
Parameter Estimation for a Model With Both Imperfect Test and Repair 
 
 

Simon Wilson1, Ben Flood1, Suresh Goyal2, Jim Mosher3, Susan Bergin2 
Joseph O’Brien4, Robert Kennedy4 

 
1Centre for Telecommunications Value-Chain Research, Trinity College Dublin, Ireland 

2Bell Labs Ireland, Blanchardstown, Dublin 15, Ireland 
3Lucent Technologies, Columbus, Ohio, USA 

4Lucent Technologies, Blanchardstown, Dublin 15, Ireland 
Email: swilson@tcd.ie; goyal@alcatel-lucent.com 

 
 

Abstract 
 

We describe estimation of the parameters of a 
manufacturing test and repair model using data available 
from that test.  The model allows imperfect testing and 
imperfect repair. The principal problem that we address 
is of parameter identification, given insufficient data, that 
we address by making conservative assumptions on the 
property being measured and the associated parameter 
values. Several cases of commonly occurring test types, in 
the manufacture of electronic products, are considered.  

 
1.  Introduction 

 
There is increasing interest in mathematical models for 

investigating and optimizing the manufacturing testing of 
electronic products, driven by the rapid increase and 
complexity in testing, and the fact that products being 
tested are composed of components from several suppliers 
and may be tested at globally distributed locations. 

In this paper we propose an imperfect test and repair 
model, as in [1, 2], and develop methods for statistical 
estimation of the parameters of this model from test data.  
These estimations use common techniques, such as 
estimating a population mean and variance by a data 
sample mean and variance.  This is done by defining a 
statistical model for the test measurements from which the 
test parameters are defined.  Various measurement models 
are proposed, according to the type of test data observed; 
see Sections 3 to 6.  The test model remains the same and 
is described in Section 1.1.  The test model parameters 
can be defined in terms of the measurement model 
parameters, and this is done in each of Sections 3 to 6. 
There are complications because, for many tests, the data 
do not have sufficient information to estimate all the 
parameters uniquely. We address that by making 
sufficient assumptions about the parameter values of the 
measurement or test model, that we deem to be reasonable 
or conservative, so that unique estimates can be produced.   

There are two novel contributions in this paper.  First 
is its use of a statistical model for the test measurement 
data to implicitly define test parameters, so statistical 
estimation of test parameters from test data is possible. 
Second are the proposals for assumptions about the 

measurement or test model parameters in the cases where 
the test data are insufficient for their unique estimation. 

 
1.1 The Test Model 

 
In earlier papers [1,2], we developed mathematical 

models and a computational scheme for investigating the 
non-intuitive trade-offs between incurred test-costs and 
the resulting product quality (field performance, expected 
return rates, etc.) along the entire assembly, test and repair 
chain. The model parameter estimation described here is 
for various different test scenarios that are combinations 
of different property types being measured (continuous or 
discrete) and different data recorded (the measurement 
itself or simply whether the product passed or failed). 

Modeling test and repair is an active research area. 
Early work on fault testing, such as [3], assumed perfect 
tests, which is unrealistic for electronic products. The 
optimal arranging of tests has also been investigated, for 
example [4].  Methods that allow false positive and false 
negative test results are more in line with our approach. 
Dislis et al. [5] have several papers in investigating the 
dynamics of test cost optimization, while in [6] a 
comprehensive model with imperfect testing and retesting 
is described. Trichy et al. [7] allow false positives as well 
as allowing defects to be introduced before and after test.  

 
 
 
 
  
 
 

Fig. 1: Example Test & Repair Network 
 
Our model [1,2], illustrated with the simplest test and 

repair network in Fig. 1, is as follows. Assume that a 
property of a product is either good (i.e., it will not fail in 
the field during its expected life-time) or bad.  These are 
tested imperfectly, with the chance of a false positive or a 
false negative result. These properties are measured 
during test; the measured value may be continuous or 
discrete.  Those products that are measured to be bad are 
then sent for repair; the products measured bad are a mix 
of “truly” bad and “truly” good (the latter are the result of 
a false negative on the test).  The repair process is also 
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imperfect, and may not successfully repair a product.  
Repaired products are then re-tested, with the possibility 
as before of a false negative or a false positive result. 

