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Environmental Protection Agency

The Environmental Protection Agency (EPA) is
a statutory body responsible for protecting
the environment in Ireland. We regulate and
police activities that might otherwise cause
pollution. We ensure there is solid
information on environmental trends so that
necessary actions are taken. Qur priorities are
protecting the Irish environment and
ensuring that development is sustainable.

The EPA is an independent public body
established in July 1993 under the
Environmental Protection Agency Act, 1992.
Its sponsor in Government is the Department
of the Environment, Heritage and Local
Government.

OUR RESPONSIBILITIES
LICENSING

We license the following to ensure that their emissions
do not endanger human health or harm the environment:

B waste facilities (e.g., landfills,
incinerators, waste transfer stations);

B large scale industrial activities
(e.g., pharmaceutical manufacturing,
cement manufacturing, power plants);

B intensive agriculture;

B the contained use and controlled release
of Genetically Modified Organisms (GMOs);

W large petrol storage facilities.

B Waste water discharges

NATIONAL ENVIRONMENTAL ENFORCEMENT

B Conducting over 2,000 audits and inspections of
EPA licensed facilities every year.

B Overseeing local authorities” environmental
protection responsibilities in the areas of - air,
noise, waste, waste-water and water quality.

B Working with local authorities and the Gardai to
stamp out illegal waste activity by co-ordinating a
national enforcement network, targeting offenders,
conducting investigations and overseeing
remediation.

B Prosecuting those who flout environmental law and

damage the environment as a result of their actions.

MONITORING, ANALYSING AND REPORTING ON THE
ENVIRONMENT

B Monitoring air quality and the quality of rivers,
lakes, tidal waters and ground waters; measuring
water levels and river flows.

B Independent reporting to inform decision making by
national and local government.

REGULATING IRELAND'S GREENHOUSE GAS EMISSIONS

B Quantifying Ireland’s emissions of greenhouse gases
in the context of our Kyoto commitments.

B Implementing the Emissions Trading Directive,
involving over 100 companies who are major
generators of carbon dioxide in Ireland.

ENVIRONMENTAL RESEARCH AND DEVELOPMENT

B (Co-ordinating research on environmental issues
(including air and water quality, climate change,
biodiversity, environmental technologies).

STRATEGIC ENVIRONMENTAL ASSESSMENT

B Assessing the impact of plans and programmes on
the Irish environment (such as waste management
and development plans).

ENVIRONMENTAL PLANNING, EDUCATION AND
GUIDANCE

B Providing guidance to the public and to industry on
various environmental topics (including licence
applications, waste prevention and environmental
regulations).

B Generating greater environmental awareness
(through environmental television programmes and
primary and secondary schools’ resource packs).

PROACTIVE WASTE MANAGEMENT

B Promoting waste prevention and minimisation
projects through the co-ordination of the National
Waste Prevention Programme, including input into
the implementation of Producer Responsibility
Initiatives.

B Enforcing Regulations such as Waste Electrical and
Electronic Equipment (WEEE) and Restriction of
Hazardous Substances (RoHS) and substances that
deplete the ozone layer.

B Developing a National Hazardous Waste Management
Plan to prevent and manage hazardous waste.

MANAGEMENT AND STRUCTURE OF THE EPA

The organisation is managed by a full time Board,
consisting of a Director General and four Directors.

The work of the EPA is carried out across four offices:
B Office of Climate, Licensing and Resource Use

B Office of Environmental Enforcement

B Office of Environmental Assessment

B Office of Communications and Corporate Services

The EPA is assisted by an Advisory Committee of twelve
members who meet several times a year to discuss
issues of concern and offer advice to the Board.
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Executive Summary

Projected changes in future climate are inherently
uncertain. This uncertainty stems largely from the fact
that, even for a specified emissions scenario, global
climate model (GCM) simulations result in a range
of plausible scenarios being modelled. While most
models do agree that the globally averaged surface
temperature will increase due to increasing atmospheric
concentrations of greenhouse gases, there is a significant
divergence between models in both the spatial and
temporal projections of changes in precipitation. These
differences are most pronounced at the regional scale.
For example, differences are apparent in the magnitude
of projected temperature changes between GCMs; for
precipitation projections, both magnitude and direction
of change can vary between GCMs. Nonetheless,
regional scale climate information is necessary if robust
adaptation strategies are to be developed.

Until recently, the use of a single climate scenario
or climate trajectory was common in the literature.
However, reliance on the output from a single GCM
means there is significant potential for gross under-
or over-estimation of the associated risks, which may
result in poor decision-making and increase the risk of
maladaptation.

This report presents an overview of the uncertainties
that cascade or propagate through the climate modelling
framework — from emissions scenarios to subsequent

vil

climate projections. It describes a methodology that
has been developed for quantifying such uncertainties
at the regional scale. Initially, a methodology adopted
from the dynamical modelling community was used
to ‘pattern scale’ previously downscaled emissions
scenarios for selected locations in Ireland. This enabled
the quantification of projected changes in temperature
and precipitation for the end of the present century
across four marker emissions scenarios.

In order to produce probabilistic-based scenarios of
temperature and precipitation for the selected station
locations, a Monte Carlo analysis was employed in
conjunction with three different estimates of future
warming. The projected changes in both temperature
and precipitation were found to display a considerable
spread in values. For example, winter temperature at
one location suggested an increase from between 0.6
and 6.6°C by the 2080s’ (2070-2099) period.

While the methodology outlined should enable the rapid
development of probabilistic climate projections, based
on alimited availability of downscaled climate scenarios,
caution needs to be expressed in the interpretation of
the results outlined in this report. While they provide a
basis for assessing the potential risks associated to be
quantified, at least one study has illustrated that details
of the level of risk are not independent of the methods
employed (New et al., 2007).






1 Introduction

Future projections of anthropogenic climate change
arising from increased concentrations of atmospheric
CO, are subject to a high degree of uncertainty
(Jones, 2000). This stems mainly from both aleatory
(‘unknowable’ knowledge) and epistemic, or systematic
(incomplete’ knowledge) uncertainties (Hulme and
Carter, 1999; Oberkampf et al., 2002).

Aleatory uncertainties are considered to be irreducible
and result from an inherent indeterminacy of the system
being modelled (Hulme and Carter, 1999; Oberkampf
et al., 2002). For example, future human behaviour and
actions are not predictable and therefore require future
emissions scenarios to be prescribed on the basis of

storylines or indeterminate scenario analysis (Box 1.1)
(Hulme and Carter, 1999).

Epistemic or systematic uncertainties arise primarily
from a lack of complete knowledge of the system,
and these are considered to be reducible as our
understanding or knowledge of the particular system or
environment increases. For example, the envelope of
possible values of the sensitivity of the climate system
may be narrowed as understanding of the key climate
processes improves. Conversely, additional research
could also show that a particular process, which had
not been included previously, could mean an increase
in the climate sensitivity envelope.

Box 1.1. Special Report on Emissions Scenarios (SRES) with four scenario ‘families’ illustrated.

The A1 storyline and scenario family describes a
future world of very rapid economic growth, global
population that peaks in mid-century and declines
thereafter, and the rapid introduction of new and
more efficient technologies. Major underlying themes
are convergence among regions, capacity building,
and increased cultural and social interactions, with
a substantial reduction in regional differences in per
capita income. The A1 scenario family develops into
three groups that describe alternative directions of
technological change in the energy system. The three
A1 groups are distinguished by their technological
emphasis: fossil intensive (A1FI), non-fossil energy
sources (A1T), or a balance across all sources (A1B).

The A2 storyline and scenario family depicts a very
heterogeneous world. The underlying theme is self-
reliance and the preservation of local identities.
Fertility patterns across regions converge very
slowly, resulting in a continuously increasing global
population. Economic development is primarily
regionally oriented and per capita economic growth
and technological change are more fragmented and
slower than in other storylines.

The B1 storyline and scenario family describes a
convergent world with the same global population
that peaks in mid-century and declines thereafter,
as in the A1 storyline, but with rapid changes
in economic structures towards a service and
information economy, with reductions in material
intensity, and the introduction of clean and resource-
efficient technologies. The emphasis is on global
solutions to economic, social, and environmental
sustainability, including improved equity, but without
additional climate initiatives.

The B2 storyline and scenario family describes a
world in which the emphasis is on local solutions to
economic, social, and environmental sustainability.
It is a world with a continuously increasing global
population at a rate lower than in A2, intermediate
levels of economic development, and less rapid and
more diverse technological change than in the B1
and A1 storylines. While the scenario is also oriented
towards environmental protection and social equity,
it focuses on local and regional levels.

Source: Intergovernmental Panel on Climate Change (IPCC), 2001a after Nakicenovic et al., 2000.
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In addition, the climate system is considered to be a
highly dynamical, non-linear system, which is sensitive
to initial conditions. For a similar forcing, a range of
possible climate states or equilibria is possible. There
is also evidence for the presence of thresholds in the
ocean-atmosphere system, which once exceeded,
can result in rapid transition between stable climate
equilibrium or ‘eigenstates’. The exceedence of such
thresholds in the climate system is associated with
abrupt climate changes as the climate system shifts
from one stable state to another.

Both aleatory and epistemic uncertainties can arise from
a number of sources, many of which are outside the
researcher’s direct control. Some sources of uncertainty
that were commonly encountered by Intergovernmental
Panel on Climate Change (IPCC) authors of the Third
Assessment Report (TAR) (2001a) are:

1. Problems with data:
a) Missing components or errors in the data;

b) Noise in the data associated with biased or
incomplete observations;

c) Random sampling error and biases (non-
representativeness) in a sample.

2. Problems with models:

a) Known processes but unknown functional
relationships or errors in the structure of the
model;

b) Known structure but unknown or erroneous
values of some important parameters;

c) Known historical data and model structure,
but reasons to believe parameters or model
structure will change over time;

d) Uncertainty regarding the predictability (e.g.
chaotic or stochastic behaviour) of the system
or effect;

e) Uncertainties introduced by approximation
techniques used to solve a set of equations
that characterize the model.

3. Other sources of uncertainty:
a) Ambiguously defined concepts and terminology;
b) Inappropriate spatial/temporal units;

c) Inappropriateness of/lack of confidence in
underlying assumptions;

d) Uncertainty due to projections of human
behaviour (e.g. future consumption patterns,
or technological change), which is distinct
from uncertainty due to ‘natural’ sources (e.g.
climate sensitivity, chaos).

(from Moss and Schneider, 2000: 38; IPCC, 2001b)

Consequently, future projections of climate for a given
emissions scenario will always result in a range of
possible future scenarios being simulated (Hulme and
Carter, 1999). Figures 1.1 and 1.2 illustrate the range
in projected mean annual temperature and precipitation
response in Europe for the 2080-2099 period, relative
to 1980-1999, under the A1B emissions scenario, for
each of 21 multi-model data (MMD") models and the
mean of all models. Despite using the same emissions
scenario, A1B, in all instances, significant differences
are apparent between the various model realisations.
Such discrepancies in model projections present
significant challenges for a policy community seeking
to develop cost-effective adaptation strategies which
are based on these projections. While uncertainty
and confidence limits are the hallmark of science,
communicating such ideas to the wider community has
been less than effective.

1 The Intergovernmental Panel on Climate Change (IPCC)
refers to the World Climate Research Programme (WCRP)
Coupled Model Intercomparison Project phase 3 (CMIP3)
experiments, with idealised climate change scenarios, as
the ‘multi-model data set’ (MMD). This naming convention
is also applied here.
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Annual Mean Surface Air Temp Response (°C)
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Figure 1.1. Annual mean temperature response in Europe for the years 1980-1999 to 2080-2099 under the
A1B scenario, averaged over all realisations available for each of 21 multi-model data (MMD) models. The
mean change, representing an average over all models is shown in the lower right-hand corner (IPCC, 2007).
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Annual Mean Precip Response (%)

Figure 1.2. Annual mean precipitation response in Europe for the years 1980-1999 to 2080-2099 under the
A1B scenario, averaged over all realisations available for each of 21 multi-model data (MMD) models. The
mean change, representing an average over all models is shown in the lower right-hand corner (IPCC, 2007).
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Figure 1.3. Each stage in the progression from an emissions scenario to the final climate response contributes
to the uncertainty within a climate model projection due to both aleatory and epistemic uncertainties. The

resulting uncertainties cascade through to the final output. (Dark shaded areas represent the mean *1
standard deviation for 19 model tunings. The lighter shaded areas illustrate the change in the uncertainty
range, if carbon cycle feedbacks are assumed to be lower or higher than in the medium setting) (Figure after

IPCC, 2007).

If not accounted for adequately, the various sources of
uncertainties that exist at each level in the modelling
process can result in large uncertainties being
associated with the model outcome (Fig. 1.3). Climate
model projections are inherently uncertain because of
the ‘cascade of uncertainty’ that results from translating
future socio-economic storylines into greenhouse gas
emissions and subsequent climate change scenarios
(Moss and Schneider, 2000; Jones, 2000; Wilby, 2005)
(Eig. 1.4). Such uncertainties need to be acknowledged

at the very minimum and quantified if at all possible.

Moreover, the possibility of ‘surprise’ outcomes or
unimaginable abrupt events that may occur because
of the non-linear responses of the climate system to
anthropogenic forcing must be allowed for (Hulme and
Carter, 1999; Moss and Schneider, 2000). While no
global climate model (GCM) to date has produced a
sudden collapse in the thermohaline circulation (THC)
in the North Atlantic, most GCMs do show a reduction in
the THC’s strength caused by increasing anthropogenic
emissions, which may partially offset the resulting
warming (IPCC, 2007). A reduction in the strength of the

I | — r—r I —— —r
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Figure 1.4. Cascade of uncertainties (IPCC, 2001a modified after Jones, 2000).
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THC would have significant impacts for the development
of adaptation strategies, particularly in Europe, where
the rate of warming may be less than expected.

It is thought that under certain climate regimes, resulting
in increased freshwater fluxes into the North Atlantic,
the THC may be prone to a shift from its present ‘on’
state to a colder ‘off’ state (Broecker and Hemming,
2001; Broecker, 2006). Evidence from the Younger
Dryas (~11,000 years ago) suggests that this shift
could happen quite rapidly, possibly over a timescale
as little as 20-50 years. While such ‘surprise’ events
are considered to have a low probability of occurrence,
their potential impact could be very large.

A number of approaches have been developed to
address some of the issues that are associated with
uncertainties in climate model projections, such as
adopting a ‘best guess’ framework or taking the mean
or median value from a range of scenarios (e.g.
Fealy and Sweeney, 2007; 2008). Nevertheless, such
top-down trajectory approaches are not considered
particularly useful for subsequent use in sensitivity
or risk analysis, because of an inability to attach
probabilities or likelihoods to the selected climate
scenario. In addition, without a clear statement on the
uncertainties that have or have not been incorporated
into the research, policy- and decision-makers need to
exercise extreme caution as any subsequent decisions
may not encompass the full range of associated risks.
Such policy decisions can give rise to maladaptation
(over- or under- adaptation). A further weakness of
employing such top-down approaches using a single-
emissions scenario is that they have tended to dismiss
the possibility of local adaptation or assume only an
arbitrary level of adaptation (Dessai and Hulme, 2003).

As an alternative, sensitivity analyses have been used
to assess the sensitivity of a system to incremental
changes in climate, and constitute a bottom-up
approach to informing climate adaptation policy (Dessai
and Hulme, 2003). In order to test the sensitivity of a
systemto changes, a single input is varied while all other
inputs are held constant. More recent developments
in sensitivity analysis try to account for simultaneous
changes in a number of variables and can also take
into account uncertainty in inputs (Katz, 2002).

