
Specifying
Coupling and Cohesion Metrics

using OCL and Alloy

Jacqueline A. McQuillan
and

James F. Power

Department of Computer Science,
National University of Ireland, Maynooth

Co. Kildare, Ireland

Technical Report
NUIM-CS-TR-2008-02

1

Specifying Coupling and Cohesion Metrics
using OCL and Alloy

Jacqueline A. McQuillan1 and James F. Power
Department of Computer Science

National University of Ireland, Maynooth
Co. Kildare

Ireland

{jmcq, jpower}@cs.nuim.ie

Abstract

This report presents a MOF-compliant metamodel for calculating software
metrics and demonstrates how it is used to generate a metricstool that calculates
coupling and cohesion metrics. We also describe a systematic approach to the anal-
ysis of MOF-compliant metamodels and illustrate the approach using the presented
metamodel. In this approach, we express the metamodel usingUML and OCL and
harness existing automated tools in a framework that generates a Java implementa-
tion and an Alloy specification of the metamodel, and use thisboth to examine the
metamodel constraints, and to generate instantiations of the metamodel. Moreover,
we describe how the approach can be used to generate test datafor any software
based on a MOF-compliant metamodel. We extend our frameworkto support this
approach and use it to generate a test suite for the metrics calculation tool that is
based on our metamodel.

Key words: object-oriented software metrics, coupling, cohesion, metamodels, model-
based testing, OCL, Alloy

1 Introduction

Software metrics are important in many areas of software engineering, for example
assessing software quality or estimating the cost and effort of developing software.
Many metrics have been proposed and new metrics continue to appear in the literature
regularly [9]. Many of these metrics are incomplete, ambiguous and open to a variety
of different interpretations [3]. This makes it difficult tocreate general metric tools and
everytime a new metric is defined the tools need to be updated with the new metric [16].
Furthermore, many of these metrics are applicable to a number of different models
of a software system. In order to provide assurance that the same concepts are being
measured from these different models we need a way to specifythe metrics in a generic
way, independent of the particular model.

1To whom correspondence should be addressed.

Like Mens and Lanza, we believe that these issues are best addressed using a
language-independent, metrics-specific metamodel[16]. However, they do not con-
sider coupling or cohesion metrics in their work. In this report we present a metamodel
for calculating object-oriented software metrics which isbased on existing frameworks
for coupling and cohesion measurement [3, 4]. We use the metamodel to specify a set
of existing coupling and cohesion metrics and use our existing Eclipse-based metrics
framework [15] to automatically generate a tool to calculate these metrics.

Developing and working with metamodels can be difficult since they deal with
abstract concepts. Therefore, it is important that we are able to perform analysis on
metamodels and assess their correctness. By correctness, we mean that the metamodel
specification is consistent and adequately describes what the user intends. Also, in or-
der to ensure the correctness and quality of software applications that are based around
metamodels, for example our metrics tool, we need to be able to test these applica-
tions. However, there is no direct way of automatically generating instantiations of a
metamodel to use as test inputs for testing metamodel-basedapplications [7].

In this report we describe an approach to the analysis of MetaObject Facility
(MOF)-compliant metamodels and apply it to our metrics specific metamodel. In our
approach, we express the metamodel using the Unified Modelling Language (UML)
and Object Constraint Language (OCL) [20], and harness existing automated tools in
a framework that generates a Java implementation of our metamodel.

We also generate an Alloy [12] specification corresponding to the metamodel, and
use this to examine the metamodel constraints and to generate sample instances of
the metamodel. Ourreflective instantiatortakes these Alloy generated models and
transforms them into instances of the Java implementation,thus harnessing Alloy’s
lightweight approach to generate a test suite for our metrics tool. We use this test
suite to determine if the tool correctly computes metric values for the coupling and
cohesion metrics. Finally, we evaluate the adequacy of the generated test suite in terms
of traditional line and branch coverage criteria.

This report is organised as follows. Section 2 outlines someof the background
information. Our metamodel is presented in Section 3 and section 4 describes how it is
used to define a set of coupling and cohesion metrics. In Sections 5 and 6, we describe
an approach to the analysis of MOF-compliant metamodels andillustrate the approach
using our metamodel. In Section 7, we describe the generation of a test suite for the
metamodel-based metrics tool. Section 8 presents a discussion of related work. Section
9 concludes the report.

2 Background

Models provide a representation of a real system and are increasingly important in
software engineering, particularly in the Model Driven Engineering (MDE) approach
[20]. Typically, we think of a model of a software system as being a design model,
such as UML class or sequence diagrams, or an implementationmodel, such as an
actual program. As the name suggests, ametamodel is a model that is used to describe
the structure of other models. One example of a metamodel specification is theUML
Superstructure Specificationfrom the Object Management Group (OMG) [19], which

2

defines models for each of the diagrams of the UML.
While a number of different formalisms may be used to describe metamodels, one

of the most widely adopted standards is the Meta Object Facility (MOF), which is spec-
ified by the OMG [18]. The MOF provides a set of constructs for defining metamodels
and is referred to as ametametamodel. As well as facilitating comprehension, using a
standard metamodelling formalism aides interoperability, through formats such as the
XML Metadata Interchange (XMI), as well as automated tool generation.

2.1 Metamodels and metrics

Many software metrics have been proposed in the literature [6, 9]. For these software
metric definitions to be usable, it is important that the definitions clearly specify what
is to be counted. For example, when counting method calls, dowe include calls to
abstract methods, calls to/from inherited and overridden methods etc. ? Briandet
al. have shown that even seemingly straightforward metric definitions are subject to a
range of different interpretations [3, 4].

Several authors have considered the use of metamodels as a way to address the
problem of ambiguous metric definitions. One example is the canonical presentation
of coupling and cohesion metrics by Briandet al. which was effectively based on a
metrics specific metamodel of an object-oriented system. Mens and Lanza [16] propose
a language-independent metamodel for object-oriented metrics that is based on graphs.
They use this to define a selection of generic object-oriented and higher order metrics
but do not consider coupling or cohesion metrics.

Recent research has built upon this work by defining metrics as queries over meta-
models. El-Wakilet al. propose the use of XQuery as a metric definition language to
extract metric data from XMI documents, specifically UML designs [8]. Harmer and
Wilkie, working from a relational schema, express metric definitions as SQL queries
over this schema [21]. Baroniet al. propose using the OCL and the UML 1.3 meta-
model to define UML-based metrics [2].

In our own work, we have extended the approach of Baroniet al. in a manner
specifically designed to be reusable for other metamodels [15]. We used theDagstuhl
Middle Metamodelas a general programming metamodel, and defined several object-
oriented metrics across this metamodel using OCL [14]. We have also defined similar
metrics at the design level using the UML 2.0 metamodel [15].

However, each of these approaches is either metamodel-specific (e.g. the UML
metamodel), or uses ametrics specificmetamodel, with the associated difficulty of
finding model instances to use as test data. The approach presented in this report ad-
dresses these issues by presenting a metrics-specific, language-independent metamodel
and providing a means of generating suitable instances to use for testing any software
based on this (or any MOF-compliant) metamodel. We acknowledge that even though
the presented metamodel is language-independent it may need some work to apply to
different styles of object-oriented language.

3

2.2 The Alloy language and analyser

Alloy is a formal specification language based on typed first-order relational logic [12].
It has been used primarily to explore abstract software models and to assist in finding
and correcting flaws in these models. An Alloy specification is based aroundsignatures
andformulas. Signaturesare used for defining the entities of the model and consist of a
set of declarations that define the relations and operationsof the entity.Formulassuch
asfacts, predicatesandassertionsare used to specify constraints on the model.

A fully automatic tool, called theAlloy Analyserhas been developed simultane-
ously with the Alloy language. This is a “model-finder” tool that uses a constraint
solver to analyse models written in Alloy. There are two types of analysis offered by
the tool, namelysimulationandchecking. Simulationinvolves finding model instances
that meet the Alloy specification.Checkinginvolves finding counterexamples to the
specification. To make instance finding feasible, a user may specify ascopefor the
model under analysis. Thescopeputs a bound on how many instances of an entity may
be observed in a model instance and thus limits the number of model instances to be
examined.

3 A metamodel for object-oriented measurement

One requirement of our metamodel is that it is interoperablewith the UML and Java
metamodels and thus has been developed to conform to the MOF.This ensures that all
three metamodels are specified using the same formalism, thus facilitating the trans-
lation of instances of the UML and Java metamodel to instances of the metamodel
presented here. Moreover, our MOF-compliant metamodel is based on the coupling
and cohesion measurement frameworks proposed by Briandet al.[3, 4]. It captures
the basic structure of an object-oriented system at a level of abstraction that represents
concepts and relationships required for coupling and cohesion measurement.

The metamodel is composed of a single package calledMM (Metrics Metamodel)
and the contents of this package are depicted in Figure 1. Thefigure shows the main
classes involved in the metamodel, along with the importantassociations, necessary for
distinguishing the different types of coupling and cohesion metrics. The basic details
regarding the size of the metamodel are given in Table 1.

