a stray light baffle structure are 
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analysed and a novel technique to plot the spatial form of the reflected 

power components is outlined. 

• Chapter 5 – Quasioptical Verification and Measurement of the ALMA Band 5 

Receiver Optics. Within this chapter a complete quasioptical and physical 

optics analysis treatment of the optics for the ALMA Band 5 receiver is 

presented. Comparative analyses between several versions of the optical 

surfaces are presented with recommendations made to the Band 5 receiver 

development group at the Group for Advanced Receiver Development 

(GARD) at the Chalmers Technical University, Gothenburg, Sweden. 

Measurements conducted at the GARD facility on the Band 5 optics are also 

presented. The Author assisted in an experimental measurement campaign 

in GARD and has made various recommendations that have been 

implemented in the ALMA Band 5 receiver. 

• Chapter 6 – Post Assembly Analysis of the ALMA Band 9 Optics with Suggested 

Improvements. This chapter details several possible improvements to the 

design of the ALMA Band 9 optics, specifically for reducing the levels of 

cross polar leakage. This work was performed in collaboration with the 

ALMA Band 9 receiver development group at SRON. An interesting effect of 

cross polarisation reduction through manipulating projection angles on a 

polarising wire grid is theoretically analysed and subsequently measured at 

the Band 9 test facility at SRON. This grid projection effect is thoroughly 

quantified and measured using the THz laboratory at NUI Maynooth.  

• Chapter 7 – Conclusions and future work are outlined.  
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2. Preliminaries – Quasioptical Analysis 

In this chapter the various analysis techniques that have been applied throughout this 

thesis are described. These theoretical techniques form the basis of Quasioptical 

Analysis (QO) for optical systems that operate between the domains of geometrical 

optics and diffraction dominated optics [4], [23], [24]. When we speak of geometrical 

optics we are referring to optical systems that generally operate in the visible spectrum, 

where λ→0 and the dimensions of optical elements are very large when measured in 

wavelengths. Propagation of radiations in such systems can be accurately predicted 

using ray tracing methods. Diffraction dominated systems are typically in the 

microwave to radio portions of the electromagnetic spectrum, where system element 

dimensions are typically comparable to λ, and as such, diffraction effects dominate the 

propagation of  radiation.  

 

It is between these two areas of distinct propagation techniques lies quasioptical 

propagation methods. The traditional name for this portion of the electromagnetic 

spectrum is the Terahertz Gap. Despite its name, the terahertz gap is considered to span 

frequencies from 100 GHz to 10THz. Within this domain the size of the optical beam is 

only moderately large compared to the wavelength. Quasioptical systems are 

comprised of both waveguide and optical components, illustrating the combination of 

techniques between geometrical and diffraction dominated optics. Analysis of these 

systems takes a variety of forms, which are detailed below in Figure 2-1. The techniques 

that have been applied throughout this thesis are a combination of Gaussian Beam 

Mode Analysis and Physical Optics, hereafter referred to by their acronyms GBMA and 

PO respectively. The term quasioptical analysis will refer to the application of the 

GBMA method and will be described in full throughout this chapter. This method, 

simply put, approximates a typical antenna source field with a linear combination of 

Gaussian beam modes, representing this field evolution through its optical train using 

ABCD matrices with the desired output field being reformed with new beam 



 

parameters after appropriate phase slippage between modes. The method is scalar and 

approximate, requiring that the beam is reasonabl

approximation) throughout the optical train into the far field. 

 

The PO method can be summarized as a computationally intensive technique that uses 

solutions to Maxwell’s Equations at the surface of a metallic reflector to generate source 

currents which are used in turn to create a reflected field, and then propagated to the 

next reflective element. This method, although very accurate, is computationally 

intensive and is typically employed for final stage analysis of optical systems after 

initial GBMA has been performed 

Figure 2-1 - Hierarchy of optical analysis techniques applied to long
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Fraunhofer diffraction theory [25], or the use of the geometrical theory of diffraction. At 

the long wavelengths that typify the submillimetre domain diffraction effects dominate 

beam evolution.  Prediction of such fields using the classical diffraction methods 

requires prohibitively intense numerical evaluation, and the accuracy of the resultant 

fields is difficult to quantify. What is more desirable is an analytical approach to the 

problem of diffraction limited beam evolution. This analytical solution requires the 

ability to describe complex electromagnetic field propagation and transformation at any 

point in its optical train. A very successful approach to this problem is the use of 

Gaussian beam modes [24], [26], [27]. 

 

Gaussian beams have long been used in the description of optical laser beams and other 

long wavelength systems and have been shown to be excellent approximation to the 

radiation patterns of sub-millimetre and far-infrared optical systems [28], [29]. Aside 

from their accuracy at describing diffraction dominated radiation, one of the main 

advantages to using Gaussian beam modes is that they are computationally non-

intensive. These ‘modes’ are analytical solutions to the paraxial approximation of the 

wave equation. A field may be represented by a carefully chosen selection of these 

modes, superimposed upon one another. One of the main advantages to this approach 

is that once a ‘source’ field has been described using these modes, the transformed field 

at another arbitrary plane can be described without any further integration techniques; 

i.e. the evolution of a few beam characteristics suffices to accurately represent the field 

[30]. 

 

2.1.1 Derivation of Gaussian Beam Modes 

In this section the technique of modeling quasioptical beams through the Gaussian 

Beam Mode solution to the paraxial wave equation is described. As mentioned 

previously, it is necessary to be able to describe the electromagnetic field under 

consideration at some ‘source plane’. This source field E(x,y) may be represented as a 
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discrete summation of beam modes ψmn and their corresponding modal coefficients Amn 

which determine the contribution to the amplitude description of each mode: 

 ( , ) mn mn
m n

E x y A= Ψ∑ ∑   (2.1) 

where m and n represents the order of the mode. These modes are usually chosen so 

that at this source plane they share the same beam characteristics of beam radius w(z) , 

where w(z) is the radius at which the beam field falls to 1/e relative to its on-axis value, 

and phase front radius of curvature R(z). The modes obey the orthogonality condition 

such that  

 ' ' ' 'mn m n mm nnδ δΨ Ψ =   (2.2) 

where we have utilised the bra-ket Dirac notation ' 'mn m nΨ Ψ to signify the inner 

product of the beam modes ψmn by its complex conjugate ψ*mn. Thus, the modal 

coefficients can be recovered at another plane: 

 
' '' '

( , )

( , )

mn m n mnm n
m n

mn mn

E x y A

A E x y

Ψ = Ψ Ψ

⇒ = Ψ

∑∑
  (2.3) 

If the modes and field are normalized then the square of the modal coefficients │Amn│2 

represents the relative power carried by that mode with the index mn.  

 

Each of these modes propagates without losing its characteristic amplitude profile 

shape, yet they all share the same w and R at the known ‘source plane’. The values of w 

and R do not depend on the mode order; rather they depend on propagation distance 

away from this source plane, defined in the z-axis with the source plane location 

denominated by the position z0. As such, all modes share the same characteristic w and 

R at any plane of the beam. However, to account for the effects of diffraction along the 

path of such a beam, the relative phase slippage between modes must be taken into 

account. For a single mode beam the amplitude profile will remain constant throughout 

transformation, and is thus a poor representation of the changing form of the beam 

usually encountered in diffraction. By including multiple modes, the modal phase 
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slippage in propagating along the optical axis vary as this phase slippage term is 

dependent on the mode number. The phase relationship between modes will change as 

the beam evolves, thus altering the resultant total field pattern [24]. This principle is 

outlined below. 

 

In defining a scalar mode solution certain assumptions must be made regarding the 

nature of the propagating beam [31]. It is assumed that the beam is relatively well 

collimated, having a well defined direction of propagation with little angular spreading 

away from the optical axis. The beam does however undergo some transverse 

amplitude and phase variation, unlike that for a plane wave propagating along the 

beam axis [24]. The transverse dimensions of the beam at its waist positions are not too 

large or small in terms of λ. This approximation, known as the paraxial approximation, 

is the fundamental driver behind the Gaussian beam mode technique. The Helmholtz 

wave equation describes the free space propagation of a coherent electromagnetic field 

such that  

 2 2( ) 0k E∇ + =   (2.4) 

where E is the coherent electromagnetic field, k is the wavenumber equal to angular 

frequency w divided by the speed of light c. Letting the direction of propagation be in 

the positive z direction and with amplitude varying in the x and y directions the 

expression for a paraxial electromagnetic beam is given as a modulated plane wave of 

the form 

 ( , , ) ( , , ) exp( )E x y z u x y z jkz= −   (2.5) 

where u(x,y,z) is a complex scalar function defining the non plane wave part of the 

beam. Applying this beam to the Helmholtz equation (Equation 2.4) the following 

solution, known as the reduced wave equation is obtained 

 
2 2 2

2 2 2
2 0

u u u u
jk

x y z z

 ∂ ∂ ∂ ∂+ + − = ∂ ∂ ∂ ∂ 
  (2.6) 
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By applying the paraxial assumption to this beam, the complex scalar function u(x,y,z) 

will vary slowly with propagation; that is the axial variation will be small when 

measured in wavelengths. From this approximation the z (third) term of the Laplacian 

in Equation 2.6 is negligible compared to other terms and is thus dropped. This solution 

to the Helmholtz equation is now referred to as the paraxial wave equation [3] 

 
2 2

2 2
2 0

u u u
jk

x y z

 ∂ ∂ ∂+ − = ∂ ∂ ∂ 
  (2.7) 

The simplest solution to this paraxial wave equation is written as  

 
2 21 ( )

( , , ) exp
( ) ( )

x y
u x y z

z zα β
 += − 
 

  (2.8) 

Solving for the complex constants α(z) and β(z) the solution has the form 

 
2 2( )

( , , ) exp
( ) 2 ( )

const x y
u x y z jk

q z q z

 += − 
 

  (2.9) 

The complex number q is known as the complex beam parameter, or Gaussian beam 

parameter, that characterizes the beam properties with propagation distance z along the 

beam path. It is given by the following equation: 

 2
0

1 1 1

( ) ( )
j

q q z R z w z

λ
π

= = −
+

  (2.10) 

where w(z) is the radius at which the beam field falls to 1/e relative to its on-axis value, 

known as the beam radius. From examining the real and imaginary parts of the 

complex beam parameter q the characteristics of the beam can be found: 
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  (2.12) 

where R(z) is the phase radius of curvature of the beam and w(z) is the beam width at z 

and w0 denotes the source plane beam radius, called the beam waist. Note from 

Equation 2.11 the dependence of the phase radius of curvature on λ; as we approach the 
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geometrical limit (i.e. λ→0) the value of R(z) approaches the propagation distance z and 

the beam is now more appropriately defined as a classical ray trace. 

This complete form of the complex beam parameter is complex, containing real and 

imaginary components. Reapplying this to the wave equation solution (Equation 2.7) 

the field distribution is now 

  
2 2 2 2

2 2 2
0

( ) ( )
( , , ) exp exp

( ) 2 ( )

const x y x y
u x y z jk

w w z R z

   + += − −   
   

  (2.13) 

 

The real part to this solution is the Gaussian amplitude description of the beam shape, 

while the imaginary part describes a parabolic wavefront that approximates a spherical 

wavefront at the paraxial limit. This wavefront evolves with z away from the beam 

waist location, where the phase is flat.  

 

  

 

 

 

 

 

 

 

 

The phase slippage between the beam travelling along the z axis with respect to an 

infinite plane wave is defined as  

 2
0
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z
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π
 
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  (2.14) 

Figure 2-2 Phase shift of beam propagating along z-axis 

relative to flat phase front of plane wave  
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The electric field description can now be fully described. The fundamental Gaussian 

beam mode solution to the paraxial wave equation in rectangular coordinates is given 

by [24]: 

 
2 2 2 2
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( ) 2

w z x y x y
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w w z R
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  (2.15) 

The normalised form for the expression of the electric field distribution is obtained by 

integrating the power contained within the area of the beam and equating it to unity.   
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The first part of the equation is the normalisation constant. The first term within the 

exponent gives the solution a Gaussian amplitude envelope; the second term is a 

combination of the plane wave term and the parabolic phase radius of curvature terms 

and the final term is the phase slippage between the propagated beam at z and its initial 

point at z = 0. It is easy to re-interpret the above solution in cylindrical coordinates by 

replacing (x2 + y2) with r2: 
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  (2.17) 

 

2.1.2 Propagation of Gaussian Beams 

The fundamental Gaussian beam mode (Equation 2.17) can be described at any point 

along its propagation path. The scale size or radius w and phase radius of curvature R 

of the beam vary with propagation distance z. The illustrations below (Figure 2-3, 

Figure 2-4) describes the evolution of the fundamental Gaussian beam as it propagates 

through a focus position where the beam radius reaches its minimum value known as 

the beam waist w0 [32]. After passing through the waist position w increases with 

propagation distance. Taking left to right to be the positive propagation direction the 

complex phase radius of curvature R to the left of the beam waist is negative. 

Approaching the waist position the absolute value of R increases until it reaches infinity 



27 

 

at the beam waist. After the beam waist R is now positive and its absolute value 

increases with propagation distance.As the beam propagates towards the waist position 

the beam is said to be converging, and after the waist the beam is diverging.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The evolution of this fundamental Gaussian beam with increasing z can be described in 

terms of a characteristic distance known as the confocal distance zc [24], 

  

2
0

c

w
z

π
λ

=   (2.18) 
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Figure 2-3 - Evolution of complex phase radius of curvature (red curves) for Gaussian beam as it 

propagates through a waist position [23], [32].  

Figure 2-4 - Evolution of the Gaussian amplitude profile as the beam diverges away from a beam waist 

location [23], [32]. 
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Using the confocal distance the beam parameters of phase radius of curvature, beam 

radius and phase slippage may be rewritten as  

 

2
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R z z
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= +   (2.19) 
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  (2.21) 

 

This confocal distance is a useful measurement for approximating the beam parameters 

in two distinct regions along the z axis; the near-field region where z << zc and the far-

field region where z >> zc. In the near-field region it is observed that the phase radius of 

curvature R(z) is inversely proportional z and in the far field region the phase front 

radius of curvature can be approximated as R(z) ≈ z. Note below in Figure 2-5 the 

asymptotic nature of R(z) and that at the beam waist position (z = 0), R(z) approaches 

infinity, implying a flat phase radius of curvature at the beam waist.   
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Figure 2-5 - Variation of beam radius w (blue) and phase front radius of curvature R

(red) in terms of confocal distance from the beam waist position z=0 
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It should be noticed also from Figure 2-5 that the beam radius w starts increasing 

linearly with z in the far-field region. With this approximation a useful new 

characteristic called the far-field beam angle [24] can be applied to the evolution of the 

Gaussian beam, and it has the form 

 
0

0

arctan
w

λθ
π
 

=  
 

  (2.22) 

Note that this angular growth of the beam radius applies to the far-field region only. 

For small angles that typify a beam obeying the paraxial limit the angle θ0 can be 

approximated thus: 

 
0

0w

λθ
π
 

≈  
 

  (2.23) 

Another use of the confocal distance, or Rayleigh range, is in defining the region of 

collimation of the beam. At the confocal distance away from the beam waist the beam 

radius has only increased slightly to a value of √2 w0 c.f. dotted lines in Figure 2-6. 

Beyond this point the beam radius begins to grow at a faster rate defined by the far field  

divergence angle.  It is within this distance zc therefore that the beam can be said to be 

approximately collimated, and is called the depth of focus of the beam. This value is of 

importance when designing quasioptical systems that require strict beam collimation.  

 

Figure 2-6  - Far field divergence angle θ0 showing linear 

growth of beam radius in the far field z>>zc 

θ0 
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As the Gaussian beam propagates from a waist position at z = 0, its phase is seen to 

evolve faster than that for a simple plane wave. This phase slippage is best visualised 

by comparing the evolution of the phase of a propagating plane wave, given as  

 ( ) Re(exp( ))g z jkz= −   (2.24) 

and the phase for the propagating Gaussian beam (given by Equation 2.14) is seen 

below in Figure 2-7. This phase slippage becomes more significant when dealing with 

higher order mode descriptions of the complex field, with phase slippage occurring 

between adjacent modes over increasing propagation distance z.  

The power contained within the fundamental Gaussian beam mode at any plane is 

given by the edge taper ratio Te. This edge taper gives the relative transverse power 

density of the beam at some radius re to the on axis value. The power distribution at any 

plane for the fundamental Gaussian beam is proportional to the square of the transverse 

electric field and thus has a Gaussian profile itself - [24]: 

 
2

2

( )
exp 2

(0)e

P r r
T

P w

 
= = − 

 
  (2.25) 

The edge taper is a useful tool for determining the power conservation of a source beam 

within a particular optical system. Measured in decibels ( dB), the edge taper provides 
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an insight into the level of truncation of relative power density for a particular radius 

measured from the centre. The truncated radius of the fundamental Gaussian can be 

retrieved from the edge taper using the following 

 
2

0.115 ( )a
e

a

r
T dB

w
α

 
= = 
 

  (2.26) 

Where α is called the taper ratio and it gives the degree of central concentration of the 

illumination of the antenna aperture. Table 2-1 below lists some sample beam radii and 

their corresponding power conservation levels measured in both percentages and 

decibels. As an example of optimum beam truncation at the aperture of an optical 

element, ample power conservation can be achieved for truncation radii of at least 2w, 

ensuring >99.9% power conservation within a single element.  

r/w Conserved 
Power Fe 

Relative Te Te ( dB) 

0.0 0.00000 1.00000 0.0 

0.5 0.39347 0.60653 -2.17 

1.0 0.86467 0.13534 -8.69 

1.5 0.98889 0.01111 -19.54 

2.0 0.99967 0.00034 -34.74 

2.5 0.99999 3.73 * 10-6 -54.29 

Table 2-1 - Edge Taper (Te) and Power Conservation (Fe) for a fundamental Gaussian beam for 

increasing radial distance r measured against beam radius w 
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Figure 2-8 - Plot comparing the conserved power (Fe)  and edge taper (Te)  of fundamental Gaussian 

beam as a function of aperture radius r over beam radius w [3]. 
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A summary of the defining characteristics or parameters for the fundamental Gaussian 

beam is given below in Table 2-2 

Beam Radius 2

0 2
0

( ) 1
z

w z w
w

λ
π
 

= +  
 

 

Phase Radius of Curvature 22
0( ) 1

w
R z z

z

π
λ

  
 = +     

 

Phase Shift  

2
0

arctan
z

w

λφ
π
 

=  
 

 
Edge Taper 2

2

( )
exp 2

(0)e

P r r
T

P w

 
= = − 

 
 

Far Field Divergence Angle 

0
0

arctan
w

λθ
π
 

=  
 

 

Table 2-2 - Defining equations for characteristics of fundamental Gaussian beam 

2.1.3 Higher Order Modes: Rectangular Coordinates 

The Gaussian beam expression of the electromagnetic field distribution given by 

Equation 2.17 is the fundamental or lowest order solution to an infinite number of 

higher order solutions to the same paraxial wave equation. To provide a more accurate 

description of the diffracted radiation patterns found in quasioptical systems it is 

necessary to go beyond the base fundamental Gaussian beam mode description. To 

achieve this, higher order Gaussian beam modes are included in the description of these 

transverse electromagnetic fields. By using these higher order modes, a more physical 

description of the beam as it propagates through an optical system can be found. As 

mentioned previously, it is the relative phase slippage between modes that allows for a 

successful description of diffracted fields. These higher order modes are described by a 

particular polynomial which depends on which coordinate system is used, and are 

multiplied by the Gaussian envelope amplitude pattern which effectively removes the 

beam in the transverse direction. The higher order solutions can take the form of 

Hermite-Gaussian polynomials when dealing with rectangular coordinates or of 

Laguerre-Gaussian polynomials for cylindrical coordinates.  
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To derive the higher order Hermite-Gaussian solutions to the paraxial wave equation in 

two dimensional rectangular coordinates, the general two-dimensional Gaussian beam 

mode solution is simply the product of two one-dimensional solutions. In rectangular 

coordinates these one-dimensional solutions can be separated into products of identical 

solutions in the x and y directions; 

 , ( , , ) ( , ) ( , )n m n mu x y z u x z u y z= ×   (2.27) 

The mathematical form of both of these one-dimensional solutions is equivalent, and as 

such only one coordinate system is solved, and the other will be equivalent by analogy. 

Applying a trial solution of the form given below, 

  
22

( , ) ( ) exp
( ) 2 ( )

x kx
u x z A z H j

w z q z

   
= −    

  
  (2.28) 

where the beam waist w(z) and the complex beam parameter q are the same as 

described for the derivation of the fundamental beam mode. The function H is the 

Hermite polynomial, which satisfies the following standard differential equation 

 ( ) '' 2 ' 2 ( ) 0H u uH mH u− + =   (2.29) 

where m is a positive integer denoting the order of the polynomial. By applying the 

same normalization parameter as was done to Equation 2.17 the higher order mode 

expression of the Gaussian beam of order m is given as  

 
2 2
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1 2

2

2 1 2 (2 1)
( , ) exp

22 !
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m mm

x x xx

x x x m
u x z H j kz j

w w Rw m

π φ
π λ−

     += − − − +    
    

  (2.30) 

This solution ensures that the beam will have the same normalised transverse shape at 

any plane z; i.e. the beam radius w and phase radius of curvature R will evolve with 

propagation distance, but the amplitude of um will retain the same shape. From the last 

exponent term, the phase evolution term, the phase shift for the higher order modes 

will be greater than for those of lower order. As the beam propagates there is a relative 

phase slippage from one mode to the next. By analogy, the solution for the (x,z) 

coordinate system may be applied to the (y,z) coordinate system.  The complete, 
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normalised two-dimensional expression of the higher order mode solution in 

rectangular coordinates is thus given by 
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  (2.31) 

Considering the case where the beam has equivalent beam parameter values in x and y 

leads to the following reduced version of Equation 1.31 
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  (2.32) 

Some examples of the different shapes achievable from Hermite-Gaussian mode 

functions of various orders of the Hermite polynomial function are given below in 

Figure 2-9. These figures illustrate the increasing complexity of the field profiles for the 

higher order modes.  
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Figure 2-9 - Hermite Gaussian field distributions of increasing order - Hm n 

2.1.4 Higher Order Modes: Cylindrical Coordinates 

An alternative and equally valid solution to the paraxial wave equation exists for 

cylindrical rather than rectangular coordinates. To define a Gaussian beam mode 

solution to the paraxial wave equation in cylindrical coordinates, the general solution 

must allow for variation of the electric field distribution as a function of the azimuthal 

angle θ . As before, a trial solution is implemented: 

 
2

( , , ) ( )exp ( )exp( )
2 ( )

kr
u r z A z j S r jm

q z
θ θ 

= − 
 

  (2.33) 

where S(r) is an undetermined function of r and m  is a positive integer. With this trial 

solution applied to the paraxial wave equation the following result for S(r) is obtained: 
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where Lpm is the generalized Laguerre polynomial. The full higher order mode solution, 

known as the Associated Laguerre Gaussian mode set, is written in terms of associated 

sine and cosine Laguerre-Gaussian modes [32] 
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  (2.35) 

where ( )nL xα are the associated Laguerre polynomials of order n and degree α and all 

other quantities w, R, and 0φ  are exactly equivalent to those as in the Hermite Gaussian 

and fundamental mode Gaussian solutions. These higher order modes have been 

normalized so that each mode is integrated to unity power, and that they obey the 

orthogonality rule 
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and the individual associated modes form a complete infinite basis set of ortho-normal 

modes such that 
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 It is useful to consider those higher order modal representations that are axially 

symmetric; they have no dependence on the azimuthal angleθ . This is achieved by 

setting the azimuthal mode index m to zero. Such modal descriptions can be used to 

describe the complex aperture field from a cylindrical corrugated horn or conical 

smooth walled horn: 
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This cylindrically symmetric field description is mathematically equivalent to the 

, ( , , )C
nu r zα θ  mode set of the overall associated Laguerre Gaussian mode set from 

Equation 2.35. The figure below shows contour plots of the real components for the 

associated Laguerre-Gaussian fields of increasing order n with degree α = 0. The field 

distribution of lowest order 
0
0L  is equivalent to the fundamental Gaussian beam 

distribution. With higher orders brings increasing complexity, though the distributions 

remain azimuthally symmetric. 

  

0
0L  0

1L  

  

0
2L  0

3L  

Figure 2-10 – Associated Laguerre Gaussian field distributions of increasing order n 

If the degree α of the mode set is increased from zero the cosine term in Equation 2.35 

comes into effect; by modulating the field and increasing its complexity. Some examples 

of these higher order mode field descriptions are shown below in Figure 2-11. 
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Figure 2-11 - Associated Laguerre Gaussian field distributions of increasing order n and degree α 

2.1.5 Gaussian Beam Transformation 

The ability to describe a beam such as those from a laser cavity or a corrugated horn in 

terms of Gaussian beam modes is only a small part of the process of GBMA. Through 

the use of ray transfer matrices and scattering matrices, it is possible to build a complete 

picture of an entire quasioptical system. In the following subsection, derivation and 

application of these ray or ABCD matrices as they apply to GBMA is described [3], [4] 

while the technique of scattering matrices is covered in detail in Chapter 4. In the 

previous section the defining characteristics of a Gaussian beam, that is the beam waist 

size w(z) and the radius of curvature of the phase R(z), or indeed the complex beam 

parameter q(z), were defined in terms of their propagation distance z from some known 
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location. However, simple freespace propagation of a Gaussian beam will not build a 

complete picture of a quasioptical system that contains reflective or refractive elements 

such as mirrors and lenses. The purposes of such systems are many, though they all 

serve to manipulate a source beam to some output plane or planes. The effects of these 

quasioptical elements on a Gaussian beam are easily determined through the use of 

ABCD matrices, and thus a prediction of the output field can be calculated.  

2.1.5.1 ABCD Matrices 

A ray can be described by its height from the optical axis y and the slope angle α relative 

to the optical axis [33]. A ray can thus be defined as a vector, and if this ray is incident 

upon an optical system described using an ABCD matrix then the ray emerging from 

the system can be calculated using matrix multiplication. The diagram below illustrates 

this principle.  

 

 

 

 

 

The parameter y is the perpendicular distance between the optical axis and the origin of 

the ray vector and the angle α is the angle the ray vector makes with the horizontal. The 

ray incident upon the optical system has parameters yin and αin and after emerging from 

the optical system the ray now has new parameters yout and αout. This is shown 

mathematically below, where the ABCD matrix representation of the optical system acts 

upon the incident ray vector to produce the output ray vector   

 
out in

out in

y yA B

C Dα α
    

=    
    

  (2.40) 

αin 

yin 

yout 

αout 

Optical System 

Output ray 

Figure 2-12 – An incident ray is transformed by an arbitrary optical system into an output ray. 

The transformation performed by the optical system is described by the ABCD matrix  
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It then follows that: 

 
out in in

out in in

y Ay B

Cy D

α
α α

= +
= +

  (2.41) 

The radius of curvature R of an ordinary spherical wave can be related to the vector ray 

parameters [4]: 

 
y

R
α

=   (2.42) 

Dividing Equation 2.41 by Equation 2.42 the following is obtained: 

 in
out

in

AR B
R

CR D

+=
+

  (2.43) 

This is the standard result for a ray transformation approach to an arbitrary optical 

system. This method can be extended to apply to Gaussian beams through a simple 

replacement of the radius of curvature element R with the complex beam parameter q, 

yielding the following ABCD matrix for quasioptical systems 

  in
out

in

Aq B
q

Cq D

+=
+

  (2.44) 

The complex beam parameter of a Gaussian beam q evolves in a very similar way to the 

real radius of curvature from a geometrical point source. By using the ABCD matrix 

approach in combination with the complex beam parameter q, the Gaussian beam 

parameters at the output plane can be recovered providing that the parameters at the 

input plane are known. The beam waist w and phase radius of curvature R are 

determined from the complex beam parameters from the following equations: 
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The phase slippage 0φ∆ , defined as the difference between the phases of the output and 

incident beams is given by a combination of the ABCD matrix elements A and B and the 

complex beam parameter of the incident beam qin: 
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1
arg

in

A B
q

φ
  

∆ = − +  
  

  (2.47) 

The table below lists the ABCD matrices for the most commonly used components in 

quasioptical systems [3].  

Element Matrix Comment 

Reflection from flat mirror 1 0

0 1

− 
 
 

 
Modified identity matrix  (negative A (or 
D) element ensures reversal of R and ̟ 
phase change) 

Free space propagation 1

0 1

d 
 
 

 
d = propagation distance  

Refraction at flat interface 

1

2

1 0

0
n

n

 
 
 
  

 

n1 = initial refractive index 
n2 = final refractive index 

Refraction at curved interface 

1 2 1

2 2

1 0

.

n n n

R n n

 
 − 
  

 

R = radius of curvature, R>0 for convex 
surface 
n1 = initial refractive index 
n2 = final refractive index 

Reflection from curved mirror 1 0

2
1

R

 
 
 −
 

 

R = radius of curvature, R>0 for convex 
surface 
 

Propagation through dielectric 
1

2

1

0 1

n
d

n
 
 
 
  

 

d =  propagation distance within dielectric 
n1 = initial refractive index 
n2 = final refractive index 

Thin lens 1 0

1
1

f

 
 
 −
  

 

f = focal lengh, f > 0 for converging lens. 
Thin lens valid if f >> thickness of lens 

Table 2-3  - List of ABCD matrices for typical optical components 

 

To illustrate the ABCD matrix method as applied to quasioptical systems, a simple 

Gaussian Beam Telescope (GBT) example is outlined below. The transformation of a 
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Gaussian beam by an arbitrary optical system of N elements is described by the 

following matrix: 

 1 1 1 1

1 1 1 1

. ...N N N N

N N N N

A B A B A B
M

C D C D C D
− −

− −

     
=      

    
  (2.48) 

where the order of multiplication of the ABCD matrices is reverse to their ‘physical’ 

order; that is the leftmost matrix describes the last element at the output and the 

rightmost matrix describes the first element on the input side, as is conventionally 

illustrated in figures. 

 

The GBT is comprised of a pair of focusing elements separated by the sum of their focal 

lengths; that is their respective focal lengths are coincident. The determination of the 

GBT ABCD matrix is relatively straightforward. The GBT is considered to consist of two 

thin lenses of focal lengths f1 and f2 with the propagation distance between them set to d 

= f1 + f2. This is illustrated below in Figure 2-13.  

 

 

 

 

 

 

 

 

 

The combined ABCD matrix for this optical system is written in order as: 

 2 1 2 1

2 1

1 0 1 0
1 1 1

. . . . .1 1
1 10 1 0 1 0 1

f f f f
M

f f

   +        =         − −           

  (2.49) 

 

 

f1 d = f1 + f2 f2 
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Figure 2-13 - Illustration of Gaussian Beam Telescope optical arrangement 
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which simplifies to  
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  (2.50) 

Using this result combined with Equation 2.44 the following is obtained: 
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The output beam parameters may now be determined: 
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  (2.52) 

The output phase radius of curvature Rout and beam waist wout are independent of 

wavelength and are only dependent on the input and output distances and hence the 

focal lengths of the lenses. It should be noted here that there is a relative phase shift 

between the input and output beams of π. As the matrix element B is zero the complex 

number within the argument in Equation 2.47 becomes real, which results in a π phase 

shift.  It is not specifically implied that a beam waist must exist at the input plane. The 

calculation will still result in a frequency independent image at the output plane.  

 

2.1.5.2 Fresnel Diffraction by Circular Aperture 

As an example of how the theory of Gaussian Beam modes models long wavelength 

electromagnetic fields we consider the classical Fresnel diffraction of a plane wave by a 

truncating circular aperture. The classical treatment for solving the Fresnel diffraction 

pattern by a circular aperture is achieved by applying the Fresnel – Kirchoff diffraction 

integral.  
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By utilizing the theory of Fresnel zones [33] an approximation to this diffraction pattern 

can also be derived using a Fourier-Bessel transform, or a Hankel transform of zero 

order [34], [35] .   

 

The scheme is illustrated below in Figure 2-14 where a plane wave illuminates a circular 

aperture. The Gaussian beam mode analogue of this system is to model a truncated 

plane wave, or top-hat field. The top-hat field is described using Laguerre-Gaussian 

modes of a similar form as Equation 2.17:   
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  (2.53) 

 

where it is assumed that the field at the aperture is a waist with infinite phase radius of 

curvature, hence the removal of the initial phase term from Equation 2.17.  

 

 

 

The choice of the beam waist size w determines the distribution of power among the 

mode coefficients A, which in turn are required to describe the complex field in the 

Incident Plane 

Waves 

z=0 

y 

x 

Figure 2-14 - Optical layout for Fresnel diffraction - plane wave incident upon circular truncating 

aperture 
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typical manner (Equation 2.1). A waist to aperture ratio of 0.18 generates the following 

top-hat field approximation: 

 

 

  

 

 

 

 

 

Once these mode coefficients have been determined the field may now be described at 

any plane beyond z = 0. The evolution of the source beam parameters is determined 

using the ABCD matrix technique. Given that the beam undergoes a simple 

propagation the mode coefficients remain unaltered, with the phase slippage between 

adjacent modes of the beam being carried by the evolving phase term. The new modes 

are thus given by the complete Laguerre-Gaussian mode set (Equation 2.17). Following 

[29] the beam is sampled at three distinct planes along the propagation axis 

representing different points of evolution in the diffraction pattern; z = a2/6λ, z = a2/3λ 

and z = 2a2/λ, where a refers to the radius of the truncating aperture. The Gaussian beam 

diffraction patterns are also compared against the classical analytical expressions for 

Fresnel diffraction from [34], [35] below.  
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Figure 2-15 - Laguerre Gaussian beam mode 

description of Top-Hat field of unit radius 1 mm 
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Figure 2-16 - Gaussian beam mode descriptions (blue) for Fresnel diffraction of a plane wave at a 

circular aperture for increasing propagation distance z: (a) z = a2/6λ, (b) z = a2/3λ, (c) z = 2a2/λ. Classical 

diffraction patterns are plotted in red. 

The comparisons between the GBM predictions and those of the classical Hankel 

transform show excellent agreement for the two theories. This is in line with the results 

by Murphy from [29].  

2.1.6 Angular Spectrum of Plane Waves 

An alternative approach to describing the transformation of a complex field distribution 

is achieved using the Angular Spectrum method (ASPW) [34]. If a complex field 

distribution across any plane is Fourier analysed, the various spatial Fourier 

components are identified as plane waves, each travelling in a different direction. The 

field amplitude at any other plane can then be calculated by adding the contributions of 
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these plane waves, taking into account the phase shifts of the individual plane waves as 

they propagate.  

If a complex electromagnetic disturbance is given by U(x,y,0) then the 2D Fourier 

transform is given by 

 [ ]0( , ) ( , ,0)exp 2 ( )X Y X YA f f U x y j f x f y dxdyπ
+∞

−∞

= − +∫ ∫   (2.54) 

where fX and fY are the spatial frequencies of the spectrum of plane waves. This 

transform of the original field U can be interpreted as its angular spectrum of 

component plane waves, each travelling in their own unique direction. A unit-

amplitude plane wave can be described as follows: 

  
2

( , , ) exp ( )B x y z j x y z
π α β γ
λ

 = + +  
  (2.55) 

where α, β and γ are direction cosines and are related by 

 
2 21γ α β= − −   (2.56) 

These direction cosines are related to the spatial frequencies by 

 
2 2, , 1 ( ) ( )X Y X Yf f f fα λ β λ γ λ λ= = = − −   (2.57) 

The Fourier transform (ref above) is thus re-written as  

 0 , ( , ,0)exp 2A U x y j x y dxdy
α β α βπ
λ λ λ λ

+∞

−∞

    = − +    
    

∫ ∫   (2.58) 

The original complex field U can be written as the inverse Fourier transform of its 

angular spectrum: 

 0( , ,0) , exp 2U x y A j x y d d
α β α β α βπ
λ λ λ λ λ λ

+∞

−∞

    = +    
    

∫ ∫   (2.59) 
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If the field is propagated a distance z, the new complex field U(x,y,z) is calculated as 

follows: 

 ( ) 2 2
0

2
, , , exp 1 exp 2U x y z A j z j x y d d

α β π α β α βα β π
λ λ λ λ λ λ λ

+∞

−∞

      = − − +           
∫ ∫   (2.60) 

where the second exponential term determines the effects of wave propagation upon 

the angular spectrum A0. 

The diffracting effects of a truncating aperture of radius r within an opaque screen of 

infinite extent can be accounted for through calculation of the angular spectrum of the 

original disturbance U(x,y,0). A transmittance function t for the aperture is defined as  

 ( ) ( )2 21
,

0

x y r
t x y

otherwise

+ <
= 


  (2.61) 

The field immediately behind the aperture Ut is taken to be the geometrical shadow of 

this transmittance function upon U 

  ( ) ( ) ( ), ,0 , ,0 ,tU x y U x y t x y=   (2.62) 

The convolution theorem of Fourier analysis is now used to write the angular spectrum 

of the transmitted field as 

 0, , * ,tA A T
α β α β α β
λ λ λ λ λ λ
     =     
     

  (2.63) 

where T is the Fourier transform of the transmittance function and * represents the 

convolution operation. For a unit amplitude plane wave illuminating the aperture at 

normal incident, the above result simply becomes  

  , ,tA T
α β α β
λ λ λ λ
   =   
   

  (2.64) 

Thus the transmitted angular spectrum is found by a direct Fourier transform of the 

transmission function of the aperture. The transmitted field can then be propagated in 
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the same manner as Equation 2.60 by replacing the original unaffected angular 

spectrum A0 with the new At. 

The ASPW technique was used as a further demonstration of the Fresnel diffraction 

patterns described previously in Section 2.1.5.2. A source field disturbance U(x,y,0) was 

generated numerically as a circularly symmetric top-hat field of radius 1 mm. This field 

represents the transmission function of a circular aperture. From Equation 2.64 the 

Fourier transform of this field gives the angular spectrum of the transmission function. 

This angular spectrum representation is then propagated and transformed back into the 

spatial domain to give the propagated field U(x,y,z). As before (Section 2.1.5.2) the 

diffraction patterns are predicted using this ASPW technique at three distinct planes 

and are compared with the predictions from classical diffraction theory and GBMA 

below in Figure 2-17. 

The resulting diffraction pattern generated by the ASPW technique shows a much 

smoother profile when compared to the same patterns predicted classical theory. These 

smoother patterns predicted by ASPW are technically more physically correct than 

those from classical theory, which contain sharper ringing effects. The reason for this is 

that the angular spectrum components that are below the evanescent wave cutoff are 

removed. Note that the propagated angular spectrum components may be written as 

[34]   

 0, , *exp( )tA A z
α β α β µ
λ λ λ λ
   = −   
   

  (2.65) 

where  

 
2 22

1
πµ α β
λ

= + −   (2.66) 

Note that µ is a positive real number, such that these wave components are rapidly 

attenuated by propagation [34]. These evanescent waves are thus cut off and do not 

contribute to the overall diffracted field. These components do however contribute to 
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the classical Fresnel diffraction pattern, and thus result in the observed sharp fringes. 

No conventional imaging system is able to resolve any periodic structure with a period 

that is finer than the operating wavelength, and these evanescent components are thus 

not recoverable.  

 

Figure 2-17 - Fresnel diffraction patterns predicted using ASPW (in black) for three distinct planes: (a) 

z = a2/6λ, (b) z = a2/3λ, (c) z = 2a2/λ. Predictions from classical diffraction theory and GBMA are 

included for comparison. 
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2.2 The Michelson Interferometer 

The theory of GBMA can be extended to describe the interference patterns of classical 

interferometers. This has already been applied to the examples of a Fabry Perot 

interferometer and Young’s Slit Experiment [36].These optical devices are commonly 

comprised of mirrors or partially transmitting mirrors, referred to as beam splitters. A 

beam splitter is formed by coating a dielectric slab with a metallic or dielectric coating 

that transmits a portion of the incident beam, while reflecting the remainder. One 

common interferometer configuration is the Michelson interferometer. The simplest 

form of this type of interferometer is shown below [37].  
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Figure 2-18 - The Michelson Interferometer 
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In the interferometer layout in Figure 2-18 above the source beam is incident upon a 

50:50 beam splitter oriented at 45° relative to the optical axis. The reflected and 

transmitted beams are then reflected by Mirrors 1 and 2 respectively, after which they 

recombine back at the beam-splitter. The beam reflected by Mirror 2 traverses the 

beamsplitter a total of three times compared with the single passage for the beam 

reflected by Mirror 1. This asymmetry is removed through use of the compensator plate 

of material and thickness identical to the beamsplitter [25]. The two beams propagate 

through different optical distances L1 and L2. In the above design the distance L2 is 

varied through the use of a movable translation stage. The optical path difference δ 

between the two mirrors is given as  

 2 12 2 2L L Lδ = − = ∆   (2.67) 

After re-combining at the beam splitter, two newly reflected and transmitted beams are 

formed. The re-combined reflected beam will illuminate the output plane where an 

interference pattern is observed. The nature of this pattern is determined by the how the 

two beams interfere with each other. The beams will constructively interfere when δ is 

an integer number of wavelengths:  

 mδ λ=   (2.68) 

while constructive interference is obtained for  

 ( )1
2mδ λ= +   (2.69) 

In its most simple format, the Michelson interferometer combines two monochromatic 

beams with differing phases leading to varying levels of interference. The complex 

fields of the individual beams can be described using the Laguerre Gaussian or Hermite 

Gaussian beam mode sets. The two beams can then be propagated in the typical manner 

using the ABCD matrix technique [Section 2.1.2]. The optical path difference between 

the two beams is determined by the propagation distances for the two beams.  
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As an example, a source beam is described using the Hermite-Gaussian beam mode set 

with a wavelength of 500nm and an initial waist of radius 5λ. As the main factor leading 

to interference fringes is the optical path length we ignore the reflections and partial 

transmissions and assume they are ideal. The incident beam was described as a 

Gaussian distribution using the Hermite Gaussian mode set using 10 modes. The 

interference patterns shown below in Figure 2-19 are found by combining the two fields 

as the optical path length varies. In this instance the optical path difference is varied 

from 2000λ to 2000.5λ. As δ varies from an integer value to a half integer value of λ the 

central spot will go from bright to dark, which corresponds to the constructive and 

destructive interference conditions of Equations 2.72 and 2.70 above.  

 

 

 

 

 

 

 

 

 

 

 

 



54 

 

 
2000 

 
2000+ λ/10 
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2000+ 3λ/10 

 
2000+ 2λ/5 

 
2000+ λ/2 

Figure 2-19 - Haidinger fringe patterns for combined fundamental Hermite Gaussian beams with 

varying optical path difference 

The interference technique is compared against an experimental result taken from [38]. 

These circular interference fringe patterns, known commonly as Haidinger fringe 

patterns [39] here obtained from a Michelson interferometer with a source beam of 

monochromatic sodium light of λ = 589 mm. The stated optical path differences from 

[38] are 5.1 mm for the first set of fringes (a) and 2.1 mm for the second set (b). The 

fringe pattern in (a) exhibits destructive interference with a central dark spot, while the 

central spot in (b) is bright, signifying constructive interference. These measured fringe 

patterns are easily predicted using GB modes. It is first noted that the exact values of δ 

for (a) and (b) are recalculated as 5.10026 mm and 2.1004 mm respectively. By setting 

these values for δ the correct interference patterns will be observed. Given the high 
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frequency of the source radiation the value of δ is extremely sensitive, and will thus 

impact upon the output interference fringe pattern.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2-20 - Circular interference fringe patterns for Michelson interferometer taken with 

monochromatic sodium light. Experimental results from [38]. - (a) δ = 5.1 mm, (b) δ = 2.1 mm. Gaussian 

Beam mode predictions – (c) δ = 5.10026 mm and (d) δ = 2.1004 mm 

The predicted fringe patterns (c) and (d) exhibit the same central spot features as their 

experimental counterparts as well as the general trends of the outer fringe radii. In 

going from (a) to (b) and (c) to (d) the rings shrink in radius as δ decreases. It is difficult 

to draw any further comparisons between the experimental and predicted plots given 

the lack of any extra information from [38] regarding the interferometer setup.  

If the two mirrors are not exactly parallel, fringe patterns will still occur at the output 

plane but will be distorted or asymmetric. This orientation of the two mirrors effectively 

means that the two mirrors now form a wedge. For a zero δ and a non-orthogonal angle 

between the two mirrors the fringe pattern observed will consist of straight lines that 

are parallel to the edge of the wedge. If δ increases then the variation in the angle 
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between the mirrors comes into effect and the fringes become curved. These fringes are 

usually referred to as localised fringes or Fizeau fringes [40].  

To achieve this tilt using Gaussian beam modes, a phase tilt term [4] is added to the 

mode description. For the Hermite Gaussian modes two phase tilt terms are included, 

representing a tilts in either the x or y directions, or both. The amended Hermite 

Gaussian modes have the following form: 
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2 2 2 2
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=    

   

 + +− − − + + + − − 
 

  (2.70) 

where θx and θy are the tilts to the beam in the x and y directions.  

The following localised interference patterns displayed below in Figure 2-21 are formed 

by setting the angle θx to 0.1°. As the separation distance between the mirrors varies the 

fringe patterns will change accordingly across the observation field, with a new fringe 

crossing the centre each time δ changes by λ/2. At zero path difference (b) the fringes 

become straight. Beyond this point the fringe lines start to curve in the opposite 

direction as shown in (c).  

These fringe patterns show very good agreement with a similar experimental 

configuration taken from [40]. This illustrates that modal analysis of classical 

interference arrangements such as the Michelson, Young’s double slit or the Fabry-Perot 

is quiet an efficient way to examine the result interference patterns. Indeed the big 

advantage of this GBMA approach is that there is no differentiation between the near 

and far field and the evolution of the fringe pattern with distance can be easily treated 

unlike in the classical approach. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 2-21 - Fringe patterns formed by Michelson interferometer with the angle between mirrors θx 

equal to 0.1 and path difference increasing from a negative value at (a) to zero at (b) and to a positive 

value at (c). Experimental results taken from [40] (d), (e) and (f) shown similar Fizeau fringe patterns 

for interferometer with tilted mirror.   

2.3 Analysis of Antenna Feed Systems 

The typical antenna feed system dealt with in this thesis is of the large reflecting 

antenna type. Such an antenna is designed to couple radiation from an observed source 

through a series of reflective and refractive elements and couple the beam to a 

quasioptical feed structure, typically a horn. The GBMA approach is a very useful and 

computationally efficient tool for analyzing such systems, especially those operating in 

the long wavelength region where diffractive propagation dominates. The principle of 

reciprocity [41] allows such antennas to operate equivalently in receive/backward or 

transmit/forward mode. Thus the coupling of a beam from an antenna to a quasioptical 

feed horn is equivalent to propagating a source beam from the feed horn to illuminate 

the sky with the typical antenna reception pattern.  



58 

 

2.3.1 Feed Horns – Conical Corrugated Horn 

To analyze an antenna system in transmission mode, an accurate description of the 

source field is required. Through expansion in terms of Gaussian beam modes the 

transverse electromagnetic field distribution of a quasioptical beam can be described. 

This source field can then be propagated through the entire antenna optical system and 

reproducing the field at any point throughout the optical train is relatively simple. The 

field distribution from a feed horn can be described with a small number of modes, 

making the Gaussian beam mode approach to analyzing antenna systems very 

computationally efficient [42].  This is where the true advantage of GBMA lies.  

 

There are many varieties of antenna feed horns that have their own unique field 

distribution and thus their own unique beam mode expansion. These expansions can be 

in either Laguerre-Gaussian modes or Hermite-Gaussian modes, depending on the axial 

symmetry of the horn. These feed horns are designed to couple radiation from the 

antenna to a waveguide. A waveguide is a metallic transmission ‘pipe’ that conveys 

electromagnetic radiation from one end to another. In antenna systems the waveguide 

is typically coupled to the back end of a feed horn to convey radiation to the mixer and 

local oscillator and thus interpret a sky signal using heterodyning techniques [43]. For 

this section of the thesis the Gaussian beam coupling to feed horns is the prime concern, 

while a detailed mode-matching treatment of the electromagnetic radiation within the 

horn structure is described in Chapter 4. 

  

Corrugated horns are a common type of feed horn; they are circularly symmetric and 

thus their field distributions are expanded in terms of Laguerre-Gaussian modes. The 

corrugated horn is excited by a waveguide mode known as the hybrid HE11 mode [3] 

[44]. The polarisation state/angle for the horn is determined by the polarisation state of 

the HE11 mode. The corrugations within this horn are designed in such a way as to 

generate an infinite reactance on the metallic surface within the horn, thus preventing 

currents from being established. This reactance condition for the corrugations is 
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frequency dependent and thus the operational bandwidth is limited. This bandwidth 

limitation is also dependent upon the method of transition in propagating the 

waveguide mode through the horn and a variety of approaches to this transition have 

been developed [3] 

 

Decomposition of the field distribution from a feed horn is defined from the field 

distribution from the waveguide. From waveguide theory [24] the field distribution for 

a circularly symmetric waveguide is given as  

 0

2.405
( )

r
E r J

a
 =  
 

  (2.71) 

where r is radial distance from the central axis, a is the radius of the waveguide and J0 is 

the zero order Bessel function. At the feed horn aperture the field distribution has an 

additional spherical phase curvature term defined by radial length of the horn Rh, 

represented using a quadratic approximation shown below: 
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2.405
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r r
E r J j

a R

π
λ

  = −  
   

  (2.72) 

The maximum coupling for this aperture field distribution to the fundamental Gaussian 

is achieved for a beam radius w = 0.6435a. This choice of beam radius gives a power 

coupling coefficient of 0.99. The field distribution can now be expanded using Laguerre-

Gauss beam modes: 

 
0

( , ) ( , )p p
p

E r A rϕ ϕ
=

≈ Ψ∑   (2.73) 

where ψp and Ap represent beam modes of and corresponding coefficients of increasing 

order p.  With the beam radius at the aperture defined to optimize power coupling to 

the fundamental mode, i.e. for p=0, the modal coefficients for the higher order modes 

carry a remaining fraction of the power of the beam. The relative power distribution for 

the first ten modes for a corrugated horn is given below in Table 2-4. 
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Mode Order p Modal Coefficient Ap 

0 0.99032 

1 -0.00003 

2 -0.12049 

3 -0.04306 

4 0.01959 

5 0.03413 

6 0.02000 

7 0.00019 

8 -0.12515 

9 -0.01518 

10 -0.01051 

Table 2-4 - Modal coefficients for coupling of first ten Laguerre Gaussian modes to aperture 

distribution for conical corrugated horn 

Note that the mode coefficient for the fundamental mode is maximized, with fractional 

power distributed among the other modes. Using modes of higher order than the 

fundamental (p=0) will successfully describe the essentially non-Gaussian behavior of 

the aperture field distribution. These diffractive effects are specifically the appearance 

and evolution of sidelobe structures (secondary maxima) as the beam propagates. As 

the beam is transformed by optical elements with finite aperture sizes, such as mirrors 

or lenses, truncation will cause additional diffraction and thus may alter the beam 

shape. Power will be scattered into these sidelobes from the main beam. Away from the 

aperture the typical field distribution will vary, and hence the ordering of power to the 

various modes will be altered.  

The phase centre of the corrugated horn is defined as the location of the beam waist 

position where the radius of curvature of the phase front is flat. These are given by the 

formulae below and are illustrated in Figure 2-22.  
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We now compare the abilities of both the fundamental Gaussian beam mode field 

distribution (Equation 2.39) in Section 2.1.4 and the truncated Bessel amendment of the 

same Gaussian beam mode field (Equation 2.72) in describing the field distribution 

from a corrugated feed horn. The horn in question is a typical conical corrugated feed 

horn with a cylindrically symmetrical field distribution with low sidelobes for the 

farfield of the output beam. The central operating frequency of this horn is 94 GHz, or a 

wavelength of 3.19 mm. The far field amplitude patterns of the horn for the 

fundamental Gaussian field and the truncated Bessel field are shown in the plot below 

(Figure 2-23).  

 

For comparison a modematch description of the horn field generated using the software 

SCATTER [45] is included, which is propagated to the farfield using Fourier transforms. 
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Figure 2-22 - Conical corrugated horn geometry including defining Gaussian beam parameters. 
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The SCATTER software generates very accurate complex field distributions based on 

propagating a TE and TM mode set through the horn and conserving power scattered at 

each section that makes up a conical corrugated horn, and, as stated previously this 

application will be discussed in further detail in Chapter 4. 

 

 

 

 

 

 

At this distance there are distinct sidelobe structures present. The fundamental 

Gaussian beam is incapable of describing such complex beam structures, being able to 

describe the main lobe pattern of the beam down to approximately -25 dB. The 

truncated Bessel modification of the Gaussian field distribution describes the evolution 

of the diffracted side lobe structures. The truncated Bessel field gives a much better 

match to the SCATTER field pattern.  

2.3.2 Cassegrain Antenna System 

There are many types of reflector antennas employed today for 

millimetre/submillimetre astronomy. All follow the same principle of operation in that 

they focus incident plane wave radiation from a source through reflective optics to a 

receiver. The type of reflector described here is the Cassegrain reflector antenna which 

is one of the most widely used antenna configurations for either single dish or 
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Figure 2-23 - Comparison of farfield distribution of a corrugated feed horn - modematching 
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interferometric arrays in submillimetre astronomy (e.g. ALMA) [43]. Incident radiation 

from the sky is focused by a primary dish of paraboloidal shape onto a secondary 

reflector, or subreflector of hyperboloidal shape that reflects the beam towards a feed 

horn usually via secondary matching optics.  

 

 

 

 

 

 

 

 

Operating in forward mode, the antenna works as a transmitter and the reflectors serve 

to couple the feed horn field distribution to free space. The amplitude pattern at the 

telescope aperture plane can be approximated as the farfield pattern from the feed horn 

or the feed horn combined with the appropriate coupling optics, providing that the 

farfield divergence angle is not too large. Such an antenna can be reasonably well 

described in terms of a fundamental Gaussian beam, with some truncation effects 

expected at the aperture of the primary reflector and the edge of the secondary.  

