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Abstract

This report presents a MOF-compliant metamodel for catmgdasoftware
metrics and demonstrates how it is used to generate a metacthat calculates
coupling and cohesion metrics. We also describe a systeaggtroach to the anal-
ysis of MOF-compliant metamodels and illustrate the apgnassing the presented
metamodel. In this approach, we express the metamodel Usittgand OCL and
harness existing automated tools in a framework that geeeealava implementa-
tion and an Alloy specification of the metamodel, and uselibth to examine the
metamodel constraints, and to generate instantiatioteahttamodel. Moreover,
we describe how the approach can be used to generate tepdatey software
based on a MOF-compliant metamodel. We extend our frameteoslpport this
approach and use it to generate a test suite for the metilimsaton tool that is
based on our metamodel.

Key words: object-oriented software metrics, coupling, cohesiortamedels, model-
based testing, OCL, Alloy

1 Introduction

Software metrics are important in many areas of softwareneeging, for example
assessing software quality or estimating the cost andteffodeveloping software.
Many metrics have been proposed and new metrics continygpea in the literature
regularly [9]. Many of these metrics are incomplete, ambiggiand open to a variety
of different interpretations [3]. This makes it difficult toeate general metric tools and
everytime a new metric is defined the tools need to be updatbdtve new metric [16].
Furthermore, many of these metrics are applicable to a nuofbdifferent models
of a software system. In order to provide assurance thataime £oncepts are being
measured from these different models we need a way to spheifyetrics in a generic
way, independent of the particular model.

1To whom correspondence should be addressed.



Like Mens and Lanza, we believe that these issues are bestssed using a
language-independemnetrics-specific metamodgl6]. However, they do not con-
sider coupling or cohesion metrics in their work. In thisogpve present a metamodel
for calculating object-oriented software metrics whichésed on existing frameworks
for coupling and cohesion measurement [3, 4]. We use themuetal to specify a set
of existing coupling and cohesion metrics and use our exgdfclipse-based metrics
framework [15] to automatically generate a tool to calaalkiiese metrics.

Developing and working with metamodels can be difficult sitbey deal with
abstract concepts. Therefore, it is important that we ale @bperform analysis on
metamodels and assess their correctness. By correctreeggean that the metamodel
specification is consistent and adequately describes Whatger intends. Also, in or-
der to ensure the correctness and quality of software ajaits that are based around
metamodels, for example our metrics tool, we need to be ablest these applica-
tions. However, there is no direct way of automatically gatieg instantiations of a
metamodel to use as test inputs for testing metamodel-lzgg@itations [7].

In this report we describe an approach to the analysis of NDdtgect Facility
(MOF)-compliant metamodels and apply it to our metrics ffzemetamodel. In our
approach, we express the metamodel using the Unified Maoddllianguage (UML)
and Object Constraint Language (OCL) [20], and harnesgiegiautomated tools in
a framework that generates a Java implementation of ourmuetal.

We also generate an Alloy [12] specification correspondirthé metamodel, and
use this to examine the metamodel constraints and to gensaatple instances of
the metamodel. Oureflective instantiatotakes these Alloy generated models and
transforms them into instances of the Java implementatfors harnessing Alloy’s
lightweight approach to generate a test suite for our metdol. We use this test
suite to determine if the tool correctly computes metriaueal for the coupling and
cohesion metrics. Finally, we evaluate the adequacy oféneigated test suite in terms
of traditional line and branch coverage criteria.

This report is organised as follows. Section 2 outlines sofmne background
information. Our metamodel is presented in Section 3 antised describes how it is
used to define a set of coupling and cohesion metrics. In@exs and 6, we describe
an approach to the analysis of MOF-compliant metamodelsllaistrate the approach
using our metamodel. In Section 7, we describe the generafia test suite for the
metamodel-based metrics tool. Section 8 presents a disoudfselated work. Section
9 concludes the report.

2 Background

Models provide a representation of a real system and aredsirgly important in
software engineering, particularly in the Model Driven Eregring (MDE) approach
[20]. Typically, we think of a model of a software system asigea design model,
such as UML class or sequence diagrams, or an implementatoaiel, such as an
actual program. As the name suggestsieanodel is a model that is used to describe
the structure of other models. One example of a metamodeifi&@aion is theUML
Superstructure Specificatidrom the Object Management Group (OMG) [19], which



defines models for each of the diagrams of the UML.

While a number of different formalisms may be used to desanigtamodels, one
of the most widely adopted standards is the Meta ObjectiBa@ilOF), which is spec-
ified by the OMG [18]. The MOF provides a set of constructs fefiing metamodels
and is referred to asmetanetamodel. As well as facilitating comprehension, using a
standard metamodelling formalism aides interoperabtliisough formats such as the
XML Metadata Interchange (XMI), as well as automated toaleyation.

2.1 Metamodels and metrics

Many software metrics have been proposed in the literatr@][ For these software
metric definitions to be usable, it is important that the dédins clearly specify what
is to be counted. For example, when counting method callsy@dnclude calls to
abstract methods, calls to/from inherited and overriddethods etc. ? Brianet
al. have shown that even seemingly straightforward metric diefirs are subject to a
range of different interpretations [3, 4].

Several authors have considered the use of metamodels ag @ wddress the
problem of ambiguous metric definitions. One example is Hreoaical presentation
of coupling and cohesion metrics by Briaptial. which was effectively based on a
metrics specific metamodel of an object-oriented systerms\d@d Lanza [16] propose
a language-independent metamodel for object-orientedaa¢tat is based on graphs.
They use this to define a selection of generic object-oribatel higher order metrics
but do not consider coupling or cohesion metrics.

Recent research has built upon this work by defining metaagu@ries over meta-
models. El-Wakilet al. propose the use of XQuery as a metric definition language to
extract metric data from XMI documents, specifically UML g [8]. Harmer and
Wilkie, working from a relational schema, express metrifirdions as SQL queries
over this schema [21]. Baroet al. propose using the OCL and the UML 1.3 meta-
model to define UML-based metrics [2].

In our own work, we have extended the approach of Baetral. in a manner
specifically designed to be reusable for other metamodsls J¥e used théagstuhl
Middle Metamodeés a general programming metamodel, and defined severat-obje
oriented metrics across this metamodel using OCL [14]. We ladso defined similar
metrics at the design level using the UML 2.0 metamodel [15].

However, each of these approaches is either metamoddfisdecy. the UML
metamodel), or uses metrics specifianetamodel, with the associated difficulty of
finding model instances to use as test data. The approacknpeelsin this report ad-
dresses these issues by presenting a metrics-specifindgedgndependentmetamodel
and providing a means of generating suitable instancesstéougesting any software
based on this (or any MOF-compliant) metamodel. We acknigdehat even though
the presented metamodel is language-independent it malysomee work to apply to
different styles of object-oriented language.



2.2 The Alloy language and analyser

Alloy is a formal specification language based on typed brster relational logic [12].

It has been used primarily to explore abstract software tsaafed to assist in finding
and correcting flaws in these models. An Alloy specificat®bdsed arounglgnatures
andformulas Signaturesire used for defining the entities of the model and consist of a
set of declarations that define the relations and operatibtie entity.Formulassuch
asfacts predicatesandassertionsare used to specify constraints on the model.

A fully automatic tool, called thélloy Analyserhas been developed simultane-
ously with the Alloy language. This is a “model-finder” todlat uses a constraint
solver to analyse models written in Alloy. There are two typéanalysis offered by
the tool, namelgimulationandchecking Simulationinvolves finding model instances
that meet the Alloy specificationCheckinginvolves finding counterexamples to the
specification. To make instance finding feasible, a user rpagify ascopefor the
model under analysis. Thleeopeputs a bound on how many instances of an entity may
be observed in a model instance and thus limits the numbeiodehinstances to be
examined.

3 A metamodel for object-oriented measurement

One requirement of our metamodel is that it is interoperalifie the UML and Java
metamodels and thus has been developed to conform to the M@Fensures that all
three metamodels are specified using the same formalism faleilitating the trans-
lation of instances of the UML and Java metamodel to instammde¢he metamodel
presented here. Moreover, our MOF-compliant metamodeh$ed on the coupling
and cohesion measurement frameworks proposed by Baaat[3, 4]. It captures
the basic structure of an object-oriented system at a ldhadbstraction that represents
concepts and relationships required for coupling and doheseasurement.

The metamodel is composed of a single package calldd (Metrics Metamodel)
and the contents of this package are depicted in Figure 1 fighee shows the main
classes involved in the metamodel, along with the impodasbciations, necessary for
distinguishing the different types of coupling and cohasitetrics. The basic details
regarding the size of the metamodel are given in Table 1.

Element Number
Class 8
Enumeration 2
Generalisation 3
Association 16
Attribute 4
Method 27

Table 1: Summary of metrics-specific metamod#his table gives a summary of the
size of the metamodel in terms of the number of each typemealtethat appears in
the metamodel.