A number of authors have employed analogue
approaches, where present-day, or recent historic,
climate variability is used as a proxy for near-term

climate change (Naess et al., 2005; Pulwarty and
Melis, 2001; Thomas et al., 2007). Such approaches,
where adaptation measures are assessed against past
climate, have also been suggested as an alternative
to the probabilistic approach in impacts assessments.

However, such bottom-up approaches are not without
their opponents. While sensitivity analysis can be
used to generate response surfaces from which risk
thresholds can be identified (such as ‘dangerous’
climate change), the ability to assess uncertainties
in multiple inputs requires large computing power
(Beven, 2001). Additionally, sensitivity analysis may
not necessarily produce consistent and plausible
scenarios of future changes (Jones and Mearns, 2003),
nor can the timing of a projected impact be assessed. A
significant weakness of the analogue approach is that
it assumes that the past climate encompasses the full
range of variability that is likely to occur in the future.
In spite of these weaknesses, the major criticism that
exponents of bottom-up approaches have of attaching
probabilities to climate change projections is that the
probabilistic approach takes no account of the adaptive
capacity of the system being impacted (Dessai and
Hulme, 2003).

Ultimately, a combination of both approaches is
required, so that probabilistic-based climate scenarios
and sensitivity analysis are combined to determine
the vulnerability or resilience of a particular sector,
community or infrastructure to climate change. Based
on the vulnerability assessment, the ‘local’ level of
resilience to a particular change in climate can be
determined and, based on probabilistic scenarios, a
suitable adaptation measure implemented.

While the single-trajectory top-down approach was
common practice in the peer-review literature until
recently, quantification of uncertainties is becoming
increasingly more feasible, primarily because of
increased data availability from more than one GCM
modelling centre (see Figs 1.1 and 1.2 above). While
a scenario represents a plausible future outcome, its
usefulness is limited in that it has no degree of probability
attached (Jones, 2000). In an assessment of modelling
uncertainty, Murphy et al. (2004) used a pattern-scaling
technique from a single GCM to estimate regional
climate uncertainty according to a range of possible
changes in averaged global surface temperatures. They
show in one instance that the pattern-scaling approach
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captured less than 10% of the variance in tropical
precipitation and concluded that a single prediction from
even the most sophisticated GCM will be of limited use
for impact assessment. They suggest that only multi-
model ensembles, which sample as wide a range of
model uncertainties as possible, can reliably show the
spread of possible regional changes reliably.

The use of probabilities is a well-established technique
in short- and medium-range weather forecasting
where uncertainty in model output is represented by
the dispersion of an ensemble (Raisanen and Palmer,
2001). The incorporation of probability distribution
functions (PDFs) or cumulative distribution functions
(CDFs) in impact assessments is a logical development
when dealing with multi-model ensembles from GCMs in
order to try and quantify uncertainties of future climates
at the regional scale. However, their use also presents
a number of new challenges, particularly for policy-
makers more familiar with the single ‘best estimate’ of
future changes in climate (Wilby and Harris, 2006).

Increasingly, the use of probabilities in climate
change impact assessments is becoming more widely
accepted. As researchers move from employing
single trajectory, top-down approaches towards the
use of multiple scenarios from multiple GCMs in
climate impact assessments, attributing likelihoods to
outcomes becomes increasingly important, particularly
if the outcomes are to be relevant to policy-makers.
For example, if in the case of a regional projection of

precipitation (a variable which is inherently difficult to
simulate accurately) two GCMs produce scenarios with
similar magnitude changes but opposite in sign (Giorgi
and Francisco, 2000) — for instance, a 10% increase
and 10% decrease — should a policy maker assume
that there is going to be 0% change in precipitation.

It is likely that adaptation measures required for a
10% increase in precipitation (possibly flood defences)
will be significantly different to those required for a
decrease in precipitation (such as additional reservoir
capacity). If probabilities could be attached to either
outcome, which take account of the key uncertainties,
the possibility exists for policy-makers to make
‘coherent risk management decisions’ and ‘within
resource constraints’ (Paté-Cornell, 1996).

An advantage to incorporating uncertainties in the
form of probabilities is that many of the potential ‘end-
users’ of climate scenarios, such as engineers and
water-resource managers, already use probabilities
in estimating return periods for floods or structural
reliability (Paté-Cornell, 1996; Dessai and Hulme,
2003). Strictly, probabilities employed by engineers
are frequentist or classical probabilities, while climate
change researchers use subjective or Bayesian
probabilities (Dessai and Hulme, 2003). However,
there is a significant level of understanding between
both the classical and Bayesian schools, which means
that probabilities associated with climate change can
be communicated effectively to the user community.
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2 Key Sources of Uncertainties

Uncertainties associated with GCM projections of future growth, population growth, uptake of energy-efficient
climate change arise from a number of sources (after technologies or continued reliance on fossil fuels and
Hulme and Carter, 1999; Jones, 2000). The key sources regional versus global development patterns. Of the 40
are: scenarios developed, four marker scenarios, which are

characteristic of the four scenario families (A1, A2, B1
and B2), capture the range of uncertainties associated

1. Emissions scenarios;

2. Climate sensitivity; with the emissions and driving forces spanned by the full
3. Climate system predictability; set of the 40 scenarios (Nakicenovic et al., 2000) (see
4. Sub-grid scale variability. Box 1.1 in Section 1 above). Such future projections

of population and development, though ultimately
2.1 Emissions Scenarios dependent on models and therefore subject to significant
uncertainties themselves, do present a range of equally

Due to the fact that human actions are inherently plausible future ‘worlds'.

unpredictable, emissions scenarios, which are influenced

by population growth, energy use, economic activity and Atmospheric CO, concentrations levels vary significantly
technology, are also unpredictable in any deterministic depending on the scenario, ranging from 540 to 970
sense. As a consequence, future emissions scenarios parts per million volume (ppmv) by 2100 (IPCC, 2007),
are prescribed according to 40 different ‘storylines’, which compared to present-day globally averaged atmospheric
represent different rates of future world development. CO, concentration levels of just over 384 ppmv (Tans,
These are based on various scenarios of socio-economic 2009). Figure 2.1 illustrates the historical (20th century)
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Figure 2.1. Historical (20th century) and projected (21st century) emissions of CO,, CH, and SO, for six
illustrative Special Report on Emissions Scenarios (SRES) emission scenarios (A1B, A1FI, A1T, A2, B1 and
B2) and their corresponding historical and projected atmospheric concentration levels (IPCC, 2007).



R. Fealy (2005-FS-33)

and projected (21st century) emissions and resulting
atmospheric concentration levels of carbon dioxide
(CO,), methane (CH,) and sulphur dioxide (SO,) for the
six ‘families’ of scenarios, namely, A1B, A1FI, A1T, A2,
B2 and B1.

While any particular scenario may never be realised,
and hence no associated probabilities can be attached
to the scenarios, they do provide an essential tool for
tentatively exploring potential future changes in the
climate system arising from anthropogenic activities.

2.2 Climate Sensitivity

Climate sensitivity is defined as ‘the equilibrium change
in global and annual mean surface air temperature, T,
due to an increment in downward radiative flux, Rf, that
would result from sustained doubling of atmospheric
CO, over its pre-industrial value of ~280 ppm (2 x CO,
~560 ppm)’ (Roe and Baker, 2007: 629).

A projected doubling of CO, will reduce the heat
escaping from the top of the atmosphere (TOA) by
approximately 3.7 Watts per square meter (Wm-
s). In the absence of any feedback processes, the
Stefan-Boltzmann Law (which relates the amount of
electromagnetic radiation emitted by a black body to its
temperature), can be used to calculate the change in
surface temperature of the Earth due to a change in
radiative forcing arising from a doubling of CO, (Eqn
2.1):

E =¢eoT*

Where

E = Energy emitted

€ = Emissivity of object

0 = 5.67 x 10-8 Wm2 K+ (Stefan-Boltzman constant)
T = Temperature in Kelvin

Let

E, = 240 W/m? (net outgoing radiation)

E, = 243.7 W/m? (net outgoing radiation due to a
doubling of CO,)

T, = 288 K (approximate present day temperature of the
Earth’s surface)

T, = Earth’s surface temperature due to an increase in
radiative forcing arising from a doubling of CO,,

_E1_E2

S 474
T

€0

Solving for T,
T, =289.1
T,-T,=289.1-288=1.1K

Equation 2.1. The Stephan-Boltzmann equation,
which relates the amount of electromagnetic
radiation emitted by a black body to its temperature,
employed to calculate the change in surface
temperature of the Earth due to a change in radiative
forcing arising from a doubling of CO,. Feedbacks
are not included.

While Equation 1, which includes a number of simplifying
assumptions, illustrates the climate response to a
doubling of pre-industrial CO, levels based on current
understanding, it does not take account of feedbacks
within the climate system, which act to amplify or
dampen the climate response.

Estimates of the equilibrium climate sensitivity are
dependent on the sensitivity of the climate response to
radiative feedbacks associated with water vapour, lapse
rates (Bony et al., 2006), clouds, snow cover and sea ice
extent (Fig. 2.2). As various climate models differ in their
representation of the physical process (cloud amount,
cloud type, optical properties, quantity of water vapour,
sea ice extent, etc.), parameterisations schemes and
interactions or feedbacks between processes (after
Bates, unpublished), the result is an envelope of values
representing equilibrium climate sensitivity.

The TAR (IPCC, 2001a) estimated that the likely range
for equilibrium climate sensitivity, including feedbacks,
was 1.5 to 4.5°C. This estimate was based on expert
assessments of climate sensitivity as simulated by
atmospheric GCMs coupled to non-dynamic slab-
oceans (IPCC, 2007). However, the TAR did not attribute
probabilities to the climate sensitivity range, with the
implication that all values within the quoted range were
equally plausible.

A significant contribution to inter-model differences in
estimating the equilibrium climate sensitivity arises from
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Figure 2.2. Comparison of global climate model (GCM) climate feedback parameters (W m*' K' = watts
per meter-kelvin) for water vapour (WV), cloud (C), surface albedo (A), lapse rate (LR) and the combined
water vapour lapse rate (WV LR). ALL represents the sum of all feedbacks. Vertical bars indicate estimated
uncertainty ranges in the calculation of feedbacks (Bony et al., 2006).

differences in model representations of cloud feedbacks,
with low cloud amount making the largest contribution to
the associated uncertainty (Fig. 2.3) (Webb et al., 2006;
Williams et al., 2006; IPCC, 2007). However, Williams
et al. (2006) suggest that the relationship between
cloud radiative forcing and local climate response may
not be model specific, as a relationship was found to
exist in models that had significantly different structural

2.0

elements, and therefore the uncovered relationship
may have relevance in the real world. The advent of
improved cloud radiative parameterisation schemes
based on ongoing research into cloud feedbacks, though
computationally expensive, should mean improved
GCM simulations of the associated radiative forcings
and result in a narrowing of the climate sensitivity
envelope (Bates, unpublished; Bony, 2006).
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Figure 2.3. Projected changes in the global mean cloud radiative forcing (W m-2) from 20 atmosphere ocean
global climate models (AOGCMs) employed in the Fourth Assessment Report. Numbers correspond to the

model ID number (IPCC, 2007).
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In an effort to provide probabilistic-based estimates
of the climate sensitivity, Wigley and Raper (2001)
employed a Bayesian type approach in which five
sources of uncertainty were considered — (i) emissions,
(ii) climate sensitivity, (iii) carbon cycle, (iv) aerosol
forcing and (v) ocean mixing — with a climate sensitivity
range of 1.7 to 4.2°C derived from 7 atmosphere ocean
global climate models (AOGCMs). They made the
assumption that the 1.5 to 4.5°C range quoted in the
TAR corresponded to the 90% confidence interval, as
no confidence intervals had been attached to this range
originally. They concluded that the warming rate at the
upper-limit of that quoted in the TAR (0.5°C/decade),
was less likely than warming towards the centre (0.3°C/
decade) (Wigley and Raper, 2001).

Based on a review of recent research on assessing the
equilibrium climate sensitivity in the Fourth Assessment
Report (IPCC, 2007), the likely range of equilibrium
climate sensitivity was estimated to lie between 2.0 and
4.5°C (5 to 95% probability), with a most likely value of
3°C for a normal distribution or between 2.1 and 4.6°C
(5 to 95% probability) with a median value of 3.2°C
for a lognormal distribution (Fig. 2.4) (IPCC, 2007).

0.8
0.7

Probability Density

A number of different methods were employed to
constrain the likely range of the climate sensitivity,
the
relationship between tropical sea surface temperatures

including the present-day climatology and
(SSTs) and climate sensitivity during the Last Glacial
Maximum (LGM), which incorporated proxy records
of SSTs (Eig. 2.4) (IPCC, 2007). Based on the various
methods for determining the likely range of equilibrium
climate sensitivity, values above 4.5°C could not be
excluded, largely due to feedback processes, while the
lower limit of equilibrium climate sensitivity is very likely
to be larger than 1.5°C (IPCC, 2007).

2.3  Climate System Predictability

While all current GCMs suggest increasing global
mean temperatures as a consequence of increased
atmospheric concentrations of
species of gases, significant differences are apparent in
the magnitude of the projected changes. Similarly, while

radiatively active

all GCMs project changes to occur in the temporal and
spatial distribution of precipitation, both the magnitude
and direction vary significantly between GCMs.

Forster/Gragary 06
Frame 05

Knutti 02
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Figure 2.4. Probability distribution functions (PDFs) representing estimates of the equilibrium climate
sensitivity based on various techniques, including two estimates from the Last Glacial Maximum (LGM)

(IPCC, 2007).
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A range of components of the climate system vary over
different time horizons and spatial scales. For example,
while the atmosphere is very unstable and can respond
to a forcing very rapidly, the oceanic response tends to be
more conservative. Even without a change in the external
forcing, the natural variability of the climate system,
because of natural variations in the climate system
such as El Nifio or the North Atlantic Oscillation (NAO),
has a fundamental role in influencing the interannual to
millennial scale variability of the system (IPCC, 2001b).
A GCM’s ability to capture such modes of variability and
how they are likely to respond in a warmer world will have
a significant impact on the resulting projections.

Feedback processes also play an important role in
determining a climatic response to a perturbation;
in complex, non-linear systems, such as the climate
system, small perturbations can result in chaotic
behaviour. Both the climate system and climate models

are sensitive to initial conditions.

Despite the inherently chaotic behaviour of the climate,
its quasi-linear response, reproduced in many GCMs, to
a change in forcing suggests that some elements of the
large-scale changes can be modelled with reasonable
confidence. In a study of climate models’ capability to
reproduce the large-scale forcing of NAO, Stephenson
and Pavan (2003) found that 13 out of 17 models
were able to capture the key large-scale patterns of
surface temperature, with 10 models producing similar
indices to the observed NAO. It is likely therefore
that, while evidence suggests that certain elements of
the climate system may be partly predictable (IPCC,
2001b; Lambert and Boer, 2001; Stephenson and
Pavan, 2003), not all the key processes are adequately
captured or modelled within a particular GCM, giving
rise to differences between models, and between
models and observations (Fig. 2.5 (a) and (b)).

To intercompare climate model output and observations,
a number of intercomparison studies have been
undertaken, including the Atmospheric Model
Intercomparison Project (AMIP) and the Coupled Model
Intercomparison Project (CMIP1-5). These studies
suggest that (i) different models reproduce different
components of the climate system with varying levels
of success, with no single model being the most skilful
at reproducing all the components; and (ii) mean model

12

output or averaging of ensembles provides a better fit
to observations than any one individual model (Lambert
and Boer, 2001).