2.3.3 Antenna Aperture Efficiency  

Antenna aperture efficiency is a basic parameter for defining the sensitivity of the 

antenna. The effective area or absorption area of the antenna is a determination of how 

well an antenna will couple incident power from the aperture through to the receiver 

and is given by 

 0
e

inc

P
A

S
=   (2.76) 

Figure 2-24 - Simple Cassegrain reflector antenna layout 
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where P0 is the amount of power coupled from the antenna to the feed and Sinc is the 

total incident flux on the antenna. By comparing this effective area of the antenna to its 

physical area Ag the aperture efficiency ηa can be determined: 

 e
a

g

A

A
η =   (2.77) 

Total aperture efficiency is determined by a number of components that are related to 

physical aspects of the antenna in question. These components are given below by 

Equation 2.78 as taken from [46] 

 a i s e bη η η η η=   (2.78) 

These individual components are described as follows [3] 

→ ηi : Illumination or Taper efficiency. This is a measure of the degree of central 

concentration of the illumination field distribution caused by the tapered 

radiation pattern. Outer radial areas of the antenna are weakly illuminated 

compared to at the centre and hence will reduce the contribution of other 

efficiency components to the overall aperture efficiency dependent on their 

location on the aperture. For example, if it is established that the greater degree 

of ohmic or surface error losses occur towards the outer edge of the antenna their 

contribution to the overall aperture efficiency calculation is diminished by the 

reduced illumination at the outer edge. The taper efficiency is defined by the 

following equation: 

 

2

2
.

aAP
i

aAP AP

E dS

E dS dS
η = ∫∫

∫∫ ∫∫
  (2.79) 

where Ea is the antenna aperture field and the integral is extended over the 

antenna aperture plane only (hence subscript AP). Evaluating the integral for a 

Gaussian illumination with edge taper α will yield the following relation: 

 
22 (1 exp( ))

1 exp( 2 )i

αη
α α

− −=
− −

  (2.80) 
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 where the taper ratio α is the ratio of the radius of the antenna aperture ra to the 

Gaussian beam radius at the aperture wa . 

→ ηs : Spillover efficiency. The spillover efficiency is directly related to the taper 

efficiency.  Only a certain proportion of the feed power will be intercepted by the 

antenna, the remainder is ‘spilled’ over the aperture edge. Spillover is given by  

 

2

2

aAP
s

a

E dS

E dS
η = ∫∫

∫∫
  (2.81) 

where the denominator is integrated over the entire aperture plane and the 

numerator is integrated over the antenna aperture plane. It should be noted that 

any spillover will intercept radiation from the ground, thus increasing the noise 

temperature of the antenna [43]. Integration of Equation 2.81 gives the spillover 

efficiency to be 

 1 exp( 2 )sη α= − −   (2.82) 

The aperture efficiency is defined as a compromise between the taper and the 

spillover, with the product of the spillover and taper efficiencies approximately 

equal to the entire aperture efficiency. Evaluating the entire efficiency integral 

yields the following relation for efficiency for a Gaussian feed with edge taper α 

 
22

(1 exp( ))iη α
α

= − −   (2.83) 

→ ηb : Blockage efficiency. The central subreflector and its support structure cause a 

partial blockage of the aperture, decreasing overall efficiency. The fractional  

blockage fb caused by a circularly symmetric subreflector of radius rb is taken to 

be fb = rb/ra. The net effect on the aperture efficiency is then given as  

 
22

(exp( ) exp( ))b bfη α α
α

= − − −   (2.85) 

→ ηe : Surface error. Any small scale surface deformations on the surface of the 

constituent reflector surfaces of the antenna will lead to phase errors over the 
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aperture. The effect has been quantified by Ruze [47] and is given by the 

following equation  

 
2 2 216 ( )

exp p s
e

π σ σ
η

λ
 +

= − 
 

  (2.86) 

where σp and σs are the RMS tolerances of the primary and secondary reflector 

surfaces. This ‘Ruze’ factor is evidently frequency dependent, with efficiency 

decreasing for increasing wavelength λ.  

 

The plot below in Figure 2-25 shows the illumination efficiency, spillover efficiency and 

aperture efficiency values with blockage effects included with respect to the taper ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

It is evident from Figure 2-25 that the aperture efficiency is a tradeoff combination of 

the illumination and spillover taper. The maximum aperture efficiency is achieved for a 

taper ratio α = 1.2564, or from the edge taper equation in  dB (Equation 2.26) TE = -10.9 

dB. For an unobstructed Gaussian illumination the maximum aperture efficiency is 

0.8145. For increasing blockage fraction fb the maximum aperture efficiency value 

decreases. The contour plot shown below in Figure 2-26 illustrates the evolution of the 
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Figure 2-25 - Contributions of taper efficiency and spillover efficiency to the 

aperture efficiency. The effect of blockage size can be seen on the taper efficiency 
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blockage efficiency nb (Equation 2.85) as a function of taper ratio α and fractional 

blockage fb 

 

 

 

 

 

 

 

 

 

 

The maximum aperture efficiency value will also be degraded further by the Ruze 

factor. The larger the RMS values of the surface of the reflectors the greater the 

degradation of the aperture efficiency.  

2.3.4 Antenna Main Beam 

An important consideration for any long-wavelength antenna is to understand where 

the observed power is coming from in the sky. A typical antenna power pattern is given 

below [48] and it describes how the antenna intercepts incident radiation over an 

angular extent. The power pattern consists of various parts known as lobes. The central 

main lobe is defined as the lobe containing the direction of maximum radiation. Any 

lobe other than the main lobe is called a minor lobe, which are themselves composed of 

sidelobes and backlobes. For a typical antenna the sidelobes are taken to be those lobes 

closest to the main lobe. If these sidelobes are strong relative to the main lobe then they 

could contribute undesired radiation from directions other than that of the main beam.  

 

 

 

Figure 2-26 - Contour plot of the blockage efficiency as a function of taper ratio α and 

blockage fraction fb 
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The half power beam width (HPBW) is defined in a plane as the angular width within 

which the radiation intensity is one half the maximum value of the beam. For an 

unblocked circular antenna this is given by [49] as 

 1.02 radHPBW
D

λ=   (2.87) 

where D is the diameter of the primary aperture. A more accurate description of the 

HPBW for a circularly symmetric antenna illuminated by a Gaussian beam is given by 

[3] as  

 [ ]1.02 0.0135 ( ) radeHPBW T dB
D

λ= +   (2.88) 

where Te is the edge taper of the illuminating Gaussian field at the antenna aperture. 

The values obtained in these equations (2.87 and 2.88) are obtained numerically [3]. It 

should be noted here that as the edge taper increases the sidelobe levels will decrease, 

yet the main lobe will subsequently broaden as it is under illuminated.  

 

 

 

 

Figure 2-27 - Typical antenna power patter [48] 
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2.4 GRASP9 Software Description 

The principle optical software package that is utilised throughout this thesis for optical 

characterization is GRASP9 (General Reflector and Antenna Farm Analysis Software), 

developed by TICRA. This software is considered the benchmark physical optics 

software package for use within the long wavelength optics regime for reflective optics 

systems, typically reflecting antenna systems for the ground based and space based 

astronomy industry and has been developed and refined based on industry 

requirements and backed by the European Space Agency (ESA) [50]. Within the Far 

Infrared and Submillimetre Optics group at NUI Maynooth GRASP9 has been used to 

model the optical performance of the Planck Surveyor, the Herschel Space Telescope, 

and more recently the optics for various receivers of ALMA by the Author [51], [52]. 

 

The GRASP9 package predicts the electromagnetic field from long wavelength reflector 

systems by first determining the fields from a source object and then predicting the 

resultant radiation after interaction with the reflective optics. This is achieved by 

solving the time variant Maxwell’s equations using approximations known as the 

Physical Optics (PO) approximation and the Physical Theory of Diffraction (PTD). The 

software is also capable of calculating output fields for high frequency systems where 

the geometrical limit holds true. At this limit the approximations become the 

Geometrical Optics (GO) approximation and the Geometrical Theory of Diffraction 

(GTD). Throughout this thesis only reflector systems operating in the mm/sub-mm 

range are considered, and hence only the PO and PTD approximations are discussed in 

detail here. In the following section a detailed treatment of these approximations is 

given [53], [54]. This is then followed by a description of how systems comprised of 

source feeds and reflector surfaces are generated in the GRASP9 software environment. 

2.4.1 PO & PTD Methods 

The PO technique is an approximation to the classical analytical solution of Maxwell’s 

equations, which concisely describe the behaviour of electric and magnetic fields. A 
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brief treatment of the analytical solutions of Maxwell’s equations is firstly reported 

here, which leads on to the description of the PO and PTD approximations.  

 

Direct solutions to Maxwell’s equations are very difficult for all but the simplest 

configurations. The aim here is to solve the expressions for the electric and magnetic 

fields due to an electric current source J and an equivalent magnetic current source M. 

To calculate these solutions, new functions of the electric and magnetic fields known as 

vector potential functions must first be determined. The electric and magnetic vector 

potential functions F and A are determined by J and M.  The radiated electric and 

magnetic fields can be calculated in a straightforward manner from these potential 

functions. The magnetic vector potential is related to the magnetic field by [43]: 

  
1

A µ
= ∇×H A   (2.89) 

where µ is the magnetic permeability of the conductor and the subscript A refers to the 

magnetic field due to the magnetic vector potential. From Maxwell’s curl equation for 

the magnetic field: 

 E Hjωµ∇ × = −   (2.90) 

where w is the angular frequency of the radiation the following relation for the electric 

field is thus determined: 

 E AA jφ ω= −∇ −   (2.91) 

where φ is a scalar electric potential which is a function of position. By employing the 

Lorenz condition, which is a partial gauge fixing of the magnetic vector potential A 

given in this situation is given as [43] 

 
1

A
j

φ
µωε

= − ∇⋅   (2.92) 

 

the magnetic vector potential will satisfy the Helmholtz equation such that: 

 2 2A A Jk µ∇ + = −   (2.93) 
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where k is the wavenumber. With this result the electric field E (i.e. Equation (2.91)) is 

then given as   

 ( )1
E A AA j jω

ωµε
= − − ∇ ∇⋅   (2.94) 

Similar expressions for the electric and magnetic fields due to the harmonic magnetic 

current M are given as  

 
1

E FF ε
= − ∇ ×   (2.95) 

 ( )1
H F FF j jω

ωµε
= − − ∇ ∇⋅   (2.96) 

where F is the electric vector potential. The total fields are obtained as a superposition 

of the individual fields due to A and F. The magnetic vector potential A due to the 

electric current distribution J is given as  

 
4

A J
jkR

S

e
ds

R

µ
π

−

= ∫∫   (2.97) 

and the electric vector potential F due to the magnetic current distribution M is given as  

 
4

F M
jkR

S

e
ds

R

ε
π

−

= ∫∫   (2.98) 

where R is the distance from any point in the source distribution to the observation 

point and the integration takes place over the surface of the source distribution S.  The 

total fields are thus calculated by combining Equations 2.94, 2.95, 2.89 and 2.98.  

 ( )1 1
E E E A A FA F j jω

ωµε ε
= + = − − ∇ ∇⋅ − ∇ ×   (2.99) 

 ( )1 1
H H H A F FA F j jω

µ ωµε
= + = ∇ × − − ∇ ∇⋅   (2.100) 

The electric and magnetic fields from a set of induced or equivalent currents can thus be 

calculated, assuming that the current distribution in known. The near and far fields of 

this radiated field are calculated by applying the appropriate approximations to these 

integrals with regard to the distance of the observation point from the source 

distribution.  
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The PO approximation to the solution of the radiated fields from a known current 

distribution can now be formulated. A radiated field from a scatterer surface is treated 

as a solution to a scattering problem, where the following relation applies: 

 E E Etot inc scat= +   (2.101) 

Where Etot is the total electrical field, Einc is the incident field and Escat is the scattered 

field. The process of determining the scattered field is threefold: 

• The first step is to calculate the induced (or equivalent) currents on the surface of 

the scatterer. In the PO framework these induced currents are generated by an 

incident electromagnetic field.  

• The second step is to calculate the scattered (radiated) field from these current 

distributions 

• The final step is to combine the incident and scattered fields to give the total field 

distribution.  

The PO approximation allows for a simple calculation of the induced currents upon the 

surface of the scatterer, which is assumed to be large in terms of wavelengths. The PO 

approximation method can calculate the radiated fields for both perfect and imperfect 

conductors, providing the reflection and transmission coefficients are known. Without 

this approximation the first step of the scattering problem is very time consuming, 

requiring the calculation of intensive integrals. The PO approximation is expressed as 

the calculation of the currents induced upon a perfectly conducting infinite plane 

surface that is illuminated by an arbitrary incident field [50], [53] 

 2J H in= ×   (2.102) 

where n is the unit normal vector of the scatterer surface and Hinc is the incident 

magnetic field. This equation will work for curved surfaces where the local radius of 

curvature is large in terms of wavelengths.  

 

Depending on whether the fields are sought for the near or far field the integrals will 

take different approximate forms [50]. The electric and magnetic fields are calculated as 
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two-dimensional numerical integrations of these equations. The integration area of the 

scatterer is determined by its rim, which in GRASP9 is commonly a smooth curve, a 

parallelogram or a triangle. The accuracy of the PO integration is determined by the 

degree of sampling over the scatterer surface, which as will be explained can be either 

chosen manually or calculated in GRASP9 through the PO convergence tool.  

2.4.1.1 Spillover Calculation 

As the induced PO currents on a scatterer are calculated it is possible to calculate the 

power contained within the incident field. This incident power is calculated using the 

Poynting vector S over the scatterer surface: 

 ( )1 Re2S E H∗= ×   (2.103) 

where Re denotes the real part and * the complex conjugate. The power ∆W hitting a 

finite surface element of area ∆s is calculated using S: 

 ˆS×nW s∆ = − ∆   (2.104) 

where n̂  is the unit surface normal pointing towards the illuminate face of the scatterer. 

The total power over the entire surface is calculated through a two-dimensional surface 

integral of the form 

  ( )ˆ( )P n
S

W r r ds= − ⋅∫∫   (2.105) 

which can be evaluated numerically. The spillover, defined as the amount of power that 

misses the scatterer surface, is calculated in dB [50] 

   10

4
10logSO

W

π =  
 

  (2.106) 

where the factor of 4̟ signifies the normalization of the incident field to 4̟ watts. This 

spillover calculation can thus be interpreted as a logarithmic subtraction of power 

incident upon the scatterer from unity power. By keeping track of the spillover values, 

the total power lost from a normalised source field such as a feed horn over a series of 

scatterers can be calculated using Equation 2.106. For a series of n reflectors, the 

spillover calculation is given as 
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 
  (2.107) 

This is illustrated in the following diagram: 

 

 

 

It is noted also here that the spillover efficiency of a system is defined as the ratio of 

power transmitted to the desired output plane over the incident power, which is 

essentially the ratio of the logarithm in Equation 2.107.  

2.4.1.2 Physical Optics Convergence  

One of the strengths of the PO calculations in GRASP9 is the convergence tool [50]. This 

tool calculates the minimum required sampling for a PO integration grid to produce the 

required radiated field. If the sampling of the grid is too low then the results will be 

inaccurate, and if they are too large the calculation of the numerical integrations will be 

unnecessarily long. The density of the PO integration grid is specified by the variables 

po1 and po2. These values can be automatically determined, and are dependent on both 

the current distribution on the scatterer and the location of the output points, which can 

be either the integration grid of the next reflector in the optical path or the field points 

of an output plane. The values for po1 and po2 are determined using an iterative 

accuracy technique. Output fields are determined for increasing values of po1 and po2 

until the difference in the fields is less than 2010
ξ

 relative to the maximum field values at 

Source power 
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Figure 2-28 - Spillover calculation for multiple reflectors 
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all output points, at which point the convergence is deemed acceptable. The value ξ, 

known as the field accuracy, is given in  dB and is specified by the user. This procedure 

is performed for an increasing value of po1 while po2 is fixed. When the desired value of 

po1 is determined, the process is repeated with the numbers swapped. The product of 

the two po values gives an indication of the time required for calculation of the output 

field pattern. The geometry of the reflector surface and its rim will determine the 

number of required po points and the overall calculation time. For complex surfaces and 

rims a high degree of accuracy (-80 dB ≤) is typically recommended.  

2.4.2 Physical Theory of Diffraction (PTD) 

The PO approximation gives an approximate solution to the scattered field by 

calculating the induced currents providing the surface can be locally defined as planar. 

This does not hold at the truncated edges of the scatterer, and thus the edge effects of 

the field here are not truly approximated by the PO technique. To calculate the currents 

at these non-uniform edge sections the Physical Theory of Diffraction (PTD) is 

employed. According to [55] these non-uniform surface fields are determined using the 

results of scattering problems, referred to as canonical problems.  The PTD technique 

employed by GRASP9 involves calculating the equivalent edge currents along the 

illuminated edge of the scatterer for incremental surface area strips. Along these 

incremental strips the PTD contributions are separated into TE and TM components, 

which are then combined to give the local radiated field. This PTD approximation is 

only valid if the local incident field at the edge of the scatterer behaves as a plane wave 

[50] 

The PTD technique is recommended when the reflectors being modeled have a 

moderate degree of truncation. Another application of the PTD technique is for the 

contribution to the overall field due to a gap or hole in a reflector surface, such as the 

central hole in the primary reflector for a Cassegrain antenna. In this situation the PTD 

calculation will account for the induced currents on one edge due to the currents on 

another edge. The canonical problem according to [55], [50] is the diffraction of an 
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appropriately oriented plane wave on a slit or gap. The problem reduces to two scalar 

solutions for the incident electric and magnetic fields. The desired non-uniform surface 

field associated with the edge is found from the total field minus the PO field. In 

GRASP9 this technique is based upon the Babinet principle, where the gap or hole is 

treated as a perfect electrical conductor of the same spatial dimensions of the gap. If the 

gap is narrower than 0.32λ then a narrow-gap approximation is used, otherwise a wide-

gap approximation is used. These approximations will set the accuracy of the 

integration grids, where the integration variables ptd1 and ptd2 similar to the PO 

integration values are employed. For the narrow-gap approximation only the ptd1 

variable is used. For the wide-gap approximation, a 2D integration grid is defined using 

both ptd1 and ptd2.  

 

The combined PO and PTD field calculations provide very accurate results for the fields 

scattered by uniform and non-uniform reflectors illuminated by radiation from typical 

long-wavelength sources such as feed horns. In Chapter 3 of this thesis the differences 

in the PO calculation compared to the full PO and PTD calculations are highlighted 

with respect to a Fresnel-type diffraction setup. The predicted electromagnetic output 

fields from that of the ALMA front end optics channels covered in Chapters 4 and 5 of 

this thesis were generated using the PO and PTD tool.  

 

2.4.3 System Generation in GRASP9 

Implementing and analysing systems is achieved primarily through the use of two 

graphical user interfaces (GUIs); the pre-processor and post-processor, though it is also 

possible to create systems and perform analysis using the TICRA Object Repository 

(*.tor) and TICRA Command Input (*.tci) files. These files form the structure of any 

GRASP project file and describe the input of objects describing the system to be 

calculated and the list of analysis calculation commands to be implemented 

respectively. The pre-processor GUI allows the user to create these *.tor and *.tci files 
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without direct coding. The pre-processor also provides an OpenGL 3D description of 

the system, allowing the user to keep a visual track of the system. The post-processor 

tool is primarily used for plotting the resultant fields from the pre-processor 

calculations.   

 

 

There are many diverse types of optical systems that can be analysed using GRASP9, 

and several methods to implement them. Each element within an optical system is 

defined using a set of properties specific to that particular element. All elements are 

located within the optical system using a local coordinate frame of reference. The 

descriptions contained below will be limited to those that have been chiefly utilised by 

the Author throughout the course of this thesis. These systems can be considered 

typical mm/submm optical systems containing off-axis quadratic surfaces such as 

ellipsoids or paraboloids illuminated by a feed horn such as a conical corrugated horn.  
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Figure 2-29 - GRASP9 pre-processor GUI with main components highlighted 
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2.4.4 Sources 

For the analysis presented in this thesis, three methods were employed to create 

electromagnetic source fields. The first two source objects are generated by GRASP9 

itself and the third is a user generated source field.  

2.4.4.1 – Gaussian Beam – Near Field 

This is the most basic field description used in the analysis of the reflector optics in this 

thesis. This feed radiates a fundamental Gaussian beam, defined using the near-field 

parameters of the Gaussian beam. This provides the source field with a Gaussian taper 

and satisfies Maxwell’s equations in both the near and far field. A fundamental 

Gaussian beam is used as first order model for the radiation from a conical corrugated 

horn. Parameters required are illustrated in Figure 2-30 and are defined below: 

• Beam Radius – perpendicular distance from axis at which the field is 

decreased to 1/e of the on-axis field. 

• Phase Front Radius – radius of curvature of the beam phase-front surface at 

the desired plane. This can be positive or negative, and for an infinite phase-

front radius of curvature at a beam waist the value is set to zero. 

 

 

 

 

RC 

w0 

z0 

w 

Figure 2-30 - Gaussian Beam - Near field definition; Rc = phase front radius of curvature, w0 = 

beam waist, w = beam radius at desired plane, z0 = distance from beam waist 
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2.4.4.2 Hybrid Mode Conical Horn 

This feed pattern is a more rigorous description of the beam produced from a conical 

corrugated horn, the details of which have already been covered previously in this 

chapter (Section 2.3.1).  This pattern makes the assumption that the horn is operating 

under the balanced-hybrid condition [44] and has a narrow flare angle of <20°. The 

required inputs for this source object are the aperture radius, the semi flare angle and 

the distance to the phase centre of the horn [Section 2.3.1]. The hybrid modes HEmn, 

EHmn and cylindrical modes TE0n and TM0n are supported by this feed type.  

 

 

 

 

 

 

 

 

Figure 2-32 – The typical geometrical description for a conical corrugated horn, as modelled in 

GRASP9 using the Hybrid Mode Conical Horn source object.  

Figure 2-31 - Gaussian Beam as illustrated in GRASP9 environment 
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2.4.4.3 Tabulated Planar Source 

This source object is created externally by the user, either from some theoretical 

prediction method or a physical measurement from a real source and can then be 

propagated within the system. This is the principal source object used for analysis 

throughout this thesis. The electromagnetic field at the aperture of the desired feed horn 

is generated by the mode matching software SCATTER, the details of which are covered 

in Chapter 4. This aperture field is then implemented as a complex 3D vector field 

source. This field is defined in a specific GRASP9 grid format. 

The SCATTER approach has been justified as an excellent prediction of the aperture 

field distribution from a conical corrugated horn [45], [56] and as such is more desirable 

as a source field within GRASP9 over either the Gaussian Beam or Hybrid Mode 

Conical Horn source fields. The advantage of accuracy of the SCATTER field 

description is balanced by increased calculation time compared to those of the GRASP9 

specific sources. Physical optics calculations for these objects may be streamlined for 

efficiency using the PO convergence method, whereas for the tabulated source object 

the sampling must be assigned manually. The lack of a convergence calculation to 

determine the optimum degree of sampling requires the user to typically over-estimate 

the sampling to ensure accuracy.  

2.4.5 GRASP Reflectors 

A reflector object is generated in GRASP using three main objects; a surface object, a rim 

object and a material or electromagnetic properties object. The GRASP9 library itself 

already contains the most popular surface types, including simple plane surfaces and 

quadratic surfaces such as ellipsoids and paraboloids. These surface objects are typically 

created using their fundamental parameters such as vertex or focal length. The majority 

of surfaces that have been analysed throughout this thesis have been off-axis ellipsoids, 

which have been implemented in GRASP9 using the 2nd order polynomial description. 
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The subsection below contains a brief description of how the polynomial description of 

such an off-axis ellipsoidal surface is calculated.  

2.4.5.1 Off-Axis Ellipsoidal Surface 

An ellipsoid is a three dimensional surface generated as an ellipse rotated about one of 

its axes. The defining parameters of an ellipse are given below in Figure 2-33. The 

ellipse below includes the standard defining parameters: the major axis 2a, the minor 

axis 2b, the focal points F1 and F2 and the interfocal distance 2c.  

 

 

 

 

 

 

 

 

 

 

 

 

 

To create the desired ellipsoid to correctly reflect an optical beam the source of incident 

radiation is located at one focal point, ensuring that upon reflection the beam will be 

focused to the other focal point. This is best illustrated below in Figure 2-33 by the input 

and output radii of curvature, R1 and R2 in red, representing a typical optical train for 

an incident and reflected beam between the two foci. The sum of these two radii is 

equal to the length of the major axis a: 
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Figure 2-33 - Ellipse parameters including input and output radii of 

curvature for typical incident and reflected beam between foci 
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The focal length of the ellipse is defined using the geometrical relation 

 
1 1 1

1 2f R R
= +   (2.109) 

The angle of throw, θ is used in combination with the focal length to then find the minor 

axis length b: 

 1 2 cos( )b R R θ=   (2.110) 

The interfocal distance and eccentricity of the ellipse are then determined: 

 2 2c a b= −   (2.111) 
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a
= −   (2.112) 

The defining polynomial equation for an ellipsoid is given as:  

 
( ) 22 2 1
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Rad Rad

++ + + =
h

  (2.113) 

where k is the conic constant of the ellipse, given as k = -e2 and Rad is the radius of 

curvature of the ellipsoid, given as Rad = a (1 – e2). The ellipsoidal surface can then be 

generated in GRASP9 as a 2nd order polynomial quadric surface. The surface may then 

be tilted and decentred as required within the definition of the surface object.  

2.4.5.2 Ideal Grid 

Reflector surfaces are typically defined in GRASP9 as perfect electrical conductors, 

whereupon they have perfect unity reflectivity and zero transmission. In GRASP9 an 

electrical properties element can be assigned to the description of the scatterer. This 

element describes the reflection and transmission properties of the material of which the 

scatterer is comprised. The ideal grid electrical properties element is an idealization of 

strip or wire grids. It can be thought of as an infinitely thin sheet of closely spaced 

perfectly conducting parallel wires. This grid is projected upon the surface of the 

scatterer from a chosen inclination direction. For a linearly polarised beam incident 

upon this grid, all parallel field components will be reflected while those orthogonal 
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components will be transmitted. This ideal grid element is used to approximate the 

reflection and transmission properties of two wire grid polarisers, detailed in Chapter 6.   

2.5 MODAL Software Description 

MODAL (Maynooth Optical Design & Analysis Laboratory) is an optics software 

package developed by the Terahertz Space Optics Group at the Experimental Physics 

Department at NUI Maynooth. The software was designed specifically for operation in 

the Far-Infrared to Terahertz regime, and uses a variety of optics propagation methods, 

including scalar Fresnel propagation, full vector PO and Singular Value Decomposition 

(SVD) of Gaussian Beam Modes [57]. The software also integrates the SCATTER mode-

matching software, allowing direct contribution from waveguide and feed horns. The 

MODAL working environment is shown below in Figure 2-34. 

 

 

 

 

 

 

 

In a similar process to GRASP9, all optical elements in MODAL are placed within the 

overall system by local coordinate frame. These coordinate frames can be defined in 

many different ways; by Cartesian or polar coordinates relative to any other defined 

frame, by vectors from a surface normal or by a transformation of some other frame. 

Each system element is defined by its own set of specific properties. For example, a 

mirror element will have a geometrical surface property that defines the mathematical 

surface and a bounding volume property that determines the calculable area of the 

Figure 2-34 - MODAL design environment displaying project window and 3D OpenGL display of 

project components 
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mirror. Once the components of the system have been defined the source field as it is 

propagated throughout the system is described using the MODAL field propagators, 

the details of which are given below in Section 2.5.1. Once the required field 

propagation calculations have been performed the field at the desired output plane is 

calculated. The output field is represented in an output dataset which can then be 

plotted within the MODAL environment or exported as a formatted data file. 

2.5.1 MODAL Propagation Techniques 

The radiated fields from either source objects or optical elements such as mirrors and 

lenses are determined by a propagator object. A scalar treatment of the radiated fields 

can be calculated through calculation of the classical Fresnel diffraction integrals. 

Another method of propagating a scalar field description of a source beam throughout 

the optical system is the Singular Value Decomposition (SVD) of the GBM description 

of the field. As discussed earlier in Section 2.1 GBM’s represent a scalar solution to the 

paraxial wave equation. If a field is known at a particular point within the optical train 

of the beam it is straightforward to model the propagation of the field by keeping track 

of the evolution of the Gaussian beam parameters using ABCD matrices (c.f. Section 

2.1.5.1) If the beam interacts with an optical element such as a mirror or a lens then 

power will become scattered between adjacent modes. Indeed, if an off-axis mirror is 

treated as an inclined phase transformer then it is necessary to calculate the mode 

coefficients of the scattered field over a plane that is not orthogonal to the direction of 

propagation and therefore over which the mode set itself is not orthogonal [58]. Such 

considerations limit the ability of GBMs to accurately describe the scattered field. An 

alternative calculation of these mode coefficients is found through use of SVD. A 

complete treatment of the SVD technique as it applies to MODAL can be found in [59] 

and [60]. The SVD of GBMs in MODAL represents an improvement in computational 

efficiency for scalar representations of the electromagnetic beams within an optical 

system.  
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The vector treatment of a propagated field in MODAL is realised through the PO 

approximation. The PO integrals utilised in MODAL are equivalent to those described 

for GRASP in Section 2.4.1. At the time of writing there was no PO convergence tool 

included in MODAL. The number of integration points for the PO propagator, and 

hence the accuracy of the calculations is currently determined manually by the user. 

The sampling of PO points upon a scatterer surface must be sufficiently dense to 

accurately describe the scattered fields. The software package also currently lacks a PTD 

tool for calculating the contributions to the scattered field by edge currents.  

2.5.2 MODAL Sources 

There are several available source beam descriptions available in MODAL. Those 

source objects that were most commonly used throughout this thesis are briefly 

described below. All source objects in MODAL are defined by the following elements: 

• Geometry - this defines the coordinate frame of the object and its physical 

properties 

• Fields – this defines the characteristics of the electromagnetic fields emanating 

from the source itself 

• Propagators – this defines the propagators for the source object and whether they 

are of a scalar or vector nature.  

2.5.2.1 Hermite Gaussian Mode 

This source element defines a standard Hermite-Gaussian beam of arbitrary order. The 

field is defined using the Gaussian beam parameters of beam radius w, phase radius of 

curvature R and the Hermite x and y orders n and m. This type of source represents a 

basic, scalar field description of a typical submillimetre source beam such as a scalar 

feed horn. 

2.5.2.2 Conical Corrugated Horn 

This source element generates a scalar field representation of the beam from a conical 

corrugated horn operating under the balanced hybrid condition. This is a similar field 
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representation as the Hybrid Mode Conical Horn source object from GRASP (Section 

2.4.4.2). The field is defined by the aperture radius and slant length of the horn.   

2.5.2.3 SCATTER Horn 

This source element generates the aperture field distribution for a feed horn through 

use of the mode-matching SCATTER code. This is similar to the Tabulated Planar 

Source from GRASP except that the SCATTER code has been directly integrated into the 

MODAL package. The user requires only an input text file that contains a geometrical 

description of the horn. The figure below shows a SCATTER horn object displayed 

within the MODAL OpenGL window.  

 

 

 

 

 

  

2.5.3 MODAL Reflectors 

Reflectors can be defined within the MODAL environment in a number of ways. The 

most commonly used reflector shapes are pre-defined as ellipsoidal, paraboloidal and 

hyperboloidal. The user is also free to define a mirror object from a selection of surface 

types such as even or odd aspheric surfaces, intersecting planes or spheroid shapes. 

Each of these mirror objects is defined by its position within the system and its physical 

parameters such as its focal length and dimensions. Each mirror will also have its own 

propagator element, which is defined as either scalar or vector in nature and must also 

have a source element that defines the field incident upon its surface. Such propagator 

Figure 2-35 -3D display of a SCATTER horn object in MODAL 
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sources can be from either a source object such as those described in Section 2.5.2 or 

from another coupled mirror object.  

 

Unlike GRASP9, MODAL is capable of calculating the propagation of electromagnetic 

vector fields through dielectric elements such as lenses or windows. A brief description 

of how MODAL calculates the reflected and transmitted fields through a dielectric by 

PO is given below.  

2.5.3.1 Dielectric Lenses 

An advantage of the MODAL software is that it can model the effects of dielectric 

lenses. Lens objects are simulated in MODAL by treating their two faces as dielectric 

interfaces. The PO approach to calculating the effect of a dielectric lens from [60] is 

illustrated below in Figure 2-36.  

 

 

The incident field I at the front surface is first decomposed into the transmitted and 

reflected components L(0) and R(0) respectively, by treating it as a locally spherical 

wave. The local direction of the Poynting vector and the normal to the surface are used 

to determine the angle of incidence. The orientation and complex amplitude of the 

transmitted and reflected fields are determined using the standard Fresnel relationships 

[25]. The transmitted component is then propagated to the back surface, where new 

transmitted and reflected components L(1) and R(1) are determined. This process is 

repeated for a number of iterations n and the total transmitted and reflected fields are 

calculated by summing the contributions from all completed iterations. 

I 

R = R(0) + R(2) + ... 

R(2) 

L(0) 

L(1) 

L(2) 

T(1) 

T(3) 

R(0) 

T = T(1) + T(3) + ... 

Figure 2-36 - PO propagation through a dielectric lens 
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2.6 ZEMAX Software Description 

The ZEMAX software package from the ZEMAX Development Corporation is an 

extensively used commercial optical design and analysis tool, most traditionally used 

within the optical components industry. The ZEMAX package is primarily used within 

the geometrical optics waveband and has the capability to model many complex optical 

systems. Examples of such systems include commercial applications such as LCD 

backlighting, light engines for digital projectors and camera lenses as well as research 

and science based applications such as optical telescopes, microscopes, lasers and other 

coherent optical systems such as interferometers. The software is chiefly used for 

paraxial systems with optics that generally lie in line with one another, whether 

sequentially or otherwise though it has also been used for off-axis systems such as 

Cassegrain telescopes. The software is very powerful in determining those image 

distortions that inhabit lens based systems such as coma, astigmatism and irregular 

field curvature effects such as the Petzval Wavefront aberrations [61]. 

Alongside the ability to design and model such systems, ZEMAX also contains two very 

useful tools known as solves and optimization. Solves are functions which actively 

adjust specific values such as curvature, thickness, radius, conics etc., which best suit 

the specified output for the system. The optimization feature is a powerful tool capable 

of improving lens designs, providing the user defines a reasonable starting point and a 

set of variable parameters. The optimization algorithms, of which there are many types, 

use a merit function as a numerical representation of how closely a system matches the 

desired outcomes such as image quality, focal length, magnification etc. This merit 

function is calculated using the sum of squares differences between the actual system 

values and the target values, and then the optimization feature seeks to minimize these 

differences to achieve the best possible system configuration.  
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2.6.1 Propagation Techniques 

The geometrical optics method in ZEMAX uses ray tracing to analyse the optical 

system. This method is not well suited to successfully model diffraction effects that are 

dominant in THz systems. The software also features a Physical Optics Propagation 

(POP) tool that was developed to model these diffraction effects. The POP tool uses an 

array of discretely sampled points to represent the electromagnetic source field and 

propagates this field through the systems using mutually interfering wavefronts. A 

transfer function is then used to transfer the beam from one side of the optical surface to 

another. The POP tool uses two propagator methods which are essentially 

approximations, depending on the system parameters. It should be noted that neither of 

these techniques uses the PO integrals utilised by either GRASP or MODAL. 

For a system defined with an aperture of radius a, a propagation distance from said 

aperture of D the Fresnel number F is   

 
2a

F
Dλ

=   (2.114) 

where as usual  λ is the wavelength of radiation. For systems with small Fresnel 

numbers i.e. less than 1, the output plane is in the farfield or Fraunhofer region. When 

the Fresnel number is large i.e. greater than 1, then the output plane is in the near field. 

In ZEMAX the angular spectrum propagator is used for systems where the Fresnel 

number is large. This includes when a beam is both propagated over a short distance or 

when propagating over a large distance when the beam divergence is kept to a 

minimum. The method of angular spectrum propagation decomposes the field into 

plane waves using a Fourier transform, then propagates the field using a plane to plane 

propagator and then the resultant field is formed by inverse Fourier transforming the 

plane wave distribution. For systems with a small Fresnel number a different 

propagator is used, referred to as the Fresnel diffraction propagator. This propagator 

uses the assumptions of Fresnel diffraction theory. However, both the angular spectrum 

and Fresnel diffraction propagator are developed assuming that the beam does not 
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diverge too quickly; that is to say that the beam cannot be too fast. Neither theory will 

accurately predict the correct diffraction results in this case.  

2.6.2 Source Beams 

The initial source beams in ZEMAX can be defined as either a Gaussian beam, a Top 

Hat, a Multimode source or a user created source file. The Gaussian beam can be 

defined in a number of ways. The Gaussian Waist source object defines an optionally 

truncated and decentred Hermite-Gaussian beam of arbitrary order. The Gaussian 

Angle beam is an optionally decentred TEM00 mode whose waist size is determined by 

the farfield divergence angle θ defined earlier by Equations 2.2 and 2.3. A Gaussian 

source can also be defined using the Gaussian Size+Angle beam which is an optionally 

decentred TEM00 mode defined by local beam radius at the starting surface and the far 

field divergence angle. The Top-Hat beam is an optionally decentred circularly 

symmetric uniform amplitude beam. A beam may also be defined by the user as a 

binary or ASCII format file containing a beam of size nx*ny with x and y field amplitude 

values. The multimode beam object consists of a sum of any number of other beams 

which is also defined by the user in an ASCII file that contains information regarding 

the separate beams and determines whether the beams are added coherently or 

incoherently [61] 

2.6.3 Surfaces 

Creating optical systems in ZEMAX is achieved through the use of the Lens Data Editor 

(LDE). The LDE is the primary spreadsheet where the majority of the system data is 

entered and altered. The main entries of the LDE include the surface type, the radius, 

the thickness, the glass type and the semi-diameter. Different surface types will include 

different parameter entries that will define the surface. Other system parameters are 

defined in various tabs.  
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Inserting a surface in ZEMAX is performed in the LDE. Each row of the LDE represents 

a single surface; therefore two surfaces separated by glass can comprise a single 

element. Defining a single lens will therefore require four surfaces: the object surface 

(OBJ) from where the rays are launched, the front and back surfaces of the lens and the 

image surface where the ray trace stops.  

 

Defining on-axis elements such as sequential lenses or even on-axis reflector systems 

such as Cassegrain telescopes is relatively straightforward in ZEMAX given the nature 

of the LDE. The defining of off-axis reflectors is more involved, requiring the use of 

special surfaces called Coordinate Breaks (CBs). These CBs are used to redefine the 

coordinate system in terms of the current system. A CB can decentre the local 

coordinate system in either x or y and tilt it about x, y or z.  

 

 

 

Figure 2-37 - Illustration of ZEMAX software package user window, displaying the LDE, a 3D layout 

of the optical system and a sample contout output plot from the POP tool. 
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2.7 CST Microwave Studio

The Computer Simulation Technology Microwave Studio® (CST

electromagnetic design and simulation tool that uses the Finite Difference Time Domain 

(FDTD) method to solve Maxwell’s equations for complex microwave s

FDTD method is achieved by replacing the partial space and time derivatives in 

Maxwell’s curl equations by finite differences

evaluation of the time depend

dividing it into finite 3D cells or grids. The flow chart below shows the general structure 

of the FDTD algorithm [63]. 

 

Figure 2-38 - Block diagram of the major building blocks for the FDTD algorithm
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MWS) is a commercial 

electromagnetic design and simulation tool that uses the Finite Difference Time Domain 

(FDTD) method to solve Maxwell’s equations for complex microwave structures. The 

FDTD method is achieved by replacing the partial space and time derivatives in 

. This allows for a numerical 

equations for a particular structure by 

dividing it into finite 3D cells or grids. The flow chart below shows the general structure 

 

Block diagram of the major building blocks for the FDTD algorithm 

hnique in its Transient Solver [64]. The 

D process in CST can be considered a ‘leapfrog’ method. The electric field vector in 

a space is solved for a given instant. Then the magnetic field vector is solved in the same 

space for the next instant in time. This process is repeated until a transient or steady 

Iteration 
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state EM field is achieved. This Transient Solver allows for the calculation of scattering 

parameters, electromagnetic field distributions, antenna radiation patterns and other 

relevant antenna and signal parameters. The CST-MWS package is utilised in Chapter 4 

as a verification technique to the mode-matching code SCATTER.  

2.8 Conclusion 

In this chapter the background theory of the two analysis techniques employed in this 

thesis are detailed, namely Gaussian Beam Mode analysis and the various 

electromagnetic propagation methods employed by the software packages GRASP, 

MODAL and ZEMAX. The various techniques employed by these three software 

packages are discussed and tested in detail in Chapter 3. In the two following chapters, 

the analysis of the two ALMA front end optics channels (Bands 5 and 9) is performed as 

a combination of GBMA and PO and PTD predictions from GRASP. The theory of 

GBMs is introduced and a complete description of the propagation and transformation 

of Gaussian beams is detailed. The GBM technique was used to model the Fresnel 

diffraction patterns from a truncating circular aperture and the Haidinger and Fizeau 

fringe patterns from a Michelson interferometer. These Fresnel diffraction patterns are 

also modelled using the Fourier Optics technique of the Angular Spectrum of Plane 

Waves. The operational procedures for the three optical software packages was 

described, with specific attention to the design of off-axis reflectors commonly 

encountered throughout the millimetre/submillimetre regime and more specifically 

throughout this thesis. A detailed description of the PO and PTD approximations to 

describing the scattering of electromagnetic beams is also presented.  
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3. Far Infrared Optics Design and Verification Tools 

3.1 Introduction 

The work presented in this chapter represents an expansion and development on 

research from a paper entitled “Far Infrared Optics Design and Verification” [22] where 

various analysis software packages were tested for a variety of different quasioptical 

examples. The original report [65] summarized in the above paper [22] was a 

collaborative effort from optics research groups at NUI Maynooth, Cavendish 

Laboratory at the University of Cambridge, the UK Astronomy Technology Centre (UK-

ATC) in Edinburgh and the Space Research Organisation of the Netherlands (SRON) in 

Groningen. The purpose of this group research project was to compare various 

commercially available optics software packages (GRASPh, GLAD, ASAP, CODEV) and 

their ability to correctly model diffraction dominated systems at long 

wavelengths/submillimetre wavelengths. These optics packages have not been 

specifically designed for use at these longer wavelengths, being primarily used for the 

visible spectrum (apart from GRASP9), but do have some diffraction capabilities. The 

initial research project involved testing these optical packages using various test cases 

representing extreme cases of diffraction and using different classes of sources.  

 

Since the publication of this report in 2002, there have been two new optical software 

packages that are considered important in the field: ZEMAX and MODAL. At the time 

of the original report (1999), diffraction propagation in ZEMAX was relatively new and 

was considered to mainly serve the commercial geometrical optics market. Indeed, the 

research report included some simple ZEMAX results and an initial assessment of 

ZEMAX’s capabilities. It was declared at the time that ZEMAX could only handle point 

sources and plane waves, which were essentially points sources at infinity and there 

was no ability to model Gaussian beams or scalar horns. Since that time ZEMAX has 

developed a Physical Optics capability known as the POP tool, as described previously 

in Section 2.6.1 and has been routinely utilised within the Far Infrared and 
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Submillimetre Optics Group at NUI Maynooth for analyzing long wavelength systems 

such as QUaD [66], [67].  It is therefore essential that an independent, in depth 

investigation into the performance of the ZEMAX POP tool within the long-wavelength 

regime be carried out and compared with known examples for validation. The Far 

Infrared Optics Design & Verification report represents an ideal test base for such an 

investigation. 

 

The other software package that has been tested alongside ZEMAX is the quasioptical 

software package MODAL (detailed in Section 2.5) which has been developed within 

the Far Infrared and Submillimetre Optics Group at NUI Maynooth [59]. Though there 

have been several confirmations of this software’s performance within the long 

wavelength optics regime [57], [60] it is prudent to include MODAL within this set of 

test cases as they are designed to test the limits of performance for extreme cases of 

diffraction.  

 

As with the report upon which this chapter expands the GRASP9 Physical Optics (PO) 

package was used as the benchmark. Since the reports publication there have been 

improvements made to GRASP9, including more accurate descriptions of sources, more 

electrical surface characteristics and a Physical Theory of Diffraction (PTD) tool that 

ensures more accurate prediction of diffracted fields from the edge currents from 

reflectors. In the original paper the only method of determining the effects of these edge 

currents was achieved using the Geometrical Theory of Diffraction (GTD). Though this 

tool is still included in the current GRASP9, it is considered inferior for the test cases 

presented and is thus not included in the investigation. The processes of implementing 

optical elements such as sources and reflecting and refracting surfaces within each of 

the three software packages has been covered in detail in Chapter 2.  
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3.2 Test Cases 

In this section the complete description of the various diffraction dominated optical test 

cases and the subsequent analysis and results of the analyses performed using GRASP9, 

MODAL and ZEMAX are reported.  

3.2.1 Test Case 1  

The first set of test cases involves modelling diffraction effects of a truncating aperture 

stop in a screen for different types of sources. These sources include an ideal plane 

wave, an ideal point source and a fundamental Gaussian beam. The near and far field 

results are analysed for the plane wave sources, while only the far field results are 

regarded for the ideal point source and the Gaussian beam. The apertures are circular, 

and their sizes vary for the plane wave source, and are constant for the point source and 

Gaussian beam.  Each of the test cases is described in detail below in Figure 3-1 and 

Table 3-1. The wavelength of each source, and all sources in each test case presented, is 

1.0 mm. 

(a) (b) 

 

 

 

Figure 3-1 – Layouts of Test Cases 1A, 1B & 1C. Plane wave source illuminating truncating 

aperture for 1A & 1B (c.f. (a)) and point source illumination for 1C (c.f. (b))  
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Table 3-1 – Test Case 1 details – all dimensions are in millimetres 

PLANE WAVE (near field, a varies) 

Radius : a 3 10 30 

ZOUT (near field) 2.25 25 225 

Case No.  1a1 1a2 1a3 

PLANE WAVE (far field, a varies) 

Radius : a 3 10 30 

ZOUT (far field) 180 2000 18000 

Case No.  1b1 1b2 1b3 

POINT SOURCE (far field, F number varies) 

Radius : a 10 

ZIN 2 60 200 

ZOUT (far field) 2000 2000 2000 

Case No.  1c1 1c2 1c3 

GAUSSIAN BEAM (far field , incident F number varies) 

Radius : a 10 

W0 0.637 1.947 5.93 

ZIN 20 60 150 

ZOUT (far field) 2000 2000 2000 

Case No.  1d1 1d2 1d3 

ZIN ZOUT 

a 
w0 

Gaussian 

Beam 

Figure 3-2 - Layout of Test Case 1D. Illumination of truncating aperture by fundamental 

Gaussian beam of waist w0 
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For the two test cases where the aperture is illuminated by a finite spatial source, i.e. a 

point source for 1C and a Gaussian beam for 1D, the F-number of the incident beam 

refers to the ratio of the aperture diameter to the input distance.  

3.2.2 Test Case 1 Results 

Planar cuts of beam intensity at the output planes for each test case are used to compare 

the results from each software package. In each case the results were normalised for a 

unity power peak, which allowed plots to be superimposed for easier comparison. 

Test Cases 1A – (Near Field of Plane Wave Illuminated Aperture) 

These test cases model basic diffraction of a plane wave beam by a truncating circular 

aperture in the near field. This can be considered classic Fresnel Diffraction [25]. The 

system arrangement was modelled in ZEMAX using a circular aperture stop object and 

a co-axial measurement plane using the dimensions listed in Table 3-1. To predict the 

diffracted field the POP tool was used. The plane wave source is emulated using the 

‘Top Hat’ source field.  

 

The truncating aperture arrangement was generated in GRASP9 by creating a reflector 

object of a plane surface within which a central hole object was defined. There is a plane 

wave source object in GRASP9, the size of which is defined with the aperture radius. To 

model the diffracted field, both the PO and PTD tools were used in conjunction to give 

the most accurate result. Firstly the currents on the reflector surface are generated using 

the get_currents command line, and the field is calculated using the get_field tool. This is 

standard practice for the PO & PTD tools in GRASP9 while modelling reflecting 

surfaces. The field being modelled is behind the reflector, the contribution to the output 

field from the source object must also be considered. This is done using the add_field 

tool, which adds the field due to the source to the field due to the surface currents on 

the reflector.  
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The setup of the system in MODAL can be achieved using two methods: one is an 

approximately physical system and a more ideal, theoretical setup. Both are equivalent. 

The first setup is envisioned as a plane wave source object propagating an arbitrary 

distance to a large (ideally infinite) plane sheet with an axial truncating aperture with 

the desired diffracted output field behind the aperture. A plane wave source is used as the 

source object and the truncating aperture is created using the aperture element. The 

second setup uses the uniformly illuminated aperture source object in place of the 

combination of plane wave and truncating aperture. Both systems have been shown to 

give exactly equivalent results, and as such the first system setup is used here as the 

standard. To use the PO calculations in MODAL, the source and element propagators 

were chosen as vector propagators. The results for these first set of test cases (1A1, 1A2 

& 1A3) are displayed below in Figure 3-3 as planar amplitude cuts. GRASP9 results are 

plotted in red, MODAL in blue and ZEMAX in green.  

 

Given that the optics packages describe the source as vector fields the state of 

polarisation must be defined. For these test cases, and all subsequent test cases, the 

polarisation of the incident source fields is linear and is aligned along the local x axis. 

Two orthogonal cuts are plotted for both GRASP9 and MODAL as a solid and a broken 

line. The results from ZEMAX were all found to be symmetrical and are represented as 

a single planar cut. In the instances where there are two ZEMAX results plotted this 

indicates different sampling levels and the implications of said sampling are discussed 

throughout the conclusions.  
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Figure 3-3 - Planar output amplitude patterns for test cases 1A. Note differing results for different 

sampling levels in ZEMAX (green lines). These disparities highlight the difficulty of accurate 

predictions for near field diffraction at long wavelengths. For 1A1 zout ≈ a ~ 3λ; for 1A2 zout > a ~ 10λ; 

for 1A3 zout >> a ~ 30λ. For all test cases 
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These test cases are designed to generate an on axis minimum in the output power plot 

in the near field, as calculated using standard Fresnel diffraction [22]. However, there is 

a significant discrepancy between the different software models, especially for the very 

near field cases (1A1). Both GRASP9 and MODAL show an on-axis maximum while 

ZEMAX shows an on-axis minimum. These discrepancies are attributed to the 

approximations made by the various PO propagator tools in each software package. 

Comparing the MODAL and ZEMAX plots to those from GRASP9, we see varying 

degrees of agreement. It is obvious that the ZEMAX predictions show the largest 

divergence from the GRASP9 plots, with those from MODAL somewhere in between. 

We shall analyse each test case in turn.  

 

In Test Case 1A1, the diffracted field is being modelled in the very near field. Though 

this setup is designed to emulate classic Fresnel diffraction, some modifications must be 

made to the Fresnel-Kirchhoff diffraction approximations for this case to yield the 

correct result. The Fresnel-Kirchhoff integral for a plane wave incident on circular 

aperture is given by [25] as  

 ( )
( )

2

ik r
S

P

ikE e
E F da

r
θ

π
−= ∫∫   (3.1) 

where EP is the field at the observation point P, ES is the source field incident on the 

aperture, F(θ) is the variable obliquity factor and r is the radial distance from the area 

element da to the observation point P. 
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r 

Incident Plane Wave 

Figure 3-4 - Illustration of circular Fresnel diffraction setup for circular aperture 
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For specifically modeling the diffracted field from a circular aperture, Fresnel devised a 

method for dealing with the contribution from various parts of the wavefront at the 

aperture by dividing the aperture into zones, called Fresnel zones. These zones are 

created such that if AN is a point on the outer boundary of the nth zone, then 

 0 2N

n
A P A P

λ− =   (3.2) 

 

 

 

 

 

 

 

 

This means that each successive zone is λ/2 farther from the field point P than the 

preceding zone. Each successive zone’s contribution to the diffracted field is exactly out 

of phase with that of the preceding one. These zones can be divided into smaller 

subzones. It can be shown that the resultant contribution from these subzones has an 

effective phase intermediate between the phases at the beginning and end of the Fresnel 

zone. This is best represented using phasor diagrams to represent the phase differential 

from each subzone, and hence each Fresnel zone. An illustration of this phasor diagram 

is given below in Figure 3-6.  

P A0 

An 

Rn 

rn 

r0 

Figure 3-5 - Plane wave incident on a truncating circular stop 

with Fresnel zones indicated as An away from central axis, A0 
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Figure 3-6 - Phasor diagram representing individual phase contributions from Fresnel subzones 

In Figure 3-6 above the amplitude a1 represents the resultant of the subzones within the 

first Fresnel zone. The effect of the obliquity factor is evident, making each succeeding 

phasor slightly shorter than the preceding one ensuring that the circles do not close but 

spiral inward. The summation of the field at P from each Fresnel zone is be expressed as 

 2 3
1 2 3 4 ...i i i

PE a a e a e a eπ π π= + + + +   (3.3) 

or 

 1 2 3 4 ...PE a a a a= − + − +   (3.4) 

Through extension of the above theory the resultant amplitude oscillates between 

central maxima or minima depending on whether there are an odd or even number of 

Fresnel zones. The number of Fresnel zones is generally calculated using the basic 

geometry of the aperture given above Figure 3-5 using the following equations: 
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  (3.5) 

When this is applied to Test Case 1A1, where we let RN = 3.0 mm, λ=1.0 mm and r0 = 

2.25 mm the number of Fresnel zones is given as four. An even number of Fresnel zones 

leads to observed power distribution with an on-axis minimum. This is the classic 
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Fresnel approximation and works well when applied to geometrical optics systems 

where r0>>l and r0>>RN. The on-axis minimum predicted by ZEMAX in Figure 3-3 is 

therefore typical of the Fresnel Propagator tool it uses for near field beam predictions. 

The on-axis maximum predicted by the PO in GRASP9 and MODAL is explained by the 

fact that the very near field test cases are not exactly predicted using the Fresnel 

approximation in its current form. Note that from Equation 3.5 that the higher order 

term is neglected; this term can no longer be neglected as it has become significant in 

Test Case 1A1. The number of Fresnel zones is thus corrected: 

 
( )2 2 2 2

0 0

2

2 Nr r R
n

λ λ λ

λ

− ± +
=   (3.6) 

Applying the above calculation to Test Case 1A1 and discarding the negative value as 

non-physical the number of Fresnel zones is given as three. This matches with the 

geometry of the system – c.f. Figure 3-7. 