Element Number
Class 8
Enumeration 2
Generalisation 3
Association 16
Attribute 4
Method 27

Table 1: Summary of metrics-specific metamodel.This table gives a summary of the
size of the metamodel in terms of the number of each type of element that appears in
the metamodel.

4

The description of our metamodel follows a similar format tothat used by the OMG
for the specification of metamodels. Each concept in the metamodel is described in its
own subsection which is broken down into several different parts corresponding to
different aspects of the concept. In situations where an aspect does not apply to the
concept it is ommitted entirely from the description of the concept. Each concept is
represented as a metaclass in the metamodel and described using the following

• The subsection heading gives the formal name of the concept.

• TheDescriptionaspect gives a brief, informal description of the meaning ofthe
concept. Any direct generalisations of the concept are alsodetailed here.

• The Attributesaspect specifies each of the attributes that are defined for that
metaclass. Each attribute is specified by its formal name andtype. This is fol-
lowed by an informal description of the meaning of the attribute.

• TheAssociationsaspect lists all of the association ends owned by that metaclass.
Again, each one is specified by its formal name, its type, and multiplicity and
followed by an informal description of it’s meaning.

• TheConstraintsaspect lists all of the constraints that define the well-formedness
rules of the concept. Each constraint consists of an informal description and a
formal constraint expressed in OCL.

• The Operationsaspect contains a list of all the operations that belong to the
metaclass. These include utility and query operations. In all cases each operation
is specified using OCL. The utility operations are specified using the def keyword
and the query operations are specified using the body keyword.

3.1 Attribute

3.1.1 Description

An attribute is an entity that describes a property of the class that it belongs to..

3.1.2 Associations

• type:Type[1..1] : specifies the type of the attribute

• referencedby:Method[0..*] : specifies the set of methods that reference the
attribute

• att implementing class:Class[1..1]: specifies the class in which the attribute is
implemented

• att declaring class:Class[0..*]: specifies the set of classes in which the at-
tribute is declared

5

Class

Parents() : Set
Children() : Set
Ancestors() : Set
Descendents() : Set
Methods() : Set
M_d() : Set
M_i() : Set
M_inh() : Set
M_ovr() : Set
M_new() : Set
M_pub() : Set
M_npub() : Set
Attributes() : Set
A_d() : Set
A_i() : Set
FriendsInv() : Set
Friends() : Set
uses(d : Class) : boolean

Method

SIM() : Set
SIM_() : Set
PIM() : Set
PIM_() : Set
AR() : Set
Par() : Set
NSI(m : Method) : int
NPI(m : Method) : int
PP(m : Method) : int

isPublic : boolean
isAbstract : boolean
type : MethodType

Attribute

0..1

method_implementing_class

0..*

implemented_method

att_implementing_class

0..*

implemented_att

FormalParamter

param_of

0..*

param

0..*

referenced_by

0..*

referenced _att

0..*

att_declaring_class

0..*

declared_att

Type

0..*

type

0..*

type
BuiltIn

UserDefined

0..*

method_declaring_class

0..* declared_method

0..1

overriding_class

0..*

overridden_method

0..1

new_class

0..*

new_method

0..*

inheriting_class

0..*

inherited_method

Invocation

type : InvocationType

0..* invoked_by

callee

0..*invokes

caller

0..*

passed_to

0..*

passes_pointer_to

0..*

friend_of

0..*

grants_friendship

0..*

parent

0..*

child

<<enumeration>>
InvocationType

static
polymorphic

<<enumeration>>
MethodType

constructor
destructor
accessor
mutator
general

Figure 1: The metrics-specific metamodel.This figure shows the main classes and relationships in our metamodel depicted as a UML
class diagram.

6

3.2 BuiltIn

3.2.1 Description

BuiltIn represents a basic type provided by the programminglanguage (e.g., integer,
real, character, string). It is a subclass of Type.

3.3 Class

3.3.1 Description

A class describes a set of entities that share the same properties and behaviour. It is a
subclass of Type.

3.3.2 Associations

• child:Class[0..*] : specifies the set of immediate descendents of this class

• parent:Class[0..*] : specifies the set of immediate ancestors of this class

• friend of:Class[0..*] : specifies the set of classes that are granted access to the
non-public elements of this class

• grants friendship:Class[0..*] : specifies the set of classes to which this class
has access to the non-public elements of

• overridden method:Method[0..*] : specifies the set of methods that are over-
ridden by this class

• inherited method:Method[0..*] : specifies the set of methods that are inherited
by this class

• new method:Method[0..*] : specifies the set of methods that are created as new
in this class

• declared method:Method[0..*] : specifies the set of methods that are declared
in this class

• implemented method:Method[0..*] : specifies the set of methods that are im-
plemented in this class

• declared att:Attribute[0..*] : specifies the set of attributes that are declared in
this class

• implemented att:Attribute[0..*] : specifies the set of attributes that are imple-
mented in the class

7

3.3.3 Constraints

• A class may not directly or indirectly inherit from itself

not self.Ancestors()->includes(self)

• A class may not directly be a friend of itself or grant friendship to itself

not self.friend of->includes(self)

• The set of declared attributes of a class must equal all the implemented attributes
of that classes ancestors

self.declared att = self.Ancestors()
->collect(i:Class|i.implemented att)->asSet()

• The set of new methods, overridden methods and inherited methods of a class
must be disjoint

self.new method->intersection(self.overridden method)
->intersection(inherited method)->isEmpty()

• The set of implemented methods of a class must equal the set ofnon-abstract,
overriding methods union the set of non-abstract new methods of the class

self.implemented method =
self.new method->union(self.overridden method)

->select(m:Method | not m.isAbstract)

• The set of declared methods of a class must be equal to the set of new abstract
methods union the set of inherited methods of the class

self.declared method =
self.inherited method->union(self.new method
->select(m:Method|m.isAbstract))

• The sum of the inherited and overridden methods of a class must equal the num-
ber of methods of the parents

not self.parent->isEmpty() implies
self.inherited method->union(self.overridden method)->size()
= self.parent->collect(i:Class|i.Methods())->asSet()->size()

• The set of inherited methods of a class must be a subset of the new and overriding
methods of that classes ancestors

not self.inherited method->isEmpty() implies
(self.Ancestors()->collect(i:Class|i.new method)->asSet()

->union(self.Ancestors()
->collect(j:Class|j.overridden method)
->asSet()))
->includesAll(self.inherited method)

8

• If a class has no parentss then it cannot have any overridden methods

self.parent->isEmpty() implies self.overridden method->isEmpty()

3.3.4 Operations

• The query Ad() returns the set of declared attributes of the Class.

Class::A d():Set(Attribute)
body: self.declared att

• The query Ai() returns the set of implemented attributes of the Class.

Class::A i():Set(Attribute)
body: self.implemented att

• The utility operation allparents() returns the set of all direct and indirect ances-
tors of the Class.

def: all parents(S:Set(Class)):Set(Class)
=self.parent->union((self.parent - S)

->collect(i:Class|i.all parents(S->including(self))))
->asSet()

• The query Ancestors() returns the set of all direct and indirect ancestors of the
Class.

Class::Ancestors():Set(Class)
body: self.all parents(Set)

• The query Attributes() returns the set of all attributes belonging to the Class.

Class::Attributes():Set(Attribute)
body: self.declared att->union(self.implemented att)

• The query Children() returns the set of all immediate descendents of the Class.

Class::Children():Set(Class)
body: self.child

• The utility operation allchildren() returns the set of all direct and indirect de-
scendents of the Class.

def: all children(S:Set(Class)):Set(Class)
=self.child->union((self.child - S)

->collect(i:Class|i.all children(S->including(self))))
->asSet()

• The query Descendents() returns the set ofall direct and indirect descendents of
the Class.

9

Class::Descendents():Set(Class)
body: self.all children(Set)

• The query Friends() returns the set of direct friends of the Class.

Class::Friends():Set(Class)
body: self.friend of

• The query FriendsInv() returns the set of inverse friends ofthe Class.

Class::FriendsInv():Set(Class)
body: self.grants friendship

• The query Md() returns the set of declared methods of the Class.

Class::M d():Set(Method)
body: self.declared method

• The query Mi() returns the set of implemented methods of the Class.

Class::M i():Set(Method)
body: self.implemented method

• The query Minh() returns the set of inherited methods of the Class.

Class::M inh():Set(Method)
body: self.inherited method

• The query Movr() returns the set of overridden methods of the Class.

Class::M ovr():Set(Method)
body: self.overridden method

• The query Mnew() returns the set of new methods of the Class.

Class::M new():Set(Method)
body: self.new method

• The query Mpub() returns the set of public methods of the Class.

Class::M pub():Set(Method)
body: self.Methods()->select(m:Method|m.isPublic)

• The query Mnpub() returns the set of nonpublic methods of the Class.

Class::M npub():Set(Method)
body: self.Methods()->select(m:Method|not m.isPublic)

• The query Methods() returns the set of all methods that belong to the Class.

10

context Class::Methods():Set(Method)
body: self.declared method->union(self.implemented method)

• The query Parents() returns the set of direct ancestors of the Class.