The description of our metamodel follows a similar formatttat used by the OMG
for the specification of metamodels. Each concept in the med! is described in its
own subsection which is broken down into several differeatgp corresponding to
different aspects of the concept. In situations where apasgoes not apply to the
concept it is ommitted entirely from the description of thencept. Each concept is
represented as a metaclass in the metamodel and describgdhesfollowing

e The subsection heading gives the formal name of the concept.

e TheDescriptionaspect gives a brief, informal description of the meaninthef
concept. Any direct generalisations of the concept aredssailed here.

e The Attributesaspect specifies each of the attributes that are defined dbr th
metaclass. Each attribute is specified by its formal nametygal This is fol-
lowed by an informal description of the meaning of the atttéh

e TheAssociationsspect lists all of the association ends owned by that nestacl
Again, each one is specified by its formal name, its type, aoHipticity and
followed by an informal description of it's meaning.

e TheConstraintsaspect lists all of the constraints that define the well-fedmess
rules of the concept. Each constraint consists of an infbdescription and a
formal constraint expressed in OCL.

e The Operationsaspect contains a list of all the operations that belong ¢o th
metaclass. These include utility and query operationsll taaes each operation
is specified using OCL. The utility operations are specifedgithe def keyword
and the query operations are specified using the body keyword

3.1 Attribute
3.1.1 Description

An attribute is an entity that describes a property of thesthat it belongs to..

3.1.2 Associations
o type:Type[l..1]: specifies the type of the attribute

o referencedby:Method[0..*] : specifies the set of methods that reference the
attribute

e att_implementing_class:Class[1..1] specifies the class in which the attribute is
implemented

e att_declaring_class:Class[0..*]: specifies the set of classes in which the at-
tribute is declared



e
Builtin P
Type
> type
| ti 0.*
UserDefined ——> <<enumeration>> nvocation
InvocationType type : InvocationType passed_to
static
polymorphic
child parent invokes |0..* 0.*| invoked_by
0.* 0.*
Class
0.1 0.* caller callee passes_pointer_to
overriding_class overridden_method Method
. " 0.* *
isPublic : boolean 0..
0..* 0..* |isAbstract : boolean
Parents() : Set type - MethodType FormalParamter
Children() : Set inheriting_class inherited_method 0.*
Ancestors() : Set SIM() : Set
Descendents() : Set SIM_() : Set param_of param
Methods() : Set 0.1 0..* | PIM() : Set
M_d() : Set new_class new method | P'M_0 : Set
M_iQ : Set - - QR(()): SSEt <<enumeration>>
M_inh() : Set ar() : Set MethodType
M_ovr() : Set NSI(m : Method) : int referenced_by b
M_new() : Set 0.* NPI(m : Method) : int 0.* constructor
M_pub() : Set 0.1 PP(m : Method) : int v destructor
M_npub() : Set method_implementing_class i accessor
Attributes() - Set implemented_method 0.*| declared_method mutator
A_d() : Set 0. general
A_i() : Set -
Friendsinv() : Set method_declaring_class
Friends() : Set 0.* -
uses(d : Class) : boolean Attribute
att_implementing_class implemented_att referenced _att
0.* 0.* 0.*
0.* 0.* att_declaring_class declared_att
friend_of grants_friendship

Figure 1: The metrics-specific metamode&his figure shows the main classes and relationships in otammedel depicted as a UML
class diagram.



3.2

Builtln

3.2.1 Description

Builtin represents a basic type provided by the programrtanguage (e.g., integer,
real, character, string). It is a subclass of Type.

3.3

Class

3.3.1 Description

A class describes a set of entities that share the same fiegp@nd behaviour. It is a
subclass of Type.

3.3.2 Associations

child:Class[0..*] : specifies the set of immediate descendents of this class
parent:Class[0..*] : specifies the set of immediate ancestors of this class

friend _of:Class[0..*] : specifies the set of classes that are granted access to the
non-public elements of this class

grants_friendship:Class[0..*] : specifies the set of classes to which this class
has access to the non-public elements of

overridden_method:Method[0..*] : specifies the set of methods that are over-
ridden by this class

inherited_method:Method[0..*] : specifies the set of methods that are inherited
by this class

new_method:Method[0..*] : specifies the set of methods that are created as new
in this class

declared method:Method[0..*] : specifies the set of methods that are declared
in this class

implemented method:Method[0..*] : specifies the set of methods that are im-
plemented in this class

declaredatt:Attribute[0..*] : specifies the set of attributes that are declared in
this class

implemented att:Attribute[0..*] : specifies the set of attributes that are imple-
mented in the class



3.3.3 Constraints
e A class may not directly or indirectly inherit from itself

not sel f. Ancestors()->i ncl udes(self)

e A class may not directly be a friend of itself or grant friehigtsto itself

not sel f.friend_of->includes(self)

e The set of declared attributes of a class must equal all thieimented attributes
of that classes ancestors

sel f.declaredatt = self. Ancestors()
->col lect(i:Cass|i.inplenmentedatt)->asSet()

e The set of new methods, overridden methods and inheriteadstof a class
must be disjoint

sel f. new.net hod- >i ntersecti on(sel f.overri ddenret hod)
->intersection(inherited.method)->i sEnpty()

¢ The set of implemented methods of a class must equal the semehbstract,
overriding methods union the set of non-abstract new metbbthe class

sel f.i npl enent ed_net hod =
sel f . new.net hod- >uni on(sel f. overri dden_ret hod)
->sel ect(m Method | not misAbstract)

¢ The set of declared methods of a class must be equal to thé setvaabstract
methods union the set of inherited methods of the class

sel f. decl ared_net hod =
sel f.inherited.nethod->uni on(sel f. new.ret hod
->sel ect (m Met hod| m i sAbstract))

e The sum of the inherited and overridden methods of a class equsl the num-
ber of methods of the parents

not self.parent->i sEnpty() inplies
sel f.inheritednethod->uni on(sel f.overriddeniret hod) - >si ze()
= sel f.parent->collect(i:Cl ass|i.Methods())->asSet()->size()

e The set of inherited methods of a class must be a subset oféthamd overriding
methods of that classes ancestors

not sel f.inheritednethod->i sEnpty() inplies

(sel f.Ancestors()->collect(i:C ass|i.newnethod)->asSet ()
->uni on(sel f. Ancestors()
->col lect(j:Cd ass|j.overriddenret hod)
->asSet ()))
->i ncl udesAl | (sel f.inheritednethod)



¢ If a class has no parentss then it cannot have any overriddéroats

sel f. parent->i sEnpty() inplies self.overridden.nethod->i senpty()

3.3.4 Operations
e The query Ad() returns the set of declared attributes of the Class.

Class::Ad(): Set(Attribute)
body: self.declaredatt

e The query Ai() returns the set of implemented attributes of the Class.

Class::Ai():Set(Attribute)
body: self.inplenmentedatt

e The utility operation allparents() returns the set of all direct and indirect ances-
tors of the Class.

def: all _parents(S: Set(C ass)): Set (Cl ass)

=sel f. parent->union((self.parent - S)
->col lect(i:Cass|i.all_parents(S->including(self))))
->asSet ()

. Trlle query Ancestors() returns the set of all direct and ediancestors of the
Class.

Cl ass:: Ancestors(): Set (C ass)
body: self.all parents(Set)

e The query Attributes() returns the set of all attributebging to the Class.

Class::Attributes(): Set(Attribute)
body: sel f.declared.att->union(self.inplenentedatt)

e The query Children() returns the set of all immediate dedeats of the Class.

Class:: Children(): Set(d ass)
body: self.child

e The utility operation allchildren() returns the set of all direct and indirect de-
scendents of the Class.

def: all children(S: Set(C ass)): Set (Cl ass)

=sel f.child->union((self.child - S)
->collect(i:Cass|i.all_children(S->including(self))))
->asSet ()

e The query Descendents() returns the set ofall direct anideictcdescendents of
the Class.



Cl ass: : Descendent s(): Set (C ass)
body: self.all children(Set)

The query Friends() returns the set of direct friends of tles€<

Cl ass:: Friends(): Set(d ass)
body: self.friend.of

The query Friendsinv() returns the set of inverse friendtefClass.

Cl ass:: Friendslnv(): Set(C ass)
body: self.grants_friendship

The query Md() returns the set of declared methods of the Class.

Cl ass:: Md(): Set (Met hod)
body: sel f. decl ared_net hod

The query Mi() returns the set of implemented methods of the Class.

Cl ass:: Mi(): Set (Met hod)
body: sel f.inpl ement ed_net hod

The query Minh() returns the set of inherited methods of the Class.

C ass:: Minh(): Set ( Met hod)
body: sel f.inherited.nethod

The query Movr() returns the set of overridden methods of the Class.

C ass:: Movr () : Set ( Met hod)
body: self.overridden_net hod

The query Mnew() returns the set of new methods of the Class.

C ass:: Mnew() : Set ( Met hod)
body: sel f. new.ret hod

The query Mpub() returns the set of public methods of the Class.

Cl ass:: Mpub(): Set ( Met hod)
body: sel f. Methods()->sel ect (m Met hod| mi sPubli c)

The query Mnpub() returns the set of nonpublic methods of the Class.

Cl ass:: Mnpub(): Set ( Met hod)
body: sel f. Met hods()->sel ect (m Met hod| not m i sPublic)

The query Methods() returns the set of all methods that loeothe Class.