The test model is defined by the following parameters. 
We define GI  to be the probability that a product is truly 
good (the proportion of good products).  We define αBG to 
be the probability that a product that is truly bad is 
measured as good, or  
αBG = P(product measured as good | product is truly bad). 
Similarly: 
αGB = P(product measured bad   | product is truly good); 
αBB = P(product measured bad   | product is truly bad); 
αGG = P(product measured good | product is truly good). 
Since αGB = 1 – αGG and αBG = 1 – αBB, it is sufficient to 
specify αGG and αBB. 

As we have said, the values of GI and the α’s are not 
defined explicitly in our model, although they are the 
quantities of interest.  They are defined in terms of a 
statistical model for the value of the quantity being 
measured over the population of units, a statistical model 
for the measurement error of that value, and what makes a 
unit good or bad.  It is the measurement error that leads us 
to make false positives and false negatives (so that αGB 
and αBG are not zero).  As we have said, the advantage of 
this approach is that the test parameters can be estimated 
from data on the measurements recorded in the test. 

We define β’s to be the probabilities that truly 
good/bad products are repaired to good/bad in the same 
way, e.g., βGB = P(product repaired to be bad | product 
was truly good before), βGG = P(product repaired to be 
good | product was truly good before), βBB = P(product 
repaired to be bad | product was truly bad before) and βBG 
= P(product repaired to be good | product was truly bad 
before). Since βGB = 1 – βGG and βBG = 1 – βBB, it is 
sufficient to figure out βGG and βBB.  We will assume in 
all of this work that βGB = 0, i.e., it is impossible to take a 
truly good product and, by repairing it, make it truly bad.  
This implies that βGG = 1, leaving us to estimate only one 
free β parameter (either βBG or βBB). 

 
1.2. The Data 

 
We assume that there are three sets of data available. 

The first is a set that is collected only once from "one-off" 
experiments and is a set of m repeated measurements 
z1,...,zm on one example of the product. These data have 
information on the size of the measurement error.  The 
second set comes from every time that we test and is a set 
of measurements y1,...,yn on n different examples of the 
product.  We refer to this as the first pass data.  The third 
set is the yield prG on the second pass test (after repair), 
that is the proportion of units that pass this second run of 
the test.  

 
1.3. Structure of the Article 

 
The remainder of this paper is structured as follows. 

First, in Section 2, we describe how to estimate the β's 

were we to know the α's, GI and the yield of the second 
pass test of repaired items.  We do this first because this is 
the same regardless of the measurement model.  Sections 
3 to 6 describe how to estimate the α's and GI for 6 cases 
of data type and measurement that commonly occur in 
testing of electronic products.  This is done by defining a 
statistical model for the data in each case and estimating 
the parameters of the statistical model using standard 
statistical estimation methods, and using these estimates 
to get values of GI and the α's. Section 7 is a small case 
study and Section 8 concludes the paper with a discussion 
and conclusion. 

 
2.  Estimating β's given α's and GI 

 
Assume that we observe the yield from the second test 

(the proportion of products passing the second test that 
failed the first pass test and were repaired), which we 
denote prG.  This means that prG is an estimate of the 
probability of passing the second pass test given that the 
first test is failed (product measured bad). 

Assume for the moment that we have values for the 
α's and GI (these will be obtained from the work described 
in sections 3, 4 and 5). 
By the partition law: 
P(failed 1st test)  

= P(failed 1st test | truly good) P(truly good)  
+ P(failed 1st test | truly bad) P(truly bad) 
 =  αGB GI + αBB (1 − GI)  (Eq. 2.1) 

By Bayes' law and substituting in Eq. 2.1: 
P(truly good before repair | failed 1st test)  
= P(failed 1st test | truly good) P(truly good)  
    / P(failed 1st test) 
= αGB GI / (αGB GI + αBB (1 − GI)) (Eq. 2.2) 

By the partition law and substituting in Eq. 2.2: 
P(truly good after repair | failed 1st test)  

= P(truly good after repair | truly good before 
          repair and failed 1st test)  

× P(truly good before repair | failed 1st test)   
+ P(truly good after repair | truly bad before 
 repair and failed 1st test)  
 × P(truly bad before repair | failed 1st test)  
= [βGG αGB GI  + βBG αBB (1 − GI)] 
                  / [αGB GI + αBB (1 − GI)]  (Eq. 2.3)   

By the partition law again and substituting Eq. 2.3 
we have: 
prG ≈ P(pass 2nd test | failed 1st test)  

= P(product measured good | truly good after 
repair  and failed 1st test) 

× P(truly good after repair | failed 1st test)  
+  P(product measured good | truly bad after 

repair and failed 1st test)  
× P(truly bad after repair | failed 1st test) 
= [αGGβGGαGBGI + αGGβBGαBB(1 − GI)  
+ αBGβGBαGBGI + αBGβBBαBB(1 − GI)] 
/ [αGB GI + αBB (1 − GI)]. 
 
