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ABSTRACT 

This thesis develops a novel framework for model skill assessment and the 

generation of probabilistic future climate scenarios. Traditional approaches to model 

validation assume that skill in simulating the mean climate is a valid indicator of skill 

in modelling the climate system. However, without information about how errors 

arise, conclusions cannot be drawn about whether models are genuinely skilful. 

Initially, verification statistics are used to assess model skill in simulating 

seasonal means and variability of Irish climate for 1961-1990. Significant biases 

were identified, however without further analysis, these biases cannot be attributed to 

a cause. Therefore, a spatial analysis, including EOF analysis, was undertaken which 

indicated that biases may be either spatially consistent (systematic) or inconsistent 

(random), an important distinction. Next, representation of a key large-scale driver of 

Irish climate, the North Atlantic Oscillation, was examined for a representative sub-

sample of models. Skill in simulating the NAO was found to vary considerably 

between models. Therefore, assessing statistics of mean climate may not be the 

optimum way to characterize model skill, as deficiencies in the representation of 

large-scale drivers may not be detected.  

Both quantitative and qualitative information from the skill assessments was 

used to inform probabilistic ensemble projections of future climate using Bayesian 

Model Averaging. In some cases, weighting scheme variation affects the ensemble 

PDF shape. In other cases, PDFs are similar when different weights are used, but the 

relative contributions of ensemble members vary. This is a crucial finding, as this 

underlying variation may not be immediately apparent, but may affect the confidence 

attached to the PDF. Therefore, robustness of ensemble generation methods must be 

considered when determining the level of confidence attached to a projection.  

Finally, the implications of these results for climate decision-making are 

discussed and recommendations for the use of climate models in decision-making are 

presented. 
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CHAPTER 1  
INTRODUCT ION 

 

1.1 GLOBAL CLIMATE CHANGE 

The existence of an anthropogenic contribution to climate change is now 

well-established, with the latest report from the Intergovernmental Panel on Climate 

Change concluding with “very high confidence” that human-induced warming of the 

climate is taking place (IPCC, 2007: 37). According to the Goddard Institute for 

Space Studies (GISS), global surface temperatures have risen by an average of 0.8oC 

since the late 1800s (Hansen et al., 2010). The initial observed increases in 

temperature are associated with increasing use of refined coal at the time of the 

Industrial Revolution. Coal, along with petroleum and natural gas, is a fossil fuel 

formed by the decomposition of dead organisms over millions of years. These fuels 

contain high levels of carbon and hydrocarbon, and when burned, the carbon 

combines with oxygen to produce carbon dioxide (CO2).  

Records of atmospheric observations at Mauna Loa Observatory illustrate this 

change (Keeling et al., 1976). Figure 1.1 illustrates the upward trend in atmospheric 

carbon dioxide. Due to its altitude, the air surrounding this station is relatively 

undisturbed and additionally, the location is both remote and minimally influenced 

by human activity, reducing the potential for “noise” or contamination in the data. 

Since 1956 this station has been continuously monitoring atmospheric carbon 

dioxide. As such, the Mauna Loa record is an important example of the changes 

observed in atmospheric carbon dioxide.   

Carbon dioxide is a greenhouse gas (GHG), along with methane, water 

vapour and nitrous oxide. When such gases are produced through human activities 

such as industrial and agricultural activities, they are referred to as anthropogenic 

GHGs and when released into the atmosphere they exceed the natural rate of uptake 

(le Quere et al., 2009), adding to the natural levels of these gases in the atmosphere, 

and absorb and emit thermal radiation. Today, fossil fuels remain an integral part of 
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the economy of industrialized nations and as such, GHGs continue to be emitted not 

only through energy generation but also through industrial and agricultural processes 

and transportation.  For example, between chemical processes and fuel consumption, 

cement manufacture globally produces 5% of anthropogenic CO2 emissions and it is 

estimated that for every 1000kg of cement, almost 900kg of CO2 is also produced 

(Mahasenan et al., 2005). The Intergovernmental Panel on Climate Change (IPCC) 

Fourth Assessment Report, published in 2007, stated that global atmospheric 

concentrations of carbon dioxide, methane and nitrous oxide now far exceed pre-

industrial values.  

 
Figure 1.1: The Mauna Loa CO2 record, which indicates a two parts per million per year increase 

in atmospheric carbon dioxide since 1958. Smaller fluctuations indicate seasonal variations 
(Source: NOAA, 2006: http://celebrating200years.noaa.gov/datasets/). 

 

The Vostok ice core provides a history of past CO2 concentrations (Figure 

1.2). The Vostok core, drilled in Antarctica, covers 420,000 years and 4 glacial-

interglacial cycles. Analysis of the air contained in the ice can provide information 

about past atmospheric CO2 variations and illustrates that under “natural” conditions, 

CO2 concentrations varied between 180-280ppm. Yet present day measurements 

such as those carried out at Mauna Loa place CO2 concentrations at approximately 

380ppm and increasing. Therefore the Vostok core illustrates that present 

concentrations of CO2 fall well outside what could be considered the natural range of 
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variability. The Vostok ice core record also demonstrates the relationship between 

global temperature and CO2 concentrations, as information about temperature can be 

obtained through isotopic analysis of an ice core. When surface conditions are warm, 

there is more energy available for the evaporation of water containing 18O, the 

heavier isotope of oxygen, which gets accumulated as snow.  Ice core sections 

containing more 18O relative to 16O correspond to warmer climate phases. In this 

way, the ice core provides an extensive record of the co-varying relationship between 

atmospheric CO2 and surface temperature. However, the initial timing of the increase 

in CO2 and surface temperature is still subject to scientific study. 

 
Figure 1.2: CO2 (red) and temperature (blue) measurements from the Vostok, Antarctica ice core. 
Peaks of warmth occur approximately every 100,000 years. Temperature and atmospheric carbon 
dioxide concentrations appear to co-vary. Current CO2 concentrations as observed at Mauna Loa 

are higher than at any time during the span of the ice core (Source: Petit et al., 1999). 

 

1.2 THE NATURAL GREENHOUSE EFFECT 

Without a certain naturally occurring concentration of GHGs to absorb 

radiation from the Sun, the Earth would be too cold to sustain life. Using the laws of 

blackbodies, an equation can be derived to calculate the temperature of the Earth 

with no greenhouse effect. A blackbody is an idealized object that is a perfect emitter 

and absorber of radiation at all wavelengths. The Stefan-Boltzmann law states that 



 4

the total energy radiated per unit surface area of a black body in unit time is given 

by: 

Equation 1.1:  Stefan-Boltzmann law 

4TF   

where  

F = energy flux,  

σ = Stefan-Boltzmann constant and  

T = the blackbody’s thermodynamic temperature 
(K). 

 

Applying this equation to the amount of energy received by the Earth-

atmosphere system and including a term to represent the Earth’s albedo, the equation 

becomes: 

Equation 1.2:  Blackbody temperature of the Earth 

4 /EE FT   

where  

TE = Earth’s thermodynamic temperature (K), 

σ = Stefan-Boltzmann constant and 

FE = Earth’s energy flux = 4
)1( SFA

 

where Fs = Sun’s energy flux and  

A = Earth’s albedo. 

 

Solving for an approximate planetary albedo of 0.3 and converting the result 

from Kelvin to degrees Celsius gives a temperature of -18oC. Clearly, there is 

another factor influencing the Earth’s temperature and raising it to a more habitable 

temperature. This factor is the atmosphere, particularly its infrared (IR) emissivity 

which depends on atmospheric concentrations of IR active gases. The majority of the 
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atmosphere (O2 and N2 in particular) are transparent to IR radiation, but GHGs, such 

as CO2 and water vapour, interact with IR radiation. Approximately half of the Sun’s 

energy is absorbed at the Earth’s surface. IR radiation is then emitted from the 

Earth’s surface and much of this is absorbed and re-emitted by the GHGs in the 

atmosphere.  Some of this energy is re-emitted downwards, contributing to warming 

and creating a natural greenhouse effect (Figure 1.3). Radiative forcing is the change 

in the net irradiance at the tropopause due to a change in an external driver of climate 

change and is a measure of the influence a given factor has in altering the energy 

balance (Figure 1.4). A warming influence is a positive forcing, while a cooling 

influence, such as certain types of aerosols (e.g. sulphur) is a negative forcing.  

 

Figure 1.3: An idealised model of the natural greenhouse effect  (Source: IPCC, 2007). 

 

Unusually high concentrations of GHGs in the atmosphere can interfere with 

the natural balance of incoming and outgoing energy in the Earth-atmosphere 

system. According to the IPCC Fourth Assessment Report (2007) it is very likely 

(with 90% confidence or higher) that human activities since 1750 have exerted a net 

warming effect on the climate by increasing atmospheric GHG concentrations.  
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Figure 1.4: Components of radiative forcing (IPCC, 2007). Positive forcings are indicated by 
yellow to red bars while negative forcings are indicated by blue bars. Levels of scientific 

understanding (LOSU) vary for each component, however there is a high understanding of the main 
components, the long-lived GHGs including CO2 (Source: IPCC, 2007). 