2.4  Sub-grid Scale Variability

Owing to computational limitations, the typical spatial
resolution of many AOGCMs is currently in the order of
greater than 100 square kilometres (T21 ~500km; T42
~250km; T63 ~180km and T106 ~110km). While this
has been demonstrated as adequate to capture large-
scale variations in the climate system, many important
processes occur at much smaller spatial scales (such as
processes associated with convective cloud formation
and precipitation), and thus are too fine to be resolved
in the modelling process.

Many  climate therefore

parameterisation,

processes
or empirical

require
approximation, and
as such their effects can only be estimated, rather
than calculated on a physical basis, within a climate
model. The use of parameterisation schemes, which
contribute to model uncertainty, assume that present-
day parameterisations are valid under conditions of a
changed climate. Such parameterisations, reflecting
complex processes which are unable to be resolved,
represent a simplification of such processes and
ultimately lead to model errors (Tebaldi and Knutti,
2007).

A number of approaches have been employed to
estimate the impact of parameter uncertainty within
a GCM. One such approach is the perturbed physics
ensemble (PPE) method, which seeks to quantify
uncertainties associated with parameterisation schemes
(Murphy et al., 2004; Tebaldi and Knutti, 2007). The PPE
approach varies the uncertain model parameters, and
their uncertainty ranges, systematically based on expert
knowledge of the physical processes, within the model
to produce multiple ensemble members from which a
probability distribution of future change can be derived.

For conservatively changing large-scale features of
the climate system, such as mean sea-level pressure
or geopotential height (height in metres of a pressure
field), sub-grid scale processes are unlikely to unduly
influence the variable being modelled. However,
variables such as humidity, which operate at sub-grid
spatial scales, and are therefore parameterised, are
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Figure 2.5 (a) and (b). Coupled Model Intercomparison Project 3 (CMIP3) 20th century model simulations
for (a) Diurnal temperature range and (b) annual precipitation zonally averaged. Model data represents the
period 1980-1999, while observed data for diurnal temperature is for the period 1961-1990 (Climate Research
Unit [CRU]) and for precipitation, the period 1980-1999 (Climate Modelling, Analysis and Prediction [CMAP])
(IPCC, 2007).
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not likely to be accurately simulated within a GCM,
particularly at the regional scale.

For a location such as Ireland, where the total land area
is represented by a single GCM grid box, the impacts
of sub-grid scale variability are particularly relevant for a
number of reasons. Differences in elevation or orography,
and the morphology of the orography, between the west
and east coasts, play a significant role in determining
the distributional characteristics of precipitation, yet a
single value for elevation is employed to represent the
land area of Ireland in climate models, due to the coarse
spatial resolution employed by many GCMs. Similarly,
land use types, vegetation and soil characteristics, all of
which influence climate processes at the regional scale,
vary significantly across the country, yet are represented
within the climate model by a single approximated value.

As a consequence of the coarse spatial resolution of
most GCMs, there is a mismatch between the spatial
scale at which GCMs operate and that required by
impact modellers and policy-makers, who are faced
with decision-making at city or town scale in developing
appropriate and suitable adapting strategies. To address
this scale mismatch, a number of techniques have been
developed to ‘downscale’ GCM output to finer spatial
and temporal scales. Regional climate models (RCMs)
and statistical downscaling are two such techniques that
have become the primary means by which regional- or
local- scale information is derived from a parent GCM(s).
This additional step, in downscaling GCM output to
the regional scale, also contributes to the cascade of
uncertainty within the climate modelling framework, as
uncertainties in the parent GCM can propagate through
to the downscaled climate projections.

Figure 2.6 shows a comparison between the percentiles
of standardised monthly reanalysis data (an analysis
system to perform data assimilation of observed data
in a consistent framework) from the National Centres
for Environmental Prediction (NCEP) and model output
data from three GCMs, namely, the Canadian Centre
for Climate Modelling and Analysis (CCCma-CGCM2),
Australia’s Commonwealth Scientific and Industrial
Research Organisation (CSIRO-Mk2, referred to in
figures as CSIRO) and the United Kingdom’s Hadley
Centre Coupled Model (HadCM3). These GCMs
were previously employed to statistically downscale
climate model data for Ireland (Fealy and Sweeney,
2007; 2008a; 2008b). The percentile plots show
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good agreement between the observed and GCM
modelled atmospheric fields of sea-level pressure,
vorticity (calculated variable) and geopotential height at
500 hPa. However, for the atmospheric and surface
moisture variables, relative humidity at 500 hPa, near
surface 2-metre relative humidity and specific humidity, the
GCMs are shown to systematically over-estimate below-
average humidity and under-estimate above-average
humidity. Such moisture variables are often crucial for
determining changes in sub-grid scale precipitation (both
dynamically, through parameterisation schemes, and
empirically, as a candidate predictor variable), which is
an important impacts relevant variable.

Differences between model output and observed data at
the regional and grid scale also arise due to an offset in
temporal variability between the modelled and observed
data. All GCMs appear to capture the shape of the annual
cycle of near surface 2-metre temperature adequately
(Fig. 2.7 (a)), while two models, CSIRO Mk2 and
CGCM2, show a temporal offset in the peak in the annual
temperature cycle when compared to the observations.
For near surface 2-metre relative humidity, all models are
shown to be much less skilful in reproducing either the
shape of the annual cycle or timing of minimum humidity
(Fig. 2.7 (b)). Indeed, one model simulation (CSIRO
Mk2), fails to reproduce either the magnitude or direction
of change in humidity for particular months.

As a consequence of the various sources of uncertainty
outlined above, significant regional variations occur
between model projections, even when forced with
Model
representation of physical processes, parameterisation

the same emissions scenario. structure,
schemes and sub-grid scale variability all contribute to
differences between GCMs at the global, regional and
grid scale (Fig. 2.8). While a particular model’s ability to
reproduce the statistics of the observed climate should
provide a degree of confidence in a model’s skill to
simulate future climate, it does not guarantee that a
model simulates key processes and feedbacks correctly
as compensating errors may hide potential problems
(Raisanen, 2001). In an analysis of GCMs from CMIP2,
Raisanen (2001) found that when climate changes are
averaged over areas larger than individual grid boxes,
the relative agreement between models was found to
improve. Model internal variability was also found to
increase over a decreasing grid domain size (Raisanen,
2001).
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Figure 2.6. Percentile plots comparing National Centers for Environmental Prediction (NCEP) reanalysis and
global climate model (GCM) model predictors (A2 emissions scenario) for a selection of atmospheric and
surface variables for the baseline/control period of 1961-1990 for the grid box representing Ireland. (a) MSLP
= mean sea-level pressure (surface); (b) vorticity (500 hPa), (c) geopotential height (500 hPa), (d) relative
humidity (500 hPa) and (e) specific humidity (surface) (data after Wilby and Dawson, 2007).
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Figure 2.7. Monthly near surface (2m) temperature (a) and relative humidity (b) from NCEP, CGCM2, CSIRO
Mk2 and HadCM3 models for the observed baseline and model control period of 1961-2000. Global climate
model (GCM) predictor values are based on the A2 emissions scenario. All values were standardised relative
to their 1961-1990 mean and standard deviation and regridded to a common spatial resolution of 2.5° x 3.75°
(data after Wilby and Dawson, 2007).
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Figure 2.8. Projected change in mean temperature ("C) and precipitation (%) for a grid box representing
Ireland for the 2070-2099 period relative to 1961-1990 based on 9 global climate models and the A2 and B2
emissions scenarios. (a = A2 scenario for December, January and February; b = B2 scenario for December,
January and February; c = A2 scenario for June, July and August; d = B2 scenario for June, July and August)
(data after Mitchell et al., 2002).
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3  Approaches to Quantifying Uncertainties in Regional
Climate Projections for Ireland

To estimate how much confidence it is possible to have
in regional climate change projections for Ireland, the
various sources of uncertainty outlined in Section
2 above need to be accounted for. One method for
incorporating uncertainties into downscaled projections
is to use several different GCMs when constructing
a climate change scenario (Table 3.1). However,
differences in model reliability need to be addressed
when constructing ensembles. Murphy et al. (2004)
proposed a Climate Prediction Index (CPI), which is an
objective means of measuring model reliability that can
be used to weight different GCMs according to their
relative ability to simulate the observed climate based
on a broad range of observed variables. This technique
has been refined by Wilby and Harris (2006), based on
a narrower suite of GCM outputs relevant to statistical
downscaling, to produce an Impacts Relevant Climate
Prediction Index (IR-CPI). This attributes weights to
each GCM based on the root-mean-square difference
between the standardised modelled and observed
climatological means.

Other studies have employed a Monte Carlo (MC)
approach (Hulme and Carter, 1999; Jones, 2000; New
and Hulme, 2000; Wilby and Harris, 2006) to quantifying
uncertainties at various stages in the model framework.
Hulme and Carter (1999) considered four sources

Table 3.1. A simple typology of uncertainties.

of uncertainty — (i) future emissions trajectories, (ii)
climate sensitivity, (iii) climate predictability and (iv)
sub-grid scale variability — to allow them to examine
the uncertainties that affect regional climate change
for two locations in the UK for both the summer and
winter seasons. They simulated the effects of different
emissions scenarios and climate sensitivities on
global mean temperature change using the Model of
the Assessment of Greenhouse gas Induced Climate
Change (MAGICC) climate model.

Hulme and Carter (1999) employed the MC approach
in conjunction with the outputs from 14 different GCMs
as inputinto a pseudo-ensemble. In the MC simulation,
equal weight was given to all 14 model outcomes,
in which the climate change space was sampled by
25 000 climate simulations (Hulme and Carter, 1999).
Their results demonstrated not only the wide range in
the regional response as simulated by the GCMs but
also that the effect of different emissions scenarios only
becomes apparent in the second half of the present
century. In a similar analysis, New and Hulme (2000)
applied their results to a response surface of annual
river flow to derive PDFs for future flow changes in
order to quantify a number of key uncertainties on an
impact system.

Type Indicative examples of sources

Typical approaches or considerations

Unpredictability

Structural uncertainty

Value uncertainty

Projections of human behaviour not easily amenable
to prediction (e.g. evolution of political systems).
Chaotic components of complex systems.

Inadequate models, incomplete or competing
conceptual frameworks, lack of agreement on
model structure, ambiguous system boundaries or
definitions, significant processes or relationships
wrongly specified or not considered.

Missing, inaccurate or non-representative data,
inappropriate spatial or temporal resolution, poorly
known or changing model parameters.

Use of scenarios spanning a plausible range,
clearly stating assumptions, limits considered, and
subjective judgements. Ranges from ensembles of
model runs.

Specify assumptions and system definitions clearly,
compare models with observations for a range

of conditions, assess maturity of the underlying
science and degree to which understanding is
based on fundamental concepts tested in other
areas.

Analysis of statistical properties of sets of values
(observations, model ensemble results, etc.);
bootstrap and hierarchical statistical tests;
comparison of models with observations.

Source: IPCC, 2001b: 1.
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The application of a simple scaling methodology
has become more prevalent in recent years due to
the widespread availability of RCM output through
projects such as Prediction of Regional scenarios
and Uncertainties for Defining EuropeaN Climate
change risks and Effects (EU FP5 PRUDENCE) and
ENSEMBLE-based Predictions of Climate Changes
and their Impacts (EU FP6 ENSEMBLES). Owing to
computational restrictions, RCMs are still limited to
producing climate projections for a limited number
of emissions scenarios, most commonly the A2 or
B2 scenario, or for limited time periods. To overcome
these limitations, a pattern-scaling technique, originally
postulated by Santer (1990), to overcome the scarcity
of GCM experiments can be applied. Indeed, this
technique has found widespread use in the climate
modelling community (Mitchell et al., 1999; Hulme and
Carter, 2000; Kenny et al., 2000; Hulme et al., 2002).

The pattern-scaling technique allows for the rapid
development of numerous climate scenarios, based on
different GCM-emissions scenario combinations which
sample a subset of the uncertainty range, which can
then be employed in subsequent impacts analyses.
For example, if the regional temperature change for
the 2070-2099 period, from a particular GCM and
emissions scenario is known,
‘response pattern’ can be calculated by dividing by

then a normalised

the global mean temperature change for that GCM-
emissions combination (AT,,). Employing a simple
climate model, such as MAGICC, the global mean
surface temperature change for the A1 scenario could
be calculated for a particular model. Employing the ratio
of the global mean surface temperature change for the
A1 scenario to the global mean surface temperature
change for the A2 scenario (AT,,/AT,,), the projected
temperature change for the 2070-2099 period based on
the A2 emissions scenario can be rescaled to produce
a scaled temperature change for the A1 scenario (AT,,)
(Eqgn 3.1):

AT
ATA1:<AT2;>AT

Equation 3.1. Pattern scaling approach to calculate

the change in surface temperature for the A1
emission scenario from the surface temperature of
the A2 emissions scenarios.
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The approach assumes the geographical pattern of
change is independent of the forcing and that the
amplitude of response is related linearly to the global
mean surface temperature (Ruosteenoja et al., 2003).
The assumption of a linear response, proportional to
the global mean surface temperature, appears to hold
in many cases, particularly for temperature, but less so
for precipitation (Mitchell et al., 1999; Mitchell, 2003) as
highlighted by Murphy et al. (2004). While the technique
can produce a wide range of scenarios (which are
useful for examining the range in projected climate
response at the regional scale), the resultant scenarios
are considered as being equally plausible and have no
associated likelihood of occurrence.

In a study that compared seasonal-based GCM
temperature and precipitation projections with RCM
output for five European regions, Ruosteenoja et al.
(2007) employed linear regression to relate the regional
GCM response to the global
simulated by a simple climate model. The resultant
‘super-ensemble’ method was found to be advantageous

mean temperature

when only a limited number of experiments were
available from an individual GCM (A2 and B2) due to
the reduction of random noise within the ensemble.
Ruosteenoja et al. (2007) constructed 95% confidence
intervals for both temperature and precipitation, for the
derived pattern-scaled scenarios which could then be
compared with the RCM output.

A number of authors have undertaken probabilistic-
based assessments of climate change projections based
on scaling the outputs from a number of RCMs with
various PDFs of future warming, drawn from a number
of GCMs (Hingray et al., 2007a; 2007b; Ekstrom et al.,
2007). Rowell (2006) found that the uncertainty in the
formulation of the RCM contributed a relatively small,
but non-negligible, impact on projected seasonal mean
climate for the UK, with the greatest contribution arising
from the parent GCM, while Hingray et al. (2007b)
indicate that uncertainties associated with inter-RCM
variability contribute as much of the total uncertainty
to the projected climate, similar in magnitude to that
induced by the global mean warming.

As an alternative to a probabilistic approach to assessing
GCM reliability, Giorgi and Mearns (2002) demonstrate
a procedure for calculating average uncertainty range
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and collective reliability of a range of regional climate
projections from ensembles of different AOGCM
simulations. The Reliability Ensemble Averaging (REA)
method weights GCMs based on individual model
performance and criteria for model convergence.
In a later development, Nychka and Tebaldi (2003)
demonstrate how the REA method can be ‘recast’ in a

‘rigorous statistical framework’.
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Irrespective of the approach adopted, transparency
in method is considered crucial, with the onus on the
individual researcher to state explicitly the approach
adopted and the assumptions made to represent
uncertainty (Hulme and Carter, 1999; Moss and
Schneider, 2000; Dessai and Hulme, 2003).
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4
Projections for Ireland

In spite of the fact that it has long been recognised that
different GCMs produce significantly different regional
climate responses even when forced with the same
emissions scenario (Hulme and Carter, 1999), a number
of previous studies have attempted to produce future
climate scenarios for Ireland based on a single GCM
and/or emissions scenario (McWilliams, 1991; Hulme
et al.,, 2002; Sweeney and Fealy, 2002; Sweeney and
Fealy, 2003a; 2003b; McGrath et al., 2005). These
studies have acknowledged and inherent weaknesses,
and Hulme and Carter (1999: 19) consider this practice,
which ultimately results in the suppression of crucial
uncertainties, as ‘dangerous’ due to any subsequent
policy decisions which may only reflect a partial
assessment of the risk involved (Parry et al., 1996;
Risbey, 1998; New et al., 2007).