Class::Parents():Set(Class)
body: self.parent

• The query uses(d) returns true if the Class uses attributes or methods belonging
to the Class d.

Class::uses(d:Class):Boolean
body: self.implemented method->collect(m:Method|m.PIM())

->intersection(d.implemented method)
->notEmpty()

or
self.implemented method->collect(m:Method|m.referenced att)

->intersection(d.implemented att)
->notEmpty()

3.4 FormalParameter

3.4.1 Description

FormalParameter represents an argument that is used to passinformation in and out of
a Method.

3.4.2 Associations

• type:Type[1..1] : specifies the type of the parameter

• param of:Method[1..1] : specifies the method that the parameter belongs to

3.5 Invocation

3.5.1 Description

An invocation represents a method call.

3.5.2 Attributes

• type:InvocationType - specifies the type of the invocation i.e. wether it is static
or dynamic

3.5.3 Associations

• caller:Method[1..1] : specifies the method in which the method call appears

• calee:Method[1..1]: specifies the method that is being called

11

• passespointer to:Method[0..*] : specifies the set of methods that are being
passed as a pointer during the invocation

3.6 InvocationType

InvocationType is an enumeration type that specifies the literals for defining the type
of a method invocation.

3.6.1 Description

InvocationType is an enumeration of the following literal values:

• static : Indicates that the method is invoked statically.

• dynamic : Indicates that the method is invoked dynamically.

3.7 Method

3.7.1 Description

A callable function belonging to a class.

3.7.2 Attributes

• type:MethodType - specifies the type of the method

• isAbstract:Boolean- indicates if the method is abstract or non-abstract

• isPublic:Boolean- indicates if the method is public or non-public

3.7.3 Associations

• overriding class:Class[0..1]: specifies the class that overrides this method

• inheriting class:Class[0..*]: specifies the set of classes that inherit this method

• new class:Class[0..1]: specifies the class in which this method is first defined

• method declaring class:Class[0..*]: specifies the set of classes in which this
method is declared

• method implementing class:Class[0..1]: specifies the class in which this method
is implemented

• param:Parameter[0..*] : specifies the set of parameters of this method

• referencedatt:Attribute[0..*] : specifies the set of attributes referenced by this
method

• invokes:Invocation[0..*] : specifies the set of invocations in which this method
is the caller

12

• invoked by:Invocation[0..*] : specifies the set of invocations in which this
metod is the callee

• passedto:Invocation[0..*] : specifies the set of invocations where this method
is passed as a parameter

3.7.4 Constraints

• If a method references at least one attribute, then this method must be non-
abstract

self.referenced att->notEmpty() implies self.isAbstract = false

• If a method is abstract then it must not call any methods

self.isAbstract = true implies self.invokes->isEmpty()

• If a method has no implementing class then it must be abstract

self.method implementing class->isEmpty() implies
self.isAbstract = true

• If a method is abstract then it must have a new class

self.isAbstract = true implies not self.new class->isEmpty()

• A method must have either an overriding class or a new class

not self.overriding class->asSet()->isEmpty() implies
self.new class->asSet()->isEmpty()

and self.overriding class->asSet()->isEmpty() implies
not self.new class->asSet()->isEmpty()

• If a method is a constructor or destructor then it must not be abstract

self.type = MethodType::constructor or
self.type = MethodType::destructor
implies self.isAbstract = false

3.7.5 Operations

• The utility operation statinvoked() returns the methods statically invoked by the
Method.

def: stat invoked():Bag(Method)
= self.invokes

->select(i:Invocation|i.type=InvocationType::static)
->collect(j:Invocation | j.callee)

13

• The utility operation polyinvoked() returns the methods polymorphically in-
voked by the Method.

def: poly invoked():Bag(Method)
= self.invokes

->select(i:Invocation|i.type=InvocationType::polymorphic)
->collect(j:Invocation | j.callee)

• The utility operation closureSIM() returns the methods directly and indirevtly
statically invoked by the Method.

def: closureSIM(S:Set(Method)):Set(Method)
= self.SIM()->union((self.SIM()-S)

->collect(m:Method|m.closureSIM(S->including(self)))
->asSet())

• The utility operation closurePIM returns the methods directly and indeirectly-
polymorphically invoked by the Method.

def: closurePIM(S:Set(Method)):Set(Method)
= self.PIM()->union((self.PIM()-S)

->collect(m:Method|m.closurePIM(S->including(self)))
->asSet())

• The query operation AR() returns the set of attributes refernced by the Method.

Method::AR():Set(Attribute)
body: self.referenced att

• The query operation NPI(m) returns the number of polymorphic invocations of
m by the Method.

Method::NPI(m:Method):Integer
body: self.poly invoked()->count(m)

• The query operation NSI(m) returns the number of static invocations of m by the
Method.

Method::NSI(m:Method):Integer
body: self.stat invoked()->count(m)

• The query operation Par() returns the set of parameters of the Method.

Method::Par():Set(FormalParameter)
body: self.param

• The query operation PIM() returns the set of methods polymorphically invoked
by the Method.

Method::PIM():Set(Method)
body: self.poly invoked()->asSet()

14

• The query operation SIM() returns the set of methods statically invoked by the
Method.

Method::SIM():Set(Method)
body: self.stat invoked()->asSet()

• The query operation PIM() returns the set of indirectly polymorphically invoked
methods of the Method.

Method::PIM ():Set(Method)
body: self.closurePIM(Set)

• The query operation SIM() returns the set of indirectly statically invoked meth-
ods of the Method.

Method::SIM ():Set(Method)
body: self.closureSIM(Set)

• The query operation PP(m) returns the number of invocationsof the Method
where a pointer to the Method m is passed to this Method.

Method::PP(m:Method):Integer
body: self.invoked by

->select(i:Invocation|i.passes pointer to->includes(m))
->size()

3.8 MethodType

MethodType is an enumeration type that specifies the literals for defining the type of a
Method.

3.8.1 Description

MethodType is an enumeration of the following literal values:

• constructor: Indicates that the method is a constructor i.e. a method thatis
called when an object is created

• destructor: Indicates that the method is a destructor i.e. a method that is called
when an object is destroyed

• accessor:Indicates that the method provides access to the attributesof the class
to which it belongs

• mutator: Indicates that the method is used to modify the attributes ofthe class
to which it belongs

• general: Indicates that the method is a general method that does’t fall into any
of the above categories

15

3.9 Type

3.9.1 Description

A type defines a set of values. Type is an abstract metaclass.

3.10 UserDefined

3.10.1 Description

A user-defined type of global scope (e.g., records, enumerations). It is a subclass of
Type.

4 Defining metrics using the metamodel

In this section we describe how we used our metamodel to definethree sets of existing
object-oriented software metrics. The three sets of metrics CKMetrics, Cohesionand
Coupling were taken from [6, 3, 4], respectively. In total, we defined 42 types of
metrics and these are summarised in Table 2.

In keeping with the approach outlined in [15], the metrics were defined as OCL
queries over the metamodel. The metamodel was extended witha separate metrics
package containing a single class calledMetrics, and each set of metrics was defined
as follows:

1. A class was created in the metrics package for the metric set; this class extends
theMetricsclass.

2. For each metric, an operation was declared in the class, parameterised by the
appropriate metamodel elements.

3. The metrics were defined by expressing them as OCL queries using the OCL
body expression.

As an example of a definition, Figure 2 presents the definitionof the number of
children (NOC) metric. Here, the definition is parameterised by a single Class, and
the body of the definition returns the size of the set of all children of this class. The
auxiliary operationChildren defined in the metamodel traverses the elements and

Metric Set Metrics from references [6, 3, 4]
CKMetrics WMC, NOC, DIT
Cohesion LCOM1, LCOM2, LCOM3, LCOM4, LCOM5,

Co, NewCo, TCC, LCC, ICH
Coupling RFC, RFC’, CBO, CBO’, DAC, DAC’, MPC, COF,

ICP, IH ICP, NIH ICP, OCAEC, FCAEC, DCAEC,
ACMIC, OCMIC, IFCMIC, AMMIC, OMMIC, IFMMIC,
FMMEC, DMMEC, OMMEC, FCMEC, DCMEC, OCMEC,
IFCAIC, ACAIC, OCAIC

Table 2: Summary of implemented metrics.This table lists all 42 metrics that were
implemented using our metamodel.

16

relationships in the metamodel to assemble this set. Full details of this and the other
metric definitions are detailed in the Appendices of this report.

We have developed a measurement framework for the definitionand calculation of
software metrics based around an Eclipse plug-in [15]. Thisframework was used to
define all the metrics shown in Table 2 and to automatically create a tool to calculate
these metrics. The metrics calculation tool was created by transforming the OCL and
UML corresponding to the metric sets to Java code. In brief, the tool computes the
metric values for metamodel instances by invoking the Java methods corresponding to
the OCL metric definitions. In Section 7, we report on how we evaluate the correctness
of this metrics tool.

