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Environmental Protection Agency

The Environmental Protection Agency (EPA) is
a statutory body responsible for protecting
the environment in Ireland. We regulate and
police activities that might otherwise cause
pollution. We ensure there is solid
information on environmental trends so that
necessary actions are taken. Our priorities are
protecting the Irish environment and
ensuring that development is sustainable. 

The EPA is an independent public body
established in July 1993 under the
Environmental Protection Agency Act, 1992.
Its sponsor in Government is the Department
of the Environment, Heritage and Local
Government.

OUR RESPONSIBILITIES
LICENSING

We license the following to ensure that their emissions
do not endanger human health or harm the environment:

� waste facilities (e.g., landfills, 
incinerators, waste transfer stations); 

� large scale industrial activities 
(e.g., pharmaceutical manufacturing, 
cement manufacturing, power plants); 

� intensive agriculture; 

� the contained use and controlled release 
of Genetically Modified Organisms (GMOs); 

� large petrol storage facilities.

� Waste water discharges

NATIONAL ENVIRONMENTAL ENFORCEMENT 

� Conducting over 2,000 audits and inspections of
EPA licensed facilities every year. 

� Overseeing local authorities’ environmental
protection responsibilities in the areas of - air,
noise, waste, waste-water and water quality.  

� Working with local authorities and the Gardaí to
stamp out illegal waste activity by co-ordinating a
national enforcement network, targeting offenders,
conducting  investigations and overseeing
remediation.

� Prosecuting those who flout environmental law and
damage the environment as a result of their actions.

MONITORING, ANALYSING AND REPORTING ON THE
ENVIRONMENT

� Monitoring air quality and the quality of rivers,
lakes, tidal waters and ground waters; measuring
water levels and river flows. 

� Independent reporting to inform decision making by
national and local government.

REGULATING IRELAND’S GREENHOUSE GAS EMISSIONS 

� Quantifying Ireland’s emissions of greenhouse gases
in the context of our Kyoto commitments.

� Implementing the Emissions Trading Directive,
involving over 100 companies who are major
generators of carbon dioxide in Ireland. 

ENVIRONMENTAL RESEARCH AND DEVELOPMENT 

� Co-ordinating research on environmental issues
(including air and water quality, climate change,
biodiversity, environmental technologies).  

STRATEGIC ENVIRONMENTAL ASSESSMENT 

� Assessing the impact of plans and programmes on
the Irish environment (such as waste management
and development plans). 

ENVIRONMENTAL PLANNING, EDUCATION AND
GUIDANCE 
� Providing guidance to the public and to industry on

various environmental topics (including licence
applications, waste prevention and environmental
regulations). 

� Generating greater environmental awareness
(through environmental television programmes and
primary and secondary schools’ resource packs). 

PROACTIVE WASTE MANAGEMENT 

� Promoting waste prevention and minimisation
projects through the co-ordination of the National
Waste Prevention Programme, including input into
the implementation of Producer Responsibility
Initiatives.

� Enforcing Regulations such as Waste Electrical and
Electronic Equipment (WEEE) and Restriction of
Hazardous Substances (RoHS) and substances that
deplete the ozone layer.

� Developing a National Hazardous Waste Management
Plan to prevent and manage hazardous waste. 

MANAGEMENT AND STRUCTURE OF THE EPA 

The organisation is managed by a full time Board,
consisting of a Director General and four Directors.

The work of the EPA is carried out across four offices: 

� Office of Climate, Licensing and Resource Use

� Office of Environmental Enforcement

� Office of Environmental Assessment

� Office of Communications and Corporate Services 

The EPA is assisted by an Advisory Committee of twelve
members who meet several times a year to discuss
issues of concern and offer advice to the Board.

An Ghníomhaireacht um Chaomhnú Comhshaoil 

Is í an Gníomhaireacht um Chaomhnú
Comhshaoil (EPA) comhlachta reachtúil a
chosnaíonn an comhshaol do mhuintir na tíre
go léir. Rialaímid agus déanaimid maoirsiú ar
ghníomhaíochtaí a d'fhéadfadh truailliú a
chruthú murach sin. Cinntímid go bhfuil eolas
cruinn ann ar threochtaí comhshaoil ionas 
go nglactar aon chéim is gá. Is iad na 
príomh-nithe a bhfuilimid gníomhach leo 
ná comhshaol na hÉireann a chosaint agus
cinntiú go bhfuil forbairt inbhuanaithe.

Is comhlacht poiblí neamhspleách í an
Ghníomhaireacht um Chaomhnú Comhshaoil
(EPA) a bunaíodh i mí Iúil 1993 faoin 
Acht fán nGníomhaireacht um Chaomhnú
Comhshaoil 1992. Ó thaobh an Rialtais, is í
an Roinn Comhshaoil agus Rialtais Áitiúil a
dhéanann urraíocht uirthi.

ÁR bhFREAGRACHTAÍ
CEADÚNÚ

Bíonn ceadúnais á n-eisiúint againn i gcomhair na nithe
seo a leanas chun a chinntiú nach mbíonn astuithe uathu
ag cur sláinte an phobail ná an comhshaol i mbaol:

� áiseanna dramhaíola (m.sh., líonadh talún,
loisceoirí, stáisiúin aistrithe dramhaíola); 

� gníomhaíochtaí tionsclaíocha ar scála mór (m.sh.,
déantúsaíocht cógaisíochta, déantúsaíocht
stroighne, stáisiúin chumhachta); 

� diantalmhaíocht; 

� úsáid faoi shrian agus scaoileadh smachtaithe
Orgánach Géinathraithe (GMO); 

� mór-áiseanna stórais peitreail.

� Scardadh dramhuisce  

FEIDHMIÚ COMHSHAOIL NÁISIÚNTA  

� Stiúradh os cionn 2,000 iniúchadh agus cigireacht
de áiseanna a fuair ceadúnas ón nGníomhaireacht
gach bliain. 

� Maoirsiú freagrachtaí cosanta comhshaoil údarás
áitiúla thar sé earnáil - aer, fuaim, dramhaíl,
dramhuisce agus caighdeán uisce.

� Obair le húdaráis áitiúla agus leis na Gardaí chun
stop a chur le gníomhaíocht mhídhleathach
dramhaíola trí comhordú a dhéanamh ar líonra
forfheidhmithe náisiúnta, díriú isteach ar chiontóirí,
stiúradh fiosrúcháin agus maoirsiú leigheas na
bhfadhbanna.

� An dlí a chur orthu siúd a bhriseann dlí comhshaoil
agus a dhéanann dochar don chomhshaol mar
thoradh ar a ngníomhaíochtaí.

MONATÓIREACHT, ANAILÍS AGUS TUAIRISCIÚ AR 
AN GCOMHSHAOL
� Monatóireacht ar chaighdeán aeir agus caighdeáin

aibhneacha, locha, uiscí taoide agus uiscí talaimh;
leibhéil agus sruth aibhneacha a thomhas. 

� Tuairisciú neamhspleách chun cabhrú le rialtais
náisiúnta agus áitiúla cinntí a dhéanamh. 

RIALÚ ASTUITHE GÁIS CEAPTHA TEASA NA HÉIREANN 
� Cainníochtú astuithe gáis ceaptha teasa na

hÉireann i gcomhthéacs ár dtiomantas Kyoto.

� Cur i bhfeidhm na Treorach um Thrádáil Astuithe, a
bhfuil baint aige le hos cionn 100 cuideachta atá
ina mór-ghineadóirí dé-ocsaíd charbóin in Éirinn. 

TAIGHDE AGUS FORBAIRT COMHSHAOIL 
� Taighde ar shaincheisteanna comhshaoil a chomhordú

(cosúil le caighdéan aeir agus uisce, athrú aeráide,
bithéagsúlacht, teicneolaíochtaí comhshaoil).  

MEASÚNÚ STRAITÉISEACH COMHSHAOIL 

� Ag déanamh measúnú ar thionchar phleananna agus
chláracha ar chomhshaol na hÉireann (cosúil le
pleananna bainistíochta dramhaíola agus forbartha).  

PLEANÁIL, OIDEACHAS AGUS TREOIR CHOMHSHAOIL 
� Treoir a thabhairt don phobal agus do thionscal ar

cheisteanna comhshaoil éagsúla (m.sh., iarratais ar
cheadúnais, seachaint dramhaíola agus rialacháin
chomhshaoil). 

� Eolas níos fearr ar an gcomhshaol a scaipeadh (trí
cláracha teilifíse comhshaoil agus pacáistí
acmhainne do bhunscoileanna agus do
mheánscoileanna). 

BAINISTÍOCHT DRAMHAÍOLA FHORGHNÍOMHACH 

� Cur chun cinn seachaint agus laghdú dramhaíola trí
chomhordú An Chláir Náisiúnta um Chosc
Dramhaíola, lena n-áirítear cur i bhfeidhm na
dTionscnamh Freagrachta Táirgeoirí.

� Cur i bhfeidhm Rialachán ar nós na treoracha maidir
le Trealamh Leictreach agus Leictreonach Caite agus
le Srianadh Substaintí Guaiseacha agus substaintí a
dhéanann ídiú ar an gcrios ózóin.

� Plean Náisiúnta Bainistíochta um Dramhaíl
Ghuaiseach a fhorbairt chun dramhaíl ghuaiseach a
sheachaint agus a bhainistiú. 

STRUCHTÚR NA GNÍOMHAIREACHTA 

Bunaíodh an Ghníomhaireacht i 1993 chun comhshaol
na hÉireann a chosaint. Tá an eagraíocht á bhainistiú
ag Bord lánaimseartha, ar a bhfuil Príomhstiúrthóir
agus ceithre Stiúrthóir. 

Tá obair na Gníomhaireachta ar siúl trí ceithre Oifig:  

� An Oifig Aeráide, Ceadúnaithe agus Úsáide
Acmhainní 

� An Oifig um Fhorfheidhmiúchán Comhshaoil 

� An Oifig um Measúnacht Comhshaoil 

� An Oifig Cumarsáide agus Seirbhísí Corparáide  

Tá Coiste Comhairleach ag an nGníomhaireacht le
cabhrú léi. Tá dáréag ball air agus tagann siad le chéile
cúpla uair in aghaidh na bliana le plé a dhéanamh ar
cheisteanna ar ábhar imní iad agus le comhairle a
thabhairt don Bhord.
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Executive Summary

Projected changes in future climate are inherently 
uncertain. This uncertainty stems largely from the fact 
that, even for a specified emissions scenario, global 
climate model (GCM) simulations result in a range 
of plausible scenarios being modelled. While most 
models do agree that the globally averaged surface 
temperature will increase due to increasing atmospheric 
concentrations of greenhouse gases, there is a significant 
divergence between models in both the spatial and 
temporal projections of changes in precipitation. These 
differences are most pronounced at the regional scale. 
For example, differences are apparent in the magnitude 
of projected temperature changes between GCMs; for 
precipitation projections, both magnitude and direction 
of change can vary between GCMs. Nonetheless, 
regional scale climate information is necessary if robust 
adaptation strategies are to be developed. 

Until recently, the use of a single climate scenario 
or climate trajectory was common in the literature. 
However, reliance on the output from a single GCM 
means there is significant potential for gross under- 
or over-estimation of the associated risks, which may 
result in poor decision-making and increase the risk of 
maladaptation. 

This report presents an overview of the uncertainties 
that cascade or propagate through the climate modelling 
framework – from emissions scenarios to subsequent 

climate projections. It describes a methodology that 
has been developed for quantifying such uncertainties 
at the regional scale. Initially, a methodology adopted 
from the dynamical modelling community was used 
to ‘pattern scale’ previously downscaled emissions 
scenarios for selected locations in Ireland. This enabled 
the quantification of projected changes in temperature 
and precipitation for the end of the present century 
across four marker emissions scenarios.

In order to produce probabilistic-based scenarios of 
temperature and precipitation for the selected station 
locations, a Monte Carlo analysis was employed in 
conjunction with three different estimates of future 
warming. The projected changes in both temperature 
and precipitation were found to display a considerable 
spread in values. For example, winter temperature at 
one location suggested an increase from between 0.6 
and 6.6°C by the 2080s’ (2070–2099) period. 

While the methodology outlined should enable the rapid 
development of probabilistic climate projections, based 
on a limited availability of downscaled climate scenarios, 
caution needs to be expressed in the interpretation of 
the results outlined in this report. While they provide a 
basis for assessing the potential risks associated to be 
quantified, at least one study has illustrated that details 
of the level of risk are not independent of the methods 
employed (New et al., 2007).
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Box 1.1. Special Report on Emissions Scenarios (SRES) with four scenario ‘families’ illustrated. 

storylines or indeterminate scenario analysis (Box 1.1) 
(Hulme and Carter, 1999). 

Epistemic or systematic uncertainties arise primarily 
from a lack of complete knowledge of the system, 
and these are considered to be reducible as our 
understanding or knowledge of the particular system or 
environment increases. For example, the envelope of 
possible values of the sensitivity of the climate system 
may be narrowed as understanding of the key climate 
processes improves. Conversely, additional research 
could also show that a particular process, which had 
not been included previously, could mean an increase 
in the climate sensitivity envelope. 

1	 Introduction

Future projections of anthropogenic climate change 
arising from increased concentrations of atmospheric 
CO2 are subject to a high degree of uncertainty 
(Jones, 2000). This stems mainly from both aleatory 
(‘unknowable’ knowledge) and epistemic, or systematic 
(‘incomplete’ knowledge) uncertainties (Hulme and 
Carter, 1999; Oberkampf et al., 2002). 

Aleatory uncertainties are considered to be irreducible 
and result from an inherent indeterminacy of the system 
being modelled (Hulme and Carter, 1999; Oberkampf 
et al., 2002). For example, future human behaviour and 
actions are not predictable and therefore require future 
emissions scenarios to be prescribed on the basis of 

The A1 storyline and scenario family describes a 
future world of very rapid economic growth, global 
population that peaks in mid-century and declines 
thereafter, and the rapid introduction of new and 
more efficient technologies. Major underlying themes 
are convergence among regions, capacity building, 
and increased cultural and social interactions, with 
a substantial reduction in regional differences in per 
capita income. The A1 scenario family develops into 
three groups that describe alternative directions of 
technological change in the energy system. The three 
A1 groups are distinguished by their technological 
emphasis: fossil intensive (A1FI), non-fossil energy 
sources (A1T), or a balance across all sources (A1B).

The A2 storyline and scenario family depicts a very 
heterogeneous world. The underlying theme is self-
reliance and the preservation of local identities. 
Fertility patterns across regions converge very 
slowly, resulting in a continuously increasing global 
population. Economic development is primarily 
regionally oriented and per capita economic growth 
and technological change are more fragmented and 
slower than in other storylines.

The B1 storyline and scenario family describes a 
convergent world with the same global population 
that peaks in mid-century and declines thereafter, 
as in the A1 storyline, but with rapid changes 
in economic structures towards a service and 
information economy, with reductions in material 
intensity, and the introduction of clean and resource-
efficient technologies. The emphasis is on global 
solutions to economic, social, and environmental 
sustainability, including improved equity, but without 
additional climate initiatives.

The B2 storyline and scenario family describes a 
world in which the emphasis is on local solutions to 
economic, social, and environmental sustainability. 
It is a world with a continuously increasing global 
population at a rate lower than in A2, intermediate 
levels of economic development, and less rapid and 
more diverse technological change than in the B1 
and A1 storylines. While the scenario is also oriented 
towards environmental protection and social equity, 
it focuses on local and regional levels.

Source: Intergovernmental Panel on Climate Change (IPCC), 2001a after Nakicenovic et al., 2000.
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e)	 Uncertainties introduced by approximation 
techniques used to solve a set of equations 
that characterize the model. 

3. 	 Other sources of uncertainty: 

a)	 Ambiguously defined concepts and terminology; 

b)	 Inappropriate spatial/temporal units; 

c)	 Inappropriateness of/lack of confidence in 
underlying assumptions; 

d)	 Uncertainty due to projections of human 
behaviour (e.g. future consumption patterns, 
or technological change), which is distinct 
from uncertainty due to ‘natural’ sources (e.g. 
climate sensitivity, chaos).

(from Moss and Schneider, 2000: 38; IPCC, 2001b)

Consequently, future projections of climate for a given 
emissions scenario will always result in a range of 
possible future scenarios being simulated (Hulme and 
Carter, 1999). Figures 1.1 and 1.2 illustrate the range 
in projected mean annual temperature and precipitation 
response in Europe for the 2080–2099 period, relative 
to 1980–1999, under the A1B emissions scenario, for 
each of 21 multi-model data (MMD1) models and the 
mean of all models. Despite using the same emissions 
scenario, A1B, in all instances, significant differences 
are apparent between the various model realisations. 
Such discrepancies in model projections present 
significant challenges for a policy community seeking 
to develop cost-effective adaptation strategies which 
are based on these projections. While uncertainty 
and confidence limits are the hallmark of science, 
communicating such ideas to the wider community has 
been less than effective. 

1	 The Intergovernmental Panel on Climate Change (IPCC) 
refers to the World Climate Research Programme (WCRP) 
Coupled Model Intercomparison Project phase 3 (CMIP3) 
experiments, with idealised climate change scenarios, as 
the ‘multi-model data set’ (MMD). This naming convention 
is also applied here.

In addition, the climate system is considered to be a 
highly dynamical, non-linear system, which is sensitive 
to initial conditions. For a similar forcing, a range of 
possible climate states or equilibria is possible. There 
is also evidence for the presence of thresholds in the 
ocean-atmosphere system, which once exceeded, 
can result in rapid transition between stable climate 
equilibrium or ‘eigenstates’. The exceedence of such 
thresholds in the climate system is associated with 
abrupt climate changes as the climate system shifts 
from one stable state to another.