 

 

 

 

 

 

 

 

 

 

The classical Fresnel diffraction plots above were generated using the same technique as 

applied in Section 2.1.5.2 by treating Equation 3.1 as a Fourier Bessel transform or a 

Hankel transform of zero order [34]. These plots below in Figure 3-8 clearly illustrate 

the difference in the diffraction patterns for three and four Fresnel zones. With this 

alteration to the Fresnel approximation, the on-axis maximum in the GRASP9 and 

MODAL plots is explained. 

h3 

2.25 

h2 

h1 l1 

l2 

l3 

• h1 = 1.58 mm 

• h2 = 2.35 mm 

• h3 = 3.0 mm 

Number of Zones = 3 

Figure 3-7 - Calculation of Fresnel zones for Test Case 1A1 
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(a) (b) 

Figure 3-8 - Classical Fresnel diffraction patterns from a circular aperture for 3 Fresnel zones (left) and 

4 Fresnel zones (right) 

Despite the agreement between GRASP9 and MODAL in predicting the on-axis 

maximum, they disagree with increasing off-axis distance. The reason for this is due to 

the PO methods employed by each package. The GRASP9 predictions in Figure 3-3 

were obtained using a combination of PO and PTD to ensure maximum accuracy. This 

is combined with the PO convergence tool that ensures the correct amount of sampling 

of PO and PTD points at the aperture. As stated previously in Section 2.5, MODAL 

currently lacks a PTD tool and a method to accurately determine the adequate sampling 

for a system. Sampling of PO or Vector Propagator points is either defined using a 

default selection, or can be set by the user. To ensure that MODAL calculated the 

scattered field with the maximum achievable accuracy the PO sampling points for the 

aperture were oversampled. Another distinct difference between the PO predictions of 

GRASP and MODAL and the ZEMAX results is the asymmetry between the x and y 

planar cuts. Predictions by both PO packages reveal a circularly asymmetrical 

diffraction pattern – c.f. Figure 3-3. This asymmetry between the x and y planes 

decreases with increasing propagation distance. The predicted ZEMAX diffraction 

patterns are equivalent in both  x and y. This asymmetry is attributed to the polarisation 

of the source beams, being polarised linearly in the local x axis of the system. The 

approximations made by ZEMAX in calculating the diffracted field ensure that the 

diffracted pattern is independent of polarisation. As we shall see in a later section, this 



106 

 

beam asymmetry is physically real, thus drawing the accuracy of the POP tool from 

ZEMAX into question. These asymmetrical diffraction patterns are also observed in 

later test cases.  

 

To highlight the effect of the PTD calculation from GRASP9, the Test Case 1A1 system 

was re-evaluated using only PO for GRASP9 and the standard vector propagator 

technique in MODAL. The first plot below (Figure 3-9) is a comparison of the two 

GRASP9 predictions, where the red lines indicate the combined PO & PTD calculations 

and the black lines indicate PO calculations only. It is evident here that, at least for 

heavily diffracted systems in the very near field, the PTD tool plays a significant role in 

accurate beam predictions. The recommendations made by TICRA [54] indicate that the 

use of PTD in systems such as this one is prudent. The subsequent plot (Figure 3-10) 

compares the MODAL predictions with the PO predictions from GRASP9. 
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Figure 3-9 - Test Case 1A1 results comparing predictions from 

GRASP9 using PO (black line) and PO & PTD (red line) 
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The disparity between PO and PO & PTD calculations in GRASP9 is evident in the off-

axis pattern structure in Figure 3-9. However, when the GRASP9 PO pattern is 

compared against the equivalent, oversampled PO pattern from MODAL (Figure 3-10) 

the agreement between the two has degenerated. Even the disparity for the structure of 

the on-axis amplitude peak has increased. This leads to an interesting conclusion 

regarding the PO prediction capabilities of MODAL. Taking the assumption that the 

GRASP9 PO & PTD calculations are the accuracy standard, the highly sampled 

MODAL PO prediction displays greater agreement with this standard than the 

equivalent GRASP9 PO prediction with sampling achieved using convergence.  

 

The results for the next test cases (1A2: zout > a, 1A3: zout >> a) also show various degrees 

of agreement between all three of the software packages. For test case 1A2 both 

MODAL and ZEMAX package predict the location of the primary “off-axis” or non-

central peak and the secondary peak, though with less accuracy as with the primary 

when compared against GRASP9 .However it is here the similarities between the 

GRASP9 results and those of ZEMAX and MODAL begin to break down. While there is 

no longer an on-axis peak, GRASP9 predicts a degree of on-axis illumination. MODAL 

also predicts a similar degree of on-axis illumination, though of less power, while the 

results from ZEMAX show a clear null at the centre. As with test case 1A1 the GRASP9 
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Figure 3-10 - Test Case 1A1 comparing MODAL predictions (blue) 

with GRASP9 (black), using PO method 
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predictions here show unmatched patterns in the X and Y planes, revealing a circularly 

asymmetric beam. As before the ZEMAX results show no circular asymmetry, and the 

degree of asymmetry shown by MODAL from the first test case is all but removed here.  

 

The on-axis minimum of zero predicted by ZEMAX in Test Case 1A2 is interesting as 

this would imply that ZEMAX predicts an even number of Fresnel zones for this test 

case. This is evident by comparing the ZEMAX predictions with the classical Fresnel 

diffraction pattern for four zones in Figure 3-8. This is a similar conclusion from the 

results of Test Case 1A1 where ZEMAX evidently predicts an odd number of Fresnel 

zones, thus generating an on-axis maximum in accordance with the Fresnel-Kirchhoff 

approximation. From Equation 3.6 the number of Fresnel zones for this test case is given 

as approximately 3.85. The diffraction pattern for this number of zones in Figure 3-11 

below reveals that, as expected, a non-integer number of zones will yield an on-axis 

power level somewhere in between the maximum and minimum values. This is 

revealed below in Figure 3-12 where the on-axis irradiance for Fresnel diffraction is 

plotted against the number of Fresnel zones. Comparing the classical Fresnel diffraction 

pattern for test case 1a2 shows good pattern agreement with the two PO packages.  

 

 

 

 

 

 

 

 

Figure 3-11 - Classical Fresnel diffraction pattern for Test 

Case 1A2 (zout > a) where the number of Fresnel zones is 3.85. 
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The best overall pattern agreement between the packages is found in test case 1A3 (zout 

>> a). The erratic pattern structure found in the ZEMAX plots is attributed to the beam 

sampling. This is a common feature for the ZEMAX predictions presented in this 

chapter. The accuracy of the ZEMAX POP results is directly linked to the sampling of 

the beam.  

 

The ZEMAX POP tool utilizes Fourier transforms and as such the degree of sampling 

can be counterintuitive. In defining the source the total number of array points may be 

set to a constant, such as a 512×512 or 1024×1024 grid. However, though the sampling 

number will remain constant, the array size and the point spacings ∆x and ∆y will 

change as the beam evolves throughout the system. The POP tool samples a beam at the 

source beam waist using constant spacing, and a linearly scaled spacing far from the 

waist. This linear scaling is such that if the array width is very large at a beam waist 

relative to the waist size then there are relatively few points across the beam waist. This 

will result in a small array size from the waist, with a relatively large number of points 

across the beam. Conversely, if the array size is small at the waist, the array size will 

grow large compared to the beam far from the waist, leaving few sample points to 

represent the beam. This inverse relationship is a necessary but frequently inconvenient 

product of the Fourier transform theory used to model diffraction. This requires a 

tradeoff between adequate beam sampling near the waist and far from the waist. The 

Figure 3-12 - On-axis irradiance for Fresnel diffraction pattern as a 

function of the number of Fresnel zones 
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POP tool attempts to calculate the optimum beam sampling by using the following 

equations for determining the array size at the beam waist; i.e. where the source beam is 

defined: 

 0 0 0 0,x x y yX n Y nω π ω π= =   (3.7) 

where X0 and Y0 are the dimensions of the array at the waist, w0x and w0y are the beam 

waist radii in the x and y directions and nx and ny are the number of points chosen to 

sample the beam. The spacing between points for the beam waist is simply: 

 0 0
0 0,

x y

X Yx yn n∆ = ∆ =   (3.8) 

where ∆x0 and ∆y0 are the spacing values at the waist. As the beam propagates a 

distance z the beam spacings are defined by: 

 1 1
0 0

,
x y

z z
x y

n x n y

λ λ
∆ = ∆ =

∆ ∆
  (3.9) 

where ∆x1 and ∆y1 are the beam spacings at the new beam location. This evolution of 

the beam spacings is linearly dependent upon z. The automatic calculation for array size 

from Equation 3.6 will provide adequate sampling values for a beam both near and far 

from the waist for an uninterrupted propagation. The array dimensions at the 

propagated plane X1 and Y1 are thus inversely proportional to the beam waist array 

size: 

 1 1
0 0

, yx z nz n
X Y

X Y

λλ
= =   (3.10) 

However, for these test cases the beams are truncated by an aperture at various 

propagation distances and thus the area of interest over the diffracted beam after 

truncation is much smaller than the uninterrupted beam size. The linear evolution of 

the beam spacing is unavoidable, and a compromise must be made. As such, to ensure 

that there is adequate beam sampling over the diffracted beam it is recommended here 

that the beam waist sampling is appropriately dense, by choosing both a small array 

size and high sampling numbers.   
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Recalling Test Case 1A1 (c.f. Figure 3-3 ) there are two predictions from ZEMAX. These 

results reflect different levels of sampling to highlight the sensitivity of the output field. 

For ZEMAX-TC1A1-(01) in Figure 3-3 the sampling of the source field is defined using 

the automatic sampling algorithms from Equation 3.6. A source top hat field of 

symmetric waist sizes w0x = w0y = 3.1 mm and sampling sizes of nx = ny = 1024 provided 

an array size of X0 = Y0 = 175.8 mm. The output point spacing is then calculated by 

Equation 3.8 as ∆x1 = ∆y1 = 12.7 µm over an array size of approximately 13 mm. The 

second ZEMAX predicted field (ZEMAX-TC1A1-(02)) was calculated using a source top 

hat with a manually generated array size of X0 = Y0 = 50.0 mm which provides an 

output point spacing of ∆x1 = ∆y1 = 48.0 µm over an array size of approximately 46 mm. 

The automatic beam sampling provides finer sampling of the output beam over a 

smaller array area compared to the manual spacing selection. This finer output beam 

sampling by the automatic process comes at the cost of larger source field sampling 

compared to the manual sampling size.  

 

The issue of the disparity between the predictions from GRASP9 and MODAL for Test 

Cases 1A1 and 1A2 required further attention. Through discussion of this issue with Dr. 

Marcin Gradziel (chief current developer of MODAL) and TICRA (the developers of 

GRASP9) an alternative argument was formulated to resolve this disparity. Technically 

the definition of the truncating aperture element is different for the two packages. The 

calculation process in GRASP9 firstly requires calculating the currents on the surface of 

a plane reflecting sheet containing a central hole due to the plane wave source. The 

diffracted field beyond this aperture is then generated due to these surface currents and 

the plane wave source. The technique employed in MODAL is slightly different, with 

the diffracted field calculated due to the currents formed on a perfectly absorbing sheet 

of infinite extent containing a central hole. A more accurate comparison of this MODAL 

calculation in GRASP9 is to employ Babinet’s principle [25] which states that the 

diffracted field due to a truncating aperture or hole is equivalent to that from the 
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complementary opaque body of same dimensions as the hole. To test this hypothesis a 

‘Babinet’ version of Test Cases 1A1 and 1A2 were generated in GRASP9 where the 

planar reflector with central hole was replaced with a planar reflector disc of the same 

radius as the central hole. The resulting predicted fields were determined using a plane 

wave source and surface currents on the disc were calculated using PO and PTD. The 

results of this analysis from GRASP9 are plotted in Figure 3-13 below and compared 

with the standard MODAL predictions for Test Case 1A1. 

 

 

Figure 3-13 – Predictions for Test Cases 1A1 (top: zout ≈ a) and 1A2 (bottom: zout > a) with Babinet disc 

replacing the truncating aperture element in GRASP9 (in red) compared against standard predictions 

from MODAL (in blue) 

There is evidently greatly improved agreement in the diffracted fields from GRASP9 

and MODAL for both test cases, thereby indicating the equivalence of the two 

techniques. There remain only minor differences that may be accounted for by the 
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choice of sampling points using the convergence tool in GRASP9 and the sampling 

levels in MODAL. For all MODAL calculations the optical elements have been 

oversampled.  

 

It should be noted here that there exists one other method of calculating the diffracted 

pattern from a truncating aperture in GRASP9. A scatterer object known as the 

“aperture in screen” allows for the computation of the diffracted field from a truncating 

aperture in a screen with a plane wave source. This scatterer object exists as an optional 

extra in the GRASP9 software package and was unavailable to the Author for testing at 

the time of writing. There therefore remains potential for further exploration of this 

issue. In a later section the results of a long-wavelength diffraction experiment are 

outlined. This was performed in an attempt to experimentally resolve the divergence of 

the results from this first set of test cases between the two PO software packages 

GRASP9 and MODAL. 

Test Cases 1B – (Far Field of Plane Wave Illuminated Aperture) 

For the next set of test cases, the aperture radii remain the same as for the previous set 

(a = 3 mm, 10 mm and 30 mm) with the observation distance increased to the far field 

region (zout = 180 mm, 2000 mm and 18000 mm respectively). At these distances the 

higher order term as included in the adapted Fresnel approximation from the previous 

section is no longer considered significant and an improved agreement between all the 

software packages is expected. Design of the systems in each package required a simple 

increase in the distance of the observation planes. It should be noted here that the Plane 

Wave source object in GRASP9 can only be used for near field calculations. Therefore, 

an oversized flat phase Gaussian beam replaces the plane wave source in GRASP9 and 

MODAL and the top hat source field in ZEMAX. (For Test Case 1B1, the Gaussian waist 

is 20 mm, for Test Case 1B2 the waist is 30 mm and for test case 1B3 the waist is 60 mm.) 

These beam waist sizes, coupled with a flat phase front can be considered a close 

approximation to a plane wave within the limits of the aperture radius. The argument is 
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academic however since all of the software packages are being compared against one 

another for the same parameters. The results from all packages are displayed below in 

Figure 3-14 with logarithmic power.   

 

 

 

Figure 3-14 – Output farfield diffraction patterns for a plane wave illuminating a circular aperture 

where Test Case 1B1 has a / λ ~ 1, Test Case 1B2 has a / λ > 1 and Test Case 1B3 has a / λ >> 1.  
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At the far field the agreement between all the packages has increased significantly, 

especially between MODAL and GRASP9. The GRASP9 results above are again 

attained using PO & PTD calculations. The largest degree of discrepancy between 

GRASP9 and MODAL occurs for Test Case 1B1, which has largest angle of off-axis 

beam spreading. If the GRASP9 results are calculated using PO only the degree of 

agreement is greatly improved, as seen below in Figure 3-15 with the new GRASP9 PO 

predictions plotted in black . As the output plane moves further away from the aperture 

stop the agreement between MODAL and GRASP9 is significantly improved. Given the 

high level of agreement between GRASP9 and MODAL at these farfield distances there 

was no need to re-calculate the GRASP9 predictions using the Babinet disc technique, as 

was done previously for Test Cases 1A1 and 1A2.   

 

 

 

 

 

 

 

 

 

The ZEMAX predictions reflect different choices of source sampling in an attempt to 

attain improved agreement with the PO packages. The fit between ZEMAX and 

GRASP9 is reduced beyond the main lobe structure in each of these test cases. This is 

accounted for by the large degree of beam spreading. The observation plane is very 

large relative to the narrow aperture. ZEMAX is primarily a paraxial optics propagator 
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Figure 3-15 - Test Case 1B3: farfield of aperture where a / λ >> 1 - GRASP9 calculations performed 

using PO only - comparison with MODAL PO calculations shows significant increase in agreement 

when compared to Test Case 1B1 (where a / λ ~ 1) 
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and has difficulty in accurately predicting such widely dispersed beam at large off-axis 

angles. This is evident in all plots where agreement starts to decrease with increased off-

axis distance. The ZEMAX beam predictions fall away from the GRASP9 and MODAL 

predictions approximately after the secondary beam lobe – c.f. Figure 3-14. The 

disparate results between the different beam samplings illustrate the difficulty in 

determining the correct sampling for source fields in the ZEMAX POP tool. It can be 

concluded from these results that for this limiting test case for far-field diffraction 

ZEMAX may only be trusted to give reasonably accurate results for a paraxial beam i.e. 

for the main lobe and first side-lobe.  

Test Cases 1C – (Far Field of Point Source Illuminated Aperture) 

For Test Cases 1C, plane wave illumination of a truncating aperture is replaced by a 

point source. The aperture radius and output observation distance remains constant (a = 

10.0 mm, zout = 2000.0 mm) and the input distance zin is varied. These diffraction 

examples are important as they represent propagation of radiation from spatially 

incoherent sources. With the large aperture radius and farfield output distances, it can 

be expected that the higher order Fresnel zone modification factor from Test Cases 1A 

will not be important here. To achieve a point source in ZEMAX, a combination of a 

truncated plane wave source incident on an ideal lens was used. The paraxial surface 

object is described as a perfectly focusing ideal lens. The truncated plane wave with flat 

phase front is focused to a point source at the focal point of the lens, and it is from this 

position on the optical axis that the point source is launched.    

 

 

 

 

 

  

 

Point Source 

Paraxial Surface 

Figure 3-16 – Illustration of technique employed to create an approximate 

point source in ZEMAX 
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A point source is achieved in GRASP9 by using a special case of a Gaussian beam 

source, whereby the beam waist is set to zero. Given the farfield output distances the 

truncating aperture was again treated in GRASP9 as a finite planar reflector with a 

central hole.  

 

The definition of a point source object in MODAL was achieved using an extremely 

small uniformly illuminated aperture source object. In these test cases a source radius of 

1µm was used. It was possible to go smaller than this but the beam patterns were found 

to be equivalent and for sources with radii smaller than this there were problems with 

normalizing the beam patterns in the plotting software owing to peak power output 

levels being too low. As before, all calculations were performed using full vector PO 

analysis. As with the preceding test cases, the source polarisation is linear and aligned 

along the local x axis of the system.  
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Figure 3-17 - Output beam predictions for test cases 1C1 (zin ~ 3λ) 

, 1C2 (zin ~ 60λ) and 1C3 (zin ~ 200λ). 
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Generally there is good agreement between all of the software packages for this set of 

test cases, and as with previous test cases the agreement improves with increasing 

observation distance. The degree of asymmetry between the x and y planar cuts is very 

slight in these test cases. This is in keeping with the results of test case 1A for the 

diffraction patterns from a truncated plane wave; for the near field test case (1A1: zout ≈ 

a) there was a high degree of asymmetry. With increasing propagation distance away 

from the aperture (1A2: zout ~ 3a, 1A3: zout ~ 10a) the asymmetry is removed. For the test 

cases presented here (i.e. 1C1, 1C2, 1C3) the beam is sampled in the farfield of the 

aperture and thus there is negligible asymmetry. The presence of the ‘fringing’ or 

‘ringing’ in the GRASP9 calculations is accounted for by aperture object. The aperture 

object in ZEMAX defines an annular region outside of which all incident rays are 

vignetted. The aperture object in MODAL works in a similar way. In GRASP9 the 

aperture object is created as a central hole within a finitely sized plane reflector object. 

The fringing structure seen in the GRASP9 plots are due to diffraction effects at the 

edge of the outer rim of this plane reflector. To remove these fringing effects the 

truncating aperture is re-defined as a Babinet disc, as was done for Test Cases 1A1 and 

1A2. These new GRASP9 Babinet predictions are plotted below in Figure 3-18. With the 

inclusion of the ‘Babinet’ variation to the results the agreement between each of the 

packages has improved with the removal of the fringing structure to the GRASP9 

diffracted pattern.  
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Figure 3-18 - Output beam predictions for test cases 1C1 (zin ~ 3λ), 1C2 (zin ~ 60λ) and 1C3 (zin ~ 200λ) 

for GRASP9 calculations using the Babinet disc technique. Note the absence of fringing in the new 

GRASP9 predictions when compared to those from Figure 3-16. 
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Test Cases 1D – (Gaussian Beam Illumination of Aperture) 

This next set of test cases is an advancement of 1C, where a point source object has been 

replaced with a fundamental Gaussian beam. This test case can be considered more 

physically relevant to long wavelength setups since quasioptical systems are routinely 

modeled with Gaussian beams, which are considered good first order approximations 

of real feed horn patterns [3]. These test cases model a moderate amount of truncation, 

with the truncating aperture having a radius of the beam width w at the diffracting 

aperture. This amount of truncation is unusual for most physical systems. Realistically 

feed horn beams are propagated through systems of mirrors, lenses or truncating 

apertures with a truncating radius of over 2w, giving a beam spillover of -35 dB. With 

this level of truncation there will be significant diffraction effects visible in the Fresnel 

region for the purpose of comparing packages. Again, as with all previous test cases the 

source field is linearly polarised in the x direction. The definition of the Gaussian 

sources for all packages is straightforward, with defining parameters previously 

outlined in Chapter 2.  

 

 

 

 

 

 

 

 

 

 

 

GAUSSIAN BEAM (far field , incident F number varies) 

Radius : a 10 

W0 0.637 1.947 5.93 

ZIN 20 60 150 

ZOUT (far field) 2000 2000 2000 

Case No.  1d1 1d2 1d3 

Table 3-2 - System parameters for test cases 1D - all dimensions are in millimetres 
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Figure 3-19 - Output planar cuts for test cases 1D1 (near field), 1D2 (Fresnel/Fraunhofer transition) and 

1D3 (far field) 
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The results for the first test case (1D1) exhibit similar structure to the near field Fresnel 

diffraction patterns seen in Test Cases 1A. Agreement between GRASP9 and MODAL is 

very good; however there is a small degree of asymmetric disparity for off-axis 

structure. The ZEMAX result shows reasonable on-axis agreement with the two PO 

packages that moderately worsens with increasing off-axis distance The general 

agreement for all packages improves with increasing Gaussian waist size for Test Cases 

1D2 and 1D3. There also exists slight asymmetry in the GRASP9 PO & PTD predictions 

for Test Case 1D2 that is not predicted by MODAL or ZEMAX. There is also slight 

disagreement between MODAL and GRASP9 in the predicted amplitude of the central 

beam for this test case. The agreement for all packages in Test Case 1D3 is almost 

perfect.  

 

The disparity between MODAL and GRASP9 for Test Cases 1D1 and 1D2 is resolved by 

re-calculating the GRASP9 predictions using PO only. These results are shown below in 

Figure 3-20 and Figure 3-21 where the GRASP9 PO predictions are plotted in black 

against MODAL calculations in blue.  
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GRASP9 PO calculations compared with MODAL 
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The MODAL predictions show greatly improved agreement with these GRASP9 PO 

predictions. However there is still minor disagreement between the two packages 

regarding the on-axis amplitude for Test Case 1D2.  

 

Conclusion 

This first batch of test cases was designed as examples of highly diffracting long-

wavelength systems. The plane wave and point sources in Test Cases 1A, 1B and 1C can 

be considered as only mathematical abstractions with little physical bearing to any 

realistic system. It can reasonably be stated that the Gaussian beam source in Test Case 

1D makes this the only physically relevant test case, given the prevalence of Gaussian 

beam-type field distributions in many typical quasioptical systems.  

 

Overall the PO predictions by MODAL show very good agreement with those from 

GRASP9 for nearly all test cases. This is to be expected given the similarity in their 

calculation techniques. In those test cases where there is some disagreement, this can be 

chiefly attributed to the lack of a PTD and PO convergence tool in MODAL. However, 

the truncating aperture elements in each software package are defined differently and 

as such slight disagreements are to be expected.  
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ZEMAX predictions compare poorly to GRASP9. This is obviously due to the 

approximations of the POP tool. As stated in Chapter 2, the POP tool uses either Fresnel 

diffraction integrals or angular spectrum decomposition through Fourier transforms to 

calculate the output beam. These tools do not technically constitute Physical Optics in 

the true definition of the term; rather they are classical diffraction techniques. This leads 

to poor agreement with the other two PO packages for strongly diffracted systems with 

large angular beam spreading. This is most obvious in test cases 1A1 and 1A2 for the 

diffraction pattern of a plane wave by a truncating aperture in the very near field.  

 

For the near field test cases 1A1 and 1A2 the polarisation of the source field affected the 

symmetry of the resultant field diffracted by the aperture. Results from the PO 

packages revealed unmatched amplitude patterns in the x and y planes. This is counter 

to the predictions of classical Fresnel diffraction theory, which predicts no dependence 

on the polarisation of the incident radiation for the output field. This is seen in the 

results from ZEMAX, which exhibited perfectly matched amplitude profiles in x and y. 

As shall be shown in a later section, experimental measurements of a similar system to 

that of test case 1A1 reveal that this asymmetry is real. This is further evidence of the 

superior capability of the PO method for calculating diffracted beam patterns over the 

scalar Fresnel diffraction integrals.  

3.2.3 Test Case 2 

These test cases involved modelling the diffraction effects associated with the focusing 

and collimating of a coherent beam using a lens of finite size. The lens is defined as a 

combination of a truncating aperture and phase transformer, where any radiation not 

intercepted by the lens is absorbed. Using a lens in the long-wavelength limit either 

focuses a beam of flat phase radius of curvature to a beam waist of finite phase radius of 

curvature or performs the converse by collimating a narrow waist to wide waist. This is 

not equivalent to the formation of geometrical images as in classical lens theory. A 

‘focused’ beam waist will not be coincident with the equivalent geometrical focal plane 
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of the lens. For the long wavelength limit, a focused beam waist position is not 

coincident at the geometrical focus.  

 

In Test Cases 2A and 2B the focal plane and the Fresnel region of the lens are examined. 

The source beam is a plane wave with a flat phase radius of curvature. For Test Case 2C 

the source field is a fundamental Gaussian whose waist coincides with the focal plane of 

the lens. This is a typical quasioptical setup for long-wavelength optics. In many 

telescope imaging systems a lens is used in combination with a feed horn. The layout of 

Test Cases 2A and 2B are illustrated below in Figure 3-22, with the layout of Test Case 

2C given by Figure 3-23. The physical parameters for each individual test case are listed 

below in Table 3-3.It was not possible to model these test cases in GRASP9. The 

GRASP9 software package is primarily concerned with PO calculations for reflecting 

metallic surfaces. Therefore only MODAL and ZEMAX have been compared here.   

 

 

 

 

 

 

 

 

 

a 

f = zOUT 

Figure 3-22 - Test Cases 2a & 2b - imaging a plane wave to a focus using a 

truncating aperture and lens combination 
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PLANE WAVE (field at focus) 

Radius : a 5 50 

Focal length : f 100 (F10) 300 (F3) 

ZOUT = f 100 300 

Case No.  2a1 2a2 

PLANE WAVE (field at near waist) 

Radius : a 5 50 

Focal length : f 100 (F10) 300 (F3) 

ZOUT = f 9.5 297.5 

Case No.  2b1 2b2 

GAUSSIAN BEAM (input waist at focal plane – 

moderate truncation at lens aperture – input focal ratio 

F3.14 

w0-IN 2.0 2.0 2.0 

Radius: a = 1.5 wLENS 4.2 9.5 30 

ZIN = ZOUT = f 12.5 37.5 125 

Case No.  2c1 2c2 2c3 

Table 3-3 - Parameters for Test Cases 2 – all dimensions are in millimetres.  

From the lensmaker equation [33] the focal length f of a thin lens is given as: 

 2 1

1 1 2

1 1 1n n

f n R R

 −= − 
 

  (3.11) 

a 

f = zOUT f = zIN 

Figure 3-23 – Test Case 2c – collimating a source waist with a truncating 

aperture and lens combination 
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where n1 and n2 are the refractive indices of exterior and interior of the lens respectively, 

and R1 and R2 are the radii of curvature of the first and second refracting surfaces with 

the assumption that the surfaces are spherical. This formula is a simplification whereby 

the thickness of the lens is neglected. For example, the lens in test cases 2a1 and 2b1 has 

a focal length of 100 mm. Using Equation 3.11 above and assuming reasonable values 

for the indices of refraction: for air n1 = 1 and for glass n2 = 1.5 both radii of curvature 

are given to be 100 mm. Implementing such a lens in ZEMAX is straightforward, 

whereby the lens is a creation of two surfaces representing the two surfaces of 

refraction. The first surface is given a radius of curvature of 100 mm and a thickness of 

0.5 mm. This thickness is deemed appropriate for the thin lens approximation. The next 

surface, representing the output surface of the lens, is a convex version of the incident 

surface with a radius of curvature of -100 mm. Generating a lens object in MODAL is 

similarly straightforward. The lens object simply requires the user to enter the input and 

output radii of curvature as well as the central thickness and the conic constant of the 

surface. It can be noted here that the strict choice or design of the lens is arbitrary since 

the two software packages are simply being compared against one another, rather than 

against the results of a known experiment. As such, as long as the systems are 

equivalent in each package, that is each element has the same dimensions and distances, 

the specifics of the lens are not of great concern. 

 

The results from Test Cases 2A and 2B are plotted below in Figure 3-24 and from Test 

Cases 2C in Figure 3-25. Predictions from MODAL are plotted in blue and ZEMAX 

predictions in green. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-24 - Output planar diffracted amplitude patterns for Test Cases 2A1(a) - (F10 beam at the focus), 2A2(b) – (F3 beam at the focus), 

2B1(c) - (F10 beam at the waist) and 2B2(d) – (F3 beam at the waist). 
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Figure 3-25 - Diffracted patterns for test cases 2c1: 2
0
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There is relatively good agreement between ZEMAX and MODAL over most test cases, 

especially in the main beam. In the absence of a decided benchmark result and no 

formal experimental results for comparison, the accuracy of two packages can only be 

speculated upon. Though ZEMAX is considered a front-runner in terms of field 

calculations from lenses and other refractive elements, the approximations made by the 

POP tool and the long-wavelength nature of the systems under examination test the 

accuracy of the results. With a more robust physical optics propagator and being 

designed specifically to work in the long-wavelength regime, it could be assumed that 

MODAL can give the more accurate result. The discussion is unfortunately academic; 

given that there is as yet no industry approved optical propagation software with 

refractive elements capability to provide comparable results for the long-wavelength 

regime. This was the same dilemma faced in the original report. It would have been 

possible to create an experiment to provide comparable results, though such an 

expenditure of time and resources was considered unnecessary. Working with large 

scale lenses for the long-wavelength regime is costly and unpredictable imperfections 

within materials used in lens design such as PTFE would give rise to unaccountable 

errors, leaving a detailed comparison with EM prediction tools redundant. It was 

determined that, provided there were no great discrepancies between the results from 

both packages, a benchmark result would not be required.   

 

For the first set of test cases (i.e. test cases 2A1 and 2A2), the refracted beam is being 

reproduced at the focal point of the lens. The results from the two packages both show 

the expected Airy pattern for a beam at the focus of a lens. For the first test case (2A1) 

the agreement is limited to the main lobe and first side lobe, beyond which the location 

of the lobe varies – c.f. Figure 3-24 (a). The agreement is greatly improved for the second 

test case (i.e. 2A2), which has a much larger aperture in terms of λ (50λ) and thus has a 

smaller degree of diffraction - c.f. Figure 3-24 (b). Both MODAL and ZEMAX illustrate 

excellent agreement with discrepancies generally occurring near and below -30 dB 

which would be very difficult to measure equivalently with experiments. 
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The second set of test cases (i.e. test cases 2B1 and 2B2) have the same lens parameters 

as the first, but the output measurement plane is now located at the Fresnel region or 

near field of the lens. In the first of these test cases (2B1) there is reasonable beam 

pattern agreement, yet there are distinct disparities for the fine detail structures - c.f. 

Figure 3-24 (c). This disparity is similar to that found for the near field Fresnel 

diffraction patterns seen in test cases 1A. For the next test case (2B2) the agreement has 

been greatly improved. This is unsurprising given the relatively close distance of the 

Fresnel region to the actual focal position in terms of λ, where the agreement was also 

very favourable - c.f. Figure 3-24 (d).  

 

For the last set of test cases (i.e. test cases 2C1, 2C2 and 2C3) the agreement is good for 

the main lobes, with small scale deviations occurring for increasing off-axis distances. 

The degree of truncation here is quite low (-19.5 dB) and as such the beam patterns at 

the output plane should be almost pure Gaussian in shape with some low level sidelobe 

structure. The discrepancies between the two packages for each of these test cases occur 

at levels well below -20 dB. Above these levels the agreement is excellent - c.f. Figure 

3-245. This is most encouraging for both software packages as this test setup is more 

common for long-wavelength optics facilities.  

 

One of the more pragmatic results of these tests was the difference in computation time 

between ZEMAX and MODAL. Performing a POP calculation in ZEMAX for even the 

largest scale lens, such as in test cases 2B, was relatively quick. By comparison, the same 

calculation in MODAL was many orders of magnitude slower. This is due partly to the 

requirement of assigning an overly large number of PO points to the lens object to 

ensure sufficient accuracy. It was revealed that the default setting of a 40×40 PO grid 

produced severely inaccurate results and the above results were achieved for a grid 

sampling of approximately 3 points per mm. The lack of a PO convergence tool in 

MODAL is also a disadvantage, and hence such oversampling is necessary. The process 
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by which MODAL propagates a field within a lens or other dielectric element is also 

time consuming, and has been discussed previously in Section 2.5.3.1.  

 

3.2.4 Test Cases 3 (Off-axis Parabolic Mirrors) 

This set of test cases involved modelling diffraction effects associated with re-imaging a 

coherent source beam incident on an off-axis paraboloidal mirror – c.f. Figure 3-26 and 

Figure 3-27 below. The mirror acts as a phase transformer for the source beam. In the 

long-wavelength limit the off-axis nature of the reflecting surface introduces distortion 

of the beam due to projection effects [68], [69]. Truncation associated with the finite size 

of the mirror will also limit the resolution of the image.   

 

A paraboloidal mirror is routinely required to image a large waist at the mirror to a 

narrower waist near the geometrical focus. A beam with a flat phase radius of curvature 

at the mirror will be transformed to a wavefront with a finite radius of curvature 

centred on the geometrical focus. The converse is also true, wherein a beam of finite 

phase radius of curvature at the focus will be re-imaged as a beam with a flat phase 

radius of curvature.  

 

To illustrate the imaging of a typical off-axis paraboloidal mirror, several different test 

cases were considered. The off-axis paraboloidal mirrors for Test Cases 3A and 3B have 

the same focal length and aperture diameter as the focusing lenses from Test Cases 2a 

and 2b with a uniformly illuminated aperture source. In Test Cases 3A the polarisation 

of the incident beam is set to be in the plane of incidence, whereas in Test Cases 3B the 

polarisation is set to be perpendicular to the plane of incidence. The source field for Test 

Case 3C is a scalar feed horn. The source waist is placed near the geometrical focus so 

that the phase radius of curvature of the beam propagated to the mirror surface will 

match the radius of curvature of the mirror. This then produces a reflected beam with a 

flat phase radius of curvature. This setup can be interpreted as the reciprocal of Test 



134 

 

Cases 3A and 3B. In Test Case 3C1 the polarisation of the incident beam is parallel to the 

plane of incidence (i.e. in the local y axis) and perpendicular to the plane of incidence 

for Test Case 3C2 (i.e. in the local x axis). The output beam for this test case is sampled 

in the far-field of the mirror. The layout for Test Cases 3A and 3B is illustrated in Figure 

3-26 and in Figure 3-27 for Test Case 3C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-26 - Test Case 3a & 3b - imaging with an off-axis paraboloidal mirror 
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Figure 3-27 - Test Case 3c - collimation with an off-axis paraboloidal mirror 
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PLANE WAVE (polarization in the plane of incidence –  

output field at waist position) 

Radius : a 5 50 

Radius of curvature : R 100 300 

Focal length : f = R/2 50 150 

ZOUT 27.9 300 

Case No.  3a1 3a2 

PLANE WAVE (polarization in the plane of incidence –  

output field at waist position) 

Radius : a 5 50 

Radius of curvature : R 100 300 

Focal length : f = R/2 50 150 

ZOUT 27.9 300 

Case No.  3b1 3b2 

SCALAR HORN (input waist near focal plane – slight truncation 

at mirror surface 

Polarisation Parallel to plane  

of incidence 

Perpendicular to  

plane of incidence 

Mirror Radius : amirror 30 30 

Radius of curvature : R 101.3 101.3 

ZIN 100 100 

Horn Radius : ahorn 3.0 (F3) 3.0 (F3) 

ZOUT 8000 8000 

Case No.  3c1 3c2 

Table 3-4 - Parameters for Test Cases 3 - all dimensions are in millimetres  

Generating these systems in GRASP9 was relatively trivial. An off-axis paraboloidal 

reflector is achieved simply by defining the paraboloidal surface on axis then shifting 

the axis of incidence accordingly. The scalar horn source object is represented by the 

Hybrid Mode Conical Horn object (c.f. Section 2.4.4.2). Defining the system in MODAL 

was equally trivial, with the off-axis paraboloidal reflector already existing as a pre-

defined geometrical object. The scalar horn source was modelled using the equivalent 

Conical Corrugate Horn (c.f. Section 2.5.2.2).  
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Designing off-axis reflective optics in ZEMAX is more challenging and less intuitive. 

The off-axis paraboloidal mirror was achieved using a series of Coordinate Break 

surfaces to tilt and decentre a curved paraboloidal mirror accordingly. There exists no 

scalar horn source object in the POP tool in ZEMAX. To accurately model this source 

object the aperture field distribution of the Hybrid Mode Conical Horn from GRASP9 

was re-written as a ZEMAX Beam File source described in Section 2.6.2  

 

Output beams for Test Cases 3A and 3B are presented below in Figure 3-28 and in 

Figure 3-29 for Test Case 3C.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3-28 - Output planar amplitude plots for Test Cases 3A1(a), 3A2 (b), 3B1 (c) and 3B2 (d) where incident flat plane wave is focused by 

off-axis parabolic mirror. For 3A1 and 3B1 zout = 27.9λ; for 3A2 and 3B2 zout = 300λ 
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Figure 3-29 - Output amplitude plots for Test Cases 3C – where scalar horn at the focus is reimaged by 

an off-axis parabolic.    

Conclusions 

In general there is very good agreement between GRASP9 and MODAL for all test cases 

with both exhibiting the typical beam distortions due to off-axis reflection for both 

planes of polarisation. The ZEMAX predictions exhibit reasonable agreement with these 

two PO packages by accurately predicting the gross features of the main lobes, but 

routinely misrepresenting the levels and locations of the secondary lobes and the 

distortions in the main lobe due to the off-axis projection by the paraboloid. The best 
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agreement for ZEMAX predictions with MODAL and GRASP9 is seen for Test Cases 

3A1 and 3A2 which are much less demanding in terms of beam asymmetries, yet the 

amplitude levels and positions of the secondary lobes are still poorly predicted.  

3.2.5 Test Cases 4 (Off-axis Ellipsoidal Mirrors) 

This is the final set of test cases where the ability of the software packages to model the 

reflection from an off-axis ellipsoidal mirror is tested. An ellipsoidal mirror is typically 

used to re-image a beam from one waist to another [31]. This can serve to magnify, 

reduce or maintain the same size waist as the incident beam. The off-axis ellipsoidal 

reflector setup is common in off-axis telescope systems; examples of which include 

many of the ALMA receiver optics. In these systems the source beam from the main 

antenna, typically a large radio antenna type reflector such as a Cassegrain, is reimaged 

from the antenna focal plane into the feed horn. Two such examples of this type of 

system are explored in further detail in this thesis in Chapter 5 and 6.  

 

There are three ellipsoidal reflectors studied in the following test cases, each of which 

have differing parameters. The one common thread between each of these mirrors is 

that they have a large angle of throw; each mirror has an approximate angle of throw of 

90°. Such a large angle of throw would commonly lead to undesired cross polarisation 

leakage in an off-axis However, for the purposes of this test these ellipsoidal reflectors 

will serve to probe the limits of the accuracy of the two software packages under 

scrutiny. This is especially true for ZEMAX, which as previously mentioned is better 

suited to paraxially coherent/on-axis systems rather than those with large divergence 

angles.  

 

The two sources used here are a fundamental Gaussian beam and a scalar horn. These 

two sources represent the typical beam patterns that are usually incident upon an off-

axis ellipsoidal reflector. The sources are located at the focal plane of the ellipsoid and 

phase radius of curvature of the source is defined as an input focal ratio of F 3.14. The 
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beams are predicted at two planes after reflection, one at one focal length and the other 

at twice the focal length from the reflector. Beam truncation is relatively high with the 

radius of aperture of the reflector set to 1.5 times the beam waist at the reflector surface. 

This level of truncation would be considered impractical for a real optical system, but as 

with the previous test cases the high truncation level will test the ability of the software 

packages to model limiting diffraction. 

 

The design of the ellipses is straightforward. The derivation of the defining parameters 

for an ellipsoidal mirror has already been covered in Section 2.4.5.1, and an example of 

the ellipse design used in these test cases is given below in Figure 3-30. The parameters 

for the sources and ellipsoids are listed in Table 3-5 

 

Implementing an off-axis ellipsoidal reflector in GRASP9 and MODAL is relatively 

straightforward. The scheme for generating an off-axis ellipsoid in GRASP9 was 

presented in detail in Section 2.4.5.1. In MODAL the off-axis ellipsoid exists as a pre-

defined surface object, similar to that for the off-axis paraboloid in Test Case 3. The off-

axis ellipsoidal reflector was achieved in ZEMAX through use of the Conjugate Surface 

[70], which allows the modelling of an elliptical surface when the location of the two 

foci is known in Cartesian coordinates.   
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GAUSSIAN BEAM  

w0-IN 2.0 2.0 2.0 

Radius : a = 1.5 Wlens 4.2 9.5 30 

SCALAR HORN 

Horn aperture : aH 3.108 

w0-IN ( = 0.6435 aH) 2.0 

SYSTEM DETAILS 

ZIN = ZOUT = f 12.5 37.5 125 

RIN 25.13 41.71 126.26 

ROUT 25.15 371.4 12493 

Ellipse major axis: a  25.14 206.6 6309.79 

Ellipse major axis: b 17.78 88.01 888.01 

GAUSSIAN OUTPUT 

ZOUT = f (polarisation in plane) 12.5 37.5 125 

Case no. 4a1 4a2 4a3 

ZOUT =2f (polarisation perp. to plane) 25.14 75.0 250.0 

Case no. 4b1 4b2 4b3 

SCALAR HORN OUTPUT 

ZOUT = f (polarisation in plane) 12.5 37.5 125 

Case no. 4c1 4c2 4c3 

ZOUT =2f (polarisation perp. to plane) 25.14 75.0 250.0 

Case no. 4d1 4d2 4d3 

Table 3-5 - Parameters for Test Cases 4 - all dimensions are in millimetres 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-30 – Off-axis ellipsoidal mirror arrangement for test cases 4A1, 4B1, 

4C1 and 4D1. Note that RIN = ROUT 
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Figure 3-31 - Off-Axis ellipsoidal mirror arrangement for 

test cases 4A2, 4B2, 4C2 & 4D2. RIN < ROUT  

F2 

F1 

w0-IN 
RIN 

ROUT 

wout 

Figure 3-32 - Off-axis ellipsoidal mirror arrangement for test 

cases 4A3, 4B3, 4C3 and 4D3. RIN <<< ROUT 
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Figure 3-33 – Output amplitude plots for Test Cases 4A with Gaussian beam source, where for 

4A1: RIN = ROUT, 4A2: RIN < ROUT and 4A3: RIN <<< ROUT and for all cases zin = zout = f 
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Figure 3-34 - Output amplitude plots for Test Cases 4B with Gaussian beam source, where for 4B1: RIN 

= ROUT, 4B2: RIN < ROUT and 4B3: RIN <<< ROUT and for all cases zin =2 × zout = 2 × f 
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Figure 3-35 - Output amplitude plots for Test Cases 4C with Scalar horn source,, where for 4C1 : RIN = 

ROUT, 4C2: RIN < ROUT and 4C3: RIN <<< ROUT and for all cases zin = zout = f 
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Figure 3-36 - Output amplitude plots for Test Cases 4D with Scalar horn source,, where for 4D1 : RIN = 

ROUT, 4D2: RIN < ROUT and 4D3: RIN <<< ROUT and for all cases zin =2 × zout = 2 × f 
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Conclusions 

Of all test cases investigated in this chapter, these represent the most physically relevant 

in terms of realistic quasioptical imaging systems. Pairs of off-axis ellipsoidal reflectors 

are regularly employed in submillimetre optical systems to re-image the field from a 

feed horn to an antenna focal plane. Two examples of such systems are ALMA Band 5 

and 9 which will be covered in detail in this thesis in Chapters 5 and 6. As with Test 

Case 3 the predictions by MODAL show very close agreement to those from GRASP9, 

with accurate representation of the diffracted features and asymmetries in the output 

beams well below -30 dB. The slight discrepancies exhibited between these two 

packages are likely accounted for by the PTD tool in GRASP9 and differences in 

reflector surface sampling.  

 

The results from ZEMAX show relatively poor agreement with the two PO packages, 

where they routinely fail to accurately predict the major features in the main lobe. There 

are significant asymmetric sidelobe structures introduced at amplitudes of up to -10 dB 

in some cases.  

3.2.6 Overall Conclusions 

The conclusions associated with the individual test cases are summarized within their 

corresponding sections. A summary of these conclusions and observations regarding 

the performance of MODAL and ZEMAX with respect to GRASP9 is outlined below.  

MODAL 

For nearly all test cases the MODAL predictions compared very well against GRASP9. 

This is expected given the similarity in their calculation techniques. Those differences in 

predicted results have been attributed to a combination of differences in sampling, the 

lack of PTD calculations and differences in the definition of certain optical elements. For 

the truncating aperture test cases (1A), there still remains an open topic regarding the 

calculation of field diffracted by an aperture, with the approximations made by 

MODAL and GRASP9 differing slightly. In order to truly resolve the matter it is 
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recommended by the Author that a further analysis of these test cases be performed 

with the ‘aperture in screen’ object add-on for GRASP9 compared to the corresponding 

results from MODAL. The inclusion of a PTD approximation in MODAL would 

undoubtedly improve agreement with GRASP9 for those systems defined by strong 

diffraction effects.  

 

One advantage of MODAL over GRASP9 was the ability to model lenses. At the time of 

writing GRASP had only recently developed a lens modelling capability and it was not 

possible given time constraints to include this new capability within this analysis. In 

comparison with ZEMAX, the PO predictions by MODAL for a variety of lens based 

optical systems performed extremely well. The only drawback to the PO calculation 

method for lenses is that to achieve sufficient accuracy the field must be scattered back 

and forth within the cavity of the lens until a steady state solution is achieved, which is 

a lengthy process when compared to the same systems predicted in ZEMAX.  

ZEMAX 

The performance of ZEMAX throughout all test cases was similar to that of the other 

ray-tracing packages tested in [65] i.e. GLAD and CODE-V. For the truncating aperture 

test cases ZEMAX failed to predict the diffracted pattern of a plane wave in the very 

near field. Similar results were seen for the system with a Gaussian source. In the far-

field the agreement improved, though beyond the main lobe and secondary lobes the 

agreement with GRASP9 (and MODAL) breaks down.  

 

The two off-axis reflector systems are the more important test cases. However, these test 

cases proved very challenging for ZEMAX to be expected to predict with any degree of 

accuracy, with the incident beams being reflected through a 90° angle of throw for both 

the off-axis paraboloid and the off-axis ellipsoid reflectors.  Its physical optics tools 

(POP) are ill equipped to handle these large angles of throw for reflecting systems 

presented both here and for Test Case 3, and are better suited to systems where the 
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paraxial approximation applies such as on-axis beam guide type systems or very low 

angle off-axis reflection.  

3.3 Experimental Validation – Truncating Aperture 

The disparities between the three tested packages are varied. The largest observed 

disparity occurs for the near field power patterns for the truncating aperture from test 

cases 1A1 and 1A2, specifically the presence of an on-axis power spot (Poisson Spot) as 

predicted by both GRASP9 and MODAL that is not predicted by ZEMAX. Though this 

on-axis power spot was accounted for via a reworking of the Fresnel approximation to 

the Fresnel-Kirchoff Diffraction theory (c.f. Equations 3.3 to 3.6) it was deemed 

necessary to duplicate a similar result in the laboratory environment. The aim of this 

was not only to show the presence of the on axis amplitude peak but also to determine 

which software package performs the best: GRASP9 or MODAL, while the results from 

ZEMAX are discounted here. 

3.3.1 Experimental Measurement Arrangement 

We present an outline of the arrangement of this diffraction experiment, while also 

detailing the near field measurement arrangement as it has been routinely utilised 

throughout this thesis for experimental validation. The premise of this simple 

diffraction experiment was to emulate the layout of test case 1A1, where the greatest 

disagreement between the PO packages and ZEMAX was discovered. The basic layout 

for Test Case 1A1 consists of a truncating aperture of radius a = 3 mm in a plane 

reflecting sheet of infinite (or sufficiently large) extent illuminated by a plane wave and  

the diffracted field sampled at a distance of zout = 2.25 mm from the aperture – c.f. 

Figure 3-1 (a). Rather than attempt to replicate a plane wave source, either through the 

use of an off-axis paraboloidal reflector or a lens it was deemed sufficient to utilize a 

much less contrived arrangement. A conical corrugated feed horn was used to 

approximate the plane wave field, with the truncating aperture object located at the 

farfield of the horn, where the waist of the beam is several times the radius of the 
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truncating aperture and the phase radius of curvature is relatively large. The conical 

corrugated horn used in this experimental arrangement (and throughout this thesis) is 

designed to work in the W-band with an operating frequency range of 75 GHz to 110 

GHz. A full treatment of this horn is given in Chapter 4, with only the basic parameters 

of the horn being stated here to fully describe the overall experimental measurement 

setup. The system dimensions for the test cases described in the previous section are 

driven by the operating wavelength λ, which for all test cases was 1 mm. The radius of 

the truncating aperture aaper and output distance zout can be defined in terms of this 

wavelength, such that aaper = 3 × λ = 3 mm and zout = 2.25 × λ = 2.25 mm. The operational 

waveband for the conical corrugated feed horn is 3 mm. It was thus necessary to re-

scale the test case dimensions up to suit a higher operational wavelength of 3 mm.  The 

system dimensions therefore are redefined in terms of this new wavelength: aaper = 3 × λ 

= 9 mm and zout = 2.25 × λ = 6.75 mm. To best match the diffracting aperture object a 

hole of radius 9.0 mm was drilled into a square aluminium sheet of half-side length 400 

mm, which is approximately three times the beam radius at the aperture; this was 

deemed sufficient to prevent any excess spillover.  
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The general layout of the experimental arrangement is illustrated below in Figure 3-37. 

The spatial dimensions of the optical elements as well as the fundamental Gaussian 

beam parameters are listed below in Table 3-5. 

 

Parameter Units Value 

Frequency  GHz 100.0 

Horn Aperture: aH mm 7.1345 

Waist at Horn Aperture: wha mm 4.4254 

Horn Slant Length: Rh mm 80.0 

Distance to Truncating Aperture: zin mm 638.0 

Truncating Aperture Radius: aaper mm 9.0 

Beam Radius at Truncating Aperture: waper mm 137.6 

Phase Radius of Curvature at Truncating Aperture: Raper mm 638.7 

Output Distance: zout mm 6.75 

Table 3-6 - Fundamental Gaussian beam parameters for experimental diffraction arrangement 

The measurement of the amplitude and phase of this system was achieved through the 

use of the submillimetre test facility at NUI Maynooth. This test facility is capable of 

complex 2D beam pattern measurements with high spatial resolution for the frequency 

zin 

aH 

aaper 

zout 

Corrugated 

Feed Horn 

Truncating 

Aperture x 

y 

aouter 

Near Field Probe 

Scanning Plane 

Figure 3-37 - General layout of near field scanning arrangement for diffraction experiment. The 

horn is linearly polarised along the local x axis (c.f. output plane) 
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range 75 GHz to 110 GHz. Measurements for this system were achieved using a Vector 

Network Analyser (VNA). A network analyser is a device that is used to characterise 

the performance of complex electrical systems. A VNA characterises these components 

by measuring their effect on the amplitude and phase over a defined frequency range 

for a range of input power signal excitations. The model of VNA used for the Maynooth 

test facility is the Rohde & Schwarz (R&S) ZVA-24 which has a frequency range of 

10MHz to 24 GHz. The frequency range of the VNA is increased to the W-band (75 GHz 

to 110 GHz) through the use of R&S ZVA-ZV110 Converter units which are designed 

for WR-10 waveguides and have a wide dynamic range greater than 90 dB. The VNA 

powers the waveguides that feed the corrugated feed horn and the measurement probe, 

which is essentially a truncated WR-10 waveguide, through the converter units. It 

should be also noted that no deconvolution of the waveguide probe was attempted to 

remove its influence on the output beam.  

 

The waveguide probe is mounted upon a 2-D XY precision scanning frame that allows 

complex beam measurements as either 1-D planar cuts, 2-D raster scans or in a radial 

pattern. The 2-D XY scanning frame is driven by two precision stepper motors. The 

maximum achievable stepping precision of these motors is 6.35µm in X and 12.7µm in 

Y. These precision figures are dependent on the velocity of the scanning frame during 

measurements. However, these measurements were conducted with ample time delay 

between steps to ensure best possible precision and to avoid mechanical ringing effects. 

The corrugated horn is mounted upon a single direction scanning table, which for the 

purposes of all measurements presented in this thesis is aligned along the global z 

coordinate. Alignment of the input and output elements as well as any optical elements 

is currently achieved manually, with distances between elements set by hand.  
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3.3.2 EM Beam Pattern Predictions 

This system was modelled in both GRASP9 and MODAL in the typical manner. The 

source object used in both software packages was the complex aperture field 

distribution of the corrugated horn, which itself was generated using the mode-

matching code called SCATTER. The full details of this code are given in Chapter 4 of 

this thesis. The truncating aperture object was generated in each package in the same 

manner as in Test Cases 1 described previously in Section 3.2.1.  

 

There are several methods for predicting the diffracted beam behind an aperture in 

GRASP9. Firstly the user may choose whether to use both PO and PTD calculations or 

Truncating 

aperture in 

aluminium 

sheet 

Waveguide 

probe 

Conical 

corrugated 

feed horn 

Figure 3-38 - Arrangement of submillimetre near field test facility for diffraction experiment. 