10



context C ass:: Methods(): Set ( Met hod)
body: sel f. decl ar ed_net hod- >uni on(sel f.i npl enent ed_net hod)

e The query Parents() returns the set of direct ancestoredtigss.

Cl ass:: Parents(): Set(d ass)
body: sel f. parent

e The query uses(d) returns true if the Class uses attributesthods belonging
to the Class d.

Cl ass: :uses(d: d ass): Bool ean
body: sel f.i npl enent ed_nmet hod- >col | ect (m Met hod| m PI M))

->intersection(d.inpl enent ednet hod)

->not Enpt y()
or

sel f. i npl ement ed_net hod- >col | ect (m Met hod| mref erencedatt)
->intersection(d.inplenentedatt)
->not Enpt y()

3.4 FormalParameter
3.4.1 Description

FormalParameter represents an argument that is used tmfissation in and out of
a Method.

3.4.2 Associations
o type:Type[l..1]: specifies the type of the parameter

e param_of:Method[1..1] : specifies the method that the parameter belongs to

3.5 Invocation
3.5.1 Description

An invocation represents a method call.

3.5.2 Attributes

o type:InvocationType - specifies the type of the invocation i.e. wether it is static
or dynamic

3.5.3 Associations
e caller:Method[1..1] : specifies the method in which the method call appears

e calee:Method[1..1]: specifies the method that is being called

11



e passegspointer_to:Method[0..*] : specifies the set of methods that are being
passed as a pointer during the invocation

3.6 InvocationType

InvocationType is an enumeration type that specifies tkeali$ for defining the type
of a method invocation.

3.6.1 Description
InvocationType is an enumeration of the following literalwes:
e static: Indicates that the method is invoked statically.

e dynamic: Indicates that the method is invoked dynamically.

3.7 Method
3.7.1 Description

A callable function belonging to a class.

3.7.2 Attributes
o type:MethodType - specifies the type of the method
e isAbstract:Boolean- indicates if the method is abstract or non-abstract

e isPublic:Boolean- indicates if the method is public or non-public

3.7.3 Associations
e overriding _class:Class[0..1] specifies the class that overrides this method
e inheriting _class:Class[0..*] specifies the set of classes that inherit this method
e new_class:Class[0..1] specifies the class in which this method is first defined

e method.declaring_class:Class[0..*]: specifies the set of classes in which this
method is declared

e method.implementing_class:Class[0..1] specifies the class in which this method
is implemented

e param:Parameter[0..*] : specifies the set of parameters of this method

o referencedatt:Attribute[0..*] : specifies the set of attributes referenced by this
method

e invokes:Invocation[0..*] : specifies the set of invocations in which this method
is the caller

12



e invoked_by:Invocation[0..*] : specifies the set of invocations in which this
metod is the callee

e passedto:lnvocation[0..*] : specifies the set of invocations where this method
is passed as a parameter

3.7.4 Constraints

e |f a method references at least one attribute, then this edethust be non-
abstract

sel f.referencedatt->notEnpty() inplies self.isAbstract = fal se

If a method is abstract then it must not call any methods

self.isAbstract = true inplies self.invokes->i sEnpty()

If a method has no implementing class then it must be abstract

sel f. met hod.i npl ement i ng_cl ass->i sEnpty() inplies
sel f.isAbstract = true

o |f a method is abstract then it must have a new class

self.isAbstract = true inplies not self.newclass->i sEnpty()

A method must have either an overriding class or a new class

not sel f.overridingclass->asSet()->i sEnpty() inplies
sel f. newcl ass->asSet () - >i sEnpty()

and sel f.overridingcl ass->asSet ()->i sEnpty() inplies
not sel f.newcl ass->asSet ()->i sEmpty()

If a method is a constructor or destructor then it must notdstract

sel f.type = MethodType: : constructor or
sel f.type = MethodType: : destructor
implies self.isAbstract = fal se

3.7.5 Operations

. Thehutgity operation stainvoked() returns the methods statically invoked by the
Method.

def: stat_i nvoked(): Bag( Met hod)

= sel f.invokes
->select(i:lnvocation|i.type=lnvocati onType::static)
->col lect(j:lnvocation | j.callee)

13



The utility operation polyinvoked() returns the methods polymorphically in-
voked by the Method.

def: poly.i nvoked(): Bag( Met hod)

= sel f.invokes
->sel ect(i:lnvocation|i.type=lnvocationType:: pol ynor phic)
->col lect(j:lnvocation | j.callee)

The utility operation closureSIM() returns the methodsedily and indirevtly
statically invoked by the Method.

def: cl osureSI M S: Set ( Met hod) ) : Set ( Met hod)

= self.SIM)->union((self.SIM)-S)
->col | ect (m Met hod| m cl osur eSI M S- >i ncl udi ng(self)))
->asSet ())

The utility operation closurePIM returns the methods diyeand indeirectly-
polymorphically invoked by the Method.

def: cl osurePl M S: Set ( Met hod) ) : Set ( Met hod)
= self.PIM)->union((self.PIM)-S)

->col | ect (m Met hod| m cl osur ePl M S- >i ncl udi ng(self)))
->asSet ())

The query operation AR() returns the set of attributes refed by the Method.

Met hod: : AR() : Set (Attribute)
body: self.referencedatt

The query operation NPI(m) returns the number of polymarjiiocations of
m by the Method.

Met hod: : NPI (m Met hod) : | nt eger
body: sel f. pol y_i nvoked()->count (m

Thehqudery operation NSI(m) returns the number of staticéations of m by the
Method.

Met hod: : NSI (m Met hod) : | nt eger
body: sel f.stat_i nvoked()->count(m

The query operation Par() returns the set of parametereadfltthod.

Met hod: : Par () : Set ( For mal Par anet er)
body: sel f.param

The query operation PIM() returns the set of methods polytically invoked
by the Method.

Met hod: : Pl M) : Set ( Met hod)
body: sel f. pol y_.i nvoked()->asSet ()

14



3.8

Thehqléery operation SIM() returns the set of methods sttisavoked by the
Method.

Met hod: : SI M) : Set ( Met hod)
body: sel f.stat_i nvoked()->asSet ()

The query operation PIM) returns the set of indirectly polymorphically invoked
methods of the Method.

Met hod: : Pl M() : Set ( Met hod)
body: sel f.cl osurePl M Set)

The query operation SIM) returns the set of indirectly statically invoked meth-
ods of the Method.

Met hod: : SI M() : Set ( Met hod)
body: sel f.cl osureSI M Set)

The query operation PP(m) returns the number of invocatajrtee Method
where a pointer to the Method m is passed to this Method.

Met hod: : PP( m Met hod) : | nt eger

body: sel f.invoked_by
->sel ect(i:lnvocation|i.passespointer_to->includes(m)
->si ze()

MethodType

MethodType is an enumeration type that specifies the lgdaaldefining the type of a
Method.

3.8.1 Description

MethodType is an enumeration of the following literal vadue

constructor: Indicates that the method is a constructor i.e. a methodishat
called when an object is created

destructor: Indicates that the method is a destructor i.e. a methodslalied
when an object is destroyed

accessor:Indicates that the method provides access to the attribfitbe class
to which it belongs

mutator: Indicates that the method is used to modify the attributeéb®tlass
to which it belongs

general: Indicates that the method is a general method that doekihfalany
of the above categories

15



3.9 Type
3.9.1 Description

A type defines a set of values. Type is an abstract metaclass.

3.10 UserDefined
3.10.1 Description

A user-defined type of global scope (e.g., records, enumegt It is a subclass of
Type.

4 Defining metrics using the metamodel

In this section we describe how we used our metamodel to difine sets of existing
object-oriented software metrics. The three sets of ne@iKMetrics Cohesiorand
Couplingwere taken from [6, 3, 4], respectively. In total, we definédtdpes of
metrics and these are summarised in Table 2.

In keeping with the approach outlined in [15], the metricsavdefined as OCL
queries over the metamodel. The metamodel was extendedavatparate metrics
package containing a single class calMdtrics and each set of metrics was defined
as follows:

1. A class was created in the metrics package for the metrithse class extends

theMetricsclass.

2. For each metric, an operation was declared in the clasamegderised by the

appropriate metamodel elements.

3. The metrics were defined by expressing them as OCL quesiag the OCL

body expression.

As an example of a definition, Figure 2 presents the definibthe number of
children (NOC) metric. Here, the definition is parameterised by alsi@jass, and
the body of the definition returns the size of the set of alldtkin of this class. The
auxiliary operatiorChi | dr en defined in the metamodel traverses the elements and

Metric Set Metrics from references [6, 3, 4]

CKMetrics WMC, NOC, DIT

Cohesion LCOM1, LCOM2, LCOM3, LCOM4, LCOMS,
Co, NewCo, TCC, LCC, ICH

Coupling RFC, RFC’, CBO, CBO’, DAC, DAC’, MPC, COF,
ICP, IH.ICP, NIH_ICP, OCAEC, FCAEC, DCAEC,
ACMIC, OCMIC, IFCMIC, AMMIC, OMMIC, IFMMIC,
FMMEC, DMMEC, OMMEC, FCMEC, DCMEC, OCMEC,
IFCAIC, ACAIC, OCAIC

Table 2: Summary of implemented metricEhis table lists all 42 metrics that were
implemented using our metamodel.
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relationships in the metamodel to assemble this set. Ftdildef this and the other
metric definitions are detailed in the Appendices of thiorep

We have developed a measurement framework for the defirgtidrcalculation of
software metrics based around an Eclipse plug-in [15]. THaimework was used to
define all the metrics shown in Table 2 and to automaticalat a tool to calculate
these metrics. The metrics calculation tool was createddnsforming the OCL and
UML corresponding to the metric sets to Java code. In bried,tbol computes the
metric values for metamodel instances by invoking the Jasthads corresponding to
the OCL metric definitions. In Section 7, we report on how waleate the correctness
of this metrics tool.