Now substituting the assumptions that βGB = 0, βGG = 

1, and also βBB = 1 − βBG, we have:    
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prG ≈  [αGGαGBGI + αGGβBGαBB(1−GI) 

+ αBG(1−βBG)αBB(1 − GI)] 
        / [αGB GI + αBB (1 − GI)] 

Re-arranging this equation gives a formula for βBG: 

.
)1)((

)1())1((

IBGGGBB

IBBBGIGBGGIBBIGBrG
BG G

GGGGp
−

−−−−+
=

−ααα
αααααα

β  

                                            (Eq. 2.4) 
The other β's are βBB = 1 − βBG, and, by assumption 

βGB = 0, βGG = 1. 
 

3.  Estimating α's and GI for Continuous 
Analogue Measurements 

 
In this case the tested property x of the product is 

continuous. An example is a test that involves the  
measurement of an analogue power level which is stored. 
The measurement model is that x is normally distributed 
with mean µ and variance σ2.  Items are truly good if the 
property value is in the interval (L,U), otherwise bad, so 
that GI = P(L < x < U).  The measured value of the tested 
property is y.  The imperfect test is modelled by assuming 
that, given x, the value of y is normally distributed with a 
mean x and measurement variance s2; that the mean of y is 
x implies that there is no measurement bias.  Standard 
properties of the normal distribution imply that y is 
distributed normally with a mean µ and variance σ2+ s2.  

Where the Gaussian distribution is inappropriate, one 
can find a transform of the data where it is a reasonable 
approximation. What follows in this section then applies 
to the transformed data, including a transform of L and U.  
This idea is illustrated by the log transform in Section 4. 

Recall from Section 1 that our data are: "one-off" data, 
being a set of m repeated measurements z1,...,zm on one 
example of the product, first pass data y1,...,yn on n 
different examples of the product and the yield prG on the 
second pass test (after repair), that is the proportion of 
units that pass the test.  Basic statistical theory on sample 
sizes can give the values of m and n so that with sufficient 
confidence the estimates of µ, σ2 and s2 are estimated to a 
certain precision [8, 9]. 

The variance in the measurements of the one-off test 
data is s2, and so we estimate s2 as the sample variance of 
the zi.  The mean and variance of the first pass tests are µ 
and σ2 + s2 respectively, so that we estimate µ and σ2 + s2 
by the sample mean and variance of the yi.  Subtracting 
the estimate of σ2 + s2 from the estimate of s2 gives us an 
estimate of σ2.  Once we have estimates for µ, σ2 and s2 
then we can use these to estimate GI and the α's.   

First, GI is given by: 

.)( 






 −Φ−



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

 −Φ=<<=
σ

µ
σ

µ LUUxLPGI    (Eq. 3.1) 

where Φ(z) is the standard normal distribution function. 
By the definition of conditional probability, we have: 
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  (Eq. 3.2) 

The numerator of this equation is a probability on the 
joint distribution of y and x, which in this case is a bi-

variate normal with mean vector (µ , µ) and variance 
matrix: 

Σ =
σ 2 + s2 σ 2

σ 2 σ 2

  

   
   

   

   
   . 

Given this, we can compute αGG by using: 
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where Φ y ,x (y, x)  is the bivariate normal cumulative 
distribution function of y and x with the given mean and 
variance.  We can derive an expression for αBB in a 
similar manner: 
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(Eq. 3.3) 

Letting p1 = P(L < y < U, x < L or L < y < U, x > U) and 
p2 = P(x < L or x > U), we have αBB = 1 – p1/p2 where: 
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and p2 = Φ((L − µ) /σ ) +1− Φ((U − µ) /σ ) . 
Having estimated GI and the α's, the result of Section 

2 can be used to determine the β's from prG.  We note that 
the above formulae hold if the accept interval is infinite, 
i.e., either L = –∞ or U = ∞. 