 

Continued emission of greenhouse gases at or above the current rates is likely 

to result in further warming, and indeed even if GHG concentrations were stabilized, 

the timescales involved in climatic processes and feedbacks could result in continued 

warming (Wetherald et al., 2001). Warming is evident in the melting of ice sheets in 

Greenland and parts of Antarctica which have very likely contributed to a rise in 

global average sea level. It is also evident in the widespread melting of glaciers and 

snow and in measurements of air and ocean temperatures (IPCC, 2007). According 

to the IPCC (2007: 30): 

“At continental, regional and ocean basin scales, numerous 
long-term changes in climate have been observed. These 
include changes in arctic temperatures and ice, widespread 
changes in precipitation amounts, ocean salinity, wind 
patterns and aspects of extreme weather including droughts, 
heavy precipitation, heat waves and the intensity of tropical 
cyclones.”  
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These effects have a range of implications for human society, in relation to 

agriculture, water resources and flood risk, biodiversity and health. The effects of 

climate change can be positive or negative. For example, an increase in winter 

temperatures could decrease the potential for cold-related fatalities in that season. 

However, there are also potentially negative impacts associated with climate change, 

which society must be prepared for. Anthropogenic forcing has been found to have 

contributed to observed increases in precipitation in the Northern Hemisphere mid-

latitudes and drying in the Northern Hemisphere tropic and sub-tropics (Zhang et al., 

2007), putting areas that are already highly vulnerable to water shortage under 

further threat (IPCC, 2007).  

While it may be possible to prevent some of the more extreme impacts of 

climate change by transitioning to a low-carbon economy, the emissions already in 

the atmosphere make some level of climate change inevitable. How we cope 

currently with severe weather events such as storms, floods or dry periods highlights 

how we may potentially be susceptible to climate change hazards in the future. The 

extent to which climate change may harm a system is called its vulnerability, which 

is dependent on a system’s sensitivity and on its ability to adapt to new climatic 

conditions. As the climate changes, our ability to protect sensitive systems may be 

tested, which is why response strategies are needed to plan for the possible impacts 

of climate change. 

 

1.3 CLIMATE MODELLING 

In order to develop suitable response strategies there is a need for more 

information about the climate changes that can be expected or considered likely, 

especially on the regional and local scales at which policy is formulated. Such 

information can be obtained using computer-driven climate models. The degree of 

complexity required in a model will depend on the nature of the questions asked. For 

example, simple energy balance models or Earth System Models of Intermediate 

Complexity (EMICs) may be suitable for conceptual studies, for example to simulate 

particular climate feedbacks (Claussen et al., 2002). However, for climate change 
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impacts assessment, models with much higher spatial and temporal resolution are 

required. 

 

1.3.1 Global climate models 
Global climate models (GCMs) operate by discretising the equations for fluid 

motion and integrating them forward in time. They also contain parameterizations, 

which represent processes occurring on sub-grid scales that cannot be resolved 

directly.  Atmospheric GCMs (AGCMs) model the atmosphere while coupled 

atmosphere-ocean GCMs (AOGCMs) combine both oceanic and atmospheric 

processes dynamically. While AOGCMs are highly complex, uncertainties still 

remain. The ability to model the climate system depends on having an appropriate 

level of scientific understanding of how the components of radiative forcing operate 

and influence climate. Some drivers have been the subject of more research than 

others (Figure 1.4) and as such are better understood. In particular, the extent to 

which solar activity and climate on Earth are related is strongly debated (e.g. Laut, 

2003; Veizer, 2005). 

Modelling future climate scenarios on a global domain ensures that the 

interactions between different climate regimes are handled properly. However, the 

computational demands of AOGCMs rule this out as a feasible option for simulating 

regional climate scenarios. In order to run these demanding models efficiently, their 

output is generally quite coarse. Typically a GCM has resolution of around 300km 

which is insufficient to resolve regional climate. It may seem like a contradiction that 

models that perform well at modelling global climate may perform poorly at the 

regional scale. However, the global climate is principally the response of the climate 

system to large-scale factors, like differences in solar forcing or in the earth’s 

rotation, and global land–sea distribution and topography (Zorita and von Storch, 

1999). The regional climates, of which there are many types, are the response of the 

climate system to regional details. When studying regional climate impacts, the 

domain of interest may be relatively small and as a result may not be represented 

very well on a GCM grid (Figure 1.5).  
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Figure 1.5: Winter precipitation over Britain as predicted by a) a GCM with resolution 300km, b) a 
regional model with 50km resolution and c) a regional model with 25km resolution compared to d) 
actual observations (Source:climateprediction.net: http://climateprediction.net/science/sci_images  

/RCM_improvements.jpg, accessed 22/7/2010). 

 

Complex coastlines cannot be described at this resolution. Local topography 

such as mountains, and land cover information are also important forcings for local 

climate that cannot be represented at a coarse grid scale. In such a situation, it is 

useful to downscale GCM output to provide higher resolution over a smaller area.  

 

1.3.2 Approaches to regional downscaling 
There are a variety of methods which can be used to bridge the gap between 

global climate model output and the regional response, and these methods can be 

separated into two broad categories: empirical/statistical downscaling, or dynamical 

techniques. Essentially, empirical downscaling methodologies use statistical 

techniques to derive relationships between the large-scale climate and the regional 



 10

response (Benestad, 2004). A statistical model can be employed to relate the large-

scale climate variables to surface environmental variables of interest, GCM output 

can be used as input to run the statistical model and point scale scenario information 

is obtained. This method has been shown by Trigo and Palutikof (2001) to reproduce 

the mean, variance and distribution of Iberian precipitation better than the GCM data 

alone.  Statistical downscaling does not require a huge amount of computer 

resources, but large data-sets are required in the derivations. It is particularly well 

suited to situations where a dense network of observing stations exists, to provide the 

necessary datasets (Dunne et al., 2008). However, the dataset used to calibrate a 

statistical model must span the range of natural variability, if the model is to be 

reliable. 

The techniques applied to determine the relationships for the model can vary 

from linear methods such as canonical correlation analysis (CCA; e.g. Busuioc et al., 

2006) to non-linear techniques such as artificial neural networks (ANN), a 

computing approach based on human brain function (Hsieh and Tang, 1998). ANNs 

consist of an interconnected group of artificial neurons and process information using 

a connectionist approach to computation. ANNs are non-linear statistical modelling 

tools, which can model complex systems and find patterns in data. However, in some 

cases regression models and ANN models have been found to give similar results 

(Schoof and Pryor, 2001). Simple analogue methods have also been shown to have 

skill, and in a comparative study a simple analogue method of statistical downscaling 

was found to perform as well as more complex methods including CCA and ANN 

(Zorita and Von Storch, 1999). Empirical methods are inexpensive, requiring less 

computing power than dynamical methods. They are also less time-consuming.  

A regional climate model or RCM is a dynamical downscaling technique that 

provides higher resolution (typically 50km) over a limited area. RCMs use a lot of 

computational resources as they explicitly describe the physical properties affecting 

climate. However, this also means that they should respond consistently to changes 

in forcing conditions.  

RCMs take boundary inputs from AOGCMs. This means they are reliant on 

the results of a model that uses coarser resolution. If there are errors in the GCM, the 

RCM will not usually correct them. Mearns et al. (2003) demonstrates that in the 
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south-eastern United States, an RCM (RegCM2 forced by CSIRO Mk2) reproduces 

the observed pattern for precipitation and min/max temperature better than the GCM, 

for all seasons. In this situation, the RCM can clearly resolve the Florida peninsula 

and the Appalachian Mountains, whereas the GCM is too coarse to do so. 

Many comparative studies of the two downscaling approaches have been 

carried out. While Murphy et al. (1999) found no significant differences comparing 

the techniques over the 1983-1994 period for Europe, Spak et al. (2007) found that 

the different techniques produce different spatial patterns of temperature across 

North America for the period 2000-2087, which diverge significantly from historical 

differences. While a climate system undergoing change is intrinsically a non-

stationary system, the success of empirical downscaling requires an assumption of 

stationarity for the constancy of relationships to be maintained, and this is a 

perceived weakness of statistical methods. The relationships derived based on 

historical records may not hold in a future climate scenario with different forcing 

conditions (Wilby et al., 2002). The assumption is that the statistical model that best 

describes the relationships between the large and small scale variables in the present 

will also best represent the relationships under climate change, and this assumption is 

inherently unverifiable.  

Conversely, dynamical methods such as regional climate modelling are based 

on mathematical equations that describe the fundamental physical processes of the 

climate system. Dynamical methods are not completely free of assumption. Some 

processes occur on scales too small for even an RCM to resolve and may be 

represented instead in terms of their large scale effects. This is known as a 

parameterization and is may be carried out to simplify and speed up the run-time of a 

model, or to overcome gaps in scientific knowledge which may make the physical 

inclusion of a particular process infeasible. In such cases, an assumption is made that 

the relationship between the small scale process and the large scale effect will remain 

constant in time, an assumption which cannot be confirmed. That said, the core basis 

of climate models is immutable physics, not unverifiable assumptions, making a 

stronger argument for their validity under altered forcing conditions. A second 

advantage of RCMs as a downscaling method is that with their increased resolution 

(25-50km) they incorporate information about regional land-use and topography, 
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making them more skilful over complex terrain such as mountainous regions than 

statistical methods (Schmidli et al., 2007).  

There is no one best method of downscaling. The optimum method depends 

on the research questions being asked and the region of interest. However, a number 

of studies (Hellstrom, 2001; Murphy, 1999) have found that in the present, 

projections based on statistical downscaling compare well with those based on 

dynamical downscaling, but the future projections of the two methods vary. Murphy 

(1999) compared output from a GCM and a nested RCM, both configurations of the 

UK Met Office Unified Model, and a statistical regression-based method. The 

optimum model was found to vary in each season due to biases in the models 

themselves; e.g. in summer the RCM modelled excessively dry soil. The statistical 

model and the RCM perform equally well at simulating present climate, and are 

more accurate than the GCM. Murphy (2000) then used these methods to simulate 

future climate change, and found that while the methods were initially equal, 

evaluating present climate with equal skill, they do not produce similar projections of 

future climate. For temperature projections, the changes projected by the statistical 

and RCM methods differ by 40-50% Murphy (2000).  