-- Returns a count of the immediate
-- descendents of the Class c
context CKMetrics::NOC(c:MM::Class):Real
body: c.Children()->size()

-- Returns the set of children
context Class::Children():Set(Class)
body: self.child

Figure 2: Definition of theNOCmetric. This OCL code defnes the NOC metrics from
the CK metrics set, and is part of a larger defnition of the whole CK metric set which
we have implemented using the metrics-specific metamodel.

5 An overview of the approach

In this section we present an overview of an approach that canbe used to both analyse a
MOF-compliant metamodel and to automatically generate test data for software based
on the metamodel.

An overview of the approach is depicted in Figure 3. In this figure, our system is
delineated by a dashed red line. The inputs to the system are the metamodel and its
constraints expressed as UML and OCL, and are shown on the left of the figure. The
outputs of the system are shown on the bottom, and consist of aJava implementation of
the metamodel and its associated OCL constraints and queries, along with a test suite
based on the metamodel. These are linked through a coverage analysis, as described in
Section 7.

Both Octopus2 and Alloy are third-party tools used in our system. The UML2Alloy
tool used here is a re-implementation of the same tool of Anastasakiset al. [1], but spe-
cialised for Octopus. TheReflective Instantiatortool was developed by us. The pro-
cess is almost fully automated, with user intervention limited to providing the original
UML/OCL description of the metamodel, and examining the generated Alloy specifi-
cation. This is depicted by the stick-figure in green in Figure 3.

There are six main steps in this process:

2http://www.klasse.nl/octopus

17

Step 1: Expressing the metamodel in UML and OCL. The OMG specification for
MOF does not define a textual or graphical representation forMOF [18]. However,
there is a UML Profile that defines a bi-directional mapping between UML and MOF.
The profile facilitates the creation of metamodels using UMLand the viewing of MOF
metamodels. Our approach uses this to express the metamodelin UML and OCL. For
example, MOF classes map to UML classes, MOF attributes to UML attributes and
vice versa. In addition, any semantic constraints on the MOFmetamodel map directly
to UML constraints.

It is important to note that the profile is based on MOF 1.3 and has some limitations
such as lacking a definition for mapping Enumeration. We choose to map from MOF
Enumerations to UML Enumerations. This process was not automated, the metamodel
was depicted using a standard UML modelling tool. Octopus isused to check the OCL
for correct syntax and use of metamodel elements.

Step 2: Generating a Java implementation of the metamodel. After the meta-
model and its constraints are depicted using UML/OCL, Octopus is used to generate
the corresponding Java classes. The Octopus tool generatesJava classes for each UML
class. All attributes and associations in the metamodel arecreated as fields in the ap-
propriate classes. Finally, Octopus creates methods to check that all the constraints of
the metamodel have not been violated along with a method to check multiplicities of
the metamodel.

Eclipse /
Octopus

Converter

UML2Alloy

Alloy

Meta
Model
Classes

in Java

Reflective
Instantiator
Alloy2Java

Metrics
Meta

Model

UML/OCL

Metrics

in
Alloy

Metamodel

Instances
of

Meta
Model

in Java

Instances
of

Meta
Model

Alloy/XML

Coverage

Figure 3: Overview of the approach to analysing the MOF-compliant metamodel.The
elements in the system are enclosed by the dashed red line. The input, shown on the
left, are the metamodel and its constraints expressed as UMLand OCL. The outputs,
shown at the bottom, are the metamodel implementation and associated test instances
in Java.

18

Step 3: Transforming the metamodel to Alloy. We have created a tool to convert
an Octopus UML/OCL metamodel to an Alloy specification. Since this tool mimics
theUML2Alloy tool [1], we only briefly outline the transformation approach here.

UML classes are mapped to Alloy signatures. All attributes of a UML class are
mapped to fields of the corresponding Alloy signature. UML Enumerators are mapped
to abstract signatures in Alloy, with enumerator literals mapped to sub-signatures that
extend the abstract signature of the enumeration. Basic UMLdata types are mapped
to equivalent signatures from the Alloy library. The associations in the metamodel
are also mapped to fields in the appropriate Alloy signatures. An additional fact is
generated in the Alloy specification for bi-directional UMLassociations to show that
the relations are symmetric.

Finally, any constraints on the metamodel in the form of OCL invariants are mapped
directly to Alloy facts. At present, the OCL map does not cover the full language, and
requires some user intervention for more difficult constructs.

Step 4: Analysis of the metamodel. The Alloy Analyser is used to analyse the Alloy
model to detect flaws in the metamodel specification. For example, it can be used
to generate random instances of the metamodel that conform to the well-formedness
rules. If an instance cannot be found then there is an inconsistency in the metamodel
specification. It is also possible to enumerate and explore all possible instances of
the metamodel. This is useful to identify invalid instancesi.e. instances that do not
represent what the user intends their specification to represent.

Step 5: Generation of metamodel instances using Alloy.The role of Alloy in our
system is twofold. First, it allows us to investigate the metamodel constraints to check
for redundancies or errors (see Section 6). Second, it allows us to automatically gen-
erate valid metamodel instances. For this step we created a Java program to harness
Alloy’s model generation capabilities. This program readsan Alloy specification file
and continually creates instances of the metamodel until all possible instances have
been generated. Every metamodel instance produced during this step is output and
stored in XML format for future use.

Step 6: Transformation of metamodel instances to Java objects. One of the cen-
tral technical contributions of our system is theReflective Instantiator, which trans-
forms the XML versions of Alloy-generated models into instances of the Java imple-
mentation of our metamodel. TheReflective Instantiatorparses the XML produced by
Alloy and creates instances of our metamodel using the classfiles generated in Step
2. It does this using Java reflection, reading the class namesfrom the XML files and
creating instances of these classes. The fields of these classes are set by reading the
fields from the XML and calling the appropriate set methods.

It is important to note that this process is not tied to any specific metamodel. Since
the Alloy model and Java implementation of the metamodel aregenerated from the
same MOF metamodel, Java reflection can make the link betweenthem without having
this information statically hard-coded. Therefore, this program is not specific to the
metamodel under consideration and can be used for any metamodel.

19

6 Metamodel development and analysis

While the approach outlined in Section 5 will work for any MOF-compliant meta-
model, our original intention was the specification and analysis of a metamodel for
coupling and cohesion measurement. In this section we elucidate our approach using
that metamodel.

6.1 Applying the approach

As described in Section 5, the first step of our approach is to express the metamodel
in UML and OCL. As we were basing our metamodel on that of Briand et al., we
began by expressing the concepts described in [3, 4] as a class diagram and formalised
any well-formedness rules that were expressed in natural language by Briandet al..
An example of such a rule is thatthe set of all new, overriding and inherited methods
of a class are disjoint. We suspected that all these constraints were not sufficientto
describe our metamodel and thus added 15 more constraints, resulting in a total of
27 well-formedness rules. Once we had formalised all of the rules in OCL, we used
Octopus to statically check the OCL constraints and then translated the MOF-compliant
metamodel and its well-formedness rules to Alloy.

An example of the translation of UML classes to Alloy is shownin Figure 4. This
figure gives the Alloy specification for theClass element of our metamodel which
is defined in Alloy as a signature extending theType signature. The associations for
a class are represented by fields, which we have shown here in four groups. These

sig Class extends Type
{
/* Inheritance */
parent: set Class,
child: set Class,

/* Friendship */
grants friendship: set Class,
friend of: set Class,

/* Class - Attribute Relationships */
declared att: set Attribute,
implemented att: set Attribute,

/* Class - Method Relationships */
declared method: set Method,
implemented method: set Method,
new method: set Method,
overridden method: set Method,
inherited method: set Method

}

Figure 4: Alloy signature for theClass element. This is a representation of the
elementClass in the Alloy specification lanhguage.

20

groups represent inheritance relationships, friendship relationships (for C++), and an
association with the class’ attributes and methods.

Furthermore, any constraints on the metamodel in the form ofOCL invariants were
mapped directly to Alloy facts. An example of such a constraint is depicted in Figure
5. This invariants states thatif a class does not have any parents then it cannot have
any overridden methodsand maps to a fact in the Alloy specification.

-- OCL Specification:
inv noParentsThenNoOverriddenMethods :
self.parent->isEmpty() implies self.overridden method->isEmpty()

-- Alloy Specification:
fact noParentsThenNoOverriddenMethods
{
all c:Class | c.parent = none implies c.overridden method = none

}

Figure 5: An example of constraint on the metrics metamodel written in both OCL and
Alloy. This constraint states that if a class does not have any parents then it cannot
have any overridden methods.

6.2 Metamodel analysis

To perform the analysis, the Alloy Analyser was used to generate a random instance
of the metamodel. The Analyser requires that a scope is specified for the model and
then performs the analysis by exhaustively searching the state space for this scope. We
specified a scope of 10 for all elements. The analyser searches for a model that contains
at most 10 instances of each base class of the metamodeland conforms to the well-
formedness rules of the metamodel. An instance was producedthus demonstrating that
the well-formedness rules specified for the metamodel were consistent.