For example, suppose we have a test with accept limits 
L = −13.5 and U = −10.  We observe a sample variance of 
the one-off test data set to be 0.0028, the sample mean and 
variance of the first pass test to be −11.215 and 0.152, and 
a yield of prG = 0.942 from the second pass test.  This 
gives model parameter estimates:  µ = −11.215, s2 = 
0.0028 and σ2 = 0.152 − 0.0028 = 0.1492.  Substituting 
these into Equations 3.1, 3.2 and 3.3 we compute: GI = 
0.97, αGG = 0.995 and αBB = 0.896.  Substituting these 
and prG into Equation 2.4, we obtain βBG = 0.93. 

 
4.  Binary Result of A Continuous Analogue  
Measurement 

 
In many tests there is a continuous property being 

measured, as in the model of Section 3, but the 
observation is binary, either good (e.g. L≤ y≤U)  or bad 
(e.g. y<L or y>U). The data z1,...,zm and y1,...,yn of Section 
3 are now binary (good/bad) and can be summarized by 
the yields pone and pG, being the proportion of the zj and yi 
that are good respectively.  In this case the underlying 
measurement model is the same as Section 3 but the data 
contain less information than in that case and it is much 
more difficult to obtain the estimates of the µ, σ2 and s2 
that we need to compute α's and GI.  Here we adopt a 
strategy of making an assumption about the value of µ.  
We have different assumptions according to the test in 
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question.  In all cases, the methods that we present will 
work only if  pone and pG are neither 0 or 1 (must have 
observed at least one fail and one pass in each set of tests). 

 
4.1. Assume that the Population Mean is at the 
Centre of the Accept Interval 

 
In certain cases it may be reasonable to assume that µ 

= (L+U)/2; because the normal distribution is symmetric 
about its mean, this is equivalent to assuming that the 
probability that we measure a value below the lower 
bound L is the same as the probability that we measure a 
value above the upper bound U.  We also assume that the 
true value of the property of the product used in the one-
off tests is close to µ.  This leads to a conservative 
estimation procedure because it produces the largest 
estimates of σ2 and s2 consistent with the population mean 
of the property being in the accept interval (L,U). 

From the one-off test, an estimate of P(L < y < U | x) 
is pone.  Our assumptions lead us to the following: 
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which can be solved to get an estimate for s: 
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where Φ−1 is the inverse normal distribution function 
(available from tables or in computing environments, like 
Excel).  Note that if we were to observe the measurement 
from the one-off tests rather than the yield then we could 
estimate s2 more reasonably from the sample variance, as 
in Section 3.  From the observed yield at every test, an 
estimate of P(L < y < U) is pG.  Our assumptions lead us 
to the following: 
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which can be solved for σ2 in the same manner as 
Equation 4.1.   The equations in Sections 2 and 3 can then 
be used to obtain estimates of the GI, α's and β's. 

For example, suppose we have a test with accept limits 
L = −13.5 and U = −10.  We observe a sample variance of 
the one-off test to be 0.0028, but only the yield of the first 
pass test pG = 0.995, and a yield of prG = 0.942 from the 
second pass test.  We assume that µ = −11.75 (the mid-
point of the accept interval).  We can still estimate s2 = 
0.0028.  Had we not observed the sample variance of the 
one-off test but just the yield, we would have used 
Equation 4.1 to compute an estimate of s2.  Then we solve 
Equation 4.2 to get σ2 = 0.196.  Substituting these into 
Equations 3.1, 3.2 and 3.3 we compute: GI = 0.995, αGG = 
0.999 and αBB = 0.878.  Substituting these and prG into 
Equation 2.4, we obtain βBG = 0.81.   

4.2. The Population Mean is not at the Centre of 
the Accept Interval 

 
When it is not reasonable to assume that µ = (L+U)/2, 

one can still invoke the assumption that the probability 
that we measure a value below the lower bound L is the 
same as the probability that we measure a value above the 
upper bound U.  One approach to this is to assume that the 
data are Gaussian on the log scale, and then make this 
assumption. The property is then lognormally distributed; 
the mean and variance of the log of the property are µ and 
σ2. We still assume the Gaussian model for measurement 
error, also on the log scale.  In this case, Equations 4.1 
and 4.2 still hold as equations to be solved for σ2 and s2 
but with U and L replaced by log(L) and log(U), while µ = 
(log(L)+log(U))/2. The equations in Sections 2 and 3 can 
then be used to obtain estimates of the GI, α's and β's, but 
again with L and U replaced by log(L) and log(U). 