- Returns a count of the imediate

- descendents of the Cass ¢

context CKMetrics::NOJ(c: MM : d ass): Real
body: c. Children()->size()

- Returns the set of children
context Class::Children(): Set(C ass)
body: self.child

Figure 2: Definition of theNOC metric. This OCL code defnes the NOC metrics from
the CK metrics set, and is part of a larger defnition of the {gh©K metric set which
we have implemented using the metrics-specific metamodel.

5 An overview of the approach

In this section we present an overview of an approach thabearsed to both analyse a
MOF-compliant metamodel and to automatically generated&ts for software based
on the metamodel.

An overview of the approach is depicted in Figure 3. In thisifégg our system is
delineated by a dashed red line. The inputs to the systenharmétamodel and its
constraints expressed as UML and OCL, and are shown on thef léfe figure. The
outputs of the system are shown on the bottom, and consistafaimplementation of
the metamodel and its associated OCL constraints and gyatang with a test suite
based on the metamodel. These are linked through a covaralysia, as described in
Section 7.

Both Octopu$and Alloy are third-party tools used in our system. The UMII2A
tool used here is a re-implementation of the same tool of tasakiset al. [1], but spe-
cialised for Octopus. ThReflective Instantiatotool was developed by us. The pro-
cess is almost fully automated, with user interventiontiito providing the original
UML/OCL description of the metamodel, and examining theegated Alloy specifi-
cation. This is depicted by the stick-figure in green in Feg8r

There are six main steps in this process:

’http://ww. kl asse. nl / oct opus
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Step 1: Expressing the metamodel in UML and OCL. The OMG specification for
MOF does not define a textual or graphical representatiohWfOF [18]. However,

there is a UML Profile that defines a bi-directional mappintyeen UML and MOF.

The profile facilitates the creation of metamodels using UAnid the viewing of MOF
metamodels. Our approach uses this to express the metamadidl. and OCL. For

example, MOF classes map to UML classes, MOF attributes td. @htibutes and

vice versa. In addition, any semantic constraints on the M@Emodel map directly
to UML constraints.

Itis important to note that the profile is based on MOF 1.3 aaidome limitations
such as lacking a definition for mapping Enumeration. We skdo map from MOF
Enumerations to UML Enumerations. This process was noraatied, the metamodel
was depicted using a standard UML modelling tool. Octopusésl to check the OCL
for correct syntax and use of metamodel elements.

Step 2: Generating a Java implementation of the metamodel. After the meta-
model and its constraints are depicted using UML/OCL, Ogtoig used to generate
the corresponding Java classes. The Octopus tool gendsateslasses for each UML
class. All attributes and associations in the metamodet@ated as fields in the ap-
propriate classes. Finally, Octopus creates methods itkahat all the constraints of
the metamodel have not been violated along with a methodeokciultiplicities of
the metamodel.

Metrics
Metamodel
in
Alloy

b

. H Eclipse / |Converter
Metrics = Octopus
Meta : PUS luML2Alloy Reflective
Model H Instantiator
; Alloy2Java
UML/OCL

Instances

Meta ¢
[0}
asses
Model

in Java

in Java

Figure 3: Overview of the approach to analysing the MOF-dianpmetamodelThe
elements in the system are enclosed by the dashed red lireinptit, shown on the
left, are the metamodel and its constraints expressed as BiLOCL. The outputs,
shown at the bottom, are the metamodel implementation aswtaded test instances
in Java.
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Step 3: Transforming the metamodel to Alloy. We have created a tool to convert
an Octopus UML/OCL metamodel to an Alloy specification. ®irtisis tool mimics
the UML2Alloytool [1], we only briefly outline the transformation apprbdeere.

UML classes are mapped to Alloy signatures. All attributés &ML class are
mapped to fields of the corresponding Alloy signature. UMluBerators are mapped
to abstract signatures in Alloy, with enumerator literalspped to sub-signatures that
extend the abstract signature of the enumeration. Basic dbth types are mapped
to equivalent signatures from the Alloy library. The asations in the metamodel
are also mapped to fields in the appropriate Alloy signatukes additional fact is
generated in the Alloy specification for bi-directional UNissociations to show that
the relations are symmetric.

Finally, any constraints on the metamodel in the form of OGlariants are mapped
directly to Alloy facts. At present, the OCL map does not adabe full language, and
requires some user intervention for more difficult congsuc

Step 4: Analysis of the metamodel. The Alloy Analyser is used to analyse the Alloy
model to detect flaws in the metamodel specification. For @kanit can be used

to generate random instances of the metamodel that confothetwell-formedness

rules. If an instance cannot be found then there is an instamiy in the metamodel
specification. It is also possible to enumerate and explbbrpoasible instances of

the metamodel. This is useful to identify invalid instances instances that do not
represent what the user intends their specification to sepite

Step 5: Generation of metamodel instances using Alloy. The role of Alloy in our
system is twofold. First, it allows us to investigate the ameddel constraints to check
for redundancies or errors (see Section 6). Second, it allswmo automatically gen-
erate valid metamodel instances. For this step we creatadaaptogram to harness
Alloy’s model generation capabilities. This program readsAlloy specification file
and continually creates instances of the metamodel uhtjassible instances have
been generated. Every metamodel instance produced dhiggtep is output and
stored in XML format for future use.

Step 6: Transformation of metamodel instances to Java objés. One of the cen-
tral technical contributions of our system is tReflective Instantiatorwhich trans-
forms the XML versions of Alloy-generated models into im&tas of the Java imple-
mentation of our metamodel. Tireflective Instantiatgparses the XML produced by
Alloy and creates instances of our metamodel using the €lassgenerated in Step
2. It does this using Java reflection, reading the class nfmoesthe XML files and
creating instances of these classes. The fields of thesgeslase set by reading the
fields from the XML and calling the appropriate set methods.

It is important to note that this process is not tied to anycgmemetamodel. Since
the Alloy model and Java implementation of the metamodelgamerated from the
same MOF metamodel, Java reflection can make the link bettheemwithout having
this information statically hard-coded. Therefore, thisgram is not specific to the
metamodel under consideration and can be used for any md&mo
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6 Metamodel development and analysis

While the approach outlined in Section 5 will work for any M@Bmpliant meta-

model, our original intention was the specification and wgsialof a metamodel for
coupling and cohesion measurement. In this section wedsteciour approach using
that metamodel.

6.1 Applying the approach

As described in Section 5, the first step of our approach ixpoess the metamodel
in UML and OCL. As we were basing our metamodel on that of BRtiahal, we
began by expressing the concepts described in [3, 4] asadigram and formalised
any well-formedness rules that were expressed in natungukge by Brianckt al.
An example of such a rule is thtte set of all new, overriding and inherited methods
of a class are disjoint We suspected that all these constraints were not suffitéent
describe our metamodel and thus added 15 more constragstdting in a total of
27 well-formedness rules. Once we had formalised all of thesrin OCL, we used
Octopus to statically check the OCL constraints and therstaded the MOF-compliant
metamodel and its well-formedness rules to Alloy.

An example of the translation of UML classes to Alloy is shawiirigure 4. This
figure gives the Alloy specification for th€lass element of our metamodel which
is defined in Alloy as a signature extending thgpe signature. The associations for
a class are represented by fields, which we have shown heoriirgfoups. These

sig dass extends Type
{
/* | nheritance x/
parent: set C ass,
child: set d ass,

[+ Friendship =/
grants_friendship: set d ass,
friendof: set d ass,

/+ Class - Attribute Relationships */
declared.att: set Attribute,
inmplenented.att: set Attribute,

/+ Class - Method Rel ationships */
decl ared_net hod: set Met hod,

i mpl enent ed_met hod: set Met hod,
new.net hod: set Method,
overridden_net hod: set Method,

i nherited.nethod: set Method

Figure 4: Alloy signature for th&€l ass element. This is a representation of the
elementCl ass in the Alloy specification lanhguage.

20



groups represent inheritance relationships, friendstlgtionships (for C++), and an
association with the class’ attributes and methods.

Furthermore, any constraints on the metamodel in the for@Cif invariants were
mapped directly to Alloy facts. An example of such a constra depicted in Figure
5. This invariants states thdta class does not have any parents then it cannot have
any overridden methodsd maps to a fact in the Alloy specification.