We used the Analyser to search for invalid metamodel instances. We specified a
scope of 1 for the Alloy model and manually inspected the random instances produced
by the Analyser. Each time an invalid instance was found, we added a constraint to pre-
vent that instance from being generated. For example, we found a metamodel instance
where a class could inherit from itself. On completion we hada total of 37 constraints.

Upon visual inspection of the 37 metamodel constraints, we suspected that a num-
ber of the constraints were superfluous. For each of these constraints, we converted it
into an assertion about the metamodel and then used Alloy to check whether the as-
sertion was valid. If the assertion produced a counterexample then we knew that the
constraint was required. If a counterexample could not be found within a reasonable
scope then it cannot be guaranteed that the constraint is redundant but it can increase
our confidence that it is. Therefore, we assumed that the constraint was superfluous
and omitted it from the specification. During this final analysis, 24 constraints were
identified as potentially redundant and removed from the Alloy specification. We also
found that a further 2 constraints were needed to prevent invalid metamodel instances,

21

thus giving us a total of 15 constraints in the Alloy version of the metamodel.

6.3 Discussion

This approach relies on Jackson’ssmall scope hypothesis, which suggests that if a bug
exists it will appear infairly small models of a system [12]. So, it is possible our
approach may not be applicable to larger metamodels. However, in such a situation it
may be possible to apply the approach by partitioning and abstracting the metamodel
into the parts that are related to the properties being analysed.

Moreover, we are fully aware that this process is not a completely formalised
method for developing and analysing metamodels. However, we believe that this ap-
proach gives the developer a formal way of analysing and checking for any suspected
deficiencies in their metamodel specification. By iteratively analysing and improving
the metamodel, the developer becomes more confident in theirspecification.

Finally, it is important to note that this approach is not specific to a particular meta-
model. It is generally applicable to any MOF-compliant metamodel. In fact, the ap-
proach is not restricted to metamodels but is applicable to any kind of model, for ex-
ample a UML class diagram of a UML model.

7 Test suite generation

As described in Sections 3 and 5 we were able to automaticallygenerate both an imple-
mentation of the metamodel and an implementation to calculate the specified metrics.
In this section we describe the final step in integrating the use of Alloy with this code:
the construction of a test suite for the automatically generated metrics tool. We use this
test suite as input to the metrics tool and use a test oracle todetermine whether or not
the metric results produced by the tool are correct. The testoracle had to be constructed
manually and therefore, required a test suite with the following properties:

1. Each test case should contain a relatively small number ofelements.
2. The number of test cases in the test suite should also be relatively small.
3. The test suite should provide as much coverage of the implementation as possi-

ble.

Test No. of
Group Alloy Command Test Cases

1 run show for exactly 1 Type, exactly 1 Attribute, exactly 1
Method, exactly 1 FormalParameter, exactly 1 Invocation

40

2 run show for 1 217
3 run show for exactly 1 ...all classes listed 360
4 run show for exactly 2 Type, exactly 2 Attribute, exactly 2

Method, exactly 2 FormalParameter, exactly 2 Invocation
528,152

Table 3: Groups of test cases.There were four main groups of test cases, generated
by varying the settings for Alloys model generator. The number of test cases in each
group is shown in the final column.

22

7.1 Test case generation

Using our reflective instantiator described in Section 5 we were able to automate the
generation of a set of test cases for the metrics calculationtool. As we required models
with a relatively small number of elements we began by generating models using a
small scope. Table 3 summarises the results of generating these test cases which are
partitioned into four different groups:
Group 1 consisted of all possible instances with exactly one instance of each base

class in our metamodel.
Group 2 is all possible instances where each base class is observed 0or 1 times in a

metamodel instance.
Group 3 is similar to group 1 except that we defined a scope of exactly 1for all classes

(not just base classes).
Group 4 again is similar to group 1 except that we allowed a scope of exactly 2 for all

base classes.

7.2 Test cases and expected results

We added the two extra constraints to the original UML/OCL specification, and thus
the generated Java implementation contained 39 constraints in total. All of the test
cases summarised in Table 3 were used as input to our Reflective Instantiator. For each
model, the Instantiator built the instantiation, ran the code to check each of the 39 OCL
constraints, and then systematically tore down each model to test the element removal
code. As each test model was built it was used as input to the metrics calculation tool
and the values for all 42 metrics were recorded.

Since each generated constraint was checked for each test case, this provided fur-
ther assurance that the reduced set of constraints used to generate the Alloy models was
sufficient. Further, using such a large number of test cases demonstrates the robustness
of the metric calculation tool and was used as asmoke testto ensure that the recorded
values were within reasonable boundaries. Based on the scope used to generate each
of the groups in Table 3 we computed the maximum and minimum values possible for
each of the metrics. We then identified the models that produced metric values outside
of these bounds. The results of this smoke test are discussedlater in this section.

Our original intention was to generate a test suite with a relatively small number of
test cases whose metric values could be calculated manually, serving as a test oracle
for the generated metrics tool. However, since the number oftest cases produced is
in excess of 500,000, it is necessary to reduce this suite to amore manageable size.
We decided to measure the coverage of the implementation in terms of traditional code
coverage criteria and to reduce the number of test cases based on these criteria.

7.3 Coverage analysis

Cobertura3 was used to measure the line and branch coverage of the metamodel im-
plementation and the implementation corresponding to the metrics. Cobertura is a free
Java tool that computes the percentage of code accessed by tests.

3http://www.cobertura.sourceforge.net/

23

Reason for exclusion Line Branch
Negative test cases 11% 1%
Field setters 6% 2%
Passed-as-Pointer Association 3% 4%
Total excluded 20% 7%

Table 4: Line/Branch coverage excluded from the coverage targets. This table lists
five kinds of code excluded from the coverage targets, along with the percentage of
lines/branches for each kind.

Test Cum. Line Coverage Cum. Branch Coverage
Group MM Metrics All MM Metrics All

1 44% 68% 51% 55% 60% 57%
2 49% 68% 54% 62% 60% 61%
3 49% 68% 54% 62% 60% 61%
4 71% 99% 79% 91% 99% 93%

Table 5: A breakdown of the metamodel coverage for each of thetest groups in Table
3. The numbers presented for each group represent the cumulative coverage achieved,
including the previous test groups.

It was not possible to achieve full line and branch coverage of the implementation
for several reasons, summarised in Table 4. Since our test suite only included positive
test cases, code that involves catching exceptions when theinvariants of the metamodel
are violated was not fully covered. Some auxiliary routines, such as alternative set and
get methods were not called in constructing the model. For simplicity, the part of the
metamodel dealing with method pointers was not instantiated in Alloy, significantly
reducing the number of models created. Thus, excluding these totals, from our tar-
get coverage gave a maximum possible coverage of 80% for lineand 93% for branch
coverage.

The results of the coverage analysis is summarised in Table 5on a per-group basis.
This table has one row for each of the test case groups described previously in Table 3.
The data in each case represents the percentage coverage foreach of the two coverage
criteria. Each row describes the percentage coverage of themetamodel implementation
(MM), the metrics implementation (Metrics) and the combined percentage coverage
(All). Furthermore, each row representscumulativecoverage; for example, the line
coverage value of 54% for group 2 includes the 51% line coverage achieved by group
1. As can be seen from Table 5, the smaller test suites exhibitrelatively poor coverage.

7.4 Test oracle construction

In this subsection we consider the construction of areducedtest suite that achieves the
maximum coverage criteria possible for use as a test oracle for the metrics tool.

A number of techniques exist that can reduce test suites based on various con-
straints. For example, Harroldet al. outline techniques for test suite reduction and
prioritisation based on coverage criteria [11]. However, since our test cases were being

24

Test Cum. Line Coverage Cum. Branch Coverage
Case MM Metrics All MM Metrics All
T1 43% 66% 50% 55% 59% 56%
T2 44% 68% 51% 55% 60% 57%
T3 44% 68% 51% 55% 60% 57%
T4 44% 68% 51% 56% 60% 57%
T5 48% 68% 54% 62% 60% 61%
T6 59% 68% 54% 62% 60% 61%
T7 63% 88% 71% 80% 88% 83%
T8 68% 89% 74% 87% 89% 87%
T9 68% 89% 74% 87% 89% 88%
T10 68% 89% 74% 87% 89% 88%
T11 69% 97% 77% 87% 98% 90%
T12 69% 97% 77% 87% 98% 90%
T13 69% 98% 77% 87% 99% 91%
T14 71% 99% 79% 91% 99% 93%

Table 6: The test cases in the reduced test suite.This table lists the 11 test cases in
the reduced suite, along with the cumulative coverage figures under each of the five
coverage criteria.

generated by Alloy roughly in order of size, a simpler approach was taken to test suite
reduction:

1. As each test case is executed, the cumulative coverage of both criteria is recorded.
2. Any test case that causes an increase in any one of the two coverage figures is

added to the reduced suite.
3. This process is continued until either the maximum coverage has been achieved

for both criteria or until all test cases have been examined.
In general this process will not perform as well as that of Harrold et al., but it is

much simpler to implement. Applying this technique to the test cases, we generated a
reduced test suite of 14 unique test cases. Table 7 lists the cumulative coverage data
for each of these cases, labelled T1-T14. Three of these cases (T1-T3) originated from
group 1, three (T4-T6) from group 2, and eight (T7-T14) from group 4.