 
4.3. Approaches when Accept Limit is not Finite 

 
One common scenario where the assumption µ = 

(L+U)/2 cannot be used is if either L = –∞ or U = ∞.  (An 
example of such a test is the measurment for reciever 
sensitivity; as long as it is below a certain thresh-hold, it is 
recorded as passed.) We advocate the use of the model of 
Section 4.2, assuming a lognormal model and so x, y ≥ 0. 
Clearly this is not a viable model if the data can be both 
positive and negative.  In the case where we can assume x, 
y ≥ 0 then the most extreme lower limit that is L = 0.  
Note that if we have x, y ≤ 0 then we can still use the 
model of Section 4.2 by applying it to the negative of the 
data and accept limits. 

In the case where L = 0 and U < ∞ then the spirit of 
the assumption about the mean of Section 4.2 can still be 
followed.  Setting µ = 0.5 log(U)  (the log of the mid-
point of the accept interval) and x = µ for the product that 
is tested for the one-off experiments is a value that gives a 
conservative estimate of s2 and σ2,  obtained by solving 
for s: 

pone ≈ P(0 < y < U | x) = Φ 0.5log(U)
s

  
   
   

   
   
   ,         (Eq. 4.3) 

and then for σ: 
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In the case where L > 0 and U = ∞, it is more difficult to 
derive a value of µ that produces a conservative estimate 
of σ2 and s2. One approach is to set µ = c log(L) and x = µ 
for some constant c > 1 which must be chosen according 
to how far one believes the mean to be from the lower 
accept limit.  Using this, the analogue of Equation 4.3 is: 

pone ≈ P(L < y < ∞ | x) = Φ (c −1) log(L)
s

  
   
   

   
   
   ,     (Eq. 4.5) 

and then for σ: 

pG ≈ P(L < y < ∞) = Φ (c −1) log(L)

σ 2 + s2

  

   
      

   

   
      .            (Eq. 4.6) 
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There is a solution to Equations 4.3 to 4.6 if and only 
if pone, pG > 0.5, which is another restriction on the 
estimation procedure for this specific case. The equations 
in Sections 2 and 3 can then be used to obtain estimates of 
the GI, α's and β's, but again with L and U replaced by 
log(L) and log(U). 

We note that some of the assumptions made in this 
section may be unrealistic and lead to errors in estimation 
of the GI, α's and β's,  They are a consequence of the 
scarce data available to estimate the parameters. The 
contrast between this section and Section 3, where more 
complete data led to a more straightforward estimation 
procedure with fewer ad-hoc assumptions, demonstrates 
the desirability of recording as much data as possible 
during the test.  

 
5. Binary Result of Discrete Measurement 

 
In this case there is a count measurement made on the 

product. The true value of this count is x. This count is 
made with error, and y is the count that we measure.  As 
with the cases of Section 3 and 4, all we are told is 
whether the measurement shows it to be good (e.g. L  ≤  y  
≤ U)  or bad (e.g. y < L or   y > U); our data are the 
proportion of the products pG that pass the test in the first 
round of testing and the proportion prG that pass from the 
second round of testing of repaired products. 

A common model for count data is Poisson and we 
adopt that here. The true count x is Poisson distributed 
with an unknown mean λ. The true count x is measured 
with Poisson error; the distribution p(y | x) is Poisson with 
mean x. Unconditionally, the distribution of the 
measurement y is then a mixture of Poisson distributions.   
There is only one parameter λ in this model for x and y 
(versus 3 — µ, σ2 and s2 — in Sections 3 and 4) and this 
means that it is unecessary to do any "one-off" 
experiments. We can estimate λ every time we run a test 
using reasonably tractable equations. However the 
disadvantage of this model is that the mean of x and y 
given x are equal to the variance ─ this is the well known 
property of the Poisson distribution. While there are 
physical motivations for its use as a count model (as a 
limiting form of the binomial distribution), the motivation 
for its use as an error measurement model for y given x is 
not as strong, other than that it allows a relatively easy  
solution to the test parameter estimation problem. 