Figures 4.1 (a) and (b) illustrate GCM projected
changes in monthly temperature (a) and precipitation

(b) for Ireland based on four GCMs (CGCM2, CSIRO
Mk2, HadCM3 and PCM) and four emissions scenarios
(A1FI1, A2, B2, B1) for the 2080s (2070-2099) relative
to the 1961-1990 baseline. Large differences are
apparent between individual GCMs and emissions

4.5

An Assessment of Statistically Downscaled Climate

scenarios. For example, in August, monthly temperature
change scenarios range from 0.9 to 3.8°C, while for the
month of July precipitation changes (%) are suggested
to lie between -48% and +12%. In the face of such
differences, paralysis in the decision-making process
may be the most likely outcome.

In an attempt to produce climate ensembles for Ireland,
Fealy and Sweeney (2007; 2008a; 2008b) applied
the IR-CPI method after Wilby and Harris (2006) to
statistically downscaled climate projections derived
from the A2 and B2 emissions scenario for a range
of impacts-relevant climate variables. The authors
attributed an equal likelihood to both the A2 and B2
emissions scenarios. However, subjective likelihoods
can easily be incorporated into this method, with
relevant weightings applied to the individual emissions
scenarios when combining the GCM scenarios (Wilby
and Harris, 2006). While this approach considered the
ability of the GCMs used in their study to reproduce the
statistics of the observed climate when compared over
the baseline period, the authors neglected to attach
probabilities to the resultant ensembles.

4
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Figure 4.1. Projected changes in monthly (a) mean temperature and (b) precipitation for Ireland for the
2070-2099 period based on four global climate models (GCMs) and four emissions scenarios. CG = CGCM2
(CCCma); CS = CSIRO Mk 2 (CSIRO); H3 = HadCM3 and PCM = Parallel Climate Model (data after Mitchell et

al., 2002).

The use of an additional downscaling ‘layer’, such
as statistically downscaling a GCM to a surface
environmental variable of interest, will also act to
propagate the uncertainty from the driving GCM
and does not account for model biases (random or
systematic: see Fig. 4.2), which exist in the GCM used
(Rowell, 2006; Gachon and Dibike, 2007). However, the
incorporation of such an additional downscaling ‘layer’
can add significant value to the associated climate
projection for deriving sub-grid scale information, when
compared to GCM output at the grid scale. While areally
averaged GCM output, such as grid scale temperature
or precipitation, and point scale station level data are
not directly comparable, such comparisons provide an
indication of the added value of the downscaling layer,
when assessed with site-specific observations.
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A comparison of observed and GCM modelled (directly
output from the GCM) and observed and statistically
downscaled mean monthly temperatures for current
(1961-1990) and future (2070—-2099) periods for station
locations at Valentia, Casement Aerodrome, Kilkenny
and Malin Head is shown in Fig. 4.3 (a—d). Differences
between observed station data (obtained from Met
Eireann) and GCM output (data after Wilby and Dawson,
2007) are apparent at all stations. While differences
are also evident between the observed station and
statistically downscaled data (after Fealy and Sweeney,
2007; 2008a; 2008b), when averaged over calendar
months, the statistically downscaled GCM data are
found to lie within £0.1°C of the observed values. In
comparison, differences between the direct GCM output
and observed station data range from £0.1 to 2.5°C.
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Figure 4.2. Comparison of observed and global climate model (GCM) modelled (direct global climate model
(a, c, e, g) and statistically downscaled (b, d, f, h) mean monthly temperature for current (1961-1990) and
future (2070-2099) periods for Valentia (a, b), Kilkenny (c, d), Casement Aerodrome (e, f) and Malin Head (g,
h). The statistically downscaled data has not been bias corrected. All modelled scenarios are based on the A2
emissions scenario. Obs = observed station data, H3 = HadCM3, CS = CSIRO Mk2, CG = CGCM2, SD indicates
statistically downscaled from parent global climate model, C = current or model baseline (1961-1990) and F
= future (2070-2099) (GCM data after Wilby and Dawson, 2007; observed data from Met Eireann; statistically
downscaled data after Fealy and Sweeney, 2007; 2008a; 2008b; modified after Gachon and Dibike, 2007).

An additional step, employed by Fealy and Sweeney
(2007; 2008b), corrected the bias in the statistically
downscaled data which resulted in an improvement in
the correspondence between the downscaled scenarios
and observed data (Fig. 4.4). This bias correction
was also applied to the future projections, under the
assumption that it was a systematic bias.

A comparison of PDFs between the observed GCM
output and statistically downscaled data demonstrates

a better correspondence between the observed and
statistically downscaled data than with the GCM output.
Seasonal PDFs of temperature are shown in Fig. 4.4
for Valentia (a coastal maritime-influenced station) and
in Fig. 4.5 for Kilkenny (an interior, continental station).
At both stations, the statistically downscaled data are
shown to reproduce the mean and standard deviation of
the observed data more faithfully than the PDFs derived
from the GCM output (Tables 4.1 and 4.2).

Table 4.1. Seasonal means (x) and standard deviations (s) for mean seasonal temperature at Valentia (observed),
direct global climate model output (global climate model [GCM]) from HadCM3 (H3), CSIRO Mk2 (CS) and CGCM2
(CG), statistically downscaled (SD) and bias corrected statistically downscaled for the 1961-1990 period.

Season Obs. GCM No bias correction Bias correction
Valentia H3 CG Ccs H3-SD CG-SD Cs-sD H3-SD CG-SD Cs-sD
X DJF 7.0 2.8 6.4 5.9 6.9 6.4 6.3 7.0 7.1 7.0
MAM 9.2 7.8 8.9 9.0 10.7 9.3 10.6 9.3 9.2 9.2
JJA 14.5 13.5 15.1 15.1 14.1 14.2 14.6 14.4 14.4 14.5
SON 11.3 7.9 11.9 10.6 10.7 11.8 10.8 11.3 11.3 11.3
S DJF 2.6 4.4 1.8 2.9 3.3 1.8 2.1 2.8 2.7 2.8
MAM 2.6 & 21 2.8 2.4 2.0 25 2.7 2.8 2.7
JJA 1.9 2.2 1.8 1.6 1.3 1.4 1.3 2.0 2.2 2.0
SON 3.0 4.3 3.0 2.9 2.9 2.6 24 3.3 32 3.2

Italic shows observed data. DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September,
October, November. (Observed data after Met Eireann; GCM outputs after Wilby and Dawson, 2007; statistically downscaled data after
Fealy and Sweeney, 2007; 2008b.)
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Figure 4.3. Comparison of observed and bias corrected statistically downscaled mean monthly temperature
for current (1961-1990) and future (2070-2099) periods for (a) Valentia, (b) Casement Aerodrome, (c) Kilkenny
and (d) Malin Head. All global climate model (GCM) modelled scenarios are based on the A2 emissions
scenario. Obs = observed station data, H3 = HadCM3, CS = CSIRO Mk2, CG = CGCM2, SD indicates
statistically downscaled from parent global climate model , C = current or model baseline (1961-1990) and F
= future (2070-2099) (GCM data after Wilby and Dawson, 2007; observed data from Met Eireann; statistically
downscaled data after Fealy and Sweeney, 2007; 2008a; 2008b; modified after Gachon and Dibike, 2007).
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Table 4.2. Seasonal means (x) and standard deviations (s) for mean seasonal temperature at Kilkenny (observed),
direct global climate model output (global climate model [GCM] ) from HadCM3 (H3), CSIRO Mk2 (CS) and CGCM2
(CG), statistically downscaled (SD) and bias corrected statistically downscaled for the 1961-1990 period.

Season Obs GCM No bias correction Bias correction
Kilkenny H3 CG cs H3-SD CG-SD CS-sD H3-SD CG-SD CS-sD
X DJF 4.9 2.8 6.4 5.9 4.7 4.4 4.0 4.9 4.9 4.8
MAM 8.3 7.8 8.9 9.0 10.1 8.4 10.2 8.3 8.3 8.3
JJA 14.6 13.5 15.1 15.1 141 14.4 14.9 14.6 14.6 14.6
SON 9.8 7.9 11.9 10.6 8.7 10.3 8.9 9.9 9.8 9.9
s DJF 3.1 4.4 1.8 2.9 3.9 24 2.8 3.3 3.2 3.4
MAM 3.0 5] 2.1 2.8 29 2.4 3.0 3.3 3.3 3.1
JUA 24 2.2 1.8 1.6 1.6 1.8 1.6 2.6 2.7 2.4
SON 3.9 4.3 3.0 2.9 3.8 3.4 3.1 4.1 4.1 4.0

Italic shows observed data. DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September,
October, November. (Observed data after Met Eireann; GCM outputs after Wilby and Dawson, 2007; statistically downscaled data after
Fealy and Sweeney, 2007; 2008b.)
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Figure 4.4. Probability distribution functions (PDFs) of mean daily observed temperature at Valentia, direct
global climate model (GCM) mean temperature (Raw) and bias corrected statistically downscaled (SD) mean
temperature for the 1960-1990 period for the A2 emissions scenario (a = December, January, February;
b = March, April, May; ¢ = June, July, August; d = September, October, November.) (Observed data from Met
Eireann; GCM data after Wilby and Dawson, 2007; statistically downscaled data after Fealy and Sweeney,
2007; 2008b.)
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Figure 4.5. Probability distribution functions (PDFs) of mean daily observed temperature at Kilkenny, direct
global climate model mean temperature (Raw) and bias corrected statistically downscaled (SD) mean

temperature for the 1960-1990 period for the A2 emissions scenario. a = December, January, February;
b = March, April, May; c = June, July, August; d = September, October, November. (Observed data from Met
Eireann; global climate model data after Wilby and Dawson, 2007; statistically downscaled data after Fealy

and Sweeney, 2007; 2008b.)

Figures 4.6 and 4.7 show the empirical quantile-quantile
plots for daily precipitation at Valentia (Fig. 4.6) and
Kilkenny (Fig. 4.7) with observed, GCM modelled and
statistically downscaled data. At both stations, GCM
and statistically downscaled simulations underestimate
observed precipitation over the 1961-1990 period.
The statistically downscaled data at Valentia, while
underestimating observed values, offers a significant

improvement over the GCM output. At Kilkenny, the
skill level of both simulated datasets would appear to
be comparable, with statistical downscaling offering no
obvious improvement over the GCM output. Seasonal
PDFs of observed, GCM output and statistically
downscaled precipitation for Valentia and Kilkenny for
the period 1961-1990 can be found in Appendix I.
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Figure 4.6. Empirical quantile-quantile plots for observed, direct global climate model (GCM) output (Raw)
and statistically downscaled (SD) precipitation at Valentia for the period 1961-1990. H3 = HadCM3, CS =
CSIRO Mk2 and CG = CGCM2.
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Figure 4.7. Empirical quantile-quantile plots for observed, direct global climate model output (Raw) and
statistically downscaled (SD) precipitation at Kilkenny for the period 1961-1990. H3 = HadCM3, CS = CSIRO
Mk2 and CG = CGCM2.
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Climate models ultimately represent a simplification
of what is a very complex system, and deficiencies in
their ability to reproduce the statistics of the observed
series — particularly that of precipitation — can arise
for a number of reasons, such as the omission of a
key climate process within the model and the use of
a particular parameterisation scheme. Nonetheless,
weaknesses also arise because of a dependency of
variables (such as precipitation) on climate processes
that occur at a scale smaller than can be resolved by the
current evolution of GCMs. As a consequence, GCMs
tend to produce a ‘drizzle effect’, where sub-grid scale
precipitation such as a convective precipitation event is
effectively averaged over the grid box, resulting in low-
intensity precipitation being simulated for the grid box.

In a comparison of the shape and scale parameters
of an empirical gamma distribution fit to observed,
GCM and statistically downscaled precipitation data,
GCM grid scale precipitation was found to more
closely approximate the statistical properties of the
observed data, in spite of the simplifying processes
within the GCM structure. Fealy and Sweeney (2008a;
2008b) employed a generalised linear model (GLM)
to statistically downscale precipitation for station
locations around Ireland as this method assumes
that the dependent variable, or predictand, is from
a particular distribution of the exponential family, of
which the gamma distribution belongs. A comparison
of PDFs for the observed, GCM modelled and
statistically downscaled data at Valentia and Kilkenny
suggests that the statistical downscaling approach
overestimates the frequency of the occurrence of
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precipitation events of around 5 millimetres (mm) at
both stations. These differences are likely to arise from
the two-step methodology employed in the statistical
downscaling approach. Initially, a logistic regression
model is used to model precipitation occurrence
as a binary sequence. Daily precipitation amounts,
modelled using the GLM approach, are then selected
on the basis of days on which precipitation is modelled
to occur. The optimum predictors differ between both
the occurrence and the amounts models as predictors
that capture precipitation amounts differ from those
that ‘trigger’ the precipitation event. While differences
arise in the shape and scale parameters of the
statistically downscaled and observed precipitation,
when mean daily precipitation (mm/day) is compared
over a seasonal basis, the statistically downscaled
data performs much better than the GCM simulations
in reproducing the mean, while the GCMs appear to
be more skilful in capturing the standard deviation
(Tables 4.3 and 4.4).

The development of downscaled scenarios, either
through dynamic regional climate modelling or statistical
downscaling, will add to the propagation of errors within
the modelling framework (Rowell, 2006; Hingray et
al., 2007b; Dibike et al., 2008). However, in order to
provide information at a scale that is useful for decision-
makers, such downscaling efforts continue to remain a
crucial step in developing robust adaptation strategies,
assuming the various contributions to uncertainty are
accounted for adequately.
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Table 4.3. Seasonal mean daily precipitation (X) and standard deviations (s) for
Valentia (observed), direct global climate model (GCM) output (global climate
model [GCM]) from HadCM3 (H3), CSIRO Mk2 (CS) and CGCM2 (CG), statistically
downscaled (SD) for the 1961-1990 period.

Season Obs GCM SD
Valentia H3 CG cs H3-SD CG-SD  CS-SD
x DJF 5.0 2.8 3.6 3.0 4.7 5.0 5.3
MAM 3.1 24 2.8 24 2.7 3.2 3.3
JUA 2.9 2.6 2.2 2.8 2.7 2.0 2.8
SON 4.7 2.7 34 3.2 5.3 5.4 5.7
s DJF 7.2 4.2 3.8 3.2 4.7 5.0 4.9
MAM 5.3 3.1 3.1 2.4 3.3 3.1 3.2
JUA 5.6 3.3 3.2 2.3 3.2 2.6 3.1
SON 7.6 4.1 43 3.4 6.1 5.7 6.3

Italic shows observed data. DJF = December, January, February; MAM = March, April, May; JJA
= June, July, August; SON = September, October, November. (Observed data after Met Eireann;
GCM outputs after Wilby and Dawson, 2007; statistically downscaled data after Fealy and
Sweeney, 2007; 2008b.)