As these are future projections there is no empirical data that could be used to 

verify the projections and determine which technique is more skilful. However, one 

reason for this difference may be that the statistical relationships that hold at present 

may not hold under the different conditions of possible future climates. It has been 

suggested (Collins, 2007) that statistical approaches are not valid for simulating 

future climate change as they cannot be reliably used to make extrapolations outside 

the period on which they are based. On the other hand though the dynamical method, 

regional climate modelling, utilizes statistical approximations in its parameterization 

schemes, it is mainly based on physical relationships. As such, it calculates variables 

in an objective manner and this is its main advantage. 

 

1.4 UNCERTAINTY IN CLIMATE MODELLING 

There are many models available, each with slightly different ways of 

representing certain aspects of the climate, though all obey the same fundamental 
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equations. As such, model choice is an important consideration in any study of 

climate change and impacts as intermodel differences can lead to a range of different 

outputs, even when models are forced using the same emissions scenarios (Figure 

1.6). 

At every stage in the regional climate modelling process, uncertainties occur 

which affect the outcome of the next stage. For example, the choice of emissions 

scenario will have a significant impact on modelled output as the results produced by 

a GCM using the A1B emissions scenario (Figure 1.6 right) will be very different to 

the results produced by the same GCM using the B1 scenario (Figure 1.6 centre). 

Similarly, different GCMs will model different outcomes even when the same 

emissions scenario is used, due to differences in the models’ construction.  

 

Figure 1.6: Globally averaged surface air temperature (top) and precipitation (bottom) change 
relative to 1980–1999 for the 20th century commitment experiment (Commit,left), for the B1 

commitment experiment computed with respect to the 2080–2099 average (B1, centre) and for the 
A1B commitment experiment (A1B, right). The numbers in the panels denote the number of models 

used for each scenario and each century. Intermodel differences give rise to the spread in 
projections (Source: IPCC, 2007). 
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Various techniques exist for “nesting” the RCM in the GCM and this choice 

can also have an effect on the end result. Finally, the choice of which RCM to use is 

a source of uncertainty, Additionally, if an impacts model is used, a hydrological 

model, for example to determine the impacts of climate change on a river catchment, 

then the choice of impacts model can add an extra layer of uncertainty. 

While it may be possible to reduce some of the uncertainties associated with 

climate modelling through further research, others remain an inherent and irreducible 

part of the process. For example, the behaviour of clouds is parameterized in models 

because cloud formation occurs on such a small scale, yet the lack of scientific 

understanding about clouds makes their representation in climate models a key 

source of uncertainty. Further study of this area may lead to better schemes to 

represent this variable in climate models and as such, this source of uncertainty has 

the potential to be reduced. However, further research may also uncover previously 

unknown climate processes which would then need to be accounted for in climate 

models, potentially increasing uncertainty. Additionally, other factors like future 

emissions concentrations are an irreducible source of uncertainty because they are an 

unknowable variable. Emissions concentrations depend on a range of social, 

economic and technological factors that are impossible to predict as they are the 

result of human action. As such, the climate models can only ever capture a range of 

possible potential futures as outlined by the emissions scenarios. 

Uncertainty in climate modelling will be discussed in greater detail in the 

next chapter, which will detail the different types of uncertainty that affect climate 

model output, how they arise and how they are commonly managed in the climate 

modelling community.  The specific examples of cloud uncertainties and emissions 

uncertainties will also be discussed in more detail. 

 

1.5 HUMAN RESPONSES TO CLIMATE CHANGE 

The continued use of carbon-based energy sources and carbon-producing 

industries is inherently unsustainable (Black, 1996; Poliakoff and Licence 2007; 

Yegulalp et al., 2001). Aside from the environmental concerns, fossil fuels are a 

finite resource which means that there will come a point at which the rate of 
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production falls into irreversible decline. Additionally, the economic cost of not 

taking action to address climate change is now being recognized. The report of Sir 

Nicholas Stern in 2006 estimated that the cost of inaction would be 5%-20% of 

global GDP while the cost of early and effective action was estimated to be as little 

as 1% of GDP by 2050 (Stern, 2006) and although the report is not without its critics, 

it does highlight the reduced costs associated with early action.  

Although much uncertainty surrounds climate model outputs, when this 

uncertainty is accounted for as fully as possible and communicated effectively, such 

models have the potential to provide valuable information to help inform these 

actions. When adaptive measures are put in place without taking into account 

potential future changes in the climate, there is a risk that the measures put in place 

will turn out to be insufficient to manage future climate impacts. Climate models are 

an important source of information about possible future changes and as such, 

incorporating them into the decision-making process creates the potential for more 

robust decision-making.  

 

1.5.1 Climate mitigation 
Mitigation refers to actions taken to lessen the effects of climate change by 

tackling its causes, either by reducing greenhouse gas (GHG) emissions or enhancing 

sinks such as forests. Research is ongoing into methods for enhancing the capacity or 

efficiency of carbon sinks, for example by varying crop choices or agricultural 

methods in croplands (Smith, 2004), or by fertilizing oceans with iron to encourage 

phytoplankton growth (Buesseler, 2004). With research into sink enhancement still 

in an early stage, policy has focused largely on GHG reduction, a task involving 

complex economic, political and social factors. The largest share of historical 

emissions originated in developed countries, yet developing countries are likely to be 

the most vulnerable as they lack the resources to fund adaptation strategies on the 

same scale as developed countries. However, if emissions in developing countries are 

allowed to escalate unchecked to meet their growing economic needs, this could, in 

effect, cancel out the efforts of those countries that implement policies to reduce 

GHG emission. Clearly a concerted international effort is required and this has been 

the approach of the United Nations Framework Convention on Climate Change 
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(UNFCCC) Kyoto Protocol, which is presently the only binding international 

agreement on climate change action. Hansen and Sato (2001) make the point that 

cooperative international action has already been demonstrated to be successful at 

tackling such environmental challenges, citing the phasing out of 

chlorofluorocarbons (CFCs) after the Montreal Protocol of 1989 in response to ozone 

layer depletion as an example. Carbon taxes, carbon offsets and emissions trading are 

all approaches aimed at reducing carbon emissions. 

 

1.5.2 Climate adaptation 
Adaptation refers to actions taken to prepare for the negative effects by 

minimizing vulnerability (Mitchell and Tanner, 2006), and also to maximize the 

positive impacts where they exist. For example, with increases in the intensity of 

extreme storms projected, communities finding themselves in the path of such storms 

will require superior flood defences and response plans. Low-lying communities face 

the threat of submersion due to rising sea levels and in the Maldives this threat is 

perceived to be so severe that the acquisition of new land to relocate to is being 

explored (Bogardi and Warner, 2008). Yet there may be some benefits to global 

warming for some sectors, such as the potential to grow new crops (Holden and 

Brereton, 2003) and maximizing such benefits requires planning also.  

There are various types of adaptation, including anticipatory and reactive 

adaptation, private and public adaptation, and autonomous and planned adaptation 

(Burton et al., 2001). Mitigation options have been the subject of many more studies 

than adaptation options (Fankhauser et al., 1999; Dang et al., 2003).  As 

quantification of the anthropogenic influence on climate has improved, it has been 

recognized that past and present emissions have most likely already committed the 

Earth to at least some climate change this century. These findings have resulted in 

adaptation coming to the fore, but the delay has led to significant knowledge gaps. 

Although more mitigation measures will lead to reduced impacts and therefore 

reduced risks to attempt to prepare for, the full effect of measures taken now to 

reduce emissions will only be seen many years into the future. Therefore it is logical 

to pursue both strategies and also minimize the negative risks of climate change to 

people and property.  
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1.5.3 The role of RCMs in responding to climate change 
Adaptation and mitigation strategies are likely to be implemented on different 

spatial scales, and by different people (Tol, 2005). Mitigation actions, such as taxes 

on less fuel-efficient cars, are for governments to put into practice. Conversely, 

adaptation actions will vary on a regional scale because the impacts of climate 

change vary from one location to the next. The needs of a community at risk of 

summer drought are quite different to those of a community on a low-lying coast. 

Thus, adaptation strategies should be the concern of local organizations such as 

county councils. As such, regional climate models are ideally placed to aid in the 

adaptation decision-making process and are particularly useful in this context. 

Scheraga and Grambsch (1998) note that not only are financial resources 

required to implement a strategy, but also human resources and technological 

resources. The problem of expense is compounded by the lack of comprehensive 

estimates of adaptation costs and benefits (Adger et al., 2007). Additionally, a 

society must be willing to divert the resources required away from other uses. 

Therefore it is very important that decisions which may involve the construction of 

costly infrastructure such as coastal defences or reservoirs are based on robust 

information. 

However, if the defences put in place are ineffective they may do more harm 

than good. The damage to New Orleans as a result of Hurricane Katrina in 2005 

highlights what is known as the ‘safe development’ paradox (Burby, 2006). The 

presence of flood protection measures led to a perception that areas of the city were 

safe for habitation when in fact, they were at high risk of flooding and protected by 

ineffective defences. When a powerful hurricane did hit, these vulnerable areas that 

would not have been so developed had flood protection measures not been 

implemented, were densely populated. These events are an example of decision-

making which was not robust, as the risk posed by a very powerful hurricane was not 

fully accounted for in protection measures.  