The joint distribution of x and y is: 
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The marginal probability distribution of y is (summing out 
x) then: 

P(Y = y) = λx
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e− λ x y

y!
e− x .
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                                (Eq. 5.1) 

An estimate of P(board measured good) = P(L ≤ y ≤ 
U) is pG.  Using Equation 5.1, we have: 

pG = P(L ≤ y ≤ U) = λx

x!
e− λ x y

y!
e− x .

x= 0

∞

 
y= L

U

          (Eq. 5.2) 

Equation 5.2 can be solved numerically for λ, 
approximating the infinite sum by an appropriate 
truncated sum. Once λ is estimated, we estimate GI and 
the α's in a manner similar to Sections 3 and 4.  We have: 

GI = P(L ≤ x ≤ U) = λx

x!
e− λ

x=L

U

 .      (Eq. 5.3) 

For αGG, we have: 
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Then for αBB we have: 
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These estimates also hold in the case that L = 0 or U = ∞. 
 

6.  Fully Binary Testing 
 
In this final case we have a binary result for the test 

(either pass of fail) and there is a binary classification of 
the product (good or bad); the data are not a summary of a 
continuous or discrete measurement.  An example is a test 
that looks for the presence or absence of a component on a 
circuit board.  In this case, the three sets of data are three 
proportions.  From a one-off experiment where a single 
example of the product was tested, we observe the 
proportion of tests pone that passed.  From each time that a 
test is conducted there is the proportion pG that passed the 
first pass of testing and the proportion prG that passed the 
second pass, following repair. This is the one case where 
the distinction between the parameters of the statistical 
model ─ like µ or λ ─ and the GI and α's, is lost: we 
model the test directly with GI, α's and βBG. 

We make two assumptions.  First, αBG = αGB so the 
probability that a good product is tested to be bad is the 
same as the probability that you measure a bad product is 
tested to be good.  Second, if we test a single example 
many times and the proportion of times that the test is 
passed is greater than 0.5 then assume that we have a truly 
good example of the product, while if we test a single 
example many times and the proportion of times that the 
test is passed is less than 0.5 then assume that we have a 
truly bad example.  Since αGB = 1 – αGG, we are assuming 
that αBG = αGB and αBG = 1 – αBB, it is sufficient to figure 
out αGG. The second assumption is assured with high 
probability, as long as we have tested the product many 
times. 

If pone ≥ 0.5 then we assume that we have a good 
example under test and hence pone is an estimate of αGG. 
Given αGG = pone, we have from our assumptions that αGB 
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= 1 – αGG = 1 – pone, αBG = αGB = 1 – αGG = 1 – pone and 
finally αBB = 1 – αBG = αGG = pone.  If pone < 0.5 then we 
assume that we have a bad example and hence pone is an 
estimate of αBG.  Given αBG = pone, we have from our 
assumptions that αGB = αBG = pone, αGG  =  1 – αGB  =   1 – 
αBG = pone and finally αBB = 1 – αBG = 1 – pone. 

By the partition law, P(measured good) = αGG GI + 
αBG (1 – GI) which is estimated by pG.  Equating 
P(measured good) to pG we arrive at an expression for GI 
in terms of the α's that we have just computed:  GI = [ pG 
– αBG] / [αGG – αBG].  We note that this is valid if and only 
if  pone ≥ pG.  This means that the probability of passing 
cannot be greater than the probability of a good item 
passing. While intuitively making sense, random chance 
in the course of the different experiments that compute 
pone and pG could give a result that pone < pG even though 
their true values do satisfy the condition.  Equation 2.1 
then allows the β's to be computed, as in rest of paper. 

 
7.  Small Case Study 

 
An obvious concern with one of the models discussed 

here is in Section 4, where we only observe the binary 
response (pass/fail) of a continuous measurement.  The 
simplest solution is in Section 4.1; the population mean µ 
= (L+U)/2, the centre of the accept interval (L,U).  Here 
we describe a small simulation study that shows what 
happens if this assumption is made but is not true. 

We generated 100 sets of data from the continuous 
model with L = 8, U = 12 and "true" parameter values µ = 
10, s2 = 0.01 and σ2 = 1.  This gives "true" test parameter 
values GI = 0.9545, αGG = 0.995 and αBB = 0.92.  For this 
study we ignored estimation of βBG.  Each data set 
consisted of m=500 one-off measurements and n=500 first 
pass measurements.   

