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Abstract. We apply techniques from complexity theory to a model of
biological cellular membranes known as membrane systems or P-systems.
Like circuits, membrane systems are defined as uniform families. To
date, polynomial time uniformity was the accepted uniformity notion
for membrane systems. Here, we introduce the idea of using AC® and L
uniformities and investigate the computational power of membrane sys-
tems under these tighter conditions. It turns out that the computational
power of some systems is lowered from P to INL, so it seems that our
tighter uniformities are more reasonable for these systems. Interestingly,
other systems that are known to be lower bounded by P are shown to
retain their computational power under the new uniformity conditions.
Similarly, a number of membrane systems that are lower bounded by
PSPACE retain their power under the new uniformity conditions.

1 Introduction

Membrane systems [12] are a model of computation inspired by living cells.
In this paper we explore the computational power of cell division (mitosis) and
dissolution (apoptosis) by investigating a variant of the model called active mem-
branes [11]. An instance of the model consists of a number of (possibly nested)
membranes, or compartments, which themselves contain objects. During a com-
putation, the objects, depending on the compartment they are in, become other
objects or pass through membranes. In the active membrane model it is also
possible for a membrane to completely dissolve, and for a membrane to divide
into two child membranes.

This membrane model can be regarded as a model of parallel computation
but it has a number of features that make it somewhat unusual when compared
to other parallel models. For example, object interactions are nondeterministic
so confluence plays an important role, membranes contain multisets of objects,
there are many parameters to the model, etc. In order to clearly see the power
of the model we analyse it from the computational complexity point of view, the
goal being to characterise the model in terms of the set of problems that it can
solve in reasonable time.



Another, more specific, motivation is the so-called P-conjecture [13] which
states that recogniser membranes systems with division rules (active membranes),
but without charges, characterise P. On the one hand, it was shown that this
conjecture does not hold for systems with non-elementary division as PSPACE
upper [16] and lower [1] bounds were found for this variant (non-elementary di-
vision is where a membrane containing multiple membranes and objects may be
copied in a single timestep). On the other hand, the P-conjecture was shown to
hold for all active membrane systems without dissolution rules, when Gutiérrez-
Naranjo et al. [5] gave a P upper bound. The corresponding P lower bound
(trivially) came from the fact that the model is defined to be P-uniform.

However, here we argue that the aforementioned P lower bound highlights a
problem with using P uniformity, as it does not tell us whether this membrane
model itself has (in some sense) the ability to solve all of P in polynomial time,
or if the uniformity condition is providing the power. In this paper we show that
in fact when we use weaker, and more reasonable, uniformity conditions the
model does not have the ability to solve all problems in P (assuming P # NL).
We find that with either AC” or L uniformity the model characterises NL in
the semi-uniform case, and we give an NL upper bound for the uniform case.
We also show that the PSPACE lower and upper bounds mentioned above still
hold under these restricted uniformity conditions.

Using the notation of membrane systems (to be defined later) our upper
bound on L-uniform and L-semi-uniform membrane systems can be stated as
follows.

Theorem 1. PMC 40 < NL

Essentially this theorem states that polynomial time active membrane systems,
without dissolution rules, solve no more than those problems in NL. Despite
the fact that these systems run for polynomial time (and can even create expo-
nentially many objects), they can not solve all of P (assuming NL # P). This
result is illustrated by the bottom four nodes in Figure 1.

The upper bound in Theorem 1 is found by showing that the construction
in [5] can be reduced to an instance of the NL-complete problem s-t-connectivity
(STCON). The full proof appears in Section 3. Next we give a corresponding
lower bound.

Theorem 2. NL C PMCAM‘id,,u

To show this lower bound we provide an AC°-semi-uniform membrane family
that solves STCON. The full proof is in Section 4 and the result is illustrated
by the bottom left two nodes in Figure 1. Therefore, in the semi-uniform case
we have a characterisation of NL.

Corollary 1. NL = PMCAMgd,fu

We have not yet shown an analogous lower bound result for uniform families. To
date our best lower bound is PARITY, which is known not to be in AC® [4].
We describe this in Section 4.1.
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Fig. 1. An inclusion diagram showing the currently known upper and lower bounds
on the variations of the model. The top part of a node represents the best known
upper bounds, and the lower part the best known lower bounds. An undivided node
represents a characterisation.