To make responsible choices about the level of defence required, planners at 

local level need information about likely changes. Previously, water resource 

managers have looked to past observations to inform decisions, basing design criteria 

on established flood return periods. However, in a changing climate, flood levels that 
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were previously reached every 100 years on average could occur every 50 years, or 

even every 20. With the past no longer the key to the future, other sources of 

information are required to inform the decision-making process. RCMs have the 

potential to provide this information, producing data on a variety of scales about how 

the climate could be affected by different concentrations of GHGs.  

Due to the inherent uncertainty associated with modelling future climate, it 

cannot be assumed a priori that these high resolution scenarios are skilful and with 

this in mind, model outputs should not be used to identify optimal adaptation 

measures. However, when uncertainties are accounted for and communicated 

effectively, models can be quite useful for testing the sensitivity of adaptation 

measures and informing robust adaptation (Wilby and Dessai, 2010). As such, 

developing a framework for the generation of future scenarios which accounts for 

modelling uncertainties is a key research priority.  

 

1.6 AIMS AND OBJECTIVES  

 One of the issues raised following the IPCC Fourth Assessment Report was 

the greater need for regional information regarding climate change, to better reflect 

the diversity of climate issues that concern different geographical areas (IPCC, 

2007). Adaptation to climate change is by its nature a local undertaking, and as such, 

requires climate model output at a smaller scale than GCMs can provide. As such, 

RCMs are an ideal tool to help inform adaptation decisions or test adaptation 

strategies to ensure that they are robust to potential climate changes. 

However, the climate system is highly complex, and it is impossible to 

mathematically model it precisely. We are fundamentally limited in our ability to 

represent the climate system by our level of understanding of factors and processes 

that influence it. We are also constrained by hardware limitations, as running climate 

models requires significant computational resources. As uncertainties are so often 

treated inconsistently in climate change projections, it can be difficult for planners to 

make the adaptation decisions that need to be made. Better information about the 

strengths and weaknesses of the various models available is needed in order for 

planners and decision-makers to determine what steps are necessary and implement 
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robust adaptation strategies. Communication of scientific uncertainty and the 

relevance of information obtained from the best available models is also critical. 

To determine which models, if any, are best suited for a particular domain, 

the model must be verified by comparing a hindcast from the model to the observed 

climate record of the area. If the model can simulate the present climate skilfully, 

there is more reason to be confident in its future projections. However, verification 

studies often do not fully examine the complex and non-linear problem of model 

performance. Many studies do not explore how the RCM arrives at its projections for 

a key variable such as temperature or precipitation (e.g. Chen et al., 2007), and as 

such do not distinguish between genuine model skill and skill which comes about as 

a result of error cancellation in the model. Model skill assessments tend to be applied 

to a limited selection of spatial and temporal scales. For example, by focusing on 

mean patterns there is potential to overlook changes in variability and extreme events 

(Katz and Brown, 1992). It is also possible that the average value for a season can 

hide information about how the models represent monthly patterns or even 

components of those patterns.  Some verification studies compare model simulations 

driven by observational data with the observed climate record (e.g. Christensen and 

Kuhry, 2000), but this approach does not take account that in a future simulation the 

model is driven by boundary data from a GCM and hence does not assess how the 

GCM-RCM combination performs. As such, there is a real need for effective and 

comprehensive approaches to the assessment of uncertainties in climate modelling.  

This thesis concerns itself with developing a systematic framework for the 

construction of robust future scenarios that accounts for intermodel uncertainties at 

the RCM scale, to aid decision-making and adaptation. The thesis aims to examine 

the problem by: 

 Assessing the models’ ability to simulate key aspects of the Irish climate such 

as means and variability and identifying the spatial and temporal scales at 

which different models are informative. 

 Investigating how the models represent the underlying large-scale dynamics, 

to determine whether skill in simulating the mean climate state is a robust 

indicator of model performance. 
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 Developing procedures for assessing model skill and constructing intelligent 

ensemble projections and applying these procedures to create robust future 

climate scenarios for Ireland (Figure 1.7). 

 

Figure 1.7: Schematic diagram of thesis. 

 

1.7 STUDY REGION: IRELAND 

Irish climate is influenced by a variety of factors, both large and small in 

scale. The warming current of the North Atlantic is a significant feature, as is the 

influence of the North Atlantic Oscillation index on prevailing westerly winds 

(Kiely, 1999). In the west, warm, moist winds from the Atlantic ensure that Ireland 

does not experience extremes of temperature like many other mid-latitude countries. 

While temperature is quite homogeneous across the country, precipitation is 

more spatially variable. The annual precipitation pattern displays a west to east 

gradient, with the greatest precipitation yields occurring along the mountainous west 

and south-west coasts (Sweeney, 1985).  As the warmest ocean areas lie to the south 

of Ireland, the greatest precipitation yields are associated with southerly circulations 

in all seasons (Sweeney, 1989). To the east, the Irish Sea is another key influence, 

particularly in autumn and winter with easterly winds producing high yields of 

precipitation along the east and south coast and cyclonic circulations resulting in 
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heavy precipitation on the Antrim and Down coasts (Sweeney, 1989). Local 

orographic also plays an important role in shaping weather patterns, with rain 

shadow effects discernible in certain area.  

Differences in population density and geology mean that different areas of the 

country experience different levels of climate vulnerability. Although Ireland is an 

island country, it is seen as having low vulnerability to sea level rise due to its 

predominantly cliffed coasts (Devoy, 2008). However, winter flooding may be an 

issue under climate change as increased precipitation could alter both flood 

frequency and duration (Charlton et al., 2006). Agriculture is another area which 

poses climate risks for Ireland as climate change could lead to losses in the yields of 

key crops such as barley and potatoes (Holden et al., 2003). Additionally, rising 

temperatures could potentially enable the emergence of agricultural pests and 

diseases which cannot survive in the current Irish climate.  For example, the recent 

expansion of bluetongue virus into Northern Europe has been attributed in part to 

changes in the climate (Gould and Higgs, 2009).  

Ireland is a small country, quite poorly resolved in the coarse resolution of 

GCMs and as such, regional modelling is especially beneficial here. Early RCM 

simulations of Europe (e.g. Giorgi et al., 1990; Jones et al., 1995) provided valuable 

insights into the large-scale climate of the continent, but lacked the resolution 

required to provide a realistic representation of Ireland and the simulation length 

required to wholly capture interannual variability. However, in the last decade, 

nested simulations have been produced to cover the European domain (e.g. 

Christensen et al,. 2007;  May, 2007; Räisänen et al., 2001) that are not only finer in 

resolution but also longer in length.  Much dynamical modelling of the Irish climate 

has been carried out by the Community Climate Change Consortium for Ireland 

(C4I) but this research has tended to utilize a single model, RCA3, leaving 

intermodel variability an unquantified uncertainty (Dunne et al., 2008: 5). 

Such simulations have the potential to provide useful data to inform Irish 

climate policy. However, an understanding of the uncertainty that affects data and 

detailed knowledge of the strengths and weaknesses of various models is essential, if 

model output is to be used appropriately in adaptation planning. Under climate 

change, the frequency of occurrence associated with the various circulation types or 
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the amount of precipitation associated with each type may change. As such, it is 

important that RCMs are able to capture these characteristics of the Irish climate in 

the control period, if there is to be confidence in the models’ future projections.   

 

1.8 STRUCTURE OF THESIS 

Chapter 1: Introduction gives a brief overview of the science of climate 

change, the technique of regional climate modelling and the potential human impacts 

of climate change, which motivate the development of future climate scenarios. 

Chapter 2: Uncertainty in regional climate modelling: A review discusses 

issue of uncertainty in regional climate modelling in greater detail, including how 

different types of uncertainty arise and how they impact modelled future scenarios. 

Approaches for working with climate model uncertainty are also critically assessed.  

Chapter 3: Conceptual framework discusses the theoretical framework 

adopted throughout this research. 

Chapter 4: A temporal analysis of regional climate model performance in 

the present day (1961-1990) presents results of an analysis of RCM skill at 

simulating temporal aspects of the present climate. For each model, representation of 

interannual variability and the mean annual climatology of temperature and 

precipitation are compared to the observed climate.  

Chapter 5: A spatial analysis of regional climate model performance in 

the present day (1961-1990) presents results of an analysis of RCM skill at 

simulating spatial aspects of the present climate. Representation of the mean seasonal 

spatial patterns of temperature and precipitation are compared to the observed 

climate. Empirical Orthogonal Function analysis is used to assess variability of 

spatial patterns and to determine how skilfully models capture key components of the 

mean spatial patterns.  

Chapter 6: An analysis of the impact of large-scale drivers on modelled 

climate: North Atlantic Oscillation investigates how a key large-scale driver of 

Northern European and Irish climate, the North Atlantic Oscillation, is captured in 



 23

RCMs, to assess whether skill at modelling means and variability of temperature and 

precipitation is truly an accurate indicator of model skill. For six case studies, 

illustrative of the broader range of GCM-RCM combinations, representation of the 

NAO is assessed through the study of winter mean sea level pressure and wind 

direction frequencies over Ireland.  