For each set of data we inputted the yields pone and pG 
into the method described in Section 4.1, and estimated 
GI, αGG and αBB, assuming that µ = 10 (the mid-point of 
the accept interval).  So in this case our assumption µ = 10 
was actually correct.  The average estimates over the 100 
sets of data were: GI = 0.97, αGG = 0.999 and αBB = 0.999.  
So the method worked reasonably well. 

We then repeated this experiment but altered the "true" 
mean used to generate the 100 data sets to µ = 11; s2 and 
σ2 were kept the same.  This leads to GI = 0.95, αGG = 
0.987 and αBB = 0.94.  We ran the method of Section 4.1, 
still assuming, now incorrectly, that µ = 10.  The average 
estimates over 100 sets of data were: GI = 0.226, αGG = 
1.02 and αBB = 0.9998.  So we see that the estimate of GI 
is much smaller than the true value, while on average the 
estimate of αGG does not make sense (it is a probability, so 
should be between 0 and 1). 

 
8.  Conclusion 

 
In this paper we have outlined procedures for 

estimating the parameters of an imperfect test and repair 
model given different types of data that are typically 

available from the testing process.  In cases where the 
dimension of the data are less than that of the model 
parameters, we have proposed some different assumptions 
that can be made in order to arrive to parameter estimates.  
As far as possible these are made so that conservative 
parameter estimates are made.  However we observe that 
there are scenarios, particularly in the cases of Section 4, 
where strong assumptions must be made and the study in 
Section 7 shows that if this assumption is wrong then the 
estimation can have substantial error. 

Clearly the next step in this work is to assess the 
implications of these assumptions for the estimation, and 
to derive expressions for the estimation error in terms of 
the error in the assumptions. If this is done then 
calculations of appropriate sample sizes, and model 
assessment methods such as computation of standardized 
residuals, can be made. This work has also motivated 
consideration of other statistical approaches that may be 
able to reduce the number of difficult assumptions that 
must be made; Bayesian inference techniques appear to 
offer a good alternative with this property. 

 
9. Acknowledgements 

 
The involvement of BLI researchers is supported by a 
grant from the Industrial Development Agency of Ireland. 
The involvement of CTVR researchers is supported by 
Science Foundation Ireland grant 03/CE3/I405. 

 
References 
 
[1] E. Fisher, S. Fortune, M. Gladstein, S. Goyal, W. Lyons, J. 

Mosher, and G. Wilfong. Economic Modeling of Global Test 
Strategy I: Mathematical Models. Bell Labs Technical 
Journal, 12(1), Apr. 2007, To appear.  

[2] E. Fisher, S. Fortune, M. Gladstein, S. Goyal, W. Lyons, J. 
Mosher, and G. Wilfong. Economic Modeling of Global Test 
Strategy II: Software System and Examples. Bell Labs 
Technical Journal, 12(1), Apr. 2007, To appear.  

[3] B. Gluss. An optimum policy for determining a fault in a 
complex system. Operations Research, 7:464–477, 1959. 

[4] J. A. Nachlas, S. R. Loney, and B. A. Binney. Diagnostic-
strategy selection for series systems. IEEE Transactions on 
Reliability, 30(3):273–280, 1990. 

[5] C. Dislis, I.D. Dear, J.R. Miles, S.C. Lau, and A.P. Ambler. 
Cost analysis of test method environments. In Proceedings of 
International Test Conference, pages 875–883, 1989. 

[6]  J. Ding, B. S. Greenberg, and H. Matsuo. Repetitive testing 
strategies when testing process is imperfect. Management 
Science, 40(10):1367–1378, 1998. 

[7] T. Trichy, P. Sandborn, R. Raghavan, and S. Sahasrabudhe. 
A New Test/Diagnosis/Rework Model for Use in Technical 
Cost Modeling of Electronic Systems Assembly. In 
Proceedings of ITC 2001, pages 1106-1117, 2001 IEEE. 

[8] Walpole, R.E. and Myers, R.H.  Probability and Statistics 
for Engineers and Scientists, 4th edition. McMillan, 1989.  

[9] S.P. Wilson, B.E. Flood, S. Goyal, J. Mosher, J. O’Brien, 
and R. Kennedy. Parameter Estimation for Realistic Test & 
Repair Models. Bell Labs Technical Memorandum, 2006. 

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00  © 2007