Corrugated feed horn and waveguide probe are coupled to the VNA through convertor units and 

entire system is surrounded with ECCOSORB absorber material to reduce stray reflections.  
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just PO or PTD. Though it is recommended by TICRA that such a heavily diffracted 

system would require both PO and PTD calculations, the results using just PO are also 

included here. The Babinet version of the system (c.f. Section 3.2.1), where the aperture 

is replaced by an opaque disc with the same dimensions as said aperture, is also 

implemented in GRASP9 and beam predictions were calculating using both PO and PO 

& PTD. The results for each of these beam predictions are given below as x and y planar 

cuts with the central amplitude spot normalized to unity.  

 

(a) 

 

(b) 

Figure 3-39 – Normalised GRASP9 beam pattern predictions for diffracted beam in x (a) and y (b) - 

Truncating Aperture w/ PO (Blue), Truncating Aperture w/ PO & PTD (Red), Babinet Disc w/ PO 

(Yellow) and Babinet Disc w/ PO & PTD (Purple). Note that the horn is polarised linearly in the x axis. 

Note the usual asymmetry between the x and y planes as exhibited previously by test case 1A1 – c.f. 

Figure 3-9 and Figure 3-99 

Unsurprisingly the different prediction methods yield different beam patterns.  Though 

all agree that there is a central amplitude spot, the predictions for the structure of the 

secondary maxima differ. What is interesting here is that the PO calculations for both 

the truncating aperture and the Babinet disc are equivalent, yet the PO & PTD 

calculations are not. The largest structure deviation is seen for the structure of the 

secondary maxima in the y-cut where the PO & PTD calculation for the truncating 

aperture in red shows a degree of Fresnel-type diffraction structure. The PO calculation 

for the truncating aperture and the Babinet disc show similar diffraction patterns, 
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though to a lesser extent. The PO & PTD predictions for the Babinet disc display a much 

smoother pattern.  

 

As mentioned previously in Section 3.2.1 there is a single method for predicting the 

diffracted beam from a truncating aperture object in MODAL. The MODAL predictions 

agree closest with the GRASP9 PO calculations for truncating aperture and Babinet disc 

for both the x and y cuts. The MODAL beam pattern predictions are compared against 

those from GRASP9 below in Figure 3-40. 

Figure 3-40 - Diffracted patterns with MODAL beam pattern predictions included for comparison (in 

black) 

3.3.3 Experimental Results 

The output diffracted beam patterns from the truncating aperture were recorded as 2D 

complex fields. The contour plots presented below in Figure 3-41 show the amplitude 

response of the diffracted beam over a 40 mm × 40 mm grid with sampling steps of 0.1 

mm. The distance between the output plane and the truncating aperture is a critical 

factor for this arrangement, with the diffracted beam evolving quickly over short 

distances. Therefore several measurements were conducted with a complete systematic 

realignment of the system performed after each measurement run for experimental 

prudence and to ensure best possible accuracy of system dimensions. Four sample 

measurements are illustrated below in Figure 3-42. Orthogonal cuts of these beam 
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measurements were achieved by slicing through the peak on-axis power spot in both x 

and y directions.  

  

  

Figure 3-41 – Sample 2D amplitude contour plots of diffracted beam from truncating aperture test 

  

Figure 3-42 - Planar cuts (x on left, y on right) through central spot feature of diffracted beam pattern. 

Note the structural disparity between the x and y cuts.  

The planar cuts above provide a clearer picture of the nature of the diffracted beam 

pattern. The central Poisson spot feature is well defined in each pattern plot. There is 

very good agreement between each beam pattern away from the central spot feature in 
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the x-plane, however agreement in the y-plane is not as strong. This indicates that there 

is possibly some degree of angular misalignment between the feed horn and waveguide 

probe in the y-plane. Indeed this is highly likely as a minor angular offset between the 

horn and probe will lead to a large beam offset at the output plane beyond the confocal 

distance of the source beam/in the farfield. There is further evidence for misalignment 

within the individual planar cuts in both the x and y planes. The secondary maxima for 

each plot have slightly different amplitude power levels. In the x-planar cuts the 

amplitudes of the secondary maxima on the positive right side of the central spot are 

higher than those for the right, and exhibit marginally different structure. This slight 

misalignment is systemic, being consistently true for each cut. There are similar 

dissimilarities in the secondary maxima amplitude levels evident in the y plane cuts 

though they are not consistent. This adds further weight to the conclusion that there 

was some small extent of angular misalignment, primarily in the y-plane. Each of these 

four VNA measurement plots in Figure 3-42 are overlaid against the various EM 

predictions from MODAL and GRASP9 (from Figure 3-40) in Figure 3-43 and Figure 

3-44 below.  
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Figure 3-43 - Diffracted beam patterns with from first two measurement scans – VNA 01 and VNA 02 from Figure 3-42 – displayed in red. 

Experimental measurements are compared against EM predictions from GRASP9 and MODAL from Figure 3-40; x cuts on the left and y cuts 

on the right.  
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Figure 3-44 - Diffracted beam patterns with from final two measurement scans VNA 01 and VNA 02 from Figure 3-42– displayed in red 

Experimental measurements are compared against EM predictions from GRASP9 and MODAL from Figure 3-40; x cuts on the left and y cuts 

on the right. 
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Comparisons between experimental measurements and beam pattern predictions 

unfortunately do not provide a clear answer as to which software package provides the 

more accurate results for this very extreme example. In terms of the structure of the 

diffracted patterns, the x-plane cuts display the best agreement with the GRASP9 PO & 

PTD Babinet disc predictions and to a lesser extent the MODAL predictions. The level 

of agreement between experiment and theory in the y-plane is much more difficult to 

ascertain. None of the beam pattern predictions show good agreement with the shape of 

the central amplitude peak. There also exists widely varying structure for the secondary 

lobe patterns in the y cuts for each of the measured results, thus making any 

determinations as to which software package provides the more accurate prediction 

very difficult to infer. The accuracy of the experimental measurements and the high 

degree of alignment required is also perhaps difficult to realise Given the highly 

sensitive nature of the output diffraction pattern with respect to the alignment of both 

the source beam and the truncating aperture measurements of the desired accuracy 

would require an experimental measurement system with tighter alignment tolerances 

and fewer sources of error. Also when trying to resolve the subtle structure of the beam 

patterns predicted by the different approaches a deconvolution of the probe beam 

should also be included. 

3.3.4 Error Analysis 

In an attempt to keep track of the effects of optical misalignment of the system 

components a tolerance test was conducted using MODAL. The degrees of freedom for 

this tolerancing analysis were chosen on the basis that they represented the major 

sources of possible misalignment within the physical system configuration. The degrees 

of freedom chosen for the system alignment are listed below in Table 3-6. 
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Tolerance Parameter Unit Value 

Feed Horn ∆θh-x ° ±5 

Feed Horn ∆θh-y ° ±5 

Probe ∆θp-x ° ±5 

Probe ∆θp-y ° ±5 

Aperture Plane ∆z mm ±1 mm 

Table 3-7 - Selected degrees of freedom for optical mis-alignment of experimental measurement 

system. 

These values represent reasonably assumed errors inherent in the system. The 

mounting frames for both the feed horn and waveguide probe retained an order of 

freedom in their tilting angles in the x and y planes. It was therefore deemed prudent in 

this instance to assign a generous error of ±5° for each frame axis. The variables ∆θh-x 

and ∆θh-y represent angular alignment tolerances of the feed horn mounting frame about 

the horizontal and vertical axes, and ∆θp-x and ∆θp-y represent the equivalent tolerances 

for the waveguide probe mounting frame. The typical measurement error of ±1 mm was 

prescribed to the positioning of the aperture plane relative to the plane of measurement. 

The worst-case scenarios for these alignment errors were modelled in MODAL. Due to 

the computational intensity of alignment combinations similar calculations in GRASP9 

were considered unfeasible for the purposes of this tolerance analysis. The results of 

this tolerancing analysis are shown below in Figure 3-45 in the typical x and y planar 

amplitude cuts.  
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Figure 3-45 - Amplitude cuts (x on the left, y on the right) for MODAL tolerancing analysis of 

diffraction experiment. The large number of alignment error combinations made the provision of a 

legend too cumbersome.   

The number of alignment error combinations made the provision of a legend for the 

above tolerancing plots too cumbersome. By overlaying these error combinations above 

in Figure 3-45 the effects of the modest optical alignment can be seen. The errors are 

primarily confined to the structure and amplitude levels for the secondary maxima. The 

greatest structural deformation occurs in the y-plane. The output beams exhibit degrees 

of symmetry dependent on the angular misalignment of either or both the source and 

probe structures. To highlight this asymmetry two sample plots taken from Figure 3-45  

representing varying degrees of component angular misalignment are illustrated below 

in Figure 3-46. The planar cuts in Figure 3-46 (a) are in the x plane for combinations of 

angular misalignment of components in the y plane and the cuts in Figure 3-46 (b) are in 

the y plane for misalignment in the x plane.  
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(a) 

 

(b) 

Figure 3-46 - Sample output plots from tolerancing analysis highlighting beam asymmetry due to 

combinations of angular misalignment of source and probe structures. 

The errors introduced from optical axis misalignment (i.e. ± ∆z) only serve to evolve or 

devolve the diffracted pattern to a minor extent and exhibit no asymmetry in the output 

beam. The entire extent of these deviations from the ideal system predictions is best 

accounted for by standard deviation about the mean. The standard deviations are 

overlaid as error bars with the measurement data below in Figure 3-47.  
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Figure 3-47 - VNA output amplitude cuts overlaid with standard deviation error bars (in red) 

determined from tolerancing analysis for x on top and y on the bottom.  

The results above in Figure 3-47 illustrate that the tolerancing analysis accounts for a 

moderate degree of the disparity between the standard predictions and measurements 

in Figure 3-43 and Figure 3-44. The measurements still exhibit a large degree of 

asymmetry, specifically in the x plane cuts (c.f. Figure 3-47 (a)), indicating a larger 

degree of angular mismatch between the probe and feed horn in the y plane than was 
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assumed for tolerancing. The tolerancing predictions also fail to account for the minor 

lobe structures beginning at approximately ±10 mm off axis distance in both x and y 

cuts.  

 

3.3.5 Conclusion 

Based on the results of this experiment combined with the tolerancing analysis it is 

difficult to conclude which software package (GRASP9 or MODAL) accurately models 

the desired diffraction pattern with any reasonable certainty. Given the high spatial 

sensitivity of the diffraction pattern with respect to minor alterations in the alignment of 

the system this conclusion is reasonable. The differences between the various 

predictions from MODAL and GRASP are too minute to be accurately accounted for 

within a modest measurement system. Further investigation of this matter would 

require improved spatial alignment tolerance levels for the various optical components. 

It was not possible to include the effects of the measurement probe in the EM 

predictions. The field distribution recorded using the probe is a convolution of the 

amplitude response patterns of the source beam as diffracted by the aperture and the 

amplitude response pattern of the waveguide probe. Though this effect is generally 

ignored for standard beam pattern measurements in typical quasioptical systems, the 

effect for such a highly diffracted system can be considered significant.  
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4. Standing Waves in Millimetre Wave Optical Systems 

This chapter details a series of investigations into the effect of small scale manufacturing 

errors on the electromagnetic propagation characteristics of a conical corrugated horn. 

These investigations were borne out of the mismatch between theoretical predictions 

and experimental measurements of the return loss profile of such a horn, namely the 94 

GHz corrugated feed horn previously described in Chapter3. The return loss profile for 

a feed horn is a characterisation of the reflected power over the operating frequency 

range of the horn as it couples to empty space. This analysis was performed using a 

combination of mode-matching theory developed from [45], [71] and experimental 

measurements using the near field submillimetre test facility outlined previously in 

Chapter3. The theoretical predictions of the return loss profile from mode-matching 

theory are complemented by predictions from FDTD analysis of the feed horn structure 

by CST-MWS. The horn is first characterised independently with no specific coupling to 

optical elements. A series of cavity arrangements of two such horns with no 

intermediate elements are then described, and the standing wave patterns set up 

between these two horns are studied, with attention paid to the alteration of these 

patterns with the inclusion of the aforementioned small scale manufacturing errors. 

Finally, the chapter concludes with a similar characterisation of a baffle-type structure 

placed in between the two uncoupled horns. 

 

4.1 Standing Waves 

Standing waves are formed as the result of a superposition of two or more harmonic 

waves propagating in the forward and reverse direction along the same axis of 

propagation. This most commonly occurs when one or the other of the oppositely 

directed waves experiences a reflection or partial reflection at some point throughout its 

beam path.  In quasioptical systems the issue of standing waves and multiple reflections 

is a difficult issue to address with models. First order approximations are often used to 

determine the spatial frequency of standing waves that can occur at a particular 
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frequency due to a certain reflective elements separated by a distance z (f = c/z). Very 

often when a feed horn is used as an antenna the plane of reflection is taken to be the 

aperture of the horn. This is not always necessarily true and a more sophisticated model 

is required to model the propagation within the horn structure.  Here a method is 

presented that can account for the propagation and multiple reflections between the 

horn waveguide and any optical component placed in front of the feed horn as a 

Gaussian Beam Mode extension to the modal waveguide description of a horn. For 

many millimeter/submillimetre systems this then becomes a very powerful technique 

to understand standing waves or multiple reflections more precisely than standard 

optical assumptions. In the ALMA optical layouts for Bands 5 & 9 modeled in this thesis 

a low level standing wave will occur between the feed horn and the secondary mirror as 

the horn is mapped onto this mirror. The theory expanded on in this chapter can easily 

be applied to this example and a value for the multiple reflections oscillating about the 

return loss of the horn itself can be easily predicted [36]. 

 

A simple representation of this phenomenon can be described as a system in which a 

wave E1 is incident upon an ideal reflecting surface, where it is assumed that no energy 

is lost on reflection or absorbed at the reflecting surface. The reflected wave E2 will thus 

have the same amplitude as the incident wave, but has undergone a ̟ phase shift [33] – 

c.f. Figure 4-1: 

 

 

 

 

 

 

 

 

E1 

E2 

Reflector 

Figure 4-1 – The creation of standing waves by superposition of 

incident wave E1 and its reflection E2 
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Thus the two waves can be written as 

 ( )1 0 sinE E wt kx= +  (4.1) 

 ( )2 0sinE E wt kx π= − −  (4.2) 

where E0 is the amplitude, w is the angular frequency, k is the wavenumber and t and x 

are the temporal and spatial variables of the waves. Note the ̟ phase change for the 

reflected wave. The superposition of these two waves gives the resultant wave for the 

system,  

 ( ) ( )1 2 0 sin sinRE E E E wt kx wt kx π= + = + + − −    (4.3) 

which reduces through standard trigonometric identities to  

 ( )( ) ( )02 sin cosRE E kx wt=  (4.4) 

This resultant wave represents a standing wave with amplitude A(x) = 2E0sin(kx) and is 

illustrated below in Figure 4-2. At certain points, namely x = 0, λ/2, λ, 3λ/2,… the 

disturbance will have zero amplitude for all t. These are known as nodes of the standing 

wave and are separated by a half-wavelength. These nodes represent a destructive 

interference of the two superimposed waves. Halfway between each node the 

amplitude has a maximum value of ±E0 and these are known as antinodes. These 

antinodes are formed as a consequence of constructive interference 
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t = T/2, 3T/2,... 

t = 0, T, 2T,... 

x 

Figure 4-2 – Standing wave pattern for wave of amplitude E0 showing 

positions of nodes and antinodes   
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The resultant wave will have zero amplitude for all values of x whenever Cos(wt) = 0. 

This occurs when 

 
2

2wt ft t m
T

ππ π = = = 
 

 (4.5) 

where f is the frequency and T is the period of the wave. Thus the wave will be zero 

when t = T/4, 3T/4,…. Conversely the wave will have a maximum amplitude for all 

values of x when t = 0, T/2, T, 3T/2,….  

 

Considering the more general case for the reflection of the incident wave from a 

reflecting surface the phase shift can be considered arbitrary, thus affecting the location 

of nodes and antinodes as well as the maximum displacement. However the overall 

standing wave profile will remain unaffected [33].In Figure 4-3 below the standing 

wave patterns for various phase shifts representing various degrees of interference are 

plotted. With decreasing phase shift Ф the positions of nodes and antinodes follows a 

sinusoidal path, and the amplitude of the antinodes decreases accordingly.   

 

 

 

 

 

 

 

 

 

 

In practical quasioptical systems the simple profile of a standing wave from a single 

reflecting plane is sometimes obscured due to multiple reflection planes or a standing 

wave occurring over a finite bandwidth. 
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Figure 4-3 – Standing wave patterns for various phase differences 

between superposed waves 
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The amplitude variation of a standing wave may be characterised from transmission 

line theory by its Voltage Standing Wave Ratio (VSWR), which gives the ratio of the 

maximum and minimum voltages [72]. We define the VSWR as  

 

 max

min

i r

i r

E E E
VSWR

E E E

+= =
−

  (4.6) 

Where Ei and Er are the amplitudes of the incident and reflected waves. Defining the 

reflection coefficient ρ as the ratio Ei/Er Equation 4.6 is re-written as: 

 1

1
VSWR

ρ
ρ

+=
−

  (4.7) 

The return loss of this standing wave is given by [73] as: 

 ( ) 10

1
20 log

1

VSWR
Rs dB

VSWR

− =  + 
  (4.8) 

If the reflection coefficient of a dielectric is given as ρ = 0.6 the VSWR = 4 from Equation 

4.7 giving a return loss of -4.43 dB from Equation 4.8.  

4.2 Theory of Scattering Matrices for Gaussian Beam Modes 

The theory of scattering matrices was originally developed from transmission line 

theory as a method of characterising a multi port electrical network in terms of the 

relations between the complex amplitudes for the inward and outward waves at each 

port. This theory was extended to quasioptical systems in [45] and [71] by representing 

a wave guide or beam guide structure as a sequence of individual components. Each of 

these components has its own characteristic scattering matrix which determines the 

redistribution of power among the modes (modeling the field) that can be used to 

describe the input field. The field propagating within a freespace beam guide structure 

can be described by either the higher order Associated Laguerre modes or Hermite-

Gaussian modes, depending on the symmetry of the system in free space. The fields 

propagating within a waveguide structure are typically represented by combinations of 

TE and TM modes, whose order depends on the dimensions of the waveguide structure 

[56]. In this section the theory of scattering matrices is outlined for an arbitrary 
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(freespace or waveguide) system. This is followed with examples illustrating the 

application of the theory to the generation of standing waves within a Fabry Perot 

interferometer arrangement. The technique is also extended to the theory of interference 

in thin films and multilayer coatings. These classical optical examples of interference or 

applications of multiple reflections serve as nice examples to demonstrate the scattering 

modal application and also serve as verification tools to ensure the code is working 

correctly and can be applied to examples where the answer is known or can be 

calculated with an independent technique..  

 

The diagram below (Figure 4-4) shows such a scattering matrix represented as a box 

with the various transmitted and reflected modal coefficients represented as coloured 

arrows. The column vectors [A] and [B] are the modal coefficients of the transmitted 

and reflected fields on the input side of the scattering structure, with the structure 

working in transmission from left to right.  

 

Similarly the [C] and [D] column vectors are the modal coefficients for the transmitted 

and reflected fields on the output or right hand side of the structure. The overall 

reflected and transmitted modal coefficients output from the structure, [B] and [D] 

(represented by the red arrows) are determined by scattering the input modal 

coefficients, [A] and [C] (represented by the green arrows) using the scattering matrix 

[S].  

Figure 4-4 - Scattering matrix representation of a 2 port system 

[A] 

[B] 

[D] 

[C] 

Scattering Matrix: [S] 
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   (4.9) 

where the scattering matrix S is comprised of four sub-matrices: 

   (4.10) 

   (4.11) 

The sub-matrices of [S] with the input coefficients [A] and [C] combine to give the 

output reflected and transmitted coefficients, thus coupling all incident power with all 

output power. The scattering matrix representation from Figure 4-4 can be amended to 

illustrate how the individual sub-matrices couple the modal coefficients [74] – c.f. 

Figure 4-5. 

 

 

 

 

 

 

 

 

 

 

From this diagram it is easy to relate each of the sub matrices to their respective power 

couplings: the [S11] sub matrix matches the incident modal coefficients from the input 

(left) side that are reflected back out of the system and the [S12] couples incident modal 

coefficients from the output (right) right side that are transmitted through the system to 

the input (left) side, hence generating the output modal coefficients [B] on the left hand 

side. The output modal coefficients on the right hand side [D] are generated by the [S21] 
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[A] 

[B] [C] 

[D] 

[S11] 

[S21] 

[S12] 

[S22] 

Figure 4-5 - Scattering matrix of a 2-port system showing the pattern of coefficient 

coupling by the constituent sub-matrices 
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sub matrix that matches the incident modal coefficients from the input (left) side to the 

output (right) side.  

 

Traditionally such systems operate in forward (or reverse) mode, thus negating the 

incident power from the right (or left) side. One typical example of such a system is the 

feed horn fed by a waveguide where there are no other active power sources from the 

aperture side of the horn. Taking this system to be operating in forward mode, the [C] 

modal coefficients are set to zero, and the reflected and transmitted mode coefficients 

are given by: 

   (4.12) 

Extending the example of a horn fed by a single moded waveguide, total input power is 

contained within the first mode. A multi moded description of this single moded field 

consists of a single unity entry and all other mode coefficients set to zero: 
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0
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 
 
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 
 ⋮   

(4.13) 

Another multi-moded description for the aperture distribution of a scalar horn is that of 

a truncated Bessel function, as calculated by [75] and demonstrated previously in 

Section 2.3.1. The modal coefficients for such a field description are given 

approximately as:  
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 ⋮

  

(4.14) 

where the modal coefficients are calculated in the usual manner from Equation 2.1 

where the source field E is taken as the first order Bessel function and the mode-set is of 

the usual Laguerre-Gaussian form – c.f. Equation 2.17. Alternatively a simple Gaussian 
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with a beam waist equal to 0.6435 times the aperture radius will provide a 98% 

coupling to the aperture field from a corrugated horn, as seen in Section 2.3.1. The 

appropriate modal coefficient calculation gives A to be: 

 

0.995998

0.038735

0.05481
A

 
 
 =
− 
 
 ⋮

  (4.15) 

These are freespace modal approximations to the aperture field distribution from a feed 

horn and can thus be used as the input freespace mode description for a freespace 

quasioptical system fed by a horn. However this method will not provide the true S-

parameter description of the system (internal reflections within the horn) as it evidently 

does not incorporate the waveguide scattering processes within the physical waveguide 

structure of the feed horn. We will return to this concept later with analysis of a typical 

light baffle structure using a horn aperture truncated Bessel field approximation and a 

complete modal description of an equivalent corrugated horn field fed into a light baffle 

structure 

 

A complete scattering structure is comprised of individual scattering elements, each 

with their own scattering matrix. A complete scattering matrix description of the final 

structure is obtained by ‘cascading’ the individual scattering matrices together in 

sequence. The cascade matrix approach combines two individual scattering matrices, 

[Ss] and [Sb] into an overall scattering matrix [Sc] 

 

    (4.16) 

   (4.17) 

The overall cascade matrix is calculated using the following relations: 
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  (4.18) 

Where [I] is the identity matrix and [ ]-1 signifies the inverse of a matrix. The cascading 

matrix method as applied to two component scattering matrix is a repetitive process: 

the cascaded matrix of two individual scattering matrices is then itself cascaded to the 

next component scattering matrix until the entire system is described by a single 

scattering matrix – c.f. Figure 4-6 

 

 

 

 

 

 

 

 

 

 

 

 

This complete scattering matrix allows for monitoring of all power flow within the 

cavity, be it transmitted to the output or reflected to the input or if any particular modes 

are sustained within the cavity. Such sustained modes are called ‘eigenmodes’ and are a 

common feature within the theory of guided electromagnetic waves. Indeed, the 

operation of lasers requires such stable eigenmodes to propagate within a resonant 

cavity so as to generate sufficient power output [4]. The scattering matrix technique is 
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Figure 4-6 - Functional representation of the iterative cascading process for N

scattering matrices where Sc for (1) becomes the Sa for (2) and so on. 
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applied to the study of such eigenmodes as they exist within THz systems in a later 

section. The following subsections describe the scattering matrices for a number of 

typical quasi-optical components such as partially reflecting sheets, freespace 

propagation and a truncating aperture/annular ring structure and finally a composition 

light baffle structure sometimes used to reduce the influence of stray light in an optical 

system. 

4.2.1 Scattering Matrix for reflecting or partially transmitting sheet 

This subsection deals with scattering matrix description for an infinitesimally thin 

partially reflecting/transmitting sheet. This can be viewed as an approximation to a 

typical thin dielectric window element in a quasioptical system. It is assumed here that 

the beam is incident from left to right with a positive phase radius of curvature. Upon 

incidence with the sheet the reflected beam will propagate in the opposite direction to 

the incident beam. This beam will be seen to be emanating from a virtual waist position 

behind the sheet; a mirror image of the waist position of the original incident beam. The 

beam radius will not change upon reflection and the phase radius of curvature will 

continue to evolve as before, but with a negative value, indicating its direction of 

propagation. The transmitted beam will appear to continue propagating past the sheet, 

though with reduced amplitude that is determined by the transmittance of the sheet; 

the same can be said for the amplitude of the reflected beam which is dependent on the 

sheet’s reflectance.  

 

Taking the incident beam to be described in the typical manner from Equation 2.1 as a 

sum of forward propagating modes: Ei = ΣAnψ+
n, where Am  are the mode coefficients 

and ψ+
n is the forward propagating mode set, as signified by the + term. The reflected 

field can be written in similar terms with a reverse propagating mode set ψ-
n and the 

corresponding set of mode coefficients Bn : Er = ΣBnψ-
n. 
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The new reflected field mode coefficients Bn are determined from the incident field 

mode coefficients An through the scattering process at the sheet: 

 n mn m
m

B S A=∑   (4.19) 

where Smn is the scattering matrix that distributes power between the adjacent modes 

and appropriately alters the phase radius of curvature.  

 

 The phase terms of the forward propagating modes have the form exp �����	 


�� 2
⁄ � 
 �∆���
�	��, while for the reverse propagating modes the form is exp �
���	 


�� 2
⁄ � � �∆���
�	�� where ∆���is the associated phase slippage. However, the 

evolution of the ����	 � ∆���
� phase terms are actually carried by the modal 

coefficients [76]. Therefore, the scattering matrix only accounts for the transformation of 

the phase radius of curvature and takes the form 

 ( )
2*

expmn n m

kr
S j dA

R
ψ ψ− +  

= + 
 

∫   (4.20) 

where the complex exponential term accounts for the reversal and continued 

divergence of the phase radius of curvature R upon reflection by the sheet. The integral 

takes place over the area of the reflector, which if larger than the beam can usually be 

assumed to be infinite with no beam truncation 

 

Figure 4-7 - Scattering process of a thin partially reflecting/transmitting sheet showing how the source 

waist of the reflected beam is a virtual mirrored equivalent to that of the incident beam 
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The reflectance R and the transmittance T determine the reflected and transmitted 

irradiance of the partially reflecting sheet and are determined using the reflection and 

transmission coefficients r and t respectively.  

 

2

2

R r

T t

=

=
  (4.21) 

where the reflection and transmission coefficients are themselves dependent on the 

refractive index of the dielectric material of the sheet. For the time being the sheet is 

being treated as a mathematically convenient infinitesimally thin sheet and the relation 

between the reflectance/transmittance and dielectric refractive index will be discussed 

in a later section. The system is taken to be lossless, meaning that any power that is not 

reflected will be transmitted, with no power absorption by the sheet, such that  

 1R T+ =   (4.22) 

These reflection and transmission coefficients are incorporated into the scattering 

matrix description of the partially reflecting sheet: 

 
11 12

21 22

mn mn

mn mn

S r S tS S

S t S rS S
=   (4.23) 

In the situation where a beam waist with infinite phase radius of curvature exists at the 

plane of the sheet then the scattering matrix term Smn is replaced by the identity matrix 

I. This is because in the scattering integral above (Equation 4.20) the infinite phase 

curvature R will null the exponential phase term and the Hermitian inner product of the 

mode sets will reduce to the identity matrix.  

4.2.2 Scattering Matrix for Propagation 

The propagation scattering matrix describes the simple axial phase evolution of the 

modes as they propagate through a distance z. If an incident field is described in the 

typical manner i.e. Ei = ΣAnψn, then the field after propagation can be defined as  Ei = 

ΣVnAnψn, where the evolution term Vn is given by 

 [ ]exp (2 1)n nV jkz j n φ= − + + ∆   (4.24) 
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where the kz term represents the usual plane wave phase delay and the ∆φ n term 

represents the relative axial phase slippage of the nth mode as determined using the 

ABCD matrix method. The propagation term is recognisable from the Gaussian beam 

mode solution to the paraxial wave equation from Equation 2.15. This scattering matrix 

is applied to fields as described using the both Laguerre-Gaussian mode set and the 

Associated Laguerre-Gaussian mode set (Equation 2.35). The scattering matrix has the 

form of an N*N diagonal matrix, where the diagonal entries are given by Equation 4.24 

above and is of the form  

 
0

0prop

V
S

V
=   (4.25) 

The diagonal matrix form of this scattering matrix ensures that there is no scattering 

between modes along the propagation path and there is no reflection of the beam.  

4.2.3 Scattering matrix for dielectric 

This section details the complete scattering matrix formulation for a beam impinging 

upon a dielectric slab of finite thickness. This process is twofold, where the scattering 

matrices for reflection and transmission at the dielectric boundary and the scattering 

matrix for propagation within the dielectric slab itself are required. These scattering 

matrices are developed from the similar matrices described previously in Sections 4.2.1 

and 4.2.2. 

When dealing with the propagation of beams within media of different refractive 

indices it is convenient to introduce the concept of the reduced complex beam parameter, 

which is similar to the reduced radius of curvature R̂  used in geometrical optics, and is 

defined according to [4] as  

 ˆ R
R

n
=   (4.26) 

where n is the local refractive index of the material and R is the radius of curvature in 

freespace. A more formal description of this reduced radius of curvature is given in 
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terms of the refractive indices for the incident and transmitted regions ni and nt – c.f. 

Figure 4-8: 

 ˆ i
t i

t

n
R R

n
=   (4.27) 

The complex beam parameter, given by Equation 2.10 is now re-written to incorporate 

the reduced radius of curvature using the following relation: 

 
( )2

1 1
ˆˆ

ij
q R W z

λ
π

= −   (4.28) 

where R(z) is the freespace radius of curvature, W(z) is the beam radius and λi and λt are 

the wavelengths in the incident and transmitted regions respectively. From Equation 

4.28  above it is evident that only the radius of curvature R(z) or the complex part of the 

beam parameter q is affected by the dielectric interface, whereas the beam radius w(z) 

remains unaffected. The evolution of the Gaussian beam parameters within the 

dielectric can then be tracked using this reduced complex beam parameter q̂ through 

use of the ABCD matrix technique from Section 2.1.5.1. The evolution of the Gaussian 

beam parameters is illustrated below in Figure 4-8, where a beam propagates across two 

dielectric boundaries, as it would in passing through a dielectric slab.  
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Figure 4-8 - The evolution of the phase radius of curvature and waist as a beam propagates through 

media of different refractive indices 



181 

 

The scattering matrix for a beam incident upon the dielectric interface has a similar 

definition to that for the partially reflecting/transmitting sheet i.e. Equation 4.20. For a 

beam travelling in a medium of refractive index ni incident upon a plane of dielectric 

material of refractive index nt the reflection and transmission coefficients i tρ →  and i tτ →  

respectively are given by the Fresnel equations from [77]: 

 i t
i t

i t

n n

n n
ρ →

−=
+

  (4.29) 

 
2 i

i t
i t

n

n n
τ → =

+
  (4.30) 

Considering the beam travelling in the reverse direction across this same boundary, or 

indeed the equivalent situation of the beam crossing the second dielectric boundary in 

Figure 4-8 above, the reflection and transmission coefficients are re-written as  

 t i
t i

t i

n n

n n
ρ →

−=
+

  (4.31) 

 
2 t

t i
t i

n

n n
τ → =

+
  (4.32) 

The reflected and transmitted fields at the first dielectric interface Erefl and Etran are then 

related to the incident field Einc by the Fresnel equations by 

 refl i t incE Eρ →=   (4.33) 

 tran i t incE Eτ →=   (4.34) 

In a similar manner to the reflected field from the partially reflecting/transmitting sheet 

the reflected field from this dielectric interface is written in terms of the reverse 

propagating modes where the phase radius of curvature is reversed : refl n n nE B ψ −= Σ . The 

scattering matrix to describe the reflected field has a similar format to that of Equation 

4.23. To accurately account for the complete scattering across a dielectric boundary the 

reflection and transmission and coefficients for both the forward and reverse directions 

must be taken into account. The complete scattering matrix for the first dielectric 

boundary in Figure 4-8 above is given as 



182 

 

 
11 12

21 22

i t i t t i t i

i t i t t i t i

S SS S

S SS S

ρ τ
τ ρ

→ → → →

→ → → →

=   (4.35) 

where the matrix elements i tS→  and t iS →  represent the scattering going from ni to nt and 

nt to ni respectively:   
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where ki and kt are the wavenumbers for the incident and transmitted regions and ψi-n± 

and ψt-n± are the mode sets describing the beam in the incident and transmitted regions. 

As the beam radius is unaffected by transmission across the dielectric interface the 

mode sets  ψi-n± and ψt-n± are mathematically equivalent. The only difference between 

these two scattering matrices is accounting for the reduced phase radius of curvature 

inside the dielectric, hence requiring the two scattering matrices above rather than a 

single matrix for the case of the partially transmitting/reflection sheet from Section 

4.2.1.  

Propagation within the dielectric slab is determined in the same manner as for the 

freespace propagation from Section 4.2.2. The output complex beam parameter ˆoutq  

after propagation within the dielectric slab is determined from the evolution of the 

input reduced complex beam parameter înq   in the same manner as Equation 2.44:
 

 
ˆ

ˆ
ˆ

in
out

in

Aq B
q

Cq D

+=
+

  (4.38) 

The evolved beam parameters are thus determined from this new complex beam 

parameter using ABCD matrices.    
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4.2.4 Scattering Matrix for Truncating Aperture 

From [78] the scattering matrix for a truncating aperture is defined by the overlap 

integral between the input field at the aperture plane and the output field after 

truncation. If we consider a circularly symmetric truncating aperture we first describe 

the incident and output fields in terms of the circularly symmetric Laguerre-Gaussian 

mode set : 
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=

∑

∑
  (4.39) 

where An and Bm are the incident and transmitted field mode coefficients and ψn,m are 

the Laguerre-Gaussian basis mode set (Equation 2.39). If the aperture has a radius a the 

following boundary condition applies to the relation between the incident and output 

fields: 
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0
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E r E r r a
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= ≤
= >

  (4.40) 

where r represents the off-axis distance measured from the centre of the aperture. This 

equation essentially states that only the incident field confined within the aperture will 

be transmitted while the remainder is lost. The transmitted mode coefficients are given 

by the overlap integral 

 ( ) ( )
0

2
a

m m outB r E r rdrψ π= ∫   (4.41) 

where the output field over the integral limits of the aperture is equivalent to the 

incident field over the same limits so we now write 
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where the scattering matrix Smn is now defined as  
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 ( ) ( )*
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2
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m nS r r rdrψ ψ π= ∫   (4.43) 

thereby giving  

 m mn n
n

B S A=∑   (4.44) 

This scattering matrix will redistribute the power from the incident modes to the 

transmitted modes. The form of the scattering matrices is consistent with the format 

required by Equation 4.23 
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−
=

−
  (4.45) 

where I is the identity matrix. The form of this scattering matrix ensures that the 

transmitted components (S12 and S21) are described by the scatting matrix equation 4.43 

and the reflected components (S11 and S22) are defined as that field which is not 

transmitted. This scattering matrix for truncation will be utilised further on this chapter 

to model a stray light baffle structure composed of several annular rings that 

approximate truncating apertures.    

 

4.2.5 Multilayer Dielectric Films 

The theory of cascaded scattering matrices can be used to model the interference 

properties of multilayer dielectric films. By combining thin films of alternating dielectric 

constants it is possible to produce destructive interference conditions between the 

beams reflected from the front and back faces of each film. Depending on the order of 

the films in a stack according to their dielectric constant the reflectance of the stack can 

be reduced or enhanced. These layered films have many practical uses; a high 

reflectance film may be used as a beam splitter, or a multilayer may also be employed 

as an optical filter which transmits or reflects a selected region of the spectrum. Two 

illustrations of such multilayer dielectric films are given below in Figure 4-9. 
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The traditional approach to characterising the reflectance and transmittance profiles for 

multilayer dielectric is achieved using the transfer matrix method as described in [33], 

which assumes plane wave propagation and not GBMs. This analytical method is 

discussed in the following subsection. A variety of multilayer films with unique optical 

properties are discussed and the characteristic reflectance/transmittance profiles for 

each are calculated using the aforementioned transfer matrix method. The technique of 

cascaded matrices is applied to each of these films and the results are compared against 

those of the transfer matrix technique.  

 

4.2.5.1 The Transfer Matrix Technique 

A complete discussion and derivation of the transfer matrix technique may be found in 

[33] with the basic principles being outlined here. The transfer matrix is derived 

through the process of solving the boundary value problem for a thin dielectric film 

placed in between an incident region (freespace) and a substrate (glass).  

 

The diagram below (Figure 4-10) shows a thin dielectric film of thickness l of refractive 

index n1. It is surrounded on the left by an incident region with refractive index n0 and 

on the right by a transmitted substrate region of refractive index ns. Incident light that 

transmits into the film will multiply reflect between the two dielectric interfaces. The 
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Low Index 

High Index 
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λ/4 
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High Index λ/4 

λ/4 

High reflection stack 

Figure 4-9 - Examples of an anti-reflection stack and high reflection stack 
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reflectance and transmittance is solved using the boundary value approach. Maxwell’s 

equations are solved in each of the three regions in the figure below and these solutions 

are matched at the boundaries using boundary conditions.  

 

 

The above figure illustrates the transverse electromagnetic wave solutions in each of the 

three regions. The incident region contains a forward-travelling wave with field 

amplitude E0 and a wave vector k0 that represents the incident illumination. This region 

also contains a backward propagating solution with E’0 and k’0 that represents the net 

reflected radiation. Both solutions must be used as they are linearly independent; a 

forward travelling wave cannot be represented as a linear combination of backward 

travelling waves and vice-versa. The film region also contains a forward-travelling 

solution with El and kl and a backward travelling solution with E’l and k’l that account 

for all multiple reflections within this region. Finally the transmitted region only 

contains a forward travelling wave with E0 and k0, since it assumed that a semi-infinite 

transmitted region that cannot physically produce a backward component.  

Assuming normal incidence, the first boundary condition states that the tangential 

components of the electric field must be continuous at x = 0: 

E0 

E’0 

k0 

k’0 

l 

x=0 x=l 

El 

kl 

E’l 

k’l 

nl nt 

Et 

kt 

Figure 4-10 - A dielectric film of thickness l and refractive index nl deposited on a substrate of 

refractive index nt [37]. 
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 0 0' 'l lE E E E+ = +   (4.46) 

The tangential components of the magnetic field B must also be continuous at x = 0. 

Note that for the backward travelling wave that if E’0 points up (as above) then B must 

point out of the page. Taking ‘out of the page’ to be positive gives 

 0 0' 'l lB B B B− = −    (4.47) 

The transverse electromagnetic components E and B are related by (ref) 

 
n

B E
c

=    (4.48) 

which by Equation 4.46 gives 

 ( ) ( )0 0 0' 'l l ln E E n E E− = +    (4.49) 

At the second interface where x = l the effects of propagation must be included. It is 

important to note here that this will be a steady-state solution, in that the transmitted and 

reflected beams are recorded as an average over many cycles, and hence the temporal 

component of the electromagnetic wave solution is ignored. Accordingly the forward 

travelling wave is represented as e+ikx and the backward travelling wave is represented 

as e-ikx. Applying this to the above stated boundary condition at x = l gives 

 'ikl ikl
l l tE e E e E−+ =    (4.50) 

where the eikl term is included in the Et term by allowing it to become complex, since in 

the transmitted region there is no need to distinguish between forward and backward 

travelling solutions. Similarly the boundary condition at x = l for magnetic fields gives  

 ( )'ikl ikl
l l l t tn E e E e n E−− =   (4.51) 

The goal here is to solve Equations 4.46 – 4.51 for the reflected and transmitted beams 

E’0 and Et when the incident illumination E0 is known. Firstly the fields internal to the 

layer are eliminated: El and E’l. From Equations 4.50 and 4.51 we get 
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1

1
2

iklt
l t

l

n
E E e

n
− 

= + 
 

    (4.52) 

 
1

' 1
2

iklt
l t

l

n
E E e

n

 
= − 
 

    (4.53) 

from which we get 

 ( ) ( )' cos sint
l l t

l

n
E E kl i kl E

n

 
+ = − 

 
    (4.54) 

 ( ) ( )' sin cost
l l t

l

n
E E i kl kl E

n

 
− = − + 

 
    (4.55) 

Applying Equations 1.1 and 1.2 we get 

 ( ) ( )0

0 0

1 cos sin
'

t t

l

E n E
kl i kl

E n E

 
+ = − 

 
    (4.56) 

 ( ) ( )( )0
0 0

0 0

'
sin cos t

l t

E E
n n in kl n kl

E E
− = − +     (4.57) 

The notation is simplified by letting r = 0

0

'E
E and t = 

0

tE
E and writing Equations 4.56 

and 4.57 in matrix form as 

 
( ) ( )

( ) ( )0 0

cos sin1 1 1 1

sin cos
l

t t
l

i
kl kl

nr t M t
n n n n

in kl kl

 −        + = =        −        − 

    (4.58) 

where M is called the transfer matrix: 

 
( ) ( )

( ) ( )

cos sin

sin cos
l

l

i
kl kl

nM

in kl kl

 − =  
 − 

    (4.59) 

If another dielectric film layer is introduced into the stack between the first dielectric 

and the substrate Equation 4.58 is still valid. Generalising for a multilayer of an 

arbitrary number N layers, 
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 1 2
0 0

1 1 1
... N

t

r M M M t
n n n

     
+ =     −     

    (4.60) 

The overall transfer matrix MT represents the entire multilayer stack and is the product 

of the individual transfer matrices in the order in which the incident radiation 

encounters them: MT = M1M2M3…MN. Letting the result of N layers result in a final 

transfer matrix: 

 
11 12

0 0 21 22

1 1 1

t

m m
r t

n n nm m

      + =      −       
    (4.61) 

gives the following set of equations: 

 ( )11 121 tr m n m t+ = +     (4.62) 

  ( )0 0 21 22tn n r m n m t− = +     (4.63) 

These can be solved for r and t to give  

 0 11 0 12 12 22

0 11 0 12 12 22

t t

t t

n m n n m m n m
r

n m n n m m n m

+ − −=
+ + +

    (4.64) 

 0

0 11 0 12 12 22

2

t t

n
t

n m n n m m n m
=

+ + +
    (4.65) 

The reflectance and transmittance over a boundary are given by 
2

R r= and 
2

1

0

nT tn=  

[33].  

4.2.5.2 The Cascade Matrix Technique 

The transmission and reflection profiles for multilayer films can also be calculated using 

the cascade matrix technique described above in Section 4.2. These examples illustrate 

the flexibility of the approach not only to quasioptical systems but also to classical 

optics examples. The scattering matrix description for radiation incident upon a single 

dielectric film is a cascade of a dielectric interface scattering matrix, a propagation 

scattering matrix and another dielectric interface scattering matrix. The dielectric 

scattering matrix, as described above in Section 4.2.3 determines the degree of reflection 
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and transmission at the dielectric interface while the propagation matrix will track the 

evolution of the beam properties through the substrate. Cascaded together, these 

matrices will keep track of the phase changes upon reflection and transmission between 

layers. The cascade matrix for more than one layer simply requires the inclusion of the 

extra required scattering matrices.  The incident beam for all examples described below 

was defined as a Laguerre-Gaussian beam with a waist of size w0 = 2.0 mm and flat 

phase radius of curvature. This ensured a minimum degree of power scattering 

between modes across the various dielectric boundaries.   

4.2.5.3 Example - Antireflection Coating 

The concept behind antireflection coatings is to produce the necessary destructive 

interference condition between the beams reflected from the front and back faces of the 

film. This is achieved by having the reflections at interfaces characterised by an incident 

medium that is optically less dense and manipulating the thickness of the proceeding 

film(s) to produce a 180° phase shift in the reflected beams after propagation. This is 

achieved by setting the thickness of the film to be a quarter wavelength thick for the 

local medium, such that 

   0

4 4
l

n

λ λ= =     (4.66) 

where λ is the wavelength within the film, λ0 is the free space wavelength and n is the 

refractive index of the dielectric film. The phase difference over a single propagation 

distance l is then 

   
2

4 2
kl

π λ π
λ

 = = 
 

    (4.67) 

which for a round trip propagation becomes a phase difference of ̟ or 180°. Such a 

dielectric film is usually referred to as a ‘quarter-wave film’. The diagram below (Figure 

4-11) illustrates the phase changes on reflection and transmission for a typical quarter-

wave film.  
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The reflection coefficient for a single dielectric layer of quarter wavelength optical 

thickness becomes 

 
( )
( )

2

2

t l

t l

n n
r

n n

−
=

+
    (4.68) 

At the design wavelength, reflectance R = 0 when l tn n= . For glass with index nt = 

1.52 the ideal index would be 1.23. Magnesium fluoride (MgF2) with index nl = 1.38 is 

commonly used due to its durability. Note that the index increases across each interface, 

giving a ̟ phase shift for each reflected component; thus the half-wavelength round-

trip travel for the wave that reflects from the substrate combines with the front-surface 

reflection in destructive interference, giving complete cancellation if l tn n= . The film 

reflectance increases for wavelengths other than the design wavelength [37]. A further 

reduction in reflectance can be achieved by using more than one layer. A quarter- quarter 

coating consists of two quarter-wave layers of alternating low and high index, where 

the low index coating is the outer layer. The reflection coefficient for such a quarter-

quarter layer is given by [37] as 

 
( )
( )

2 2

2 2

l t h

l t h

n n n
r

n n n

−
=

+
    (4.69) 

where nl and nh are the low and high refractive indices respectively.  

nt n1 n0 

̟ 

̟ 2
π  

2
π  

0

14n

λ  

Figure 4-11 - Phase changes upon reflection and transmission in the quarter wave film used at normal 

incidence 
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The transfer matrix and the cascade matrix techniques are applied to several examples 

of antireflection films. In the scattering matrix formulation for all examples described 

here, the Laguerre-Gaussian mode set was used.  The first example is of an 

antireflection coating consisting of a single quarter wavelength layer deposited on glass, 

the layout of which is illustrated in Figure 4-11. The coating reflectance profile is 

determined for the ideal refractive index of nl = 1.23 and for MgF2 with nl = 1.38. The 

thickness of the layers is determined from the design wavelength (c.f. Equation 4.66), 

which in this case is 550nm. The thicknesses are 11.27nm for the ideal coating and 0.996 

mm for the MgF2 coating.  

 

Figure 4-12 - Reflectance profile for single 'quarter layer' anti-reflection coating upon glass substrate. 

Cascade matrix results shown in blue for (nl = 1.38) and green for (nl = 1.22). Classical transfer matrix 

results are in dashed red (nl = 1.38) and dashed yellow for (nl = 1.22). 

The comparison of the reflectance profiles calculated using the cascade and transfer 

matrix techniques (Figure 4-12) show perfect overlap, with a null of reflectance 

predicted at the design wavelength of 550nm. Since the incident Gaussian beam is at a 

waist at the first dielectric interface the scattering between adjacent modes is practically 

negligible. The cascaded scattering matrices thus required only 5 modes to fully account 

for the power scattered between modes. 
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4.2.5.4 Example - Two Layer Antireflection Coating  

The anti-reflection properties of the dielectric coating described above in Section 4.2.5.3 

can be further enhanced with the inclusion of another dielectric coating. An example of 

such a two layer antireflection coating, taken from [33] is described here.  

 

For a glass substrate with radiation incident from air, a two layer coating consisting of a 

low refractive index dielectric n1 followed by a high refractive index dielectric n2 forms 

an anti-reflection coating. In this instance, the low refractive index dielectric is cerium 

triflouride, CeF3 (n1 = 1.65) and the high refractive index dielectric is zirconium dioxide, 

ZrO2 (n2 = 2.1). The thicknesses of the two coatings are again determined from the 

design wavelength, as was the case for the single layer coating, from Equation 4.66. For 

a design wavelength of 550nm the thickness of the CeF3 layer is l1 = 0.833nm and of the 

ZrO2 layer is l2 = 0.6547nm. The arrangement of this anti-reflection coating is illustrated 

in Figure 4-13 below.  

 

 

 

The reflectance profile for this coating arrangement is determined using the transfer 

and cascade matrix techniques as before, with the results plotted below in Figure 4-14 

below, where the transfer matrix results are plotted in red and the cascade results in 

blue. 

14n

λ
24n

λ  
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2.1 
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Glass 

Low 
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Figure 4-13 – Two layer anti-reflection coating consisting of two quarter wavelength thick dielectrics 

upon a glass substrate.  
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Figure 4-14 – Reflectance profile for two-layer anti-reflection coating. 

Once again, the results show excellent agreement between the transfer and cascade 

matrix techniques.  

 

4.2.5.5 Example - High Reflectance Coating 

If the order of the low and high index two layer film from Section 4.2.5.4 that was 

optimised for antireflection is reversed, so that the order becomes air -> high index -> 

low index -> substrate, then all reflected beams are in phase upon emerging from the 

structure and the reflectance is enhanced rather than reduced. A series of such double 

layers will increase the reflectance further, and the structure is known as a high 

reflectance stack or dielectric mirror.  The analytical expression for the maximum 

reflectance from such a high reflectance stack is given as [33]: 
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  (4.70) 

where nH and nL are the refractive indices of the high and low index dielectrics 

respectively, and N is the number of double layers. Equation 4.70 predicts 100% 

reflectance whether N approaches infinity or when nH/nL approaches zero. From [33] a 

high reflectance stack is fabricated from alternating layers of MgF2 (nL = 1.38) and ZnS 

(nH = 2.35). The reflectance profiles for high-low index stacks of increasing order N are 
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calculated using the analytical and scattering matrix approaches and the results are 

plotted below in Figure 4-15 below.  

 
(a) 

 
(b) 

 
(c) 

Figure 4-15 - Reflectance profiles for high-low index stacks of increasing order for (a) N = 2, (b) N = 4 

and (c) N = 6 
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The cascade matrix technique evidently predicts the same reflectance profiles as 

determined using the traditional analytical transfer matrix technique describing plane 

waves incident upon various combinations of dielectric layers that exhibit either high or 

low reflectance.  

 

With increasing stack sizes the propagation distances increase thereby evolving the 

beam away from a flat phase radius of curvature. This implies that increased numbers 

of modes will be required for larger dielectric stacks to accurately account for the 

increasing phase slippage. However, for these test cases a modal field description using 

five modes has provided excellent agreement with the analytical approach. In all cases 

presented here for the cascade approach the source field was chosen as a Gaussian 

beam waist with flat (infinite) phase radius of curvature. A more interesting scenario 

here would involve a source field with a diverged phase radius of curvature. This 

would be well modeled using GBMA over the traditional plane wave transfer matrix 

approach and could be verified by experiment. Herein lies the advantage of the GBMA 

technique over the transfer matrix technique: the ability to model more physically 

realistic electromagnetic field distributions as they interact with dielectric structures 

such as these multilayer films.  

4.3 Mode Matching Theory for Feed Horns 

This section describes the propagation of radiation within waveguide structures, 

specifically conical feed horn antennas, according to the mode-matching technique. The 

mode-matching technique refers to the expansion of the tangential electromagnetic field 

at a plane of a waveguide discontinuity in terms of the corresponding waveguide 

modes. This technique was originally applied to waveguide discontinuities by [79] and 

[80] using the matrix notation and including the higher order mode effects between 

discontinuities. The mode matching process detailed here is taken from [71] and [45]. 

The technique involves matching the total modal field description at a junction or plane 

where the field is altered so that conservation of power is maintained. A waveguide 
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based structure such as a horn is divided into separate components or sections. For 

example, a corrugated horn is visualized as a series of hollow cylindrical waveguide 

sections with alternating radii to account for the corrugations slot depths and edges – 

c.f. Figure 4-16. A smooth walled horn is visualized in much the same way, with the 

radii of sequential waveguide sections increasing smoothly along the length of the horn. 

The greater the number of waveguide sections chosen to represent the smooth walled 

horn the greater the accuracy, since there are technically no waveguide junctions along 

the walls of these horns. The number of waveguide sections required to describe the 

corrugated horn generally much lower, equaling the number of corrugations.  

 

 

 

 

 

 

 

 

Each of these waveguide sections will scatter the transverse electromagnetic field in 

different ways, and thus altering the layout of the modal coefficients that describe the 

field. An input, forward travelling field at a junction will be scattered into both 

transmitted and reflected components. Each of these sections or junctions is described 

by a scattering matrix which can be combined to create a complete scattering matrix 

description of the total structure allowing the calculation of all four S parameters. The 

individual scattering matrices describe the redistribution of power between the 

respective modes  

 

Figure 4-16 - Waveguide component visualisation of conical corrugated feed horn - individual 

corrugation sections can be described using scattering matrices which are then cascaded together to 

give complete scattering matrix for the horn 
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4.3.1 Modeling of Feed Horns 

In this section the method of mode-matching method of describing propagation and 

scattering of electromagnetic radiation throughout a waveguide structured feed horn 

and freespace beam guide is described. A feed horn can be regarded as a series of 

sequential waveguides with diameters varying with propagation distance along the 

horn axis. The feed horn acts as an impedance transformer between an input waveguide 

through to freespace. The primary type of feed horn discussed within this chapter is the 

conical corrugated feed horn, the design principles of which will be discussed in a later 

section. All waveguide structures discussed in this chapter possess circular symmetry 

and thus we will concentrate on the cylindrically symmetric waveguide modes, which 

are described by a combination of TE and TM modes.  

 

The TE and TM waveguide modes are transformed into freespace Gaussian beam 

modes at the aperture of the horn by performing an overlap integral at the aperture 

plane and extending the method to model free space propagation. The propagation and 

transformation of the source beam can now be described using the standard GBMA 

method. If a second horn is coupled to the optical system, the freespace Gaussian beam 

modes can be retransformed back into the appropriate waveguide modes by reversing 

the initial freespace transformation.   