Chapter 7: A comparison of approaches to future climate scenario 

development compares and contrasts approaches to constructing future climate 

scenarios. The merits and deficiencies of the average ensemble technique and the 

weighted ensemble based on skill scores are discussed. An approach which utilizes 

both skill scores and objective estimates of model reliability, based on the research 

presented in this thesis, is also proposed. These approaches are applied to future Irish 

temperature and precipitation data and the outcomes are compared and discussed. 

 Chapter 8: Final conclusions summarizes the key findings of the thesis and 

highlights areas that could benefit from future study. 
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CHAPTER 2  
UNCERTAINTY IN REGIONAL 

CLIMATE PROJECT IONS:  A 
REVIEW  

 

2.1 INTRODUCTION 

In the event that emissions of greenhouse gases continue to increase, the 

likely impacts of continued anthropogenic warming could include extinction risks for 

plant and animal species (Thomas et al., 2004), and direct physical risks to people 

and communities, as well as economic risks. As such, climate change and climate 

uncertainty are relevant issues for a range of disciplines including biogeography and 

ecology (Diniz Filho et al., 2009; Wiens et al., 2009), water resource management 

(Buytaert et al., 2009; Kay et al., 2009), oceanography (Good et al., 2009) and 

glaciology (Holland et al., 2010; Vizcaino et al., 2010). With the likely risks of 

climate change widely recognized, adaptation rather than attribution has become the 

chief concern. Decision-makers at all levels of governance are beginning to consider 

how the potential impacts of climate change can be lessened or managed. 

While adaptation policy is developed at national level, differences in physical 

environment, land-use and population make the task of implementing adaptation 

strategies a task best carried out at regional and local scale. Decision-makers need to 

determine if adaptive capacities are robust enough to withstand the potential impacts 

for their region. To do this, planners require information about how human-induced 

warming may affect key climate parameters such as precipitation and temperature, 

and what effects such changes will have in their region of interest. Dynamical 

computer models of climate, particularly regional climate models (RCMs), can 

provide this information.  Yet their limitations must also be understood if their 

outputs are to be useful in developing meaningful adaptation policy, particularly if 

such policies are associated with costly infrastructure such as flood defences or 

reservoir construction, or even relocation of populations. 
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The climate system is comprised of numerous complex processes and 

interactions and no model can ever be expected to perfectly simulate this. While 

many processes are represented in models by fundamental physical equations, 

parameterizations are also employed to approximate certain processes. The scientific 

knowledge on which such parameterizations are based comes from studying the 

current climate and proxy studies of past climate, and as such, their ability to 

simulate the climate under different forcing conditions may potentially be limited. 

Such limitations necessitate a greater understanding and awareness of the uncertainty 

surrounding climate model output. If such projections are to provide an effective 

basis for policy-making, then uncertainties must be accounted for.  

Uncertainties occur at numerous spatial and temporal scales, but are 

classifiable according to common characteristics. The degree to which they can be 

successfully represented or quantified is quite variable, but methods do exist for 

managing certain forms of uncertainty.  Nescience, that information that cannot be 

known, will always be a part of climate projections too, as no methodology can fully 

account for every uncertainty. But accounting for as much uncertainty as possible is 

vital if modelled climate projections are to be of benefit in decision-making and 

policy-making. This chapter characterizes the various forms of uncertainty, discusses 

how they affect each stage of the regional modelling process and considers previous 

attempts at dealing with uncertainty in climate modelling. 

 

2.2 DEFINING UNCERTAINTY IN CLIMATE 

MODELLING 

“Uncertainty” and “risk” are often taken as interchangeable concepts, but in 

the context of climate change assessments these are two important features with 

fundamental distinctions. Knight (1921) observes that they are two categorically 

different things. The term “risk” should only refer to measurable uncertainty, while 

“uncertainty” should be restricted to non-quantitative uncertainty. Hubbard (2007) 

expands further, illustrating that one can have uncertainty without risk but not risk 

without uncertainty. He defines uncertainty as “the existence of more than one 

possibility” (Hubbard, 2007:46), where the true outcome is not known, while risk is a 
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state of uncertainty where some of the possibilities involve an undesirable outcome. 

One definition of risk is the probability of an outcome multiplied by the loss 

associated with that outcome.  

Various risks are also associated with climate change. The effects of 

anthropogenic warming could include extinction risks for plant and animal species 

(Thomas et al., 2004), and direct physical risks to people and communities, as well 

as economic risks. The various losses associated with climate risk are not just 

financial. One cannot put a price on the loss of biodiversity associated with 

extinction risks, for example. The impacts associated with climate change are 

dependent on what degree of change emerges. This degree of change is unknown. In 

a system undergoing change, past observations are unlikely to be a robust estimator 

of future behaviour. For example, King (2004) notes that under higher emissions 

concentrations, flood levels that are currently expected once in every 100 years in the 

UK based on observational records could occur every 3 years. Therefore, long-term 

projections from climate models are very useful to help determine likely changes on 

which to base adaptation planning.  

However, with less knowledge of possible outcomes, the basis for assigning 

probability becomes less firm (Figure 2.1). Where outcomes are poorly defined and 

knowledge about likelihoods is low, alternative approaches such as scenario analysis 

must be used, as there is no basis for probabilities. As the uncertainty surrounding 

the modelled output increases, confidence in the data decreases. In order to prepare 

strategies for managing climate risks, uncertainties must be accounted for as far as 

possible.  

The ‘types’ of uncertainty commonly identified in the larger scientific 

community (e.g. Tannert et al., 2007) are often referred to in climate science also. At 

its core, uncertainty in climate science is a case of “imperfect knowledge” and what 

Gershon (1998: 44) identifies as “causes of imperfect knowledge” are all present. 

However, due to the complexity of the climate system and the modelling process, the 

relationships between uncertainty types must also be considered. A typology of 

climate model uncertainties is described in Figure 2.2. The first division made is 

between uncertainty inherent in the climate system and uncertainty related to our 
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ability to model it, which can be further categorized as epistemological or 

ontological. 
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Figure 2.1: Scheme for defining risk, uncertainty and ignorance (Source: Stirling, 1998). 

 

Uncertainty in the climate system has two main sources. Firstly, there is 

uncertainty over human action, including uncertainty due to unknown future 

emission concentrations of GHGs and aerosols. Emissions related uncertainties are 

what Schwierz et al. (2006) categorized as Type I uncertainties. This uncertainty is 

largely due to unknowable knowledge, and is inherently irreducible (Hulme and 

Carter, 1999). Secondly, there is uncertainty over how the climate system is likely to 

respond to our actions. Further research may reduce this uncertainty, but may also 

uncover previously unknown processes and lead to increased uncertainty. Also, in a 

complex, non-linear system the existence of unknown states or the occurrence of 

“surprise” events is also possible. 
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Figure 2.2: A taxonomy of climate model uncertainties 

 

Uncertainty relating to our ability to model the climate system can be refined 

into two further categories. Epistemological uncertainty is that which is related to 

gaps in knowledge: what Hulme and Carter (1999) refer to as “incomplete” 

knowledge. This gives rise to what Schwierz et al.  (2006) called Type III 

uncertainties, and Jenkins and Lowe (2003) called science uncertainty. These 

uncertainties relate to issues with modelling specific processes, and also to the issue 

of finite computer resources. Many climate processes have been the focus of much 

research for many years, and as a result they can be represented with physics in 

models quite well. For example, research into the role of carbon in climate change 

(e.g. Brown and Lugo, 1982; Maier-Reimer and Hasselmann, 1987; Houghton, 1995) 

enables us are to model the chemical and physical transfers of carbon from sources to 

sinks with a degree of confidence. Yet for a variety of reasons, other processes 

remain quite difficult to model accurately. 

Ontological uncertainty, as it relates to climate modelling, involves the 

variability of the climate system and climate models (Rotmans and van Asselt, 2001; 

van der Keur et al., 2008), what Tannert et al. (2007: 893) describes as “stochastic 

Ontological 
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features of the situation”. The non-deterministic nature of the climate system 

(Mitchell and Hulme, 1999) gives rise to ontological uncertainty in climate 

modelling, which is characterized by a lack of predictability. Schwierz et al. (2006) 

refers to these uncertainties as Type II uncertainties. GCMs and RCMs share many 

of the same uncertainties and are affected to some degree by all types of uncertainty, 

though different sources emerge as key influencers. 

 

2.3 UNCERTAINTY AND THE CLIMATE SYSTEM 

2.3.1 Emissions scenarios 
The greatest uncertainty in climate modelling, which features in all climate 

downscaling techniques, stems from the unpredictability of future anthropogenic 

greenhouse gas emissions and their resultant atmospheric concentrations. The IPCC 

Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000) discusses 

several factors that impact on the atmospheric greenhouse gas concentrations 

projected over the present century: population growth, economic and social 

development, the development and utilization of carbon-free energy sources and 

technology and changes to agricultural practices and land-use. It is not possible to 

predict how all these influences will evolve as they depend upon future human 

behaviour. This information is unknowable, and as such is an inherently irreducible 

uncertainty. Yet the degree of climate change experienced is inextricably linked to 

concentrations of GHGs. No climate projections can be made without first finding a 

way to represent this unknowable information. As the outcomes are so poorly 

defined, there can be no basis for assigning probabilities to future emissions. 

Alternative approaches are needed to represent this uncertain factor.  