So far we have shown that four models, that characterise P when polynomial
time uniformity is used, actually only characterise NL when restricted to be AC®
uniform. Interestingly, we also show that two other polynomial time uniform
membrane system that are known [9] to be lower bounded by P actually retain
this P lower bound when restricted to be AC® uniform. This result is stated as
a P lower bound on membrane systems with dissolution:

Theorem 3. P C PMC 4,0

+d,4u
The proof appears in Section 5 and is illustrated by the top front two nodes in
Figure 1.

In Section 2.3 we observe that the known PSPACE upper and lower bounds
(top four nodes in Figure 1) remain unchanged under AC uniformity conditions.

2 Membrane Systems

In this section we define membrane systems and complexity classes. These def-
initions are from Paun [11,12], and Sosik and Rodriguez-Patén [16]. We also
introduce the notion of AC® uniformity for membrane systems.

2.1 Recogniser membrane systems

Active membranes systems are membrane systems with membrane division rules.
Division rules can either only act on elementary membranes, or else on both
elementary and non-elementary membranes. An elementary membrane is one
which does not contain other membranes (a leaf node, in tree terminology).



Definition 1. An active membrane system without charges is a tuple II =
(O,H, p,wy,...,wny, R) where,

m > 1 is the initial number of membranes;
. O is the alphabet of objects;
. H is the finite set of labels for the membranes;
. W is a membrane structure, consisting of m membranes, labelled with ele-
ments of H;
5. wi,...,wy are strings over O, describing the multisets of objects placed in
the m regions of .
6. R is a finite set of developmental rules, of the following forms:
(a) [a — v ],
forhe H, a €O, veO*
(%) aln In = [n 0 In,
forhe H, a,be O
(¢) haln—[n]nb
forhe H, a,be O
(@) [naln—0,
forhe H, a,be O
(€) [haln—=1[nb]nlncln
forhe H, a,b,c € O.

(f) [ho [h1 ]hl [hz ]hz [h3 ]h?, ]ho — [ho [hl ]hl [h3 }hS]ho [ho [hz ]h2 [hB ]hg]ho7
for hg,hy,ha,hs € H.

SN SN

These rules are applied according to the following principles:

— All the rules are applied in maximally parallel manner. That is, in one step,
one object of a membrane is used by at most one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

— If at the same time a membrane labelled with & is divided by a rule of type
(e) or (f) and there are objects in this membrane which evolve by means
of rules of type (a), then we suppose that first the evolution rules of type
(a) are used, and then the division is produced. This process takes only one
step.

— The rules associated with membranes labelled with A are used for membranes
with that label. At one step, a membrane can be the subject of only one rule

of types (b)-(f).

In this paper we study the language recognising variant of membrane systems
that solves decision problems. A distinguished region contains, at the beginning
of the computation, an input — a description of an instance of a problem. The
result of the computation (a solution to the instance) is “yes” if a distinguished
object yes is expelled during the computation, otherwise the result is “no”. Such
a membrane system is called deterministic if for each input a unique sequence of
configurations exists. A membrane system is called confluent if it always halts
and, starting from the same initial configuration, it always gives the same re-
sult, either always “yes” or always “no”. Therefore, the following interpretation



holds: given a fixed initial configuration, a confluent membrane system non-
deterministically chooses one from a number of valid configuration sequences,
but all of them must lead to the same result.

2.2 Complexity classes

Here we introduce the notion of AC® uniformity to membrane systems. Previ-
ous work on the computational complexity of membrane systems used (Turing
machine) polynomial time uniformity [14]. Consider a decision problem X, i.e. a
set of instances X = {x1, 22,...} over some finite alphabet such that to each x;
there is an unique answer “yes” or “no”. We say that a family of membrane
systems solves a decision problem if each instance of the problem is solved by
some family member. We denote by |z;| the size of any instance z; € X. AC®
circuits are DLOGTIME uniform polynomial sized (in input length n), constant
depth, circuits with AND, OR, and NOT gates, and unbounded fan in [3].