4.3.2 Conical Corrugated Feed Horns 

A comprehensive treatment of the mode-matching technique as it applies to conical 

corrugated and smooth-walled horns was carried out by [45] in the development of the 

software package SCATTER. This software tool has been repeatedly utilised throughout 

this thesis to calculate the complex aperture field distributions for corrugated feed 

horns (c.f. Chapters 3, 5 and 6). An outline of the mode-matching theory based on [45] is 

presented here.  
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Conical corrugated feed horns are a popular horn of choice for quasioptical systems 

such as communication systems, radar, remote sensing and for prime feed and multi-

reflector antennas used in astronomical observation. For example, the conical 

corrugated horn is the preferred feed horn used in each of the ALMA front end optics 

channels [81]. The boundary conditions of the corrugated horn for the E and H planes 

are equivalent, thus ideally ensuring a symmetric co-polar radiation pattern with low 

side lobes and low cross-polarisation. They belong to the class of feed horns known as 

hybrid mode horns, since they are designed to propagate the dominant hybrid HE11 

mode. The overall geometry of a typical corrugated horn is given below Figure 4-17 

 

 

 

 

 

 

 

 

 

 

 

 

  

The most common method of exciting the dominant HE11 mode of a circular cross 

section corrugated waveguide is from a circular waveguide with a uniform wall 

supporting the TE11 mode [82]. Corrugated feed horns are typically connected to a 

section of smooth-wall circular waveguide as a means of transferring power between 

the radiating horn and the receiver transmission line where the signal processing is 

undertaken. The cylindrical waveguide typically carries the dominant TE11 mode which 

is incident at the junction. The HE11 mode is excited within the horn, which itself 

Tooth 
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Figure 4-17 - Conical Corrugated Horn Geometry - the input from the left is assume to be in a smooth-

walled circularly symmetric waveguide propagating the TE11 mode 
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inevitably generates other higher order modes. Of these the EH12 mode most seriously 

affects the polarisation purity of the radiated fields. Generation of the EH12 mode can 

occur either at the mode-launching or ‘throat’ section of the horn or indeed along the 

horn due to conversion from the HE11 mode. The reduction of higher order mode 

generation, especially the EH12 mode, is of significant importance and is achieved 

through careful design of the horn corrugations [82]. 

 

Results from field matching calculations support the well established approach to 

designing an efficient mode-launching section; the first corrugation depth is set to be a 

half wavelength deep so that a ‘short circuit’ occurs at the edge of the corrugations. The 

depths of the proceeding corrugations shorten to the final value of a quarter-

wavelength [82]. The depths of the remaining corrugations through the length of the 

horn remain at this value. This condition, known as the balanced hybrid condition, ensures 

an infinite surface reactance, given by [3] which opposes any axial currents that may be 

set up on the horn walls.  

 
0

2
tansX d

Z

π
λ

 =  
 

  (4.71) 

where Xs is the reactance and Z0 is the free-space impedance. With corrugation depths 

of 4
λ  the reactance is infinite and is the guide is sufficiently large i.e. 2 1aπ

λ > , the 

field distribution of the horn is independent of angle for the central frequency and in 

theory the cross-polar field will be zero (although in reality there will always exist a 

very low level cross polar field). There as yet exists no one optimum solution of how the 

corrugation depths decrease throughout the mode-launching section of the horn. A 

typical transition from depths of  
2

λ  to 
4

λ  occurs over approximately 8 to 12 

corrugations [71]. A current travelling down a corrugation depth will be 180° out of 

phase at the opposite side of the groove. The effect of the field produced by this 

opposite current is to counter the field that set up the original current in the manner of a 

short circuit. This short-circuit at the bottom of the corrugation groove is transformed 
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into an open circuit at the top of the corrugation and the fields thus taper to zero at the 

horn boundary. As the frequency is varied, the surface reactance will change and the 

hybrid condition will become unbalanced, thus limiting the operable bandwidth of the 

horn. The farfield co and cross polarizations plotted below in Figure 4-18 are from 

SCATTER predictions of the 94 GHz corrugated horn from Section 3.3.1. The plots show 

the E and H plane cuts (blue and red) of the co-polar field as well as a 45° cut of the 

cross polar field (green) for the central frequency (94 GHz) and for the upper end (110 

GHz) and lower end (85 GHz) of the band edge of approximately 30%. The central 

frequency exhibits the lowest cross polar power and the co-polar field is symmetric out 

to approximately 37°. The upper and lower band edge patterns show significantly 

increased cross polar power as well as increased asymmetry in the co-polar beam. This 

illustrates that the corrugation depth is non ideal for frequencies away from the band 

centre.  

 
(a) - 94 GHz 

 
(b) – 85 GHz 

 
(c) – 110 GHz 

Figure 4-18 - Co and cross polar farfield patterns for corrugated feed horn for the central frequency (a) 

: 94 GHz, (b): 85 GHz, (c): 110 GHz 

-70

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50

A
m

p
li

tu
d

e
 (

d
B

)

Off-Axis Angle (deg)

E_94GHz

H_94GHz

XsP_94GHz

-70

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50

A
m

p
li

tu
d

e
 (

d
B

)

Off-Axis Angle (deg)

E_80GHz

H_80GHz

XsP_80GHz

-70

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50

A
m

p
li

tu
d

e
 (

d
B

)

Off-Axis Angle (deg)

E_110GHz

H_110GHz

XsP_110GHz



202 

 

If the balanced hybrid mode condition is met and the horn is fed by a HE11 mode at the 

waveguide to horn boundary then the field at the horn aperture is given as [75] 
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  (4.72) 

where 
2 2 2r x y= +  , k is the freespace wavenumber, J0 is the Bessel function of zeroth 

order, 2.405 is the first zero of J0 and Rh is the slant length of the horn which is 

approximately equivalent to the phase radius of curvature of the aperture field.   

 

Corrugated horns usually require many corrugations per wavelength so as to ensure 

that no axial currents are established in the horn walls and that the balanced hybrid 

conditions are met. With decreasing wavelengths fabrication of these horns becomes 

difficult and an upper limit of approximately 1.5THz (0.2 mm) is usually enforced [71]. 

The most common modern method for fabricating corrugated horns with low flare 

angles such as the ALMA Band 5 and Band 9 horns is through electroforming, whereby 

the internal geometry of the horn is machined as an aluminium mandrel, upon which 

the desired metal is electrochemically deposited and then the mandrel is removed by 

chemical etching [83]. 

4.3.3 Mode Matching for Cylindrical Waveguides 

The modal matching technique is a very powerful method for calculating the transverse 

aperture field distribution for feed horns [79], [80]. The mode-matching software 

SCATTER, which has been utilised successively/repeatedly throughout this thesis 

(Chapters 3, 5 & 6) for calculating aperture field distributions, was developed first by 

Colgan in [45] and extended by Gleeson in [56]. A complete description of the exact 

analysis and verification of the method is given in their theses. This section contains 

only a general outline of the theory so as to understand the principles involved.   
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The technique involves treating a feed horn structure as a sequence of short waveguide 

sections, the diameters of which are dependent on the specific horn profile. This is 

easily visualized for a typical corrugated feed horn where each corrugation represents 

an individual waveguide section. The technique can become more involved for smooth 

walled or profiled horns. In this case the horn profile is divided up into an arbitrary 

number of waveguide sections, the diameters of which increase linearly for the case of a 

smooth walled conical horn, or according to the geometry of the profile horn (c.f. Figure 

4-19). In these cases the accuracy of the mode-matching results can be seen to be 

dependent upon the number of waveguide sections chosen; the larger the number of 

waveguide sections the smoother the transition between junctions and hence a more 

accurate modal portrayal of the true horn profile. This will however increase the 

computation time. 

 

This technique may also be applied to corrugated horns; specifically those in which the 

orientation of the corrugation depths and/or edges is non-orthogonal to the optical axis. 

Such corrugation geometries are shown below in Figure 4-20; the corrugation 

orientation in (a) is considered the ideal geometry for the modal matching technique, 

with the corrugations maintaining constant diameter over propagation distance. The 

other two horn geometries in (b) and (c) have waveguide sections with increasing radii 

over their propagation distances. Accurate modelling of these corrugations would 

Figure 4-19 - Corrugated and Smooth Walled Feed Horns viewed as a series of waveguide sections 

Corrugated Horn: 

cylinders of 

alternating, 

increasing radius 

Smooth Walled Horn: 

cylinders of constant 

increasing radius 
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require the slanted waveguide sections to be themselves divided up into an arbitrary 

number of smaller waveguide sections, in the same manner as for the smooth walled 

horn.  

 

 

To apply the scattering matrix approach to the horn both the reflection and 

transmission coefficients for the junctions between individual waveguide sections and 

the phase slippage between adjacent modes due to propagation within each waveguide 

section must be accounted for. The phase slippage within a waveguide section is 

described in a similar manner to the propagation scattering matrix, as described in 

Section 4.2.2. The diagonal elements of the scattering matrix are given by Vmn = δmne-γnl 

where l is the length of the waveguide section and γn is the propagation constant for the 

nth mode.  

 

The scattering matrix for the junction between two waveguide sections is calculated by 

matching the transverse modal field descriptions on either side of the junction. Each 

waveguide section contains propagating transverse electromagnetic fields represented 

as a spectrum of N modes. It is assumed that the modes are propagating from left to 

right. The electric and magnetic fields on the left side of the waveguide junction are 

given as 

(a) (b) (c) 

Figure 4-20 - Three sample variations on the geometry of corrugations in a corrugated feed horn [82] 
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where An and Bn are the forward and reflected amplitude coefficients on the left side of 

the junction. Similarly the electric and magnetic fields on the right side of the junction 

are 
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where Cn  and Dn are the forward and reflected amplitude coefficients on the left side of 

the junction.  

 

By matching these transverse fields across the continuous junction the following matrix 

equations are derived as: 

 
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]

,
T

P A B Q D C

P D C R A B

+ = +      

− = −      
  (4.75) 

where [A], [B], [C] and [D] are N-element column matrices containing the modal 

coefficients An, Bn, Cn and Dn respectively. The column matrices have the form 
TE

TM

a

a

 
 
 

 , 

where aTE and aTM are subvectors of the mode coefficients for the TE and TM modes 

respectively. The matrices [P], [Q] and [R] represent the coupling between modes at the 

junction. The [P] matrix represents mutual coupled power between modes on the left 

side of the junction to modes on the right side, while the [Q] and [R] matrices represent 

self coupling between modes on the right and left hand sides respectively. Each of these 

matrices represent scattering between all mode types i.e. TE to TE, TE to TM, TM to TE 

and TM to TM. The derivation of the expressions for scattering is detailed in [45] but the 

overall form of the scattering matrix between modes is given as  
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TE TE TE TM

TM TE TM TM

P P
P

P P
− −

− −

 
=  
 

  (4.76) 

By rearranging Equation 4.76 the elements for the scattering matrix of a junction are 

derived as 

 

[ ] [ ][ ] [ ] [ ][ ] [ ]

[ ] [ ][ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

11 1* *
11

11*
12

11*
21

11 1* *
22

,

2 ,

2 ,

S R P Q P R P Q P

S R P Q P P

S Q P R P P

S Q P R P Q P R P

−− −

−−

−−

−− −

      = + −      

  = +  

  = +    

      = − + −         

  (4.77) 

where []* is the transpose of the matrix and []-1 is the inverse of the matrix.  By cascading 

the junction scattering matrices together using Equations 4.18 the overall aperture field 

for the horn is calculated. This is the principle of operation for the SCATTER  program 

to predict the aperture field distributions for conical smooth walled and corrugated 

horns.  

4.3.4 Freespace Transformation 

Though the modal matching method described above gives an accurate aperture field 

distribution for a feed horn, the field itself is described in terms of TE and waveguide 

modes. In order to propagate this aperture field throughout a quasioptical beam guide 

it must first be transformed into freespace Gaussian beam modes. This will allow for a 

scattering matrix description of the entire quasioptical system and thus the overall 

standing wave profile of the system can be determined. The required transformation 

matrix requires the computation of the appropriate overlap integrals at the horn 

aperture [76], [84]. The transverse electric field Etotal at the horn aperture is written as a 

linear sum of TE and TM modal fields. For conical horns fed by a single TE11 mode 

polarised in the x direction the TE and TM modes eTE and eTM  are written in the 

following form 
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  (4.78) 

where p1l represents the lth zero of J1(z) and p’1l represents the lth zero of J’1(z). These 

modes are normalised in such a way as to make the integral 
2
2TE TM

lA
rdrπ∫ e equal to 

unity. In SCATTER the waveguide modes are ordered such that when the number of 

employed modes is 2N, the first half (1,…,N) are TE and the second half (N+1,…,2N) are 

TM. The modes are thus written in linear sum form: 

 TE TM G
total l l l l n n

l n

Aα β= + =∑ ∑e e e e   (4.79) 

where e eG TE
n n=  , ( )e eG TM

N n n n N+ = ≤
 and αl and βl are subvectors containing the 

appropriate mode coefficients. For freespace coupling to a conical horn the most it is 

most appropriate to employ the Associated Laguerre-Gaussian mode set because of the 

cylindrical symmetry of the system. Recall from Equation 2.35 that for a wave travelling 

in the positive z direction these modes have the general form  
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  (4.80) 

where α is an integer representing the degree of the Laguerre polynomial, W is the 

beam waist, R is the phase radius of curvature and ( )2arctan W Rπ λ  is the phase slippage 

for the fundamental mode between the waist and the plane of interest. The waveguide 
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modes will only couple to the free space Associated Laguerre-Gaussian modes of 

degree 0 and 2 [76] since the horn field is written as a sum of symmetric TE and TM 

modes and modes with a cos2 sin2i jθ θ+  dependence. Each waveguide mode is 

transformed to the corresponding free space mode using the following relation:    

 [ ]0 0 2 2 cos2 sin 2e i i jG
m nm n nm n

n

T T θ θ= Ψ + Ψ +∑   (4.81) 

The Associated Laguerre-Gaussian modes of degree 0 and 2 can be treated separately 

and so an expression for the 0th and 2nd degree freespace modes will have the forms   

 ( ) ( )*
0 0ˆ .i eG

nm n m

A

T rdrdψ θ= ∫   (4.82) 

 ( ) ( )*2 2ˆ .n eG
nm n m

A

T rdrdψ θ= ∫   (4.83) 

where n̂ is the unit vector equal to cos2 sin2i jθ θ+  . The overall horn aperture field etotal 

is expressed as the following linear modal sum   

 [ ]0 0 2 2 2 cos2 sin 2e i i jtotal n n n n n
n

B B θ θ= Ψ + Ψ Ψ +∑   (4.84) 

 By comparing Equations 4.81 and 2.84 it is clear that the 0th and 2nd order mode 

coefficients can be written as  

 

0 0

2 2

,

,

n nm m
n

n nm m
n

B T A

B T A

=

=

∑

∑
  (4.85) 

where B are the freespace mode coefficients and A are the waveguide mode coefficients. 

In a similar way any freespace field incident upon the horn aperture (i.e. travelling in 

the negative z direction) may be written as 

 
0 0 2 2ˆ ˆ

fs

inc n n n n n n
n

C C D= Ψ + Ψ =∑ ∑e i n e   (4.86) 

In this instance the free space modes are transformed to waveguide modes at the 

aperture and in a manner similar to that from above (Equation 4.86) such that  
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and thus the free space mode coefficients Bn are transformed back to waveguide modes, 

where mnT∗
 is the conjugate transpose of nmT . 

 

In order to properly transform the modes at the horn aperture from waveguide to free 

space (or vice versa) the transformation matrices T and T* must be implemented as a 

scattering matrix of the same form as (ref equation): 

 [ ] 11 12

21 22

0

0

S S T
S

S S T

∗  
= =   
   

  (4.88) 

In this formulation the transformation matrix [T] represents the [S21] scattering sub-

matrix that transforms the waveguide modes to freespace modes at the aperture. In 

going from freespace back into the horn the direction is reversed the [S12] = [S21]*. As 

such, the conjugate transpose transformation matrix [T]* in Equation 4.88 above 

represents the reversal transformation of freespace modes to waveguide modes. For a 

horn with an aperture radius that is wide in terms of λ it is reasonably assumed that 

there is negligible reflection of the waveguide modes at the aperture back into the horn. 

At the aperture any possible reflections back into the horn will be carried by the higher 

order modes, which themselves will contribute little to the overall beam and will have a 

guide impedance appreciably different from that of free space [85]. This implies that the 

scattering sub-matrix from [ref equation] [S11] = [0]. This argument also applies to the 

freespace radiation that propagates in the reverse direction and does not couple to the 

horn and is not reflected back along the positive direction, implying that [S22] = [0]. The 

cross section of the reflected beam that overlaps with the horn will be coupled to the 

waveguide modes by the [S12] matrix [76].  
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The exact forms of the transformation matrices required for the scattering matrix S 

(Equation 4.88) are determined by representing the waveguide modes as Bessel 

functions and the freespace modes as Associated Laguerre-Gaussian modes. The TE 

and TM waveguide modes are coupled individually to the Associated Laguerre-

Gaussian freespace modes of order 0 and 2 using separate overlap integrals at the 

aperture. These overlap integrals are given for the TE modes as: 
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where 
0,TE

mnT  and 
2,TE

mnT  are the transformation matrices for the TE waveguide modes to 

the Associated Laguerre modes of order 0 and 2 respectively, a is the aperture radius 

and  p’1l is the lth zero of J1. The matrices are rectangular with m rows and n columns 

representing the number of waveguide and freespace modes respectively. The overlap 

integrals for the TM modes are given as:  
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These rectangular transformation sub-matrices comprise the elements of the 

transformation sub-matrices:  

 [ ]
0 0

2 2
TE TM

TE TM

T T
T

T T

 
=  
 

  (4.93) 

This sub-matrix is then implemented into the overall transformation scattering matrix 

from Equation 4.88. The transformation of the waveguide modes to freespace at the 

horn aperture is then achieved by cascading the transformation scattering matrix with 

the overall waveguide propagation scattering matrix.  

 

The freespace transformation technique is validated by comparing the farfield patterns 

of the waveguide and freespace mode descriptions of the horn aperture field. The 

farfield pattern for the waveguide modal field is achieved by the Fourier transform [34]. 

The farfield pattern of the freespace modal field is obtained by propagation of the 

freespace Associated Laguerre-Gaussian modes. The farfield distribution is obtained by 

applying a Gaussian beam evolution term to the modal sum description of the aperture 

field distribution from Equation 4.84 [85] 
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(4.94) 

where w(z), R(z) and φ(z) and represent the usual Gaussian beam parameters of beam 

radius, phase radius of curvature and phase slippage (c.f. Section 2.1.2).  The evolution 

of these parameters to the farfield is governed by the usual ABCD matrix technique in 

Section 2.1.5. This technique of verification is employed here for the 94 GHz corrugated 

horn from Chapter 3. The aperture distribution of this horn was generated by 

SCATTER, and the farfield patterns were plotted using both the Fourier transform of 
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the waveguide modal and the farfield propagation of the freespace Associated 

Laguerre-Gaussian modal field – c.f. Figure 4-21 below. For this calculation 10 Laguerre 

modes of degree 0 and 10 modes of degree 2 were used for the freespace modal 

distribution, which corresponded to the 10 TE and 10 TM modes used for the 

waveguide modal distribution. 
 

 

 

Figure 4-21 – Farfield E (in black) and H (in red) plane pattern cuts for the 94 GHz conical corrugated 

horn. Fourier transform of waveguide modal fields plotted as solid lines; farfield propagation of free 

space modal fields plotted as broken lines 

These two farfield pattern prediction methods show good mutual agreement down to 

approximately -30 dB, which is good agreement for the finite number of Associated 

Laguerre-Gaussian modes used.   

 

4.4 Corrugated Horns – Characterisation of Return Loss Profile 

In this section comparisons are drawn between the return loss profile of a typical 

corrugated feed horn as predicted by SCATTER and as measured in the laboratory. The 

specific horn in question is the same used previously in Section 3.3 for measurement of 

the Fresnel diffraction pattern for a circular aperture. Four of these horns were 
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purchased by the Far-Infrared Optics Group at Maynooth from Thomas Keating Ltd. 

These horns were developed using a copper electroforming process from the same 

mandrel piece, the geometry of which is illustrated below in Figure 4-22.  

 

 

 

The return loss profile for a feed horn refers to the degree of reflected power over the 

operating frequency range of the horn as it couples to empty space. This reflected 

power is typically due to impedance mismatches at the waveguide to horn transition 

and at the horn aperture. For a corrugated horn these reflections can also occur along 

the entire length of the horn where corrugations are located. Corrugated horns are 

typically designed to produce a minimum returned power within the optimal frequency 

range of the horn, outside of which the horn no longer achieves the balanced hybrid 

mode condition. For frequencies outside the balanced hybrid condition, excitation of 

other higher order hybrid modes will occur, thereby worsening the symmetry of the 

output beam and worsening the polarisation purity [71]. 

 

Firstly the return loss profiles of the four corrugated horns were recorded using the 

VNA with the horns directed at empty freespace where there would be a minimum of 

reflection of radiation back into the horn. To ensure this, the outer edges of the beam 

path were covered with the absorber ECCOSORB from Emerson & Cumming ® which 

is designed for a minimum of reflection for a broad range of frequencies across the 

Figure 4-22 - Geometrical profile of 94 GHz conical corrugated horn mandrel 
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mm/submm range. These horns are hereafter referred to as MH01, MH02, MH03 and 

MH04, where MH is an abbreviation of ‘Maynooth Horn’. These return loss profiles 

were measured over the cited operating frequency range of the horn (75 GHz to 110 

GHz) and are displayed below in Figure 4-23.  

 

 

 

 

 

 

 

 

 

 

 

As can be seen from Figure 4-23 above the four horns each share a similar return loss 

profile across the frequency band. Each horn displays a minimum power dips at 

approximately 87 GHz and again at approximately 102 GHz. The degree of returned 

power at these points varies for each horn, with no two horns being exactly alike. The 

greatest agreement between horns in Figure 4-23 is between MH02 (red line) and MH04 

(purple line). The strongest returned power dip is exhibited by MH03 (green line) at 

approximately 102 GHz of -64 dB.  

 

The next step in the characterisation process was to compare the predicted return loss 

profile from SCATTER with the experimental measurements. Firstly the return loss 

profile for the horn was predicted using 20 modes (10 TE and 10 TM modes) with no 

alterations to the geometry file. This was overlaid with the measured results from 

Figure 4-23 above: 
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Figure 4-23 - Return loss profiles of four corrugated horns across 

frequency range (75 GHz - 110 GHz) 
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The accuracy of a 20 mode SCATTER calculation was further verified with a higher 

mode number calculation of 64 modes. This was achieved using a modification of the 

SCATTER code currently under development by Mr. Tully Peacocke, a member of the 

Far Infrared Optics Group at Maynooth which allows mode-matching predictions with 

mode numbers of up to 200. Comparison between predictions for 20 modes and 64 

modes (Figure 4-25 below) reveals excellent convergence for 20 modes. This result thus 

justifies the decision to use calculations at 20 modes for the remainder of the analysis 

presented in this chapter.  
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Figure 4-24 - Horn return loss profile predicted by SCATTER for 20 

modes i.e 10 TE and 10 TM modes (black line) 

Figure 4-25 - SCATTER predictions of horn return loss profile for 20 

modes (red dotted line) and 64 modes (blue dotted line) 
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Comparing experimental results and theoretical predictions of the horn return loss 

profile in Figure 4-24 above reveal a distinct disagreement. The SCATTER predictions 

do exhibit a return loss minimum in a similar fashion to the measured patterns, though 

this occurs at a higher frequency of approximately 104 GHz. The lower frequency 

power dip at 87 GHz is not predicted by SCATTER. Though some degree of 

experimental disagreement between the return loss profiles for each of these horns is 

expected, as seen between the horn return loss profiles in Figure 4-23 , it is difficult to 

ascertain what constitutes reasonable agreement.  

 

The chief difference between the SCATTER model of the horn and the actual horn 

geometry is the rectangular to circular waveguide transition zone at the back of the 

horn. At this transition zone the rectangular WR-10 waveguide that propagates the TE10 

waveguide mode is converted into the dominant HE11 that propagates through the feed 

horn. The current configuration of SCATTER allows for the computation of the 

scattering matrices of circularly symmetric feed horns (i.e. conical corrugated, conical 

smooth walled and profiled horns). As such, it is not currently possible to include the 

effects of this transition zone in the mode-matching calculation. Later on in Section 4.4.2 

an attempt is made to predict the effect of the transition zone on the overall return loss 

profile of the horn using an FDTD calculation process from the CST-MWS described 

earlier in Section 2.7.  

 

The following section details an investigation into the effect of small scale alterations in 

the horn geometry profile on the transmission and reflection properties for the feed 

horn. The purposes of this analysis were to ascertain whether minute surface errors in 

the horn corrugations could contribute to the disparity between prediction and 

measurement. This study was performed using SCATTER predictions of the horn 

return loss profiles and farfield patterns using several versions of the horn geometry 

profile. 
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4.4.1 Effect of Tolerancing & Manufacturing Errors on the Horn Geometry Profile 

As the following investigation will refer to alterations to specific elements of the horns 

geometric profile, we will first introduce specific nomenclature for these geometric 

elements. This is presented below in Figure 4-26 as a cross section for a corrugated horn. 

This illustration is adapted from Figure 4-17, with the nomenclature now more formally 

defined.  

 

 

 

 

 

 

 

The waveguide sections that comprise the corrugate horn profile are now specified as 

either a corrugation depth with radial depth dtrough, or a corrugation edge with radial 

depth dedge. The position of each waveguide section along the length of the horn is still 

defined using the axial length ln, with n referring to the specific waveguide section. 

Several variations of the geometry characterisation of the corrugated horn profile were 

generated which were based upon the manufacturing tolerances of the horn mandrel. 

The manufacturing tolerances for the mandrel were cited as ± 0.013 mm for all 

dimensions [86]. This represents a tolerancing accuracy range of 0.33% to 0.48% over the 

frequency range of the horn (75 GHz to 110 GHz). The first batch of variations to the 

standard horn geometry profile was generated as random deviations from the original 

horn geometry.  

 

This was achieved by adding or subtracting an error value of 0.01 mm, representing a 

relative deviation range of 0.25% to 0.37% across the frequency range, to a random 

selection of 50% of the corrugation troughs, corrugation edges or axial lengths. The 

choice of either adding or subtracting the error value was also decided randomly. This 

Corrugation 

Trough 

Depth dtrough Axial Length ln 

Corrugation 

Edge Depth 

dedge 

Figure 4-26 - Cross section of corrugated horn with specific titles for elements 
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technique generated an altered geometry profile of the corrugated horn that was still 

within the manufacturing tolerances as defined in [86]. This process was repeated 10 

times to generate 10 different horn geometry profiles, each with randomly assigned 

tolerancing errors. The return loss profiles for each of these horn profiles were predicted 

using SCATTER for 20 modes in the same manner as for the original horn geometry 

profile.  

 

The results reveal a relatively large degree of variation in the return loss profile for the 

10 horn profiles when compared against the original (black line in Figure 4-27 below). 

This was a surprising result, given that the randomly assigned variations to the horn 

profile were within the cited tolerance levels for the horn. It is thus reasonably 

concluded that the return loss profile for the corrugated horn is sensitive to small scale 

manufacturing errors. Extending this reasoning, it can be argued that the disparities in 

the measured return loss profiles shown in Figure 4-23 above may be due to similar 

small scale deviations from the optimal horn geometry.  

 

Figure 4-27 - Return loss profiles of 10 randomly generated horn profiles across (75 GHz to 110 GHz) - 

Original horn profile: (broken black line) 

To ascertain whether any of the return loss profiles from the randomly generated horns 

possess a greater degree of agreement with experimental measurements, the SCATTER 

predictions from Figure 4-27 above were overlaid with the return loss profiles of the 

four corrugated horns from Figure 4-23. These comparison plots are shown below in 
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Figure 4-28, with SCATTER predictions plotted as solid lines and the measured results 

plotted as broken lines. 

 

Figure 4-28 - Return loss profiles of randomly generated horn geometry profiles (solid lines) plotted 

against measured return loss profiles (broken lines) 

From the plots above it is evident that the variations in the return loss profiles of the 

randomly generated horns do not resolve the disparity between prediction and 

measurement. Some of the predicted return loss profiles exhibit the power dip at a 

lower frequency than that of the original (at 105 GHz). Specifically, mh_error_04 and 

mh_error_08 in Figure 4-28 above show the power dip at approximately 103 GHz, which 

is closer to the experimental pattern with a power dip at approximately 102 GHz. 

However, as stated previously, none of these altered horn profiles exhibit the lower 

power dip from measurements, or the curved power profile between these two nulls. 

This furthers the argument that the rectangular to circular waveguide transition zone 

may be the source of the disparity. 

The effect of these randomly assigned alterations to the horn profile upon the aperture 

distribution of the horn must also be accounted for. The co and cross polar farfield 

patterns for each of these randomly altered horn profiles are plotted below in Figure 

4-29 and Figure 4-30. The farfield patterns are predicted here for 90 GHz, 100 GHz and 

110 GHz. The cross polar patterns are taken at a 45° cut of the farfield distribution.  
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Figure 4-29 - Predicted (SCATTER) co polar farfield patterns for 10 randomly deviated horn geometry 

profiles (Top - 90 GHz , Middle – 100 GHz, Bottom – 110 GHz) – original horn broken black line 
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Figure 4-30 - Predicted (SCATTER) cross polar farfield patterns for 10 randomly deviated horn 

geometry profiles (Top - 90 GHz , Middle – 100 GHz, Bottom – 110 GHz) line 
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There is negligible alteration of the co-polar farfield patterns (Figure 4-29). However, 

several of the horn profiles exhibit significantly altered cross polar power patterns. 

According to [82], the level of cross polar power radiated is determined by the size of 

the aperture and the geometry of the corrugations, specifically the slot depths. Since the 

aperture size is the governing factor for the co-polar characteristics of the horn, the cross 

polar designer will normally have no control over aperture size: thus the corrugation 

geometry determines the cross polar power of the horn. Assuming that the corrugations 

for the original horn geometry were designed for minimal cross polar power, any 

alteration to their design will also alter the cross polar power level. The unbalancing of 

the corrugation geometry has also significantly altered the physical shape of the cross 

polar power patterns, suggesting the excitation of extra higher order modes. This is 

evident from the results in Figure 4-30 above.  

 

For the next stage in this investigation another set of altered non-perfect horn geometry 

profiles was analysed. Instead of introducing random manufacturing errors into the 

horn geometry, it was determined that a more constant error might be more physically 

correct. In the process of turning the mandrel for the horn on a machining lathe, it is 

likely that any errors introduced would be of a constant nature due to machining offsets 

and tolerances. In terms of the horn geometry profile, this would mean that constant 

error would be introduced to the corrugation troughs or edges. A series of six horn 

geometry files was generated to emulate this constant error effect and are described 

briefly here: 

1. All corrugation depths (troughs and edges) increased by 0.01 mm 

2. All corrugation depths (troughs and edges) reduced by 0.01 mm 

3. All corrugation edges increased by 0.01 mm 

4. All corrugation edges reduced by 0.01 mm 

5. All corrugation troughs increased by 0.01 mm 

6. All corrugation troughs reduced by 0.01 mm 
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The same error value from the randomly altered horns of 0.01 mm was used for these 

constantly altered horns. The return loss profiles for each of these horns are compared 

against that of the original horn (plotted in black) below in Figure 4-31. 

 

Figure 4-31 - Return loss profiles for horn profiles with constant errors introduced to geometry profiles 

The conclusion from these predictions is that the effect of the constant errors introduced 

to the horn geometry profile is negligible. The only significant effect is found in the 

slight deviation of the single return loss dip which typifies this horn. The frequency of 

the dip varies over approximately 104.5-105.5 GHz, with no other significant alteration 

in the profile. This is a reasonable result given the nature of the alterations introduced. 

By applying a constant error to the corrugation edges and or depths we have essentially 

created horns with slightly different profiles but who retain the balanced hybrid 

condition, albeit at slightly different frequencies.    

 

By comparing the co and cross polar farfield patterns from these horns the relatively 

negligible effect of the constant error alterations becomes clear. The co polar farfield 

distributions in Figure 4-32 below show near perfect mutual agreement down to 

approximately -45 dB. The agreement between cross polar pattern distributions in 

Figure 4-33 is also very close, with all patterns exhibiting very similar cross polar 

pattern distributions. This further reinforces the conclusion that these horns represent 

deviations from the original while still maintaining a balanced hybrid mode condition.     
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Figure 4-32 - Predicted (SCATTER) co polar farfield patterns for 6 geometry profiles with altered 

constant errors (Top - 90 GHz , Middle – 100 GHz, Bottom – 110 GHz) – original horn broken black 

line 
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Figure 4-33 - Predicted (SCATTER) cross polar farfield patterns for 6 geometry profiles with altered 

constant errors (Top - 90 GHz , Middle – 100 GHz, Bottom – 110 GHz) – original horn broken black 

line 
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Several conclusions can be drawn from these investigations. Firstly, given the evident 

sensitivity of the return loss profile to slight randomly generated deviations in the 

geometrical description of the horn it can be inferred that there may exist an altered 

horn geometry profile that will possess a greater degree of agreement with 

measurements. However, the determination of such an optimally modified horn 

geometry profile would require large scale modeling of an innumerable amount of 

altered geometry profiles. It can be equally concluded that a resolution to the disparity 

between predictions and measurement may not be possible. This conclusion is still 

overshadowed by the inability to account for the transition zone. Another possible 

source of error may be due to there existing some degree of asymmetrical error within 

the actual corrugated horn geometry. This can take the form of an axial mismatch 

between one or several corrugations, or the circular profile of the corrugations may 

have become asymmetrically altered/shifted/warped.  Equally with the transition zone 

problem it is not currently possible to account for propagation within asymmetrical 

waveguide sections in SCATTER.   

4.4.2 CST Modeling of the Corrugated Horn 

As an alternate verification of the validity of the predictions from the SCATTER mode-

matching technique for the reflection/transmission characteristics of a feed horn was 

undertaken using the FDTD technique in the CST-MWS software package. This is a 

commercially available package that uses a full vector numerical simulation to model 

propagation of electromagnetic waves through various media. CST is an equivalent 

package to HFSS which is more commonly used in the field. The FDTD calculation 

process was previously outlined in Section 2.7. This technique is used to solve for the S-

parameters of the horn as well as the output farfield pattern. The major difficulty of 

applying this turnkey solution is the computational intensity of a calculation of a 

structure of this size (circa 30 wavelengths long). CST is designed to deal with much 

smaller structures accurately and we are pushing the limits of the feasibility of applying 

such a technique to a structure of this large geometrical design. The physical structure 
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of the feed horn was generated in CST-MWS using the same geometrical profile used by 

SCATTER. The structure of the horn in CST-MWS is displayed below in Figure 4-34. 

 

 

 

 

 

The FDTD technique is implemented in CST-MWS through the Transient Solver. This 

time-domain simulation tool stimulates the feed horn structure at the input circular 

waveguide with a ‘waveguide port’. The waveguide port is a special type of boundary 

condition within the calculation domain and is considered as a simulation of an 

infinitely long waveguide that is connected to the structure in question. The waveguide 

port object automatically determines of the dominant propagating mode (TE11 in this 

case) while the user is free to select the number of permitted modes to stimulate the 

structure, although this is not necessary here as the horn is single moded. As this feed 

horn is single moded, the number of modes for the waveguide port is set to one. Given 

the circular symmetry of the horn it was possible to reduce the solver calculation time 

by defining planes of symmetry within the boundary conditions of the structure. In this 

instance the electric field is set to zero in the yz plane and the magnetic field is set to 

zero for the xz plane. These symmetry conditions essentially reduce the total calculation 

time by one quarter. The definition of these boundary conditions within the CST-MWS 

environment is illustrated below in Figure 4-35.    

Figure 4-34 - Physical structure of 94 GHz conical corrugated horn 

in CST-MWS with a cut-away in yz plane revealing structure of 

internal corrugations. 
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Figure 4-35 - Planes of symmetry within the boundary conditions of the horn structure 

The FDTD calculation process require the volume of the structure under consideration 

to be discretised into finite 3D cells similar to as Yee cells within which the time 

dependent Maxwell’s equations are solved [63]. The number and size of these cells is 

defined in CST-MWS using the Mesh Generator. The global definitions for this tool are 

the number of lines per wavelength, the lower mesh limit and the ratio limit or smallest 

mesh step. The number of lines per wavelength defines the number of mesh lines in 

each coordinate direction based on the highest frequency of evaluation. The lower mesh 

limit defines the maximum mesh step to be used for the mesh creation, regardless of the 

number of lines per wavelength. The ratio limit defines the ratio between the biggest 

and smallest mesh lines, and the smallest mesh step defines an absolute value for the 

distance between mesh lines [64]. The mesh for the calculations presented here was 

defined with 29 lines per wavelength, a lower mesh limit of 3 and a smallest mesh step of 

0.03, generating 18,378,871 cells. The formation of these mesh cells is shown below in 

Figure 4-36 in a cut away view of the throat section of the horn. 
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Figure 4-36 - Cut-away view of throat section of horn showing formation of mesh cells. 

The return loss profiles of the horn over the frequency range (85 GHz – 110 GHz) as 

calculated by SCATTER and CST-MWS are plotted below in Figure 4-37.  

 

Figure 4-37 - Return loss profile of 94 GHz corrugated horn as calculated by SCATTER (black) and 

CST-MWS (red) 

The farfield amplitude patterns of the horn as calculated by SCATTER and CST-MWS 

are plotted below in Figure 4-38. The SCATTER predictions are the same as those in 

Figure 4-21, using both the Fourier transform of the waveguide modal field and the 

farfield propagated freespace modal field descriptions of the horn aperture field.  
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Figure 4-38 - Farfield amplitude patterns (E and H cuts) for the 94 GHz corrugated horn as predicted by 

SCATTER (waveguide modes: black, freespace modes: blue) and CST-MWS (red) 

The return loss profile and farfield power pattern for the 94 GHz corrugated horn were 

calculated by the Transient Solver at an accuracy of -30  dB. This was the best achievable 

accuracy for the computing power/memory available to the Author at the time of 

writing. The CST-MWS package has been designed for analysing structures at lower 

frequencies than those investigated here. The Transient Solver tool was unable to reach 

a steady state solution for higher accuracy levels (i.e. lower  dB levels). There thus exists 

a degree of uncertainty with the CST-MWS predictions. Despite this relatively low 

accuracy level the agreement between SCATTER and CST-MWS for both the horn 

return loss profile and farfield amplitude patterns is very good. The return loss profile 

as calculated by CST-MWS exhibits a very similar pattern to that from SCATTER 

(Figure 4-37) with the only disagreement occurring at the specific location of the return 

power null. Agreement between SCATTER and CST-MWS predictions of the farfield 

amplitude patterns is excellent, especially for the waveguide modal description (black 

lines in Figure 4-38). These results thus serve as an independent verification of the 

accuracy of the SCATTER mode-matching technique.  

 

At the time of writing, incorporation of the rectangular-to-circular waveguide transition 

into the overall structure of the Thomas Keating corrugated horn was also attempted. 
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This should then form a complete model of the physical horn used in measurements. 

However the exact geometry of the transition zone was unknown and difficult to 

determine from the schematics of the horn, illustrated previously in Figure 4-22. One 

such attempt to describe this transition zone is shown below in Figure 4-39, where the 

rectangular and circular waveguides were joined using a ‘lofting’ technique specific to 

the CST-MWS package.  

  

 

Figure 4-39 - Attempted rectangular to circular waveguide transition zone as a lofted surface 

The Transient Solver predictions for return loss profile (Figure 4-40) and farfield 

amplitude pattern (Figure 4-41) revealed obvious errors when compared to those for the 

purely circularly symmetric horn and have been reasonably concluded as un-physical 

results. At the time of writing this issue has remained unresolved and is still under 

investigation by the Far-Infrared Optics Group at Maynooth. Previously when 

comparing the return loss profiles from SCATTER (where a purely circular geometry 

was modeled) we saw close agreement between measurement and simulation 

indicating that there does not seem to be a large influence from this square to circular 

transition. A potential difficulty of using CST for this particular example is the assumed 

use of the symmetry and boundary conditions of only using one quarter of the horn and 

assuming circular symmetry (the electric field is set to zero in the yz plane and the 

magnetic field is set to zero for the xz plane). In many ways the user needs to apply this 

condition to allow the structure to be analysed due to the sheer computational 
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efficiency gained through use of assumed symmetry. Perhaps in this transition region 

the assumed boundary conditions become invalid through scattering along the length 

of the extrusion and a true representation of the actual field cannot be realized.  

Therefore the CST simulation seems to become unsteady or unstable. So where naively, 

the user expects to see little or no influence in the CST model on farfields or return loss 

profile when compared with the purely circularly symmetric case already seen the 

internal calculations of CST breakdown.   

 

Figure 4-40 - Return loss profile predicted by CST-MWS for 94 GHz corrugated horn with rectangular 

to circular waveguide transition zone included

 

Figure 4-41 - Farfield amplitude patterns (E and H cuts) for 94 GHz corrugated horn with rectangular to 

circular waveguide transition zone included 
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The difficulties in applying CST to accurately and confidently model such horn 

structures or this large size are clearly evident with this example. The computational 

efficiency of the modal scattering technique is also highlighted in comparison to the 

lengthy calculations required within the CST environment. The farfield plot of the field 

obtained from CST with the rectangular section included is very different from the 

traditional corrugated farfield leading to the conclusion not to trust the computation 

without further investigation 

4.5 Freespace Coupling of Horn-Horn Cavity/Standing Waves 

In this section we consider two horns coupled to one another through freespace, as 

illustrated in Figure 4-42, forming what is referred to as a horn-horn cavity. The horns 

are unmatched, i.e. there are no optics to couple the aperture distributions of the horns 

and as such there are inherent mismatches of beam radius and phase curvature for the 

horns. This is perhaps the simplest coupled system that can exist between horns where 

the scattering technique can be applied to model multiple reflections    

 

 

 

 

 

 

 

Arrangements similar to this one are typical for submillimetre quasioptical systems, 

albeit with some degree of optical coupling; one example is the heterodyne system for 

the ALMA Band 9 front end optics where a local oscillator (LO) signal from a feed horn 

is coupled to the mixer/detector feed horn quasioptically in freespace [87]. Similar 

horn-horn cavity arrangements to this one have been previously investigated in [36], 

[76] and [88]. These investigations were concerned with the measurement and modeling 

of the characteristic standing waves established within a horn-horn cavity both with 

z 

Corrugated Horns 

Figure 4-42 - Horn-Horn cavity arrangement - freespace quasioptical coupling of two corrugated horns 

separated by arbitrary distance z. 
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and without coupling optics for varied separation distances. The investigation of the 

horn-horn cavity or simply cavity from here on, in this section will focus primarily on 

the standing wave patterns of the reflected and transmitted amplitude response 

patterns over the operational bandwidth of the horns for a fixed separation distance 

between the horn apertures. Specific attention has been paid to the effect of differing 

geometries of the feed horn upon these standing wave patterns. In the preceding section 

the return loss profiles for a number of non-perfect horn geometry profiles were 

modeled with the aim of reconciling the disparities between mode-matching 

predictions and experimental measurement. This will form the basis for the following 

investigation. 

 

Once again comparisons are drawn between experimental measurements and 

theoretical SCATTER predictions. The measurement system is an extension of that 

described in Section 3.3 and consists of two feed horns facing one another, with one 

horn operating as receiver and the other as transmitter and being separated by an 

arbitrary distance z. The inter horn distance is controlled through both a manually 

controlled micrometer stage and a single axis scanner table aligned along the beam axis 

which is controlled remotely by computer. This arrangement is illustrated below in 

Figure 4-43.  

 

 

 

 

Figure 4-43 - Horn-horn cavity experimental arrangement using two 94 GHz corrugated horns 

fed by VNA and propagation distance managed by manual micrometre stage and computer 

controlled translation table 
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To describe this system analytically using the mode-matching technique firstly the 

complete scattering matrix for the feed horn is obtained using SCATTER. The 

waveguide modal field description is then transformed into the freespace Associated 

Laguerre-Gaussian mode set (c.f. Section 4.3.4). This freespace modal description of the 

complex horn field distribution is propagated a distance z using the propagation 

scattering matrix (Equation 4.25) with the evolution of the beam parameters calculated 

using the ABCD matrix technique. After the field is propagated the required distance to 

the second/receiver horn, the freespace modes must be transformed back into 

waveguide modes. This is achieved by retransforming the freespace mode set taking 

into account the evolved beam parameters at the second horn aperture. Finally, the 

scattering matrix of the receiver horn working in reverse is described as the 

reverse/inverse of the initial horn scattering matrix. This modal-matching description 

of the horn-horn cavity is illustrated below in Figure 4-44. The transmitted and reflected 

amplitude response profiles for the cavity are defined by the S21 and S11 sub-matrices of 

the complete scattering matrix of the cavity. Unlike the examples published previously 

where the inter horn distance was varied, the complete scattering matrix must be 

calculated for each horn as the scattering profile is wavelength dependent. This means 

that the computation is more intensive. 

 

Figure 4-44 - Mode-matching scattering matrix process for modelling horn-horn cavity. SCATTER 

models scattering matrix of feed horn and freespace propagation described using ABCD matrices 

S-matrix of Horn (SCATTER)

Freespace Transformation at aperture

Propagation of freespace modes using ABCD 

analysis

Waveguide Transformation (Reverse Freespace 

Transformation)

Reversed S-Matric of Horn (SCATTER)
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The reflected and transmitted standing wave patterns/power profiles for horn-horn 

cavities of increasing separation distance were predicted using the above mode-

matching technique and measured using the VNA measurement system. The cavity 

separation distances were z1 = 10 mm, z2 = 30 mm and z3 = 50 mm. The separation 

distances were kept short so as to ensure a high degree of interaction between the 

horns.  

For the purposes of simplicity only a small selection of the altered horn profiles 

described in Section 2174.4.1 will be utilised from here on. The six horns with constant 

machining errors introduced to their geometric profiles are dispensed with due to their 

very close agreement with the original horn in terms of return loss profile and farfield 

antenna patterns. Of the ten horns with random machining errors, three were chosen 

that exhibited the greatest deviance from the original horn; specifically in their 

predicted return loss profiles.; horns mh_50%error_04, mh_50%error_05 and 

mh_50%error_08 from chosen with this criteria in mind. The return loss profiles of these 

three horns are re-plotted below in Figure 4-45 along with that of the ideal horn (plotted 

as black broken line) to illustrate their disagreement with the ideal.  

 

Figure 4-45 - Return loss profiles for the three horns with random deviations that show worst pattern 

agreement with the original ideal horn 

These three horns are used for the same horn-horn cavity calculation as for the original 

horn, and as such all predictions for cavities in the following sections will be four-fold.   
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Experimental measurements of the transmitted and reflected amplitude response 

patterns for the various horn-horn cavities are plotted below with various combinations 

of the four 94 GHz feed horns used as transmitter and receiver, i.e. MH01_MH02 

indicates that MH01 is the transmitter while MH02 is the receiver in Figure 4-42.  
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z Transmitted Reflected 

 

 

 

10 mm 

  

 

 

 

30 mm 

  

Table 4-1 – Measured transmitted (left side) and reflected (right side) standing wave patterns for horn-horn cavities of separation distance z1 = 

10 mm (top) and z2 = 30 mm (bottom).  
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z Transmitted Reflected 

 

 

 

50 mm 

  

Table 4-2 - Measured transmitted (left side) and reflected (right side) standing wave patterns for horn-horn cavities of separation distance z3 = 

50 mm. 

 

 

 

 

 

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

85 90 95 100 105 110
P

o
w

e
r 

(d
B

)

Frequency (GHz)

MH1-MH2_s21

MH1-MH3_s21

MH1-MH4_s21

MH2-MH3_s21

-35

-30

-25

-20

-15

-10

-5

0

85 90 95 100 105 110

P
o

w
e

r 
(d

B
)

Frequency (GHz)

MH1-MH2_s11

MH1-MH3_s11

MH1-MH4_s11

MH2-MH3_s11



240 

 

It is firstly noted that the level of pattern agreement of each of the measured horn-horn 

cavities for all combinations of transmitter and receiver horns is high. This is in line 

with the agreement between the return loss profiles for the four horns seen in Figure 

4-23.  The largest pattern disagreement, which is itself still quite low, occurs for the 

shortest horn-horn cavity separation distance of z1 = 10 mm, and agreement improves 

with increasing separation distance.  

There are evidently resonant multiple reflections occurring within these cavities It is 

observed that at the shortest separation distance of z1 = 10 mm the standing wave 

patterns exhibit significant high Q cavity features, which are displayed as sharp quasi-

random resonances in both the reflected and transmitted power profiles. This was an 

expected consequence of the short propagation distance for the cavity and was 

previously recorded by Trappe [88]. These sharp features are accounted for by the 

reflection of higher order modes within the feed horn structure that reduce with 

increasing separation distance. With increasing separation distances the occurrence of 

these high Q features decreases and the standing wave patterns exhibit smoother 

profiles. Another expected consequence is the decrease in the average transmitted 

amplitude level with increasing separation distance.  

The following Table 4-3 and Table 4-4 display the reflected and transmitted standing 

wave patterns for the horn-horn cavities as predicted using the mode-matching 

technique in the same manner as the measured amplitude response patterns presented 

in Table 4-1 and Table 4-2.  
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z Transmitted Reflected 

 

 

 

10 mm 

  

 

 

 

30 mm 

  

Table 4-3 - Predicted transmitted (left side) and reflected (right side) standing wave patterns for horn-horn cavities of separation distance z1 = 

10 mm (top) and z2 = 30 mm (bottom). Results from ideal horn are plotted in black, with three random error horns plotted in red, green and 

blue.  
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z Transmitted Reflected 

 

 

 

50 mm 

  

Table 4-4 - Predicted transmitted (left side) and reflected (right side) standing wave patterns for horn-horn cavities of separation distance z1 = 

10 mm (top) and z2 = 30 mm (bottom). Results from ideal horn are plotted in black, with three random error horns plotted in red, green and 

blue.  
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The predicted standing wave patterns display similar characteristics to those from 

measurements. It is difficult however to establish exact agreement between the 

measurements and simulations due to a number of approximations made in the model. 

Firstly a rectangular to circular transition exists in the Thomas Keating horns measured 

in the lab. Obviously from Table 4-5 and Table 4-6 below the levels of predicted 

reflected power close to measurement and actual detail of resonances at various 

frequencies agree roughly for locations of maxima and minima in the pattern. This 

might indicate that the model sets the path lengths at which the reflections occur 

internally in the horn as this would set the relative location of nodes or antinodes. This 

would seem to indicate that the flared transition section from WR10 waveguide to 

circular corrugations does not have a large influence on the standing wave pattern. 

It is also assumed that an exact calibration has been carried out on the network analyzer 

used in the experiments as the model assumes all power arriving at the waveguide is 

absorbed in the model and not reflected. The freespace description of the beam is also 

modeled using scalar Gaussian Beam Modes which will not facilitate an accurate 

description of near field horn interaction. At close distances the model still does a 

reasonable job of representing erratic or anharmonic structures in the reflected power 

component reproducing many features or resonances especially at a horn separation of 

10 mm (circa 3 wavelengths). At increasing interhorn distances many of the higher 

order modes not coupling back to the horn are lost due to diffraction and the reflected 

power patterns smooth out and amplitude levels decrease as expected. Here the 

classical repeatable pattern is more evident.  

The mutual pattern agreement for the four different horn geometry profiles is very close 

(i.e. the ideal perfect horn profile and the three randomly altered horn profiles 

mh_50%error_04, mh_50%error_05 and mh_50%error_08). These results therefore indicate 

that despite the relative disagreement between the return loss profiles of these four 

horns (as shown in Figure 4-45), there is negligible effect upon the transmitted and 
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reflected amplitude response patterns for the various cavities using these slightly 

different horns geometries. Any disagreements between the various predicted patterns 

occur over relatively small frequencies with the overall structure over the band showing 

similar agreement. The exact level of disagreement for the various horns is investigated 

further in the next section. This conclusion indicates that despite the relatively disparate 

return loss profiles for the individual horns, the standing wave patterns generated with 

their corresponding cavities (using an identical horn in transmission and reception) are 

quite similar. This might suggest that the gross structure of the horn dominates the 

characteristics of the standing wave patterns generated.  

It is difficult to clearly compare predictions with measurement for all of the various 

configurations. For clarity the predicted standing wave profiles for the ideal perfect 

horn geometry will be used to represent the entire set of predictions. This is considered 

a reasonable approximation given the relatively high level of agreement between the 

various measured standing wave patterns. The tables below illustrate comparison plots 

for the various predicted and measured standing wave patterns. The predicted results 

for the original horn profile are plotted in black.  
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z Transmitted Reflected 

 

 

 

10 mm 

  

 

 

 

30 mm 

  

Table 4-5 – Comparisons of measured and predicted transmitted (left side) and reflected (right side) standing wave patterns for horn-horn 

cavities of separation distance z1 = 10 mm (top) and z2 = 30 mm (bottom). Predictions are for original horn only (in black) 
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z Transmitted Reflected 

 

 

 

50 mm 

  

Table 4-6 – Comparisons of measured and predicted transmitted (left side) and reflected (right side) standing wave patterns for horn-horn 

cavity of separation distance z3 = 50 mm Predictions are for original horn only (in black) 
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The mode match predictions for the cavity exhibit varying degrees of agreement with 

experimental measurements. Overall similar levels of reflected power are predicted and 

measured and similar agreement between maxima and minima across the band is 

observed. For the first cavity (z1 = 10 mm) the predicted model compares poorly with 

experiment. This is most pronounced for the transmitted standing wave pattern. The 

agreement is improved for the reflected profile where the predicted model reproduces 

the locations and amplitudes of many of standing wave resonance dips. This is most 

apparent in the lower frequency range for the cavity i.e. from 85 GHz to approximately 

100 GHz. However, this agreement does not extend to the shape of the resonance 

amplitude peaks. The predicted model closely estimates the average amplitude levels of 

the experimental standing wave patterns. As this inter-horn is distance is quite near 

field and the free space scalar capability will not be capable of getting the all interaction 

correctly. Nonetheless the frequency maxima and minima are well reproduced.  