A widely used approach to emissions uncertainties is scenario analysis, in 

which future concentrations are estimated for a range of different “storylines” 

representing varying combinations of populations and economic development. There 

are 4 socio-economic storylines for which the IPCC have defined 40 emissions 

scenarios and each scenario family, A1, A2, B1 and B2, has an illustrative “marker” 

scenario (Nakicenovic et al. 2000). Significant expertise goes into designing these 

story-lines. For example, numerical modelling may be carried out to ensure self-
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consistency in assumptions (Sugiyama, 2005). Yet there has been some criticism of 

the manner in which they are designed. In particular, economic assumptions that the 

SRES scenarios make about Gross Domestic Product (GDP) have come under 

scrutiny (Castles and Henderson, 2003). 

The limited number of scenarios also makes it more difficult to draw 

conclusions about the relationships between global and regional rates of climate 

change. Pattern-scaling in time can be used to infer climate responses for a particular 

degree of forcing by scaling the regional climate change signal from a future period 

according to global mean temperature change. But this requires the assumption that 

regional change occurs at the same rate as global change. Some papers have 

attempted to demonstrate such a relationship exists for some climate parameters by 

examining whether regional response and global change vary together in a model 

when it is forced by different scenarios (e.g. Hingray et al, 2007), but this is made 

difficult by the limited number of forced model runs available. Often there are only 

three emissions scenarios available for GCMs (e.g. control, A2, B2). In addition to 

capturing a wider range of emissions uncertainty, the validity of such relationships 

could be much better established were more emissions scenarios used in practice. 

Emissions scenarios provide information about GHG concentrations for a 

range of plausible futures and cannot cover all eventualities. Outcomes are left 

unaccounted for even at this initial stage, introducing uncertainty to the overall 

projections. Since the future is not static, it is also possible that the actual outcome 

may be entirely unexpected, a scenario that had never been considered. It is 

conceivable that the very creation of particular emissions scenarios and the resulting 

research carried out alters the likelihood of scenarios coming to be, as humanity 

adopts unforeseen new strategies to avoid a negative scenario becoming reality.  

 

2.3.2 Climate sensitivity  
Climate sensitivity is a measure of how responsive the climate system is to a 

change in forcing. Assume that the climate system undergoes a change in forcing 

ΔF2x, brought about by a doubling of CO2 concentration levels. When the climate 

system reaches its new equilibrium, ΔT2x is the resultant surface temperature 
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response, averaged globally. The sensitivity of the climate system to this forcing is 

therefore  

Equation 2.1: Climate sensitivity 

 = ΔT2x/ΔF2x. 

where  

 =climate sensitivity, 

ΔF2x = change in forcing brought about by a 
doubling of CO2 concentration levels and 

ΔT2x = the resultant equilibrium surface 
temperature response, averaged globally.  

 

In this way, the anthropogenic contribution to radiative forcing can be 

quantified as a figure of global temperature change. The magnitude and impacts of 

climate change are strongly dependant on climate sensitivity, so there is a real and 

immediate need to quantify uncertainty associated with sensitivity in climate 

projections. Andronova and Schlesinger (2001: 1) state:  

 

“If ΔT2x is less than the lower bound given by the 
Intergovernmental Panel on Climate Change (IPCC) then 
AICC (anthropogenic induced climate change) may not be a 
serious problem for humanity. If ΔT2x is greater than the upper 
bound given by the IPCC, then AICC may be one of the most 
severe problems of the 21st century.” 

 

Climate sensitivity can be estimated using a perturbed physics ensemble (e.g. 

Piani et al., 2005) in which the same atmosphere-ocean global climate model 

(AOGCM) is run numerous times with slightly altered parameters, or using an 

ensemble of different AOGCMs (e.g. Yokohata et al., 2008). In addition to inheriting 

the uncertainties of the emissions scenario, differences in the design of AOGCMs, 

such as the vertical and horizontal resolution of the atmosphere and ocean and the 
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parameterization of various processes, and uncertainties regarding radiative forcing 

(Tanaka et al., 2009) introduce further uncertainty into the calculation.  

AOGCM experiments provide one measure of sensitivity. Much work has 

been carried out on ‘constraining’ estimates of climate sensitivity using 20th century 

observations (Andronova and Schlesinger, 2001; Knutti et al., 2002). Paleoclimate 

data has also been used to determine the sensitivity of the climate system to past 

changes in forcing (Watson, 2008), as past CO2 levels and surface conditions can be 

estimated from sources such as ice cores or speleothems. Such research is now being 

used as a method of validating AOGCMs, the hypothesis being that if an AOGCM’s 

climate sensitivity matches the climate sensitivity obtained from study of paleo data, 

then greater confidence can be placed in the estimate (Edwards et al., 2007; Hoffert 

and Covey, 1992).   

Of course, as the anthropogenic forcing influencing climate at present is 

unprecedented, non-linear feedbacks may not operate in the same manner in 

paleoclimates as they will under doubled CO2 forcing. Combining constraints from 

different paleoclimates is likely to be more reliable that looking at single eras (Covey 

et al., 1996), but using different constraints or combinations thereof yields different 

values for climate sensitivity, adding an additional layer of uncertainty. Ranges for 

climate sensitivity vary depending on the method employed (Figure 2.3). For the full 

range of emissions scenarios, the estimated range of global climate sensitivity is 

1.4oC-5.8oC (a normal distribution, with a 5-95% probability range of 2oC-4.5oC, and 

a most likely value of around 3oC) (IPCC, 2007). Wigley and Raper (2001) take 

account of other key uncertainties but maintain that all emission scenarios are 

equally likely, to show that the probabilities of warming are low on both tails of the 

distribution and in the absence of climate mitigation, the 90% probability of warming 

is more likely to be in the range 1.7oC-4.9oC.  
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Figure 2.3: A summary of results from climate sensitivity experiments (Source: IPCC, 2007). 

 

2.3.3 Natural variability and climate feedbacks 
Even with some idea of how sensitive the climate system is to increased 

greenhouse gas forcing, there are barriers to understanding how the climate will 

ultimately respond. The climate system is a complex, non-linear, dynamical system, 

so understanding the behaviours of various components of the system does not imply 

understanding of the overall behaviour. As the system evolves it is influenced by 

natural variations, which are limited in their predictability. For example, the 

dominant influence on climate in Western Europe, the Atlantic Ocean (Sutton and 

Hodson, 2005), is affected by modes of variability operating on a range of time-

scales from decadal (e.g. Atlantic Multidecadal Oscillation) to thousands of years 

(e.g. thermohaline circulation). The predictability of these modes has been a topic of 

study for some time (e.g. Davies et al., 1997; Graham, 1994) and some modes have 

been shown to be quasi-predictable. For example, Griffies and Bryan (1997) found 

that the North Atlantic Oscillation may possess predictability in the order of a decade 

or longer, but not beyond that.  
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Such variability is naturally forced, as these oscillations of the climate 

system, which operate on a range of time-scales, are present even in a stable climate 

not undergoing any anthropogenic forcing. One of the challenges of attributing 

climate change is that the signals of anthropogenic climate change are superimposed 

on this background of natural variability, making it difficult to differentiate between 

the two.  

It is also possible that increased GHG emissions may interfere with natural 

climate modes and processes. There are many ways in which such interference could 

manifest itself (Figure 2.4), including amplification of the effects of the change in 

forcing. This is referred to as a positive climate feedback. Negative climate feedback 

mechanisms also exist which can diminish or mask the effects of a change in forcing.  

The Daisyworld scenario (Watson and Lovelock, 1983) illustrates how such 

feedback mechanisms work. It simulates a world composed of black daisies that 

absorb light, and white daisies that reflect light. Different types of daisy thrive at 

different temperatures and at the beginning of the simulation Daisyworld is too cold 

to support life, but gradually the luminosity of the sun's rays increases and the planet 

warms. The black daisies amplify the warming further as they absorb light, making 

the planet suitable for white daisies to grow also. The two types of daisy work 

together to maintain a surface temperature that is comfortable for both populations 

but as the planet continues to warm, the temperature becomes too hot for the black 

daisies to survive. The white daisies begin to replace them, because white daises can 

stay cooler due to their reflective properties. The cooling effect of the larger white 

daisy population keeps the surface temperature of Daisyworld habitable as the 

luminosity of the sun keeps increasing. Eventually, however, the temperatures 

become intolerable even for the white daisies and the population crashes. At this 

point in the simulation, solar luminosity starts to decline to a level where white 

daisies can grow once more. These white daisies further amplify the cooling effect. 

In the Daisyworld simulation, white daisies act as a negative feedback and cool the 

planet, while black daisies act as a positive feedback and intensify warming.  
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Figure 2.4: Types of climate variations (Source: Marcus and Brazel, 1984). 

 

A similar feedback effect exists in the actual climate system; the sea ice-

albedo effect, described by Curry et al. (1995). A decrease in snow and ice cover 

reduces albedo and results in a corresponding increase in surface temperature, which 

further decreases snow and ice coverage. Another important type of feedback are 

forest loss feedbacks (Laurence and Williams, 2001). A decrease in forest cover 
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reduces plant evapotranspirtation and, in turn, regional rainfall. This regional drying 

leaves the area vulnerable to forest fires and further deforestation. Melting 

permafrost in the Arctic and Siberia may present a similar feedback, with the release 

of soil carbon and methane leading to further warming (Anisimov, 2007). Indeed, 

Kennedy et al. (2008) suggest that methane released from permafrost may have been 

a trigger for deglaciation at the end of the Marinoan 'snowball' ice age (~635M BP). 