Both aleatory and epistemic uncertainties can arise from 
a number of sources, many of which are outside the 
researcher’s direct control. Some sources of uncertainty 
that were commonly encountered by Intergovernmental 
Panel on Climate Change (IPCC) authors of the Third 
Assessment Report (TAR) (2001a) are: 

1. 	 Problems with data:

a)	 Missing components or errors in the data; 

b)	 Noise in the data associated with biased or 
incomplete observations;

c)	 Random sampling error and biases (non-
representativeness) in a sample. 

2.	 Problems with models:

a)	 Known processes but unknown functional 
relationships or errors in the structure of the 
model; 

b)	 Known structure but unknown or erroneous 
values of some important parameters; 

c)	 Known historical data and model structure, 
but reasons to believe parameters or model 
structure will change over time; 

d)	 Uncertainty regarding the predictability (e.g. 
chaotic or stochastic behaviour) of the system 
or effect; 
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R. Fealy (2005-FS-33)

Figure 1.1. Annual mean temperature response in Europe for the years 1980–1999 to 2080–2099 under the 
A1B scenario, averaged over all realisations available for each of 21 multi-model data (MMD) models. The 
mean change, representing an average over all models is shown in the lower right-hand corner (IPCC, 2007).
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Figure 1.2. Annual mean precipitation response in Europe for the years 1980–1999 to 2080–2099 under the 
A1B scenario, averaged over all realisations available for each of 21 multi-model data (MMD) models. The 
mean change, representing an average over all models is shown in the lower right-hand corner (IPCC, 2007).
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R. Fealy (2005-FS-33)

Figure 1.3. Each stage in the progression from an emissions scenario to the final climate response contributes 
to the uncertainty within a climate model projection due to both aleatory and epistemic uncertainties. The 
resulting uncertainties cascade through to the final output. (Dark shaded areas represent the mean ±1 
standard deviation for 19 model tunings. The lighter shaded areas illustrate the change in the uncertainty 
range, if carbon cycle feedbacks are assumed to be lower or higher than in the medium setting) (Figure after 
IPCC, 2007).

Figure 1.4. Cascade of uncertainties (IPCC, 2001a modified after Jones, 2000).

If not accounted for adequately, the various sources of 
uncertainties that exist at each level in the modelling 
process can result in large uncertainties being 
associated with the model outcome (Fig. 1.3). Climate 
model projections are inherently uncertain because of 
the ‘cascade of uncertainty’ that results from translating 
future socio-economic storylines into greenhouse gas 
emissions and subsequent climate change scenarios 
(Moss and Schneider, 2000; Jones, 2000; Wilby, 2005) 
(Fig. 1.4). Such uncertainties need to be acknowledged 
at the very minimum and quantified if at all possible. 

Moreover, the possibility of ‘surprise’ outcomes or 
unimaginable abrupt events that may occur because 
of the non-linear responses of the climate system to 
anthropogenic forcing must be allowed for (Hulme and 
Carter, 1999; Moss and Schneider, 2000). While no 
global climate model (GCM) to date has produced a 
sudden collapse in the thermohaline circulation (THC) 
in the North Atlantic, most GCMs do show a reduction in 
the THC’s strength caused by increasing anthropogenic 
emissions, which may partially offset the resulting 
warming (IPCC, 2007). A reduction in the strength of the 
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climate change (Næss et al., 2005; Pulwarty and 
Melis, 2001; Thomas et al., 2007). Such approaches, 
where adaptation measures are assessed against past 
climate, have also been suggested as an alternative 
to the probabilistic approach in impacts assessments.

However, such bottom-up approaches are not without 
their opponents. While sensitivity analysis can be 
used to generate response surfaces from which risk 
thresholds can be identified (such as ‘dangerous’ 
climate change), the ability to assess uncertainties 
in multiple inputs requires large computing power 
(Beven, 2001). Additionally, sensitivity analysis may 
not necessarily produce consistent and plausible 
scenarios of future changes (Jones and Mearns, 2003), 
nor can the timing of a projected impact be assessed. A 
significant weakness of the analogue approach is that 
it assumes that the past climate encompasses the full 
range of variability that is likely to occur in the future. 
In spite of these weaknesses, the major criticism that 
exponents of bottom-up approaches have of attaching 
probabilities to climate change projections is that the 
probabilistic approach takes no account of the adaptive 
capacity of the system being impacted (Dessai and 
Hulme, 2003). 

Ultimately, a combination of both approaches is 
required, so that probabilistic-based climate scenarios 
and sensitivity analysis are combined to determine 
the vulnerability or resilience of a particular sector, 
community or infrastructure to climate change. Based 
on the vulnerability assessment, the ‘local’ level of 
resilience to a particular change in climate can be 
determined and, based on probabilistic scenarios, a 
suitable adaptation measure implemented.

While the single-trajectory top-down approach was 
common practice in the peer-review literature until 
recently, quantification of uncertainties is becoming 
increasingly more feasible, primarily because of 
increased data availability from more than one GCM 
modelling centre (see Figs 1.1 and 1.2 above). While 
a scenario represents a plausible future outcome, its 
usefulness is limited in that it has no degree of probability 
attached (Jones, 2000). In an assessment of modelling 
uncertainty, Murphy et al. (2004) used a pattern-scaling 
technique from a single GCM to estimate regional 
climate uncertainty according to a range of possible 
changes in averaged global surface temperatures. They 
show in one instance that the pattern-scaling approach 

THC would have significant impacts for the development 
of adaptation strategies, particularly in Europe, where 
the rate of warming may be less than expected. 

It is thought that under certain climate regimes, resulting 
in increased freshwater fluxes into the North Atlantic, 
the THC may be prone to a shift from its present ‘on’ 
state to a colder ‘off’ state (Broecker and Hemming, 
2001; Broecker, 2006). Evidence from the Younger 
Dryas (~11,000 years ago) suggests that this shift 
could happen quite rapidly, possibly over a timescale 
as little as 20–50 years. While such ‘surprise’ events 
are considered to have a low probability of occurrence, 
their potential impact could be very large.

A number of approaches have been developed to 
address some of the issues that are associated with 
uncertainties in climate model projections, such as 
adopting a ‘best guess’ framework or taking the mean 
or median value from a range of scenarios (e.g. 
Fealy and Sweeney, 2007; 2008). Nevertheless, such 
top-down trajectory approaches are not considered 
particularly useful for subsequent use in sensitivity 
or risk analysis, because of an inability to attach 
probabilities or likelihoods to the selected climate 
scenario. In addition, without a clear statement on the 
uncertainties that have or have not been incorporated 
into the research, policy- and decision-makers need to 
exercise extreme caution as any subsequent decisions 
may not encompass the full range of associated risks. 
Such policy decisions can give rise to maladaptation 
(over- or under- adaptation). A further weakness of 
employing such top-down approaches using a single-
emissions scenario is that they have tended to dismiss 
the possibility of local adaptation or assume only an 
arbitrary level of adaptation (Dessai and Hulme, 2003). 

As an alternative, sensitivity analyses have been used 
to assess the sensitivity of a system to incremental 
changes in climate, and constitute a bottom-up 
approach to informing climate adaptation policy (Dessai 
and Hulme, 2003). In order to test the sensitivity of a 
system to changes, a single input is varied while all other 
inputs are held constant. More recent developments 
in sensitivity analysis try to account for simultaneous 
changes in a number of variables and can also take 
into account uncertainty in inputs (Katz, 2002).

A number of authors have employed analogue 
approaches, where present-day, or recent historic, 
climate variability is used as a proxy for near-term 
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precipitation (a variable which is inherently difficult to 
simulate accurately) two GCMs produce scenarios with 
similar magnitude changes but opposite in sign (Giorgi 
and Francisco, 2000) – for instance, a 10% increase 
and 10% decrease – should a policy maker assume 
that there is going to be 0% change in precipitation.  

It is likely that adaptation measures required for a 
10% increase in precipitation (possibly flood defences) 
will be significantly different to those required for a 
decrease in precipitation (such as additional reservoir 
capacity). If probabilities could be attached to either 
outcome, which take account of the key uncertainties, 
the possibility exists for policy-makers to make 
‘coherent risk management decisions’ and ‘within 
resource constraints’ (Paté-Cornell, 1996). 

An advantage to incorporating uncertainties in the 
form of probabilities is that many of the potential ‘end-
users’ of climate scenarios, such as engineers and 
water-resource managers, already use probabilities 
in estimating return periods for floods or structural 
reliability (Paté-Cornell, 1996; Dessai and Hulme, 
2003). Strictly, probabilities employed by engineers 
are frequentist or classical probabilities, while climate 
change researchers use subjective or Bayesian 
probabilities (Dessai and Hulme, 2003). However, 
there is a significant level of understanding between 
both the classical and Bayesian schools, which means 
that probabilities associated with climate change can 
be communicated effectively to the user community.

captured less than 10% of the variance in tropical 
precipitation and concluded that a single prediction from 
even the most sophisticated GCM will be of limited use 
for impact assessment. They suggest that only multi-
model ensembles, which sample as wide a range of 
model uncertainties as possible, can reliably show the 
spread of possible regional changes reliably.

The use of probabilities is a well-established technique 
in short- and medium-range weather forecasting 
where uncertainty in model output is represented by 
the dispersion of an ensemble (Räisänen and Palmer, 
2001). The incorporation of probability distribution 
functions (PDFs) or cumulative distribution functions 
(CDFs) in impact assessments is a logical development 
when dealing with multi-model ensembles from GCMs in 
order to try and quantify uncertainties of future climates 
at the regional scale. However, their use also presents 
a number of new challenges, particularly for policy-
makers more familiar with the single ‘best estimate’ of 
future changes in climate (Wilby and Harris, 2006). 

Increasingly, the use of probabilities in climate 
change impact assessments is becoming more widely 
accepted. As researchers move from employing 
single trajectory, top-down approaches towards the 
use of multiple scenarios from multiple GCMs in 
climate impact assessments, attributing likelihoods to 
outcomes becomes increasingly important, particularly 
if the outcomes are to be relevant to policy-makers. 
For example, if in the case of a regional projection of 



An Assessment of Uncertainties in Climate Modelling at the Regional Scale: The Development of Probabilistic Based 
Climate Scenarios for Ireland

8

growth, population growth, uptake of energy-efficient 
technologies or continued reliance on fossil fuels and 
regional versus global development patterns. Of the 40 
scenarios developed, four marker scenarios, which are 
characteristic of the four scenario families (A1, A2, B1 
and B2), capture the range of uncertainties associated 
with the emissions and driving forces spanned by the full 
set of the 40 scenarios (Nakicenovic et al., 2000) (see 
Box 1.1 in Section 1 above). Such future projections 
of population and development, though ultimately 
dependent on models and therefore subject to significant 
uncertainties themselves, do present a range of equally 
plausible future ‘worlds’. 

Atmospheric CO2 concentrations levels vary significantly 
depending on the scenario, ranging from 540 to 970 
parts per million volume (ppmv) by 2100 (IPCC, 2007), 
compared to present-day globally averaged atmospheric 
CO2 concentration levels of just over 384 ppmv (Tans, 
2009). Figure 2.1 illustrates the historical (20th century) 

2	 Key Sources of Uncertainties

Uncertainties associated with GCM projections of future 
climate change arise from a number of sources (after 
Hulme and Carter, 1999; Jones, 2000). The key sources 
are:

1.	 Emissions scenarios; 

2.	 Climate sensitivity; 

3.	 Climate system predictability;

4.	 Sub-grid scale variability.

2.1	 Emissions Scenarios 

Due to the fact that human actions are inherently 
unpredictable, emissions scenarios, which are influenced 
by population growth, energy use, economic activity and 
technology, are also unpredictable in any deterministic 
sense. As a consequence, future emissions scenarios 
are prescribed according to 40 different ‘storylines’, which 
represent different rates of future world development. 
These are based on various scenarios of socio-economic 

Figure 2.1.  Historical (20th century) and projected (21st century) emissions of CO2, CH4 and SO2 for six 
illustrative Special Report on Emissions Scenarios (SRES) emission scenarios (A1B, A1FI, A1T, A2, B1 and 
B2) and their corresponding historical and projected atmospheric concentration levels (IPCC, 2007).
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and projected (21st century) emissions and resulting 
atmospheric concentration levels of carbon dioxide 
(CO2), methane (CH4) and sulphur dioxide (SO2) for the 
six ‘families’ of scenarios, namely, A1B, A1FI, A1T, A2, 
B2 and B1. 

While any particular scenario may never be realised, 
and hence no associated probabilities can be attached 
to the scenarios, they do provide an essential tool for 
tentatively exploring potential future changes in the 
climate system arising from anthropogenic activities. 

2.2	 Climate Sensitivity

Climate sensitivity is defined as ‘the equilibrium change 
in global and annual mean surface air temperature, T, 
due to an increment in downward radiative flux, Rf, that 
would result from sustained doubling of atmospheric 
CO2 over its pre-industrial value of ~280 ppm (2 x CO2 
~560 ppm)’ (Roe and Baker, 2007: 629). 

A projected doubling of CO2 will reduce the heat 
escaping from the top of the atmosphere (TOA) by 
approximately 3.7 Watts per square meter (Wm-
s). In the absence of any feedback processes, the 
Stefan-Boltzmann Law (which relates the amount of 
electromagnetic radiation emitted by a black body to its 
temperature), can be used to calculate the change in 
surface temperature of the Earth due to a change in 
radiative forcing arising from a doubling of CO2 (Eqn 
2.1):

E = εσT4

Where 

E = Energy emitted

ε = Emissivity of object

σ = 5.67 x 10-8 Wm-2 K-4 (Stefan-Boltzman constant)

T = Temperature in Kelvin

Let 

E1 = 240 W/m2 (net outgoing radiation)

E2 = 243.7 W/m2 (net outgoing radiation due to a 
doubling of CO2)

T1 = 288 K (approximate present day temperature of the 
Earth’s surface) 

T2 = Earth’s surface temperature due to an increase in 
radiative forcing arising from a doubling of CO2.

 

4
2T
2E

4
1T
1Eεσ ==

Solving for T2

T2 = 289.1

T2-T1 = 289.1 – 288 = 1.1 K

Equation 2.1. The Stephan-Boltzmann equation, 
which relates the amount of electromagnetic 
radiation emitted by a black body to its temperature, 
employed to calculate the change in surface 
temperature of the Earth due to a change in radiative 
forcing arising from a doubling of CO2. Feedbacks 
are not included.

While Equation 1, which includes a number of simplifying 
assumptions, illustrates the climate response to a 
doubling of pre-industrial CO2 levels based on current 
understanding, it does not take account of feedbacks 
within the climate system, which act to amplify or 
dampen the climate response. 

Estimates of the equilibrium climate sensitivity are 
dependent on the sensitivity of the climate response to 
radiative feedbacks associated with water vapour, lapse 
rates (Bony et al., 2006), clouds, snow cover and sea ice 
extent (Fig. 2.2). As various climate models differ in their 
representation of the physical process (cloud amount, 
cloud type, optical properties, quantity of water vapour, 
sea ice extent, etc.), parameterisations schemes and 
interactions or feedbacks between processes (after 
Bates, unpublished), the result is an envelope of values 
representing equilibrium climate sensitivity.

The TAR (IPCC, 2001a) estimated that the likely range 
for equilibrium climate sensitivity, including feedbacks, 
was 1.5 to 4.5°C. This estimate was based on expert 
assessments of climate sensitivity as simulated by 
atmospheric GCMs coupled to non-dynamic slab-
oceans (IPCC, 2007). However, the TAR did not attribute 
probabilities to the climate sensitivity range, with the 
implication that all values within the quoted range were 
equally plausible. 

A significant contribution to inter-model differences in 
estimating the equilibrium climate sensitivity arises from 
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Figure 2.2. Comparison of global climate model (GCM) climate feedback parameters (W m-1 K-1 = watts 
per meter-kelvin) for water vapour (WV), cloud (C), surface albedo (A), lapse rate (LR) and the combined 
water vapour lapse rate (WV LR). ALL represents the sum of all feedbacks. Vertical bars indicate estimated 
uncertainty ranges in the calculation of feedbacks (Bony et al., 2006).

differences in model representations of cloud feedbacks, 
with low cloud amount making the largest contribution to 
the associated uncertainty (Fig. 2.3) (Webb et al., 2006; 
Williams et al., 2006; IPCC, 2007). However, Williams 
et al. (2006) suggest that the relationship between 
cloud radiative forcing and local climate response may 
not be model specific, as a relationship was found to 
exist in models that had significantly different structural 

Figure 2.3. Projected changes in the global mean cloud radiative forcing (W m–2) from 20 atmosphere ocean 
global climate models (AOGCMs) employed in the Fourth Assessment Report. Numbers correspond to the 
model ID number (IPCC, 2007).

elements, and therefore the uncovered relationship 
may have relevance in the real world. The advent of 
improved cloud radiative parameterisation schemes 
based on ongoing research into cloud feedbacks, though 
computationally expensive, should mean improved 
GCM simulations of the associated radiative forcings 
and result in a narrowing of the climate sensitivity 
envelope (Bates, unpublished; Bony, 2006).
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A number of different methods were employed to 
constrain the likely range of the climate sensitivity, 
including the present-day climatology and the 
relationship between tropical sea surface temperatures 
(SSTs) and climate sensitivity during the Last Glacial 
Maximum (LGM), which incorporated proxy records 
of SSTs (Fig. 2.4) (IPCC, 2007). Based on the various 
methods for determining the likely range of equilibrium 
climate sensitivity, values above 4.5°C could not be 
excluded, largely due to feedback processes, while the 
lower limit of equilibrium climate sensitivity is very likely 
to be larger than 1.5°C (IPCC, 2007).