Table 4.4. Seasonal mean daily precipitation (x) and standard deviations (s) for
Kilkenny (observed), direct global climate model (GCM) output from HadCM3
(H3), CSIRO Mk2 (CS) and CGCM2 (CG), statistically downscaled (SD) for the
1961-1990 period.

Season Obs GCM SD
Kilkenny H3 CG cs H3-SD CG-SD  CS-SD
x DJF 2.7 2.8 3.6 3.0 2.8 2.7 3.0
MAM 1.9 2.4 2.8 2.4 1.6 1.8 2.1
JUA 1.9 2.6 2.2 2.8 1.8 1.5 1.8
SON 2.6 27 3.4 3.2 2.9 2.9 2.8
s DJF 4.5 4.2 3.8 3.2 3.0 2.8 2.9
MAM 3.4 3.1 3.1 2.4 2.0 2.1 2.3
JIA 4.3 3.3 3.2 23 2.1 1.7 1.9
SON 4.7 4.1 4.3 3.4 3.7 3.5 3.4

Italic shows observed data. DJF = December, January, February; MAM = March, April, May; JJA

= June, July, August; SON = September, October, November. (Observed data after Met Eireann;
GCM outputs after Wilby and Dawson, 2007; statistically downscaled data after Fealy and Sweeney,
2007; 2008b.)

29



An Assessment of Uncertainties in Climate Modelling at the Regional Scale: The Development of Probabilistic Based
Climate Scenarios for Ireland

5
Projections for Ireland

This section will outline a methodology that can be
used to produce probabilistic-based regional climate
scenarios for Ireland, taking into account a number of
key uncertainties. The methodology is adapted from
Hulme and Carter (1999), Jones (2000) and New and
Hulme (2000) and applied to two impacts-relevant
climate variables, seasonal mean temperature (°C) and
precipitation change (%), for a selection of GCMs. The
proposed methodology has previously been applied
directly to GCM output and RCM output, but is refined
here for application to statistically downscaled data for
a selection of stations in Ireland (see Appendix Il for
GCM AT and regional response and Appendix Il for
application of the methodology directly to GCM output
for Ireland).

5.1 Application to Statistically

Downscaled Data

Fealy and Sweeney (2007; 2008a; 2008b) previously
developed statistically downscaled climate scenarios
for Ireland for a selection of variables, including
temperature and precipitation, based on the output
from three GCMs, namely CGCM2, CSIRO Mk2 and
HadCM3 for both the A2 and B2 emissions scenarios
(Table 5.1). This data exists at a daily resolution for the

Accounting for Uncertainties in Regional Climate Change

model-simulated periods of 1961-2099 for all model
realisations. While the authors sought to develop a
range of scenarios, from which they derived a weighted
mean ensemble accounting for uncertainty in the driving
GCMs, other uncertainties were ignored, partly due
to the limited availability of different GCM-emissions
scenarios combinations. Therefore, no probabilities
could be attributed to the derived climate projections,
which represents a significant, but acknowledged,
weakness in the resultant projections for use in impact
assessments or policy formulation.

Seasonal means for the 2080s (2070-2099) were
derived from the statistically downscaled daily data for
each of the 14 synoptic stations modelled by Fealy and
Sweeney (2007; 2008a; 2008b). This derived dataset
provides the basis for the following analysis. The 2080s
was selected as the signal-to-noise ratio is likely to be
larger for this period (Jones, 2000).

In a modification of the pattern-scaling methodology
outlined previously, the approach employed here
applied the technique to the statistically downscaled
data. For example, the ratio of global mean temperature
change (°C) between the individual GCMs and
emissions scenarios (Table 5.1) was employed to scale

the statistically downscaled A2 scenario projections for

Table 5.1. List of global climate models employed in analysis and change in global
mean surface temperature (°C) for the A1Fl, A2, B2 and B1 emissions scenarios.

Model Institution/country Reference Scenario AT pa
CGCM2 CCCma, Canada Flato et al., 2000 A1FI 4.38
A2 3.55
B2 2.46
B1 2.02
CSIRO Mk2 CSIRO, Australia Hirst et al., 1996, 2000 A1FI 4.86
A2 3.94
B2 3.14
B1 2.59
HadCM3 UKMO, UK Gordon et al., 2000 A1FI 4.86
A2 3.93
B2 3.07
B1 2.52

Emissions scenarios in italics are those that were available as statistically downscaled projections.
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all stations, for both temperature and precipitation for
the 2080s, according to Equation 3.1 above:

AT
AT AIF = <TAJ\'2:>A TA2

Where

AT, =

p— desired scenario

<AT,,./AT,,> =ratio of global mean temperature change

for GCMi (Table 5.1)

AT, , = projected change in temperature for the 2080s’
period

As with the pattern-scaling methodology, this method
assumes that some form of a linear relationship exists
between the downscaled emissions scenarios for the
14 stations employed in the analysis. As both the A2
and B2 downscaled scenarios for temperature and
precipitation were available, this assumption could be
tested by scaling the downscaled A2 scenario at each
station by the ratio of the A2 and B2 global mean surface
temperature change for each GCM, to derive a scaled
B2 emissions scenario. If a linear relationship existed,
then the assumption was taken as valid.

Figure 5.1 illustrates the seasonal relationship between
the statistically downscaled B2 emissions scenario,
for both temperature and precipitation, and the B2
response, scaled by the method outlined above for the

2080s. While the assumption of a linear response was
found to be valid between driving emissions scenarios,
the slope of the equation was found to vary seasonally.
Therefore,
were derived to account for the difference between
the statistically downscaled B2 and GCM-scaled B2
projections.

seasonal linear regression equations

This method was applied to the statistically downscaled
A2 scenarios for all stations and GCMs to calculate
station level changes for the A1Fl and B1 emissions
scenarios. The results from the application of this
method are outlined in Tables 5.2 and 5.3 for the
selected stations of Valentia, Malin Head, Casement
and Kilkenny for the winter (DJF) and summer (JJA)
seasons for the 2080s’ period, for both temperature
(°C) and precipitation change (%). The projected
changes in temperature and precipitation are shown to
be sensitive to both emissions scenario and GCM. The
greatest difference in projected temperatures between
the GCMs is associated with the A1FI scenario. For
precipitation, significant intermodel differences are
apparent both between and within individual emissions
scenarios. Appendix IV contains the scaled responses
and statistically downscaled seasonal changes for all
14 of the synoptic stations employed by Fealy and
Sweeney (2007; 2008a; 2008b) and for all seasons, for
both temperature (°C) and precipitation change (%).

Table 5.2. Global climate model (GCM) scaled temperature change (°C) for selected stations for the
2070-2099 period from three GCMs and the A1Fl and B1 emissions scenarios. The A2 and B2 scenario
data are directly derived from statistically downscaled data.

GCM SRES Valentia Malin Head Casement Kilkenny
ATDJF ATJJA ATDJF ATJJA ATDJF ATJJA ATDJF ATJJA
CGCM2 A1FI 5.1 3.6 43 3.1 5.9 42 5.7 45
CGCM2 A2 3.0 3.1 2.5 2.6 35 3.6 34 3.8
CGCM2 B2 29 2.0 23 1.7 3.3 24 3.2 24
CGCM2 B1 24 1.6 2.0 1.4 2.8 1.9 2.6 2.0
CSIRO Mk2 A1FI 4.4 2.1 3.7 1.9 5.0 2.4 5.0 2.7
CSIRO Mk2 A2 3.7 2.1 3.1 1.8 42 24 42 2.8
CSIRO Mk2 B2 2.9 1.5 2.5 1.3 3.3 1.7 3.3 1.9
CSIRO Mk2 B1 24 1.3 2.1 1.1 2.8 1.4 2.8 1.6
HadCM3 A1FI 1.2 25 1.1 24 1.4 31 1.4 3.3
HadCM3 A2 1.4 2.5 1.2 2.4 1.6 3.1 1.6 3.3
HadCM3 B2 0.7 1.6 0.7 1.6 0.9 2.0 0.9 2.1
HadCM3 B1 0.6 1.4 0.5 1.3 0.7 1.7 0.7 1.8

The A1FI and B1 scenarios were derived by scaling the statistically downscaled A2 scenario according to the ratio of AT from
the parent GCM and relevant emissions scenario for each season. DJF = December, January, February; JJA = June, July,
August. SRES = Special Report on Emissions Scenarios (after Fealy and Sweeney, 2008a; 2008b)
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Figure 5.1. Comparison of statistically downscaled (SD) and scaled B2 temperature (a-c) and precipitation

(d—f) based on scaling the statistically downscaled A2 scenario for each global climate model. Regression
equations and explained variance for each season illustrate the relationship between the statistically

downscaled and scaled B2 scenarios. These seasonally calculated equations were applied as a correction
factor for calculating all scaled scenarios. DJF = December, January, February; MAM = March, April, May;
JJA = June, July, August; SON = September, October, November. SRES = Special Report on Emissions
Scenarios (data after Fealy and Sweeney, 2007; 2008a; 2008b.)
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Table 5.3. Global climate model (GCM) scaled percent change in precipitation (%) for selected stations
for the 2070-2099 period from three GCMs and the A1Fl and B1 emissions scenarios (SRES). The A2 and
B2 scenario data are directly derived from statistically downscaled data (after Fealy and Sweeney, 2007;

2008b).
GCM SRES Valentia Malin Head Casement Kilkenny
AP, AP, , AP, AP, , AP, AP, , AP, AP, ,
CGCM2 A1FI -3.8 -29.2 4.5 -22.3 245 -47.7 18.7 -19.4
CGCM2 A2 -4.5 -17.4 2.0 -14.3 18.0 -25.7 13.3 -13.0
CGCM2 B2 -2.8 -14.5 55 -4.2 13.0 -23.0 10.7 -6.7
CGCM2 B1 -0.7 -8.3 3.1 -5.1 12.3 -16.8 9.7 -3.7
CSIRO Mk2 A1FI 0.1 -24.8 5.5 -13.3 35.1 -31.0 26.6 -19.6
CSIRO Mk2 A2 1.8 -25.9 6.3 -16.5 30.9 -31.0 23.8 -21.6
CSIRO Mk2 B2 -0.8 -17.3 4.6 -6.7 22.7 -20.2 16.3 -5.7
CSIRO Mk2 B1 -0.9 -10.1 2.0 -4.0 17.8 -13.4 13.2 -7.3
HadCM3 A1FI 9.9 -24.3 10.5 -10.1 21.6 -24.6 221 -23.9
HadCM3 A2 9.1 -29.0 9.7 -9.8 21.8 -29.3 22.3 -28.5
HadCM3 B2 8.1 -18.4 4.9 -7.0 16.3 -14.0 15.7 -17.4
HadCM3 B1 5.8 -14.0 6.1 -6.7 11.9 -14.1 12.2 -13.8

The A1Fl and B1 scenarios were derived by scaling the statistically downscaled A2 scenario according to the ratio of AT from the
parent GCM and relevant emissions scenario for winter (DJF = December, January, February) and summer (JJA = June, July,

August). SRES = Special Report on Emissions Scenarios.

In order to calculate the regional response rate per
°C global warming at each station, the projected
(statistically downscaled and scaled) warming for
each station and season were normalised by the
parent GCM/emission scenario change in the global
mean surface temperature change from Table 5.1.
For example, to calculate the station response per
°C global warming (AT) for the CGCM2 GCM and
the A1FI emissions scenario for the winter season at
Valentia, the projected A1FI AT at Valentia is 5.1°C,
which is then normalised by the global AT change from
the CGCM2 A1FI of 4.38°C. The resulting normalised
value of 1.16°C represents a station response of
1.16°C/°C global warming — that is, for an increase
in global mean surface temperature of 1°C, winter
seasonal temperatures at Valentia are projected to
increase by 1.16°C (ATGlobal x ATstation), indicating
an above average warming rate according to the
CGCM2 GCM (see Appendix Va and b for all stations).

The minimum and maximum values for both the
temperature and precipitation response/°C AT for
selected stations (Tables 5.4 and 5.5, see bold and italics)
were assumed to represent uncertainty in model output
at the regional/station level. While only three GCMs
were employed, the projected global AT associated with
the three GCMs represents an illustrative sub-sample of
the full warming range projected by all available GCMs.
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In order to produce probabilities of future warming for
individual synoptic stations, taking into account some
of the key uncertainties associated with the projected
warming, including emissions uncertainty and GCM
regional response, an MC analysis was employed
in conjunction with three different estimates of future
warming:

1. AT in global mean surface temperature change
from the three GCMs employed in the statistical
downscaling approach employed by Fealy and
Sweeney (2007; 2008a; 2008b) (Table 5.1 — AT 2.02
to 4.86°C);

2. Range in AT of the estimated transient climate
response (TCR), defined as the global surface
average temperature (SAT) change at the time of
CO, doubling in the 1% yr transient CO, increase
experiment (IPCC, 2007). The IPCC (2007)
indicates that that the transient climate response is
very likely to be greater than 1°C and very unlikely to
be greater than 3°C;

3. Estimated equilibrium climate sensitivity with a 5 to
95% probability range of 2.1 to 4.6°C and a median
value of 3.2°C with a lognormal distribution (IPCC,
2007).
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Table 5.4. Seasonal minimum and maximum temperature response (°C)/°C AT, |
climate models (GCM) and emissions scenarios, based on the statistically downscaled and scaled station

derived from all global

level warming.

Temp (°C) DJF MAM JUA SON

Min. Max. Min. Max. Min. Max. Min. Max.
Valentia 0.23 1.19 0.38 0.93 0.44 0.86 0.48 1.01
Shannon 0.26 1.33 0.44 1.01 0.51 0.99 0.56 1.15
Dublin 0.21 1.02 0.42 0.86 0.47 0.89 0.55 1.17
Malin Head 0.21 0.99 0.35 0.85 0.38 0.75 0.47 0.94
Roche’s Point 0.22 1.10 0.36 0.74 0.49 0.80 0.47 0.97
Belmullet 0.22 1.11 0.37 0.93 0.48 0.83 0.48 1.01
Clones 0.27 1.35 0.46 1.03 0.55 1.03 0.58 1.17
Rosslare 0.22 1.12 0.35 0.62 0.42 0.70 0.48 1.00
Claremorris 0.27 1.36 0.44 1.07 0.56 1.01 0.57 1.18
Mullingar 11 0.27 1.36 0.47 1.05 0.54 1.04 0.59 1.21
Kilkenny 0.28 1.31 0.46 0.99 0.56 1.08 0.60 1.27
Casement 0.28 1.36 0.45 0.96 0.50 1.01 0.59 1.22
Cork 0.24 1.23 0.40 0.87 0.54 0.94 0.52 1.08
Birr 0.28 1.39 0.46 1.05 0.57 1.06 0.59 1.25

Stations in bold and italics represent stations employed in the subsequent analysis. DJF = December, January, February;
MAM = March, April, May; JJA = June, July, August; SON = September, October, November.

Table 5.5. Seasonal minimum and maximum precipitation response (%)/°C AT, |
climate models (GCM) and emissions scenarios, based on the statistically downscaled and scaled station

derived from all global

level warming.