As in the Daisyworld simulation, there is much debate about the presence of 

“tipping points” in the climate system at which change due to anthropogenic drivers 

causes sufficient new processes or change to existing processes to make any human 

reversal of the overall change impossible (Hansen, 2006). For example, there may be 

a critical threshold in the climate-carbon cycle system, where regional drying leads to 

the loss of large tracts of the Amazon Rainforest (Cox et al., 2004).  The loss of such 

a large carbon sink would lead to further warming, and further forest loss. Similarly, 

global climate model (GCM) simulations show that strong surface freshening in the 

North Atlantic, which may be brought about by melting glaciers, could force a 

reduction in the strength of thermohaline circulation (THC). Such a reduction could 

occur on a time-scale of decades (Hulme and Carter, 1999), or the onset could be 

even more rapid, taking place over just a few years (Alley et al., 1993). It has been 

shown that THC resembles a non-linear system in many ways, becoming 

increasingly sensitive to small perturbations as its critical threshold is neared, and 

thus less predictable (Knutti and Stocker, 2002). Paleo data suggests that THC 

reduction, triggered by the sudden release of meltwater from Lake Agassiz (Carlson 

et al., 2007), may have caused the Younger Dryas cold event (~11,500 BP). In 

addition to an abrupt climate change, there may actually be a number of stable states, 

of which we are unaware because they have not been observed before, that the 

system flips or rapidly changes between (Figure 2.4). Both in reality and in the 

model, a tipping point could be reached and passed without being immediately 

obvious. For example, at some level of temperature rise, the melt of the entire 

Greenland ice sheet would become inevitable as increasing amounts of melt-water 

further destabilize the ice, yet complete melting would not occur for thousands of 

years or more. 

Outcomes such as the Younger Dryas cold event are often referred to as 

climate “surprises”. Anthropogenic effects on natural climate variation could 
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manifest in many ways, from a slow shift from a phase of low activity to one of high 

activity to a sudden jump from one state to another (Figure 2.4). There may even be a 

number of states that the system changes between. Such jumps are also known as 

abrupt events or climate surprises. Paleo data and modelling can give an indication of 

possible outcomes, making such uncertainties ontological as they are due to the non-

deterministic nature of the system but are not entirely unknowable. The more model 

runs considered, the larger the range of potential outcomes that can be simulated. 

However, models cannot be expected to reveal the full range of potential surprises as 

even at their most complex, they represent a simplification of the actual system.  

It is also possible that future external forcings may also come from 

unexpected solar variability or volcanic eruptions, which can have a significant 

impact on the climate system. Whether this would happen, when it would happen and 

the magnitude of such forcings cannot be predicted with any confidence. Major 

volcanic eruptions such as El Chichón in 1982 and Mount Pinatubo in 1991,  resulted 

in temperature anomalies of -0.2°C and -0.4°C respectively in the year following the 

eruption (McCormick et al., 1995). The eruption of Mount Pinatubo in 1991 was the 

second largest eruption of the 20th century and was rated 6 out of 8 on the Volcanic 

Explosivity Index (VEI). Although there have been no VEI 8 eruptions during the 

entire Holocene, if such an eruption were to occur it would have a massive impact on 

global climate. Simulations show that the impacts of “super-eruptions” could be 

much greater, potentially reducing global temperatures by up to 10oC (Jones et al., 

2005). While this initial effect may last only for a few months, it could take several 

decades for temperatures to return to normal. Such forcings are unlikely to ever be 

predictable in a deterministic sense and are thus classed as an unknowable 

uncertainty. Wigley and Raper (2001) do not take these uncertainties into account as 

to do so would lead to much wider uncertainty bounds.   

The interactive effects of individual climate processes also cannot be 

anticipated, even with very good knowledge and understanding of the individual 

mechanisms. Streets and Glantz (2000) refer to these interactive effects as 

synergisms. In addition to the processes interactions with each other one must 

consider how they will interact under different forcing conditions. In the future, one 

may even need to consider how climate mechanisms might react to anthropogenic 

climate reduction measures, such as geo-engineering.  
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Yet some form of action is required to prevent the crossing of possible critical 

thresholds in the climate system that could trigger catastrophic events, and some 

level of information is needed to develop adaptation strategies. Although climate 

models can never take account of every uncertainty in the climate system, they 

remain the best source of information now that past observations of the climate are 

no longer the key to its future behaviour.  

 

  2.4 UNCERTAINTY IN CLIMATE MODELS 

Emissions scenarios provide the primary input used to drive a GCM. Due to 

computational limitations, GCM resolution tends to be quite coarse, in the order of 

1.2o to 4o (Genthon et al., 2009). Much computer resources are needed to model the 

complexities of the global climate system and so running such a model at finer 

resolution would be quite time-consuming. Various methods can be used to bridge 

the gap between GCM output and regional response, but the focus of this thesis is 

regional climate modelling. RCMs have become an increasingly important source of 

information for decision-makers, providing the necessary, detailed information over 

a limited area. However, an RCM is but one part of the modelling process. It is part 

of a chain of procedures in which uncertainties and inferences at each level can 

impact outcomes at subsequent levels. This chain has been referred to as the 

“cascade of uncertainty” (Mitchell and Hulme, 1999) or the “uncertainty explosion” 

(Henderson-Sellers, 1993; Jones, 2000) (Figure 2.5).  

However, both GCMs and RCMs are impacted by numerous sources of 

uncertainty such as knowledge gaps and differences in model codes. These 

uncertainties weaken confidence in the end projection. Decisions must be made 

about which GCM to use as a driver and which RCM to use. For every choice the 

climate modeller makes, there are options he or she did not choose and combinations 

left unconsidered, and so uncertainty must be recognized as an unavoidable part of 

climate modelling.  
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Figure 2.5: "Uncertainty explosion" of major typical uncertainties (Source: after Jones, 2000b and 
Schneider, 1983). 

 

2.4.1 Epistemological uncertainty in climate modelling 
 Epistemological uncertainties are very influential in both GCMs and RCMs, 

and cloud uncertainties are a prime example of this category of uncertainty. Clouds 

have a variety of effects on both the radiation budget and the water balance, so it is 

of the utmost important that models reproduce them accurately. According to 

Schwarz (2008: 439) “…a 10% error in treatment of clouds in the climate model 

would result an error of some 4.8 W/m2”. Bony et al. (2006) compared results from a 

number of models from different cloud feedback quantification studies and found not 

only differences in magnitude but also differences in direction for the lapse rate 

feedback parameter (Figure 2.6). Clouds can have a warming effect by trapping a 

portion of outgoing infrared radiation and radiating it back downward or can have a 

cooling effect by reflecting sunlight back into space, an effect known as the cloud 

albedo effect. The type of cloud determines the effect it will have, with high, thin 

clouds having a warming effect and low, thick clouds having a cooling effect. There 

are also a wide range of cloud-climate feedbacks. An increase in cloud amounts is 

projected as a consequence of anthropogenic warming and the resultant increase in 

atmospheric water vapour. But the type of cloud likely to result from an increase in 

water vapour and the overall effect on surface temperatures is not well known.  
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Figure 2.6: Comparison of GCM climate feedback for water vapor (WV), cloud (C), surface albedo 
(A), lapse rate (LR), and the combined water vapor and lapse rate (WV+ LR). ALL represents the 

sum of all feedbacks. Results from Colman (2003; in blue), Soden and Held (2006, in red), and 
Winton (2006, in green). Closed and open symbols from Colman (2003) represent calculations 

determined using the partial radiative perturbation method and the RCM approaches, respectively. 
Crosses represent water vapor feedback computed assuming no change in relative humidity. 

Vertical bars depict the estimated uncertainty in the calculation of the feedbacks from Soden and 
Held (2006) (Source: Bony et al., 2006). 

 

There are two main reasons for the knowledge gaps surrounding clouds and 

cloud processes. Firstly, the more accurate satellite observation record is quite short. 

Conversely, the surface observation record is long but quite subjective as only clouds 

visible to the observer are recorded (IPCC, 2007). Higher-level clouds hidden above 

low-level clouds would not be noted, and this makes it very difficult to draw 

conclusions about cloud processes and what behaviour may be likely under different 

forcing conditions from the existing observations alone. But epistemological 

uncertainty may be reduced with further research. Baker and Peter (2008) suggest 

new observational and laboratory programmes are needed to fill cloud science 

knowledge gaps. 

 Secondly, the large-scale effects of clouds on the climate are actually the 

result of processes occurring on a much smaller scale. Increases in concentrations of 

anthropogenic aerosols such as sulphate and mineral dust have direct and indirect 
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effects on clouds by impacting on processes at this microphysical scale (Figure 2.7). 

Even with highly accurate observations of the large-scale cloud formations, further 

work would be needed to characterize these small-scale processes. Again, much new 

research has been carried out to determine how increases in aerosols could modify 

cloud behaviour (e.g. Berg et al., 2008; Khain et al., 2005; Lohmann, 2008). New 

data collection methods such as remotely-piloted aircraft (Lu et al., 2008) and model 

experiments (e.g. Philips et al., 2007) may help to close the knowledge gaps and 

enable better modelling of the climate system as a whole. 

 
Figure 2.7: Aerosol effects on cloud. Black dots represent aerosol particles, open circles represent  
water droplets. CDNC = cloud droplet number concentration. LWC =liquid water content.(Source: 

IPCC, 2007). 