Definition 2 (AC" uniform families of membrane systems). Let D be a
class of membrane systems and let f : N — N be a total function. The class of
problems solved by uniform families of membrane systems of type D in time f,
denoted by MCp(f), contains all problems X such that:

— There exists an AC? uniform family of membrane systems,
IIx = (IIx(1),1Ix(2),...) of type D: each IIx(n) is constructable by an
AC° circuit with unary input n.

— Each IIx(n) is sound: ITx(n) starting with an input (encoded by an AC®
circuit) x € X of size n expels out a distinguished object yes if an only if
the answer to x is “yes”.

— Fach ITx(n) is confluent: all computations of IIx (n) with the same input
of size n give the same result; either always “yes” or else always “no”.

— IIx is f-efficient: IIx(n) always halts in at most f(n) steps.

Using this definition of AC? uniform families, we now define AC° semi-
uniform families of membrane systems IIx = (IIx(x1); I x(x2);...) as mem-
brane systems whose members ITx (z;) are constructable by AC” circuits with
input z;. This is analogous to weakly-uniform circuit families. In this case, for
each instance of X we have a special membrane system which therefore does not
need a separately constructed input. The resulting class of problems is denoted
by MCp, _,(f). Obviously, MCp(f) C MCp, _,(f) for a given class D and a
complexity [2] function f. Logspace, or L, uniform and semi-uniform families of
membrane systems are defined analogously, where we use deterministic logspace
Turing machines for the uniformity conditions.

We define PMCp and PMCyp _,, as

PMCp = | MCp(O(n")), PMCp _, = | MCp _,(O(n")).
keN keN

In other words, as the class of problems solvable by uniform (respectively semi-
uniform) families of membrane systems in polynomial time. We denote by AM"



the classes of membrane systems with active membranes and no charges. We
denote by AM? . the classes of membrane systems with active membranes and
only elementary membrane division and no charges. We denote by A./\/line the
classes of membrane systems with active membranes, and both non-elementary
and elementary membrane division and no charges. We denote by PMC 40 |
the classes of problems solvable by uniform families of membrane systems in
polynomial time with no charges and no dissolution rules.

In this paper we are using DLOGTIME—AC? uniformity which can somewhat
cumbersome to analyse, therefore in our proofs we use an AC? equivalent model
called the CRAM [6].

Definition 3 (CRAM). A CRAM [6] is a constant time PRAM with polyno-
maal processors. Each processor is able to shift a word in memory by a polynomial
number of bits.

2.3 AC? uniformity and PSPACE results

Membrane systems with active membranes, without charges, and using non-
elementary division have been shown to characterise PSPACE [1,16]. For the
lower bound, a P-uniform membrane system is given [1] that solves instances of
QSAT in polynomial time. Clearly, stricter uniformity notions have no affect on
the PSPACE upper bound. We now show that the use of AC® uniformity does
not change this lower bound.

The uniformity machine inputs the numbers n and m representing the num-
ber of variables and clauses of the QSAT instance, and uses them to construct a
polynomial number of objects, rules and membranes. We observe that the con-
struction in [1] is in AC?, the most complicated aspect involves multiplication
by constants (essentially addition) which is known [7] to be in AC®. Although we
omit the details, it is not difficult to see that a CRAM constructs the membrane
system in constant time from n and m. Similarly, the encoding of the instance
as objects to be placed in the input membrane involves only addition.

3 NL Upper bound on active membranes without
dissolution rules

Previously the upper bound on all active membrane systems without dissolution
was P [5]. As an aside, we remark that this is a very enlightening proof since it
first highlighted the importance of dissolution. Without dissolution, membrane
division, even non-elementary division, can be modelled as a special case of
object evolution. It is also worth noting that these systems can create exponential
numbers of objects, yet they can not compute anything outside P.

Since membrane systems are usually P-uniform, this P upper bound was
considered a characterisation of P. However, having a lower bound of the same
power as the uniformity condition is somewhat unsatisfactory, as it tells us little
about the computing power of the actual membrane system itself. In this section



we will show that if we tighten the uniformity condition to be AC, or even L,
it is possible to decide in NL whether or not the system accepts. We give an
overview rather than the full details.