2.3	 Climate System Predictability

While all current GCMs suggest increasing global 
mean temperatures as a consequence of increased 
atmospheric concentrations of radiatively active 
species of gases, significant differences are apparent in 
the magnitude of the projected changes. Similarly, while 
all GCMs project changes to occur in the temporal and 
spatial distribution of precipitation, both the magnitude 
and direction vary significantly between GCMs. 

In an effort to provide probabilistic-based estimates 
of the climate sensitivity, Wigley and Raper (2001) 
employed a Bayesian type approach in which five 
sources of uncertainty were considered – (i) emissions, 
(ii) climate sensitivity, (iii) carbon cycle, (iv) aerosol 
forcing and (v) ocean mixing – with a climate sensitivity 
range of 1.7 to 4.2°C derived from 7 atmosphere ocean 
global climate models (AOGCMs). They made the 
assumption that the 1.5 to 4.5°C range quoted in the 
TAR corresponded to the 90% confidence interval, as 
no confidence intervals had been attached to this range 
originally. They concluded that the warming rate at the 
upper-limit of that quoted in the TAR (0.5°C/decade), 
was less likely than warming towards the centre (0.3°C/
decade) (Wigley and Raper, 2001).

Figure 2.4. Probability distribution functions (PDFs) representing estimates of the equilibrium climate 
sensitivity based on various techniques, including two estimates from the Last Glacial Maximum (LGM) 
(IPCC, 2007).

Based on a review of recent research on assessing the 
equilibrium climate sensitivity in the Fourth Assessment 
Report (IPCC, 2007), the likely range of equilibrium 
climate sensitivity was estimated to lie between 2.0 and 
4.5°C (5 to 95% probability), with a most likely value of 
3°C for a normal distribution or between 2.1 and 4.6°C 
(5 to 95% probability) with a median value of 3.2°C 
for a lognormal distribution (Fig. 2.4) (IPCC, 2007). 
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A range of components of the climate system vary over 
different time horizons and spatial scales. For example, 
while the atmosphere is very unstable and can respond 
to a forcing very rapidly, the oceanic response tends to be 
more conservative. Even without a change in the external 
forcing, the natural variability of the climate system, 
because of natural variations in the climate system 
such as El Niño or the North Atlantic Oscillation (NAO), 
has a fundamental role in influencing the interannual to 
millennial scale variability of the system (IPCC, 2001b). 
A GCM’s ability to capture such modes of variability and 
how they are likely to respond in a warmer world will have 
a significant impact on the resulting projections.

Feedback processes also play an important role in 
determining a climatic response to a perturbation; 
in complex, non-linear systems, such as the climate 
system, small perturbations can result in chaotic 
behaviour. Both the climate system and climate models 
are sensitive to initial conditions. 

Despite the inherently chaotic behaviour of the climate, 
its quasi-linear response, reproduced in many GCMs, to 
a change in forcing suggests that some elements of the 
large-scale changes can be modelled with reasonable 
confidence. In a study of climate models’ capability to 
reproduce the large-scale forcing of NAO, Stephenson 
and Pavan (2003) found that 13 out of 17 models 
were able to capture the key large-scale patterns of 
surface temperature, with 10 models producing similar 
indices to the observed NAO. It is likely therefore 
that, while evidence suggests that certain elements of 
the climate system may be partly predictable (IPCC, 
2001b; Lambert and Boer, 2001; Stephenson and 
Pavan, 2003), not all the key processes are adequately 
captured or modelled within a particular GCM, giving 
rise to differences between models, and between 
models and observations (Fig. 2.5 (a) and (b)). 

output or averaging of ensembles provides a better fit 
to observations than any one individual model (Lambert 
and Boer, 2001). 

2.4	 Sub-grid Scale Variability

Owing to computational limitations, the typical spatial 
resolution of many AOGCMs is currently in the order of 
greater than 100 square kilometres (T21 ~500km; T42 
~250km; T63 ~180km and T106 ~110km). While this 
has been demonstrated as adequate to capture large-
scale variations in the climate system, many important 
processes occur at much smaller spatial scales (such as 
processes associated with convective cloud formation 
and precipitation), and thus are too fine to be resolved 
in the modelling process. 

Many climate processes therefore require 
parameterisation, or empirical approximation, and 
as such their effects can only be estimated, rather 
than calculated on a physical basis, within a climate 
model. The use of parameterisation schemes, which 
contribute to model uncertainty, assume that present-
day parameterisations are valid under conditions of a 
changed climate. Such parameterisations, reflecting 
complex processes which are unable to be resolved, 
represent a simplification of such processes and 
ultimately lead to model errors (Tebaldi and Knutti, 
2007). 

A number of approaches have been employed to 
estimate the impact of parameter uncertainty within 
a GCM. One such approach is the perturbed physics 
ensemble (PPE) method, which seeks to quantify 
uncertainties associated with parameterisation schemes 
(Murphy et al., 2004; Tebaldi and Knutti, 2007). The PPE 
approach varies the uncertain model parameters, and 
their uncertainty ranges, systematically based on expert 
knowledge of the physical processes, within the model 
to produce multiple ensemble members from which a 
probability distribution of future change can be derived.

For conservatively changing large-scale features of 
the climate system, such as mean sea-level pressure 
or geopotential height (height in metres of a pressure 
field), sub-grid scale processes are unlikely to unduly 
influence the variable being modelled. However, 
variables such as humidity, which operate at sub-grid 
spatial scales, and are therefore parameterised, are 

To intercompare climate model output and observations, 
a number of intercomparison studies have been 
undertaken, including the Atmospheric Model 
Intercomparison Project (AMIP) and the Coupled Model 
Intercomparison Project (CMIP1–5). These studies 
suggest that (i) different models reproduce different 
components of the climate system with varying levels 
of success, with no single model being the most skilful 
at reproducing all the components; and (ii) mean model 
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Figure 2.5 (a) and (b). Coupled Model Intercomparison Project 3 (CMIP3) 20th century model simulations 
for (a)  Diurnal temperature range and (b) annual precipitation zonally averaged. Model data represents the 
period 1980–1999, while observed data for diurnal temperature is for the period 1961–1990 (Climate Research 
Unit [CRU]) and for precipitation, the period 1980–1999 (Climate Modelling, Analysis and Prediction [CMAP]) 
(IPCC, 2007).

(a)

(b)
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not likely to be accurately simulated within a GCM, 
particularly at the regional scale. 

For a location such as Ireland, where the total land area 
is represented by a single GCM grid box, the impacts 
of sub-grid scale variability are particularly relevant for a 
number of reasons. Differences in elevation or orography, 
and the morphology of the orography, between the west 
and east coasts, play a significant role in determining 
the distributional characteristics of precipitation, yet a 
single value for elevation is employed to represent the 
land area of Ireland in climate models, due to the coarse 
spatial resolution employed by many GCMs. Similarly, 
land use types, vegetation and soil characteristics, all of 
which influence climate processes at the regional scale, 
vary significantly across the country, yet are represented 
within the climate model by a single approximated value.

As a consequence of the coarse spatial resolution of 
most GCMs, there is a mismatch between the spatial 
scale at which GCMs operate and that required by 
impact modellers and policy-makers, who are faced 
with decision-making at city or town scale in developing 
appropriate and suitable adapting strategies. To address 
this scale mismatch, a number of techniques have been 
developed to ‘downscale’ GCM output to finer spatial 
and temporal scales. Regional climate models (RCMs) 
and statistical downscaling are two such techniques that 
have become the primary means by which regional- or 
local- scale information is derived from a parent GCM(s). 
This additional step, in downscaling GCM output to 
the regional scale, also contributes to the cascade of 
uncertainty within the climate modelling framework, as 
uncertainties in the parent GCM can propagate through 
to the downscaled climate projections.

Figure 2.6 shows a comparison between the percentiles 
of standardised monthly reanalysis data (an analysis 
system to perform data assimilation of observed data 
in a consistent framework) from the National Centres 
for Environmental Prediction (NCEP) and model output 
data from three GCMs, namely, the Canadian Centre 
for Climate Modelling and Analysis (CCCma-CGCM2), 
Australia’s Commonwealth Scientific and Industrial 
Research Organisation (CSIRO-Mk2, referred to in 
figures as CSIRO) and the United Kingdom’s Hadley 
Centre Coupled Model (HadCM3). These GCMs 
were previously employed to statistically downscale 
climate model data for Ireland (Fealy and Sweeney, 
2007; 2008a; 2008b). The percentile plots show 

good agreement between the observed and GCM 
modelled atmospheric fields of sea-level pressure, 
vorticity (calculated variable) and geopotential height at  
500 hPa. However, for the atmospheric and surface 
moisture variables, relative humidity at 500 hPa, near 
surface 2-metre relative humidity and specific humidity, the 
GCMs are shown to systematically over-estimate below-
average humidity and under-estimate above-average 
humidity. Such moisture variables are often crucial for 
determining changes in sub-grid scale precipitation (both 
dynamically, through parameterisation schemes, and 
empirically, as a candidate predictor variable), which is 
an important impacts relevant variable.

Differences between model output and observed data at 
the regional and grid scale also arise due to an offset in 
temporal variability between the modelled and observed 
data. All GCMs appear to capture the shape of the annual 
cycle of near surface 2-metre temperature adequately 
(Fig. 2.7 (a)), while two models, CSIRO Mk2 and 
CGCM2, show a temporal offset in the peak in the annual 
temperature cycle when compared to the observations. 
For near surface 2-metre relative humidity, all models are 
shown to be much less skilful in reproducing either the 
shape of the annual cycle or timing of minimum humidity 
(Fig. 2.7 (b)). Indeed, one model simulation (CSIRO 
Mk2), fails to reproduce either the magnitude or direction 
of change in humidity for particular months.

As a consequence of the various sources of uncertainty 
outlined above, significant regional variations occur 
between model projections, even when forced with 
the same emissions scenario. Model structure, 
representation of physical processes, parameterisation 
schemes and sub-grid scale variability all contribute to 
differences between GCMs at the global, regional and 
grid scale (Fig. 2.8). While a particular model’s ability to 
reproduce the statistics of the observed climate should 
provide a degree of confidence in a model’s skill to 
simulate future climate, it does not guarantee that a 
model simulates key processes and feedbacks correctly 
as compensating errors may hide potential problems 
(Räisänen, 2001). In an analysis of GCMs from CMIP2, 
Räisänen (2001) found that when climate changes are 
averaged over areas larger than individual grid boxes, 
the relative agreement between models was found to 
improve. Model internal variability was also found to 
increase over a decreasing grid domain size (Räisänen, 
2001).



15

R. Fealy (2005-FS-33)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

MSLP HadCM3 A2 CSIRO A2 CGCM A2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Vorticity (500hPa) HadCM3 A2 CSIRO A2 CGCM A2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Pressure 500 hPa HadCM3 A2 CSIRO A2 CGCM A2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

R. Hum (500 hPa) HadCM3 A2 CSIRO A2 CGCM A2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

R. Hum (850 hPa) HadCM3 A2 CSIRO A2 CGCM A2

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

1.6

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6

Spec. Humidity HadCM3 A2 CSIRO A2 CGCM A2

Figure 2.6. Percentile plots comparing National Centers for Environmental Prediction (NCEP) reanalysis and 
global climate model (GCM) model predictors (A2 emissions scenario) for a selection of atmospheric and 
surface variables for the baseline/control period of 1961–1990 for the grid box representing Ireland. (a) MSLP 
= mean sea-level pressure (surface); (b) vorticity (500 hPa), (c) geopotential height (500 hPa), (d) relative 
humidity (500 hPa) and (e) specific humidity (surface) (data after Wilby and Dawson, 2007).

(a)	 (b)

(c)	 (d)

(e)	 (f)
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Figure 2.8. Projected change in mean temperature (°C) and precipitation (%) for a grid box representing 
Ireland for the 2070–2099 period relative to 1961–1990 based on 9 global climate models and the A2 and B2 
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January and February; c = A2 scenario for June, July and August; d = B2 scenario for June, July and August) 
(data after Mitchell et al., 2002).
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Table 3.1. A simple typology of uncertainties.

Type Indicative examples of sources Typical approaches or considerations

Unpredictability Projections of human behaviour not easily amenable 
to prediction (e.g. evolution of political systems). 
Chaotic components of complex systems.

Use of scenarios spanning a plausible range, 
clearly stating assumptions, limits considered, and 
subjective judgements. Ranges from ensembles of 
model runs.

Structural uncertainty Inadequate models, incomplete or competing 
conceptual frameworks, lack of agreement on 
model structure, ambiguous system boundaries or 
definitions, significant processes or relationships 
wrongly specified or not considered.

Specify assumptions and system definitions clearly, 
compare models with observations for a range 
of conditions, assess maturity of the underlying 
science and degree to which understanding is 
based on fundamental concepts tested in other 
areas.

Value uncertainty Missing, inaccurate or non-representative data, 
inappropriate spatial or temporal resolution, poorly 
known or changing model parameters.

Analysis of statistical properties of sets of values 
(observations, model ensemble results, etc.); 
bootstrap and hierarchical statistical tests; 
comparison of models with observations.

Source: IPCC, 2001b: 1.

To estimate how much confidence it is possible to have 
in regional climate change projections for Ireland, the 
various sources of uncertainty outlined in Section 
2 above need to be accounted for. One method for 
incorporating uncertainties into downscaled projections 
is to use several different GCMs when constructing 
a climate change scenario (Table 3.1). However, 
differences in model reliability need to be addressed 
when constructing ensembles. Murphy et al. (2004) 
proposed a Climate Prediction Index (CPI), which is an 
objective means of measuring model reliability that can 
be used to weight different GCMs according to their 
relative ability to simulate the observed climate based 
on a broad range of observed variables. This technique 
has been refined by Wilby and Harris (2006), based on 
a narrower suite of GCM outputs relevant to statistical 
downscaling, to produce an Impacts Relevant Climate 
Prediction Index (IR-CPI). This attributes weights to 
each GCM based on the root-mean-square difference 
between the standardised modelled and observed 
climatological means. 

Other studies have employed a Monte Carlo (MC) 
approach (Hulme and Carter, 1999; Jones, 2000; New 
and Hulme, 2000; Wilby and Harris, 2006) to quantifying 
uncertainties at various stages in the model framework. 
Hulme and Carter (1999) considered four sources 

3	 Approaches to Quantifying Uncertainties in Regional 
Climate Projections for Ireland

of uncertainty – (i) future emissions trajectories, (ii) 
climate sensitivity, (iii) climate predictability and (iv) 
sub-grid scale variability – to allow them to examine 
the uncertainties that affect regional climate change 
for two locations in the UK for both the summer and 
winter seasons. They simulated the effects of different 
emissions scenarios and climate sensitivities on 
global mean temperature change using the Model of 
the Assessment of Greenhouse gas Induced Climate 
Change (MAGICC) climate model. 

Hulme and Carter (1999) employed the MC approach 
in conjunction with the outputs from 14 different GCMs 
as input into a pseudo-ensemble. In the MC simulation, 
equal weight was given to all 14 model outcomes, 
in which the climate change space was sampled by 
25 000 climate simulations (Hulme and Carter, 1999). 
Their results demonstrated not only the wide range in 
the regional response as simulated by the GCMs but 
also that the effect of different emissions scenarios only 
becomes apparent in the second half of the present 
century. In a similar analysis, New and Hulme (2000) 
applied their results to a response surface of annual 
river flow to derive PDFs for future flow changes in 
order to quantify a number of key uncertainties on an 
impact system.



An Assessment of Uncertainties in Climate Modelling at the Regional Scale: The Development of Probabilistic Based 
Climate Scenarios for Ireland

18

The application of a simple scaling methodology 
has become more prevalent in recent years due to 
the widespread availability of RCM output through 
projects such as Prediction of Regional scenarios 
and Uncertainties for Defining EuropeaN Climate 
change risks and Effects (EU FP5 PRUDENCE) and 
ENSEMBLE-based Predictions of Climate Changes 
and their Impacts (EU FP6 ENSEMBLES). Owing to 
computational restrictions, RCMs are still limited to 
producing climate projections for a limited number 
of emissions scenarios, most commonly the A2 or 
B2 scenario, or for limited time periods. To overcome 
these limitations, a pattern-scaling technique, originally 
postulated by Santer (1990), to overcome the scarcity 
of GCM experiments can be applied. Indeed, this 
technique has found widespread use in the climate 
modelling community (Mitchell et al., 1999; Hulme and 
Carter, 2000; Kenny et al., 2000; Hulme et al., 2002).

The pattern-scaling technique allows for the rapid 
development of numerous climate scenarios, based on 
different GCM-emissions scenario combinations which 
sample a subset of the uncertainty range, which can 
then be employed in subsequent impacts analyses. 
For example, if the regional temperature change for 
the 2070–2099 period, from a particular GCM and 
emissions scenario is known, then a normalised 
‘response pattern’ can be calculated by dividing by 
the global mean temperature change for that GCM-
emissions combination (∆TA2). Employing a simple 
climate model, such as MAGICC, the global mean 
surface temperature change for the A1 scenario could 
be calculated for a particular model. Employing the ratio 
of the global mean surface temperature change for the 
A1 scenario to the global mean surface temperature 
change for the A2 scenario (∆TA1/∆TA2), the projected 
temperature change for the 2070–2099 period based on 
the A2 emissions scenario can be rescaled to produce 
a scaled temperature change for the A1 scenario (∆TA1) 
(Eqn 3.1):

T AT A
T AT A 2

2
1

1 ∆
∆
∆=∆

Equation 3.1. Pattern scaling approach to calculate 
the change in surface temperature for the A1 
emission scenario from the surface temperature of 
the A2 emissions scenarios.