The 14 test cases almost achieved the maximum coverage possible. By inspecting
the output from the Cobertura tool we were able to identify 10lines of code that had
not been covered by the reduced test suite. We then used Alloyto generate a valid
metamodel instance to cover this situation. This model was added to our test suite and
increased the coverage to the maximum value possible of 80% for code coverage and
93% for branch coverage.

The 15 test cases were then used to manually create a test oracle for the metrics
tool. All 42 metrics were calculated by hand and recorded foreach of the 15 test cases.
We compared these values with the actual values computed by the metrics tool. In the
next subsection, we briefly discuss the results of this alongwith the results from the
smoke test.

25

7.5 Discussion

Using the above procedure we uncovered 6 bugs in the metrics tool. Four of these were
detected by the smoke test and 2 with the test oracle. For example, for certain cohesion
metrics (e.g. LCOM1), an auxiliary operation was specified in OCL to compute the
set of method pairs in aClass. It was discovered that each method pair was being
counted twice and thus returning a metric value outside of the expected bounds for the
metrics. This error was corrected at the OCL level. Further,we identified and fixed the
remaining bugs and regenerated the metrics tool.

In summary, we were able to partition the types of errors we found into three cate-
gories. The first category are bugs that are a result of the metric definitions themselves.
For, example when a metric has no provision for a division by 0. Second, are those
introduced in the OCL where the definition has been incorrectly specified, for example
a misplaced bracket in the OCL definition. Lastly, errors introduced by Octopus in
transforming the UML/OCL to Java, for example incorrect casting of objects. Overall,
our experience found this to be a relatively simple and effective way of increasing our
confidence in the correctness of the automatically generated metrics tool.

8 Related work

The parallel between specification in Alloy and modelling inUML has been noted
by Massoniet al. [13] and exploited by Anastasakiset al. [1]. Anastasakiset al.
present a tool,UML2Alloy, that takes a UML class diagram, along with the associated
OCL constraints, and translates this into an Alloy specification. The sample instances
generated by the Alloy Analyser then correspond to object diagrams from the UML
model. However, their tool does not provide any automated handling of the generated
Alloy models.

Several other researchers have used Alloy to analyse and reason about metamodels.
For instance, an alternative definition of the UML metamodelis presented in [17] and
analysed using Alloy. In [22], Alloy is used to formalise andanalyse the package
merge concept of the UML 2.0 metamodel. These approaches aresimilar to ours in
that they use Alloy to describe ametamodel, as opposed to amodelas with Anastasakis
et al.. However, the main focus of this research to date has been on the analysis of the
UML metamodel. Our work, is concerned with using Alloy to analyse a metamodel for
object-oriented software measurement. Moreover, these approaches have no automated
support for metamodelling or for handling the generated models.

Some work related to ours is that of Gogollaet al. [10] who describe an approach
to the automatic generation of model instances (snapshots)from UML class diagrams.
ASSL (A Snapshot Sequence Language) is used to specify properties of a required
model instance. Using their approach they generate two types of model instances,
those that are test cases and those that are validation cases. The test cases confirm that
models with certain properties can be created from the specification. The validation
cases are used to show that certain properties of a model are aconsequence of existing
properties of the model. However, this approach is not fullyautomated as it requires
the creation of scripts for each model in order to generate instances.

26

A related problem is that of generating metamodel instancesfor use in testing
model transformations. Brottieret al. use an approach that determines the part of the
metamodel that is relevant to the model transformation, andthen determines coverage
criteria based on this part of the metamodel [5]. This criteria is then used to generate
metamodel instances. However, OCL constraints, an important part of a metamodel,
cannot be directly reflected, leading to an under-specification of model instances.

Finally, an approach to metamodel instance generation is presented by Ehriget al.
[7]. This approach involves the automatic creation of an instance-generating graph
grammar for the given metamodel. They also describe how to translate restricted OCL
constraints to graph constraints. The grammar and the graphconstraints are then used
to create metamodel instances. However this approach does not support attribute val-
ues, only supports limited OCL constraints and cannot be used to verify properties of
the metamodel.

9 Concluding remarks

In this paper we presented an approach to analysing MOF-compliant metamodels. We
also presented a metamodel for coupling and cohesion measurement based on the work
of Briand et al. and described how we used our approach to construct and analyse
the metamodel. The metamodel and well-formedness rules were expressed in UML
and OCL and a Java implementation and Alloy specification of the metamodel were
generated by third-party tools.

We used the Alloy specification to examine and validate the metamodel constraints,
and to generate instantiations of the metamodel. We implemented a reflective instan-
tiator to transform the automatically generated Alloy models into an instantiation of
the Java implementation of the metamodel, generating a testsuite for the metamodel-
based metric calculation tool. finally, we evaluated the adequacy of the test suite using
several coverage criteria.

We identify the principal contributions as:
• The development and analysisof a MOF-compliant metamodel for coupling

and cohesion metrics, based on the work of Briandet al., and the elimination of
redundant constraints in that metamodel.

• The automation of the generation of metamodel instances from a UML/OCL
specification that can be used as test data for metamodel-based software.

• A coverage-based analysisof the Alloy-generated test suite in terms of code
coverage, thus “completing the circle” between lightweight formal methods and
standard software testing techniques.

In future work, we plan to define a precise and complete schemefor transforming
UML models and Java programs to instances of the metamodel presented in this report.
Also, we believe the metamodel can be easily extended to other types of object-oriented
metrics simply by expanding it with the new concepts required for the different types
of metrics.

27

A Chidamber and Kemerer Metric Definitions

-- Returns a count of all the implemented methods of the Class c
context CKMetrics::WMC(c:MM::Class):Real
body: c.M i()->size()

-- Returns a count of all the immediate descendents of the Class c
context CKMetrics::NOC(c:MM::Class):Real
body: c.Children()->size()

-- Computes the DIT for the Class c
context CKMetrics::DIT(c:MM::Class):Real
body: if c.Parents()->size() = 0 then --current Class c is root

0
else --DIT for Class c is maximum DIT value of its parents

self.max(c.Parents()->collect(i:MM::Class|self.DIT(i)+1)
->asSet())

endif

28

B Coupling Definitions

def: ClassesAsTypes():Set(MM::Type)
= MM::Class.allInstances()->asSet()

def: CA(c:MM::Class, d:MM::Class):Real
= c.A i()->select(a|a.type=d)->size()

def: CM(c:MM::Class, d:MM::Class):Real
= sumInts(c.M new()->collect(m|m.Par()->select(a|a.type=d)->size()))

def: MM(c:MM::Class, d:MM::Class):Real
= sumReals(c.M i()->collect(m|sumInts(d.M new()->union(d.M ovr())

->collect(m1|m.NSI(m1) + m.PP(m1)))))

def: Others(c:MM::Class):Set(MM::Class)
= MM::Class.allInstances()-

(c.Ancestors()->union(c.Descendents())->union(c.Friends())
->union(c.FriendsInv())->including(c))

-- Computes the CBO for the Class c
context Coupling::CBO(c:MM::Class):Real
body: MM::Class.allInstances()->excluding(c)

->select(d:MM::Class|c.uses(d) or d.uses(c))->size()

-- Computes the CBO’ for the Class c
context Coupling::CBO (c:MM::Class):Real
body: (MM::Class.allInstances()-(c.Ancestors()->including(c)))

->select(d:MM::Class|c.uses(d) or d.uses(c))->size()

-- Computes the RFC for the Class c
context Coupling::RFC(c:MM::Class):Real
body: c.Methods()->collect(m:MM::Method|m.PIM())

->asSet()->union(c.Methods())->size()

-- Computes the RFC’ for the Class c
context Coupling::RFC (c:MM::Class):Real
body: c.Methods()->collect(m:MM::Method|m.PIM ())

->asSet()->union(c.Methods())->size()

-- Computes the DAC for the Class c
context Coupling::DAC(c:MM::Class):Real
body: c.A i()->select(a|self.ClassesAsTypes()

->includes(a.type))->size()

-- Computes the DAC’ for the Class c
context Coupling::DAC (c:MM::Class):Real
body: c.A i()->collect(a|a.type)->asSet()

->select(t:MM::Type|self.ClassesAsTypes()
->includes(t))->size()

-- Computes the MPC for the Class c
context Coupling::MPC(c:MM::Class):Real
body: sumReals(c.M i()

->collect(m:MM::Method|sumInts((m.SIM()-c.M i())
->collect(m1:MM::Method|m.NSI(m1)))))

29

-- Computes the COF for the entire system
context Coupling::COF():Real
body: let numClasses:Real = MM::Class.allInstances()->size() in

((sumInts(MM::Class.allInstances()
->collect(c|(MM::Class.allInstances()-

(c.Ancestors()->including(c)))->select(d|c.uses(d))->size())))
/ ((numClasses*numClasses) - numClasses -
(2*(sumInts(MM::Class.allInstances()