The proof of the P upper bound in [5] involves the construction of a depen-
dency graph representing all possible computation paths of a membrane system
on an input. The dependency graph for a membrane system II is a directed
graph G = (Vi7, Epr). Each vertex a in the graph is a pair a = (v, h) € I' x H,
where I is the set of objects and H is the set of membrane labels. An edge
connects vertex a to vertex b if there is an evolution rule such that the left hand
side of the rule has the same object-membrane pair as a and the right has an
object-membrane pair matching b.

If we can trace a path from the vertex (yes,env) (indicating an accepting
computation) back to a node representing the input it is clear that this system
must be an accepting one. It is worth noting that, unlike upper bound proofs
for a number of other computational models, the dependency graph does not
model entire configuration sequences, but rather models only those membranes
and objects that lead to a yes output.

The original statement of the proof constructed the graph in polynomial
time and a path was found from the accepting node to the start node in poly-
nomial time. We make the observation that the graph G can be constructed
in deterministic logspace, and even in AC°. We omit the details, but our claim
can be verified by checking that the construction in [5] is indeed AC” uniform.
Also we note that the problem of finding a path from the accepting vertex to
one of the input vertices is actually an instance of MSTCON, a variation of
the NL-complete problem STCON. STCON is also known as PATH [15] and
REACHABILITY [10].

Definition 4 (STCON). Given a directed graph G = (V, E) and vertices s,t €
V', is there a directed path in G from s to t?

Definition 5 (MSTCON). Given a directed graph G = (V, E), vertex t € V
and S = {s1,52,...,8g-1)} €V, is there a path in G from t to any element
of §%?

MSTCON is NL-complete as a logspace machine can add a new start ver-
tex s’, with edges from s’ to each vertex in S, to give an instance of STCON.

Since we have shown that the problem of simulating a membrane system
without charges and without dissolution can be encoded as an NL-complete
problem we have proved Theorem 1. The proof holds for both AC? and L uni-
formity, as well as both uniform and semi-uniform membrane systems without
dissolution.

4 NL lower bound for semi-uniform active membranes
without dissolution

Here we provide a proof of Theorem 2 by giving a membrane system that solves
STCON in a semi-uniform manner.



The algorithm works by having each edge in the problem instance graph
represented as a membrane. An s object is placed in the s membrane. Multiple
copies of the object move from membrane to membrane following (or simulat-
ing) each different path through the graph in parallel. If an object enters the ¢
membrane, the system outputs a yes object and halts. Otherwise, a no object
is output from the system.

We now give a proof of Theorem 2.

Proof. Each instance of the problem STCON is a tuple ((V, E) s,t). We let n
and m be the number of vertices and edges in the graph respectively. We assume
an ordering on instances (say by n and then lexicographically). We define a
function f(k), computable in AC?, that maps the k" instance to the following
membrane system 7.

— The set of labels H = {input, output, count, s, t},
— The initial membrane structure is, where e; e E, u =

[env [input [s ] [t } [el ] . [e|E‘ ] } [output ] [count ] ]
— The working objects I' = { yes, no} U{¢; :i € {1,2,...,2n + 1}} U{v; : Vo,
— The initial multisets are all empty except M count = {Cant1}-

In the input membrane we place the object node given by s.

The evolution rules are as follows. For each vertex we will create a rule so
that if an object representing that vertex is outside a membrane that represents
an edge leaving that vertex, it will be communicated inside that edge membrane.

i [(%vj) ] - [(Uivvj) Vi ] PV, v €V

Once an object has started on an edge we want it to pass out again marked with
the destination vertex. We make |E| copies of the object to ensure that there
will be at least one object for each node in the next timestep. We also exclude
rules for the ¢ membrane, this is to ensure that an object will not leave without
signalling the end of the computation.

[(Uz‘ﬂfj) Vi } - [(Uiv'“j) ] vjl'E‘ :Vvi’vj ev \ {t}

When the object ¢ is in the edge membrane leading to ¢ we want it to exit as a
yes object.