Precip (%) DJF MAM JJA SON

Min. Max. Min. Max. Min. Max. Min. Max.
Valentia -1.28 2.64 -5.89 2.34 -7.38 -3.91 -6.33 -2.32
Shannon 0.66 4.43 -10.22 2.66 -7.72 -4.43 -4.09 -0.24
Dublin 5.59 10.01 -6.59 2.28 -11.07 -5.34 -4.73 -1.20
Malin Head 0.57 2.47 -9.24 2.94 -5.09 -1.53 -1.62 2.20
Roche’s Point 1.37 4.42 -2.78 2.20 -10.58 -4.83 -7.41 -2.81
Belmullet -0.93 2.32 -6.77 244 -4.49 -1.80 -2.83 0.00
Clones 4.42 7.64 -9.08 2.98 -6.55 -2.26 -3.96 -0.17
Rosslare 2.35 4.89 -5.45 2.03 -8.07 -2.37 -4.56 -1.99
Claremorris 3.51 5.84 -7.38 2.87 -4.88 0.81 -4.59 -0.19
Mullingar 11 4.20 7.58 -9.12 2.61 -8.26 -3.73 0.53 3.70
Kilkenny 3.76 6.05 -8.01 2.39 -7.25 -1.82 -6.16 -2.10
Casement 4.45 7.85 -7.21 2.35 -10.89 -4.55 -3.40 -0.81
Cork -0.22 4.27 -4.40 213 -7.92 -1.81 -6.44 -1.38
Birr 5.07 8.57 -8.26 2.56 -8.24 -3.78 -2.82 0.29

Stations in bold and italics represent stations employed in the subsequent analysis. DJF = December, January, February;
MAM = March, April, May; JJA = June, July, August; SON = September, October, November.
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The MC analysis was used to randomly sample from
the range in AT for each of the three methods identified,
and the uniform distributions representing the regional
response rate in temperature and precipitation change
per °C of global warming for each station and season.
The resulting AT and AP therefore take account of
uncertainties in the emissions scenarios, by sampling
from four marker emissions scenarios (A1Fl, A2, B2 and
B1), GCM sensitivity and regional response, through the
regional response rates per °C global warming at each
station. Method Ill also considers uncertainty in the
equilibrium climate sensitivity, through the incorporation
of the estimated range in sensitivity from the Fourth
Assessment Report (IPCC, 2007) (Method lIl). For all
methods, the MC simulation was set to produce 100,000
samples with the initial 10,000 samples excluded from
any subsequent analysis.

Method | — As no likelihood could be attributed to the
AT in global mean surface temperature change from
the three GCMs employed in the statistical downscaling

approach employed by Fealy and Sweeney (2007;
2008a; 2008b) (Table 5.1 — AT 2.02 to 4.86°C), a
uniform prior probability distribution (i.e. initially all
values within a specified range are treated as having an
equal probability of occurrence) was assumed.

Method Il — Based on the estimated TCR, defined as
the global surface average temperature (SAT) change
at the time of CO, doubling in the 1% yr" transient CO,
increase experiment (IPCC, 2007), which is very likely
to be greater than 1°C and very unlikely to be greater
than 3°C. A normal distribution was employed as the
prior for this method (IPCC, 2007) with a 5 to 95%
probability range of 1.5 to 2.8°C (Fig. 5.2).

Method Il — Based on the estimated equilibrium climate
sensitivity with a 5 to 95% probability range of 2.1 to
4.6°C and a median value of 3.2°C with a lognormal
distribution (IPCC, 2007), a distribution of values,
conforming to the estimated range and median, was
simulated to represent the climate sensitivity (Fig. 5.3).

Transient Climate Response
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Density

0.47
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Figure 5.2. Transient climate response (TCR) with a 5 to 95% probability range of 1.5 to 2.8°C (IPCC, 2007).
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Figure 5.3. Simulation of equilibrium climate sensitivity with a median value of 3.2°C and 5 to 95% probability
range of 2.1 to 4.6°C. (The 95% probability range differs from that quoted in the IPCC (2007) range of 2.2 to

4.6°C, however, this difference is considered negligible.)

5.2 Results

Tables 5.6-5.8 show the results for each of the three
different measures of changes in global AT (Methods
I-II) with the regional response rates at the selected
synoptic stations of Valentia, Malin Head, Kilkenny and
Casement. The results from Method | are also compared
to the ensemble of the statistically downscaled A2
and B2 emissions scenario calculated by Fealy and
Sweeney (2007; 2008a; 2008b) employing the IR-CPI
(after Wilby and Harris, 2006) (Table 5.9).

However, the results from the three different measures
of changes in global AT (Methods I-Ill) are not directly
comparable: Method | represents the AT in three GCMs
for the 2070-2099 period, while Method Il reflects
changes at the point at which a doubling of CO, occurs,
which is sensitive to the speed in ocean heat uptake;
and Method Il represents the change in temperature
and precipitation at the point at which the climate has
reached a new stable equilibrium, in response to a
doubling of CO, and is sensitive to the strength of
different feedbacks (IPCC, 2007).

Mean changes in all seasons for the four stations are
shown in Table 5.9. With the inclusion of the A1FI and
B1 scenarios, results for nearly all seasons indicate
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a greater range in warming for the 2080s period than
previously suggested by the statistically downscaled
projections of Fealy and Sweeney (2007; 2008a;
2008b), which account only for the A2 and B2 emissions
projected changes
Method | indicates more conservative changes — mainly
lower projected decreases — for nearly all stations and

scenario. For in precipitation,

seasons when compared to the statistically downscaled
ensemble results. Probability distribution functions for
changes in temperature and precipitation at each station
and season are shown in Figures 5.4 and 5.5. Projected
changes in both temperature and precipitation are
shown to display a considerable spread in values. For
example, winter temperature at Casement suggests an
increase from 0.6 to 6.6°C by the 2080s (2070-2099)
period. Similarly, with precipitation, both increases and
decreases are projected, with an equal likelihood by
the 2080s at all stations for spring. Winter precipitation
at Valentia and autumn precipitation at Malin Head
also display different directions of change with equal
likelihoods. Results from the statistically downscaled
ensemble, while comparable to the mean changes
projected by Method |, take no account of likelihoods
or the fact that a projected change could differ in both
direction and magnitude.
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Table 5.6. Method | seasonal mean temperature (°C) and precipitation change (%) for Valentia, Malin Head,
Kilkenny and Casement.

Method | Temperature Precipitation

Station Season Mean Min. Q1 Med. Q3 Max. Mean Min. Q1 Med. Q3 Max.

Valentia DJF 24 0.5 1.5 2.3 3.2 5.8 23 -6.2 -1.0 2.2 5.4 12.8
MAM 2.3 0.8 1.7 21 2.8 4.5 -6.1 -28.5 -12.4 -5.7 0.9 11.3
JJA 2.2 0.9 1.7 2.2 2.7 4.2 -19.4 -35.8 -23.4 -18.8 -14.9 -8.0
SON 2.6 1.0 1.9 2.5 3.1 4.9 -14.9 -30.7 -18.5 -14.0 -10.7 -4.7

Malin Head DJF 21 0.4 1.3 1.9 2.7 4.8 5.2 1.2 3.4 4.9 6.8 12.0
MAM 21 0.7 1.5 2.0 2.5 4.1 -10.9 -44.8 -20.2 -10.2 -0.4 141
JJA 1.9 0.8 1.5 1.9 2.4 3.6 -11.4 -24.7 -14.5 -10.7 -7.8 -3.1
SON 2.4 1.0 1.9 2.3 29 4.6 1.0 -7.9 -2.2 0.9 4.0 10.7

Kilkenny DJF 2.7 0.6 1.7 2.6 3.6 6.4 16.9 7.6 13.1 16.6 20.2 29.4
MAM 2.5 0.9 1.9 24 3.0 4.8 -9.7 -38.9 -17.6 -9.2 -0.7 11.5
JJA 2.8 1.1 2.2 2.7 3.4 5.2 -15.6 -35.2 -20.0 -14.6 -10.3 -3.7
SON 3.2 1.2 24 3.1 3.9 6.2 -14.2 -29.9 -17.8 -13.4 -10.1 -4.3

Casement DJF 2.8 0.6 1.8 2.7 3.7 6.6 21.2 9.0 16.4 20.6 25.4 38.1
MAM 24 0.9 1.8 2.3 29 4.7 -8.3 -34.8 -15.6 -7.8 -0.1 1.4
JJA 2.6 1.0 2.0 2.5 3.2 4.9 -26.6 -52.7 -32.7 -25.2 -19.7 -9.2
SON 3.1 1.2 2.4 3.0 3.8 5.9 -7.2 -16.5 -94 -6.8 -4.7 -1.7

Also shown are value for minimum (min.), maximum (max.), median (med.) and quartiles (Q1 = 1%t quartile; Q3 = 3™ Quartile). DJF =
December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.

Table 5.7. Method Il seasonal mean temperature (°C) and precipitation change (%) for Valentia, Malin Head,
Kilkenny and Casement.

Method Il Temperature Precipitation

Station Season Mean Min. Q1 Med. Q3 Max. Mean Min. Q1 Med. Q3 Max.

Valentia DJF 1.5 0.1 1.0 1.5 2.0 4.1 1.5 -4.4 -0.6 1.4 34 9.8
MAM 1.4 0.2 1.1 1.4 1.7 3.3 -3.8 -19.8 -8.0 -3.7 0.6 8.3
JJA 1.4 0.2 1.1 1.4 1.6 3.2 -12.1 -25.7 -142 -11.9 -9.8 -1.6
SON 1.6 0.3 1.3 1.6 1.9 3.6 -9.3 -22.3 -11.4 -9.0 -6.9 -0.9

Malin Head  DJF 1.3 0.2 0.8 1.2 1.7 34 3.3 0.3 22 3.2 4.2 8.3
MAM 1.3 0.2 1.0 1.3 1.6 2.8 -6.8 -30.6 -13.0 -6.6 -0.3 9.8
JJA 1.2 0.2 1.0 1.2 1.4 2.7 -7.1 -17.5 -9.0 -6.9 -5.0 -1.3
SON 1.5 0.2 1.2 1.5 1.8 3.3 0.6 -5.3 -1.4 0.6 2.6 7.4

Kilkenny DJF 1.7 0.2 1.1 1.6 2.2 4.6 10.5 1.8 8.8 10.4 12.1 21.8
MAM 1.6 0.2 1.2 1.5 1.9 3.7 -6.1 -27.2 -11.3 -5.9 -0.5 8.4
JJA 1.8 0.3 1.4 1.7 2.1 3.9 -9.7 -27.4 -12.5 -9.4 -6.6 -1.1
SON 2.0 0.3 1.6 2.0 24 4.9 -8.9 -23.7 -11.0 -8.6 -6.5 -1.3

Casement DJF 1.8 0.2 1.1 1.7 2.3 47 13.2 2.1 10.9 13.0 15.4 26.8
MAM 1.5 0.2 1.2 1.5 1.8 34 -5.2 -24.0 -10.0 -5.0 -0.1 7.6
JJA 1.6 0.3 1.3 1.6 1.9 34 -16.6 -39.2 -20.1  -16.2 -12.7 -1.8
SON 1.9 0.3 1.5 1.9 2.3 4.1 -4.5 -12.4 -5.8 -4.4 -3.0 -0.5

Also shown are values for minimum (min), maximum (max), median (med) and quartiles (Q1 = 1% quartile; Q3 = 3" Quartile). DJF =
December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.
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Differences between the projected changes from Method
I and Il stem from the timing of a doubling of atmospheric
CO,. Method | projects changes in temperature and
precipitation for a particular timeslice, that of the
2080s, whereas the TCR (Method Il) represents the
instantaneous response of the climate system at the
point in time in which a doubling of CO, takes place. The
results from Method Il are therefore more relevant as a
mid-21st century projection, assuming a linear response
in the regional warming rate per °C of AT global mean
surface temperature. Probability distribution functions
for the TCR AT global are shown in Figures 5.6 and 5.7.

Method Ill results are based on the estimated equilibrium
climate sensitivity with a 5 to 95% probability range of
2.1 to 4.6°C and a lognormal distribution (IPCC, 2007)
(Table 5.9; Figs 5.8 and 5.9). These results assume that
emissions stabilise after doubling and that the climate
system has attained equilibrium, including ocean heat
uptake after a doubling of CO, has been attained. While
the IPCC (2007) states that the equilibrium is very likely
to be greater than 1.5°C, due to physical reasons,

values substantially higher than 4.5°C cannot be ruled
out. Owing to the current inability to constrain the upper
tail of the estimated range in values for the equilibrium
climate sensitivity, the results from Method Il may
represent an underestimation of the possible range
in, though less likely, values for the regional response
at equilibrium CO,. However, from an adaptation or
infrastructure design perspective, the time horizon
associated with reaching equilibrium CO, is too distant
to be of significant importance for adaptation purposes
in the medium term.

The ability to produce PDFs, that account explicitly for
key uncertainties which propagate from the emissions
scenarios to the GCMs employed,
significant

downscaling

represents a
improvement over traditional statistical

techniques. However, a significant
weakness in this approach is that no strict quantification
of uncertainty in predictor selection in the statistical
downscaling procedure is accounted for. This source
of uncertainty is likely to be greatest in cases where a

number of optimum predictor sets may exist, but the

Table 5.8. Method Il seasonal mean temperature (°C) and precipitation change (%) for Valentia, Malin Head,

Kilkenny and Casement.

Method IlI Temperature Precipitation

Station Season Mean Min. Q1 Med. Q3 Max. Mean Min. Q1 Med. Q3 Max.

Valentia DJF 23 0.3 1.4 2.2 3.0 8.2 2.2 -9.3 -0.9 21 5.1 18.4
MAM 21 0.5 1.6 2.0 2.6 6.5 -5.7 -40.7 -11.8 -5.4 0.9 15.6
JUA 21 0.6 1.6 2.0 25 5.9 -18.2 -51.5 -21.4 -17.6 -14.3 -5.4
SON 24 0.6 1.9 2.3 2.9 6.9 -14.0 -48.1 -17.1 -13.3  -10.1 -3.2

Malin Head DJF 1.9 0.3 1.2 1.8 2.5 7.2 4.9 0.9 3.2 4.7 6.3 17.2
MAM 1.9 0.5 1.4 1.9 23 5.7 -10.3 -62.8 -19.2 -9.7 -0.4 18.9
JJA 1.8 0.5 14 1.8 2.2 5.5 -10.7 -34.2 -13.4 -10.2 -7.4 -2.3
SON 2.3 0.7 1.8 2.2 2.7 6.8 0.9 -10.7 -2.1 0.9 3.8 15.5

Kilkenny DJF 2.6 0.4 1.6 24 3.3 9.2 15.9 52 12.8 15.3 18.4 435
MAM 23 0.6 1.8 23 2.8 6.9 -9.1 -53.8 -16.7 -8.7 -0.7 15.7
JJA 2.7 0.8 21 2.5 3.1 7.4 -14.7 -52.0 -18.7 -13.9 -9.7 -2.7
SON 3.0 0.8 2.3 2.9 3.6 8.9 -13.4 -43.0 -16.5 -12.7 -9.6 -3.1

Casement DJF 2.6 0.4 1.7 2.5 3.4 8.8 19.9 5.9 15.8 19.2 23.2 55.2
MAM 2.3 0.5 1.7 2.2 2.7 6.8 -7.8 -50.2 -14.8 7.4 -0.1 15.8
JJA 24 0.7 1.9 2.3 2.9 7.8 -25.0 -74.2 -30.2 -23.9 -18.6 -6.6
SON 29 0.9 2.3 2.8 3.5 8.4 -6.8 -24.6 -8.7 -6.5 -4.5 -1.1

Also shown are values for minimum (min.), maximum (max.), median (med.) and quartiles (Q1 = 1% quartile; Q3 = 3 Quartile). DJF =
December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.
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Table 5.9. Comparison of mean temperature (°C) and precipitation (%) change in the statistically downscaled
ensemble (SD-Ens), based on the A2 and B2 emissions scenarios, calculated by Fealy and Sweeney (2007;
2008a; 2008b) employing the IR-CPI and the mean changes calculated from the probability distribution functions

(Method I) employing the broader range of emissions scenarios (A1Fl, A2 B2, B1).