->collect(c|c.Descendents()->size()))))))

-- Computes the ICP for the Method m
context Coupling::ICP(c:MM::Class, m:MM::Method): Real
body: sumInts((m.PIM()-(c.M new()->union(c.M ovr())))

->collect(m1|(1 + m1.Par()->size())*m.NPI(m1)))

-- Computes the ICP for the Class c
context Coupling::ICP(c:MM::Class): Real
body: sumReals(c.M i()->collect(m|self.ICP(c, m)))

-- Computes the ICP for the entire system
context Coupling::ICP(): Real
body: sumReals(MM::Class.allInstances()->collect(c|self.ICP(c)))

-- Computes the NIH ICP for the Method m
context Coupling::NIH ICP(c:MM::Class, m:MM::Method): Real
body: sumInts((m.PIM()->intersection(c.Ancestors()

->collect(a|a.Methods())))
->collect(m1|(1+m1.Par()->size())*m.NPI(m1)))

-- Computes the NIH ICP for the Class c
context Coupling::NIH ICP(c:MM::Class): Real
body: sumReals(c.M i()->collect(m|self.NIH ICP(c, m)))

-- Computes the NIH ICP for the entire system
context Coupling::NIH ICP(): Real
body: sumReals(MM::Class.allInstances()->collect(c|self.NIH ICP(c)))

-- Computes the IH ICP for the Method m
context Coupling::IH ICP(c:MM::Class, m:MM::Method): Real
body: sumInts((m.PIM()->intersection((MM::Class.allInstances() -

(c.Ancestors()->including(c)))->collect(a|a.Methods())))
->collect(m1|(1 + m1.Par()->size())*m.NPI(m1)))

-- Computes the IH ICP for the Class c
context Coupling::IH ICP(c:MM::Class): Real
body: sumReals(c.M i()->collect(m|self.IH ICP(c, m)))

-- Computes the IH ICP for the entire system
context Coupling::IH ICP(): Real
body: sumReals(MM::Class.allInstances()

->collect(c|self.IH ICP(c)))

context Coupling::IFCAIC(c:MM::Class): Real
body: sumReals(c.FriendsInv()->collect(d|self.CA(c,d)))

context Coupling::ACAIC(c:MM::Class): Real

30

body: sumReals(c.Ancestors()->collect(d|self.CA(c,d)))

context Coupling::OCAIC(c:MM::Class): Real
body: sumReals(self.Others(c)->union(c.Friends())

->collect(d|self.CA(c,d)))

context Coupling::FCAEC(c:MM::Class): Real
body: sumReals(c.Friends()->collect(d|self.CA(d,c)))

context Coupling::DCAEC(c:MM::Class): Real
body: sumReals(c.Descendents()->collect(d|self.CA(d,c)))

context Coupling::OCAEC(c:MM::Class): Real
body: sumReals(self.Others(c)->union(c.FriendsInv())

->collect(d|self.CA(d,c)))

context Coupling::IFCMIC(c:MM::Class): Real
body: sumReals(c.FriendsInv()->collect(d|self.CM(c,d)))

context Coupling::ACMIC(c:MM::Class): Real
body: sumReals(c.Ancestors()->collect(d|self.CM(c,d)))

context Coupling::OCMIC(c:MM::Class): Real
body: sumReals(self.Others(c)->union(c.Friends())

->collect(d|self.CM(c,d)))

context Coupling::FCMEC(c:MM::Class): Real
body: sumReals(c.Friends()->collect(d|self.CM(d,c)))

context Coupling::DCMEC(c:MM::Class): Real
body: sumReals(c.Descendents()->collect(d|self.CM(d,c)))

context Coupling::OCMEC(c:MM::Class): Real
body: sumReals(self.Others(c)->union(c.FriendsInv())

->collect(d|self.CM(d,c)))

context Coupling::IFMMIC(c:MM::Class): Real
body: sumReals(c.FriendsInv()->collect(d|self.MM(c,d)))

context Coupling::AMMIC(c:MM::Class): Real
body: sumReals(c.Ancestors()->collect(d|self.MM(c,d)))

context Coupling::OMMIC(c:MM::Class): Real
body: sumReals(self.Others(c)->union(c.Friends())

->collect(d|self.MM(c,d)))

context Coupling::FMMEC(c:MM::Class): Real
body: sumReals(c.Friends()->collect(d|self.MM(d,c)))

context Coupling::DMMEC(c:MM::Class): Real
body: sumReals(c.Descendents()->collect(d|self.MM(d,c)))

context Coupling::OMMEC(c:MM::Class): Real
body: sumReals(self.Others(c)->union(c.FriendsInv())

->collect(d|self.MM(d,c)))

31

C Cohesion Definitions

-- Returns a value for the common attribute usage measure
def: cau(m1:MM::Method, m2:MM::Method, c:MM::Class):Boolean
= (m1.SIM ()->including(m1)->collect(i:MM::Method|i.AR()))

->intersection(m2.SIM ()->including(m2)
->collect(j:MM::Method|j.AR()))->intersection(c.A i())
->notEmpty()

-- The transitive closure of cau
def: cau (m1:MM::Method, m2:MM::Method, c:MM::Class):Boolean
= (m1.SIM ()->including(m1)->collect(i:MM::Method|i.AR()))

->intersection(m2.SIM ()->including(m2)
->collect(j:MM::Method|j.AR()))->intersection(c.A i())
->notEmpty()

-- Returns a set of sets of Methods, where each set represents
a connected component
def: constructConnectedComponents(v:Set(MM::Method),

e:Set(TupleType(m1:MM::Method, m2:MM::Method)))
:Set(Set(MM::Method))

= v->iterate(m:MM::Method;result2:Set(Set(MM::Method)) = Set |
if not result2->flatten()->includes(m) then

result2->including(self.getConnectedElements(m, e)
->including(m))

else result2
endif)

-- Returns the set of methods that along with m make a
single connected component
def: getConnectedElements(m:MM::Method,

:Set(TupleType(m1:MM::Method, m2:MM::Method)))
:Set(MM::Method)

= self.closureConnectedElements(m, e, Set)

-- Returns the set of methods that are transitively connected to m
def: closureConnectedElements(m:MM::Method,

e:Set(TupleType(m1:MM::Method, m2:MM::Method)),
S:Set(MM::Method))
:Set(MM::Method)

= self.connectedElements(m,e)->union((self.connectedElements(m,e)-S)
->collect(i:MM::Method |
self.closureConnectedElements(i, e, S->including(m)))->asSet())

--Returns the set of methods directly connected to m
def: connectedElements(m:MM::Method,

e:Set(TupleType(m1:MM::Method, m2:MM::Method)))
:Set(MM::Method)

= e->iterate(t:TupleType(m1:MM::Method, m2:MM::Method);
result3:Set(MM::Method) = Set |
if m = t.m1 then

result3->including(t.m2)
else

if t.m2 = m then
result3->including(t.m1)

else result3

32

endif
endif)

-- Returns the LCOM1 value for the Class c
context Cohesion::LCOM1(c:MM::Class):Real
body: let methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))

= self.constructMethodPairs(c.implemented method) in
getP1(c, methodPairs)->size()/2

-- Returns the LCOM2 value for the Class c
context Cohesion::LCOM2(c:MM::Class):Real
body: let methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))

= self.constructMethodPairs(c.implemented method),
p:Real = getP2(c, methodPairs)->size()/2,
q:Real = getQ(c, methodPairs)->size()/2 in

if p > q then p - q
else 0
endif

-- This is a modified LCOM2 definition
context Cohesion::NewLCOM2(c:MM::Class):Real
body: let methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))

= self.constructMethodPairs(c.implemented method),
p:Real = getP1(c, methodPairs)->size(),
q:Real = getQ(c, methodPairs)->size() in

if p > q then p - q
else 0
endif

-- Returns the LCOM3 value for the Class c
context Cohesion ::LCOM3(c:MM::Class):Real
body: let v:Set(MM::Method) = c.M i(),

methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))
= self.constructMethodPairs(c.implemented method),
e:Set(TupleType(m1:MM::Method, m2:MM::Method))
= getQ(c, methodPairs) in

self.constructConnectedComponents(v, e)->size()

-- Returns the LCOM4 value for the Class c
context Cohesion::LCOM4(c:MM::Class):Real
body: let v:Set(MM::Method) = c.M i(),

methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))
= self.constructMethodPairs(c.implemented method),
e:Set(TupleType(m1:MM::Method,
m2:MM::Method)) = getE(c, methodPairs) in

self.constructConnectedComponents(v, e)->size()

-- Returns the C value for the Class c-for Classes with LCOM4 = 1
context Cohesion::Co(c:MM::Class):Real
body: let methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))

= self.constructMethodPairs(c.M i()),
e:Real = self.getE(c, methodPairs)->size()/2,
v:Real = c.M i()->size() in

(2* ((e - (v-1)) / ((v-1)*(v-2))))