-- OCL Specification:
i nv noPar ent sThenNoOverri ddenMet hods :
sel f. parent->i sEnpty() inplies self.overridden.nethod->i sEnpty()

-- Alloy Specification:
fact noParent sThenNoOverri ddenMet hods
{

all c:Cass | c.parent = none inplies c.overriddennethod = none

}

Figure 5: An example of constraint on the metrics metamoditiem in both OCL and
Alloy. This constraint states that if a class does not have any paitten it cannot
have any overridden methods.

6.2 Metamodel analysis

To perform the analysis, the Alloy Analyser was used to gateea random instance
of the metamodel. The Analyser requires that a scope is fegeéor the model and
then performs the analysis by exhaustively searching #dte space for this scope. We
specified a scope of 10 for all elements. The analyser seafocha model that contains
at most 10 instances of each base class of the metaraodelonforms to the well-
formedness rules of the metamodel. An instance was prodbasdiemonstrating that
the well-formedness rules specified for the metamodel wensistent.

We used the Analyser to search for invalid metamodel ingmndVe specified a
scope of 1 for the Alloy model and manually inspected the oamthstances produced
by the Analyser. Each time an invalid instance was found,atd a constraint to pre-
vent that instance from being generated. For example, wedfaumetamodel instance
where a class could inherit from itself. On completion we hadtal of 37 constraints.

Upon visual inspection of the 37 metamodel constraints, wepacted that a num-
ber of the constraints were superfluous. For each of thesstraimts, we converted it
into an assertion about the metamodel and then used Allopg¢okcwhether the as-
sertion was valid. If the assertion produced a counterelathpn we knew that the
constraint was required. If a counterexample could not b@dowithin a reasonable
scope then it cannot be guaranteed that the constraintusideaht but it can increase
our confidence that it is. Therefore, we assumed that thetreamswas superfluous
and omitted it from the specification. During this final arsady 24 constraints were
identified as potentially redundant and removed from theyAfipecification. We also
found that a further 2 constraints were needed to preveaticthinetamodel instances,
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thus giving us a total of 15 constraints in the Alloy versidritee metamodel.

6.3 Discussion

This approach relies on Jacksosimall scope hypothesishich suggests that if a bug
exists it will appear infairly small models of a system [12]. So, it is possible our
approach may not be applicable to larger metamodels. Hawieveuch a situation it
may be possible to apply the approach by partitioning anttatigng the metamodel
into the parts that are related to the properties being agdly

Moreover, we are fully aware that this process is not a cotalyidormalised
method for developing and analysing metamodels. Howewehealieve that this ap-
proach gives the developer a formal way of analysing andkthgdor any suspected
deficiencies in their metamodel specification. By iterdgianalysing and improving
the metamodel, the developer becomes more confident ingbedification.

Finally, it is important to note that this approach is notafieto a particular meta-
model. It is generally applicable to any MOF-compliant nedael. In fact, the ap-
proach is not restricted to metamodels but is applicablenyokind of model, for ex-
ample a UML class diagram of a UML model.

7 Test suite generation

As described in Sections 3 and 5 we were able to automatigatigrate both an imple-
mentation of the metamodel and an implementation to caketite specified metrics.
In this section we describe the final step in integrating theaf Alloy with this code:
the construction of a test suite for the automatically gategt metrics tool. We use this
test suite as input to the metrics tool and use a test oradeteymine whether or not
the metric results produced by the tool are correct. Thetaste had to be constructed
manually and therefore, required a test suite with the Walg properties:

1. Each test case should contain a relatively small numbeleofients.

2. The number of test cases in the test suite should alsodnévedy small.

3. The test suite should provide as much coverage of the mggi¢ation as possi-

ble.
Test No. of
Group Alloy Command Test Cases

1 run show for exactly 1 Type, exactly 1 Attribute, exactly 1 40
Method, exactly 1 FormalParameter, exactly 1 Invocation

2 run show for 1 217

3 run show for exactly 1 .all classes listed 360

4 run show for exactly 2 Type, exactly 2 Attribute, exactly 2 528,152
Method, exactly 2 FormalParameter, exactly 2 Invocation

Table 3: Groups of test case$Shere were four main groups of test cases, generated
by varying the settings for Alloys model generator. The nemalf test cases in each
group is shown in the final column.
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7.1 Test case generation

Using our reflective instantiator described in Section 5 vezenable to automate the

generation of a set of test cases for the metrics calcul&diain As we required models

with a relatively small number of elements we began by gdemegyanodels using a

small scope. Table 3 summarises the results of generatasg ttest cases which are

partitioned into four different groups:

Group 1 consisted of all possible instances with exactly one irstasf each base
class in our metamodel.

Group 2 is all possible instances where each base class is obsexet imes in a
metamodel instance.

Group 3 is similar to group 1 except that we defined a scope of exadty dll classes
(not just base classes).

Group 4 again is similar to group 1 except that we allowed a scope a2 for all
base classes.

7.2 Test cases and expected results

We added the two extra constraints to the original UML/OCEdfication, and thus
the generated Java implementation contained 39 constriairibtal. All of the test
cases summarised in Table 3 were used as input to our Rediéestantiator. For each
model, the Instantiator built the instantiation, ran thdeto check each of the 39 OCL
constraints, and then systematically tore down each modekt the element removal
code. As each test model was built it was used as input to tleosiealculation tool
and the values for all 42 metrics were recorded.

Since each generated constraint was checked for each sestthes provided fur-
ther assurance that the reduced set of constraints useddcege the Alloy models was
sufficient. Further, using such a large number of test case®dstrates the robustness
of the metric calculation tool and was used asv@ke testo ensure that the recorded
values were within reasonable boundaries. Based on the swmal to generate each
of the groups in Table 3 we computed the maximum and minimuoeggossible for
each of the metrics. We then identified the models that predutetric values outside
of these bounds. The results of this smoke test are discleggedn this section.

Our original intention was to generate a test suite with atiedly small number of
test cases whose metric values could be calculated manseiiying as a test oracle
for the generated metrics tool. However, since the numbéegifcases produced is
in excess of 500,000, it is necessary to reduce this suitetore manageable size.
We decided to measure the coverage of the implementatienrimstof traditional code
coverage criteria and to reduce the number of test cased badbese criteria.

7.3 Coverage analysis

Coberturd was used to measure the line and branch coverage of the naghino
plementation and the implementation corresponding to thiios. Coberturais a free
Java tool that computes the percentage of code accessestdy te

Shttp://ww. cobertura. sourcef orge. net/
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Reason for exclusion Line Branch

Negative test cases 11% 1%
Field setters 6% 2%
Passed-as-Pointer Association 3% 4%
Total excluded 20% 7%

Table 4: Line/Branch coverage excluded from the coveraggets. This table lists
five kinds of code excluded from the coverage targets, aldtigtihe percentage of
lines/branches for each kind.

Test | Cum. Line Coverage | Cum. Branch Coverage
Group| MM  Metrics  All MM  Metrics All

1 44% 68% 51%| 55% 60% 57%

2 49% 68% 54%)| 62% 60% 61%

3 49% 68% 54%| 62% 60% 61%

4 71% 99% 79%| 91% 99% 93%

Table 5: A breakdown of the metamodel coverage for each dietstegroups in Table
3. The numbers presented for each group represent the cuwmilaiiverage achieved,
including the previous test groups.

It was not possible to achieve full line and branch coverdgbh®implementation
for several reasons, summarised in Table 4. Since our téstaly included positive
test cases, code that involves catching exceptions wheénvhgants of the metamodel
are violated was not fully covered. Some auxiliary routjreech as alternative set and
get methods were not called in constructing the model. Fopktity, the part of the
metamodel dealing with method pointers was not instamtiateAlloy, significantly
reducing the number of models created. Thus, excludingthasals, from our tar-
get coverage gave a maximum possible coverage of 80% foalide93% for branch
coverage.

The results of the coverage analysis is summarised in Tatwesbper-group basis.
This table has one row for each of the test case groups dedgileviously in Table 3.
The data in each case represents the percentage coveragelioof the two coverage
criteria. Each row describes the percentage coverage af¢t@model implementation
(MM), the metrics implementation (Metrics) and the combimpercentage coverage
(All). Furthermore, each row represerismulativecoverage; for example, the line
coverage value of 54% for group 2 includes the 51% line caeexhieved by group
1. As can be seen from Table 5, the smaller test suites exhlatively poor coverage.

7.4 Test oracle construction

In this subsection we consider the construction mfducedest suite that achieves the
maximum coverage criteria possible for use as a test oracthé metrics tool.

A number of techniques exist that can reduce test suitesdbasevarious con-
straints. For example, Harroket al. outline techniques for test suite reduction and
prioritisation based on coverage criteria [11]. Howevigigs our test cases were being

24



Test | Cum. Line Coverage | Cum. Branch Coverage
Case | MM  Metrics  All MM  Metrics All

T1 43% 66% 50%)| 55% 59% 56%
T2 44% 68% 51%| 55% 60% 57%
T3 44% 68% 51%| 55% 60% 57%
T4 44% 68% 51%)| 56% 60% 57%
T5 48% 68% 54%)| 62% 60% 61%
T6 59% 68% 54%| 62% 60% 61%
T7 | 63% 88% 71%| 80% 88% 83%
T8 68% 89% 74%| 87% 89% 87%
T9 68% 89% 74%| 87% 89% 88%
T10 | 68% 89% 74%| 87% 89% 88%
T11 | 69% 97% T7%| 87% 98% 90%
T12 | 69% 97% T7%| 87% 98% 90%
T13 | 69% 98% 77%| 87% 99% 91%
T14 | 71% 99% 79%| 91% 99% 93%

Table 6: The test cases in the reduced test sditas table lists the 11 test cases in
the reduced suite, along with the cumulative coverage figureder each of the five
coverage criteria.

generated by Alloy roughly in order of size, a simpler apptoaas taken to test suite
reduction:

1. Aseachtest case is executed, the cumulative coverag#oétiteria is recorded.

2. Any test case that causes an increase in any one of the weoage figures is

added to the reduced suite.
3. This process is continued until either the maximum cayeteas been achieved
for both criteria or until all test cases have been examined.