Temperature Precipitation
Station Season SD-Ens PDF SD-Ens PDF
Valentia DJF 2.0 24 3.5 23
MAM 1.9 23 -9.8 -6.1
JJA 2.1 2.2 -25.6 -19.4
SON 24 2.6 -16.0 -14.9
Malin Head DJF 1.7 2.1 5.8 5.2
MAM 1.7 2.1 -11.1 -10.9
JJA 1.9 1.9 -13.1 -11.4
SON 23 24 0.1 1.0
Kilkenny DJF 23 2.7 16.9 16.9
MAM 2.1 2.5 -12.7 9.7
JJA 2.7 2.8 -25.8 -15.6
SON 3.0 3.2 -16.7 -14.2
Casement DJF 23 2.8 19.2 21.2
MAM 2.1 24 -9.7 -8.3
JJA 2.6 2.6 -31.8 -26.6
SON 2.9 3.1 -10.5 -7.2

DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October, November.

resultant downscaled scenarios produce divergent
responses. Such a situation can arise when candidate
predictors which have a large sensitivity to warming (for
example, relative humidity and temperature) contribute
separately to two equally optimum sets of predictors.
While both sets of predictors may provide a similar level
of explanation in the validation of the downscaled data,
the future projected change in the desired variable will
largely be determined by the sensitivity of the selected
predictor set. However, this is a recognised weakness
in statistical downscaling and generally the selection
of the optimum predictor set seeks to avoid the use of
overly sensitive candidate predictors in the selection
criteria.

In addition, the ability of the GCM to simulate candidate
predictors employed in the statistical downscaling
approach (Fig. 2.6)
uncertainty. This source of uncertainty arises from sub-
grid scale processes and model parameterisations

will also contribute to the

within the parent GCM. In an analysis of uncertainty in
statistically downscaled temperature and precipitation
in Northern Canada, Dibike et al. (2008) suggest that
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the regression-based downscaling approach used in
their analysis was able to reproduce the climate regime
over highly heterogeneous terrain when driven by
accurate GCM predictors. Such findings indicate that
the regression-based approach may not contribute as
much uncertainty to the cascade as the GCM employed.
Similar conclusions have been arrived at for downscaled
output using regional climate models.

The method outlined here is considered to be sensitive
to the choice of GCMs employed, in that the contribution
of an individual model that projects a change in the
statistically downscaled temperature or precipitation,
which is opposite in sign to all available GCMs, has
equal weight in the uniform distribution ascribed as a
prior to the regional response rate. While attributing
a non-uniform distribution as a prior to the regional
response rates is difficult to ascertain objectively,
weighting the contribution of projected changes from
each GCM is one alternative. Determining the relevant
criteria, such as convergence of model output (Giorgi
and Mearns, 2002) to derive the weights requires
careful consideration.
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Figure 5.4. Method | probability distribution functions of projected change in seasonal mean temperature
(°C) for (a) Valentia, (b) Malin Head, (c) Kilkenny and (d) Casement for the 2070-2099 period, assuming a
uniform distribution for AT from three global climate models (GCM) and a uniform distribution for the scaling
variables outlined in Table 5.4.
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Figure 5.5 Method | probability distribution functions of projected change in seasonal precipitation (%) for
(a) Valentia, (b) Malin Head, (c) Kilkenny and (d) Casement for the 2070-2099 period, assuming a uniform
distribution for AT from three global climate models (GCM) and a uniform distribution for the scaling variables
outlined in Table 5.5.

40



R. Fealy (2005-FS-33)

Valantia Malin Head

= 4

Temperature deg ©

Hilkanny Casmment

§* [ % § A
5. { : L‘i/i_l1

. ;ﬁf:ik\ % o 11 | ;&\
o 1487 NS

I ] " | a0 1 i 1 5

(C) Tl-rrmhnﬁ;ﬂ (d) 'l'e-r-mllhluingl:

Figure 5.6. Method Il probability distribution functions of projected change in seasonal mean temperature
(°C) for (a) Valentia, (b) Malin Head, (c) Kilkenny and (d) Casement for the 2070-2099 period, with a normal
distribution for transient climate response (TCR) and a uniform distribution for the scaling variables outlined
in Table 5.4.
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Figure 5.7. Method Il probability distribution functions of projected change in seasonal precipitation (%)
for Valentia, Malin Head, Kilkenny and Casement for the 2070-2099 period, with a normal distribution for
transient climate response (TCR) and a uniform distribution for the scaling variables outlined in Table 5.5.
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Figure 5.8. Method lll probability distribution functions of projected change in seasonal mean temperature ("C)
for Valentia, Malin Head, Kilkenny and Casement for the 2070-2099 period, assuming a lognormal distribution
for equilibrium climate sensitivity and a uniform distribution for the scaling variables outlined in Table 5.4.
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Figure 5.9. Method Ill probability distribution functions of projected change in seasonal precipitation (%) for
Valentia, Malin Head, Kilkenny and Casement for the 2070-2099 period, assuming a lognormal distribution
for equilibrium climate sensitivity and a uniform distribution for the scaling variables outlined in Table 5.5.
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5.3 Discussion

Kass and Raftery (1995) suggest that ‘any approach
that selects a single model then
inferences conditionally on that model ignores the

and makes
uncertainty involved in model selection, which can
be a big part of overall uncertainty’, and ‘this leads to
underestimation of the uncertainty about quantities
of interest, sometimes to a dramatic extent’ (Kass &
Raftery, 1995, 784, after Katz, 2002). Yet in spite of
this early acknowledgement, the climate modelling and
impacts community continued to produce and employ
single trajectory climate scenarios for use in impact
assessments that sought to inform policy-making.
While there was a valid historical reason for this,
arising from the limited number of centres undertaking
global climate modelling because of the computational
resources required and associated expense of running
such model simulations, the implications for the policy
community were significant. Global climate models
have been found to produce such divergent scenarios
at the regional scale that it is difficult, if not impossible,
to develop appropriate adaptation strategies (Stakhiv,
1998) based on one or a few GCMs. Hulme and Carter
(1999) consider the practice of employing a limited
number of climate scenarios as ‘dangerous’, as such
an approach reflects only a partial assessment of the
associated risk involved. Modelling the climate system
will always result in a range of possible futures being
projected, even when forced with the same emissions
scenario (Hulme and Carter, 1999).

While a number of techniques have been developed in
order to account for model differences, due to emissions
scenarios and GCMs, such as pattern scaling, simple
climate models or more recently the incorporation
of Earth System models of Intermediate Complexity
(EMICs), an inability to produce probabilistic-based
projections has proved a limiting factor in enabling the
quantification of potential vulnerability impacts in key
sectors and hindered the subsequent development of
suitable policy responses to reduce or mitigate such
impacts.

More recently, this topic has received much attention
in the literature, with divergent attitudes and opinions
towards the most suitable approach to employ. In spite
of such divergence in attitudes, the discussion is vital.
Some exciting developments have also emerged,
through the PPEs (Murphy et al., 2004) and large-
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scale experiments such as Climateprediction.net,
which included a significant participation of non-climate
scientists and the public at large in providing distributed
computer resources for climate modelling at the global
scale.

The generation of multiple scenarios from different
GCMs has received much focus within the statistical
downscaling community, largely due to the ease in
implementation of statistically based downscaling
approaches. Nevertheless, ftraditional statistical
downscaling approaches do not explicitly account for
the uncertainties that accrue in the modelling process.
Intercomparisons of dynamically based downscaled
scenarios have also become feasible through European
Union-funded projects such as PRUDENCE and
ENSEMBLES, which focused on producing outputs
from multiple GCM-RCM combinations for a common
domain over Europe. The availability of such data
from a number of RCMs has contributed greatly to the
development of probabilistic-based approaches at the
required scale for policy assessment and decision-
making, based on dynamical regional climate models.

The approach outlined within this report adopted a
technique widely used in the dynamical modelling
community: to pattern scale statistically downscaled
projections of temperature and precipitation for
selected stations for Ireland for the 2080s. The resulting
scenarios, scaled to reproduce the warming from the
A1Fl and B1 emissions scenarios, were then employed
in a probabilistic assessment based on three estimates
of future changes in global mean surface temperature,
according to (i) three GCMs employed in the original
statistical downscaling approach of Fealy and Sweeney
(2007; 2008a; 2008b); (ii) the estimated transient
response of the climate system to a doubling of CO, at
the time of doubling (IPCC, 2007), and (iii) the estimated
equilibrium climate sensitivity due to a doubling of CO2
(IPCC, 2007).

While the projected mean changes in temperature
and precipitation, based on the probabilistic approach,
were found to be comparable to the ensemble mean
directly derived from the statistically downscaled data,
the PDFs indicated a wide range in the distribution of
the projected changes. Projections of temperature were
found to be consistent in the direction and magnitude of
change. However, results for precipitation were found
to vary in both direction and magnitude in particular
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seasons. While the probabilistic-based mean seasonal
projected changes in precipitation was found to be more
conservative than that of the ensemble mean from the
statistical downscaling approach, the range in projected
changes was found to vary. Particular seasons exhibited
an equal likelihood of both positive and negative
changes associated with precipitation. Such findings
suggest that the development of adaptation strategies
based on climate scenarios that do not account for
uncertainties explicitly could result in maladaptation.

The proposed method represents a technique that allows
probabilistic-based climate scenarios to be developed
rapidly, even with limited availability of downscaled
data. While the results of the technique do not differ
significantly from the original, statistically downscaled
climate scenarios (Fealy and Sweeney, 2007; 2008a;
2008b), the incorporation of emissions and model
uncertainty into the projections represents an important
contribution to traditional downscaling techniques. The
outcome of this research can be readily employed
in conjunction with bottom-up approaches, such as
determining the likelihood and timing of exceeding a
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particular threshold in a sensitivity analysis, to provide
decision-makers with the appropriate
— at the relevant scale — needed to develop robust

information

adaptation strategies.

However, a note of caution: information derived
from probabilistic-based climate assessments is not
independent of the methodology employed (New et al.,
2007), so the risk of maladaptation remains. Moreover,
the contribution of full end-to-end probabilistic-based
climate impact assessments to the decision-making
process remains largely untested with the exception of

one or two peer-reviewed studies (Wilby et al., 2009).

In parallel to the research reported on here, a web-
based statistical downscaling tool has been developed
to facilitate the rapid development of statistically
downscaled scenarios (Appendix VI). It is anticipated
that the availability of such aweb-based tool, with outputs
that can be incorporated with the method outlined above
to provide probabilistic-based scenarios, will facilitate
the development and integration of probabilistic-based
climate scenarios into the wider stakeholder community.
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Acronyms and Annotations

AMIP Atmospheric Model Intercomparison Project

AOGCMs  Atmosphere-ocean global climate models

CDFs Cumulative distribution functions

CMIPI-5 Coupled Model Intercomparison Project

CPI Climate Prediction Index

GCM Global climate model

GLM Generalised linear model

IPCC Intergovernmental Panel on Climate Change
IR-CPI Impacts Relevant Climate Prediction Index
LGM Last Glacial Maximum

MAGICC Model of the Assessment of Greenhouse gas Induced Climate Change

MC Monte Carlo approach

MMD Multi-model data (MMD)

NAO North Atlantic Oscillation

NCEP National Centres for Environmental Prediction
PDFs Probability distribution functions

PPE Perturbed physics ensemble

ppmv Parts per million volume

RCMs Regional climate models

REA Reliability Ensemble Averaging

SAT Surface average temperature

SRES Special Report on Emissions Scenarios
SSTs Sea surface temperatures

TAR Third Assessment Report

TCR Transient climate response

THC Thermohaline circulation

TOA Top of the atmosphere

Wm-s Watts per square meter
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Appendix I

Probability Distribution Functions of Precipitation (1961-1990)
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Figure A.l 1. Probability distribution functions (PDFs) of daily observed precipitation at Valentia, direct
global climate model (GCM) daily precipitation (Raw) and bias corrected statistically downscaled (SD) daily
precipitation for the 1960-1990 period for the A2 emissions scenario (observed data from Met Eireann; GCM
data after Wilby and Dawson, 2007; statistically downscaled data after Fealy and Sweeney, 2007; 2008b).
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Figure A.l 2. Probability distribution functions (PDFs) of daily observed precipitation at Kilkenny, direct
global climate model (GCM) daily precipitation (Raw) and bias corrected statistically downscaled (SD) daily
precipitation for the 1960-1990 period for the A2 emissions scenario (observed data from Met Eireann; GCM
data after Wilby and Dawson, 2007; statistically downscaled data after Fealy and Sweeney, 2007; 2008b).
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Appendix IT1

Quantifying Uncertainty in Global Climate
Model Projections at the Regional Scale

Global climate model (GCM) data for the grid box domain
representing Ireland was obtained for four GCMs and
four emissions scenarios (data obtained from Mitchell et
al., 2002). The data for all the models employed exists
on a common grid for the Irish domain (Mitchell et al.,
2002). The four models, namely the CGCM2, CSIRO
Mk2, HadCM3 and NCAR PCM and their respective
equilibrium climate sensitivity, are listed in Table A.Ill 1.
While GCM selection was determined solely on data
availability, all four have been used extensively and
appear in a range of peer-reviewed literature, and they

represent a sample of the spread in estimated climate
sensitivity.

The regional data, derived from the grid box for Ireland,
for each model and emissions scenario (Table A.lll 2),
was first standardised or normalised according to its
respective GCM global mean temperature change
(ATglobal) for that particular emissions scenario. This
normalisation is akin to normalising the regional change
signal in the pattern scaling methodology, outlined
previously, in order to derive a regional ‘response
pattern’. The normalised, regional values, of temperature
and precipitation change reflect a regional response per
°C global warming for the 2080s’ period (Table A.lll 3).

Table A.lll 1. List of global climate models (GCM) employed in analysis,

institution, equilibrium climate sensitivity and reference for each GCM.

GCM Name Institution/country 2xCO, AT Reference

CGCM2 CCCma, Canada 3.5°C Flato et al., 2000
CSIRO Mk2 CSIRO, Australia 4.3°C Hirst et al., 1996, 2000
HadCM3 UKMO, UK 3.3°C Gordon et al., 2000
NCAR PCM NCAR, USA 2.1°C Washington et al., 2000

Table A.lll 2. Global (ATglobal ) and regional (Irish grid box(es) from respective global

climate model (GCM) ) (At,,,, At

JJA? DJF?

At,,,) temperature (°C) and (Ap, ., Ap,,. Ap,,,)

precipitation change (%) from four GCMs and four marker emissions scenarios (Data

from Mitchell et al., 2002).