For the 30 mm separation again the transmitted power levels predicted with SCATTER 

do not match the structure of the measured profile but the correct levels are 

reproduced. As for the previous results at 10 mm separation the predicted reflected 

power profile reproduces the frequency maxima and minima within the same 

frequency range (85 GHz to 100 GHz). 

When the horn separation is widened to 50 mm and therefore there is much less 

coupled radiation the model underestimates the level of reflected amplitude across the 

band but does however exhibit similar locations/frequencies of a large proportion of 

the amplitude resonances – in keeping with the level of agreement between model and 

measurement for shorter separation distances.  The model accurately predicts the 

average level of transmitted power; however, it does a very poor job of predicting shape 

and locations of resonance patterns.  
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4.5.1 Eigenmodes of Horn-Horn Cavity 

In this section we extend a framework developed by [89], [90] and extended [91] to 

these simple cavities containing corrugated horns, where the concept/notion of 

eigenmodes and eigenfields within the context of systems in which standing waves are 

present is discussed. In [91] this technique was employed to investigate the form and 

shape of these cavity or eigenmodes. An eigenmode is hereby defined as a natural 

mode of the system that is sustained after multiple reflections. In the horn-horn cavity 

setup there clearly exist standing waves between the two horns. The power 

distributions that do not couple to either the transmitting or receiving horn are 

considered the eigenmodes of the system. These eigenmodes essentially propagate 

unaltered on a round trip after a single reflection from each horn with a phase delay of 

2n̟, where n represents the number of round trips, thus meeting the condition for 

constructive interference.  

Through analysis of the cascade matrix calculations (c.f. Section 4.2) the form and shape 

of such an eigenmode can be identified [91]. Looking at the cascade matrices (Equations 

4.18) it is clear that part of these matrices must include the round trip component of the 

system i.e. that component that is sustained upon a roundtrip within the cavity.  In the 

case of the transmitted amplitude response for the horn-horn cavity we are concerned 

with the S21 component of the cavity scattering matrix. In the cascade matrix calculation 

of the cavity scattering matrix, the S21 component is given as  

 [ ]
1

21 21 22 11 21
c b a b aS S I S S S

−
          = −             (4.95) 

From [91] the term 22 11
a bS S        in Equation 4.95 represents the multiple reflections of 

radiation within the cavity. If this component is zero (i.e. [ ]22 11 0a bS S    =     ) then this 

equation reduces to the product of the transmitted power of the two subsections

21 21
b aS S       , thereby giving the transmitted power for the overall system Sc.
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The eigenmode is seen as a solution to the matrix equation: 

 . .S a aλ=   (4.96) 

where S is the round trip component of the complete scattering matrix, a are the 

eigenvectors and λ are the corresponding eigenvalues. In [91] the eigenvalues and 

eigenvectors of the roundtrip component were analysed as the transmitted amplitude 

pattern passed through a resonance or transmission minimum. When compared to the 

non-resonant case, (away from resonant dip) it was noted that the complex arguments 

of certain eigenmodes were zero at individual resonances, which indicated that this 

eigenmode was responsible for the resonance dip. Technically, the argument is rarely 

found to be exactly zero, and an upper numerical bound is employed to signify zero. In 

[91] this upper bound was taken as 0.02. The spatial form of these resonant eigenmodes 

Eres can be constructed from: 

 res n n
n

E Pψ=∑   (4.97) 

where ψn is the modal basis set and P is the column of eigenvectors that correspond to 

the resonant eigenvalue. For a circularly symmetric cavity the basis mode set are the 

Associated Laguerre-Gaussian modes described earlier in Section 2.14. When this 

eigenmode is analytically removed the resonance in question was significantly reduced. 

The eigenmode is removed by setting it to zero and the roundtrip component is then re-

composed and re-inserted back into the cascade matrix. This novel technique therefore 

presents a theoretical method of removing the roundtrip component analytically and 

allows one to plot the spatial profile of the standing wave itself, which is interesting if 

not very practical in actually damping or removing reflected power. If this technique is 

applied to a laser cavity, for example, the spatial form of the reflected or cavity modes is 

that of the classical solution of Hermite Gaussian or Laguerre Gaussian depending on 

the symmetry conditions of the reflecting walls. 

This technique could also be tentatively employed here to further investigate the effect 

of altered horn geometries upon the amplitude response patterns for a cavity 



250 

 

arrangement. The cavity with the shortest separation distance of 10 mm is analysed here 

for the four different horn geometry profiles and used to see if the spatial form of the 

reflected power in each of the slightly different geometries is similar in form.  

So to look into this application we take a prominent resonant dip in transmission and 

investigate the phase of the decomposed eigenmodes and try to isolate the eigenmode 

responsible for that particular resonance. The transmitted amplitude null investigated 

occurs approximately between 90 and 91 GHz for all horn geometries, although as will 

be shown later the exact frequency at which the null occurs varies from cavity to cavity. 

A sequential search for an eigenvalue with zero argument was conducted for the horn-

horn cavity of the original horn profile. At 90.25 GHz the third eigenvalue had an 

approximate zero argument (less than 0.02). It was suspected that this was the 

eigenmode responsible for the transmitted amplitude dip. The eigenvalues for the other 

cavities were also predicted at this specific frequency assuming that they would also 

exhibit a similar eigenvalue decomposition with equivalent zero argument. In Table 4-7 

below the absolute values and arguments for the first nine eigenvalues of the four horn-

horn cavities are listed. The absolute power of the eigenvalue can be used as an 

indication of the relative level of power carried by that mode and the eigenmodes are 

usually ordered with decreasing levels of power 

From these results it is clear that the argument of the third eigenvalue of the other three 

cavities is no longer zero. This thus leads to two possible conclusions. Firstly, the third 

eigenmode is no longer responsible for the amplitude null in the other cavities. 

However, from Table 4-7 there are evidently no other eigenvalues with zero arguments 

at this frequency. The next conclusion is that the zero argument condition, whether it is 

the third or some other eigenvalue, has been met at another frequency. This second 

conclusion is more likely given the minor differences in the exact frequency at which 

the amplitude null for the four different cavities occurs. This is illustrated below in 

Figure 4-46, where the transmitted amplitude response patterns for the four horn-horn 

cavities are plotted from 90-91 GHz.  
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igenvalue 1 2 3 4 5 6 7 8 9 

Cavity mh_original 

Absolute Value 0.678 0.667 0.611 0.2521 0.159 0.136 0.021 0.014 0.001 

Argument -0.56 0.992 0.0 0.356 -0.800 -0.031 -0.885 0.421 -0.472 

Cavity mh_50%error_04 

Absolute Value 0.69 0.648 0.647 0.239 0.164 0.136 0.021 0.013 0.002 

Argument -0.522 -0.959 -0.069 0.365 -0.805 -0.0247 -0.853 0.464 -0.293 

Cavity mh_50%error_05 

Absolute Value 0.697 0.637 0.576 0.288 0.165 0.139 0.020 0.012 0.001 

Argument -0.399 -0.894 0.229 0.415 -0.72 0.033 -0.892 0.523 -0.252 

Cavity mh_50%error_08 

Absolute Value 0.691 0.689 0.572 0.265 0.163 0.142 0.018 0.014 0.001 

Argument 0.958 -0.53 0.038 0.313 -0.816 -0.05 -0.948 0.413 -0.341 

Table 4-7 - Absolute value and argument of the first nine eigenvalues for roundtrip component at the 

frequency for a resonant dip at 90.25 GHz for the horn-horn cavity of separation distance z1 = 10 mm. 

 

Figure 4-46 - Resonance dip for the four horn-horn cavity arrangements 

A simple test to determine if the third eigenvalue is the one responsible for the 

amplitude null for all cavities was to analytically set it to zero for all cavities and re-

calculate the response patterns with this mode removed. The newly altered response 

patterns are plotted below in Figure 4-47 as solid lines with the original response 

patterns plotted in broken lines for comparison.  
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Figure 4-47 - Original resonance dips for various horn-horn cavity arrangements (broken lines) 

compared against removed resonance dip with 3rd eigenmode removed (solid lines) 

The amplitude response dip is effectively removed for all cavities, thus indicating that 

the third eigenmode is responsible for the resonance dip in all instances. Similar 

calculations for other eigenvalues revealed no significant alteration to the amplitude 

response pattern, thereby further confirming the responsibility of the third eigenvalue 

for this amplitude dip. As one moves across the band it is noticed that different 

resonant dips are linked with different eigenmodes and continuous decomposition of 

the reflected power is required to identify the responsible eigenmode.  

This technique allows the spatial form of the reflected power component to be 

visualised theoretically and the shape of the eigenmodes for the three cavities that 

exhibited the zero argument condition for the third eigenvalue (i.e. mh_original, 

mh_50%error_05 and mh_50%error_08) may be determined using Equation 4.97 where P 

is the column of eigenvectors for the roundtrip component of each cavity which 

corresponds to the specific eigenvalue. The Associated Laguerre-Gaussian mode set 

was chosen as the basis set for the field description, with the beam parameters being 

defined at halfway between the horns at 5 mm propagation distance.  The plots 

displayed below in Figure 4-48 are the distributions of the first four eigenmodes (i.e. the 

fields formed from the first four columns of eigenvectors) for the three horn-horn 

cavities.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-48 - Comparison plots of first four eigenmodes for three horn-horn cavities that exhibited the zero argument condition of the third 

eigenvalue. (a): 1st eigenmode, (b): 2nd eigenmode, (c): 3rd eigenmode, (d): 4th eigenmode.
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It is difficult to draw any firm conclusions about the differing shapes of the eigenmodes 

for the different horn geometries. It can be noted that the shapes of the first, second and 

fourth eigenmodes widely varied for each cavity arrangement and that for third 

eigenmode which shows very similar Bessel type beam shapes for all cavities, perhaps 

collocating with responsibility for the transmitted amplitude dip at this particular 

frequency. Any definite conclusions need more investigation and testing to try to 

understand the meaning of the eigenmode shapes. It is important to note that the cavity 

under investigation here is made up of a horn with a radius (including aperture lip) of 8 

mm and all the power is contained within this range.  

 

 

 

 

 

 

 

 

 

 

 

 

 



255 

 

4.6 Modelling a Stray Light Baffle  

In this section we predict the reflected and transmitted amplitude response profiles for 

a stray light baffle structure using the mode-matching technique and compare these 

predictions with measurements from an equivalent laboratory arrangement. A stray 

light baffle is an element commonly employed in submillimetre systems to prevent any 

radiation that is unpredictably scattered within the system from coupling to the receiver 

elements. For example, in the HIFI instrument on the Herschel Space Observatory a 

baffle is used along the LO chain to minimise scattered light in the system.   

The baffle structure modelled and measured here is comprised of four annular ring 

structures with inner radius rinner = 30 mm and outer radius router = 100 mm. The annular 

rings are evenly spaced by a distance of ∆z = 15.0 mm. The annular ring structures are 

made from aluminium sheets with an approximate thickness of 1.0 mm. The baffle is 

formed by affixing these annular rings along two threaded rods with nuts holding them 

in place. Balsa wood spacers are used to reinforce the spacings between the rings, being 

effectively transparent at around 100 GHz. The baffle is placed midway between two 

unmatched horns that form a horn-horn cavity similar to those modelled in {ref 

previous section} albeit with greater separation distances between the horns. As with 

the previous horn-horn cavities, the horns used are the 94 GHz conical corrugated 

horns and the amplitude response patterns are recorded using the VNA measurement 

system. The cavity system with baffle included is shown below in Figure 4-49 

 

 

 

 

 
Figure 4-49 - Stray light baffle structure located between two unmatched 

corrugated horns within VNA measurement facility 
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Although the distances between the annular rings is fixed at 15.0 mm the model for this 

system requires the planes of the truncating apertures to be infinitesimally thin. 

Therefore the actual propagation distance between the truncating apertures is given as 

∆z = 49.0/3 = 16.33 mm. The scheme for the layout of the baffle cavity is illustrated 

below in Figure 4-50  

 

 

 

 

 

 

 

 

 

Two configurations of this baffle cavity system were modelled using the mode-

matching technique and measured experimentally. These two systems are defined 

solely by the input and output distances (which are equal given that the baffle is located 

midway between the horns): 

1. zin-1 = zout-1 = 100.0 mm 

2. zin-2 = zout-2 = 60.0 mm 

These two configurations were chosen to provide different levels of truncation for the 

incident beam from the transmitting horn. Using ABCD analysis the Gaussian beam 

approximation of the propagating beam is calculated for the chosen upper and lower 

frequency limits of the horns. These beam parameters are listed below in Table 4-8. 

zin zout 

∆z 

Transmitter 

Horn 

Receiver 

Horn 

zh zh 

Figure 4-50 - Quasioptical representation of the stray light baffle structure placed between 

two unmatched corrugated horns.  
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Parameter Unit  Baffle #  1 Baffle #  2 

Frequency  GHz  85 110 85 110 

Horn aperture radius: a mm 7.134     

Waist at horn aperture: wha mm 4.59     

Phase radius of curvature at horn aperture: Rha mm 80.0     

Beam radius at first aperture: w01 mm  25.5 20.23 15.72 12.64 

Edge taper at first aperture: Te01  dB  -12.0 -19.11 -31.65 -48.97 

Beam radius at second aperture: w01 mm  29.55 23.38 19.68 15.69 

Edge taper at second aperture: Te01  dB  -8.95 -14.29 -20.18 -31.73 

Beam radius at third aperture: w01 mm  33.61 26.56 23.69 18.81 

Edge taper at third aperture: Te01  dB  -6.92 -11.08 -13.92 -22.08 

Beam radius at fourth aperture: w01 mm  37.68 29.74 27.73 21.96 

Edge taper at fourth aperture: Te01  dB  -5.51 -8.84 -10.16 -16.21 

Beam radius at receiver horn: w01 mm  62.71 49.35 42.67 33.65 

Phase radius of curvature at receiver horn: Rha mm  250.27 250.99 170.88 171.93 

Table 4-8 - Gaussian beam parameters for transmitted horn beam propagating throughout two baffle 

cavity configurations. Baffle 1 corresponds to 100 mm distance while baffle 2 corresponds to a 60 mm 

distance. 

The mode matching model for this system was developed in the same manner as for the 

horn-horn cavities in Section 4.5 with the beam scattering at the truncating apertures 

determined using the truncating aperture scattering matrix described previously in 

Section 4.2.4. The approximation made for the truncating aperture scattering matrix in 

Equation 4.43 is that the outer radius of the aperture is infinite. This approximation is 

considered valid for these baffle cavity examples where the outer radius of 100.0 mm is 

more than sufficient to ensure there is practically no radiation scattered beyond the 

outer rim of the baffle. It is evident from Figure 4-50 that any possible scattered 

radiation will not be coupled to the receiver horn due to high angular scattering and is 

thus considered lost. The order of the scattering matrices is thus described below in 

Figure 4-51. The component scattering matrices are cascaded in the usual manner to 

provide a complete scattering matrix of the baffle cavity. 
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The reflected and transmitted amplitude response patterns as predicted from theory 

and measured in the laboratory are compared below in Figure 4-52.  

 

The predicted S11 profile for baffle #  1 exhibits some extra resonance structures of 

higher amplitude at approximately 92 GHz and 101 GHz that are not seen in the 

measured results. As with the earlier arrangement with just two horns facing each other 

exact agreement is not observed between the measured and simulated cases. Certainly 

the extra resonances seen in the simulated data at 92 GHz and 101 GHz are features not 

reproduced in the experimental measurements. We do observe that the levels of power 

coupling between the horns are predicted and some features or characteristics of the 

standing wave pattern are observed. 

 

Scattering Matrix of Horn (SCATTER) 

Free Space Transformation 

Propagation (zin) 

Baffle Scattering Matrix 

Reverse Scattering Matrix of Horn 

Waveguide Transformation 

Propagation (zout) 

1st Truncating Aperture  

Propagation (∆z) 

2nd Truncating Aperture  

Propagation (∆z) 

3rd Truncating Aperture  

Propagation (∆z) 

4th Truncating Aperture  

Figure 4-51 - Flow chart illustrating order of component scattering matrices for baffle cavity structure 
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Baffle #  1 Baffle #  2 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-52 - Predicted (in blue) and measured (in red) amplitude response patterns for reflected S11 component (top) and transmitted 

S21component (bottom) 
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A number of factors again need to be considered in making the comparison between 

theory and experiment. Firstly we do not see agreement between the horns in isolation 

due to the reasons outlined earlier including the extra transition region in the horn not 

modelled and the high degree of sensitivity of the standing wave pattern to the horn 

geometry. In addition here alignment of the horns and baffle is difficult and this could 

alter the features produced in the standing wave pattern. Also in the model the baffle 

outer radius was infinitely wide and so the radiation reflects outwards in a different 

way to the experimental arrangement. This could account for the higher resonances 

seen at 92 and 101 GHz. Further analysis where the correct annular ring using the 

correct radii needs to be implemented to see if the effect disappears. The transmission 

levels are well reproduced in the model and closely agree with the measured data over 

the band. This example illustrates that although the exact resonances are not 

reproduced the levels and degree of reflection and transmission are well represented. 

The tolerances of such a system were difficult accurately account for. The placement of 

the baffle structure within the cavity was achieved manually by hand and thus degrees 

of freedom were undoubtedly introduced. An extension of this work would require a 

quantification of these alignment tolerances and an appropriate error analysis 

performed.  

 

To clarify the effect of the structure of the baffle upon this cavity arrangement the entire 

baffle was removed and the S-parameters re-calculated using SCATTER and the 

corresponding measurements taken. This was performed for Baffle #1 arrangement, 

where the deviances of the S11 profile between theory and experiment are most 

pronounced. Removing the baffle structure essentially creates a simple horn-horn cavity 

exactly like those analysed in Section 4.5. The comparison plots for this cavity 

arrangement are illustrated below in Figure 4-53.  

 

The comparison between predictions and measurements in Figure 4-53 reveal some 

interesting results. With the baffle structure removed the predicted S11 profile in Figure 
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4-53(a) exhibits a greatly altered structure to that seen in Figure 4-52 (a) above. This 

indicates the effect of the baffle structure on the returned power is dominant. However, 

the agreement of prediction and measurement here is poor, with the measurement data 

exhibiting a strong resonance pattern between approximately 88 GHz and 102 GHz. 

This may still be attributed to improper alignment between the horns, as was indicated 

earlier. Comparing the measured profiles of Baffle #1 with and without the baffle 

structure in Figure 4-54 we can see that the effect of the baffle upon power reflected 

back into the receiver horn is subtle.  This makes sense physically as that power 

reflected by the baffle structures will radiate outward past the aperture of the receiving 

horn and is essentially lost. It may be that this baffle does not truncate the beam 

significantly enough to see any of the extra resonant structures predicted by theory. 

However, as we shall see in the following section the effect of the baffle on the S11 

profile, although apparently negligible, does exist and can be quantified.  The predicted 

transmission profile in Figure 4-53 (b) closely reproduces the measurement profile over 

the entire band.  
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(a) 

 

(b) 

Figure 4-53 – Comparison of predicted (blue) and measured (red) S11 (top) and S21 (bottom) patterns for 

horn-horn cavity with interhorn distance z: 249 mm i.e. Baffle #  1 with baffle structure removed.   

 

Figure 4-54 - Comparisons of measured S11 profiles for Baffle #1 both with (red) and without baffle 

(black) 
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4.6.1 Fourier Signal Analysis of Baffle Response Patterns 

The stray light baffle structure essentially operates/can be interpreted as a spatial filter, 

permitting only the desired paraxial/centralised beams through while removing any 

possible undesired higher order beam structures. With this concept in mind, the 

amplitude response patterns from this baffle structure represent the reflected and 

transmitted signals in the spatial frequency domain. The transmission and reflection 

properties of the system are encoded within this frequency spectrum and they can be 

analysed using Fourier signal analysis. The Fourier Transform [FT] of a time variant 

signal will convert it to the frequency domain. Hence the Inverse FT of the frequency 

response signal will convert it to a time variant signal. This temporal function is then 

converted into the spatial domain by dividing by the speed of light c. The spatial 

sampling ∆x is dependent on the frequency sampling ∆f by the following relation: 

 
1 c

x
N f

∆ =
∆

  (4.98) 

where N is the total number of sampling points and c is the speed of light. For the 

measured and predicted amplitude response patterns the frequency step size was 0.1 

GHz (108Hz) over the bandwidth of the cavity (85 GHz to 110 GHz), giving 351 sampled 

points. This gave a spatial sampling of 8.57 mm. The transmitted and reflected spatial 

signals for the two different baffle configurations were calculated from the measured 

and predicted amplitude response spectra and are plotted below in Figure 4-55. The 

measured data are plotted as coloured broken lines while the predicted data are plotted 

as solid black lines. There are a set of four measurement results taken for each baffle 

arrangement, each of which was obtained after resetting the baffle and horns. This was 

done to ensure the best possible alignment of all optical elements.  
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Baffle# 1 Baffle# 2 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-55 - Spatial amplitude response patterns for baffles# 1 and 2 - reflected response patterns: (a) and (b), transmitted response patterns: (c) and (d). 

Measured results are plotted as broken coloured lines while mode-matching predictions are plotted as a solid black line. Peaks in reflected plots (a) and (b) 

represent locations of reflecting structures of horns and baffle structure. Peaks in transmitted plots (c) and (d) represent location of throughput coupling to 

receiver horn.   
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The reflected spatial amplitude response patterns highlight the structures within the 

baffle cavity which partially reflect the beam travelling from left to right. The reflecting 

structures are numbered one to four and refer to the sequential elements within the 

baffle cavity from which the propagating beam is reflected. 

The first reflection structure in Figure 4-55 (a) and (b) represents the partial reflection of 

the beam by the waveguide transition section of the transmitting horn. This occurs at 

our reference distance of zero corresponding to the throat of the transmitting horn. The 

second reflection structure is a group of amplitude peaks representing the partial 

reflection by each of the four annular rings that comprise the baffle located 100 mm in 

front of the horn that has an axial length of 80 mm. The axial distance of these structures 

approximately agrees with the layout of the baffle structure. In Baffle#  1 the first 

annular ring is located a distance zh + zin-1 = 180 mm from the back of the horn, while for 

Baffle#  2 the distance is zh + zin-2 = 140 mm. In Figure 4-55 (a) the measured data show 

four peaks representing each of the four annular structures. The predicted data show 

only three peaks however given relatively large sampling distance of 8.57 mm we can 

reasonably conclude the missing structure is grouped with one of the others i.e. they 

overlap. The correct inter baffle distance is also seen at 16 mm intervals In Figure 4-55 

(b) the predictions and measurements both display four amplitude peaks. The third 

reflection structure represents the reflection of the beam at the aperture of the receiver 

horn at a distance of zh + zin-1 + 3*∆z + zout-1 = 329.0 mm for Baffle#  1 and zh + zin-2 + 3*∆z 

+ zout-2 = 249.0 mm for Baffle#  2. The fourth reflection structure represents the reflection 

of the beam at the back of the receiver horn at a distance of zh beyond the aperture. The 

transmitted spatial amplitude structures for Baffles 1 and 2 in Figure 4-55 (c) and (d) 

display a single peak that represents the complete transmission of the beam from the 

back of the transmitter horn to the back of the receiver horn which coincides with the 

final reflection structure in Figure 4-55 (a) and (b). There is a slight spatial disagreement 

between the predicted and measured data. This is accounted for by the extra 

propagation distance of approximately 6.5 mm by the rectangular to circular waveguide 
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transition section in the feed horn that is not taken into account by the SCATTER code.  

With this correction applied to the results there is good agreement between 

measurements and predictions from the mode-matching technique.  

It should be noted that there exists significant disagreement between the relative 

amplitudes of the various reflection peaks for prediction and measurement in Figure 

4-55 (a) and (b). The data were normalised for the amplitude peaks of the truncating 

baffle structure so as to convey the exact positions of the various structures. This is 

evident from the measured data where the first, third and fourth peaks are scaled above 

unity. The predicted results display reflection peaks of greater amplitude than 

displayed by the measured data. This is attributed to the approximation made by the 

truncating aperture scattering matrix (Equation 4.43) which assumes an infinite outer 

rim for the aperture element. This would confine reflected power within the walls of the 

individual baffle gaps and thus contribute to the large reflection peaks. A solution to 

this problem would be to redefine the truncating aperture scattering matrix as a true 

annular structure by integrating between the inner and outer radii. There likely exists 

some degree of alignment and/or pointing error for the measurement set up which 

would inevitably lead to a degree of unpredictable beam scattering which would 

account for the slight differences between prediction and measurement.    

The results from this Fourier signal analysis provide an excellent confirmation of the 

mode-matching theory against experimental measurement for a complicated optical 

structure. It is also a powerful tool to investigate where reflections occur in an optical 

system and to predict the wavelength or frequency of a standing wave baseline. This is 

particularly important for spectrometers where this baseline can influence the 

characteristics of the measured spectra. In applying the Fourier signal analysis to the 

patterns predicted by SCATTER it also verifies all the overlap integrals and use of 

complex conjugates to take care of inversion of phase fronts upon reflection as if this 

was carried out incorrectly information would fall in the negative Fourier space and 

equate to negative distance values. This would mean that the predictions would be 
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unphysical and this serves as a good check to verify the scattering technique applied 

throughout this chapter. 

4.7 Conclusion 

In this chapter a theoretical framework to analyse the standing waves within a 

quasioptical cavity arrangement is described. The theory of mode-matching as it applies 

to waveguide structures is described. The complete scattering matrix description of feed 

horn cascaded with freespace transformation matrices is given, which when combined 

with the free space scattering matrices of beam guide components allows for the 

forward and backward propagating power to be tracked.  The technique of combining 

scattering matrices, known as cascading, is verified by accurately describing the 

reflectance profiles for several multiple thin-film arrangements, which exhibit increased 

or decreased reflectance over a chosen finite bandwidth.  

 

The method of describing the S-parameters of a corrugated horn including freespace 

transformation to the appropriate free space mode set is employed to model the 

standing waves set up between two uncoupled horns at close propagation distances. 

Such horn-horn cavity arrangements have been previously studied by [30], [36] but 

were concerned with the standing wave patterns within the spatial domain as the horns 

were moved relative to one another for a fixed frequency. Arguing for a more 

physically applicable system, the horn-horn cavities modelled and measured in this 

chapter maintained fixed inter horn distances while the frequency domain resonances 

across the bandwidth of the horns were analysed. Multiple reflections were set up 

between the horns, leading to quasi-systemic standing wave patterns. Disparities 

between the measured and predicted return loss profile of an individual horn remain 

unresolved. This has been accounted for by the effect of the waveguide transition region 

at the back of the horn. Further investigation is warranted here through alternate means 

(FDTD) to verify this hypothesis. In an attempt to resolve this disparity several 

variations of the 94 GHz feed horn structure were modelled using SCATTER. The 
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purpose of this test was to determine the robustness of the reflection and transmission 

properties of the horn with the introduction of minor (<0.5%) surface errors to the 

corrugations.  The effect of these errors on the horn profile was shown to have a 

significant effect on the return loss profile for the horn.  

 

Using several combinations of these altered horns the reflected and transmitted 

standing wave patterns of various horn-horn cavities were predicted and compared 

against measurement. The agreement of predictions with the measured data was 

varied. Predictions of the reflected amplitude profile of the cavities exhibited gross 

pattern agreement with measurement over a finite bandwidth. The predicted 

transmission profiles exhibited less structural pattern agreement with measurement, yet 

accurately predicted the average amplitude level. These results indicate that despite the 

disparate return loss profiles for the individual altered horns, the standing wave pattern 

of the cavity dominates. The structure of the ‘eigenmode’ responsible for a specific 

amplitude transmission dip was analysed for a horn–horn cavity with z = 10 mm for 

combinations of four altered horn profiles. The results indicated that the resonant 

eigenmode maintained similar spatial forms for each of the different horn-horn cavities.  

 

In the final section of this chapter a novel stray light baffle structure is introduced into 

the horn-horn cavity. While the predictions perform well against experiment in 

transmission, the reflected amplitude profile is routinely misrepresented by theory. This 

may be due to the assumptions made by the truncating aperture scattering matrix and 

thus this issue requires some further investigation. Using Fourier signal analysis the 

spatial form of the baffle structure was found for both measurement and prediction 

with very good agreement. This technique has potential as an elegant analysis 

technique for future cavity models.  

 



 

     269

5. Quasioptical and Physical Optics Analysis of the ALMA 

Band 5 Front End Optics 

5.1 Introduction 

In this chapter, a full quasioptical and physical optics analysis of the Band 5 front end 

optics channel of the Atacama Large Millimetre Array (ALMA) is presented. This work 

was performed in conjunction with the Band 5 design and development group who 

work at the Group for Advanced Receiver Development (GARD) at the Chalmers 

Technical University in Gothenburg, Sweden. The work presented here was of 

significant importance to the group at GARD owing to the need for verification and/or 

improvements to the Band 5 front end optics channel design. The author presented a 

thorough analysis and verification of the performance of the system, with suggested 

improvements or amendments to the design reviewed by the ALMA optics review 

board. An extended scientific visit to GARD was also undertaken in summer 2009 to 

assist with experimental testing of the optics. 

An overall review and description of the ALMA instrument is given in Section 5.2, and 

the front end optics of the Band 5 channel is described in Section 5.3. 

 

5.2 The ALMA Antenna 

The ALMA antenna is a classic Cassegrain design (12m) with the primary reflector a 

symmetric paraboloidal reflector and symmetric hyperboloidal secondary reflector 

mounted on 4 support legs. The antenna will operate on an elevation over azimuth 

mount. The quality of these reflectors is integral to the performance of ALMA, and as 

such, each antenna will have 2 arcsec absolute pointing over the sky, and 0.6 arcsec 

tracking, which are extremely accurate specifications for antennas of this type and size. 

In addition to accurate pointing, a high degree of surface accuracy on the primary and 

secondary reflector surfaces in essential. The surface accuracy goal is 20 µm rms and the 
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hard specifications are for 25 µm rms, which will provide surface efficiencies at 300 

GHz/900 GHz of 94%/57% and 91%/41% respectively [92]. 

 

The ALMA instrument will observe over a frequency range of 30 GHz to 950 GHz, 

which is divided into 10 separate observing channels or bands. This division allows 

optimisation of both noise performance and antenna coupling over the entire frequency 

band. The windows for each observing channel are implemented as self contained 

cartridges and are arranged concentrically around the centre of a 990 mm diameter 

Dewar flask cryostat cartridge centred on the telescope axis. The secondary reflector 

illuminates each channel in the same focal plane, with no switching mirror required for 

channel selection. Channel selection is achieved by simply adjusting the telescope 

pointing. The optical design for each channel allows for frequency independent 

coupling to the antenna. The geometry of the ALMA antenna is illustrated below in 

Figure 5-1 while the geometric parameters are listed in Table 5-1 [93]. 
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θp 

2c 

θs 

v 

Front-End Support 

Structure Cryostat 

Figure 5-1 – Geometrical configuration of ALMA 12m Cassegrain antenna showing location of 

front end support structure and cryostat - parameters are listed below in Table 5-1 
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Parameter Symbol Unit Value 

Primary Aperture Diameter D m 12.0 

Focal Length of Primary fp m 4.8 

f/D of Primary  f/Dp - 0.4 

Secondary Aperture Diameter d m 0.75 

Antenna f/D f/D - 8.0 

Secondary Eccentricity e - 1.10526 

Primary Angle of Illumination θp ° 128.02 

Secondary Angle of Illumination θs ° 7.16 

Primary and Secondary Foci Distance 2c m 6.177 

Primary Vertex Hole  v m 0.75 

Table 5-1 - ALMA Antenna optical parameters 

Each receiver band will be contained within a modular cartridge, which allows for 

individual testing and large-scale production by separate research and development 

groups. This also allows for easy installation or access for maintenance without 

disrupting the overall operation of the antenna.  The nominal focal plane of the antenna 

is located a distance of 6.177 m from the prime focus and the top surface of the cryostat 

is aligned with this plane.  

The layout of the receiver windows on the cryostat plane is shown below in Figure 5-2 

[94]. The location of the Band 5 cartridge window is highlighted in red. Because of the 

predefined volume available for each of the 10 channels or bands the optical designs are 

constrained by the mechanical considerations.  

 

 

 

 

 

 

Figure 5-2 - ALMA Cryostat window layout - top down view [94] 
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5.3 The Band 5 Front End Optics 

This section details the various design criteria and considerations for the optics of the 

ALMA receivers. The initial optics scheme of the ALMA front end receivers is reported 

in [95], from which the following section is developed.  

Due to the wide frequency coverage (30 to 950 GHz) each of the ALMA receivers is 

designed differently, though they do share some similar characteristics and criteria. All 

channels utilise a feed horn or quasioptical radiator and one or two focusing elements. 

Each receiver uses a combination of either lenses or off-axis mirrors to focus radiation 

from the antenna focal plane to the feed horn. Geometrical optics was used to obtain the 

focal parameters and propagation distances for the optical elements while quasioptical 

theory was used to determine component sizes. To achieve the highest degree of power 

coupling a scatterer and aperture clearance of five times the beam radius for the lowest 

operating frequency is required. Each of the ALMA receivers is designed to receive two 

orthogonal linear polarisations that are coincident on the sky and maintain a cross polar 

energy level of at least -24 dB below the copolar power level [96]. Coupling to the 

antenna is frequency independent with an aperture efficiency of over 80%. Gaussian 

beam approximations of the optics gives a subreflector edge taper of -12 dB. This gives 

the highest coupling efficiency to a point source (i.e. aperture efficiency) when the beam 

Figure 5-3 - Cut-away of the ALMA cryostat cabin displaying the various cooling shields and IR filter 

windows for the receiver channels [94]. 
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is launched by a conical corrugated horn. When all higher order modes are included the 

actual edge taper will be closer to -10.9 dB [3]. Highest efficiency, rather than maximal 

antenna gain over system temperature (G/T) is desired for ALMA since the noise 

contribution due to diffraction is considered to be relatively small [96].  

 

The designs for the receiver channels are split into three categories, representative of the 

differences of the beam sizes at the different frequencies. The operating frequency 

ranges for the 10 receiver channels and Category assignments are reported in Table 5-2 

below. The span of the receiver channel frequency ranges over the atmospheric 

transmission windows at the ALMA site at the Chajnantor plain [19] are illustrated 

below in Figure 5-4. 

Receiver  

Channel 

Category Lower 

Frequency ( GHz) 

Higher 

Frequency ( GHz) 

1 A 31 45 

2 A 69 90 

3 B 84 116 

4 B 125 164 

5 C 165 211 

6 C 211 275 

7 C 275 370 

8 C 385 500 

9 C 602 720 

10 C 787 950 

Table 5-2 - The operating frequency ranges and category assignments for the 10 ALMA receiver 

channels 

The Category A receivers (Bands 1 & 3) are at the longest wavelength ranges and as 

such are the most restrictive in terms of opto-mechanical size. Optical elements at these 

frequencies would be too large to place inside the Dewar flask and so only the feed 

horns are cooled and all accompanying optics remain at ambient temperatures. A single 

lens located on top of the cryostat is used to couple antenna radiation to the feed horn. 

 

 



 

     274

 

 

 

 

 

 

A single feed horn is used for each band and the orthogonal polarisations are 

distinguished using an orthomode transducer. An example of a Category A receiver 

(Band 1) is illustrated below in Figure 5-5. 

 

 

The Category B receivers (Bands 3 & 4) contain a combination of cooled and ambient 

temperature reflective optics. The reflective optics for these receivers consists of a tilted 

plane mirror that reflects radiation incoming from the antenna subreflector to an off-

axis ellipsoidal reflector. This ellipsoidal reflector re-directs the radiation to the feed 

horn. The ellipsoidal reflector maintains its two focal points within the feed horn and at 

the antenna focal plane, which is re-oriented via the tilted plane mirror. These bands 

also use a single corrugated feed horn with orthomode transducers located at the rear 

Lens 

Corrugated 

Feed Horn 

Filters 

Figure 5-5 - Optical layout for Category A receiver - ALMA Band 1 [95]. 

Figure 5-4 - Atmospheric transmission at the Chajnantor plane overlaid with the operating 

frequency range for each of the 10 ALMA receiver channels (blue line) - [19] 
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waveguide section. The general design of this class of receiver is displayed below in 

Figure 5-6. 

 

 

 

 

 

 

 

 

 

 

For Category C receivers (Bands 5 - 10) all optical components are small enough to be 

placed inside the cryostat. Internally the optics vary between the cartridges according to 

the specific constraints of the channel but they do share come common features. 

Imaging for all of these receivers is performed using a pair of cooled off-axis ellipsoidal 

reflectors. As with the lower frequency categories corrugated feed horns are used. The 

lower frequency receiver channels (Bands 5 and 6) achieve dual polarisation through 

the usual approach of an OMT. For the remaining higher frequency channels it was not 

possible to reliably utilise OMTs and polarisation separation is achieved quasioptically 

through use of a wire grid polariser to generate two optically equivalent yet 

orthogonally polarised beam paths. This quasioptical diplexing of the beam path will be 

covered in more detail in Chapter 6. An example of the optical layouts of these two 

variations on the Category C receiver channel are illustrated below in Figure 5-7. 

Corrugated 

Feed Horn 

Plane 

Mirror 

Off-axis 

Ellipsoidal 

Mirror 

IR Filter 

Figure 5-6 – General optical layout for Category B receivers [95] 
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The Band 5 receiver is the lowest frequency Category C receiver and operates at a 

central frequency of 187 GHz with upper and lower frequencies of 211 GHz and 163 

GHz respectively (c.f. Table 5-2). The entire cartridge, including the optics, is 

cryogenically cooled in several stages. Waveguide couplers and orthomode transducers 

are used for Local Oscillator (LO) injection and polarisation separation respectively. The 

optical design of this system was determined from the initial ALMA receiver optics 

design  [95].  

The optics of Band 5 is comprised of two off axis ellipsoidal mirrors, which allow for 

frequency independent coupling of radiation from the antenna Cassegrain focal plane 

to the feed horn. The focusing mirror bending angles were determined as a compromise 

between maintenance of low cross polar power leakage and opto-mechanical limits. 

Owing to the location of the Band 5 receiver system on the top plate of the cryostat, the 

incoming beam enters through the receiver cryostat window at an angle of 2.38° to the 

vertical. The incident beam is reflected through an angle of 32.38°  by the next mirror, 

and then reflected down by an angle of 30° by the subsequent mirror, focusing the beam 

Corrugated 

Feed Horn 

Cryostat Window 

IR Filters 

70K Shield 

15K Shield 

Ellipsoidal Mirrors 

Ellipsoidal Mirrors 

Wire Grid 

Polariser 

Figure 5-7 - Examples of the optical configuration of the two variations of the Category C receiver 

channels (Band 7 front end optics on the right) [95] 
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into the feed horn. Distances between optical elements were initially determined using 

geometrical optics i.e. the ray-tracing approximation in the optical layout. The optical 

layout of the receiver is displayed below in Figure 5-8 

Mirror 1 

Mirror 2 

Corrugated 

Feed Horn 

Cryostat Plane Subreflector Focal Plane 

θm1 

θm2 

D1 

D2 

D3 

To Antenna Subreflector 

Figure 5-8 - ALMA Band 5 Front End Optics Layout - for analysis purposes using reciprocity, 

the first reflector after the feed horn is titled Mirror 1, and the subsequent reflector Mirror 2. 
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Parameter Units Value Description 

D1  mm 60.05 Feed horn aperture to Mirror 1 

D2 mm 140.0 Mirror 1 to Mirror 2 

D3 mm 229.82 Mirror 2 to Cryostat Plane (z=0) 

D4 mm 5887.94 Mirror 2 to Subreflector Vertex 

D5 mm 111.3 Subreflector Vertex to Edge 

θm1 ° 30.0 Mirror 1 bending angle 

fm1 mm 32.756 Mirror 1 focal length 

θm2 ° 32.38 Mirror 2 bending angle 

fm2 mm 67.192 Mirror 2 focal length 

Table 5-3 - ALMA Band 5 Front End Optics parameters as described in Figure 1.1. 

Parameter Units Value Description 

Raxial  mm 60.0 Horn axial length 

Rslant mm 60.169 Horn slant length 

a mm 9.0 Aperture diameter 

θhorn ° 4.29 Horn angle 

Table 5-4 - ALMA Band 5 Feed Horn Parameters 

5.4 Analysis 

The first stage of analysis for the Band 5 front end optics involved investigating the 

effect on performance of several modifications to the currently prescribed system 

parameters. These modifications were developed to ascertain whether overall system 

performance in terms of the design goals could be improved upon while the system was 

still in the design stage. The modifications to the system were restricted in that they 

could not require any large scale overhaul of the system. Due to mechanical constraints 

the first of these changes to the system design was to determine to what degree the 

system performance was affected by smaller scale truncation of the beam at the 

scatterer surfaces i.e. how well would the system perform with a scatterer clearance of 

less than 5w in diameter? This information was required by the GARD Institute in light 

of manufacturing issues. As Band 5 is the lowest frequency category C receiver, 

achieving maximum power coupling requires large component sizes. This has the 

potential to lead to opto-mechanical limit problems in the development and 



 

     279

construction stages of the system. If it could be shown that system performance is 

within acceptable limits for a lower degree of beam truncation then this would be 

favourable. To this end three degrees of mirror truncation have been analysed using 

PO, each being multiples of the lower frequency beam waist: 4.0w163, 4.5w163 and 5.0w163. 

 

The second of these design modifications was to the shape of the mirror surfaces. 

Optimal beam coupling from the antenna focal plane to the feed horn is a major factor 

in system performance, and design of the off-axis reflectors is crucial to achieving this 

goal. Initial ALMA design parameters maintain that reflector surfaces for Category C 

receivers would be designed using traditional geometrical optics, providing uniformity 

across all channels. While for the higher frequency channels (Bands 8, 9 & 10) this can 

be deemed sufficient since these frequencies are closer to the geometrical limit (λ → 0), 

it can be shown that for lower frequency channels a geometrical optics description of 

the reflecting surfaces will not provide optimum beam coupling due to phase curvature 

issues. The beam is diffraction dominated and the effects of beam spreading must be 

accounted for more rigorously. To illustrate the benefits of a more accurately matched 

reflector surface over the prescribed geometrical method two versions of the Band 5 

optics have been analysed: a ‘Geometrical’ and a ‘Quasioptical’ optics version. For each 

of these setups the three degrees of truncation of the beam mentioned above have been 

applied, producing a total six systems for analysis.   

5.4.1 Quasioptical Analysis 

The Band 5 front end optical system can be viewed as a first order approximation as a 

paraxial quasioptical system, where the reflectors can be treated as simple phase 

transformers and the field from the feed horn is treated as a fundamental Gaussian 

beam. Choosing the correct Gaussian field description of the corrugated feed will yield 

an excellent approximation of the field from the feed horn. For a Gaussian beam with a 

waist w = 0.6435 a, where a is the aperture radius of the feed horn [42] 98% of the beam 

power from the horn will be contained within the fundamental mode. Using this 
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Gaussian beam approximation the location of the phase centre of the horn behind the 

aperture and the size of the horn beam waist are determined.  

 

Treating this system as scalar and on-axis will not allow for examination of optical 

aberrations or power leakage into the cross polar due to the offset mirrors. However it 

will allow the parameters of the beam as it propagates through the system to be 

determined, which are then used to determine the size of the system components. The 

system is modeled in this manner using ABCD matrices; specifically the propagation 

and thin lens matrices (c.f. Table 2.3) 

 

 

 

 

 

 

   

 

 

 

 

The table below (Table 5-5) lists the Gaussian beam parameters for the optical system 

for the highest, middle and lowest frequencies (211, 187 and 163 GHz respectively) from 

the phase centre of the feed horn through to the subreflector of the antenna. It can be 

seen that the location of the phase centre and the beam waist w0 are frequency 

dependent, while the beam waist at the aperture wha is frequency independent. 
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Figure 5-9 - ALMA Band 5 quasioptical analysis layout – paraxial representation of the band 5 front 

end optics with thin lenses representing the offset ellipsoidal reflectors. 
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Parameter Symbol Units  Frequency ( GHz) 

Frequency   GHz  163 187 211 

Horn Aperture Radius ah mm 4.5    

Horn Axial Length Lh mm 60.0    

Horn Slant Length Rh mm 60.17    

Horn Waist w0 mm  2.82 2.79 2.77 

Horn Waist Offset ∆z mm  -3.23 -4.18 -5.22 

Horn Aperture Waist wha mm 2.9    

Waist at Mirror 1 wm1 mm  13.45 12.06 11.02 

Waist at Mirror 2 wm2 mm  16.72 15.76 15.06 

Waist at Cryostat Plane wcryo mm  11.01 9.6 8.51 

Waist at Subreflector Vertex wsub mm  312.84 312.84 312.84 

Waist at Subreflector Edge wsub mm  318.79 318.79 318.79 

Edge Taper (Vertex) Te  dB  -12.48 -12.48 -12.48 

Edge Taper (Edge) Te  dB  -12.02 -12.02 -12.02 

Table 5-5 - ALMA Band 5 - fundamental Gaussian beam optics parameters 

The phase radius of curvature for the Gaussian beam approximation to the horn field is 

taken to be the slant length of the horn and is thus also frequency independent. The 

determination of the Gaussian beam parameters throughout the optical train can be 

calculated by using either the source beam parameters from the phase centre of the horn 

or at the aperture plane, however the frequency independent beam parameters at the 

latter location allow for quicker calculation. It is shown that the design goal of a 

frequency independent edge taper of approximately -12 dB at the edge of the 

subreflector is achieved.  

 

5.5 Reflective Optics Design 

For both the Geometrical and Gaussian optics versions of system the off-axis ellipsoids 

have similar layouts (due to volume constraints). The ellipsoids of each system will 

have different conic parameters, reflecting the different radii of curvature. They are 

equivalent in the sense that they must maintain the same focal length, reflection angle 
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and are located in the same place. The common layout for each mirror is shown below 

in Figure 5-10 and Figure 5-11. Note that the figures are not to scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10 – Layout and orientation of ellipsoidal surface for Mirror 1 
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Figure 5-11 - Layout and orientation of ellipsoidal surface for Mirror 2 
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5.5.1 ‘Geometrical Optics’ Parameters 

In the geometrical limit, the input and output radii of curvature Rin and Rout of the 

optical beam as it enters and leaves the optical element are simply dependent of the 

focal length f of the element, as given by the following equation [33]: 

 
1 1 1

in outf R R
= +   (5.1) 

Using this relation the parameters for the two off-axis ellipsoidal reflectors are 

calculated. In the geometrical limit, the input and output radii of curvature are set to be 

the beam object and image distance, as in the geometrical ray tracing method. The 

object distance in the case of an optical system containing a feed horn source is from the 

vertex of the horn to the optical element. From this initial input distance and the focal 

lengths of the two reflectors, the entire system can be described.  

5.5.2 ‘Quasioptical’ Parameters 

For the ‘Quasioptical’ layout the input and output radii of curvature of the ellipsoids 

match the incident and reflected phase radii of curvature of the central frequency beam. 

Recall from Chapter 2 (Equation 2.12) that the phase radius of curvature for a Gaussian 

beam is calculated as: 

 

22

22

1

1

in
in in

in

out
out out

out

w
R d

d

w
R d

d

π
λ

π
λ

  
 = +     

  
 = +     

  (5.2) 

Beyond the geometrical limit the radius of curvature of the beam no longer matches that 

of the input distance. From Equations 5.2 it can be seen that the longer the wavelength 

becomes, and hence the further away from the geometrical limit, the radius of curvature 

of the beam has become larger than the propagation distance from the beam waist. The 

relationship between the geometrical and ‘Quasioptical’ parameters is best illustrated 

by comparing their ellipsoidal mirror parameters in Table 5-6 below. 
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Parameter Unit Geometrical Quasioptical 

Mirror 1 Mirror 2 Mirror 1 Mirror 2 

Input Radius mm 120.05 94.953 67.87 81.917 

Output Radius mm 45.047 229.82 63.32 373.69 

Major axis – a mm 82.549 162.388 65.594 227.861 

Minor axis – b mm 71.033 141.93 63.32 168.127 

Eccentricity – e  0.509458 0.485891 0.26098 0.674968 

Conic constant – k  - 0.259547 - 0.23609 - 0.068112 - 0.455581 

Radius of Curvature - R mm 61.1232 124.049 61.126 124.052 

Table 5-6 - Parameters for ellipsoidal reflectors Mirrors 1 & 2 for Geometrical and Quasioptical 

configurations 

Notice from Table 5-6 the relatively large differences in the reflector characteristics for 

the two versions of the system. This highlights the disparity between the geometrical 

approximation and the long wavelength quasioptical description of the beams. 

5.5.3 Reflector Rim Truncation 

As previously mentioned, one of the stated goals for the ALMA front end optics for all 

bands was a scatterer diameter clearance of 5.0w, where w is the Gaussian waist of the 

fm1= 32.756 mm 

120.05 mm 45.047 mm 229.822 mm 94.953 mm 

fm1= 67.192 mm 

Figure 5-12 – On axis representation of the Band 5 front end optics 

illustrating the geometrical ray tracing beam paths from the feed horn 

apex to the antenna focal plane (in red). The more physically relevant 

representation of the quasioptical beam throughout the optical train is 

highlighted in blue, illustrating the disparity between the ‘Geometrical’ 

and ‘Quasioptical’ configurations of the optical system.   
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beam at the band’s lowest frequency. This is to ensure maximum power conservation of 

the beam within the cartridge. However, this may present spatial management 

problems in designing the physical system components. It is easy to model any version 

of the system using physical optics for an ideally large reflector to conserve power, but 

putting this into practice is more difficult.  

To determine the loss, if any, in performance of the Band 5 cartridge for a decrease in 

reflector clearance/increase in reflector truncation, three levels of clearance were 

analysed; diameters of 4.0w, 4.5w and 5.0w for Mirrors 1 & 2, where w is the beam 

radius at the mirror surface for the lowest frequency (163 GHz). The specific radii for 

the Band 5 reflectors are given below in Table 5-7. The values for the beam waist at the 

reflectors are taken from the ABCD analysis presented in Table 5-5. The beam waist at 

Mirror 1 is 13.45 mm and the waist at Mirror 2 is 16.73 mm. 

 

The fractional power of a fundamental Gaussian beam contained within these 

diameters will give varying degrees of power conservation. In a process similar to that 

illustrated in Figure 2.28, by normalising incident power to unity the relative conserved 

power output after a series of reflections is a product of the conserved power at each 

reflector. The levels of power conservation hof each scatterer radius are given by the 

edge taper calculation from Equation 2.5 and are listed below in Table 5-8 as a power 

budget analysis of the Band 5 optical train.  

Truncation Units Radius of 

Mirror 1 

Radius of 

Mirror 2 

2.0   * w163 mm 26.9 33.46 

2.25 * w163 mm 30.263 37.643 

2.5   * w163 mm 33.625 41.825 

Table 5-7 - Reflector rim radii 
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Truncation Mirror 1 Mirror 2 Subreflector 

Edge Taper 

Total 

Power 

Edge 

Taper( 

dB) 

2.0   * w163 0.99967 0.99967 0.93718 0.93655 11.98 

2.25 * w163 0.99996 0.99996 0.93718 0.93709 12.01 

2.5   * w163 0.99999 0.99999 0.93718 0.93715 12.02 

Table 5-8 - Power budget of ALMA Band 5 for fundamental Gaussian beam 

Providing that the power from the horn is normalised to unity, then the net power 

reaching the subreflector from the horn is given in Table 5-8 as Total Power. The net 

effect of the reduced radii upon the subreflector edge taper is evident. There is a 

difference of 0.04 dB between edge taper values for the largest and smallest reflector rim 

radii. Though this reduction in coupling is to be expected it is extremely small and thus 

unlikely to have any major effect on overall system performance. These figures are for 

the fundamental Gaussian beam, which is an approximation of the horn aperture field. 

The maximum coupling between the fundamental Gaussian beam and the horn 

aperture field is equal to 0.99, meaning that 98% of the power is contained within the 

fundamental Gaussian beam. Also the optics is represented with equivalent lenses to 

the off axis mirrors meaning that projection and shadowing are not accounted for at all 

here. A full PO analysis is presented in Section 5.6 below where these effects are 

included. 

5.6 EM Beam Predictions 

PO analysis testing of the various Band 5 configurations was conducted using GRASP9. 

The source field of the corrugated horn was represented using the Tabulated Planar 

Source object, as described in Chapter 2, where the complex aperture field of the feed 

horn was generated using the mode-matching software SCATTER. So as to calculate the 

most accurate beam predictions, both the PO and PTD tools were utilised. The beams 

were predicted at the three planes – the antenna focal plane, the subreflector vertex 

plane and the farfield of the main antenna. The various system configurations for the 

optics were named as Geometrical 4.0w, Geometrical 4.5w, Geometrical 5.0w, Quasioptical 
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4.0w, Quasioptical 4.5w and Quasioptical 5.0w. All results presented here refer to these 6 

different system configurations. The 3D OpenGL layout of the Band 5 front end optics 

as it appears in GRASP9 is illustrated below in Figure 5-13. 

 

 

 

 

5.6.1 Beam Quality Assessment 

As a basic determination of output beam quality, a Gaussian beam fitting routine was 

applied to the predicted beams for the central frequency (187 GHz) at the focal plane. 

This iterative approach calculates the best fit Gaussian to the two dimensional beam, 

calculating its location from the nominal position in terms of Cartesian offsets and tilt 

angles. This allows the beam symmetry, tilt and lateral offsets to be estimated for the 

beam. The coupling of the output beam to its Gaussian equivalent as calculated from 

ABCD analysis of the system is known as the Gaussicity of that beam. This Gaussicity is 

simply calculated as a normalised overlap integral of the equivalent Gaussian field, 

EGauss and the output field, Eout – c.f. Equation 5.3 below.  