The approach assumes the geographical pattern of 
change is independent of the forcing and that the 
amplitude of response is related linearly to the global 
mean surface temperature (Ruosteenoja et al., 2003). 
The assumption of a linear response, proportional to 
the global mean surface temperature, appears to hold 
in many cases, particularly for temperature, but less so 
for precipitation (Mitchell et al., 1999; Mitchell, 2003) as 
highlighted by Murphy et al. (2004). While the technique 
can produce a wide range of scenarios (which are 
useful for examining the range in projected climate 
response at the regional scale), the resultant scenarios 
are considered as being equally plausible and have no 
associated likelihood of occurrence.

In a study that compared seasonal-based GCM 
temperature and precipitation projections with RCM 
output for five European regions, Ruosteenoja et al. 
(2007) employed linear regression to relate the regional 
GCM response to the global mean temperature 
simulated by a simple climate model. The resultant 
‘super-ensemble’ method was found to be advantageous 
when only a limited number of experiments were 
available from an individual GCM (A2 and B2) due to 
the reduction of random noise within the ensemble. 
Ruosteenoja et al. (2007) constructed 95% confidence 
intervals for both temperature and precipitation, for the 
derived pattern-scaled scenarios which could then be 
compared with the RCM output.

A number of authors have undertaken probabilistic-
based assessments of climate change projections based 
on scaling the outputs from a number of RCMs with 
various PDFs of future warming, drawn from a number 
of GCMs (Hingray et al., 2007a; 2007b; Ekström et al., 
2007). Rowell (2006) found that the uncertainty in the 
formulation of the RCM contributed a relatively small, 
but non-negligible, impact on projected seasonal mean 
climate for the UK, with the greatest contribution arising 
from the parent GCM, while Hingray et al. (2007b) 
indicate that uncertainties associated with inter-RCM 
variability contribute as much of the total uncertainty 
to the projected climate, similar in magnitude to that 
induced by the global mean warming.

As an alternative to a probabilistic approach to assessing 
GCM reliability, Giorgi and Mearns (2002) demonstrate 
a procedure for calculating average uncertainty range 
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,

and collective reliability of a range of regional climate 
projections from ensembles of different AOGCM 
simulations. The Reliability Ensemble Averaging (REA) 
method weights GCMs based on individual model 
performance and criteria for model convergence. 
In a later development, Nychka and Tebaldi (2003) 
demonstrate how the REA method can be ‘recast’ in a 
‘rigorous statistical framework’.

Irrespective of the approach adopted, transparency 
in method is considered crucial, with the onus on the 
individual researcher to state explicitly the approach 
adopted and the assumptions made to represent 
uncertainty (Hulme and Carter, 1999; Moss and 
Schneider, 2000; Dessai and Hulme, 2003).
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scenarios. For example, in August, monthly temperature 
change scenarios range from 0.9 to 3.8°C, while for the 
month of July precipitation changes (%) are suggested 
to lie between -48% and +12%. In the face of such 
differences, paralysis in the decision-making process 
may be the most likely outcome.

In an attempt to produce climate ensembles for Ireland, 
Fealy and Sweeney (2007; 2008a; 2008b) applied 
the IR-CPI method after Wilby and Harris (2006) to 
statistically downscaled climate projections derived 
from the A2 and B2 emissions scenario for a range 
of impacts-relevant climate variables. The authors 
attributed an equal likelihood to both the A2 and B2 
emissions scenarios. However, subjective likelihoods 
can easily be incorporated into this method, with 
relevant weightings applied to the individual emissions 
scenarios when combining the GCM scenarios (Wilby 
and Harris, 2006). While this approach considered the 
ability of the GCMs used in their study to reproduce the 
statistics of the observed climate when compared over 
the baseline period, the authors neglected to attach 
probabilities to the resultant ensembles.

4	 An Assessment of Statistically Downscaled Climate 
Projections for Ireland

In spite of the fact that it has long been recognised that 
different GCMs produce significantly different regional 
climate responses even when forced with the same 
emissions scenario (Hulme and Carter, 1999), a number 
of previous studies have attempted to produce future 
climate scenarios for Ireland based on a single GCM 
and/or emissions scenario (McWilliams, 1991; Hulme 
et al., 2002; Sweeney and Fealy, 2002; Sweeney and 
Fealy, 2003a; 2003b; McGrath et al., 2005). These 
studies have acknowledged and inherent weaknesses, 
and Hulme and Carter (1999: 19) consider this practice, 
which ultimately results in the suppression of crucial 
uncertainties, as ‘dangerous’ due to any subsequent 
policy decisions which may only reflect a partial 
assessment of the risk involved (Parry et al., 1996; 
Risbey, 1998; New et al., 2007). 

Figures 4.1 (a) and (b) illustrate GCM projected 
changes in monthly temperature (a) and precipitation 
(b) for Ireland based on four GCMs (CGCM2, CSIRO 
Mk2, HadCM3 and PCM) and four emissions scenarios 
(A1FI, A2, B2, B1) for the 2080s (2070–2099) relative 
to the 1961–1990 baseline. Large differences are 
apparent between individual GCMs and emissions 
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Figure 4.1. Projected changes in monthly (a) mean temperature and (b) precipitation for Ireland for the 
2070–2099 period based on four global climate models (GCMs) and four emissions scenarios. CG = CGCM2 
(CCCma); CS = CSIRO Mk 2 (CSIRO); H3 = HadCM3 and PCM = Parallel Climate Model (data after Mitchell et 
al., 2002).

The use of an additional downscaling ‘layer’, such 
as statistically downscaling a GCM to a surface 
environmental variable of interest, will also act to 
propagate the uncertainty from the driving GCM 
and does not account for model biases (random or 
systematic: see Fig. 4.2), which exist in the GCM used 
(Rowell, 2006; Gachon and Dibike, 2007). However, the 
incorporation of such an additional downscaling ‘layer’ 
can add significant value to the associated climate 
projection for deriving sub-grid scale information, when 
compared to GCM output at the grid scale. While areally 
averaged GCM output, such as grid scale temperature 
or precipitation, and point scale station level data are 
not directly comparable, such comparisons provide an 
indication of the added value of the downscaling layer, 
when assessed with site-specific observations.

A comparison of observed and GCM modelled (directly 
output from the GCM) and observed and statistically 
downscaled mean monthly temperatures for current 
(1961–1990) and future (2070–2099) periods for station 
locations at Valentia, Casement Aerodrome, Kilkenny 
and Malin Head is shown in Fig. 4.3 (a–d). Differences 
between observed station data (obtained from Met 
Éireann) and GCM output (data after Wilby and Dawson, 
2007) are apparent at all stations. While differences 
are also evident between the observed station and 
statistically downscaled data (after Fealy and Sweeney, 
2007; 2008a; 2008b), when averaged over calendar 
months, the statistically downscaled GCM data are 
found to lie within ±0.1°C of the observed values. In 
comparison, differences between the direct GCM output 
and observed station data range from ±0.1 to 2.5°C. 
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Tmean Malin Head for 1961-1990 and 2080s
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Figure 4.2. Comparison of observed and global climate model (GCM) modelled (direct global climate model 
(a, c, e, g) and statistically downscaled (b, d, f, h) mean monthly temperature for current (1961–1990) and 
future (2070–2099) periods for Valentia (a, b), Kilkenny (c, d), Casement Aerodrome (e, f) and Malin Head (g, 
h). The statistically downscaled data has not been bias corrected. All modelled scenarios are based on the A2 
emissions scenario. Obs = observed station data, H3 = HadCM3, CS = CSIRO Mk2, CG = CGCM2, SD indicates 
statistically downscaled from parent global climate model, C = current or model baseline (1961–1990) and F 
= future (2070–2099) (GCM data after Wilby and Dawson, 2007; observed data from Met Éireann; statistically 
downscaled data after Fealy and Sweeney, 2007; 2008a; 2008b; modified after Gachon and Dibike, 2007).

An additional step, employed by Fealy and Sweeney 
(2007; 2008b), corrected the bias in the statistically 
downscaled data which resulted in an improvement in 
the correspondence between the downscaled scenarios 
and observed data (Fig. 4.4). This bias correction 
was also applied to the future projections, under the 
assumption that it was a systematic bias. 

a better correspondence between the observed and 
statistically downscaled data than with the GCM output. 
Seasonal PDFs of temperature are shown in Fig. 4.4 
for Valentia (a coastal maritime-influenced station) and 
in Fig. 4.5 for Kilkenny (an interior, continental station). 
At both stations, the statistically downscaled data are 
shown to reproduce the mean and standard deviation of 
the observed data more faithfully than the PDFs derived 
from the GCM output (Tables 4.1 and 4.2). 

A comparison of PDFs between the observed GCM 
output and statistically downscaled data demonstrates 

¯Table 4.1. Seasonal means (x) and standard deviations (s) for mean seasonal temperature at Valentia (observed), 
direct global climate model output (global climate model [GCM]) from HadCM3 (H3), CSIRO Mk2 (CS) and CGCM2 
(CG), statistically downscaled (SD) and bias corrected statistically downscaled for the 1961–1990 period.

Season Obs. GCM No bias correction Bias correction

Valentia H3 CG CS H3-SD CG-SD CS-SD H3-SD CG-SD CS-SD

x DJF 7.0 2.8 6.4 5.9 6.9 6.4 6.3 7.0 7.1 7.0

MAM 9.2 7.8 8.9 9.0 10.7 9.3 10.6 9.3 9.2 9.2

JJA 14.5 13.5 15.1 15.1 14.1 14.2 14.6 14.4 14.4 14.5

SON 11.3 7.9 11.9 10.6 10.7 11.8 10.8 11.3 11.3 11.3

s DJF 2.6 4.4 1.8 2.9 3.3 1.8 2.1 2.8 2.7 2.8

MAM 2.6 3.5 2.1 2.8 2.4 2.0 2.5 2.7 2.8 2.7

JJA 1.9 2.2 1.8 1.6 1.3 1.4 1.3 2.0 2.2 2.0

SON 3.0 4.3 3.0 2.9 2.9 2.6 2.4 3.3 3.2 3.2

Italic shows observed data. DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, 
October, November. (Observed data after Met Éireann; GCM outputs after Wilby and Dawson, 2007; statistically downscaled data after 
Fealy and Sweeney, 2007; 2008b.) 

¯
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Tmean Valentia for 1961-1990 and 2080s
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Figure 4.3. Comparison of observed and bias corrected statistically downscaled mean monthly temperature 
for current (1961–1990) and future (2070–2099) periods for (a) Valentia, (b) Casement Aerodrome, (c) Kilkenny 
and (d) Malin Head. All global climate model (GCM) modelled scenarios are based on the A2 emissions 
scenario. Obs = observed station data, H3 = HadCM3, CS = CSIRO Mk2, CG = CGCM2, SD indicates 
statistically downscaled from parent global climate model , C = current or model baseline (1961–1990) and F 
= future (2070–2099) (GCM data after Wilby and Dawson, 2007; observed data from Met Éireann; statistically 
downscaled data after Fealy and Sweeney, 2007; 2008a; 2008b; modified after Gachon and Dibike, 2007).
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Figure 4.4. Probability distribution functions (PDFs) of mean daily observed temperature at Valentia, direct 
global climate model (GCM) mean temperature (Raw) and bias corrected statistically downscaled (SD) mean 
temperature for the 1960–1990 period for the A2 emissions scenario  (a = December, January, February;  
b = March, April, May; c = June, July, August; d = September, October, November.) (Observed data from Met 
Éireann; GCM data after Wilby and Dawson, 2007; statistically downscaled data after Fealy and Sweeney, 
2007; 2008b.)
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Table 4.2. Seasonal means (x) and standard deviations (s) for mean seasonal temperature at Kilkenny (observed), 
direct global climate model output (global climate model [GCM] ) from HadCM3 (H3), CSIRO Mk2 (CS) and CGCM2 
(CG), statistically downscaled (SD) and bias corrected statistically downscaled for the 1961–1990 period.

Season Obs GCM No bias correction Bias correction

Kilkenny H3 CG CS H3-SD CG-SD CS-SD H3-SD CG-SD CS-SD

x DJF 4.9 2.8 6.4 5.9 4.7 4.4 4.0 4.9 4.9 4.8

MAM 8.3 7.8 8.9 9.0 10.1 8.4 10.2 8.3 8.3 8.3

JJA 14.6 13.5 15.1 15.1 14.1 14.4 14.9 14.6 14.6 14.6

SON 9.8 7.9 11.9 10.6 8.7 10.3 8.9 9.9 9.8 9.9

s DJF 3.1 4.4 1.8 2.9 3.9 2.4 2.8 3.3 3.2 3.4

MAM 3.0 3.5 2.1 2.8 2.9 2.4 3.0 3.3 3.3 3.1

JJA 2.4 2.2 1.8 1.6 1.6 1.8 1.6 2.6 2.7 2.4

SON 3.9 4.3 3.0 2.9 3.8 3.4 3.1 4.1 4.1 4.0

Italic shows observed data. DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, 
October, November. (Observed data after Met Éireann; GCM outputs after Wilby and Dawson, 2007; statistically downscaled data after 
Fealy and Sweeney, 2007; 2008b.)

¯

¯
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Figures 4.6 and 4.7 show the empirical quantile-quantile 
plots for daily precipitation at Valentia (Fig. 4.6) and 
Kilkenny (Fig. 4.7) with observed, GCM modelled and 
statistically downscaled data. At both stations, GCM 
and statistically downscaled simulations underestimate 
observed precipitation over the 1961–1990 period. 
The statistically downscaled data at Valentia, while 
underestimating observed values, offers a significant 

Figure 4.5. Probability distribution functions (PDFs) of mean daily observed temperature at Kilkenny, direct 
global climate model mean temperature (Raw) and bias corrected statistically downscaled (SD) mean 
temperature for the 1960–1990 period for the A2 emissions scenario. a = December, January, February;  
b =  March, April, May; c = June, July, August; d = September, October, November. (Observed data from Met 
Éireann; global climate model data after Wilby and Dawson, 2007; statistically downscaled data after Fealy 
and Sweeney, 2007; 2008b.)

(c)	 (d)

(a)	 (b)

improvement over the GCM output. At Kilkenny, the 
skill level of both simulated datasets would appear to 
be comparable, with statistical downscaling offering no 
obvious improvement over the GCM output. Seasonal 
PDFs of observed, GCM output and statistically 
downscaled precipitation for Valentia and Kilkenny for 
the period 1961–1990 can be found in Appendix I.
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Figure 4.6. Empirical quantile-quantile plots for observed, direct global climate model (GCM) output (Raw) 
and statistically downscaled (SD) precipitation at Valentia for the period 1961–1990. H3 = HadCM3, CS = 
CSIRO Mk2  and CG = CGCM2.
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Figure 4.7. Empirical quantile-quantile plots for observed, direct global climate model output (Raw) and 
statistically downscaled (SD) precipitation at Kilkenny for the period 1961–1990. H3 = HadCM3, CS = CSIRO 
Mk2 and CG = CGCM2.
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Climate models ultimately represent a simplification 
of what is a very complex system, and deficiencies in 
their ability to reproduce the statistics of the observed 
series – particularly that of precipitation – can arise 
for a number of reasons, such as the omission of a 
key climate process within the model and the use of 
a particular parameterisation scheme. Nonetheless, 
weaknesses also arise because of a dependency of 
variables (such as precipitation) on climate processes 
that occur at a scale smaller than can be resolved by the 
current evolution of GCMs. As a consequence, GCMs 
tend to produce a ‘drizzle effect’, where sub-grid scale 
precipitation such as a convective precipitation event is 
effectively averaged over the grid box, resulting in low-
intensity precipitation being simulated for the grid box.

precipitation events of around 5 millimetres (mm) at 
both stations. These differences are likely to arise from 
the two-step methodology employed in the statistical 
downscaling approach. Initially, a logistic regression 
model is used to model precipitation occurrence 
as a binary sequence. Daily precipitation amounts, 
modelled using the GLM approach, are then selected 
on the basis of days on which precipitation is modelled 
to occur. The optimum predictors differ between both 
the occurrence and the amounts models as predictors 
that capture precipitation amounts differ from those 
that ‘trigger’ the precipitation event. While differences 
arise in the shape and scale parameters of the 
statistically downscaled and observed precipitation, 
when mean daily precipitation (mm/day) is compared 
over a seasonal basis, the statistically downscaled 
data performs much better than the GCM simulations 
in reproducing the mean, while the GCMs appear to 
be more skilful in capturing the standard deviation  
(Tables 4.3 and 4.4). 

The development of downscaled scenarios, either 
through dynamic regional climate modelling or statistical 
downscaling, will add to the propagation of errors within 
the modelling framework (Rowell, 2006; Hingray et 
al., 2007b; Dibike et al., 2008). However, in order to 
provide information at a scale that is useful for decision-
makers, such downscaling efforts continue to remain a 
crucial step in developing robust adaptation strategies, 
assuming the various contributions to uncertainty are 
accounted for adequately. 