-- This is a redefinition of Co
context Cohesion::NewCo(c:MM::Class):Real

33

body: let methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))
= self.constructMethodPairs(c.M i()),
e:Real = self.getE(c, methodPairs)->size()/2,
v:Real = c.M i()->size() in

(e)/(v*(v-1))

-- Returns the LCOM5 value for the Class c
context Cohesion::LCOM5(c:MM::Class):Real
body: let a:Real = c.A i()->size(), m:Real = c.M i()->size() in

if a = 0.0 then
0.0

else
((m-((1.0/a)*(self.sumInts(c.A i()
->collect(i:MM::Attribute|i.referenced by
->intersection(c.M i())->size())))))
/(m-1.0))

endif

-- Redefined LCOM5 so not an inverse cohesion measure)
context Cohesion::NewCoh(c:MM::Class):Real
body: let a:Real = c.A i()->size(), m:Real = c.M i()->size() in

if m = 0.0 or a = 0.0 then
0.0

else
self.sumInts(c.A i()->collect(i:MM::Attribute|i.referenced by

->intersection(c.M i())->size()))/(m*a)
endif

-- Returns the TCC value for the Class c
context Cohesion::TCC(c:MM::Class):Real
body: let i:Set(MM::Method) = c.M i()->intersection(c.M pub()),

methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))
= self.constructMethodPairs(i), m:Integer = i->size() in

(2*((methodPairs->select(t|t.m1 <> t.m2 and
self.cau(t.m1, t.m2, c))->size()/2) / (m*(m-1))))

-- Returns the LCC value for the Class c
context Cohesion::LCC(c:MM::Class):Real
body: let i:Set(MM::Method) = c.M i()->intersection(c.M pub()),

methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method))
= self.constructMethodPairs(i), m:Integer = i->size() in

(2*((methodPairs->select(t|t.m1 <> t.m2
and self.cau (t.m1, t.m2, c))->size()/2) / (m*(m-1))))

-- Returns the ICH value for the Class c
context Cohesion::ICH(c:MM::Class):Real
body: self.sumReals(c.M i()->collect(m:MM::Method|self.ICH(m,c)))

-- Returns the ICH value for the Method m
context Cohesion::ICH(m:MM::Method, c:MM::Class):Real
body: sumInts((c.M new()->union(c.M ovr()))

->collect(i:MM::Method |
(1+i.Par()->size())*(m.NPI(i))))

34

D Auxillary Definitions

-- Returns the maximum element in a set of reals
def: max(s:Set(Real)):Real
= s->iterate(elem:Real; result:Real = -1|result.max(elem))

-- Sums a list of reals
def: sumReals(set:Bag(Real)):Real
= set->iterate(i:Real; sum: Real = 0.0|sum + i)

-- Sums a list of ints
def: sumInts(set:Bag(Integer)):Real
= set->iterate(i:Integer; sum: Integer = 0|sum + i)

-- Returns the set of method pairs for a given set of methods
def: constructMethodPairs(methods:Set(MM::Method))

:Set(TupleType(m1:MM::Method, m2:MM::Method))
= methods->collect(m1|methods

->collect(m2|Tuplem1:MM::Method = m1, m2:MM::Method = m2))
->asSet()

-- Returns a set containing the attributes referenced by
-- the implemented methods of the Class c
def: getReferencedAtts(c:MM::Class):Set(MM::Attribute)
= c.M i()->collect(m:MM::Method|m.AR())->asSet()

-- Returns a set containing (pairs of) methods of the Class c that
-- do not directly access any common attributes of c (for LCOM1)
def: getP1(c:MM::Class,

methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method)))
:Set(TupleType(m1:MM::Method, m2:MM::Method))

= methodPairs->select(t| (t.m1 <> t.m2)
and ((t.m1.AR())->intersection(t.m2.AR())

->intersection(c.A i())->isEmpty()))

-- Returns a set containing the (pairs of) methods of the
-- Class c that do not directly access any common attributes of c or
-- the empty set if all methods of c do not reference any attributes
def: getP2(c:MM::Class,

methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method)))
:Set(MM::Attribute)

= if self.getReferencedAtts(c)->size() = 0 then
Set{}

else
methodPairs->select(t| (t.m1 <> t.m2)
and ((t.m1.AR())->intersection(t.m2.AR())

->intersection(c.A i())->isEmpty()))
endif

-- Returns a set containing the (pairs of) methods of the
-- Class c that directly access at least one same attribute of c
def: getQ(c:MM::Class,

methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method)))
:Set(TupleType(m1:MM::Method, m2:MM::Method))

= methodPairs->select(t|t.m1 <> t.m2 and
not (t.m1.AR()->intersection(t.m2.AR())

35

->intersection(c.A i())->isEmpty()))

-- Returns a set containing the (pairs of) methods of the
-- Class c that directly access at least one same attribute of c
def: getE(c:MM::Class,

methodPairs:Set(TupleType(m1:MM::Method, m2:MM::Method)))
:Set(TupleType(m1:MM::Method, m2:MM::Method))

= methodPairs->select(t|t.m1 <> t.m2
and (t.m1.AR()->intersection(t.m2.AR())

->intersection(c.A i())->notEmpty()
or m1.SIM()->includes(m2) or m2.SIM()->includes(m1)))

36

References

[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A challenging model
transformation. InInt. Conference on Model Driven Engineering Languages and Systems,
volume 4735 ofLNCS, pages 436–450, 2007.

[2] A. L. Baroni, S. Braz, and F. B. e Abreu. Using OCL to formalize object-oriented design
metrics definitions. InECOOP Workshop on Quantative Approaches in Object-Oriented
Software Engineering, Malaga, Spain, June 2002.

[3] L. Briand, J. Daly, and J. Wuest. A unified framework for cohesion measurement in object-
oriented systems.Empirical Software Engineering, 3(1):65–117, 1998.

[4] L. Briand, J. Daly, and J. Wuest. A unified framework for coupling measurement in object-
oriented systems.IEEE Transactions on Software Engineering, 25(1):91–121, 1999.

[5] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L. Traon. Metamodel-based test gener-
ation for model transformations: an algorithm and a tool. InIntl. Symposium on Software
Reliability Engineering, pages 85–94, Raleigh, NC, Nov. 2006.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

[7] K. Ehrig, J. Küster, G. Taentzer, and J. Winkelmann. Generating instance models from
metamodels. InIntl. Conf. on Formal Methods for Open Object-Based Distributed Sys-
tems, volume 4037 ofLNCS, pages 156–170, 2006.

[8] M. El-Wakil, A. El-Bastawisi, M. Riad, and A. Fahmy. A novel approach to formalize
object-oriented design metrics. InEvaluation and Assessment in Software Engineering,
Keele, UK, Apr. 2005.

[9] N. Fenton and S. Lawrence Pfleeger.Software Metrics: A Rigorous and Practical Ap-
proach. Intl. Thompson Computer Press, 1996.

[10] M. Gogolla, J. Bohling, and M. Richters. Validating UMLand OCL models in USE by
automatic snapshot generation.Journal on Software and System Modeling, 4(4):386–398,
2005.

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the size of a test
suite.ACM Trans. Softw. Eng. Methodol., 2(3):270–285, 1993.

[12] D. Jackson.Software abstractions: logic, language, and analysis. The MIT Press, 2006.
[13] T. Massoni, R. Gheyi, and P. Borba. A UML class diagram analyzer. In3rd International

Workshop on Critical Systems Development with UML, Lisbon, Portugal, Oct. 2004.
[14] J. A. McQuillan and J. F. Power. Experiences of using theDagstuhl Middle Metamodel for

defining software metrics. InIntl. Conference on Principles and Practices of Programming
in Java, pages 194–198, Germany, 2006.

[15] J. A. McQuillan and J. F. Power. Towards re-usable metric definitions at the meta-level.
In PhD Workshop of the 20th European Conference on Object-Oriented Programming,
Nantes, France, July 4 2006.

[16] T. Mens and M. Lanza. A graph-based metamodel for object-oriented software metrics.
Electronic Notes in Theoretical Computer Science, 72(2), 2002.

[17] A. Naumenko and A. Wegmann. A metamodel for the Unified Modeling Language. In
Proceedings of the 5th International Conference on The Unified Modeling Language, vol-
ume 2460, pages 2–17. Springer, 2002.

[18] Object Management Group. Meta Object Facility (MOF) Core Specification v2.0. Doc #
formal/06-01-01, Jan. 2006.

[19] Object Management Group. UML Superstructure Specification v2.1.1. Doc # formal/07-
02-05, Feb. 2007.

[20] J. Warmer and A. Kleppe.The Object Constraint Language: Getting your models ready
for MDA. Addison-Wesley, 2003.

37

[21] F. G. Wilkie and T. J. Harmer. Tool support for measuringcomplexity in heterogeneous
object-oriented software. InIEEE Intl. Conference on Software Maintenance, pages 152–
161, Montréal, Canada, Oct. 2002.

[22] A. Zito and J. Dingel. Modeling UML2 package merge with Alloy. In First Alloy Workshop
of the ACM SIGSOFT Symposium on Foundations of Software Engineering, Portland, OR,
Nov. 2006.

38