Model Scenario ATgkmal At At At Ap,,, Ap,,. Ap,n
CGCM2 A1FI 4.38 3.3 2.7 2.8 0 18.2 7.0
CGCM2 A2 3.55 2.7 2.1 22 0 14.7 5.6
CGCM2 B2 2.46 2.0 1.6 1.7 0.4 7.3 6.2
CGCM2 B1 2.02 1.6 1.3 1.4 0.3 6.0 5.1
CSIRO Mk2 A1FI 4.86 2.8 2.9 2.7 -9.0 18.3 7.3
CSIRO Mk2 A2 3.94 27 3.1 2.7 -0.9 211 10.4
CSIRO Mk2 B2 3.14 2.2 2.6 22 -2.1 21.9 10.2
CSIRO Mk2 B1 2.59 21 22 2.0 5.3 6.1 7.8
HadCM3 A1FI 4.86 3.1 27 3.0 -35.2 25.0 4.2
HadCM3 A2 3.93 2.3 2.3 24 -27.0 20.8 3.9
HadCM3 B2 3.07 1.5 1.4 1.5 -17.4 7.3 1.1
HadCM3 B1 2.52 1.5 1.6 1.5 -21.9 14.4 2.7
PCM A1FI 3.05 1.7 2.3 2.3 3.3 8.4 9.2
PCM A2 2.46 1.4 1.9 1.9 2.6 6.8 7.5
PCM B2 1.89 0.9 1.5 1.5 7.3 71 7.0
PCM B1 1.54 0.7 1.2 1.2 5.9 5.7 5.7
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Table A.lll 3. Normalised regional temperature (°C) and precipitation (%) responses for the
2070-2099 period for Ireland derived from the global climate model (GCM) and emissions

combinations outlined in Table A.lll 2.

Variable Regional

DJF JUA SON
Temperature (AT, ona/ ATgioa) 0.46 — 0.85 0.39-0.84 0.45-0.81 0.59 — 1.06
Precipitation (AP g ona/ AT g10a) +2.35 - +6.98 +0.76 — +8.61 -8.69 — +3.85 -0.32 - +3.24

DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September,

October, November (data from Mitchell et al., 2002).

In addition to the regional uncertainty signal (i.e. the
regional rate of warming derived from the four GCMs),
these regional ranges encompass four Special Report
on Emissions Scenarios (SRES) emissions marker
scenarios, which in turn account for approximately
80% of the range of future emissions contained in the
full range of 40 emissions scenarios storylines. Table
A.lll 4 illustrates the range in projected values for global
temperature and regional temperature and precipitation
the 2080s. While projected changes in temperature are
similar in direction, they differ in magnitude, in contrast
to the projected changes in precipitation, which differ in
both magnitude and direction.

Following Jones (2000), three sources of uncertainty
are considered: (i) emissions scenarios; (ii) climate
sensitivity; and (iii) regional variability, for two ‘impact
critical’ climate variables, temperature and precipitation,
for the winter and summer seasons for the 2080. The
2080s was selected as the signal-to-noise ratio is likely
to be larger for this period. However, no measure of
natural variability is considered.

The data from Table A.lll 3 was then used in conjunction
with the estimated climate sensitivity range of 2.1 to 4.6°C

(5 to 95% probability for lognormal distribution), with a
median value of 3.2°C. While the IPCC (2007) attaches
a likelihood to the estimated range in equilibrium climate
sensitivity, no such likelihoods are attached to the regional
response per °C. Consequently, a uniform distribution
was assumed as a prior, attributing an equal probability to
all values within the regional response ranges.

Based on the range in equilibrium climate sensitivity
estimated in the Second Assessment Report (0.7 to
2.1°C) (IPCC, 1996), Jones (2000) attributed a uniform
distribution to both the climate sensitivity and regional
response, derived from five GCMs. It has been shown
that if two probabilities have a uniform distribution and
are considered to be independent of each other, when
they are multiplied together, the resultant distribution will
have a peak around its average value (Jones, 2000).
However, the Fourth Assessment Report has attributed
a probability distribution to the revised estimates for
equilibrium climate sensitivity, which is employed here

(Fig. Alll 1).

In order to produce probabilities of future warming
for lIreland, taking into account some of the key
uncertainties associated with the projected warming,

Table A.lll 4. Range from lowest to highest in projected global temperature change (AT) (°C)
regional temperature (°C) and precipitation change (%) for Ireland from the global climate
model (GCM) and emissions combinations outlined in Table A.lll 2.

Variable Global Regional

DJF JJA SON
Temperature (AT) 1.54 —4.86 1.2-3.1 1.3-2.38 0.7-3.3 1.5-33
Precipitation (AP) +5.7 — +25.0 +3.7 —+24.8 -356.2—-+7.3 -1.4-+99

DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September,

October, November (data from Mitchell et al., 2002).



R. Fealy (2005-FS-33)

AR4 Climate Sensitivity (Lognormal)

2500

20007

Frequency
—
(93]
o
<

10007

5007

5 6 7 8 9 10

Temperature deg C

Figure A.lll 1. Monte Carlo simulation of equilibrium climate sensitivity with a median value of 3.2°C and 5 to
95% probability range of 2.1 to 4.6°C. (The 95% probability range differs from that quoted in the IPCC (2007)
range of 2.2 to 4.6°C, however, this difference is considered negligible).

a Monte Carlo (MC) analysis was employed. The
MC was used to randomly sample from both the
lognormal, representing equilibrium climate sensitivity,
and uniform, representing the regional response rate
in temperature and precipitation per degree of global
warming, distributions. The resulting AT and AP
therefore represent or take account of uncertainties in
the emissions scenarios, by sampling from four marker
emissions scenarios A1Fl, A2, B2 and B1; climate
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sensitivity, through the incorporation of the estimated
range in sensitivity from the Fourth Assessment Report
(IPCC, 2007); GCM climate sensitivity and the regional
GCM response, through the response rates per °C
global warming. The MC simulation was set to produce
100,000 samples using a burn in of 10,000 samples,
which were subsequently deleted, the results of which
are shown in Figures A.lll 2 and A.III 3.
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Figure A.lll 2. Probability distribution of seasonal mean temperature change (°C) based on the Fourth
Assessment Report estimated equilibrium climate sensitivity (lognormal) and regional response rates for the

Ireland grid box.
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Figure A.lll 3. Probability distribution of seasonal precipitation change (%) based on the Fourth Assessment
Report estimated equilibrium climate sensitivity (lognormal) and regional response rates for the Ireland grid

box.
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Table A.lll 5. Distributional parameters of the PDFs of temperature and precipitation derived from the
Monte Carlo analysis for the 2080s (2070-2099).

Variable Season  Mean SE Mean St Dev Q1 Median Q3 Min. Max.
AT (°C) DJF 2.1 0.00 0.62 1.66 2.04 2.48 0.53 5.95
AT (°C) MAM 1.99 0.00 0.63 1.52 1.91 2.37 0.48 6.12
AT (°C) JJA 2.04 0.00 0.58 1.61 1.97 2.38 0.64 5.74
AT (°C) SON 2.67 0.00 0.76 211 2.57 3.12 0.83 7.78
AP (%) DJF 15.08 0.02 5.66 10.71 14.41 18.61 3.39 48.82
AP (%) MAM 15.16 0.03 8.29 8.38 14.41 20.83 1.1 63.06
AP (%) JJA -7.87 0.04 12.21 -17.19 -7.46 2.23 -60.09 25.22
AP (%) SON 4.71 0.01 3.59 1.73 4.46 7.28 -1.94 23.69

DJF = December, January, February; MAM = March, April, May; JJA = June, July, August; SON = September, October,
November.

Table A.lll 5 shows the change in mean temperature (°C) and precipitation (%) for the 2070 to 2099 period.
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An Assessment of Uncertainties in Climate Modelling at the Regional Scale: The Development of Probabilistic Based

Climate Scenarios for Ireland

Appendix Va

Scaling Factors for Statistically Downscaled Temperature (2070-2099)
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An Assessment of Uncertainties in Climate Modelling at the Regional Scale: The Development of Probabilistic Based

Climate Scenarios for Ireland

Appendix Vb

(2070-2099)

ipitation

Scaling Factors for Statistically Downscaled Prec
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An Assessment of Uncertainties in Climate Modelling at the Regional Scale: The Development of Probabilistic Based
Climate Scenarios for Ireland

Appendix VI

PRediction Of Surface Point Environmental Changes over Time (PROSPECT)

PROSPECT was developed at the National University of Ireland Maynooth by Ciaran McCarthy, Thomas Murphy,

Mark Clerkin, Rowan Fealy and Phil Maguire in a collaboration between the Departments of Geography and Computer
Science.
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An Ghniomhaireacht um Chaomhnd Comhshaoil

Is i an Gniomhaireacht um Chaomhnd
Comhshaoil (EPA) comhlachta reachtdil a
chosnaionn an comhshaol do mhuintir na tire
go léir. Rialaimid agus déanaimid maoirsil ar
ghniomhaiochtai a d'fhéadfadh truaillit a
chruthd murach sin. Cinntimid go bhfuil eolas
cruinn ann ar threochtai comhshaoil ionas
go nglactar aon chéim is ga. Is iad na
priomh-nithe a bhfuilimid gniomhach leo

na comhshaol na hEireann a chosaint agus
cinntid go bhfuil forbairt inbhuanaithe.

Is comhlacht poibli neamhspleach i an
Ghniomhaireacht um Chaomhn( Comhshaoil
(EPA) a bunaiodh i mi IGil 1993 faoin

Acht fan nGniomhaireacht um Chaomhna
Comhshaoil 1992. 0 thaobh an Rialtais, is 1
an Roinn Comhshaoil agus Rialtais Aitidil a
dhéanann urraiocht uirthi.

AR bhFREAGRACHTAI

CEADUNU

Bionn ceaddnais & n-eisidint againn i gcomhair na nithe
seo a leanas chun a chinntit nach mbionn astuithe uathu
ag cur slainte an phobail néd an comhshaol i mbaol:

B 3iseanna dramhaiola (m.sh., lionadh taln,

B gniomhaiochtai tionsclaiocha ar scala mér (m.sh.,
déantlsaiocht cdgaisiochta, déantisaiocht

B diantalmhaiocht;

B (sdid faoi shrian agus scaoileadh smachtaithe
Organach Géinathraithe (GMO);

B mor-aiseanna storais peitreail.
B Scardadh dramhuisce

FEIDHMIU COMHSHAOIL NAISIONTA

B Stidradh os cionn 2,000 iniGichadh agus cigireacht
de aiseanna a fuair ceaddnas 6n nGniomhaireacht
gach bliain.

B Maoirsid freagrachtai cosanta comhshaoil ddaras
aitidla thar sé earnail - aer, fuaim, dramhail,
dramhuisce agus caighdean uisce.

B Obair le hadarais aitidla agus leis na Gardai chun
stop a chur le gniomhaiocht mhidhleathach
dramhaiola tri comhordl a dhéanamh ar lionra
forfheidhmithe naisidnta, dirid isteach ar chiontéiri,
stidradh fiosrichain agus maoirsid leigheas na
bhfadhbanna.

B An dli a chur orthu sitd a bhriseann dli comhshaoil
agus a dhéanann dochar don chomhshaol mar
thoradh ar a ngniomhaiochtai.

MONATOIREACHT, ANAILIS AGUS TUAIRISCIU AR

AN GCOMHSHAOL

B Monatoéireacht ar chaighdeén aeir agus caighdedin
aibhneacha, locha, uisci taoide agus uisci talaimh;
leibhéil agus sruth aibhneacha a thomhas.

B Tuairisciti neamhspleach chun cabhr le rialtais
naisilinta agus aitidla cinnti a dhéanamh.

RIALU ASTUITHE GAIS CEAPTHA TEASA NA HEIREANN

B (ainniochtl astuithe gais ceaptha teasa na
hEireann i gcomhthéacs ar dtiomantas Kyoto.

B Cur i bhfeidhm na Treorach um Thradail Astuithe, a
bhfuil baint aige le hos cionn 100 cuideachta ata
ina mor-ghinead6iri dé-ocsaid charbéin in Eirinn.

TAIGHDE AGUS FORBAIRT COMHSHAOIL

B Taighde ar shaincheisteanna comhshaoil a chomhordd
(costil le caighdéan aeir agus uisce, athri aeraide,
bithéagsilacht, teicneolaiochtai comhshaoil).

MEASUNU STRAITEISEACH COMHSHAOIL

B Ag déanamh meas(n( ar thion’char phleananna agus
chlaracha ar chomhshaol na hEireann (cosdil le
pleananna bainistiochta dramhaiola agus forbartha).

PLEANAIL, OIDEACHAS AGUS TREOIR CHOMHSHAOIL

B Treoir a thabhairt don phobal agus do thionscal ar
cheisteanna comhshaoil éagsdla (m.sh., iarratais ar
cheadnais, seachaint dramhaiola agus rialachain
chomhshaoil).

B Folas nios fearr ar an gcomhshaol a scaipeadh (tri
claracha teilifise comhshaoil agus pacaisti
acmhainne do bhunscoileanna agus do
mheénscoileanna).

BAINISTIOCHT DRAMHAIOLA FHORGHNIOMHACH

B Cur chun cinn seachaint agus laghdd dramhaiola tri
chomhordd An Chlair Néisitnta um Chosc
Dramhaiola, lena n-diritear cur i bhfeidhm na
dTionscnamh Freagrachta Tairgeoiri.

B Cur i bhfeidhm Rialachan ar nés na treoracha maidir
le Trealamh Leictreach agus Leictreonach Caite agus
le Srianadh Substainti Guaiseacha agus substainti a
dhéanann idid ar an gcrios 6z6in.

B Plean NaisiGnta Bainistiochta um Dramhail
Ghuaiseach a fhorbairt chun dramhail ghuaiseach a
sheachaint agus a bhainistid.

STRUCHTUR NA GNIOMHAIREACHTA

Bunaiodh an Ghniomhaireacht i 1993 chun comhshaol
na hEireann a chosaint. Ta an eagrafocht a bhainistit
ag Bord lanaimseartha, ar a bhfuil Priomhstidrthéir
agus ceithre Stidrthoir.

Ta obair na Gniomhaireachta ar sidl tri ceithre Oifig:

B An Oifig Aerdide, Ceadinaithe agus Usaide
Acmhainni

B An 0ifig um Fhorfheidhmitchan Comhshaoil
B An 0ifig um Measdnacht Comhshaoil
B An Oifig Cumarsaide agus Seirbhisi Corparaide

Ta Coiste Comhairleach ag an nGniomhaireacht le
cabhr( éi. Ta daréag ball air agus tagann siad le chéile
clpla uair in aghaidh na bliana le plé a dhéanamh ar
cheisteanna ar abhar imni iad agus le comhairle a
thabhairt don Bhord.
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Science, Technology, Research and Innovation for the Environment (STRIVE) 2007-2013

The Science, Technology, Research and Innovation for the Environment (STRIVE) programme covers
the period 2007 to 2013.

The programme comprises three key measures: Sustainable Development, Cleaner Production and
Environmental Technologies, and A Healthy Environment; together with two supporting measures:
EPA Environmental Research Centre (ERC) and Capacity & Capability Building. The seven principal
thematic areas for the programme are Climate Change; Waste, Resource Management and Chemicals;
Water Quality and the Aquatic Environment; Air Quality, Atmospheric Deposition and Noise; Impacts
on Biodiversity; Soils and Land-use; and Socio-economic Considerations. In addition, other emerging
issues will be addressed as the need arises.

The funding for the programme (approximately €100 million) comes from the Environmental Research
Sub-Programme of the National Development Plan (NDP), the Inter-Departmental Committee for the
Strategy for Science, Technology and Innovation (IDC-SSTI); and EPA core funding and co-funding by
economic sectors.

The EPA has a statutory role to co-ordinate environmental research in Ireland and is organising and
administering the STRIVE programme on behalf of the Department of the Environment, Heritage and
Local Government.

/a ENVIRONMENTAL PROTECTION AGENCY
PO Box 3000, Johnstown Castle Estate, Co. Wexford, Ireland
e O t 053 916 0600 f 053 916 0699
LoCall 1890 33 55 99

Environmental Protection Agency . . .
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\ D)
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