In a comparison of the shape and scale parameters 
of an empirical gamma distribution fit to observed, 
GCM and statistically downscaled precipitation data, 
GCM grid scale precipitation was found to more 
closely approximate the statistical properties of the 
observed data, in spite of the simplifying processes 
within the GCM structure. Fealy and Sweeney (2008a; 
2008b) employed a generalised linear model (GLM) 
to statistically downscale precipitation for station 
locations around Ireland as this method assumes 
that the dependent variable, or predictand, is from 
a particular distribution of the exponential family, of 
which the gamma distribution belongs. A comparison 
of PDFs for the observed, GCM modelled and 
statistically downscaled data at Valentia and Kilkenny 
suggests that the statistical downscaling approach 
overestimates the frequency of the occurrence of 
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Table 4.3. Seasonal mean daily precipitation (x) and standard deviations (s) for 
Valentia (observed), direct global climate model (GCM) output (global climate 
model [GCM]) from HadCM3 (H3), CSIRO Mk2 (CS) and CGCM2 (CG), statistically 
downscaled (SD) for the 1961–1990 period.

Season Obs GCM SD

Valentia H3 CG CS H3-SD CG-SD CS-SD

x DJF 5.0 2.8 3.6 3.0 4.7 5.0 5.3

MAM 3.1 2.4 2.8 2.4 2.7 3.2 3.3

JJA 2.9 2.6 2.2 2.8 2.7 2.0 2.8

SON 4.7 2.7 3.4 3.2 5.3 5.4 5.7

s DJF 7.2 4.2 3.8 3.2 4.7 5.0 4.9

MAM 5.3 3.1 3.1 2.4 3.3 3.1 3.2

JJA 5.6 3.3 3.2 2.3 3.2 2.6 3.1

SON 7.6 4.1 4.3 3.4 6.1 5.7 6.3

Italic shows observed data. DJF = December, January, February; MAM = March, April, May; JJA 
= June, July, August; SON = September, October, November. (Observed data after Met Éireann; 
GCM outputs after Wilby and Dawson, 2007; statistically downscaled data after Fealy and 
Sweeney, 2007; 2008b.)

¯

¯

¯Table 4.4. Seasonal mean daily precipitation (x) and standard deviations (s) for 
Kilkenny (observed), direct global climate model (GCM) output from HadCM3 
(H3), CSIRO Mk2 (CS) and CGCM2 (CG), statistically downscaled (SD) for the 
1961–1990 period.

Season Obs GCM SD

Kilkenny H3 CG CS H3-SD CG-SD CS-SD

x DJF 2.7 2.8 3.6 3.0 2.8 2.7 3.0

MAM 1.9 2.4 2.8 2.4 1.6 1.8 2.1

JJA 1.9 2.6 2.2 2.8 1.8 1.5 1.8

SON 2.6 2.7 3.4 3.2 2.9 2.9 2.8

s DJF 4.5 4.2 3.8 3.2 3.0 2.8 2.9

MAM 3.4 3.1 3.1 2.4 2.0 2.1 2.3

JJA 4.3 3.3 3.2 2.3 2.1 1.7 1.9

SON 4.7 4.1 4.3 3.4 3.7 3.5 3.4

Italic shows observed data. DJF = December, January, February; MAM = March, April, May; JJA 
= June, July, August; SON = September, October, November. (Observed data after Met Éireann; 
GCM outputs after Wilby and Dawson, 2007; statistically downscaled data after Fealy and Sweeney, 
2007; 2008b.)

¯
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model-simulated periods of 1961–2099 for all model 
realisations. While the authors sought to develop a 
range of scenarios, from which they derived a weighted 
mean ensemble accounting for uncertainty in the driving 
GCMs, other uncertainties were ignored, partly due 
to the limited availability of different GCM-emissions 
scenarios combinations. Therefore, no probabilities 
could be attributed to the derived climate projections, 
which represents a significant, but acknowledged, 
weakness in the resultant projections for use in impact 
assessments or policy formulation.

Seasonal means for the 2080s (2070–2099) were 
derived from the statistically downscaled daily data for 
each of the 14 synoptic stations modelled by Fealy and 
Sweeney (2007; 2008a; 2008b). This derived dataset 
provides the basis for the following analysis. The 2080s 
was selected as the signal-to-noise ratio is likely to be 
larger for this period (Jones, 2000). 

5	 Accounting for Uncertainties in Regional Climate Change 
Projections for Ireland

This section will outline a methodology that can be 
used to produce probabilistic-based regional climate 
scenarios for Ireland, taking into account a number of 
key uncertainties. The methodology is adapted from 
Hulme and Carter (1999), Jones (2000) and New and 
Hulme (2000) and applied to two impacts-relevant 
climate variables, seasonal mean temperature (°C) and 
precipitation change (%), for a selection of GCMs. The 
proposed methodology has previously been applied 
directly to GCM output and RCM output, but is refined 
here for application to statistically downscaled data for 
a selection of stations in Ireland (see Appendix II for 
GCM ΔT and regional response and Appendix III for 
application of the methodology directly to GCM output 
for Ireland).

5.1	 Application to Statistically 
Downscaled Data

Fealy and Sweeney (2007; 2008a; 2008b) previously 
developed statistically downscaled climate scenarios 
for Ireland for a selection of variables, including 
temperature and precipitation, based on the output 
from three GCMs, namely CGCM2, CSIRO Mk2 and 
HadCM3 for both the A2 and B2 emissions scenarios 
(Table 5.1). This data exists at a daily resolution for the 

Table 5.1. List of global climate models employed in analysis and change in global 
mean surface temperature (°C) for the A1FI, A2, B2 and B1 emissions scenarios.

Model Institution/country Reference Scenario ΔTglobal

CGCM2 CCCma, Canada Flato et al., 2000 A1FI 4.38

A2 3.55

B2 2.46

B1 2.02

CSIRO Mk2 CSIRO, Australia Hirst et al., 1996, 2000 A1FI 4.86

A2 3.94

B2 3.14

B1 2.59

HadCM3 UKMO, UK Gordon et al., 2000 A1FI 4.86

A2 3.93

B2 3.07

B1 2.52

Emissions scenarios in italics are those that were available as statistically downscaled projections.

In a modification of the pattern-scaling methodology 
outlined previously, the approach employed here 
applied the technique to the statistically downscaled 
data. For example, the ratio of global mean temperature 
change (°C) between the individual GCMs and 
emissions scenarios (Table 5.1) was employed to scale 
the statistically downscaled A2 scenario projections for 
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all stations, for both temperature and precipitation for 
the 2080s, according to Equation 3.1 above:

T AT A
T FIAT FIA 2

2
1

1 ∆
∆
∆=∆

Where

ΔTA1FI= desired scenario

<ΔTA1FI/ΔTA2> = ratio of global mean temperature change 
for GCMi (Table 5.1)

ΔTA2 = projected change in temperature for the 2080s’ 
period

As with the pattern-scaling methodology, this method 
assumes that some form of a linear relationship exists 
between the downscaled emissions scenarios for the 
14 stations employed in the analysis. As both the A2 
and B2 downscaled scenarios for temperature and 
precipitation were available, this assumption could be 
tested by scaling the downscaled A2 scenario at each 
station by the ratio of the A2 and B2 global mean surface 
temperature change for each GCM, to derive a scaled 
B2 emissions scenario. If a linear relationship existed, 
then the assumption was taken as valid.

Figure 5.1 illustrates the seasonal relationship between 
the statistically downscaled B2 emissions scenario, 
for both temperature and precipitation, and the B2 
response, scaled by the method outlined above for the 

2080s. While the assumption of a linear response was 
found to be valid between driving emissions scenarios, 
the slope of the equation was found to vary seasonally. 
Therefore, seasonal linear regression equations 
were derived to account for the difference between 
the statistically downscaled B2 and GCM-scaled B2 
projections.

This method was applied to the statistically downscaled 
A2 scenarios for all stations and GCMs to calculate 
station level changes for the A1FI and B1 emissions 
scenarios. The results from the application of this 
method are outlined in Tables 5.2 and 5.3 for the 
selected stations of Valentia, Malin Head, Casement 
and Kilkenny for the winter (DJF) and summer (JJA) 
seasons for the 2080s’ period, for both temperature 
(°C) and precipitation change (%). The projected 
changes in temperature and precipitation are shown to 
be sensitive to both emissions scenario and GCM. The 
greatest difference in projected temperatures between 
the GCMs is associated with the A1FI scenario. For 
precipitation, significant intermodel differences are 
apparent both between and within individual emissions 
scenarios. Appendix IV contains the scaled responses 
and statistically downscaled seasonal changes for all 
14 of the synoptic stations employed by Fealy and 
Sweeney (2007; 2008a; 2008b) and for all seasons, for 
both temperature (°C) and precipitation change (%).

Table 5.2. Global climate model (GCM) scaled temperature change (°C) for selected stations for the 
2070–2099 period from three GCMs and the A1FI and B1 emissions scenarios. The A2 and B2 scenario 
data are directly derived from statistically downscaled data.

GCM SRES Valentia Malin Head Casement Kilkenny

ΔTDJF ΔTJJA ΔTDJF ΔTJJA ΔTDJF ΔTJJA ΔTDJF ΔTJJA

CGCM2 A1FI 5.1 3.6 4.3 3.1 5.9 4.2 5.7 4.5

CGCM2 A2 3.0 3.1 2.5 2.6 3.5 3.6 3.4 3.8

CGCM2 B2 2.9 2.0 2.3 1.7 3.3 2.4 3.2 2.4

CGCM2 B1 2.4 1.6 2.0 1.4 2.8 1.9 2.6 2.0

CSIRO Mk2 A1FI 4.4 2.1 3.7 1.9 5.0 2.4 5.0 2.7

CSIRO Mk2 A2 3.7 2.1 3.1 1.8 4.2 2.4 4.2 2.8

CSIRO Mk2 B2 2.9 1.5 2.5 1.3 3.3 1.7 3.3 1.9

CSIRO Mk2 B1 2.4 1.3 2.1 1.1 2.8 1.4 2.8 1.6

HadCM3 A1FI 1.2 2.5 1.1 2.4 1.4 3.1 1.4 3.3

HadCM3 A2 1.4 2.5 1.2 2.4 1.6 3.1 1.6 3.3

HadCM3 B2 0.7 1.6 0.7 1.6 0.9 2.0 0.9 2.1

HadCM3 B1 0.6 1.4 0.5 1.3 0.7 1.7 0.7 1.8

The A1FI and B1 scenarios were derived by scaling the statistically downscaled A2 scenario according to the ratio of ∆T from 
the parent GCM and relevant emissions scenario for each season. DJF = December, January, February; JJA = June, July, 
August. SRES = Special Report on Emissions Scenarios (after Fealy and Sweeney, 2008a; 2008b)
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Figure 5.1. Comparison of statistically downscaled (SD) and scaled B2 temperature (a–c) and precipitation 
(d–f) based on scaling the statistically downscaled A2 scenario for each global climate model. Regression 
equations and explained variance for each season illustrate the relationship between the statistically 
downscaled and scaled B2 scenarios. These seasonally calculated equations were applied as a correction 
factor for calculating all scaled scenarios. DJF = December, January, February; MAM = March, April, May; 
JJA = June, July, August; SON = September, October, November. SRES = Special Report on Emissions 
Scenarios (data after Fealy and Sweeney, 2007; 2008a; 2008b.) 
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In order to calculate the regional response rate per 
°C global warming at each station, the projected 
(statistically downscaled and scaled) warming for 
each station and season were normalised by the 
parent GCM/emission scenario change in the global 
mean surface temperature change from Table 5.1. 
For example, to calculate the station response per 
°C global warming (ΔT) for the CGCM2 GCM and 
the A1FI emissions scenario for the winter season at 
Valentia, the projected A1FI ΔT at Valentia is 5.1°C, 
which is then normalised by the global ΔT change from 
the CGCM2 A1FI of 4.38°C. The resulting normalised 
value of 1.16°C represents a station response of 
1.16°C/°C global warming – that is, for an increase 
in global mean surface temperature of 1°C, winter 
seasonal temperatures at Valentia are projected to 
increase by 1.16°C (ΔTGlobal x ΔTstation), indicating 
an above average warming rate according to the 
CGCM2 GCM (see Appendix Va and b for all stations).

Table 5.3. Global climate model (GCM) scaled percent change in precipitation (%) for selected stations 
for the 2070–2099 period from three GCMs and the A1FI and B1 emissions scenarios (SRES). The A2 and 
B2 scenario data are directly derived from statistically downscaled data (after Fealy and Sweeney, 2007; 
2008b).

GCM SRES Valentia Malin Head Casement Kilkenny

ΔPDJF ΔPJJA ΔPDJF ΔPJJA ΔPDJF ΔPJJA ΔPDJF ΔPJJA

CGCM2 A1FI -3.8 -29.2 4.5 -22.3 24.5 -47.7 18.7 -19.4

CGCM2 A2 -4.5 -17.4 2.0 -14.3 18.0 -25.7 13.3 -13.0

CGCM2 B2 -2.8 -14.5 5.5 -4.2 13.0 -23.0 10.7 -6.7

CGCM2 B1 -0.7 -8.3 3.1 -5.1 12.3 -16.8 9.7 -3.7

CSIRO Mk2 A1FI 0.1 -24.8 5.5 -13.3 35.1 -31.0 26.6 -19.6

CSIRO Mk2 A2 1.8 -25.9 6.3 -16.5 30.9 -31.0 23.8 -21.6

CSIRO Mk2 B2 -0.8 -17.3 4.6 -6.7 22.7 -20.2 16.3 -5.7

CSIRO Mk2 B1 -0.9 -10.1 2.0 -4.0 17.8 -13.4 13.2 -7.3

HadCM3 A1FI 9.9 -24.3 10.5 -10.1 21.6 -24.6 22.1 -23.9

HadCM3 A2 9.1 -29.0 9.7 -9.8 21.8 -29.3 22.3 -28.5

HadCM3 B2 8.1 -18.4 4.9 -7.0 16.3 -14.0 15.7 -17.4

HadCM3 B1 5.8 -14.0 6.1 -6.7 11.9 -14.1 12.2 -13.8

The A1FI and B1 scenarios were derived by scaling the statistically downscaled A2 scenario according to the ratio of ∆T from the 
parent GCM and relevant emissions scenario for winter (DJF = December, January, February) and summer (JJA = June, July, 
August). SRES = Special Report on Emissions Scenarios. 

In order to produce probabilities of future warming for 
individual synoptic stations, taking into account some 
of the key uncertainties associated with the projected 
warming, including emissions uncertainty and GCM 
regional response, an MC analysis was employed 
in conjunction with three different estimates of future 
warming: 

1.	 ΔT in global mean surface temperature change 
from the three GCMs employed in the statistical 
downscaling approach employed by Fealy and 
Sweeney (2007; 2008a; 2008b) (Table 5.1 – ΔT 2.02 
to 4.86°C);

2.	 Range in ΔT of the estimated transient climate 
response (TCR), defined as the global surface 
average temperature (SAT) change at the time of 
CO2 doubling in the 1% yr–1 transient CO2 increase 
experiment (IPCC, 2007). The IPCC (2007) 
indicates that that the transient climate response is 
very likely to be greater than 1°C and very unlikely to 
be greater than 3°C;

3.	 Estimated equilibrium climate sensitivity with a 5 to 
95% probability range of 2.1 to 4.6°C and a median 
value of 3.2°C with a lognormal distribution (IPCC, 
2007).

The minimum and maximum values for both the 
temperature and precipitation response/°C ΔT for 
selected stations (Tables 5.4 and 5.5, see bold and italics) 
were assumed to represent uncertainty in model output 
at the regional/station level. While only three GCMs 
were employed, the projected global ΔT associated with 
the three GCMs represents an illustrative sub-sample of 
the full warming range projected by all available GCMs. 
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Table 5.4. Seasonal minimum and maximum temperature response (°C)/°C ΔTGlobal derived from all global 
climate models (GCM) and emissions scenarios, based on the statistically downscaled and scaled station 
level warming. 

Temp (°C) DJF MAM JJA SON

Min. Max. Min. Max. Min. Max. Min. Max.

Valentia 0.23 1.19 0.38 0.93 0.44 0.86 0.48 1.01

Shannon 0.26 1.33 0.44 1.01 0.51 0.99 0.56 1.15

Dublin 0.21 1.02 0.42 0.86 0.47 0.89 0.55 1.17

Malin Head 0.21 0.99 0.35 0.85 0.38 0.75 0.47 0.94

Roche’s Point 0.22 1.10 0.36 0.74 0.49 0.80 0.47 0.97

Belmullet 0.22 1.11 0.37 0.93 0.48 0.83 0.48 1.01

Clones 0.27 1.35 0.46 1.03 0.55 1.03 0.58 1.17

Rosslare 0.22 1.12 0.35 0.62 0.42 0.70 0.48 1.00

Claremorris 0.27 1.36 0.44 1.07 0.56 1.01 0.57 1.18

Mullingar II 0.27 1.36 0.47 1.05 0.54 1.04 0.59 1.21

Kilkenny 0.28 1.31 0.46 0.99 0.56 1.08 0.60 1.27

Casement 0.28 1.36 0.45 0.96 0.50 1.01 0.59 1.22

Cork 0.24 1.23 0.40 0.87 0.54 0.94 0.52 1.08

Birr 0.28 1.39 0.46 1.05 0.57 1.06 0.59 1.25

Stations in bold and italics represent stations employed in the subsequent analysis. DJF = December, January, February;  
MAM = March, April, May; JJA = June, July, August; SON = September, October, November.