Mirror 2 

Mirror 1 

Corrugated 

Feed Horn 

Antenna 

Focal Plane 

Figure 5-13 - 3D OpenGL illustration of the Band 5 front end optics with ray-tracing analysis showing 

the imaging of the beam from the antenna focal plane to the corrugated feed horn 
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Gauss out

Gaussicity

Gauss Gauss out out

E E dxdy

E E dxdy E E dxdy
η = ∫∫

∫∫ ∫∫
  (5.3) 

 

Parameter  Geometrical Quasioptical 

Rim Radius mm 4.0w 4.5w 5.0w 4.0w 4.5w 5.0w 

Gaussicity % 99.09 98.93 98.53 98.93 98.77 98.364 

waist mm 9.582 9.577 9.577 9.47 9.46 9.45 

x-offset mm -0.2437 -0.2477 -0.2503 0.0543 0.0565 0.065 

y-offset mm -0.0016 0.0009 -0.0001 0.0038 0.001 0.0005 

z-offset mm -5.814 -3.82 -1.133 -3.099 -0.684 2.673 

x-tilt ° -2.712 -2.715 -2.719 -2.512 -2.515 -2.515 

y-tilt ° -0.00003 -0.0001 -0.00007 -0.00006 4.4*10-6 0.00003 

Table 5-9 - Results of Gaussian fitting routine applied to the predicted focal plane beams for the 6 

configurations of the Band 5 optics 

Notice from these results the trend of the Gaussicity calculation. In going from the 

smallest rim to the largest rim the Gaussicity value decreases. As the collecting area of 

the reflectors increase they will convey more of the higher order mode structure of the 

beam as it propagates throughout the system, thereby increasing total power 

conservation. These higher order mode features will decrease the coupling efficiency of 

the output beam to a fundamental Gaussian. In going from the ‘Geometrical’ to the 

‘Quasioptical versions the Gaussicity calculations are slightly lower. This is counter to 

the prediction that the Gaussian optics version will improve the beam quality, yet these 

results are for the best fit Gaussian from an iterative fitting routine and can be 

interpreted as not accurately representing the predicted Gaussian approximation to the 

beam at the focal plane. Another assessment of beam quality calculates the Gaussicity of 

the predicted beam with the waist and complex phase radius of the Gaussian field as 

predicted by the ABCD analysis from Table 5-5 at the same plane. The table below lists 

the results of this Gaussicity calculation for the three characteristic frequencies of the 

channel (163 GHz, 187 GHz and 211 GHz). 
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The trend of decreasing Gaussicity values for increasing reflector area continues for the 

results of this Gaussicity calculation. Notice also that the Gaussicity values for the 

‘Quasioptical’ configuration are higher than those of the ‘Geometrical’, thus confirming 

the improved phase transforming abilities of this version.  

5.6.2 Power Budget Analysis 

As a method of determining power conservation within an optical system, the PO 

calculations in GRASP9 are very useful. As part of calculating the PO currents induced 

on the surface of a scatterer, the software can calculate the power in the incident field. 

This process was outlined previously in Section 2.4.1.1. The plots below track the 

conserved power for Mirrors 1 and 2 in both Geometrical and Quasioptical versions of 

the optics as predicted by PO calculations.  

 

 

 

 

 

 

 

 

 

Reflector Rim Unit Geometrical Quasioptical 

163 GHz 187 GHz 211 GHz 163 GHz 187 GHz 211 GHz 

4w % 98.40 98.61 98.30 98.84 98.80 98.47 

4.5w % 98.31 98.44 98.21 98.71 98.64 98.38 

5w % 97.71 98.05 97.99 98.09 98.23 98.13 

Table 5-10 - Gaussicity calculations for predicted beams of six configurations of Band 5 optics 
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Figure 5-14 - Power conserved by Mirror 1 for Geometrical and Quasioptical 

versions of the optics. Rims 1, 2 and 3 refer to 4.0w, 4.5w and 5.0w. 
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In comparing the conserved power for the first mirror (Figure 5-14) it is observed that 

there is relatively no difference between the ‘Geometrical’ and ‘Quasioptical’ systems. 

This is due to the fact that the first mirror intercepts the beam from the corrugated feed 

horn in the same manner for both versions. The results for the second mirror, plotted in 

Figure 5-15 exhibit higher conserved power for the ‘Quasioptical’ system over the 

‘Geometrical’. This indicates the improved beam conservation by the ‘Quasioptical’ 

design over the ‘Geometrical’.  

 

In the following table the edge taper levels at the subreflector for all versions of the 

front end optics are reported.  

 

Rim Parameter Units Freq Geom Quasi Freq Geom Quasi Freq Geom Quasi 

 

4.0w 

TE  dB  

 

163 

-10.71 -11.18  

 

187 

-11.25 -11.40  

 

211 

-11.65 -11.45 

Power % 91.5 92.4 92.5 92.8 93.2 92.8 

 

4.5w 

TE  dB -11.05 -11.29 -11.53 -11.73 -11.73 -11.43 

Power % 92.1 92.6 93.0 93.2 93.3 92.8 

 

5.0w 

TE  dB -11.17 -11.34 -11.55 -11.80 -11.72 -11.42 

Power % 92.4 92.7 93.0 93.4 93.3 92.8 

Table 5-11 - Edge tapers and conserved power normalised to feed horn power at the ALMA 

subreflector as calculated by PO calculation in GRASP 

Figure 5-15 - Power conserved by Mirror 2 for Geometrical and Gaussian 

versions of the optics. Rims 1, 2 and 3 refer to 4.0w, 4.5w and 5.0w. 
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The maximum aperture efficiency for an unblocked Gaussian illumination is 0.815, 

giving an edge taper of -10.9  dB. If the blockage effect of the subreflector is included the 

maximum aperture efficiency drops to 0.803 with the edge taper dropping to 

approximately -10.8  dB. The PO predicted values for edge taper for all configurations 

of the system are very close to this optimum value. Note in the above table the 

differences in power conservation between the two optical versions of the channel. In 

going from Geometrical to Gaussian the power conservation has been increased for the 

middle to lower section of the bandwidth, while being decreased in the upper 

frequency limit. The differences in power conservation are small, but nonetheless they 

indicate the influence of the shape of the optics on the beam at the subreflector. As 

expected, an increase in rim diameter gives an increase in conserved power. This is 

most evident once again for the middle and lower frequencies, having larger beam 

sizes. The upper frequency beam, being of smaller size, is at the same level of 

conservation for all rim diameters.  

5.6.3 Cross Polar Power Efficiency 

One distinct problem in creating off-axis reflecting optics systems is the leakage or 

cross-talk between the co and cross polarised fields [97]. The EM GRASP9 calculations 

keeps track of the cross polar field throughout the system. The cross polar power levels 

presented below were calculated through integrating the total power in the cross-polar 

beam over a 2D beam and normalising against the total power in the co-polar beam. 

The beam was sampled at both the focal plane and the subreflector vertex plane. This is 

given by the following equation: 

 1010log xsp

cop
XsP

ε
ε

 =   
  (5.4) 

where εcop and εxsp are the total power levels of the co and cross polar distributions 

respectively and are determined numerically by integrating the complete fields over 

their selected area.   
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Freq Rim XsP ( dB) - Geom XsP ( dB) - Quasi 

FP SUB FP SUB 

 

163 

4.0w -31.13 -31.46 -31.05 -31.31 

4.5w -30.96 -31.19 -30.97 -31.05 

5.0w -30.83 -31.04 -30.85 -30.89 

 

187 

4.0w -32.28 -32.54 -32.17 -32.47 

4.5w -32.09 -32.43 -32.21 -32.32 

5.0w -32.01 -32.35 -32.13 -32.31 

 

211 

4.0w -29.17 -29.23 -29.19 -29.30 

4.5w -29.07 -29.16 -29.12 -29.19 

5.0w -29.02 -29.10 -29.07 -29.11 

Table 5-12 - Cross polar power normalised against co polar power predicted at the focal plane (FP) and 

subreflector vertex plane (SUB) 

The cross polar efficiency of the system can be determined when the values given above 

in Table 5-12 are compared against the cross polar power levels for the aperture of the 

feed horn below in Table 5-13. 

Freq ( GHz) 163 187 211 

XsP ( dB) -37.40 -36.43 -29.42 

Table 5-13 - Cross polar power levels at the corrugated feed horn aperture 

Evidently each configuration of the optics conserves the cross polar power levels 

relatively equally. The low cross polar levels at the horn aperture are well maintained 

through the optics to the focal plane position and on to the subreflector. These results 

are very favourable given that the requirements of the system call for cross-polar levels 

to be under -23 dB. 

5.6.4 Aperture Efficiency 

Aperture efficiency refers to the coupling of the predicted beam to the antenna 

subreflector. To achieve this firstly the phase of the predicted beam at the subreflector 

vertex plane was unwrapped, giving an approximately paraboloidal complex phase 

front radius. The field is then coupled with a truncated plane wave field or ‘top-hat’ 

field. This top-hat field has a diameter equal to that of the subreflector blockage and a 
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phase radius of curvature of the beam at the subreflector vertex plane as determined 

from ABCD matrices. This coupling between the top-hat and predicted fields is 

performed in the same manner as for the Gaussicity calculation in Equation 5.3. An 

example of the amplitude patterns for a typical predicted subreflector field and an 

unblocked top-hat field are displayed below in Figure 5-17.  

 

Figure 5-16 – Amplitude patterns of the truncated plane wave or ‘top-hat’ field (left) and a typical 

predicted EM field at the subreflector vertex for calculation of aperture efficiency 

To include the effects of the subreflector blockage, a scaled shadow representing the 

blockage is included in the top hat field distribution. The diameter of the blockage is 

scaled by the same proportion of the diameter of the subreflector over the diameter of 

the primary. In the case of the ALMA Cassegrain antenna, the subreflector represents a 

fractional area blockage of approximately 0.4%. 

 

 

 

 

 

 

 

The Ruze factor, as mentioned in Chapter 2 (Equation 2.83) gives the degradation to the 

aperture efficiency due to the surface deformations in the primary and secondary 

reflector surfaces. The Ruze surface error is frequency dependent, with increased error 

Figure 5-17 - Top-hat field including scaled subreflector blockage 
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occurring for increased frequency. The RMS surface deformation for the ALMA 

antenna’s primary and secondary reflectors is 20 µm [96]. This represents an extremely 

high level of accuracy for such a large reflector antenna, and is thus assumed to be an 

optimistic figure.  

 

In Table 5-14, ηa is the aperture efficiency including spillover calculated through a 

coupling integral between the beam at the subreflector and the top hat field. The effects 

of the blockage are given by ηa+blockage, and the ηe gives the Ruze efficiency. The total 

efficiency is the product of ηa+blockage and ηe. This coupling integral performs both the 

taper efficiency and spillover efficiency calculations as given in Section 2.3.3. 

 

Rim  Parameter  f ( GHz)  Geom  Quasi f ( GHz)  Geom  Quasi f ( GHz)  Geom  Quasi 

 
 
 
4.0w  

η
a
   

 

 

 

163  

0.829  0.845   

 

 

 

187  

0.841  0.855   

 

 

 

211  

0.851  0.861  

η
a+blockage

  0.822  0.838  0.833  0.849  0.844  0.855  

η
e
  0.934  0.934  0.924  0.924  0.915  0.915  

ηηηη
total

  0.768  0.783  0.770  0.784  0.772  0.782  

 
 
 
4.5w  

η
a
  0.836  0.860  0.845  0.863  0.853  0.865  

η
a+blockage

  0.829  0.853  0.838  0.856  0.846  0.859  

η
e
  0.934  0.934  0.924  0.924  0.915  0.915  

ηηηη
total

  0.774  0.797  0.774  0.791  0.774  0.786  

 
 
 
5.0w  

η
a
  0.836  0.865  0.846  0.866  0.852  0.870  

η
a+blockage

  0.829  0.859  0.838  0.859  0.845  0.862  

η
e
  0.934  0.934  0.924  0.924  0.915  0.915  

ηηηη
total

  0.774  0.802  0.774  0.794  0.773  0.789  

Table 5-14 - Aperture efficiency calculations for the six configurations of the Band 5 front end optics 

 The ALMA standard for the receiver channel to meet aperture efficiency requirements 

is a coupling of a simulated field at the subreflector to an ideal truncated plane wave of 

over 80%. There is no requirement to include the loss of efficiency due to the 

subreflector blockage or the surface deformations of the antennas reflectors. The values 

for unblocked aperture efficiency shown in Table 5-14 are all well above this 

requirement. There is a marked increase in efficiency for the improved ‘Quasioptical’ 
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version of the optics over the ‘Geometrical’ This is to be expected, owing to the more 

accurate phase transforming performance of the front end optics mirrors. It should also 

be noted that the best aperture efficiencies, in both versions of the optics, occurs for the 

largest rim diameters. This is also to be expected, since the lowest beam truncation 

conserves the most power within the optical path. This is opposite to the results of 

Gaussicity where the smallest rim diameters gave the largest coupling coefficient to a 

Gaussian. This can be accounted for by the truncating effect of the rims on the feed 

beam. A higher degree of truncation will remove the higher order patterns from the 

overall beam, which will tend to give the beam a more Gaussian shape. However, a 

high degree of Gaussicity is not required for the ALMA front end optics. A hazard of 

higher truncation is creating unwanted and unaccountable amount of stray, scattered 

radiation within the receiver.  

 

The EM beam pattern predictions and analyses for the various configurations of the 

optics presented in the preceding sections were submitted to the Preliminary Design 

Review Board for the ALMA Band 5 Front End Optics [51]. Based on these results and 

recommendations from the Author a final design for assembly and testing was decided 

upon. The surfaces of the ellipsoidal reflectors were designed using the Gaussian optics 

method and truncation levels of 2.4w and 2.3w were deemed sufficient for power 

conservation. This is the design for the prototype of the front-end optics that is, as of 

writing, being assembled and tested by GARD. The remainder of this chapter is 

devoted to the theoretical analysis and experimental measurements from this prototype.  

 

5.7 Antenna Main Beam 

It is important to characterise the antenna being modelled in terms of its effectiveness as 

a directional radiation measuring device. The n the far-field beamwidth the more 

spatial resolution the telescope will have for detailed observations. What is desirable in 

a radio antenna is a strong main lobe radiation pattern. However, any finite antenna 



aperture will have tertiary power maxima known as minor lobes. These minor lobes 

have additional power in undesired directions and they should be as minimal as 

possible. The secondary or sidelobes are usually the largest of the minor lobes. Low 

sidelobe levels compared against the main beam are necessary, otherwise sources 

outside the scope of the main beam will add to the total power, giving incorrect 

observation results. According to 

desirable. The far-field radiation patterns of the feed horn coupled through the front 

end optics to the antenna and on to the sky have been calculated through PO and are 

displayed below in Table 5-

ALMA antenna were generated in GRASP9 from the antenna characteristics listed in 

Table 5-1 above. The diagram below displays a 3D CAD representation of the ALMA 

antenna as it appears in the GRASP9 environment including ray

from the Band 5 front-end optics. 

 

 

 

 

 

 

Recall from Section 2.3.4 and the

Equations 2.84 and 2.85 where 

aperture, which for the ALMA antenna is 

from Equations 2.84 and 2.85 are listed below in 

Equation 2.85 are given for an edge taper of 

predictions are taken from the planar cuts of the antenna main beam 

Figure 5-19 - 3D CAD illustration of ALMA antenna coupled to Band 5 Front End Optics
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aperture will have tertiary power maxima known as minor lobes. These minor lobes 

in undesired directions and they should be as minimal as 

sible. The secondary or sidelobes are usually the largest of the minor lobes. Low 

sidelobe levels compared against the main beam are necessary, otherwise sources 

outside the scope of the main beam will add to the total power, giving incorrect 

esults. According to [43], sidelobe levels of -20 dB or lower are considered 

field radiation patterns of the feed horn coupled through the front 

end optics to the antenna and on to the sky have been calculated through PO and are 

-15 below. The primary and secondary reflectors of the 

ALMA antenna were generated in GRASP9 from the antenna characteristics listed in 

above. The diagram below displays a 3D CAD representation of the ALMA 

antenna as it appears in the GRASP9 environment including ray-tracing of the beam 

end optics.  

Recall from Section 2.3.4 and the Half Power Beam Width (HPBW

where λ is the wavelength and D is the diameter of the antenna 

aperture, which for the ALMA antenna is equal to 12m. The theoretical values of HPBW 

from Equations 2.84 and 2.85 are listed below in Table 5-15. The predictions from 

Equation 2.85 are given for an edge taper of -12 dB. The equivalent values from PO 

predictions are taken from the planar cuts of the antenna main beam – c.f. 

3D CAD illustration of ALMA antenna coupled to Band 5 Front End Optics

 

aperture will have tertiary power maxima known as minor lobes. These minor lobes 

in undesired directions and they should be as minimal as 

sible. The secondary or sidelobes are usually the largest of the minor lobes. Low 

sidelobe levels compared against the main beam are necessary, otherwise sources 

outside the scope of the main beam will add to the total power, giving incorrect 

or lower are considered 

field radiation patterns of the feed horn coupled through the front 

end optics to the antenna and on to the sky have been calculated through PO and are 

below. The primary and secondary reflectors of the 

ALMA antenna were generated in GRASP9 from the antenna characteristics listed in 

above. The diagram below displays a 3D CAD representation of the ALMA 

tracing of the beam 

HPBW) is given by 

is the diameter of the antenna 

The theoretical values of HPBW 

. The predictions from 

The equivalent values from PO 

c.f. Figure 5-20.  

3D CAD illustration of ALMA antenna coupled to Band 5 Front End Optics 



 

     297

 

Parameter Unit Theoretical PO Predictions 

Frequency   GHz 163 187 211 163 187 211 

HPBW arcsec 32.22 28.044 24.876  
33.48 

 
29.16 

 
26.064 

HPBW (Te: 12 dB) arcsec 37.356 32.5617 28.858 

Table 5-15 Half Power Beamwidth (HPBW) values for the ALMA antenna from the theoretical 

Fraunhofer farfield approximation (left) and from PO calculations (right) 

It can be seen from the plots and table that there is very good agreement between the 

theoretical and calculated PO values for the HPBW of the farfield antenna pattern, 

specifically from the prediction by Equation 2.84 (top most theoretical values in Table 

5-15. The disparity between the HPBW values for a 12 dB edge taper and PO 

predictions are attributed to the inclusion of the central blockage of the subreflector. If 

the fractional blockage were introduced the side lobe levels would be increased and the 

main lobe pattern would become narrower [3]. This is reinforced from the comparisons 

plots between theoretical values for the antenna main beam PO predictions in Figure 

5-20 below. PO predictions are given as orthogonal x and y cuts plotted in blue and red 

respectively, while theoretical predictions are plotted in yellow.  
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Figure 5-20 - Antenna main beam pattern predictions for the Band 5 front end optics as calculated 

using PO. Theoretical farfield antenna patterns as calculated from Equations 2.84 yellow) are overlaid 

on the same plots on the right. 
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5.8 Experimental Measurements 

This section details the results of beam pattern measurements of the electrical field 

distributions from the prototype Band 5 front end optics. Near field measurements of 

phase and amplitude were taken at ambient room temperature using a scanning 

waveguide probe at the desired output planes. These measurements were conducted at 

the ALMA Band 5 development and testing facility at GARD. The near field 

measurement system is comprised of an Agilent E836-4B VNA with V05VNA2 

Millimetre-Wave Extension Modules with an operating frequency range of 140-220 

GHz. The extension modules cover the frequency range of the Band 5 channels. The 

corrugated feed horn was mounted upon a 2D planar XY scanning frame while the 

waveguide probe remained fixed in place. In Figure 5-21 the functionality of the near-

field measurement system without the front-end optics included is displayed.     

 

 

 

 

The first measurements taken were of the farfield pattern of the corrugated feed horn 

with no coupling optics. The orthogonal planar cuts of the farfield for the prototype 

Corrugated 
Feed Horn 

Waveguide 
Probe 

2D Scanning 
Frame 

Figure 5-21 – Ambient temperature near field beam pattern scanning 

measurement system for the Band 5 front end optics 
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corrugated horn exhibited some peculiar asymmetries in the beam patterns. The figures 

below show these farfield amplitude plots for the prototype horn for a sample of 

frequencies spanning the operational bandwidth of the system: 163 GHz, 165 GHz, 180 

GHz, 183 GHz, 205 GHz and 211 GHz. These planar cuts are compared against PO 

predictions for the horn calculated by MODAL using the SCATTER calculation for the 

corrugated horn aperture field.  

  

  

  

Figure 5-22 - Ambient temperature orthogonal amplitude planar cuts for the prototype corrugated 

horns. Note the evolution of the beam asymmetry between the x (blue) and y(red) cuts with increasing 

frequency. PO predictions from MODAL are in yellow 
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From the above plots it is observed that there is an obvious symmetry disagreement 

between the x and y amplitude cuts across the horn bandwidth, with the largest 

distortion occurring for the central frequencies of 180 GHz and 183 GHz. These 

frequency dependent beam shape distortions implied that there were some errors in the 

profile of the corrugated horn. All possible alignment errors for the scanning system 

were minimized using a highly accurate laser tracking tool. The fact that the distortions 

appear to vary over the bandwidth was evidence that they were inherent in the horn 

itself and not due to the alignment of the measuring system.  

 

As to where these errors lay within the horn would have been extremely difficult to 

ascertain. The prototype of the horn was comprised of six individual parts that were 

designed and constructed in-house: a rectangular WR-5 waveguide, a rectangular to 

square waveguide extrusion, a square to circular waveguide transition zone of 

hexagonal cross section and the horn itself was composed of three individual sections 

that were milled from brass. It was deemed that the likely source of the beam 

distortions was the result of incorrect alignment of one or more of the individual horn 

structural components. These hypothesised asymmetries in the geometrical profile of 

the horn would undoubtedly upset the balanced hybrid condition of the horn and thus 

lead to unaccountable higher order mode excitation along the length of the horn [98] 

and manifesting in the output aperture distribution as frequency dependent 

asymmetries in the beam profile. 

 

To ensure the removal of any alignment errors of the constituent parts, the horn was 

reconstructed as a single piece by an independent terahertz component contractor 

(QMC Instruments) so as to remove any possible alignment errors. The plots below 

display the farfield planar cuts for this new single component horn with PO 

comparisons against MODAL as before. The agreement between both the x and y 

amplitude measurements has been greatly improved upon, with only a slight degree of 
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asymmetry evident for the lowest frequency measurement. Agreement with PO 

calculations is also excellent, thus validating the performance of the new horn against 

the prototype.  

 

  

 

Figure 5-23 - Ambient temperature farfield amplitude plots for the new corrugated horn comprised of 

a single component. Agreement with SCATTER predictions has increased significantly. 

Following the farfield measurements of this new horn, the next measurements taken 

were ambient temperature amplitude and phase measurements of the horn coupled to 

the front end optics. Given that the measurements were to be ambient it was possible to 

locate the measurement plane at the antenna focal plane, at a propagation distance of 

229.82 mm from Mirror 2 – c.f. Figure 5-8. The prototype of the Band 5 front-end optics 

bracket is illustrated below in Figure 5-24. 

 

 



 

     303

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proceeding plots show the recorded amplitude and phase data at the focal plane 

compared to PO predictions from both GRASP9 and MODAL. The amplitude and 

phase data are represented as orthogonal planar cuts through the centre of the beam at 

the focal plane in Figure 5-25 and Figure 5-26 respectively. 2D contour plots of the 

measured and predicted amplitude and phase data are presented in Figure 5-27 and 

Figure 5-28 respectively. The measurements and predictions were performed for 163 

GHz (top), 187 GHz (middle) and 211 GHz (bottom). Both the amplitude and phase data 

for measurements and predictions have been normalized to allow for easier visual 

comparison.  

 

 

 

 

 

Corrugated 

Feed Horn 

Mirror 2 

Mirror 1 

Waveguide 

Probe 

Figure 5-24 -Band 5 front-end optics bracket separate (top) and as mounted within the ambient near-

field measurement system (bottom) 
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Figure 5-25 - ALMA Band 5 warm optics amplitude measurements(in red) at 163 GHz (top),187 GHz 

(middle) and 211 GHz (bottom) at focal plane (229.82 mm from M2) compared against predictions from 

GRASP (in blue) and MODAL (in yellow) 
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Figure 5-26- ALMA Band 5 warm optics phase measurements (in red) at 163 GHz (top),187 GHz 

(middle) and 211 GHz (bottom) at focal plane (229.82 mm from M2) compared against predictions from 

GRASP (in blue) and MODAL (in yellow) 
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Figure 5-27 - Amplitude contour plots at the antenna focal plane for 163 GHz (top), 187 GHz (middle) 

and 211 GHz (bottom) - measured (left) and PO predictions (right) 
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Figure 5-28 - Phase contour plots at the antenna focal plane for 163 GHz (top), 187 GHz (middle) and 

211 GHz (bottom) - measured (left) and PO predictions (right) 
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The comparison plots above reveal a high degree of agreement between the measured 

and predicted beam data. As a measure of the exact degree of agreement the coupling 

coefficient between the predicted and measured beams was determined using the 

standard complex field coupling integral – c.f. Equation 5.3.  

Parameter Unit 163 GHz 187 GHz 211 GHz 

Coupling Efficiency % 99.0 98.5 98.2 

Table 5-16 - Coupling coefficients between predicted and measured beam patterns at the focal plane 

These results reinforce the conclusion of good agreement between the measured and 

predicted data.  

5.8.1 Cold Beam Pattern Measurements 

Near to the time of completion of this thesis the Band 5 receiver channel underwent its 

first insertion into the cryostat. The first set of cold beam pattern measurements was 

taken at a measurement plane a distance 67 mm along the optical train from the antenna 

focal plane (c.f. Figure 5-8). These beam patterns measurements were taken over a range 

of ± 40 mm with a stepping accuracy of 1 mm. This step size is relatively large yet these 

initial measurements were taken to determine overall beam shape and pointing. Further 

measurements will be conducted with significantly increased accuracy.   

 

In Table 5-17 below the measured amplitude and phase data at 187 GHz and 210 GHz 

are compared against PO predictions from GRASP9. Measured and predicted planar 

cuts of the cop-polar amplitude are displayed for the three characteristic frequencies 

(163 GHz, 187 GHz and 211 GHz) in Table 5-18 below. 
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 Measured PO Predictions (GRASP9) 
 
 
 
 
 

187 GHz 

  
 
 
 
 

210 GHz 

  
 
 
 
 
 

187 GHz 

  
 
 
 
 

210 GHz 

  

Table 5-17 - Measured (left) and predicted (right) amplitude and phase patterns for Band 5 cartridge 

after insertion into cryostat. 
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163 GHz 

  

 

 

 

 

 

187 GHz 

  

 

 

 

 

 

211 GHz 

  

Table 5-18 - Planar amplitude x and y cuts at the new measurement plane - measurement data in blue and predictions (GRASP9) in red
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5.9 Conclusions 

A full quasioptical and physical optics analysis for various configurations of the Band 5 

front end optics system was successfully completed. EM beam pattern predictions were 

generated at the antenna focal plane and subreflector using PO tools for the full 

frequency range of the channel. Using these beam pattern predictions the Gaussicity, 

aperture efficiency and cross polar efficiency values were calculated for all system 

configurations. These results were presented to both the Band 5 development team at 

GARD and the ALMA Band 5 Preliminary Design Review 9 (PDR). The recommended 

‘Quasioptical’ definition to the reflector surfaces was implemented and a reflector rim 

truncation level below the standard ALMA design preference was adopted.   

 

A prototype corrugated horn and optical system were developed in-house at GARD. 

Preliminary farfield beam pattern measurements of the horn prototype without 

coupling optics revealed a frequency dependent beam distortion. This was corrected 

with the construction of the horn as a single piece by an independent microwave 

components contractor. Beam pattern measurements of this new horn exhibited a much 

improved beam pattern with excellent agreement to PO predictions. Ambient 

temperature beam pattern measurements were taken at the antenna focal plane and 

showed very high coupling to predictions across the system bandwidth. Preliminary 

cold beam pattern measurements are included and compared to equivalent GRASP PO 

calculations. Overall good agreement is seen but the experimental measurements are 

very preliminary at time of writing and further refinements to accurately predict the 

measurement plane is required. Farfield main beam patterns for the ALMA antenna 

were predicted again using PO, which exhibited low sidelobes below -20 dB and good 

main lobe coupling to theoretical Fraunhofer predictions. 
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6. Further Optical Characterisation of the ALMA Band 9 Front End and 

Performance Related Modifications to the Cross Polar Power Component  

6.1 Introduction 

The design and verification of the front end optics of the ALMA Band 9 receiver 

channel has to date been completed [ref – ALMA Memo 544]. The development of this 

receiver is the responsibility of ALMA Band 9 team funded through NOVA 

(Nederlandse Onderzoekschool voor Astronomie) based at the Space Research 

Organisation of the Netherlands (SRON) Groningen. The initial quasi-optical 

verification of the optics was also performed at Maynooth by Massimo Candotti who 

worked with the SRON group as part of his PhD thesis within the Far-Infrared and 

Submillimetre Research Group [99], [100] in initial physical optics modeling and 

extensive experimental verification. The ALMA Band 9 cartridge is the most developed 

of the ALMA cartridges. To date [2009] SRON have completed the construction and 

testing of 11 cartridges.  

The analysis presented in this chapter is chiefly concerned with determining solutions 

to minimize cross-polar power levels achievable across the bandwidth in this 

orthogonally polarized heterodyne receiver. One of the specified requirements for all 

ALMA channels is to have a cross-polar power level of less than -20 dB when 

normalized against co-polar power. The PO analysis and cold beam pattern 

measurements conducted as part of the verification of the receiver  have revealed that 

the cross polar power does not achieve this requirement; the predicted cross polar 

power level of the Band 9 corrugated feed horn itself is approximately -33.4 dB for the 

central operating frequency (661 GHz) while measured cross polar power levels at the 

antenna focal plane are approximately between -16.5 dB to -18.5 dB [100]. As part of a 

series of post-construction tests, the Author was requested to investigate possible 

improvements to the cartridge design that would reduce the cross polar power level 

within specification as measured and modeled at the antenna focal plane. The work 
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presented in this chapter is comprised of the results of the investigation to lower the 

cross polar power levels through software and experimental analysis and the 

recommendations presented to the Band 9 group at SRON.  

6.2 ALMA Band 9 Front End Optics 

The Band 9 cartridge is defined within the ALMA documentation as a Category C 

receiver [101] which are collectively Bands 5 – 10. Internally, the optical parameters 

vary between the different bands. For example, Bands 5 and 6 use a single beam path 

for the two polarisations. For the higher frequency channels a polarising grid is used to 

split the polarisation into two paths. This is due to the fact that the construction of an 

effective Orthomode Transducer (OMT) for frequencies above 300 GHz is very difficult. 

The Band 9 cartridge follows these design criteria. The imaging of the beam from the 

secondary reflector of the ALMA antenna to the feed horns is achieved using cold 

reflective optics with two paired off-axis ellipsoidal mirrors. A polarising grid is located 

at the focal point of the first mirror after the secondary reflector – c.f. Figure 6-1. At this 

grid the beam is split into orthogonal linearly polarised beams and then follows two 

equivalent paths to the two orthogonal feed horns. The procedure for the design of all 

the optics is based on geometrical optics techniques and the bending angles for the 

mirrors are chosen to minimise the beam distortion at the output of the system [87]. 

Initial optical designs were proposed by James Lamb [102]. The sky signal is incident on 

the M3 reflector at an angle of 0.94° relative to the central telescope axis (see Figure 6-1 

below). This was due to the off-axis position of the Band 9 cartridge window on the 

cryostat. The grid works in transmission for the 0P beam and reflection for the 1P beam. 

The 1P optical train is a duplicate of the 0P optics, but rotated relative to the point of 

beam incidence on the grid by 125°. The LO beams for each polarisation are coupled to 

the respective feed horns using a 45° beam splitter placed between the M4 reflectors 

and the feed horns. The beam splitters and LO optics are not considered in the analysis 

presented in this thesis and are not shown in Figure 6-1 below.  
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The initial quasioptical and signal path analysis of the beam throughout the system has 

been well reported [99], [100] and the Author will not reproduce previous results other 

than that which is required for the basis of further work. Initial PO results were 

duplicated and reproduced for initial validation. 

6.2.1 ABCD Analysis 

The standard first order ABCD matrix analysis is used to calculate the fundamental 

Gaussian parameters of the beam as it propagates throughout the system. The source 

50° 

D2 

D3 

D4 

M41P 

M3 

0.94° 

55° 

M41P 

M40P 

Grid 

Grid 

M3 

Polarisation 
Direction 

D1 

Feed Horn 

Focal Plane 

Figure 6-1 - ALMA Band 9 front end optics layout. The two beam polarisations 1P and 0P are 

orthogonally polarised. The blue arrow indicates the 0P beam, and the red arrow indicates the 1P 

beam. 
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beam is approximated as a fundamental Gaussian beam with a waist at the aperture of 

the feed horn of 0.6435a, where a is the radius of said aperture, and a phase radius of 

curvature equal to the slant length of the horn. The mirrors are treated paraxially as on-

axis thin lens phase transformers and the entire system forms a Gaussian beam 

telescope that couples the beam waist behind the horn aperture to the antenna focal 

plane and on to the subreflector.   

 

 

 

 

 

 

 

 

The ABCD analysis for the signal path from the horn waist through to the subreflector, 

presented below in Table 6-2 reveals that for a fundamental Gaussian beam 

approximation of the corrugated horn source field the required frequency independent 

edge taper at the subreflector of -12 dB is achieved. The beam radii at all important 

locations are determined, allowing the size of the required 5w diameter truncation limit 

of the optical components to be set.  
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Figure 6-2 - Paraxial layout for Band 5 front end optics from feed horn to subreflector 
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Parameter Units Value Description 

D1  mm 44.42 Feed horn aperture to M41P/0P 

D2 mm 45.9 M41P/0P to Grid 

D3 mm 50.0 Grid to M3 

D4 mm 150.0 M3 to Focal Plane (z=0) 

D5 mm 5883.7 M3 to Subreflector Vertex 

D6 mm 111.3 Subreflector Vertex to Edge 

θm1 ° 50.0 M41P/0P bending angle 

fm1 mm 24.862 M41P/0P focal length 

θm2 ° 50.94 M3 bending angle 

fm2 mm 39.41 M3 focal length 

Table 6-1 - System dimensions for Band 9 Front End Optics - c.f. Figure 5.1 

Parameter Symbol Units  Frequency ( GHz) 

Frequency   GHz  602 661 720 

Horn Aperture Radius ah mm 2.53    

Horn Axial Length Lh mm 15.44    

Horn Slant Length Rh mm 15.65    

Horn Waist w0 mm  1.11 1.06 1.00 

Horn Waist Offset ∆z mm  -8.35 -9.07 -9.72 

Horn Aperture Waist wha mm 1.63    

Beam radius at M41P/0P wm4 mm  7.62 7.41 7.24 

Beam radius at Grid wgrid mm  0.95 0.89 0.85 

Beam radius at M3 wm3 mm  8.34 8.25 8.18 

Beam radius at Focal Plane wfp mm  2.98 2.72 2.49 

Beam radius at Subreflector Edge wsub mm  318.38 318.38 318.38 

Edge Taper  Te  dB  -12.0 -12.0 -12.0 

Table 6-2 – Fundamental Gaussian beam parameters of Band 9 optics using ABCD analysis 
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6.2.2 Cross Polar Power Levels 

In this section the current cross polar power levels of the Band 9 optics are discussed 

with attention paid to the corrugated feed horn and the distortion effects of the off-axis 

optics. The ALMA specifications require that the desired cross polar power levels 

should be below -20 dB relative to power levels in the main beam, corresponding to a 

cross polar efficiency of 1.0%. The output cross polar efficiency is determined ultimately 

by the initial polarisation purity of the source conical corrugated feed horn and to what 

degree the off-axis ellipsoidal reflectors distort the beam [68].  

6.2.2.1 The Conical Corrugated Feed Horn 

As previously stated the feed horn of choice for all ALMA channels is the conical 

corrugated horn. One of the main reasons for this is that they maintain very low cross 

polar power levels. The geometry of the Band 9 feed horn was specifically designed to 

maintain low cross polar levels, as well as producing a highly symmetrical beam with 

low sidelobes.  

 

The complex electromagnetic field patterns at the aperture of the horn were obtained 

using SCATTER. To provide sufficiently accurate field descriptions the calculations 

were performed using 20 TE and 20 TM modes. The SCATTER code generates a 

scattering matrix description for the entire horn from which the transmitted power 

levels are obtained. The mode-matched field is dependent on the geometrical cross 

section of the horn. The mandrel profile for the Band 9 horn is displayed below in 

Figure 6-3. This planar cut through the horn shows the depths of the corrugations and 

their position along the optical axis. 
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Recall from Chapter 4 that the transverse electric field Eaper is written as a linear sum of 

TE and TM modal fields (Equation 4.84).  The co polar field is represented as the cosine 

dependent from Equation 4.84 and the cross polar field is sine dependent. The contour 

plots below in Figure 6-4 illustrate the co and cross polar components of the complex 

aperture field.  

  

Figure 6-4 - Predicted co polar (left) and cross polar (right) fields of Band 9 feed horn aperture using 40 

modes [SCATTER] 

The cross polar power level of the feed horn at the aperture was determined from this 

mode-matched field to be -33.34 dB (0.045%. efficiency) 

 

Figure 6-3 - Cross section of the mandrel profile for ALMA Band 9 corrugated horn 
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6.2.2.2 Off-Axis Mirrors 

Off axis mirrors will introduce cross talk between the co and cross polarised 

components [103] as well as spatial aberrations such as coma and astigmatism [97].  

These distortions are usually minimised with the inclusion of a paired off-axis reflector 

with the appropriate bending angle [104]. Obviously, the greater the off-axis bending 

angle the greater the degree of scattering and spatial aberrations.  

 

 

 

 

 

 

 

 

 

 

 

Applying Dragone’s Rule for off-axis bending angles of conic reflectors from [104] the 

optimum bending angle α between paired off-axis reflectors is given as 
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  (6.1) 

where the variables α, β, L1, L2, L3 and L4 are illustrated above in Figure 6-5 for a typical 

pair of off-axis ellipsoidal reflectors that couple the waist from a feed horn w0 to the 

waist at the output plane wout. Applying this relation to the Band 9 optics the optimal 

angle of reflection for M41P/0P is predicted to be 29.31°. This is significantly smaller 
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wM1-

wOUT 

Figure 6-5 - Optical configuration for a typical pair of off-axis ellipsoidal reflectors. 
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than the actual bending angle of 50°. This larger bending angle was deemed necessary 

for opto-mechanical reasons; the ‘vertically’ aligned beam from M41P/0P to the feed 

horn allowed for a straightforward design of the mixer subassembly and LO coupling 

optics, as well as creating the necessary space for the solid mounting frame for the 

polarising grid.  

 

The degree to which this off-axis bending will distort the incident beam is accounted for 

by [97] where the fractional loss in power that is scattered out of an incident 

fundamental Hermite-Gaussian mode into higher order modes is given as 
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where w is the beam radius at the mirror, θi is the angle of incidence and f is the focal 

length. The amount of power scattered into the orthogonal linear polarisation state is 

twice this amplitude distortion;  
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The cross polarisation losses for a system of a number of off-axis mirrors is given by 
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where 1k kφ → +∆ is the fundamental mode phase slippage between mirror k and mirror 

k+1. By using the Gaussian beam parameters obtained from the fundamental mode 

ABCD analysis of the Band 9 optics the total loss of power from the co polar component 

to the cross polar component from the feed horn to the output focal plane is predicted 

to be 4.1 dB. For the Band 9 system this implies an increase in the cross polar power 

from -33.4 dB at the horn aperture to approximately -29.3 dB at the focal plane. This is 

still well within the accepted constraints for the channel. 
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A more accurate quantification of the degree to which the paired off-axis reflectors 

affect the polarisation purity of the system is achieved through PO calculations. The 

cross polar power levels at the output focal plane without the effects of the grid were 

predicted using GRASP9 by removing the polarising grid object completely for the 

transmitted path and replacing it with a simple plane reflector for the reflected path. At 

the focal plane the cross polar power levels were predicted as -29.6 dB for the reflected 

1P beam and -29.54 dB for the transmitted 0P beam. This shows that the mirrors 

perform relatively well in maintaining low cross polar power levels, with an 

approximate increase of only 3.8 dB from the cross polar level of the horn aperture to 

the focal plane. The previous result as predicted by [97] is therefore a close match to this 

PO result, with the disparity being accounted for by the more accurate description of 

the complex field distribution of the propagating beam. The cross polar leakage 

predicted by Equation 6.4 is for a fundamental Gaussian mode approximation of the 

beam also rather than an actual corrugated aperture field. The co and cross polar 

amplitude distributions at the focal plane for the 0P and 1P beams as predicted by 

GRASP9 without the wire grid polariser are illustrated below in Figure 6-6.  

 

The polarising grid and how the horn beam polarization orientation intercepts the grid 

lines will influence the cross polar efficiency of the system. As reported in [97] for the 

case of a system consisting of appropriately paired off-axis ellipsoidal reflectors the 

cross polarisation introduced by one reflector will be cancelled out at the output by the 

cross polarisation introduced by the subsequent reflector. This accounts for the low 

level of cross polar power predicted for the Band 9 front end optics without the wire 

grid polariser. The inclusion of the polariser will disrupt this arrangement as it will 

remove the cross polarisation generated by M41P/0P that would otherwise be 

compensated for by the cross polarisation introduced to the beam by M3.  In Table 6-3 

below the cross polar power levels at the focal plane as calculated from PO predictions 

with the grid calculations included and as measured by [100] on the warm optics 

prototype of the Band 9 channel are presented. Also presented in Figure 6-7 below are 
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the co and cross polar field distributions at the antenna focal plane as predicted by 

GRASP9 PO with the wire grid polariser included. The increase in cross polar power 

with the inclusion of the grid is evident when comparing Figure 6-6 and Figure 6-7. The 

effect of the grid is such that the cross polar power levels no longer meet the expected 

minimum criterion for the ALMA front end channels of -20 dB. The expected cross polar 

power pattern without the grid included exhibits a similar quadruple-pole pattern to 

that from the feed horn aperture. With the grid included, at its particular orientation, 

this cross polar pattern at the focal plane now displays a double lobe shape indicating 

non ideal interaction with the grid. The net effect of the grid on the co-polar beam is still 

negligible however, with coupling efficiency between the co polar beam patterns with 

and without the grid for both beam paths calculated at over 99%. This ensures that the 

co polar beam is correctly aligned with the grid wires.  

 

 

 

 

 

 

 

 

 

 

 

 

 

0P Transmitted Beam - CoP  

 

0P Transmitted Beam - XsP 

 

1P Reflected Beam - CoP 

 

1P Reflected Beam - XsP 

Figure 6-6 - Predicted co and cross polar beam patterns at the focal plane with polarising grid removed 

from calculations 
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0P Transmitted Beam - CoP 0P Transmitted Beam - XsP 

  

1P Reflected Beam - CoP 1P Reflected Beam - XsP 

Figure 6-7 - Predicted co and cross polar beam patterns at the focal plane with the polarising grid 

calculation included 

Parameters Units Beam 

0P 1P 

Predicted Cross Polar  dB -18.08 -18.18 

Predicted Cross Polar % 1.56 1.52 

Measured Cross Polar  dB -18.5 -16.5 

Measured Cross Polar % 1.41 2.24 

Table 6-3 - Predicted and measured (warm optics - [100]) cross polar power levels at the Band 9 focal 

plane for the central frequency (661 GHz) 

For a beam with two orthogonal polarisations incident upon a grid, the co polar 

component, which for convention will be taken to be polarised orthogonally to the grid 

lines, will be transmitted through the grid (transmission axis). The cross polar 
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component, which is collinearly polarised with the ideal grid lines, will be reflected 

backwards. This is the basic working premise of the grid for the transmitted 0P beam 

while the opposite holds for the reflected  1P beam, with the co polar component being 

reflected by the grid, and thus maintained within the system and the cross polar 

component being transmitted through the grid and thus out of the system. The optimal 

working condition for this grid is therefore that the incident beam is comprised of two 

orthogonally polarised components, or equivalently that the grid intercepts the beam at 

the appropriate angle to ensure this orthogonality. As shall be proven later throughout 

this chapter, this is not the case for the Band 9 system. For now it is sufficient to state 

that the polarising grid in its current configuration and projection effects deteriorates 

the cross polar efficiency of the Band 9 system. Further analysis of the nature of the 

projection effect upon the grid surface will be detailed in Section 6.4. 

6.3  Geometrical and Quasioptical Design of Reflectors 

This section details an investigation into the theoretical improvement to the phase 

transforming properties of the off-axis reflectors M3 and M41P/0P. The process is 

similar to that presented for ALMA Band 5 (Chapter 5) where a geometrical and long-

wavelength  approach to designing the conic surfaces of the reflectors were compared 

in terms of aperture efficiency and cross polar power.  

As stated in the previous section the design of the optics of the Band 9 channel were 

designed using geometrical optics.  The geometrical optics method is considered a 

reasonable method for the Band 9 channel, owing to the relatively high operating 

frequency range (611 – 720 GHz). However, it can be concluded that there is room for 

improvement in the output beam in terms of both cross polar power levels and aperture 

efficiency/beam coupling to the subreflector through re-designing the ellipsoidal 

surfaces using Quasioptics. Using this method would ensure that the radius of 

curvature of the reflectors will be matched accurately to the complex phase radius of 

curvature of the incident beam at the centre frequency. The parameters required to 

describe the ellipsoidal surfaces are calculated from ABCD analysis. 
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Figure 6-8 above displays a comparison between the classic ray-tracing representation 

of the geometrical optics (shown as the broken red line) and the phase front 

representation of the true quasioptical beam (the blue lines). Using ABCD analysis the 

beam waists at each of the focal points of the system are calculated – c.f. Table 6-2. 

Using these values the input and output phase radii of curvature for the beams are 

determined for the central frequency of the system. From these values, the new 

parameters of the ellipsoidal reflectors are determined - Table 6-4. 

 Parameter  Units  Geometrical  Quasioptical 

 M3  M4  M3  M4 

 Major Axis: a  mm  101.729  51.2266  110.838  49.0961 

 Minor Axis : b  mm  80.8415  45.7411  86.0372  44.2005 

 Eccentricity: e    0.60703  0.45022  0.6304  0.43529 

 Conic Constant: k    -0.36849  -0.20269  -0.3975  -0.1895 

 Radius of Curvature: R  mm  64.243  40.843  66.7857  39.7932 

Table 6-4 - Parameters for ellipsoidal reflectors for Geometrical and Quasioptical versions of Band 9 

 

 

fm4 = 24.862 mm fm3 = 39.4096 mm 

44.5593 mm 42.453 mm 53.453 mm 
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150.0 mm 
Δz 
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Figure 6-8 – Paraxial layout of Band 9 optics showing Geometrical (red) and Quasioptical (blue)  
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6.3.1 EM Beam Predictions 

To study the effects of changing the parameters of the ellipsoidal reflectors in the Band 

9 system, both versions were implemented in GRASP9. The mode-matching software 

SCATTER was used to generate the vector aperture field of the feed horn. The beam 

predictions at the focal plane were used to determine both aperture efficiency/coupling 

to the antenna and cross polar power.     

6.3.1.1 Gaussicity 

The Gaussicity assessment of beam quality first used in Section 5.6.1 was used as a first 

order examination of the effect of the altered reflector surfaces on the beam. The PO 

predictions of the central frequency beam were taken at the antenna focal plane.  

Optical Beam Gaussicity (%) 

Geometrical – 1P 96.19 

Geometrical – 0P 97.10 

Gaussian – 1P 96.81 

Gaussian – 0P 97.24 

Table 6-5 - Fundamental Gaussicity calculations at the antenna focal plane for the central frequency 

A slight increase in coupling to the fundamental Gaussian beam is observed for both 

beam paths. This is validation of the improved beam transformation by the modified 

Gaussian design. However, the increased coupling can be considered practically 

negligible. This is expected given that the high operating frequency of the system is a 

relatively close match to the geometrical limit coupled with a good off axis reflector 

receiver design.  

6.3.1.2 Cross Polar Power 

Cross polar power levels at the antenna focal plane are calculated in the typical manner 

by normalising the cross polar beam with respect to the co polar beam. The table below 

compares cross polar power levels for the geometrical and Gaussian optics.   
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Optic Version Units Cross Polar Power 

0P 1P 

Geometrical  dB -18.08 -18.18 

Quasioptical  dB -18.24 -18.22 

Table 6-6 - Predicted cross polar power levels at the focal plane for the Geometrical and Gaussian 

optics versions of the Band 9 system 

There is a slight predicted decrease in cross polar power levels at the focal plane with 

the modified Quasioptical version of the system. However, this increase in efficiency is 

extremely minimal, and would be very difficult to record experimentally. This is yet 

again a further validation of the improvement in system performance found with the 

Gaussian optics version, but as with predicted the Gaussicity, is negligible at best.  

6.3.1.3 Antenna Aperture Efficiency 

The antenna aperture efficiency for the two versions of the Band 9 optics was calculated 

in the same manner as for the Band 5 optics (c.f. Chapter 5). The field distribution at the 

subreflector vertex plane is coupled to the ideal phase transformed top-hat field. The 

reduction in coupling due to the shadow of the subreflector on the primary reflector is 

included in these calculations. This additional calculation is arbitrary however as the 

effect of the modified reflector surfaces are under scrutiny here.  

Optical Version Units Cross Polar Power 

0P 1P 

Geometrical % 85.08 85.08 

Quasioptical % 86.06 85.96 

Table 6-7 - Predicted aperture efficiencies for the Geometrical and Quasioptical versions of the Band 9 

system 

There is an increase in the aperture efficiency of the system with the new Quasioptical 

modification of the order of 1%. This result is potentially interesting for any future 

upgrades or redesigns of the ALMA optics. 
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6.3.2 Conclusions 

As the results from Sections 6.3.1.1 to 6.3.1.3 show, the Gaussian optics modification to 

the off-axis mirror surfaces ensure increased Gaussicity, lower cross polar power levels 

at the focal plane and an increase in coupling to the antenna. This represents an overall 

improvement in system performance that validates the quasi-optical modification. 

Unfortunately due to the advanced stage of the ALMA Band 9 frontend the individual 

parameters improvements would be difficult to retrofit to the already manufactured 

cartridges. As stated prior to this analysis this outcome is unsurprising given the 

relatively high operating frequency range of this channel. A geometrical design of the 

off-axis optics of the Band 9 channel has been verified to still be very applicable here.  

6.4 Modification of the Band 9 Wire Grid Polariser 

What follows is an analytical and experimental treatment of the Band 9 wire grid 

polariser and its effect upon the cross polar power levels for the system. The work 

presented involves a discussion of the working principles behind polarisers and wire 

grid polarisers specifically, with attention being primarily paid to their orientation 

relative to incident radiation over the physical properties of the wires that comprise 

such grids, such as the dimensions of the wires or the wire spacing and frequency. In 

reality no alterations to the physical structure of the Band 9 polarising grid were 

possible as the channel had already been well developed, with 11 cartridges already 

having been constructed and tested by the NOVA group at the time of writing. The only 

scope to potentially improve cross polar levels was the possibility to alter the rotation 

angle of the grid wires, and this formed the foundation of the work presented here. The 

analysis consists of an analytical treatment of the intersection of planes of variable 

orientation through Euler angles, PO predictions of suggested alterations to the 

polarising grid plane and warm optics beam pattern measurements conducted with the 

Band 9 optics prototype at SRON, Groningen. The topic was also further investigated 

using a lower frequency (100 GHz) equivalent version with a wire grid polariser tested 
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at NUI Maynooth. A similar effect in cross polar power was also recently reported by 

the ALMA Band 7 team where a conference paper [105] by Lazareff heuristically reports 

a similar phenomenon there in their lower frequency channel. 

6.4.1 Polarisers 

The polarisation of electromagnetic radiation describes the orientation of wave 

oscillations perpendicular to the direction of propagation. The purpose of a linear 

dichroic polariser in an optical system is to isolate a single linear polarisation from an 

unpolarised source. The polariser transmits radiation with electromagnetic oscillations 

along a transverse direction orthogonal to the direction of absorption. This preferred 

direction is referred to as the transmission axis (TA) of the polariser [33]. In an ideal 

polariser the transmitted radiation is linearly polarised in the same direction as the TA. 

The state of polarisation of the transmitted radiation can be determined through a 

second dichroic polariser, known as an analyser, as shown below in Figure 6-9.  

 

 

 

 

 

 

 

 

As the angle of the TA of the analyser is rotated about the optical axis, the irradiance of 

light transmitted from the analyser varies. This variation of transmitted light is 

governed by Malus’ law,  

 2
0 cosI I θ=   (6.5) 

E

0 

Polariser 

Analyser 
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Incident 
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y 

Figure 6-9 - Orthogonal dichroic polarisers acting in a polariser/analyser pair 
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where I0 represents the irradiance of the beam incident on the polariser, θ is the angle of 

the analyser as it is rotated about the optical axis and I is the irradiance of the light 

transmitted from the analyser [33]. The variation of transmitted irradiance for a 

polariser according to Equation 6.5 is illustrated below in Figure 6-10. 

 

 

 

 

 

 

A wire grid polariser functions as a reflective polariser, meaning that only permitted 

polarisations are transmitted while the remainder is reflected. If the incident wave is 

polarised along the directions of the wires the induced conduction electrons are driven 

along the length of the wires in unrestricted movement. The physical response of the 

wire grid is thus essentially the same as that of a thin metallic sheet [77].These excited 

electrons generate a forward as well as a backward travelling wave, with the forward 

travelling wave cancelling exactly the incident wave in the forward direction. As a 

result, the incident wave is completely reflected and nothing is transmitted in the 

forward direction. If the incident wave is polarised perpendicular to the wire grid the 

current generated by the excited electrons is insufficient to cancel the incident field in 

the forward direction. Thus there is considerable transmission of the incoming 

radiation, and the wire grid is said to operate as a dielectric. 

6.4.2 Band 9 Wire Grid Polariser 

The Band 9 wire grid polariser located at the geometrical interfocal point between 

mirrors M3 and M40P/M41P serves as a beam splitter to the incident unpolarised 
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Figure 6-10 - Variation of transmitted irradiance from a polariser/analyser pair as a function of rotation 

angle θ 
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radiation from the antenna into two orthogonally polarised beams. The transmitted (0P) 

and reflected (1P) beams are coupled to their respective feed horns by the equivalent 

off-axis mirrors M40P and M41P. A significant effect of this polarising grid is that not 

only does it transmit/reflect the co-polar component of the 0P/1P beams respectively; 

the cross-polar components of both beams are prevented from propagating completely 

throughout the system, i.e. at the grid the cross-polar component of the 0P beam is 

reflected and the cross-polar component of the 1P beam is transmitted. For the 

polarising grid to successfully distinguish between the co-polar and cross-polar 

components they must be mutually orthogonal. For the transmitted path the beam co-

polar polarisation must be perpendicular to the grid lines as it impinges on the grid to 

achieve the maximum power transmission through the grid. For the reflected path the 

converse is true, with maximum reflection of the beam achieved for the beam co-polar 

polarisation impinging on the grid surface parallel to the grid lines.  