In general this process will not perform as well as that ofrblaret al., but it is
much simpler to implement. Applying this technique to th& teases, we generated a
reduced test suite of 14 unique test cases. Table 7 listsutimeilative coverage data
for each of these cases, labelled T1-T14. Three of thess ¢&%€el3) originated from
group 1, three (T4-T6) from group 2, and eight (T7-T14) froraugp 4.

The 14 test cases almost achieved the maximum coveragdlgo$3y inspecting
the output from the Cobertura tool we were able to identifyia@s of code that had
not been covered by the reduced test suite. We then used tdllggnerate a valid
metamodel instance to cover this situation. This model wiaed to our test suite and
increased the coverage to the maximum value possible of 8%ofle coverage and
93% for branch coverage.

The 15 test cases were then used to manually create a tekt fimathe metrics
tool. All 42 metrics were calculated by hand and recorde@é&mh of the 15 test cases.
We compared these values with the actual values computdtehyetrics tool. In the
next subsection, we briefly discuss the results of this alsitly the results from the
smoke test.
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7.5 Discussion

Using the above procedure we uncovered 6 bugs in the maintsRour of these were
detected by the smoke test and 2 with the test oracle. For@erafor certain cohesion
metrics (e.g. LCOMZ1), an auxiliary operation was specifiediCL to compute the
set of method pairs in &'lass. It was discovered that each method pair was being
counted twice and thus returning a metric value outside@gttpected bounds for the
metrics. This error was corrected at the OCL level. Furtieridentified and fixed the
remaining bugs and regenerated the metrics tool.

In summary, we were able to partition the types of errors wafbinto three cate-
gories. The first category are bugs that are a result of theadetfinitions themselves.
For, example when a metric has no provision for a division bys@cond, are those
introduced in the OCL where the definition has been incayrsgiecified, for example
a misplaced bracket in the OCL definition. Lastly, errorsadticed by Octopus in
transforming the UML/OCL to Java, for example incorrecttizagof objects. Overall,
our experience found this to be a relatively simple and &ffeavay of increasing our
confidence in the correctness of the automatically gengratdrics tool.

8 Related work

The parallel between specification in Alloy and modellinguML has been noted
by Massoniet al. [13] and exploited by Anastasakét al. [1]. Anastasakist al.
present a toollJML2Alloy, that takes a UML class diagram, along with the associated
OCL constraints, and translates this into an Alloy spedifica The sample instances
generated by the Alloy Analyser then correspond to objeagjrdims from the UML
model. However, their tool does not provide any automateuilivag of the generated
Alloy models.

Several other researchers have used Alloy to analyse asgir@a@out metamodels.
For instance, an alternative definition of the UML metamasl@resented in [17] and
analysed using Alloy. In [22], Alloy is used to formalise aadalyse the package
merge concept of the UML 2.0 metamodel. These approachesrailar to ours in
that they use Alloy to describeraetanodel, as opposed tonaodelas with Anastasakis
et al. However, the main focus of this research to date has bedmeaamtalysis of the
UML metamodel. Our work, is concerned with using Alloy to Bisa& a metamodel for
object-oriented software measurement. Moreover, thgg@aphes have no automated
support for metamodelling or for handling the generated eted

Some work related to ours is that of Gogadtaal. [10] who describe an approach
to the automatic generation of model instances (snapshots)UML class diagrams.
ASSL (A Snapshot Sequence Language) is used to specify ppiexpef a required
model instance. Using their approach they generate twostgbenodel instances,
those that are test cases and those that are validation dédmetest cases confirm that
models with certain properties can be created from the fpatdon. The validation
cases are used to show that certain properties of a modekaresaquence of existing
properties of the model. However, this approach is not falljomated as it requires
the creation of scripts for each model in order to generataices.
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A related problem is that of generating metamodel instarigesise in testing
model transformations. Brotti@t al. use an approach that determines the part of the
metamodel that is relevant to the model transformation thed determines coverage
criteria based on this part of the metamodel [5]. This datées then used to generate
metamodel instances. However, OCL constraints, an impbpart of a metamodel,
cannot be directly reflected, leading to an under-spedificaif model instances.

Finally, an approach to metamodel instance generatioreisepited by Ehrigt al.
[7]. This approach involves the automatic creation of artainse-generating graph
grammar for the given metamodel. They also describe hovattstate restricted OCL
constraints to graph constraints. The grammar and the g@amstraints are then used
to create metamodel instances. However this approach ddesipport attribute val-
ues, only supports limited OCL constraints and cannot bd tseerify properties of
the metamodel.

9 Concluding remarks

In this paper we presented an approach to analysing MOF{@mhmetamodels. We
also presented a metamodel for coupling and cohesion nmezasut based on the work
of Briand et al. and described how we used our approach to construct andsanaly
the metamodel. The metamodel and well-formedness rules eipressed in UML
and OCL and a Java implementation and Alloy specificatiorhefrhetamodel were
generated by third-party tools.

We used the Alloy specification to examine and validate theamedel constraints,
and to generate instantiations of the metamodel. We impitedea reflective instan-
tiator to transform the automatically generated Alloy medeto an instantiation of
the Java implementation of the metamodel, generating atétst for the metamodel-
based metric calculation tool. finally, we evaluated thegadey of the test suite using
several coverage criteria.

We identify the principal contributions as:

e Thedevelopment and analysioof a MOF-compliant metamodel for coupling
and cohesion metrics, based on the work of Briahdl, and the elimination of
redundant constraints in that metamodel.

e The automation of the generation of metamodel instances from a UML/OCL
specification that can be used as test data for metamodetsafiware.

e A coverage-based analysief the Alloy-generated test suite in terms of code
coverage, thus “completing the circle” between lightweigihmal methods and
standard software testing techniques.

In future work, we plan to define a precise and complete scHenteansforming
UML models and Java programs to instances of the metamoeletpted in this report.
Also, we believe the metamodel can be easily extended to tyghes of object-oriented
metrics simply by expanding it with the new concepts requfoe the different types
of metrics.
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A Chidamber and Kemerer Metric Definitions

-- Returns a count of all the inplenmented methods of the Class c
context CKMetrics::WMC(c: MM : O ass): Real
body: c. Mi ()->size()

-- Returns a count of all the i medi ate descendents of the Cass c
context CKMetrics::NOC(c: MM : d ass): Real
body: c. Children()->size()

-- Conputes the DIT for the Class ¢
context CKMetrics::DIT(c: MM : d ass): Real
body: if c.Parents()->size() = 0 then --current Cass ¢ is root
0
else --DIT for Class ¢ is nmaximum DI T value of its parents
sel f. max(c. Parents()->collect(i:MV:C ass|self.D T(i)+1)
->asSet ())
endi f
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B Coupling Definitions

def: C assesAsTypes(): Set (M : Type)
= MM :C ass.alllnstances()->asSet ()

def: CA(c:MM:Cass, d: MM : O ass): Real
= c.Ali()->sel ect(ala.type=d)->size()

def: CMc: MM : O ass, d: MM : O ass): Real
= sum nts(c. Mnew( ) - >col | ect (m] m Par () - >sel ect (a| a. t ype=d) - >si ze()))

def: MMc: MW : dass, d: MM:C ass): Real
= sunReal s(c. Mi ()->col |l ect (nj sum nts(d. Mnew() - >uni on(d. Movr ())
->col lect(mL| mNSI(m) + mPP(nmL)))))

def: Qthers(c: MM :C ass): Set (Mv: C ass)
= MM :C ass.alllnstances()-
(c. Ancestors()->union(c. Descendents())->union(c. Friends())
->uni on(c. Friendslnv())->including(c))

-- Conputes the CBO for the Class ¢
context Coupling::CBQ(c: MM : O ass): Real
body: MM :d ass. all I nstances()->excl udi ng(c)
->sel ect (d: MM : Cl ass| c. uses(d) or d.uses(c))->size()

-- Conputes the CBO for the Uass ¢

context Coupling::CBO(c: MM : C ass): Real

body: (MM :d ass.alllnstances()-(c.Ancestors()->including(c)))
->sel ect(d: MM : Cl ass| c. uses(d) or d.uses(c))->size()

-- Conputes the RFC for the Class ¢

context Coupling::RFQ(c: MM : C ass): Real

body: c. Met hods()->collect(m M\t : Method| m PIM))
->asSet () ->uni on(c. Met hods())->si ze()