Table 5.5. Seasonal minimum and maximum precipitation response (%)/°C ΔTGlobal derived from all global 
climate models (GCM)  and emissions scenarios, based on the statistically downscaled and scaled station 
level warming.

Precip (%) DJF MAM JJA SON

Min. Max. Min. Max. Min. Max. Min. Max.

Valentia -1.28 2.64 -5.89 2.34 -7.38 -3.91 -6.33 -2.32

Shannon 0.66 4.43 -10.22 2.66 -7.72 -4.43 -4.09 -0.24

Dublin 5.59 10.01 -6.59 2.28 -11.07 -5.34 -4.73 -1.20

Malin Head 0.57 2.47 -9.24 2.94 -5.09 -1.53 -1.62 2.20

Roche’s Point 1.37 4.42 -2.78 2.20 -10.58 -4.83 -7.41 -2.81

Belmullet -0.93 2.32 -6.77 2.44 -4.49 -1.80 -2.83 0.00

Clones 4.42 7.64 -9.08 2.98 -6.55 -2.26 -3.96 -0.17

Rosslare 2.35 4.89 -5.45 2.03 -8.07 -2.37 -4.56 -1.99

Claremorris 3.51 5.84 -7.38 2.87 -4.88 0.81 -4.59 -0.19

Mullingar II 4.20 7.58 -9.12 2.61 -8.26 -3.73 0.53 3.70

Kilkenny 3.76 6.05 -8.01 2.39 -7.25 -1.82 -6.16 -2.10

Casement 4.45 7.85 -7.21 2.35 -10.89 -4.55 -3.40 -0.81

Cork -0.22 4.27 -4.40 2.13 -7.92 -1.81 -6.44 -1.38

Birr 5.07 8.57 -8.26 2.56 -8.24 -3.78 -2.82 0.29

Stations in bold and italics represent stations employed in the subsequent analysis. DJF = December, January, February;  
MAM = March, April, May; JJA = June, July, August; SON = September, October, November.
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Figure 5.2. Transient climate response (TCR) with a 5 to 95% probability range of 1.5 to 2.8°C (IPCC, 2007).

approach employed by Fealy and Sweeney (2007; 
2008a; 2008b) (Table 5.1 – ΔT 2.02 to 4.86°C), a 
uniform prior probability distribution (i.e. initially all 
values within a specified range are treated as having an 
equal probability of occurrence) was assumed.

Method II – Based on the estimated TCR, defined as 
the global surface average temperature (SAT) change 
at the time of CO2 doubling in the 1% yr–1 transient CO2 
increase experiment (IPCC, 2007), which is very likely 
to be greater than 1°C and very unlikely to be greater 
than 3°C. A normal distribution was employed as the 
prior for this method (IPCC, 2007) with a 5 to 95% 
probability range of 1.5 to 2.8°C (Fig. 5.2).

The MC analysis was used to randomly sample from 
the range in ΔT for each of the three methods identified, 
and the uniform distributions representing the regional 
response rate in temperature and precipitation change 
per °C of global warming for each station and season. 
The resulting ΔT and ΔP therefore take account of 
uncertainties in the emissions scenarios, by sampling 
from four marker emissions scenarios (A1FI, A2, B2 and 
B1), GCM sensitivity and regional response, through the 
regional response rates per °C global warming at each 
station. Method III also considers uncertainty in the 
equilibrium climate sensitivity, through the incorporation 
of the estimated range in sensitivity from the Fourth 
Assessment Report (IPCC, 2007) (Method III). For all 
methods, the MC simulation was set to produce 100,000 
samples with the initial 10,000 samples excluded from 
any subsequent analysis.

Method I – As no likelihood could be attributed to the 
ΔT in global mean surface temperature change from 
the three GCMs employed in the statistical downscaling 

Method III – Based on the estimated equilibrium climate 
sensitivity with a 5 to 95% probability range of 2.1 to 
4.6°C and a median value of 3.2°C with a lognormal 
distribution (IPCC, 2007), a distribution of values, 
conforming to the estimated range and median, was 
simulated to represent the climate sensitivity (Fig. 5.3). 
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a greater range in warming for the 2080s period than 
previously suggested by the statistically downscaled 
projections of Fealy and Sweeney (2007; 2008a; 
2008b), which account only for the A2 and B2 emissions 
scenario. For projected changes in precipitation, 
Method I indicates more conservative changes – mainly 
lower projected decreases – for nearly all stations and 
seasons when compared to the statistically downscaled 
ensemble results. Probability distribution functions for 
changes in temperature and precipitation at each station 
and season are shown in Figures 5.4 and 5.5. Projected 
changes in both temperature and precipitation are 
shown to display a considerable spread in values. For 
example, winter temperature at Casement suggests an 
increase from 0.6 to 6.6°C by the 2080s (2070–2099) 
period. Similarly, with precipitation, both increases and 
decreases are projected, with an equal likelihood by 
the 2080s at all stations for spring. Winter precipitation 
at Valentia and autumn precipitation at Malin Head 
also display different directions of change with equal 
likelihoods. Results from the statistically downscaled 
ensemble, while comparable to the mean changes 
projected by Method I, take no account of likelihoods 
or the fact that a projected change could differ in both 
direction and magnitude.

5.2	 Results

Tables 5.6–5.8 show the results for each of the three 
different measures of changes in global ∆T (Methods 
I–III) with the regional response rates at the selected 
synoptic stations of Valentia, Malin Head, Kilkenny and 
Casement. The results from Method I are also compared 
to the ensemble of the statistically downscaled A2 
and B2 emissions scenario calculated by Fealy and 
Sweeney (2007; 2008a; 2008b) employing the IR-CPI 
(after Wilby and Harris, 2006) (Table 5.9). 

However, the results from the three different measures 
of changes in global ∆T (Methods I–III) are not directly 
comparable: Method I represents the ∆T in three GCMs 
for the 2070–2099 period, while Method II reflects 
changes at the point at which a doubling of CO2 occurs, 
which is sensitive to the speed in ocean heat uptake; 
and Method III represents the change in temperature 
and precipitation at the point at which the climate has 
reached a new stable equilibrium, in response to a 
doubling of CO2 and is sensitive to the strength of 
different feedbacks (IPCC, 2007).

Mean changes in all seasons for the four stations are 
shown in Table 5.9. With the inclusion of the A1FI and 
B1 scenarios, results for nearly all seasons indicate 

Figure 5.3. Simulation of equilibrium climate sensitivity with a median value of 3.2°C and 5 to 95% probability 
range of 2.1 to 4.6°C. (The 95% probability range differs from that quoted in the IPCC (2007) range of 2.2 to 
4.6°C, however, this difference is considered negligible.)
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Table 5.6. Method I seasonal mean temperature (°C) and precipitation change (%) for Valentia, Malin Head, 
Kilkenny and Casement.

Method I Temperature Precipitation

Station Season Mean Min. Q1 Med. Q3 Max. Mean Min. Q1 Med. Q3 Max.

Valentia DJF 2.4 0.5 1.5 2.3 3.2 5.8 2.3 -6.2 -1.0 2.2 5.4 12.8

MAM 2.3 0.8 1.7 2.1 2.8 4.5 -6.1 -28.5 -12.4 -5.7 0.9 11.3

JJA 2.2 0.9 1.7 2.2 2.7 4.2 -19.4 -35.8 -23.4 -18.8 -14.9 -8.0

SON 2.6 1.0 1.9 2.5 3.1 4.9 -14.9 -30.7 -18.5 -14.0 -10.7 -4.7

Malin Head DJF 2.1 0.4 1.3 1.9 2.7 4.8 5.2 1.2 3.4 4.9 6.8 12.0

MAM 2.1 0.7 1.5 2.0 2.5 4.1 -10.9 -44.8 -20.2 -10.2 -0.4 14.1

JJA 1.9 0.8 1.5 1.9 2.4 3.6 -11.4 -24.7 -14.5 -10.7 -7.8 -3.1

SON 2.4 1.0 1.9 2.3 2.9 4.6 1.0 -7.9 -2.2 0.9 4.0 10.7

Kilkenny DJF 2.7 0.6 1.7 2.6 3.6 6.4 16.9 7.6 13.1 16.6 20.2 29.4

MAM 2.5 0.9 1.9 2.4 3.0 4.8 -9.7 -38.9 -17.6 -9.2 -0.7 11.5

JJA 2.8 1.1 2.2 2.7 3.4 5.2 -15.6 -35.2 -20.0 -14.6 -10.3 -3.7

SON 3.2 1.2 2.4 3.1 3.9 6.2 -14.2 -29.9 -17.8 -13.4 -10.1 -4.3

Casement DJF 2.8 0.6 1.8 2.7 3.7 6.6 21.2 9.0 16.4 20.6 25.4 38.1

MAM 2.4 0.9 1.8 2.3 2.9 4.7 -8.3 -34.8 -15.6 -7.8 -0.1 11.4

JJA 2.6 1.0 2.0 2.5 3.2 4.9 -26.6 -52.7 -32.7 -25.2 -19.7 -9.2

SON 3.1 1.2 2.4 3.0 3.8 5.9 -7.2 -16.5 -9.4 -6.8 -4.7 -1.7

Also shown are value for minimum (min.), maximum (max.), median (med.) and quartiles (Q1 = 1st quartile; Q3 = 3rd Quartile). DJF = 
December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.

Table 5.7. Method II seasonal mean temperature (°C) and precipitation change (%) for Valentia, Malin Head, 
Kilkenny and Casement.

Method II Temperature Precipitation

Station Season Mean Min. Q1 Med. Q3 Max. Mean Min. Q1 Med. Q3 Max.

Valentia DJF 1.5 0.1 1.0 1.5 2.0 4.1 1.5 -4.4 -0.6 1.4 3.4 9.8

MAM 1.4 0.2 1.1 1.4 1.7 3.3 -3.8 -19.8 -8.0 -3.7 0.6 8.3

JJA 1.4 0.2 1.1 1.4 1.6 3.2 -12.1 -25.7 -14.2 -11.9 -9.8 -1.6

SON 1.6 0.3 1.3 1.6 1.9 3.6 -9.3 -22.3 -11.4 -9.0 -6.9 -0.9

Malin Head DJF 1.3 0.2 0.8 1.2 1.7 3.4 3.3 0.3 2.2 3.2 4.2 8.3

MAM 1.3 0.2 1.0 1.3 1.6 2.8 -6.8 -30.6 -13.0 -6.6 -0.3 9.8

JJA 1.2 0.2 1.0 1.2 1.4 2.7 -7.1 -17.5 -9.0 -6.9 -5.0 -1.3

SON 1.5 0.2 1.2 1.5 1.8 3.3 0.6 -5.3 -1.4 0.6 2.6 7.4

Kilkenny DJF 1.7 0.2 1.1 1.6 2.2 4.6 10.5 1.8 8.8 10.4 12.1 21.8

MAM 1.6 0.2 1.2 1.5 1.9 3.7 -6.1 -27.2 -11.3 -5.9 -0.5 8.4

JJA 1.8 0.3 1.4 1.7 2.1 3.9 -9.7 -27.4 -12.5 -9.4 -6.6 -1.1

SON 2.0 0.3 1.6 2.0 2.4 4.9 -8.9 -23.7 -11.0 -8.6 -6.5 -1.3

Casement DJF 1.8 0.2 1.1 1.7 2.3 4.7 13.2 2.1 10.9 13.0 15.4 26.8

MAM 1.5 0.2 1.2 1.5 1.8 3.4 -5.2 -24.0 -10.0 -5.0 -0.1 7.6

JJA 1.6 0.3 1.3 1.6 1.9 3.4 -16.6 -39.2 -20.1 -16.2 -12.7 -1.8

SON 1.9 0.3 1.5 1.9 2.3 4.1 -4.5 -12.4 -5.8 -4.4 -3.0 -0.5

Also shown are values for minimum (min), maximum (max), median (med) and quartiles (Q1 = 1st quartile; Q3 = 3rd Quartile). DJF = 
December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.
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values substantially higher than 4.5°C cannot be ruled 
out. Owing to the current inability to constrain the upper 
tail of the estimated range in values for the equilibrium 
climate sensitivity, the results from Method III may 
represent an underestimation of the possible range 
in, though less likely, values for the regional response 
at equilibrium CO2. However, from an adaptation or 
infrastructure design perspective, the time horizon 
associated with reaching equilibrium CO2 is too distant 
to be of significant importance for adaptation purposes 
in the medium term. 

The ability to produce PDFs, that account explicitly for 
key uncertainties which propagate from the emissions 
scenarios to the GCMs employed, represents a 
significant improvement over traditional statistical 
downscaling techniques. However, a significant 
weakness in this approach is that no strict quantification 
of uncertainty in predictor selection in the statistical 
downscaling procedure is accounted for. This source 
of uncertainty is likely to be greatest in cases where a 
number of optimum predictor sets may exist, but the 

Table 5.8. Method III seasonal mean temperature (°C) and precipitation change (%) for Valentia, Malin Head, 
Kilkenny and Casement. 

Method III Temperature Precipitation

Station Season Mean Min. Q1 Med. Q3 Max. Mean Min. Q1 Med. Q3 Max.

Valentia DJF 2.3 0.3 1.4 2.2 3.0 8.2 2.2 -9.3 -0.9 2.1 5.1 18.4

MAM 2.1 0.5 1.6 2.0 2.6 6.5 -5.7 -40.7 -11.8 -5.4 0.9 15.6

JJA 2.1 0.6 1.6 2.0 2.5 5.9 -18.2 -51.5 -21.4 -17.6 -14.3 -5.4

SON 2.4 0.6 1.9 2.3 2.9 6.9 -14.0 -48.1 -17.1 -13.3 -10.1 -3.2

Malin Head DJF 1.9 0.3 1.2 1.8 2.5 7.2 4.9 0.9 3.2 4.7 6.3 17.2

MAM 1.9 0.5 1.4 1.9 2.3 5.7 -10.3 -62.8 -19.2 -9.7 -0.4 18.9

JJA 1.8 0.5 1.4 1.8 2.2 5.5 -10.7 -34.2 -13.4 -10.2 -7.4 -2.3

SON 2.3 0.7 1.8 2.2 2.7 6.8 0.9 -10.7 -2.1 0.9 3.8 15.5

Kilkenny DJF 2.6 0.4 1.6 2.4 3.3 9.2 15.9 5.2 12.8 15.3 18.4 43.5

MAM 2.3 0.6 1.8 2.3 2.8 6.9 -9.1 -53.8 -16.7 -8.7 -0.7 15.7

JJA 2.7 0.8 2.1 2.5 3.1 7.4 -14.7 -52.0 -18.7 -13.9 -9.7 -2.7

SON 3.0 0.8 2.3 2.9 3.6 8.9 -13.4 -43.0 -16.5 -12.7 -9.6 -3.1

Casement DJF 2.6 0.4 1.7 2.5 3.4 8.8 19.9 5.9 15.8 19.2 23.2 55.2

MAM 2.3 0.5 1.7 2.2 2.7 6.8 -7.8 -50.2 -14.8 -7.4 -0.1 15.8

JJA 2.4 0.7 1.9 2.3 2.9 7.8 -25.0 -74.2 -30.2 -23.9 -18.6 -6.6

SON 2.9 0.9 2.3 2.8 3.5 8.4 -6.8 -24.6 -8.7 -6.5 -4.5 -1.1

Also shown are values for minimum (min.), maximum (max.), median (med.) and quartiles (Q1 = 1st quartile; Q3 = 3rd Quartile). DJF = 
December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.

Differences between the projected changes from Method 
I and II stem from the timing of a doubling of atmospheric 
CO2. Method I projects changes in temperature and 
precipitation for a particular timeslice, that of the 
2080s, whereas the TCR (Method II) represents the 
instantaneous response of the climate system at the 
point in time in which a doubling of CO2 takes place. The 
results from Method II are therefore more relevant as a 
mid-21st century projection, assuming a linear response 
in the regional warming rate per °C of ∆T global mean 
surface temperature. Probability distribution functions 
for the TCR ∆T global are shown in Figures 5.6 and 5.7. 

Method III results are based on the estimated equilibrium 
climate sensitivity with a 5 to 95% probability range of 
2.1 to 4.6°C and a lognormal distribution (IPCC, 2007) 
(Table 5.9; Figs 5.8 and 5.9). These results assume that 
emissions stabilise after doubling and that the climate 
system has attained equilibrium, including ocean heat 
uptake after a doubling of CO2 has been attained. While 
the IPCC (2007) states that the equilibrium is very likely 
to be greater than 1.5°C, due to physical reasons, 
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resultant downscaled scenarios produce divergent 
responses. Such a situation can arise when candidate 
predictors which have a large sensitivity to warming (for 
example, relative humidity and temperature) contribute 
separately to two equally optimum sets of predictors. 
While both sets of predictors may provide a similar level 
of explanation in the validation of the downscaled data, 
the future projected change in the desired variable will 
largely be determined by the sensitivity of the selected 
predictor set. However, this is a recognised weakness 
in statistical downscaling and generally the selection 
of the optimum predictor set seeks to avoid the use of 
overly sensitive candidate predictors in the selection 
criteria. 

In addition, the ability of the GCM to simulate candidate 
predictors employed in the statistical downscaling 
approach (Fig. 2.6) will also contribute to the 
uncertainty. This source of uncertainty arises from sub-
grid scale processes and model parameterisations 
within the parent GCM. In an analysis of uncertainty in 
statistically downscaled temperature and precipitation 
in Northern Canada, Dibike et al. (2008) suggest that 

Table 5.9. Comparison of mean temperature (°C) and precipitation (%) change in the statistically downscaled 
ensemble (SD-Ens), based on the A2 and B2 emissions scenarios, calculated by Fealy and Sweeney (2007; 
2008a; 2008b) employing the IR-CPI and the mean changes calculated from the probability distribution functions 
(Method I) employing the broader range of emissions scenarios (A1FI, A2 B2, B1).