 

The grid was modelled in GRASP as an ideal grid object (Section 2.4.5.2). In the ideal 

grid calculation a set of equivalent currents for the grid surface are calculated on the 

basis of the reflection and transmission coefficients of the grid. For each PO integration 

point on the grid it is assumed that the incident radiation behaves locally as if it were a 

plane wave, whereupon the Poynting’s vector can be used to calculate the direction of 

incidence. This plane wave approximation generally works well for most optical 

systems. However, it was noted for initial PO predictions there was a suspicious 

disparity between the 0P and 1P cross polar power levels. After further investigation by 

TICRA it was determined that the ideal grid PO object does not work correctly in this 

instance, where it is located close to the beam waist between mirrors M41P/0P and M3. 

The plane wave approximation technique will break down when placed at or near a 

beam waist. At this beam position the field will have a significant radial component; i.e. 

along the direction of propagation and hence perpendicular to the plane of the grid 

wires, which is not accurately represented by a local single plane wave. This was 

amended by TICRA with the release of a plane wave expansion tool in a beta version of 
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the GRASP package, and later in an official release. This tool expands the field incident 

upon the grid in a series of plane waves, each with their own local direction vector. 

These individual plane waves are then used to calculate the induced currents on the 

grid. This method is more accurate as the induced currents are calculated by exact plane 

waves rather than local approximations. The consequence of this new method was to 

provide the previously reported cross polar levels at the focal plane; -18.08 dB for the 0P 

beam and -18.18 dB for the 1P beam.  

 

From Figure 6-1 it is evident that the plane of the grid is not strictly transverse to the 

optical path and thus there is a projection effect of the incident radiation to the plane of 

the grid. The question was raised as to whether the Band 9 polarising grid could be 

manipulated to provide improved transmission/reflection of the desired copolar 

components, or reduce the degree of cross polar power leakage in the output plane.  

6.4.3 Euler Angles 

Euler angles are a convenient formulation for describing the orientation of a vector 

plane in three dimensions. They are regularly encountered as a method of providing a 

complete description of the motion of rigid bodies within the Lagrangian formulation of 

mechanics [106]. This rotation is important in context of the Band 9 optics to understand 

the true orientation of the transmission axis of the grid relative the polarisation rotation 

of the incident beams and figuring out why cross polar levels of power are affected by 

this projection effect. Euler angles are best visualised in the Cartesian coordinate frame. 

A transformation from one Cartesian coordinate frame to another can be described 

using the appropriate transformation matrices that describe the required rotation about 

any of the three frame axes. The main convention followed here is that which is widely 

used in celestial mechanics, applied mechanics and aeronautical orientation.   
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The sequence of rotations employed in the above figure is begun by rotating the initial 

coordinate frame {x,y,z} by an angle φ counter clockwise about the x axis to form the 

next {x’,y’,z’}  coordinate frame. This is performed by the[X] transformation matrix. The 

next transformation, performed by the [Y] transformation matrix, is counter clockwise 

about the y’ axis, forming the {x’’,y’’,z’’} coordinate frame. The final transformation, the 

[Z] transformation, is counter clockwise about z’’ frame, resulting in the final 

{x’’’,y’’’,z’’’} coordinate frame. The transformation matrices [X], [Y] and [Z] are given 

below as [106]: 

 [ ] ( ) ( )
( ) ( )

1 0 0

0 cos sin

0 sin cos

X ϕ ϕ
ϕ ϕ

 
 =  
 − 

  (6.6) 

 [ ]
( ) ( )

( ) ( )

cos 0 sin

0 1 0

sin 0 cos

Y

θ θ

θ θ

 
 =  
 − 

  (6.7) 

 [ ]
( ) ( )
( ) ( )

cos sin 0

sin cos 0

0 0 1

Z

ψ ψ
ψ ψ

 
 = − 
  

  (6.8) 

The transformation from one coordinate system to another can be represented by the 

transformation matrix equation: 

 

'

'

'

x x

y A y

z z

   
   =   
   
   

  (6.9) 
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Figure 6-11 - The rotations that define the Euler angles – ref Classical Mech.  
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where {x,y,z} is the fixed or starting frame of reference, {x’,y’,z’} is the rotated frame and 

A is the rotation matrix that completely describes the relative orientation of the two 

systems. The rotation matrix A can describe a single rotation about an axis or a 

combination of multiple rotations making up the relative orientation of the two 

systems. The orientation of the rotated coordinate frame relative to the original frame 

can be described in terms of the projection of the rotated frame axes onto the original 

coordinate frame. This technique will be described in further detail in the proceeding 

section for the Band 9 polarising grid.  

6.4.4 Orientation of the Band 9 Polarising Grid 

The plane of the Band 9 wire grid polariser can be visualised as being rotated about two 

separate axes relative to the optical axis. In Figure 6-12 below the orientation of the grid 

plane by fixing the optical axis in the horizontal xz plane is illustrated. This is a useful 

representation as this is the same layout that is used for the low frequency test facility 

described later in this section. In the first layout, the grid plane is orthogonal to the 

optical axis. In the following layout the grid is rotated about the x axis by 40° towards 

the optical plane – this represents the off-axis bending angle of M4-0P and M4-1P. 

Lastly the grid is rotated about the new y’’ axis by 27.5°, which serves to reflect the 1P 

beam component.  

 

The issue under investigation is whether there exists an orientation of the grid wires 

other than the nominal that permits an improved co-polar beam throughput and cross-

polar beam reflection for the transmitted path and vice-versa for the reflected beam 

path. Given that the transmitted and reflected beam paths are equivalent in terms of 

optics and for the sake of simplicity all considerations to the plane of polarisation of the 

incident optical beam and subsequent diagrams will refer to the transmitted beam only 
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Figure 6-12 - Orientation of Band 9 polarising grid relative to optical axis 

between mirrors M3 and M4-0P 
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Figure 6-13 - Isometric representation of the orientation of the Band 9 polarising grid in 

terms of angular rotations about the coordinate axes 
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The figures above show an isometric representation of the two rotations that make up 

the orientation of the polarising grid. The orientation of the Band 9 polarising grid lines 

relative to the incident optical plane of polarisation can be described using the Euler 

angles described above The radiation incident upon the grid of coordinate frame 

{x’’,y’’,z’’} can be visualised as being aligned with the original {x,y,z} coordinate frame – 

that is to say the co-polar component from M4 is aligned with the x axis and the cross 

polar component aligned with the y axis. The orientation of the plane of the polarising 

grid relative to the plane of polarisation can be described in terms of the projections of 

the polarisation axes onto the plane of the grid. For example, if the y’ axis is traced back 

to the original {x,y,z} frame, there is no net projection angle upon the grid surface, i.e. 

the y’ and y coordinate axes (and indeed by consequence the y’’ axis) are all within the 

same plane – c.f. Figure 6-14 below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

This implies that for grid wires that are aligned with the y’’axis, they are thus co aligned 

with the incident y axis. The conclusion of this is that, for the system in its current 

configuration, the grid lines are aligned at the optimal angle for operation. To check this 

hypothesis the nominal configuration was implemented with varying grid wire 

x ≡ x’ 

z 

y 

y’ 

Figure 6-14 - Isometric representation of the first rotation of the grid plane about 

the x axis, revealing that the y and y' axes are within the same plane (green plane) 
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orientations in GRASP9 and the cross polar power levels of the 1P and 0P beams were 

recorded at the focal plane. The variation of the angle of the grid wires about the 

optimal ‘vertical’ angle is displayed below in Figure 6-15. The results of this test are 

plotted below in Figure 6-16 as cross polar power levels predicted at the focal plane as a 

function of grid rotation angle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-16 – Predicted cross polar power levels (dB) as a function of rotation of the grid wires about 

the nominal (vertical) angle 
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The results prove the hypothesis that in the nominal system configuration the 

orientation of the grid wires is optimal. At angles away from the nominal the cross 

polar power levels are vastly increased, following a similar pattern to the typical Malus’ 

law pattern and indicating that the transmission axis of the grid needs to be aligned 

correctly with the polarisation angle of the incident beam. 

 

Returning to the orientation of the grid plane relative to the polarisation of the incident 

radiation, it is noticed that though the y, y’ and y’’ axes are all co aligned within the 

same plane, the same cannot be said of the x, x’ and x’’ axes.  Observing the grid plane 

rotations in Figure 6-13 the x and x’ axes are equivalent through the first rotation. The 

next rotation, about the y’ axis, moves the x’’ axis out of plane of the original x axis. This 

is best represented using a modification of the grid plane orientation from Figure 6-12 

in Figure 6-17 below: 

 

 

 

 

 

 

 

 

 

 

 

From the above figure it is easily shown that the incident angle of polarisation is aligned 

with the x axis rather than the y axis, it would be projected upon the grid plane in such 

a way that it is no longer orthogonal to the local y’’ axis. Another way of interpreting 

this is that the projection of the x axis upon the grid plane does not align with the local 

x’’ axis. This projection effect can be exploited with respect to the Band 9 optics. The 
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Figure 6-17 - Orientation of the grid plane relative to the incident polarisation 

showing the projection of the x axis onto the grid plane 
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above optical configuration, whereby the angle of incident polarisation has been rotated 

by 90°, is here on referred to as the ‘rotated’ version. The next important step for this 

rotated version of the Band 9 system is to find the optimal angle for the grid wires that 

are collinear with the projection of the x axis upon the grid surface. This is achieved 

through the calculation of the appropriate Euler angle rotation matrices.  

6.4.4.1 Projection effect upon grid plane 

To determine the angle that the projected x axis makes with the x’’ axis upon the grid 

plane the appropriate Euler rotation matrix must first be determined. The complete 

rotation matrix A that describes the orientation of the grid plane relative to the {x,y,z} 

plane is calculated as a combination of the appropriate transformation matrices given in 

Section 6.4.3: 

 [ ][ ]A X Y=   (6.10) 

where [X] and [Y] are the x and y axis rotation matrices given by Equations 6.6 and 6.7. 

This rotation matrix describes firstly rotation about the fixed x axis by an angle φ 

followed by a rotation about the new y axis, y’ by an angle θ. This is achieved in matrix 

multiplication by firstly inversely rotating about x, then rotating about y and then 

finally rotating about x. The order of multiplication is in reverse order as per standard 

Euler transformation matrices [106] 

 

The angle at which the projection of the x’’ axis on the grid plane makes with the 

original x axis, hereafter referred to as ψGrid, is determined by multiplying the unit x 

vector by the rotation matrix A. This will give the unit vector of the x’’ axis relative to 

the original x vector. This is now applied to the specific rotation angles of the Band 9 

grid. From Figure 6-12 the x rotation angle φ is 40° and the y’ rotation angle θ is 27.5°. 

Applying Equation 6.10 the rotation matrix is given as: 
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( ) ( )
( ) ( )

( ) ( )

( ) ( )

1 0 0 cos 0 sin

0 cos sin 0 1 0

0 sin cos sin 0 cos

0.766 0.297 0.570

0.297 0.950 0.096

0.570 0.096 0.816

A

A

θ θ
ϕ ϕ
ϕ ϕ θ θ

  
  =   
  − −   

 
 = − −
 
− −  

  (6.11) 

The x axis unit vector, given as [ 1, 0, 0 ] is multiplied by A to give the x’’ axis unit vector    

 [ ]
'' .

'' 0.766, 0.297, 0.570

x A x

x

=
= − −

  (6.12) 

The projection of the x’’ unit vector onto the xy plane is illustrated below in Figure 6-18.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inverse tangent of the y component over the x component of the resultant x’’ unit 

vector gives ψGrid to be 21.18°, i.e. 

 0.297arctan 21.180.766Gridψ  = = °
 

  (6.13) 
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Figure 6-18 - Projection of the x'' unit vector onto the xy plane 
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This result was verified through both PO calculations and experimental measurements 

using the Band 9 front end optics at SRON.  The source feed horns for the 0P and 1P 

beams are rotated by 90° and the grid wires are rotated through 111.18° (i.e. 90° + 

21.18°). Cross polar power levels are tracked against ψGrid which is varied about the 

predicted optimal angle. The results of the PO predictions are presented below in 

Figure 6-19 below as cross polar power levels as a function of grid wire angle ψGrid. 

 

 

 

 

 

 

 

 

The PO calculations above show a minimum of cross polar power levels at the 

predicted ψGrid = 111.18° of -21.96 dB for the 1P beam and -22.02 dB for the 0P beam, 

thus verifying the predicted optimal angle of rotation of the grid lines. The results in 

Figure 6-19  above exhibits a Malus’ Law style pattern similar to that for the grid 

rotation testing results from the nominal version (c.f. Figure 6-16). As the grid rotates 

about the optimum angle of 111.18° there is a noticeable evolution in the profile of the 

beam pattern. This is illustrated in the predicted cross polar field distributions 

presented in Figure 6-20 below. Away from the optimum angle of rotation the beam has 

a single lobe power profile similar to that of the co-polar beam. At these angles away 

from the optimum value the grid wires are not in the correct alignment relative to the 

incident co and cross polarisations and thus the observed output beam patterns are a 

mix of the co and cross polarisations incident upon the grid surface. As the angle of 

rotation approaches 111.18° the cross polar power profile is reverted to the typical 
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Figure 6-19 - Cross-polar power levels ( dB) for the transmitted and reflected beams as a function of 

grid wire angle ψGrid 
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double lobed structure. There is negligible distortion to the co-polar beam for all of 

these grid rotation angles; normalised coupling integrals to the co-polar power 

distribution at the optimum angle reveal a coupling of over 99% for the power 

distributions at all other angles. 

Reflected – 1P Transmitted – 0P  

 
Grid Rotation: 100° 

 
Grid Rotation: 100° 

 
Grid Rotation: 111° 

 
Grid Rotation: 111° 

 
Grid Rotation: 120° 

 
Grid Rotation: 120° 

Figure 6-20 - Predicted cross polar power patterns at the focal plane for the reflected and transmitted 

beams for various grid rotation angles 
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The valuable conclusion of this analysis is that the new rotated version of the system 

will produce a decrease in cross polar power levels of approximately 4 dB when 

compared against the nominal version of the system. These results were verified 

experimentally using a prototype of the Band 9 front end optics system at SRON 

described in the next section below.  

6.4.5 Experimental Verification 

Given that low cross polar power levels (<-20 dB) are a stipulated requirement of all 

ALMA channels the modification of the horn polarisations and grid rotation angle from 

the previous section presents a desirable alteration to the existing system. This led to a 

measurement campaign of the rotated system on the Band 9 front end optics to both 

verify the PO predictions and determine the feasibility of implementing the required 

modification to the channel.   

Measurements were conducted on the Band 9 optics channel at SRON. A Phase Locked 

Loop (PLL) measurement system operating at 670 GHz combined with a warm optics 

setup was used for beam pattern measurements of the co-polar and cross-polar hbeams. 

The details of this measurement system are described in further detail in Appendix A. 

Figure 6-21 -Warm optics assembly of rotated Band 9 channel. Angular alignment of the polarising grid is 

illustrated (left). The warm optics setup is divided into two sections whereby the M41P/0P reflectors are 

removed for this photograph 

M3 Reflector 

Grid (rotated) 
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There were no stringent requirements for accurate beam pointing in such a setup, since 

cross polar levels are calculated as a normalization against co-polar power. Using the 

warm optics setup allowed the Author quick access to the wire grid. The warm-optics 

measurements were achieved using a prototype of the front end optics system, 

illustrated in Figure 6-21 above. Adjustments to the angular alignment of the grid were 

performed manually with the aid of a stepped protractor and microscope. The output 

beam was recorded at the nominal focal plane position and a sample of the results for 

the same grid rotation angle as presented in Figure 6-20 are displayed below in . The 

recorded cross-polar levels at the focal plane are normalised against co-polar power and 

plotted against grid rotation angle in Figure 6-22 below where they are overlaid as 

dashed lines against the predicted results (solid lines) from Figure 6-19. The exact 

recorded values of cross polar power are listed in Table 6-8 below.   

 

 

 

 

 

 

The recorded cross-polar power levels at the focal plane are normalised against co-polar 

power and plotted against grid rotation angle in Figure 6-22 below where they are 

overlaid as dashed lines against the predicted results (solid lines) from Figure 6-19. The 

exact recorded values of cross polar power and rotation angle are listed in Table 6-8. 
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Figure 6-22 - Measured (dashed lines) and predicted (solid lines) cross polar power levels for rotated 
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Reflected – 1P Transmitted – 0P  

 
Grid Rotation: 100° 

 
Grid Rotation: 100° 

 
Grid Rotation: 111° 

 
Grid Rotation: 111° 

 
Grid Rotation: 120° 

 
Grid Rotation: 120° 

Figure 6-23 - Sample of measured cross polar amplitude patterns at the Band 9 focal plane for the 

reflected and transmitted beams for various grid wire rotation angles – c.f. Figure 6-20 

 

 

 

 



 

346 

 

 

 

 

 

 

 

 

 

 

 

Comparison between predicted and measured cross-polar power levels against grid 

rotation show very good agreement – c.f. Figure 6-22. There exists a small degree of 

discrepancy between predicted and measured power levels and optimal angle of 

rotation. Minimum cross-polar power is recorded at 110° for the 1P beam (-21.5 dB) and 

at 111° for the 0P beam (-19.55 dB). The elevated measured power levels relative to 

theoretical predictions were also documented for the nominal system and were 

attributed to the polarization sensitivity of the receiver [100]. The discrepancy observed 

surrounding the optimum angle of rotation can be accounted for by the relatively crude 

nature of the experimental setup and rotation accuracy achievable with the manual 

arrangement used. Rotation of the wire grid polariser was carried out by hand and the 

angle of rotation was determined through line of sight against a protractor. Achieving 

higher accuracy would have proved difficult within the allotted time for the 

measurement campaign and would have required specialized equipment that was not 

available at the time. The rotation accuracy certainly needs to be accounted for as the 

largest source of error in this experimental verification.  

ψGrid (°) Unit 1P 0P 

70  dB -4.21608 ------------ 

80  dB -6.09915 ----------- 

90  dB -9.23027 -9.44007 

100  dB -13.2956 -14.0764 

105  dB -17.7016 -16.4928 

107  dB -20.0977 ----------- 

108  dB ----------- -18.774 

109  dB -19.854 ----------- 

110  dB -21.4772 ----------- 

111  dB -19.5061 -19.5464 

112  dB ----------- -19.3362 

113  dB -19.2645 ----------- 

115  dB ----------- -18.9337 

120  dB -15.5985 -12.7149 

Table 6-8 - Measured cross polar power levels for 'rotated' optics as a function of ψGrid 
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Though the prototype warm optics setup of the Band 9 front end optics was relatively 

simple to modify into the rotated system, implementing such an alteration to the 

existing optical layout would incur a significant redesign of the channel with regards to 

the LO coupling and signal processing stages of the channel. Of course in a heterodyne 

receiver the grids play an important role in combining the LO beam with the 

astronomical signal and rotations effect the orientation of LO feeds also. As a 

consequence of this the suggested improvement to the system presented here, while of 

note for future off-axis high-frequency submillimetre optics systems, will not be 

implemented initially in the ALMA Band 9 channel due to its advanced stage of 

development. Scope exists to implement this scheme in possible future adaptations of 

the system.  

6.5 Alternative Band 9 ‘Focusless’ Design 

As revealed in the analysis presented in Section 6.4, one of the chief causes of the poor 

cross-polar efficiency of the Band 9 system is the location of the wire grid polariser near 

the interfocal point between reflectors M3 and M41P/0P.  Though this is the obvious 

location for the grid to achieve the minimum grid diameter (collocated with beam 

waist), it also ensures that the beam impinging on the grid surface will contain a 

significant radial component as the complex phase radius of curvature switches 

direction at the waist.   

 

One hypothesized solution to this problem was to ‘remove’ the focus of the system and 

have an alternative optical arrangement to relay the horn aperture field to the ALMA 

telescope focal plane. This ‘focusless’ version of the system was hypothesized by the 

Band 9 project scientist Andrey Baryshev and was investigated by the Author. To 

remove the interfocal waist from between M3 and M4, the M4 reflector conic is changed 

from an ellipsoid to a hyperboloid mirror. The M3 reflector will remain an ellipsoidal 

reflector, but with altered parameters to accommodate the new M4 reflector. The layout 

of this system is displayed below in Figure 6-24.  
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The system was analysed using PO in GRASP9, with the standard 5w rim diameter for 

the wire grid. Beam pattern predictions at the focal plane for the central frequency are 

displayed below in Figure 6-25. 

 

Cross polar power levels for this adaptation of the optics are significantly reduced to 

approximately -28 dB normalised against co-polar power. The suggested adaptation for 

the rotated version of the optics, with feed horns rotated by 90° and the grid wires 

rotated through to the required optimal angle of 111.18° was applied to the focusless 

design. 
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D3 = 370.136 mm 

Figure 6-24 - Details of 'focusless' design of Band 9 Optics 
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0P Transmitted 1P Reflected 

  

  

Figure 6-25 - Co-polar and cross-polar beam pattern predictions at the antenna focal plane for the Band 

9 'focusless' design - central frequency (661 GHz) 

The cross polar power levels are reduced further with this modification to 

approximately -31 dB for both beam paths at the antenna focal plane. The 

improvements to the system through the rotation modification as recommended from 

the analysis of the wire grid polariser in Section 6.4 are thus further justified by this 

result. The beam pattern predictions at the focal plane for this new ‘rotated – focusless’ 

optical layout are presented below.   
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0P Transmitted 1P Reflected 

  

  

Figure 6-26 - Co-polar and cross-polar beam pattern predictions at the antenna focal plane for the Band 

9 'rotated - focusless' design with grid wires rotated to 111.18° - central frequency (661 GHz) 

The removal of the beam waist between the mirrors necessitates an increase in the grid 

diameter from 17 mm for the current nominal configuration to at least 47 mm, which 

ensures a 5w beam truncation at the lowest frequency. The opto-mechanical constraints 

of the Band 9 cartridge prohibit such a large grid with current constraints. As such, 

while this alternative ‘focusless’ approach to the front-end optics exhibits a more 

desirable cross polar efficiency, the implementation of such a substantial modification 

to both the mirror surfaces and the wire grid polariser was deemed to be unrealistic.   
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6.6 Verification of Grid Projection Effect at Low Frequency 

As a complement to the work presented above regarding improvement of the cross-

polar efficiency of Band 9 through rotation of the polarising grid lines relative to the 

incident radiation, a similar polarising grid test facility with a layout to emulate that of 

Band 9 was developed. This test facility was designed as a low frequency, stripped 

down version of the Band 9 system, comprised of a  of a planar polarising grid, a conical 

corrugated horn to generate the linearly polarised incident source field and waveguide 

probe mounted on a 2D planar scanner to record the output field. The corrugated horn 

used is the same 94 GHz feed horn used for experimental measurements detailed in 

Chapters 3 and 4.The measurement of this system was achieved using the same near-

field scanning arrangement detailed in Section 3.3. A wire grid polariser was purchased 

from QMC Instruments Ltd. This grid consisted of wires of 10µm diameter spaced by 

25µm and assembled on a circular aluminium frame. The frame had an outer diameter 

of 165 mm with an assembly thickness of 10 mm, leaving an inner diameter of 140 mm. 

The wire grid polariser was placed at a distance of 70 mm from the horn aperture and 

was mounted on a gimbal style frame which allowed for rotation about three frame 

axes: one global axis and two local axes. At this distance the Gaussian beam radius 

approximating the horn aperture field at 100 GHz is 15.75 mm. The taper ratio 

(Equation 2.26) of the beam radius to the aperture of the grid is 4.45, ensuring that the 

entire beam is contained within the grid. The angle of the grid wires was rotatable 

within this gimbal frame. This layout allowed for multiple orientations of the polarizing 

grid lines relative to the incident angle of polarization. The angles about which the grid 

is rotated are equivalent to those referred to in Section 6.4 for the Band 9 grid: the x axis 

angle φ, the y’ axis angle θ and the wire grid angle ψGrid. A schematic of the layout for 

this system is illustrated below in Figure 6-26. The wire grid polariser and its mounting 

within the near field measurement system are displayed in Figure 6-28.  
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SCATTER predictions of the complex aperture field of the feed horn reveal a cross polar 

power level of -35 dB. Co polar and cross polar beam pattern predictions of the mode-

matched horn field at the output plane are compared against measurement without the 

inclusion of the grid below in Figure 6-29. 

 

 

Wire Grid Polariser Waveguide Probe 

Wire Grid Polariser 

mounted on ‘Gimbal’ 

style frame  

Corrugated Feed Horn  

Figure 6-27 - Optical layout for stripped down wire grid polariser test facility 

70 mm 100 mm 

Output 

Plane Wire Grid 

Polariser 

Corrugated 

Horn 

y 

z 

x 

Figure 6-28 - Wire grid polariser (left) and its gimbal-style mounting within the near field scanning 

system consisting of the corrugated feed horn and waveguide probe. 
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Predicted Measured 

  

  

Figure 6-29 - Predicted and measured co and cross polar beam patterns for the 100 GHz corrugated 

feed horn at the output plane with no grid included 

Measured cross polar power levels at the output field are calculated for 100 GHz at 

approximately -26 dB, while predictions give the cross polar power level to be much 

lower at -45 dB. These values set the baseline for cross polar power level calculations for 

the various orientations of the wire grid polariser. The higher levels of measured cross 

polar power are lightly due to the influence of the waveguide probe (WR10) used to 

measure the output field. No deconvolution of this aspect of the measurements was 

incorporated into the simulations using PO. The grid within GRASP9 is also simulated 

as an ideal grid with ideal characteristics, an assumption which may lead to low levels 

of disagreement between theory and measurement. 

The orientation range for the polarizing grid frame is similar to that as described above 

in figure (ref diagram above that describes band 9 grid angles). The xyz frame is set as 
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the global coordinate frame with the xy plane orthogonal to and the z axis collinear to 

the optical axis. The polarization for the feed horn can be aligned along both the xz and 

yz axes, thus representing the nominal and rotated polarisations for the feed horns from 

the Band 9 system (c.f. Section 6.4).  

The angle of the projection of the x’’ axis upon the xy plane (ψGrid) is calculated using 

Equations 6.10 to 6.12. The predicted angle of projection is plotted as a function of the 

the x and y’ rotation angles φ and θ in Figure 6-30: 

 

 

 

 

 

 

 

 

 

 

The above plot can now be used to find the optimum grid rotation angle ψGrid for any 

combination of the rotation angles φ and θ. The transmitted beams for three angular 

orientations of the wire grid polariser were measured: φ was fixed at 40° and θ varied 

over 10°, 20° and 22°. From the above contour plot the optimum grid wire alignment 

angle ψGrid was determined for the three grid orientations. In Figure 6-31 below ψGrid is 

plotted as a function of θ for φ = 40°, and can be visualised as a planar cut through the 

above contour plot. The resultant optimal grid angles for the three chosen rotation 

angles of 10°, 20° and 22° are thus predicted as 8.3°, 16.0° and 17.45° respectively.  

Figure 6-30 - Contour plot of grid rotation angle ψGrid as a function of φ and θ, both varying from 0 to 90° 



 

Figure 6-31 - Plot of ψGrid

Transmitted cross-polar power levels were determined in the same manner as for the 

Band 9 front-end optics by integrating cross polar amplitude over copolar. A 90° 

waveguide twist facilitated measure

the Band 9 grid orientation analysis, measurements were compared against PO 

predictions from GRASP9. Implementation of the system in GRASP9 was typical with 

the complex field of the aperture of the feed ho

wire grid polariser treated as an ideal grid object. 

6.6.1 Results 

Predicted and measured beam pattern contour plots of the co and cross

the three y’ rotation angles (θ = 

θ there are three distinct sets of co and cross polar contour plots representing three 

different values of ψGrid. One at some angle below the optimal angle, one at the optimal 

angle as predicted from Figure 
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Grid as a function of θ varied from 0° to 90° with φ fixed at 40°   

polar power levels were determined in the same manner as for the 

end optics by integrating cross polar amplitude over copolar. A 90° 

waveguide twist facilitated measurement of the cross polar amplitude pattern. As with 

the Band 9 grid orientation analysis, measurements were compared against PO 

predictions from GRASP9. Implementation of the system in GRASP9 was typical with 

the complex field of the aperture of the feed horn generated using SCATTER and the 

wire grid polariser treated as an ideal grid object.  

Predicted and measured beam pattern contour plots of the co and cross-polar beams for 

θ = 10°, 20° and 22°) are presented below. For each value of 

there are three distinct sets of co and cross polar contour plots representing three 

. One at some angle below the optimal angle, one at the optimal 

Figure 6-31 and one above the optimal angle.  

This first set of contour plots is for the y’ rotation angle θ = 10°, with three sets of 

predicted and measured plots for ψGrid equal to 0° (Figure 6-32), 8° (Figure 

. The middle result represents the optimal value of ψGrid, which is actually 

found that this exact value of grid rotation was difficult to 

8.29012

16.0129

17.4496
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θ(°)

 

fixed at 40°    

polar power levels were determined in the same manner as for the 

end optics by integrating cross polar amplitude over copolar. A 90° 

ment of the cross polar amplitude pattern. As with 

the Band 9 grid orientation analysis, measurements were compared against PO 

predictions from GRASP9. Implementation of the system in GRASP9 was typical with 

rn generated using SCATTER and the 

polar beams for 

are presented below. For each value of 

there are three distinct sets of co and cross polar contour plots representing three 

. One at some angle below the optimal angle, one at the optimal 

with three sets of 

Figure 6-33) and 20° 

, which is actually 

that this exact value of grid rotation was difficult to 
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implement in the experimental setup and it was deemed easier to match to the rounded 

value of 8°. This practice is repeated in subsequent results.  

• θ = 10°, ψGrid = 0° 

Predicted Measured 

  

  

Figure 6-32 - Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 0 

 

• θ = 10°, ψGrid = 8° 

Predicted Measured 
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Figure 6-33 - Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 8° 

• θ = 10°, ψGrid = 20° 

Predicted Measured 

  

  

Figure 6-34 Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 15° 
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Comparison between experimental and predicted results shows reasonable agreement.   

The disparity between the predicted and measured beam patterns here is of a similar 

nature of that previously described for the farfield measurement of the horn field 

without the grid. For all grid rotations there is negligible alteration to the measured co-

polar beam pattern and the evolution of the cross polar is similar to that seen for the 

Band 9 polarising grid (c.f. Figure 6-20 and Figure 6-22). For grid rotation angles away 

from the optimal the cross polar beams exhibit the expected pattern of a mixture of the 

co and cross polar patterns.  

At the optimal grid rotation angle the cross polar power pattern has evolved to the 

typical double lobed pattern, similar to that seen at the focal plane of the Band 9 front 

end optics. This result is interesting as the grid, even in this optimal configuration, has 

altered the cross polar power pattern from that seen for the horn transmitting without 

the inclusion of the grid (i.e. the farfield pattern for the horn). This effect was also noted 

for the Band 9 front end optics for PO predictions with and without the grid.  

As for the Band 9 polarising grid analysis, the cross polar power levels are tracked 

against grid rotation angle. These values are plotted below in Figure 6-35 in dB. These 

cross polar power levels have been normalised against the co polar power levels.   
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The measured cross polar levels follow a similar trend to that for the predicted results, 

with a minimum level occurring at the approximate optimal grid rotation angle of 8.29°. 

As with the previous comparison of cross polar levels without the grid, the predicted 

cross polar levels are distinctly lower than the measured levels. The difference might be 

accounted for in that the model does not include deconvolution or inclusion of 

rectangular waveguides tapering to circular waveguide in the corrugated feed horn. 

The relative difference is less important than the trend that the cross polar levels both 

reach a minimum at the same predicted angle. The plots in Figure 6-36 below are of un-

normalised co and cross polar power levels, calculated as a summation integral over the 

output grid. These plots exhibit the expected overall profile of a maximum of co polar 

and a minimum of cross polar power for the optimal grid rotation angle.  

Co-polar Cross-polar 

 
 

Figure 6-36 - Plots of measured (blue) and predicted (red) co and cross polar power levels as a function 

of grid rotation angle 

Admittedly there are some small discrepancies exhibited in the measured power levels 

when overlaid with predictions. This is not surprising however, given that there is a 

considerable margin of error to be expected for the alignment of the grid wires. This 

was also found to be the case in the analysis of the rotated version of the Band 9 

polarising grid. The grid within GRASP9 is also simulated as an ideal grid with ideal 
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characteristics, an assumption which may lead to low levels of disagreement between 

theory and measurement. 

The following set of contour plots is for the y’ rotation angle θ = 20° and with three sets 

of predicted and measured plots for ψGrid equal to 10° (Figure 6-37), 16° (Figure 6-38) 

and 25° (Figure 6-39). The middle result (Figure 6-38) represents the optimal value of 

ψGrid = 16.02°. 

• θ = 20°, ψGrid = 10° 

Predicted Measured 

  

  

Figure 6-37 Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 10 ° 
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• θ = 20°, ψGrid = 16° 

Predicted Measured 

  

  

Figure 6-38 Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 16 ° 

• θ = 20°, ψGrid = 25° 

Predicted Measured 
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Figure 6-39 Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 25 ° 

The comparison between measurement and prediction for θ = 20° is very good. The 

cross polar power pattern evolves in the same manner as for the previous set of results. 

The plot below (Figure 6-40) tracks the measured and predicted cross polar power 

levels in dB against ψGrid.  

 

 

 

 

 

 

 

 

These results follow the same expected pattern as seen in Figure 6-35 with a minimum 

cross polar power level shown for the approximate optimal grid rotation angle of 

16.01°.  
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Figure 6-40 - Plot of measured (blue) and predicted (red) cross polar power levels ( dB) for varying grid 
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Co-polar Cross-polar 

  

Figure 6-41 - Plots of measured (blue) and predicted (red) co and cross polar power levels as a function 

of grid rotation angle ψGrid 

Plotting the un-normalised co polar and cross polar power values against grid rotation 

angle ψGrid in Figure 6-41 above reveals the expected trend of maximum co polar power 

and minimum cross polar power occurring for ψGrid approximately equal to 16.01°. 

There is however a distinct discrepancy between measurement and predictions for the 

co polar trend, which is yet again accounted for by human error in aligning the grid 

wires.  

The final set of contour plots below are for the y’ rotation angle θ = 22°, with three sets 

of predicted and measured plots for ψGrid equal to 10° (Figure 6-42), 17°(Figure 6-43) 

and 25° (Figure 6-44), with the grid rotation angle of 17° representing the optimal grid 

rotation angle of 17.45°.  
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• θ = 22°, ψGrid = 10° 

Predicted Measured 

  

  

Figure 6-42 - Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 10 ° 

• θ = 22°, ψGrid = 17° 

Predicted Measured 
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Figure 6-43 - Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 17 ° 

• θ = 22°, ψGrid =25 ° 

Predicted Measured 

  

  

Figure 6-44 - Predicted (left) and measured (right) beam patterns for co-polar (top) and cross-polar 

(bottom) for ψGrid = 25 ° 
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Comparisons between measurement and predictions show good agreement for both co 

and cross polar pattern levels. There are some minor beam distortions evident in the 

measured beam patterns that can be attributed to the metallic rim housing the polariser. 

With increasing y’ rotation angle θ the plane of the grid begins to intersect the beam 

with decreased diameter, thereby increasing the truncation effects of the grid. This is 

most evident in the co polar power patterns – c.f. Figure 6-45 below: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

-30

-25

-20

-15

-10

-5

0

0 5 10 15 20 25 30

C
ro

ss
-P

o
la

r 
P

o
w

e
r 

(d
B

)

Ψgrid (°)

VNA XsP - θ: 22°

GRASP XsP - θ: 22°

Figure 6-46 - Plot of measured (blue) and predicted (red) cross polar power levels ( dB) 

for varying grid rotation angle ψGrid 
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Figure 6-45 - Distortion of co-polar amplitude due to metallic rim of wire 

grid polariser 
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The trend of cross polar power levels against ψGrid is plotted above in Figure 6-46, which 

shows relatively good comparisons between measurement and predictions. The 

measured cross polar power levels show a minimum value at ψGrid approximately equal 

to 15°, rather than at the predicted optimum ψGrid = 17°.  

Predicted Measured 

  

Figure 6-47 - Plots of measured (blue) and predicted (red) co and cross polar power levels as a function 

of grid rotation angle ψGrid 

The above plots reveal that transmitted co-polar power peaks to a maximum and cross-

polar power correspondingly drops to a minimum for the predicted optimum ψgrid. 

Measured power levels exhibit a degree of disparity compared to predictions. As a 

consequence the normalised cross polar efficiency (Figure 6-46) also reveals slightly 

different values for prediction and measurement. This is attributed to the typical human 

error with aligning the grid wires. The grid object in GRASP9 is treated as an ideal grid 

object. This assumes perfect transmission and reflection for all perpendicularly and 

parallel polarised waves respectively, but does not take into account the physical 

properties of the metallic wires which will likely lead to disagreement between theory 

and experiment. This was the same electrical object used for the Band 9 PO analysis and 

the same degree of disparity between prediction and experiment was observed (c.f. 

Section 6.4) .The influence of waveguide probe is also not accounted for in predictions, 

however the VNA used in the near field scanning arrangement has excellent dynamic 

range so this minor effect is considered negligible. The calculation of the optimal grid 
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wire rotation angle using Euler angle transformation matrices (c.f. Figure 6-30) has been 

repeatedly verified with each test case.  

An interesting conclusion is arrived at when comparing the results from the rotated 

version of the Band 9 front end optics in Section 6.4 and the 100 GHz polarising grid 

tests. It is well established that off-axis reflectors, be they ellipsoidal, paraboloidal or 

some other conic, introduce an element of rotation to the plane of polarisation of an 

incident linearly polarised EM beam [97], [107] and [108]. In [107] various patterns of 

polarising grid wires were developed using this geometrical projection effect in an 

effort to improve transmission and reflection by the polariser. C. Dragone has patented 

a method for constructing wire grids with optimal transmission/reflection of a linearly 

polarised beam that has been reflected by an off-axis paraboloidal surface [109]. These 

‘Dragone’ grids are constructed in a similar manner to those from [107] by tracing the 

geometrical projection introduced by the off-axis reflector onto both plane and curved 

surfaces. A typical distorted polarisation pattern is shown below.  

 

 

 

 

 

 

 

 

The traditional Dragone grid is designed for compensation of the cross polarisation 

generated by an off-axis paraboloidal mirror. In [109] a planar grid is located between 

Linearly polarised 

source field  
Off-axis 

reflector  

Distorted polarisation 

pattern  

Figure 6-48 - Distortion of polarisation pattern due to geometrical 

projection effects of off-axis reflector - [107] 
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the focal point and the reflector surface. The grid wires are constructed by tracing the 

reflected rays onto the grid plane. This is illustrated below in Figure 6-49. 

 

 

 

 

 

 

The chief difference between the Dragone polarising grid described above and the wire 

grid polariser in the Band 9 system is that this Dragone grid is designed specifically for 

reflecting the linearly polarised beam from the input wavefront to the focal plane all 

within the same plane, whereas the Band 9 grid is rotated about two planes. It is the 

introduction of this second rotation about y’, as seen in Figure 6-12, that introduces the 

misalignment of the transmission axis of the grid.  

It was suggested at design review meetings for the Band 9 front end optics that the 

implementation of such a Dragone grid should be investigated. After discussion of this 

concept with TICRA, the developers of GRASP9, it was determined that the modeling 

and fabrication of such a Dragone grid would prove extremely difficult. For both this 

reason and the constraints of time and cost the implementation of a Dragone grid for 

the Band 9 optics was discontinued.  

The results of the investigations presented in this chapter show that the determination 

of the optimal grid wire rotation angle was unaffected by the off-axis reflectors of the 

Band 9 system. Despite the rotation of the linear polarisation by the off-axis ellipsoidal 

Figure 6-49 - Planar linearly polarised wavefront illuminating off-axis paraboloid with 

polarising grid located in front of focal point - [109] 
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reflectors, it has been shown here that the optimal orientation of the grid wires is 

calculated as if there were no rotation introduced. For the 100 GHz test facility there 

were no coupling optics between the horn and output plane. This is a valuable 

conclusion as the fabrication of the modified non-linear polarising grids devised by 

[107] and [108] requires difficult and precise fabrication methods and they must be 

tailor made to suit each individual system of off-axis reflectors and they of course have 

associated bandwidth effects arising out of the varying grid wire spacings along the 

plane of the grid. Linear wire grid polarisers on the other hand are relatively easier to 

fabricate.  

6.7 Conclusions 

This chapter represents the design, analysis and measurement of several modifications 

to the ALMA Band 9 front end optics. A full PO treatment of an alternate ‘Gaussian’ 

optics version for the Band 9 front end optics system was performed. This alternate 

version of the optics exhibited improved beam Gaussicity, lower cross polar power 

levels and increased coupling to the ALMA antenna. Overall these improvements were 

deemed too minor to warrant an overhaul of the optics system, yet the increase in 

aperture efficiency of ~1% may incur some further investigation based on this analysis.  

 

An in-depth PO analysis of the projection effect of the radiation incident upon the wire 

grid polariser was conducted. From this analysis an alternate version of the front end 

optics was generated. In this version of the front end optics the angles of polarisation of 

the two source feed horns were rotated through 90°. The projection angle of the 

radiation incident upon the grid was determined through an Euler angle analysis of the 

local coordinate frame of the polariser. PO predictions of this new system revealed 

lowered cross polar levels at the antenna focal plane with negligible effect on the co-

polar beam. Experimental measurements were performed to test this system and results 

revealed very good agreement with predictions. As with the ‘Quasioptical’ modification 
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to the mirror surfaces, implementation of this improvement to the system would incur 

significant revision of the mixer and LO assemblies.   

 

In collaboration with Dr. Andrey Baryshev another alternative of the front-end optics 

was investigated. This ‘focusless’ adaptation to the system involved replacing the 

ellipsoid-ellipsoid pair of M3-M41P/0P with an ellipsoid-hyperboloid arrangement. 

The purpose of this was to remove the formation of a beam waist at the polarising grid 

and thus improve the cross polar efficiency at the focal plane. Predictions of this 

focusless system revealed a significant improvement in cross polar efficiency. However, 

the strict opto-mechanical constraints for the Band 9 cartridge prevented such a design 

from being considered. However, this modification to the ellipsoid-ellipsoid pair is 

important for potential optical systems with a similar wire-grid polariser arrangement 

to that of Band 9 and would warrant further analysis to fully test its performance. 

 

An extension of the analysis of the projection effect on the wire grid polariser was 

performed. Similar projection effects to that for the Band 9 grid were predicted for a low 

frequency stripped down version of the Band 9 front end consisting of a single wire 

grid polariser mounted upon a gimbal frame. Experimental measurements of this 

system successfully confirmed predictions with excellent agreement.  
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7. Conclusion 

This thesis was concerned with the quasioptical analysis of long wavelength optical 

systems. Particular emphasis of this technique was to the analysis and verification of the 

front end optics arrangements for the Band 5 and Band 9 receiver channels of ALMA. In 

addition to the specific analysis of these systems, a comparative study of commercially 

available software packages (GRASP9 & ZEMAX) and the Maynooth Optical Design 

and Analysis Laboratory (MODAL) was performed using novel test cases of interest to 

the long-wavelength optics regime. The techniques of GBMA and mode-matching were 

applied to investigating the structure of standing wave patterns in resonant cavities fed 

by conical corrugated feed horns.  

Chapter 1 gives a general overview of the current state of submillimetre astronomy and 

its unique position within the electromagnetic spectrum. A description of the chief 

sources of astronomical submillimetre radiation is given. Observations of the Antennae 

(NGC-4038/89) from the Caltech Millimetre Array are highlighted as an example of the 

purpose and aim of submillimetre observations. A brief overview of current both 

ground based and space-borne submillimetre telescopes, their characteristics and 

science goals is outlined. Specific emphasis is placed on ALMA, which upon completion 

will form the world’s largest submillimetre array telescope.  

Chapter 2 introduces the theoretical analysis techniques utilised throughout the thesis. 

A comprehensive review of the theoretical foundations of GBMA was presented. The 

theory of GBMA was extended to describe the classical optics phenomena of Fresnel 

diffraction. An added verification of the Fresnel diffraction pattern was achieved 

through the Fourier Optics technique of the Angular Spectrum of Plane Waves. 

Comparisons drawn between these two methods revealed that GBMA provided a more 

accurate and computationally efficient result. The GBMA technique was also developed 

to accurately model the characteristic Haidinger and Fizeau fringe patterns observed by 

Michelson interferometers. As the main subject of this thesis is the analysis of the optics 

that couple feed horns to reflector antennas, a description of the characteristics of 
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conical corrugated feed horns and Cassegrain antennas is given. A general description 

of the principles of Physical Optics and the Physical Theory of Diffraction is reported 

on. Physical Optics analysis, achieved primarily through GRASP9, was used 

throughout the thesis for the characterisation of several long wavelength optical 

systems. As such, an introduction to the operation of this software package and that of 

three others, MODAL, ZEMAX and CST-MWS is detailed.   

In Chapter 3 of this thesis a comparison study of GRASP9, MODAL and ZEMAX was 

performed. This study was an extension of work previously conducted by NUI 

Maynooth in conjunction with its international research partners as part of a confidence 

analysis of the various commercial optics software packages available at the time. The 

purpose of this was to determine the applicability of these packages to the long 

wavelength regime, with GRASP used as the benchmark for testing. The test case 

scenarios employed in this report were developed to strenuously test the various 

software packages and represented highly diffracting systems such as very near field 

Fresnel diffraction arrangements as well as systems consisting of lenses and off-axis 

conical reflectors that are common to submillimetre receivers. Two software packages 

not included in the original study were ZEMAX and MODAL. Since the time of the 

original report, the primarily geometrical optics software package ZEMAX has 

developed a degree diffractive optics capability. The MODAL optics tool has been only 

recently developed in that time. The results from ZEMAX exhibit overall relatively poor 

agreement with GRASP9 for all but the simplest optical systems. This was a similar 

result to that of the ray-tracing packages GLAD and CODE-V in the original report. This 

was unsurprising given that the Physical Optics Propagator tool in ZEMAX utilises a 

combination of Fourier transforms and Fresnel diffraction integrals to compute the 

output fields. The results from MODAL exhibited much greater agreement with 

GRASP9, with only minor deviations observed.  

An experimental measurement campaign was embarked upon to model a highly 

truncating aperture which had a similar arrangement to the first batch of test cases. The 
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aim of these measurements was to resolve the disparity between GRASP9 and MODAL. 

While the experimental results compared well with both packages for the gross 

diffraction pattern, the measurement equipment proved inadequate to accurately 

account for minor diffraction pattern structure.   

Chapter 4 deals with the analysis of standing waves in submillimetre systems fed by 

corrugated horn antennas. The first part of this chapter introduces the theory of 

scattering matrices for waveguide structures and their extension to the mode-matching 

theory as developed by [71]. The scattering matrix description of several beam guide 

components as outlined by [78] is also detailed. The scattering matrix technique for 

these freespace beam guides was verified by modeling the reflection profiles for several 

examples of thin-films. The waveguide and beam guide structures are combined to give 

a complete analytical description of a feed horn. Previous work by [88] and [76] 

successfully compared prediction and measurement of several horn-horn cavity 

arrangements where multiple reflections were tracked with respect to varying interhorn 

distance. The work presented in this chapter concentrated upon the frequency 

dependence of standing waves for similar horn-horn cavities for fixed interhorn 

distances. The amplitude response patterns of these cavities were measured in the 

laboratory. In an attempt to resolve the disparity between prediction and measurement 

several theoretical models of these cavities were developed based variations of the 

corrugated horn geometry profile which were dependent on the machining tolerances 

for the horn mandrel. The results of this analysis revealed moderate gross structure 

agreement with measurement data. The minor variations to the horn geometry profile 

significantly altered the return loss profile of individual horns, but negligible 

differences were seen for cavity arrangements fed by these horns. A stray light baffle 

structure was also studied, with similar agreement between predictions and 

measurement as for the horn-horn cavities. A Fourier signal analysis of the amplitude 

response patterns of this baffle was performed, revealing very good agreement between 

predictions and measured data.   
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Further investigation of these cavity structures is needed, specifically relating to 

quantifying the effect of the rectangular to circular waveguide transition zone at the 

back of the feed horns. FDTD techniques were successfully employed using CST-MWS 

to verify the mode-matching technique. However, the computational intensity of these 

calculations prevented any further analysis of the horn. One recommendation is to 

reduce the complexity of the corrugated feed horn structure by employing an 

equivalent smooth walled horn. The effect of the transition zone may thus be quantified 

with comparisons made to both mode-matching theory and measurement.  

The quasioptical and physical optics analysis of the ALMA Band 5 front end optics is 

detailed in Chapter 5. The first stage of this analysis was conducted in conjunction with 

the Band 5 development group at GARD in order to determine the effect of increased 

beam truncation upon system efficiency. Three levels of truncation were analysed for 

two versions of the front end optics reflector surfaces using PO calculations. The results 

of this analysis revealed a sufficient compromise between increased beam truncation 

and opto-mechanical limits. The prototype front-end optics was consequently 

developed at GARD based upon these findings. The second stage of this analysis 

involved a measurement campaign of the corrugated feed horn and front end optics, 

the results of which revealed excellent agreement with theoretical predictions. An initial 

set of beam pattern measurements for the receiver inserted into the cryostat also 

revealed similar levels of agreement with PO predictions.  

As of the time of finalizing this thesis there was still extensive testing of the Band 5 

prototype optics required. There remains an issue of asymmetry for the higher 

frequency copolar beam revealed by cold beam patterns measurements. This is possibly 

due to the presence of the IR filters and their respective housing structures within the 

cryostat. Further analysis of the optics after cooling can be performed using MODAL, 

which allows for the PO calculation of dielectrics. When high resolution beam pattern 

measurements are conducted, they may be used as complex 2D source fields within 

both GRASP and MODAL to predict the antenna main beam in comparison with the 
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theoretical results presented in this chapter. Further investigation of the ALMA antenna 

is also required to include the subreflector support legs.  

Chapter 6 is concerned with the extended PO analysis of the ALMA Band 9 front end 

optics. Although this receiver channel has been previously analysed in [99] there 

remains an outstanding issue of the levels of cross polar leakage which do not meet 

ALMA requirements. Several solutions to this problem are discussed here. The first 

involves a re-working of the reflector surfaces to better match the phase radii of the 

incident radiation and thus provide better coupling to the antenna. The results revealed 

an increase in beam Gaussicity, lowered cross polar levels and increased aperture 

efficiency. However, these improvements were practically negligible and did thus not 

warrant implementation. The second solution was developed in collaboration with Dr. 

Andrey Baryshev, and involved removing the inter-mirror focusing of the beam. The 

formation of a beam waist at the wire grid polariser leads to difficulties in the grid 

efficiently separating the orthogonal beam components. This was achieved by a novel 

hyperboloid-ellipsoid reflector arrangement which revealed much lower cross polar 

power leakage. Although the system was deemed too drastic to implement in the 

current Band 9 channels, the ‘focusless’ system warrants further investigation as it 

would undoubtedly prove useful for possible future developments of the cartridge, as 

well as for other long wavelength receiver systems.  

The final solution to the cross polar power problem was borne out of investigations into 

the projection effect of the incident beam from the off-axis mirrors onto the polarising 

grid plane. Through analysis of the geometry of the problem, an alternate system was 

devised based upon modifying the angle of rotation of the grid wires to ensure 

improved transmission/reflection. The predictions for this system exhibited lowered 

cross polar levels at the antenna focal plane. A measurement campaign of this modified 

system at SRON revealed excellent agreement with predictions. Further investigations 

of this projection effect were conducted at Maynooth which further verified the 

previous results.  
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Appendix A 

ALMA Band 9 Measurement System  

In this appendix a description of the VNA heterodyne system used for measuring the co 

and cross polar beams at 670 GHz for the various grid configurations from Section 6.4 is 

given. The following description makes reference to the accompanying electrical 

diagram of the PLL system below.  

 

A typical VNA is incapable of direct measurement of signals above 20 GHz. The 

inclusion of converter waveguide heads will only increase this range up to 

approximately 350 GHz. To measure signals at higher frequencies than these the 

heterodyne mixing technique must be employed. The heterodyne mixing arrangement 

for the Band 9 receiver channel is illustrated below in Figure A-1.  

 

The Gunn oscillator is mechanically tunable for 100-120 GHz whose stability is 

maintained by the Phase Locked Loop (PLL). The frequency stability of the Gunn 

oscillator depends on the dimensions of the cavity under scrutiny and the bias voltage 

applied to the Gunn diode. The PLL provides a variable bias voltage obtained from a 

closed loop control system which guarantees frequency stability for the Gunn.  

 

The Gunn oscillator maintains a stable signal frequency of fG = 670/6 = 111.667 GHz. Of 

this Gunn signal, 90% is directed towards the multiplier arrangement and the 

remaining 10% is directed towards the mixer. Following this 10% signal from the Gunn 

oscillator, it is mixed with the Local Oscillator (LO) signal of fLO = 18.62311 GHz. This 

mixing results in a multitude of frequencies given by the combinations between the 

Gunn and LO frequencies. The Intermediate Frequency (IF) of 72 MHz is filtered out 

from these signal combinations.  The PLL compares the 72MHz IF signal with a stable 

reference 72 MHz signal from a signal generator. The PLL thus serves as an IF monitor 

which directs 72 MHz signal to a an amplifier and multiplier arrangement which sends 
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a signal 6 times the IF frequency (432 MHz) to the VNA to be used as the reference 

signal.   

 

Going back to the 90% Gunn signal; this portion of the signal is multiplied up to the 

operating RF of the system (i.e. 6fGunn = 670 GHz). This 670 GHz beam is then 

transmitted through the optical arrangement and coupled to the receiver horn. This RF 

output signal is then converted to an electrical signal using a SLED device acting as a 

sub harmonic mixer. The SLED mixes the RF signal (670 GHz) with the 36th harmonic of 

the LO signal (equal to 670.432 GHz) which produces a signal 6 times the IF frequency 

(432MHz) which is then coupled to the VNA as the output signal. The following 

photograph summarises the Gunn oscillator and frequency mixer chain. 
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