-- Conmputes the RFC for the Cass ¢

cont ext Coupling::RFC(c: MM : Cl ass): Real

body: c. Methods()->collect(m M\t : Met hod| m Pl M())
->asSet () ->uni on(c. Met hods())->si ze()

-- Conputes the DAC for the Class ¢

cont ext Coupling::DAC(c: MM : O ass) : Real

body: c. Al ()->select(a]self.C assesAsTypes()
->incl udes(a.type))->size()

-- Conputes the DAC for the Cass ¢

context Coupling::DAC(c: MM : O ass): Real

body: c. Al ()->collect(a]a.type)->asSet()
->sel ect(t: MM : Type| sel f. Cl assesAsTypes()
->includes(t))->size()

-- Conputes the MPC for the Class ¢

context Coupling:: MPQ(c: MM : C ass): Real

body: sunReal s(c. Mi ()
->col l ect(m MM : Met hod| sum nts((m SIM)-c. Mi())
->col lect (ml: MM : Method| m NSI () ))))
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-- Conputes the COF for the entire system
cont ext Coupling:: CO-(): Real
body: let nunCl asses:RReal = MM :d ass. all I nstances()->size() in
((sum nts(Mvt:C ass. alllnstances()
->collect(c|(MM: O ass.alllnstances()-
(c. Ancestors()->including(c)))->select(d|c.uses(d))->size())))
/' ((nunCl asses*nuntCl asses) - nunCl asses -
(2+(sum nts(Mvt: d ass. al | I nstances()
->col |l ect(c| c. Descendents()->size()))))))

-- Conputes the ICP for the Method m

context Coupling::1CP(c: M :C ass, m MM : Method): Real

body: sum nts((mPIM)-(c. Mnew()->union(c.Movr())))
->collect(ml| (1 + ni. Par()->size())*m NPl (nl)))

-- Conputes the ICP for the Cass c
context Coupling::1CP(c: MM :C ass): Real
body: sunReal s(c. Mi ()->collect(nself.ICP(c, m))

-- Conputes the ICP for the entire system
context Coupling::1CP(): Real
body: sunmReal s(MM : Cl ass. alllnstances()->collect(c|self.ICP(c)))

-- Conputes the NIHICP for the Method m
context Coupling::NHICP(c: M :dass, mM: Method): Real
body: sum nts((mPIM)->intersection( c.Ancestors()
->col l ect(al a. Methods())))
->col l ect (ml| (1+ml. Par ()->size())*m NPl (ml)))

-- Conputes the NTHICP for the Class ¢
context Coupling::NHICP(c: M : O ass): Real
body: sunReal s(c. Mi ()->collect(njself.NHICP(c, m))

-- Conputes the NTHICP for the entire system
context Coupling::NHICP(): Real
body: sunmReal s(MM : Cl ass. al |l I nstances()->collect(c|self.N HICP(c)))

-- Conputes the IHICP for the Method m

context Coupling::1HICP(c: MM: O ass, m MV : Method): Real

body: sum nts((mPIM)->intersection((Mt:d ass.alllnstances() -
(c. Ancestors()->including(c)))->collect(ala. Methods())))
->col lect(nl] (1 + nil. Par()->size())*m NPl (ml)))

-- Conputes the IHICP for the Class c
context Coupling::1HICP(c: MM :C ass): Real
body: sunReal s(c. Mi ()->collect(nfself.IHICP(c, m))

-- Conputes the IHICP for the entire system
context Coupling::1HICP(): Real
body: sunReal s(Mv : d ass. al |l | nstances()

->col lect(c|self.IHICP(c)))

context Coupling::|1FCAIC(c: MM : O ass): Real
body: sunReal s(c. Friendslnv()->collect(d|self.CA(c,d)))

cont ext Coupling::ACAlC(c: MM : C ass): Real
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body: sunReal s(c. Ancestors()->collect(d|self.CA(c,d)))

context Coupling::OCAIC(c: MM :d ass): Real
body: sunReal s(sel f.Qthers(c)->union(c. Friends())
->col l ect(d| self.CA(c,d)))

cont ext Coupling:: FCAEC(c: MM : C ass): Real
body: sunReal s(c. Friends()->collect(d|self.CA(d,c)))

cont ext Coupling:: DCAEC(c: MM : C ass): Real
body: sunReal s(c. Descendent s()->col |l ect(d|self.CA(d,c)))

cont ext Coupling:: OCAEC(c: MM : C ass): Real
body: sunReal s(sel f.Qt hers(c)->union(c.Friendslnv())
->col l ect(d| sel f.CA(d, c)))

context Coupling::1FCM C(c: MM : O ass): Real
body: sunReal s(c. Friendslnv()->collect(d|self.CMc,d)))

cont ext Coupling::ACM C(c: MM : C ass): Real
body: sunReal s(c. Ancestors()->collect(d|self.CMc,d)))

context Coupling::0CM C(c: MM : d ass): Real
body: sunReal s(sel f.Q hers(c)->union(c.Friends())
->col lect(d|self.CMc,d)))

cont ext Coupling:: FCMECQ(c: MM : C ass): Real
body: sunReal s(c. Friends()->collect(d|self.CMd,c)))

cont ext Coupling:: DCMECQ(c: MM : C ass): Real
body: sunReal s(c. Descendents()->collect(d|self.CMd,c)))

cont ext Coupling:: OCMEC(c: MM : C ass): Real
body: sunReal s(sel f.Qt hers(c)->union(c.Friendslnv())
->col lect(d|self.CMd,c)))

context Coupling::1FMM C(c: MM : C ass): Real
body: sunReal s(c. Friendslnv()->collect(d|self.Mc,d)))

context Coupling::AMM C(c: MM : C ass): Real
body: sunReal s(c. Ancestors()->collect(d|self.Mc,d)))

context Coupling::OMWM C(c: MM : O ass): Real
body: sunReal s(sel f.Qthers(c)->union(c. Friends())
->col l ect(d|self.M¢c,d)))

cont ext Coupling:: FMMEC(c: MM : C ass): Real
body: sunReal s(c. Friends()->collect(d|self.Md,c)))

cont ext Coupling:: DMMECQ(c: MM : C ass): Real
body: sunReal s(c. Descendents()->collect(d|self.Md,c)))

cont ext Coupling:: OMWECQ(c: MM : C ass): Real
body: sunReal s(sel f.Q hers(c)->union(c.Friendslnv())
->col l ect(d|self.MMd,c)))
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C Cohesion Definitions

-- Returns a value for the common attribute usage neasure

def: cau(nl: MM : Met hod, nR2: MM : Met hod, c: MM : d ass): Bool ean

= (mlL. SI M() - >i ncl udi ng(mL) ->col l ect (i: MM : Method|i.AR()))
->intersection(nR. SI M() ->i ncl udi ng( nR2)
->col lect(j: MM : Method|j.AR()))->i ntersection(c.Ali())

->not Enpt y()

-- The transitive closure of cau

def: cau_(ml: MM : Met hod, n2: MM : Met hod, c: MM : Cl ass): Bool ean

= (. SI M() - >i ncl udi ng(mt) - >col l ect (i : MM : Met hod|i.AR()))
->intersection(nR. Sl M() ->i ncl udi ng(nR)
->col lect(j: MM : Method|j.AR()))->i ntersection(c.Ali())
->not Enpt y()

-- Returns a set of sets of Methods, where each set represents
a connect ed conponent
def: construct Connect edConponent s(v: Set (MM : Met hod) ,
e: Set (Tupl eType(nil: MM : Met hod, nR: MM : Met hod)))
: Set (Set (MM : Met hod) )
= v->iterate(m MM : Met hod; resul t 2: Set (Set (MM : Met hod)) = Set |
if not result2->flatten()->includes(m then
resul t 2- >i ncl udi ng(sel f. get Connect edEl ements(m e)
->i ncl uding(m)
el se result2
endi f )

-- Returns the set of nethods that along with m nake a
si ngl e connect ed conponent
def: get Connect edEl ement s(m MV : Met hod,
1 Set (Tupl eType(ml: MM : Met hod, nR2: MM : Met hod) ) )
: Set (MM : Met hod)
= sel f. cl osureConnect edEl ements(m e, Set)

-- Returns the set of nethods that are transitively connected to m
def: cl osur eConnect edEl enent s(m MM : Met hod,
e: Set (Tupl eType(nil: MM : Met hod, n2: MM : Met hod) ),
S: Set (MM : Met hod) )
: Set (MM : Met hod)
= sel f. connect edEl ement s(m e) - >uni on((sel f. connect edEl enents(m e)-S)
->col l ect(i: MV : Method |
sel f. cl osureConnect edEl ements(i, e, S->including(m))->asSet())

--Returns the set of nmethods directly connected to m
def: connect edEl enent s(m MM : Met hod,
e: Set (Tupl eType(nil: MM : Met hod, n2: MM : Met hod)))
: Set (MM : Met hod)
= e->iterate(t: Tupl eType(nil: MM : Met hod, n2: MM : Met hod) ;
result3: Set (MM : Met hod) = Set |
if m=1t.nl then
resul t 3->i ncl udi ng(t.nR2)
el se
if t.n2 = mthen
resul t 3->i ncl udi ng(t. mL)
else result3
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endi f
endi f )