Temperature Precipitation

Station Season SD-Ens PDF SD-Ens PDF

Valentia DJF 2.0 2.4 3.5 2.3

MAM 1.9 2.3 -9.8 -6.1

JJA 2.1 2.2 -25.6 -19.4

SON 2.4 2.6 -16.0 -14.9

Malin Head DJF 1.7 2.1 5.8 5.2

MAM 1.7 2.1 -11.1 -10.9

JJA 1.9 1.9 -13.1 -11.4

SON 2.3 2.4 0.1 1.0

Kilkenny DJF 2.3 2.7 16.9 16.9

MAM 2.1 2.5 -12.7 -9.7

JJA 2.7 2.8 -25.8 -15.6

SON 3.0 3.2 -16.7 -14.2

Casement DJF 2.3 2.8 19.2 21.2

MAM 2.1 2.4 -9.7 -8.3

JJA 2.6 2.6 -31.8 -26.6

SON 2.9 3.1 -10.5 -7.2

DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.

the regression-based downscaling approach used in 
their analysis was able to reproduce the climate regime 
over highly heterogeneous terrain when driven by 
accurate GCM predictors. Such findings indicate that 
the regression-based approach may not contribute as 
much uncertainty to the cascade as the GCM employed. 
Similar conclusions have been arrived at for downscaled 
output using regional climate models. 

The method outlined here is considered to be sensitive 
to the choice of GCMs employed, in that the contribution 
of an individual model that projects a change in the 
statistically downscaled temperature or precipitation, 
which is opposite in sign to all available GCMs, has 
equal weight in the uniform distribution ascribed as a 
prior to the regional response rate. While attributing 
a non-uniform distribution as a prior to the regional 
response rates is difficult to ascertain objectively, 
weighting the contribution of projected changes from 
each GCM is one alternative. Determining the relevant 
criteria, such as convergence of model output (Giorgi 
and Mearns, 2002) to derive the weights requires 
careful consideration.
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Figure 5.5 Method I probability distribution functions of projected change in seasonal precipitation (%) for 
(a) Valentia, (b) Malin Head, (c) Kilkenny and (d) Casement for the 2070–2099 period, assuming a uniform 
distribution for ∆T from three global climate models (GCM) and a uniform distribution for the scaling variables 
outlined in Table 5.5.
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Figure 5.4. Method I probability distribution functions of projected change in seasonal mean temperature 
(°C) for (a) Valentia, (b) Malin Head, (c) Kilkenny and (d) Casement for the 2070–2099 period, assuming a 
uniform distribution for ∆T from three global climate models (GCM) and a uniform distribution for the scaling 
variables outlined in Table 5.4.
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Figure 5.7. Method II probability distribution functions of projected change in seasonal precipitation (%) 
for Valentia, Malin Head, Kilkenny and Casement for the 2070–2099 period, with a normal distribution for 
transient climate response (TCR) and a uniform distribution for the scaling variables outlined in Table 5.5.

Figure 5.6. Method II probability distribution functions of projected change in seasonal mean temperature 
(°C) for (a) Valentia, (b) Malin Head, (c) Kilkenny and (d) Casement for the 2070–2099 period, with a normal 
distribution for transient climate response (TCR) and a uniform distribution for the scaling variables outlined 
in Table 5.4.
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Figure 5.8. Method III probability distribution functions of projected change in seasonal mean temperature (°C) 
for Valentia, Malin Head, Kilkenny and Casement for the 2070–2099 period, assuming a lognormal distribution 
for equilibrium climate sensitivity and a uniform distribution for the scaling variables outlined in Table 5.4.
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Figure 5.9. Method III probability distribution functions of projected change in seasonal precipitation (%) for 
Valentia, Malin Head, Kilkenny and Casement for the 2070–2099 period, assuming a lognormal distribution 
for equilibrium climate sensitivity and a uniform distribution for the scaling variables outlined in Table 5.5.
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scale experiments such as Climateprediction.net, 
which included a significant participation of non-climate 
scientists and the public at large in providing distributed 
computer resources for climate modelling at the global 
scale.

The generation of multiple scenarios from different 
GCMs has received much focus within the statistical 
downscaling community, largely due to the ease in 
implementation of statistically based downscaling 
approaches. Nevertheless, traditional statistical 
downscaling approaches do not explicitly account for 
the uncertainties that accrue in the modelling process. 
Intercomparisons of dynamically based downscaled 
scenarios have also become feasible through European 
Union-funded projects such as PRUDENCE and 
ENSEMBLES, which focused on producing outputs 
from multiple GCM–RCM combinations for a common 
domain over Europe. The availability of such data 
from a number of RCMs has contributed greatly to the 
development of probabilistic-based approaches at the 
required scale for policy assessment and decision-
making, based on dynamical regional climate models.

The approach outlined within this report adopted a 
technique widely used in the dynamical modelling 
community: to pattern scale statistically downscaled 
projections of temperature and precipitation for 
selected stations for Ireland for the 2080s. The resulting 
scenarios, scaled to reproduce the warming from the 
A1FI and B1 emissions scenarios, were then employed 
in a probabilistic assessment based on three estimates 
of future changes in global mean surface temperature, 
according to (i) three GCMs employed in the original 
statistical downscaling approach of Fealy and Sweeney 
(2007; 2008a; 2008b); (ii) the estimated transient 
response of the climate system to a doubling of CO2 at 
the time of doubling (IPCC, 2007), and (iii) the estimated 
equilibrium climate sensitivity due to a doubling of CO2 
(IPCC, 2007). 

While the projected mean changes in temperature 
and precipitation, based on the probabilistic approach, 
were found to be comparable to the ensemble mean 
directly derived from the statistically downscaled data, 
the PDFs indicated a wide range in the distribution of 
the projected changes. Projections of temperature were 
found to be consistent in the direction and magnitude of 
change. However, results for precipitation were found 
to vary in both direction and magnitude in particular 

5.3	 Discussion

Kass and Raftery (1995) suggest that ‘any approach 
that selects a single model and then makes 
inferences conditionally on that model ignores the 
uncertainty involved in model selection, which can 
be a big part of overall uncertainty’, and ‘this leads to 
underestimation of the uncertainty about quantities 
of interest, sometimes to a dramatic extent’ (Kass & 
Raftery, 1995, 784, after Katz, 2002). Yet in spite of 
this early acknowledgement, the climate modelling and 
impacts community continued to produce and employ 
single trajectory climate scenarios for use in impact 
assessments that sought to inform policy-making. 
While there was a valid historical reason for this, 
arising from the limited number of centres undertaking 
global climate modelling because of the computational 
resources required and associated expense of running 
such model simulations, the implications for the policy 
community were significant. Global climate models  
have been found to produce such divergent scenarios 
at the regional scale that it is difficult, if not impossible, 
to develop appropriate adaptation strategies (Stakhiv, 
1998) based on one or a few GCMs. Hulme and Carter 
(1999) consider the practice of employing a limited 
number of climate scenarios as ‘dangerous’, as such 
an approach reflects only a partial assessment of the 
associated risk involved. Modelling the climate system 
will always result in a range of possible futures being 
projected, even when forced with the same emissions 
scenario (Hulme and Carter, 1999).

While a number of techniques have been developed in 
order to account for model differences, due to emissions 
scenarios and GCMs, such as pattern scaling, simple 
climate models or more recently the incorporation 
of Earth System models of Intermediate Complexity 
(EMICs), an inability to produce probabilistic-based 
projections has proved a limiting factor in enabling the 
quantification of potential vulnerability impacts in key 
sectors and hindered the subsequent development of 
suitable policy responses to reduce or mitigate such 
impacts. 

More recently, this topic has received much attention 
in the literature, with divergent attitudes and opinions 
towards the most suitable approach to employ. In spite 
of such divergence in attitudes, the discussion is vital. 
Some exciting developments have also emerged, 
through the PPEs (Murphy et al., 2004) and large-
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seasons. While the probabilistic-based mean seasonal 
projected changes in precipitation was found to be more 
conservative than that of the ensemble mean from the 
statistical downscaling approach, the range in projected 
changes was found to vary. Particular seasons exhibited 
an equal likelihood of both positive and negative 
changes associated with precipitation. Such findings 
suggest that the development of adaptation strategies 
based on climate scenarios that do not account for 
uncertainties explicitly could result in maladaptation. 

The proposed method represents a technique that allows 
probabilistic-based climate scenarios to be developed 
rapidly, even with limited availability of downscaled 
data. While the results of the technique do not differ 
significantly from the original, statistically downscaled 
climate scenarios (Fealy and Sweeney, 2007; 2008a; 
2008b), the incorporation of emissions and model 
uncertainty into the projections represents an important 
contribution to traditional downscaling techniques. The 
outcome of this research can be readily employed 
in conjunction with bottom-up approaches, such as 
determining the likelihood and timing of exceeding a 

particular threshold in a sensitivity analysis, to provide 
decision-makers with the appropriate information 
– at the relevant scale – needed to develop robust 
adaptation strategies.

However, a note of caution: information derived 
from probabilistic-based climate assessments is not 
independent of the methodology employed (New et al., 
2007), so the risk of maladaptation remains. Moreover, 
the contribution of full end-to-end probabilistic-based 
climate impact assessments to the decision-making 
process remains largely untested with the exception of 
one or two peer-reviewed studies (Wilby et al., 2009). 

In parallel to the research reported on here, a web-
based statistical downscaling tool has been developed 
to facilitate the rapid development of statistically 
downscaled scenarios (Appendix VI). It is anticipated 
that the availability of such a web-based tool, with outputs 
that can be incorporated with the method outlined above 
to provide probabilistic-based scenarios, will facilitate 
the development and integration of probabilistic-based 
climate scenarios into the wider stakeholder community. 
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Acronyms and Annotations

AMIP		  Atmospheric Model Intercomparison Project

AOGCMs 	 Atmosphere-ocean global climate models

CDFs 		  Cumulative distribution functions 

CMIPI-5	 Coupled Model Intercomparison Project 

CPI 		  Climate Prediction Index 

GCM		  Global climate model 

GLM		  Generalised linear model 

IPCC 		  Intergovernmental Panel on Climate Change

IR-CPI		 Impacts Relevant Climate Prediction Index 

LGM		  Last Glacial Maximum 

MAGICC 	 Model of the Assessment of Greenhouse gas Induced Climate Change

MC		  Monte Carlo approach 

MMD		  Multi-model data (MMD)

NAO		  North Atlantic Oscillation 

NCEP		  National Centres for Environmental Prediction 

PDFs		  Probability distribution functions 

PPE		  Perturbed physics ensemble 

ppmv		  Parts per million volume

RCMs		  Regional climate models

REA		  Reliability Ensemble Averaging 

SAT		  Surface average temperature 

SRES		  Special Report on Emissions Scenarios 

SSTs		  Sea surface temperatures 

TAR		  Third Assessment Report 

TCR		  Transient climate response 

THC		  Thermohaline circulation 

TOA		  Top of the atmosphere 

Wm-s		  Watts per square meter 
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Appendix I

Probability Distribution Functions of Precipitation (1961–1990)
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Figure A.I 1. Probability distribution functions (PDFs) of daily observed precipitation at Valentia, direct 
global climate model (GCM) daily precipitation (Raw) and bias corrected statistically downscaled (SD) daily 
precipitation for the 1960–1990 period for the A2 emissions scenario (observed data from Met Éireann; GCM 
data after Wilby and Dawson, 2007; statistically downscaled data after Fealy and Sweeney, 2007; 2008b).
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Figure A.I 2. Probability distribution functions (PDFs) of daily observed precipitation at Kilkenny, direct 
global climate model (GCM) daily precipitation (Raw) and bias corrected statistically downscaled (SD) daily 
precipitation for the 1960–1990 period for the A2 emissions scenario (observed data from Met Éireann; GCM 
data after Wilby and Dawson, 2007; statistically downscaled data after Fealy and Sweeney, 2007; 2008b).
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Table A.III 1. List of global climate models (GCM) employed in analysis, 
institution, equilibrium climate sensitivity and reference for each GCM.

GCM Name Institution/country 2xCO2 ∆T Reference

CGCM2 CCCma, Canada 3.5°C Flato et al., 2000

CSIRO Mk2 CSIRO, Australia 4.3°C Hirst et al., 1996, 2000

HadCM3 UKMO, UK 3.3°C Gordon et al., 2000

NCAR PCM NCAR, USA 2.1°C Washington et al., 2000

Appendix III

Quantifying Uncertainty in Global Climate 
Model Projections at the Regional Scale

Global climate model (GCM) data for the grid box domain 
representing Ireland was obtained for four GCMs and 
four emissions scenarios (data obtained from Mitchell et 
al., 2002). The data for all the models employed exists 
on a common grid for the Irish domain (Mitchell et al., 
2002). The four models, namely the CGCM2, CSIRO 
Mk2, HadCM3 and NCAR PCM and their respective 
equilibrium climate sensitivity, are listed in Table A.III 1. 
While GCM selection was determined solely on data 
availability, all four have been used extensively and 
appear in a range of peer-reviewed literature, and they 

Table A.III 2. Global (ΔTglobal ) and regional (Irish grid box(es) from respective global 
climate model (GCM) ) (ΔtJJA, ΔtDJF, ΔtANN) temperature (°C) and (ΔpJJA, ΔpDJF, ΔpANN) 
precipitation change (%) from four GCMs and four marker emissions scenarios (Data 
from Mitchell et al., 2002).

Model Scenario ΔTglobal ΔtJJA ΔtDJF ΔtANN ΔpJJA ΔpDJF ΔpANN

CGCM2 A1FI 4.38 3.3 2.7 2.8 0 18.2 7.0

CGCM2 A2 3.55 2.7 2.1 2.2 0 14.7 5.6

CGCM2 B2 2.46 2.0 1.6 1.7 0.4 7.3 6.2

CGCM2 B1 2.02 1.6 1.3 1.4 0.3 6.0 5.1

CSIRO Mk2 A1FI 4.86 2.8 2.9 2.7 -9.0 18.3 7.3

CSIRO Mk2 A2 3.94 2.7 3.1 2.7 -0.9 21.1 10.4

CSIRO Mk2 B2 3.14 2.2 2.6 2.2 -2.1 21.9 10.2

CSIRO Mk2 B1 2.59 2.1 2.2 2.0 5.3 6.1 7.8

HadCM3 A1FI 4.86 3.1 2.7 3.0 -35.2 25.0 4.2

HadCM3 A2 3.93 2.3 2.3 2.4 -27.0 20.8 3.9

HadCM3 B2 3.07 1.5 1.4 1.5 -17.4 7.3 1.1

HadCM3 B1 2.52 1.5 1.6 1.5 -21.9 14.4 2.7

PCM A1FI 3.05 1.7 2.3 2.3 3.3 8.4 9.2

PCM A2 2.46 1.4 1.9 1.9 2.6 6.8 7.5

PCM B2 1.89 0.9 1.5 1.5 7.3 7.1 7.0

PCM B1 1.54 0.7 1.2 1.2 5.9 5.7 5.7

represent a sample of the spread in estimated climate 
sensitivity.

The regional data, derived from the grid box for Ireland, 
for each model and emissions scenario (Table A.III 2), 
was first standardised or normalised according to its 
respective GCM global mean temperature change 
(ΔTglobal) for that particular emissions scenario. This 
normalisation is akin to normalising the regional change 
signal in the pattern scaling methodology, outlined 
previously, in order to derive a regional ‘response 
pattern’. The normalised, regional values, of temperature 
and precipitation change reflect a regional response per 
°C global warming for the 2080s’ period (Table A.III 3). 
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Table A.III 3. Normalised regional temperature (°C) and precipitation (%) responses for the 
2070–2099 period for Ireland derived from the global climate model (GCM) and emissions 
combinations outlined in Table A.III 2. 

Variable Regional

DJF MAM JJA SON
Temperature (ΔTREGIONAL/ ΔTGLOBAL) 0.46 – 0.85 0.39 – 0.84 0.45 – 0.81 0.59 – 1.06

Precipitation (ΔPREGIONAL/ ΔTGLOBAL) +2.35 – +6.98 +0.76 – +8.61 -8.69 – +3.85 -0.32 – +3.24

DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, 
October, November (data from Mitchell et al., 2002).

Table A.III 4. Range from lowest to highest in projected global temperature change (ΔT) (°C) 
regional temperature (°C) and precipitation change (%) for Ireland from the global climate 
model (GCM) and emissions combinations outlined in Table A.III 2. 

Variable Global Regional

DJF MAM JJA SON
Temperature (ΔT) 1.54 – 4.86 1.2 – 3.1 1.3 – 2.8 0.7 – 3.3 1.5 – 3.3

Precipitation (ΔP) +5.7 – +25.0 +3.7 – +24.8 -35.2 – +7.3 -1.4 – +9.9

DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, 
October, November (data from Mitchell et al., 2002).

 

Following Jones (2000), three sources of uncertainty 
are considered: (i) emissions scenarios; (ii) climate 
sensitivity; and (iii) regional variability, for two ‘impact 
critical’ climate variables, temperature and precipitation, 
for the winter and summer seasons for the 2080. The 
2080s was selected as the signal-to-noise ratio is likely 
to be larger for this period. However, no measure of 
natural variability is considered.