[(%t) v; } — [(%t) ] yes : Vo, € V\ {t}

Then we want to send it out to the environment.
input yes | = [input | yes
We also have a counter that counts down in parallel with the above steps.
[count ¢; — i1 ]:i€{1,2,...,2n+ 1}

If we output a yes, this occurs on or before timestep 2n. Therefore, when the
counter reaches zero, there must not have been a yes object, so we output a no.

[count Co ] - [count ]1‘10

eV}



And send it to the environment.
[input no } - [input ]IlO

The membrane system can be constructed by a CRAM in constant time and
so is ACY uniform. Note that we encode the edges of the graph as membranes,
rather than objects. In the membrane computing framework, for uniform mem-
brane systems, inputs must be specified (encoded) as objects. Therefore our
algorithm is semi-uniform as we require a different membrane system for each
unique problem instance. a

If we relax the definition of uniformity so that the inputs may be specified as
membranes inside the input membrane, then our membrane system would be
uniform. This would give a more general result, however it is not permitted
within the membrane framework that we are analysing.

4.1 PARITY lower bound for uniform active membranes without
dissolution

The previous proof gave a lower bound for a semi-uniform membrane system.
Here we consider the uniform case. We show that PARITY € PMC g0 .

by providing an AC? uniform membrane system that can solve instances of the
problem. PARITYis the problem of telling whether the number of 1 symbols in
the input word is odd. This problem is known [4] to be outside of AC, and so
ACY is a reasonable uniformity measure in this case.

Our uniformity machine takes as input n € N and constructs a set of objects
{0ddig;i } U {evenyip; } Vi,j such that i + j = n. Objects yes and no are also
created. A type (a) rule is created mapping every odd object with ¢ “1” symbols
to the even object with i—1 “1” symbols in it. A type (a) rule is created mapping
every even object with ¢ “1” symbols to the odd object with ¢ — 1 “1” symbols
in it. A rule is created from object oddgg..o to yes and from evengg,. o to no.

The AC° uniformity machine (a CRAM) rearranges the input word w by
moving all 1 symbols to the left and all 0 symbols to the right, to give w’. Then
the symbol even,, in placed in the input membrane.

As the system runs, the initial object evolves alternately between odd and
even until only 0 symbols are left in the subscript, then a yes (or no) will
be evolved indicating the input word contained an odd (or even) number of 1
symbols.

5 P lower bound on uniform families of active membrane
systems with dissolving rules

So far we have seen that by tightening the uniformity condition from P to AC°
we lower the power of some models from P down to NL (See Figure 1). In this
section we show that does not happen for all models with at least P power.



More precisely, we prove Theorem 3 by showing that AC° uniform, polynomial
time, membrane systems with dissolution are lower bounded by P. Naturally
this result also holds for the semi-uniform case.

Proof. A constant time CRAM encodes an instance of the CIRCUIT VALUE prob-
lem (CVP) [8] as a PMC 40, b membrane system using the gadget mem-
branes and rules shown in Flgure 2. The figure shows AND and OR gadgets, a
NOT gadget can be made with the rules [0t T'] = [not |F, [not F'] = [not |T- The
resulting membrane system directly solves the instance of CVP in polynomial
time.

AND OR

Emputi Emput: Einputi Elnput:
T[t]*[t — [y F']
T]—A [ F]H)\
Fly ] — [sF] Tl ] — [T
[rf F]—=A [ T]—A
[axD 1] — [anD |T [or 0] — [or |F
[anD 0] — [anD |F [or 1] — [or T

Fig. 2. AND and OR gadgets which can be nested together to simulate a circuit. Here
“input” is either T', F', or a nested gadget membrane.

To ensure uniformity we have an input membrane (inside the skin membrane)
where the initial input assignments for each variable are placed. For example if
input gate ¢ is true and input gate j is false we would have input objects T; and
F; in the input membrane. When the computation starts the truth assignments
descend into the encoded circuit until they reach their appropriate “input gate”
gadget where they start the computation. We simulate multiple fanouts by out-
putting multiple copies of the resulting truth value of each gate. We also give
each gadget a unique label and the output of each gate would be tagged. The
output of a gate moves up through the layers of the membrane system until it
reaches the correct gate according to its tag. a
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