-- Returns the LCOML val ue for the Class c
cont ext Cohesion:: LCOML(c: MM : d ass) : Real
body: | et methodPairs: Set (Tupl eType(ml: MM : Met hod, nR2: MM : Met hod))
= sel f.construct Met hodPai rs(c.inpl enent edrret hod) in
get P1(c, methodPairs)->size()/2

-- Returns the LCOWR value for the Cass ¢
cont ext Cohesion::LCOVR(c: MM : d ass): Real
body: | et methodPairs: Set (Tupl eType(ml: MM : Met hod, nR2: MM : Met hod))
= sel f. construct Met hodPai rs(c. i npl enent edret hod) ,
p: Real = getP2(c, methodPairs)->size()/2,
g: Real = getQc, nmethodPairs)->size()/2 in
if p>qgthenp- q
else 0
endi f

-- This is a nodified LCOVR definition
cont ext Cohesi on:: NewLCOM2(c: MM : O ass) : Real
body: | et methodPairs: Set (Tupl eType(ml: MM : Met hod, nR2: MM : Met hod))
= sel f. construct Met hodPai rs(c. i npl enent ed_ret hod) ,
p: Real = getPl(c, nethodPairs)->size(),
g: Real = getQc, methodPairs)->size() in
if p>qgthenp-q
else 0
endi f

-- Returns the LCOMB value for the Class c
cont ext Cohesion ::LCOMB(c: MM : d ass): Real
body: let v:Set(MM:Mthod) = c. Mi(),
nmet hodPai rs: Set (Tupl eType(niL: MM : Met hod, n2: MM : Met hod) )
= sel f.construct Met hodPai rs(c. i npl enent ed_rret hod) ,
e: Set (Tupl eType(ni: MM : Met hod, n2: MM : Met hod) )
= getQ(c, methodPairs) in
sel f. construct Connect edConponents(v, e)->size()

-- Returns the LCOW value for the Class c
cont ext Cohesion:: LCOVA(c: MM : d ass) : Real
body: let v:Set(MM:Method) = c. Mi(),
nmet hodPai rs: Set (Tupl eType(niL: MM : Met hod, nR2: MM : Met hod) )
= sel f.construct Met hodPai rs(c. i npl enent ed_rret hod) ,
e: Set (Tupl eType(ni: MM : Met hod,
n2: MM : Met hod)) = getE(c, nethodPairs) in
sel f. construct Connect edConponents(v, e)->size()

-- Returns the C value for the Cass c-for Classes with LCOM =1
cont ext Cohesion:: Co(c: MM : d ass): Real
body: | et methodPairs: Set (Tupl eType(ml: MM : Met hod, nR: MM : Met hod) )
= sel f.construct Met hodPairs(c. Mi()),
e: Real = self.getE(c, nethodPairs)->size()/2,
v:iReal = c.Mi()->size() in
(2+ ( (e - (v-1)) / ((v-1)*(v-2)) ) )

-- This is a redefinition of Co
cont ext Cohesi on:: NewCo(c: MM : d ass) : Real
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body: | et methodPairs: Set (Tupl eType(ml: MM : Met hod, nR2: MM : Met hod))
= sel f.construct Met hodPairs(c. Mi()),
e: Real = self.getE(c, nethodPairs)->size()/2,
v:iReal = c.Mi()->size() in
(e)/ (vx(v-1))

-- Returns the LCOW value for the Class c

cont ext Cohesion:: LCOVb(c: MM : d ass) : Real

body: let a:Real = c.Ai()->size(), mReal = c.Mi()->size() in

if a=0.0then

0.0

el se
((m((1.0/a)*(self.sum nts(c.Ai()
->col lect(i:MM:Attribute|i.referencedby
->intersection(c.Mi())->size())) )) )
/(m1.0))

endi f

-- Redefined LCOV6 so not an inverse cohesion neasure)
cont ext Cohesi on: : NewCoh(c: MM : d ass) : Real
body: let a:Real = c.Ai()->size(), mReal = c.Mi()->size() in
if m=0.0or a=20.0then
0.0
el se
sel f.sum nts(c.Ai()->collect(i:MVM:Attribute|i.referencedby
->intersection(c.Mi())->size()))/(ma)

endi f

-- Returns the TCC value for the dass c
cont ext Cohesion:: TCQ(c: MM : O ass) : Real
body: let i:Set(Mv:Mthod) = c.Mi()->intersection(c.Mpub()),
met hodPai rs: Set (Tupl eType(nil: MM : Met hod, nR2: MM : Met hod) )
= sel f.construct MethodPairs(i), minteger = i->size() in
(2+((nethodPairs->select(t|t.m <> t.nR and
self.cau(t.ml, t.nR2, c))->size()/2) / (m(m1)) ) )

-- Returns the LCC value for the Cass ¢
cont ext Cohesion::LCQ(c: MM : O ass): Real
body: let i:Set(MV:Mthod) = c.Mi()->intersection(c.Mpub()),
nmet hodPai rs: Set (Tupl eType(niL: MM : Met hod, nR2: MM : Met hod) )
= sel f.construct MethodPairs(i), minteger = i->size() in
(2« ((rethodPairs->select(t|t.nl <> t.nR2
and self.cau(t.ml, t.nR, c))->size()/2) / (m(m1l)) ) )

-- Returns the ICH value for the dass ¢
cont ext Cohesion::|CHc: MM : C ass): Real
body: sel f.sunReal s(c. Mi ()->collect(m M: Method|self.ICHmc)))

-- Returns the ICH value for the Method m
cont ext Cohesion::| CH m MM : Met hod, c: MM : C ass): Real
body: sum nts((c. Mnew()->union(c.Movr()))
->col lect(i: MM : Method |
(1+i.Par()->size())*(mNPI(i))))
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D Auxillary Definitions

-- Returns the maxi numelenent in a set of reals
def: max(s: Set(Real)): Real
= s->iterate(elemReal; result:Real = -1|result.nmax(elem)

-- Sunms a list of reals
def: sunReal s(set: Bag(Real)): Real
= set->iterate(i:Real; sum Real = 0.0|sum+ i)

-- Suns a list of ints
def: sunl nts(set:Bag(lnteger)): Real
= set->iterate(i:Integer; sum Integer = 0]sum+ i)

-- Returns the set of nethod pairs for a given set of methods
def: construct Met hodPai r s( net hods: Set (MM : Met hod) )
: Set (Tupl eType(mi: MM : Met hod, nR2: MM : Met hod))
= met hods- >col | ect (| met hods
->col | ect (n2| Tupl eml: MM : Met hod = ml, n2: MM : Met hod = nR))
->asSet ()

-- Returns a set containing the attributes referenced by
-- the inplenmented nethods of the Class ¢

def: getReferencedAtts(c: MM : C ass): Set(M: Attribute)
= c.Mi()->collect(m Mvt: Method| mAR())->asSet ()

-- Returns a set containing (pairs of) methods of the O ass c that
-- do not directly access any common attributes of ¢ (for LCOM)
def: getPl(c: MM : d ass,
met hodPai rs: Set (Tupl eType(nil: MM : Met hod, nR: MM : Met hod)))
: Set (Tupl eType(mil: MM : Met hod, nR2: MM : Met hod))
= met hodPairs->select(t|] ( t.m <>t.n2 )
and ( (t.nl. AR())->intersection(t.nR. AR())
->intersection(c.Ali())->isEnmpty()))

-- Returns a set containing the (pairs of) nethods of the
-- Cass c that do not directly access any common attributes of c or
-- the enpty set if all nethods of ¢ do not reference any attributes
def: getP2(c: MM :d ass,
nmet hodPai rs: Set ( Tupl eType(nil: MM : Met hod, n2: MM : Met hod)))
:Set (MM : Attribute)
= if self.getReferencedAtts(c)->size() = 0 then
Set {}
el se
nmet hodPai rs->select(t] ( t.m <> t.n2 )
and ((t.ml. AR())->intersection(t.n2.AR())
->intersection(c.Ali())->isEnpty()))

endi f

-- Returns a set containing the (pairs of) methods of the
-- Cass c that directly access at |east one sane attribute of c
def: getQc: MM : d ass,
met hodPai rs: Set ( Tupl eType(nil: MM : Met hod, nR: MM : Met hod)))
: Set (Tupl eType(mi: MM : Met hod, nR2: MM : Met hod))
= met hodPai rs->select(t|t.ml <> t.nm2 and
not (t.nml.AR()->intersection(t.nR.AR())
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->intersection(c.Ai())->isEnpty()) )

-- Returns a set containing the (pairs of) nethods of the
-- Cass c that directly access at |east one sane attribute of c
def: getE(c: MM : d ass,

nmet hodPai rs: Set ( Tupl eType(nil: MM : Met hod, n2: MM : Met hod)))

: Set (Tupl eType(ml: MM : Met hod, nR: MM : Met hod) )
= nmet hodPairs->select (t|t.nl <> t.nR

and (t.ml. AR()->intersection(t.n2. AR())
->intersection(c.Ali())->notEnpty()
or mil. SI M) ->i ncludes(nR) or nR2.SIM)->includes(m) ))
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