In addition to the regional uncertainty signal (i.e. the 
regional rate of warming derived from the four GCMs), 
these regional ranges encompass four Special Report 
on Emissions Scenarios (SRES) emissions marker 
scenarios, which in turn account for approximately 
80% of the range of future emissions contained in the 
full range of 40 emissions scenarios storylines. Table 
A.III 4 illustrates the range in projected values for global 
temperature and regional temperature and precipitation 
the 2080s. While projected changes in temperature are 
similar in direction, they differ in magnitude, in contrast 
to the projected changes in precipitation, which differ in 
both magnitude and direction.

(5 to 95% probability for lognormal distribution), with a 
median value of 3.2°C. While the IPCC (2007) attaches 
a likelihood to the estimated range in equilibrium climate 
sensitivity, no such likelihoods are attached to the regional 
response per °C. Consequently, a uniform distribution 
was assumed as a prior, attributing an equal probability to 
all values within the regional response ranges. 

Based on the range in equilibrium climate sensitivity 
estimated in the Second Assessment Report (0.7 to 
2.1°C) (IPCC, 1996), Jones (2000) attributed a uniform 
distribution to both the climate sensitivity and regional 
response, derived from five GCMs. It has been shown 
that if two probabilities have a uniform distribution and 
are considered to be independent of each other, when 
they are multiplied together, the resultant distribution will 
have a peak around its average value (Jones, 2000). 
However, the Fourth Assessment Report has attributed 
a probability distribution to the revised estimates for 
equilibrium climate sensitivity, which is employed here 
(Fig. A.III 1).

The data from Table A.III 3 was then used in conjunction 
with the estimated climate sensitivity range of 2.1 to 4.6°C 

In order to produce probabilities of future warming 
for Ireland, taking into account some of the key 
uncertainties associated with the projected warming, 
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a Monte Carlo (MC) analysis was employed. The 
MC was used to randomly sample from both the 
lognormal, representing equilibrium climate sensitivity, 
and uniform, representing the regional response rate 
in temperature and precipitation per degree of global 
warming, distributions. The resulting ΔT and ΔP 
therefore represent or take account of uncertainties in 
the emissions scenarios, by sampling from four marker 
emissions scenarios A1FI, A2, B2 and B1; climate 

109876543210
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Figure A.III 1. Monte Carlo simulation of equilibrium climate sensitivity with a median value of 3.2°C and 5 to 
95% probability range of 2.1 to 4.6°C. (The 95% probability range differs from that quoted in the IPCC (2007) 
range of 2.2 to 4.6°C, however, this difference is considered negligible). 

sensitivity, through the incorporation of the estimated 
range in sensitivity from the Fourth Assessment Report 
(IPCC, 2007); GCM climate sensitivity and the regional 
GCM response, through the response rates per °C 
global warming. The MC simulation was set to produce 
100,000 samples using a burn in of 10,000 samples, 
which were subsequently deleted, the results of which 
are shown in Figures A.III 2 and A.III 3.



An Assessment of Uncertainties in Climate Modelling at the Regional Scale: The Development of Probabilistic Based 
Climate Scenarios for Ireland

56

876543210

0.8

0.6

0.4

0.2

0.0

Temperature deg C

D
e

n
si

ty

876543210

0.8

0.6

0.4

0.2

0.0

Temperature deg C

D
e

n
si

ty

876543210

0.8

0.6

0.4

0.2

0.0

Temperature deg C

D
e

n
si

ty

876543210

0.8

0.6

0.4

0.2

0.0

Temperature deg C

D
e

n
si

ty

Winter Spring

Summer Autumn

Figure A.III 2. Probability distribution of seasonal mean temperature change (°C) based on the Fourth 
Assessment Report estimated equilibrium climate sensitivity (lognormal) and regional response rates for the 
Ireland grid box.
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Figure A.III 3. Probability distribution of seasonal precipitation change (%) based on the Fourth Assessment 
Report estimated equilibrium climate sensitivity (lognormal) and regional response rates for the Ireland grid 
box.
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Table A.III 5. Distributional parameters of the PDFs of temperature and precipitation derived from the 
Monte Carlo analysis for the 2080s (2070–2099). 

Variable Season Mean SE Mean St Dev Q1 Median Q3 Min. Max.

ΔT (°C) DJF 2.11 0.00 0.62 1.66 2.04 2.48 0.53 5.95

ΔT (°C) MAM 1.99 0.00 0.63 1.52 1.91 2.37 0.48 6.12

ΔT (°C) JJA 2.04 0.00 0.58 1.61 1.97 2.38 0.64 5.74

ΔT (°C) SON 2.67 0.00 0.76 2.11 2.57 3.12 0.83 7.78

ΔP (%) DJF 15.08 0.02 5.66 10.71 14.41 18.61 3.39 48.82

ΔP (%) MAM 15.16 0.03 8.29 8.38 14.41 20.83 1.11 63.06

ΔP (%) JJA -7.87 0.04 12.21 -17.19 -7.46 2.23 -60.09 25.22

ΔP (%) SON 4.71 0.01 3.59 1.73 4.46 7.28 -1.94 23.69

DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, 
November. 

 
Table A.III 5 shows the change in mean temperature (°C) and precipitation (%) for the 2070 to 2099 period.
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Appendix Va

Scaling Factors for Statistically Downscaled Temperature (2070–2099)
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R. Fealy (2005-FS-33)
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Appendix Vb  

Scaling Factors for Statistically Downscaled Precipitation (2070–2099)
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R. Fealy (2005-FS-33)
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Appendix VI

PRediction Of Surface Point Environmental Changes over Time (PROSPECT)

PROSPECT was developed at the National University of Ireland Maynooth by Ciaran McCarthy, Thomas Murphy, 
Mark Clerkin, Rowan Fealy and Phil Maguire in a collaboration between the Departments of Geography and Computer 
Science.

Screen shot – Title page

Screen shot – Select Location

Screen shot – Data Analysis

Screen shot – Correlation Analysis

Screen Shot – Regression Analysis



Environmental Protection Agency

The Environmental Protection Agency (EPA) is
a statutory body responsible for protecting
the environment in Ireland. We regulate and
police activities that might otherwise cause
pollution. We ensure there is solid
information on environmental trends so that
necessary actions are taken. Our priorities are
protecting the Irish environment and
ensuring that development is sustainable. 

The EPA is an independent public body
established in July 1993 under the
Environmental Protection Agency Act, 1992.
Its sponsor in Government is the Department
of the Environment, Heritage and Local
Government.

OUR RESPONSIBILITIES
LICENSING

We license the following to ensure that their emissions
do not endanger human health or harm the environment:

� waste facilities (e.g., landfills, 
incinerators, waste transfer stations); 

� large scale industrial activities 
(e.g., pharmaceutical manufacturing, 
cement manufacturing, power plants); 

� intensive agriculture; 

� the contained use and controlled release 
of Genetically Modified Organisms (GMOs); 

� large petrol storage facilities.

� Waste water discharges

NATIONAL ENVIRONMENTAL ENFORCEMENT 

� Conducting over 2,000 audits and inspections of
EPA licensed facilities every year. 

� Overseeing local authorities’ environmental
protection responsibilities in the areas of - air,
noise, waste, waste-water and water quality.  

� Working with local authorities and the Gardaí to
stamp out illegal waste activity by co-ordinating a
national enforcement network, targeting offenders,
conducting  investigations and overseeing
remediation.

� Prosecuting those who flout environmental law and
damage the environment as a result of their actions.

MONITORING, ANALYSING AND REPORTING ON THE
ENVIRONMENT

� Monitoring air quality and the quality of rivers,
lakes, tidal waters and ground waters; measuring
water levels and river flows. 

� Independent reporting to inform decision making by
national and local government.

REGULATING IRELAND’S GREENHOUSE GAS EMISSIONS 

� Quantifying Ireland’s emissions of greenhouse gases
in the context of our Kyoto commitments.

� Implementing the Emissions Trading Directive,
involving over 100 companies who are major
generators of carbon dioxide in Ireland. 

ENVIRONMENTAL RESEARCH AND DEVELOPMENT 

� Co-ordinating research on environmental issues
(including air and water quality, climate change,
biodiversity, environmental technologies).  

STRATEGIC ENVIRONMENTAL ASSESSMENT 

� Assessing the impact of plans and programmes on
the Irish environment (such as waste management
and development plans). 

ENVIRONMENTAL PLANNING, EDUCATION AND
GUIDANCE 
� Providing guidance to the public and to industry on

various environmental topics (including licence
applications, waste prevention and environmental
regulations). 

� Generating greater environmental awareness
(through environmental television programmes and
primary and secondary schools’ resource packs). 

PROACTIVE WASTE MANAGEMENT 

� Promoting waste prevention and minimisation
projects through the co-ordination of the National
Waste Prevention Programme, including input into
the implementation of Producer Responsibility
Initiatives.

� Enforcing Regulations such as Waste Electrical and
Electronic Equipment (WEEE) and Restriction of
Hazardous Substances (RoHS) and substances that
deplete the ozone layer.

� Developing a National Hazardous Waste Management
Plan to prevent and manage hazardous waste. 

MANAGEMENT AND STRUCTURE OF THE EPA 

The organisation is managed by a full time Board,
consisting of a Director General and four Directors.

The work of the EPA is carried out across four offices: 

� Office of Climate, Licensing and Resource Use

� Office of Environmental Enforcement

� Office of Environmental Assessment

� Office of Communications and Corporate Services 

The EPA is assisted by an Advisory Committee of twelve
members who meet several times a year to discuss
issues of concern and offer advice to the Board.

An Ghníomhaireacht um Chaomhnú Comhshaoil 

Is í an Gníomhaireacht um Chaomhnú
Comhshaoil (EPA) comhlachta reachtúil a
chosnaíonn an comhshaol do mhuintir na tíre
go léir. Rialaímid agus déanaimid maoirsiú ar
ghníomhaíochtaí a d'fhéadfadh truailliú a
chruthú murach sin. Cinntímid go bhfuil eolas
cruinn ann ar threochtaí comhshaoil ionas 
go nglactar aon chéim is gá. Is iad na 
príomh-nithe a bhfuilimid gníomhach leo 
ná comhshaol na hÉireann a chosaint agus
cinntiú go bhfuil forbairt inbhuanaithe.

Is comhlacht poiblí neamhspleách í an
Ghníomhaireacht um Chaomhnú Comhshaoil
(EPA) a bunaíodh i mí Iúil 1993 faoin 
Acht fán nGníomhaireacht um Chaomhnú
Comhshaoil 1992. Ó thaobh an Rialtais, is í
an Roinn Comhshaoil agus Rialtais Áitiúil a
dhéanann urraíocht uirthi.

ÁR bhFREAGRACHTAÍ
CEADÚNÚ

Bíonn ceadúnais á n-eisiúint againn i gcomhair na nithe
seo a leanas chun a chinntiú nach mbíonn astuithe uathu
ag cur sláinte an phobail ná an comhshaol i mbaol:

� áiseanna dramhaíola (m.sh., líonadh talún,
loisceoirí, stáisiúin aistrithe dramhaíola); 

� gníomhaíochtaí tionsclaíocha ar scála mór (m.sh.,
déantúsaíocht cógaisíochta, déantúsaíocht
stroighne, stáisiúin chumhachta); 

� diantalmhaíocht; 

� úsáid faoi shrian agus scaoileadh smachtaithe
Orgánach Géinathraithe (GMO); 

� mór-áiseanna stórais peitreail.

� Scardadh dramhuisce  

FEIDHMIÚ COMHSHAOIL NÁISIÚNTA  

� Stiúradh os cionn 2,000 iniúchadh agus cigireacht
de áiseanna a fuair ceadúnas ón nGníomhaireacht
gach bliain. 

� Maoirsiú freagrachtaí cosanta comhshaoil údarás
áitiúla thar sé earnáil - aer, fuaim, dramhaíl,
dramhuisce agus caighdeán uisce.

� Obair le húdaráis áitiúla agus leis na Gardaí chun
stop a chur le gníomhaíocht mhídhleathach
dramhaíola trí comhordú a dhéanamh ar líonra
forfheidhmithe náisiúnta, díriú isteach ar chiontóirí,
stiúradh fiosrúcháin agus maoirsiú leigheas na
bhfadhbanna.

� An dlí a chur orthu siúd a bhriseann dlí comhshaoil
agus a dhéanann dochar don chomhshaol mar
thoradh ar a ngníomhaíochtaí.

MONATÓIREACHT, ANAILÍS AGUS TUAIRISCIÚ AR 
AN GCOMHSHAOL
� Monatóireacht ar chaighdeán aeir agus caighdeáin

aibhneacha, locha, uiscí taoide agus uiscí talaimh;
leibhéil agus sruth aibhneacha a thomhas. 

� Tuairisciú neamhspleách chun cabhrú le rialtais
náisiúnta agus áitiúla cinntí a dhéanamh. 

RIALÚ ASTUITHE GÁIS CEAPTHA TEASA NA HÉIREANN 
� Cainníochtú astuithe gáis ceaptha teasa na

hÉireann i gcomhthéacs ár dtiomantas Kyoto.

� Cur i bhfeidhm na Treorach um Thrádáil Astuithe, a
bhfuil baint aige le hos cionn 100 cuideachta atá
ina mór-ghineadóirí dé-ocsaíd charbóin in Éirinn. 

TAIGHDE AGUS FORBAIRT COMHSHAOIL 
� Taighde ar shaincheisteanna comhshaoil a chomhordú

(cosúil le caighdéan aeir agus uisce, athrú aeráide,
bithéagsúlacht, teicneolaíochtaí comhshaoil).  

MEASÚNÚ STRAITÉISEACH COMHSHAOIL 

� Ag déanamh measúnú ar thionchar phleananna agus
chláracha ar chomhshaol na hÉireann (cosúil le
pleananna bainistíochta dramhaíola agus forbartha).  

PLEANÁIL, OIDEACHAS AGUS TREOIR CHOMHSHAOIL 
� Treoir a thabhairt don phobal agus do thionscal ar

cheisteanna comhshaoil éagsúla (m.sh., iarratais ar
cheadúnais, seachaint dramhaíola agus rialacháin
chomhshaoil). 

� Eolas níos fearr ar an gcomhshaol a scaipeadh (trí
cláracha teilifíse comhshaoil agus pacáistí
acmhainne do bhunscoileanna agus do
mheánscoileanna). 

BAINISTÍOCHT DRAMHAÍOLA FHORGHNÍOMHACH 

� Cur chun cinn seachaint agus laghdú dramhaíola trí
chomhordú An Chláir Náisiúnta um Chosc
Dramhaíola, lena n-áirítear cur i bhfeidhm na
dTionscnamh Freagrachta Táirgeoirí.

� Cur i bhfeidhm Rialachán ar nós na treoracha maidir
le Trealamh Leictreach agus Leictreonach Caite agus
le Srianadh Substaintí Guaiseacha agus substaintí a
dhéanann ídiú ar an gcrios ózóin.

� Plean Náisiúnta Bainistíochta um Dramhaíl
Ghuaiseach a fhorbairt chun dramhaíl ghuaiseach a
sheachaint agus a bhainistiú. 

STRUCHTÚR NA GNÍOMHAIREACHTA 

Bunaíodh an Ghníomhaireacht i 1993 chun comhshaol
na hÉireann a chosaint. Tá an eagraíocht á bhainistiú
ag Bord lánaimseartha, ar a bhfuil Príomhstiúrthóir
agus ceithre Stiúrthóir. 

Tá obair na Gníomhaireachta ar siúl trí ceithre Oifig:  

� An Oifig Aeráide, Ceadúnaithe agus Úsáide
Acmhainní 

� An Oifig um Fhorfheidhmiúchán Comhshaoil 

� An Oifig um Measúnacht Comhshaoil 

� An Oifig Cumarsáide agus Seirbhísí Corparáide  

Tá Coiste Comhairleach ag an nGníomhaireacht le
cabhrú léi. Tá dáréag ball air agus tagann siad le chéile
cúpla uair in aghaidh na bliana le plé a dhéanamh ar
cheisteanna ar ábhar imní iad agus le comhairle a
thabhairt don Bhord.
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Science, Technology, Research and Innovation for the Environment (STRIVE) 2007-2013

The Science, Technology, Research and Innovation for the Environment (STRIVE) programme covers 

the period 2007 to 2013.

The programme comprises three key measures: Sustainable Development, Cleaner Production and 

Environmental Technologies, and A Healthy Environment; together with two supporting measures: 

EPA Environmental Research Centre (ERC) and Capacity & Capability Building. The seven principal 

thematic areas for the programme are Climate Change; Waste, Resource Management and Chemicals; 

Water Quality and the Aquatic Environment; Air Quality, Atmospheric Deposition and Noise; Impacts 

on Biodiversity; Soils and Land-use; and Socio-economic Considerations. In addition, other emerging 

issues will be addressed as the need arises.

The funding for the programme (approximately €100 million) comes from the Environmental Research 

Sub-Programme of the National Development Plan (NDP), the Inter-Departmental Committee for the 

Strategy for Science, Technology and Innovation (IDC-SSTI); and EPA core funding and co-funding by 

economic sectors.

The EPA has a statutory role to co-ordinate environmental research in Ireland and is organising and 

administering the STRIVE programme on behalf of the Department of the Environment, Heritage and 

Local Government.

ENVIRONMENTAL PROTECTION AGENCY 
PO Box 3000, Johnstown Castle Estate, Co. Wexford, Ireland 
t 053 916 0600  f 053 916 0699   
LoCall 1890 33 55 99 
e info@epa.ie  w http://www.epa.ie
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