 

However, as knowledge of the system increases, a new problem of 

complexity emerges. As AOGCMs require considerable computer power to run, and 

computer resources are not limitless, decisions must be made about how to focus the 

computing power and which specific processes to represent explicitly (Pope et al., 

2007). To maximize one attribute of the model it is necessary to compensate in other 

areas. Presently, to produce long and highly complex output, a model would need to 

be run at a coarse resolution. If high resolution output is required, it is sometimes 

necessary to leave out or empirically approximate processes rather than physically 

resolve them within the model. Such a situation arises when processes could be 
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physically represented in the model, but doing so would increase the complexity of 

the model, which would require compensation with respect to resolution or runtime. 

Decisions must be made about what processes are integral, and what 

processes can be omitted. Of course, leaving out a process can have an effect on the 

model’s performance, as demonstrated by Senior (1998) who found the modelled 

response of large-scale circulation changes significantly when interactive radiative 

properties are included in the model. An alternative is to parameterize a process, 

rather than leave it out completely. Instead of explicitly resolving the process in the 

model, a scheme is developed to describe the impact of the mechanism on the 

atmospheric system. This is achieved by formulating the effect of the subgrid-scale 

processes in terms of resolved grid-scale variables to make an empirical 

approximation. The advantage to using parameterizations is that running the model 

requires less computer power, as the physical equations corresponding to the 

processes do not need to be solved. Cumulus clouds, turbulent mixing, subgrid-scale 

orographic drag and moist convection are examples of such processes.  

A number of issues arise from the use of such schemes. Firstly, 

parameterization schemes are not equally effective. Convective cloud formation is an 

example of a process that should not be left out of models. Deep convection 

generates and redistributes heat and removes and redistributes moisture, significantly 

affecting the stability of the large scale circulation (Emanuel et al., 1994). But the 

scale on which convective clouds form is much smaller than that of stratiform 

clouds, and can be less than a kilometre. Within this very small area, the convective 

updrafts form narrow thermals, with slowly subsiding air in between (Bjerknes, 

1934). To represent this activity physically in a model using the equations of fluid 

motion would require much finer grid resolution than is currently available, which 

would in turn require more computing power. So a scheme is created which 

approximates the collective effects of convective clouds in each model grid cell. In 

the simplest parameterization schemes, if a column of air in a model grid box is 

warmer at the bottom than at the top, it is overturned and the air in that column is 

mixed, but this is clearly not what happens in reality. The more sophisticated 

schemes attempt to account for more processes, for example entrainment, but they 

are still imprecise. Wang and Seaman (1997) assessed the performance of four such 

schemes, and found the skill of the four schemes variable, observed systematic error 
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with the schemes, and identified particular properties that more skilful schemes had 

and less skilful ones lacked. There is also always the possibility that more than one 

theory can be used to explain observations, and following on from this, that more 

than one parameterization scheme can be developed for a particular process. But 

while they may all hold true in the current climate, in a changing climate they may 

not all be so accurate. Empirical approximations cannot be tested under altered 

forcing conditions, therefore an assumption must be made that the relationships will 

hold in the future. 

The second issue is that, as with empirical downscaling, whether or not the 

effect of the subgrid-scale processes will be the same under different forcing 

conditions is impossible to say. Parameterizations are constructed based on our 

knowledge of the atmospheric system as it currently is, but the processes are not 

physically represented in the model. Since, our knowledge of the effect of climate 

change on atmospheric processes is still developing, even if we were to identify an 

optimum set of parameterizations, the assumptions associated with them may not be 

valid under climate change. Under uncertain forcing conditions, different 

parameterizations could yield different outcomes, and in the absence of empirical 

data to compare them to, they must all be treated as plausible projections of future 

climate. This issue can be seen as a form of the problem of induction (Frame et al., 

2007). In inductive reasoning, a series of observations are made and a claim inferred 

based on them. Conversely, deductive reasoning relies on logically progressing from 

general laws and principles to a particular conclusion. Where our understanding of 

the laws and principles governing an aspect of climate system is poor, we depend on 

inductive reasoning to understand and represent it. But the observations made in 

themselves do not establish the validity of inductive reasoning. Observations that 

inductive reasoning has worked in the past do not imply that it will always work. To 

state the problem another way, the observation-based knowledge that climate models 

partially use relies on the uniformity of nature; the concept that the future will 

resemble the past. The problem is that the future will obviously not resemble the past 

in all respects, and a priori we cannot specify the respects in which the resemblance 

holds. Keeping in mind these considerations, the task of modelling future climate 

scenarios at all may at first seem quite fruitless. But barring catastrophic, abrupt 

events, the workings of the future climate system should resemble those of the past in 
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a many ways. Fundamentally, models are based on established physical laws, and 

have proven skill at representing important features in past and present climate, as 

demonstrated by the climate sensitivity experiments referred to earlier. There is good 

reason to be confident that models provide plausible estimates of future climate, 

based on various assumptions, but also much scope to improve upon epistemological 

uncertainties through further research. 

 

2.4.2 Ontological uncertainty in climate modelling  
As the climate system has similarities with a chaotic system, unpredictability 

arises in two distinct ways. The climate system could first be imagined as an initial 

value problem. If the system were represented by an evolution equation specifying 

how, given initial conditions, the system will develop over time, it would be highly 

sensitive to changes in initial conditions. Similarly, if a chaotic system evolves n 

number of times from slightly different starting conditions, n different outcomes can 

be expected.  Although the paths taken may at first be similar, over time errors in the 

initial conditions amplify and make it impossible to forecast with certainty. For this 

reason, it is not possible to forecast individual weather events beyond the order of a 

week to ten days. This problem is referred to as predictability of the first kind.  

There is also predictability of the second kind, which is similar to the 

boundary value problem. That is, a differential equation with an additional set of 

constraints. In a regional model, a region of interest called the domain is chosen. The 

domain has a certain boundary with the surrounding environment, and the model has 

to consider the physical processes in this boundary region in addition to the domain.  

So the output of the model will clearly be very sensitive to imperfect boundary 

conditions. Although it has been the focus of much less research than the first kind of 

predictability, seemingly small perturbations to boundary conditions can also lead to 

significantly different future behaviour (Chu, 1998; Collins and Allen, 2002). 

Weather prediction was identified as an initial and boundary problem early in 

the 20th century. Bjerknes (1914) recognized that if one could make some simple 

assumptions, one could arrive at integrable systems of dynamic and thermodynamic 

equations to represent meteorological phenomena. He also appreciated the need for 

accurate, reliable information on the state of the system, to use in solving such 
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systems of equations. Bjerknes (1919) believed that the most important advance in 

weather forecasting would be the development of a close-knit, well-equipped 

network of weather stations to provide quality data on temperature, wind strength 

and direction and rainfall. Although forecasts at the time were of the order of hours, 

not even days, Bjerknes understood that the forecasts for the afternoon would be far 

more reliable if the morning’s observations on which they were based were accurate. 

This issue persists today in climate science, but on a different scale.  

For hindcasts, RCMs can take these conditions from reanalysis data, which is 

based on observations. But for future projections, this is not an option. RCMs must 

depend on a coarser GCM for these important values, which typically include wind 

components, temperature, water vapour and cloud variables, surface pressure, and 

chemical tracers (Giorgi, 2006). RCMs take initial and boundary conditions from a 

parent GCM, a commonly used technique known as nesting (e.g. Antic et al., 2006; 

Ju et al., 2007; Ding et al., 2006). To further increase accuracy in driving conditions, 

a double-nesting approach uses global output to drive another model, perhaps an 

atmosphere-only GCM, over an intermediate domain. The output from that 

experiment is then used to drive the RCM (e.g. Gao et al., 2006; Im et al., 2006). 

Two-way nesting is yet another distinct variation on the technique, in which regional 

scale information from the RCM is allowed to feed back into the GCM (e.g. Barth et 

al., 2005), and it has been shown to improve GCM representation of the general 

circulation (Lorenz and Jacob, 2005). As the GCM has its own inherent flaws, the 

boundary and initial conditions will always be imperfect. Although the imperfections 

themselves arise through the epistemological uncertainties of the parent GCM, 

because they detract from the predictability of the system on both counts, they are a 

source of ontological uncertainty at the RCM level. Closing some of the knowledge 

gaps at the GCM level would improve accuracy in the initial and boundary 

conditions, which would help to improve predictability at RCM level. But as 

discussed already, one cannot continuously increase GCM complexity without 

diverting resources from resolution or run length. 

Additionally, even with “perfect” driving information, the various fluxes of 

heat, water and momentum need to be in dynamic and thermodynamic equilibrium 

for the initial conditions to be valid. In other words, it is not enough for the initial 

climate of the model to resemble the real climate; it also must be stable. Typically, 
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models are given a “spin-up” period during initialization, during which the faster 

adjustments (i.e. 50 year timescale) take place and stabilize. But a slower adjustment 

also takes place, as the deep ocean adjusts to surface heat and water flux imbalances. 

During initialization, models are allowed to reach a stage where this adjustment, 

known as “climate drift” (e.g. Bryan, 1998; Dirmeyer, 2000), is so slow as to not 

interfere with the interpretation of climate change signals too much. But again, the 

computational demands of modelling make it unrealistic to initialize the model over 

a timescale so long that the deep ocean adjustments fully stabilize. A flux adjustment 

may be required to minimize climate drift and prevent the model from sliding into 

unrealistic climate states. Due to improvements in the simulation of the large-scale 

heat balances, models have recently been developed which do not require a flux 

adjustment and instead maintain their own physical consistency (IPCC, 2001). While 

further research into the behaviour of the climate system clearly has the potential to 

improve the realism of climate model simulations, it is important to note that the 

climate system is still far too complex for a climate model to fully represent.  

 

2.4.3 Intermodel variability 
Uncertainty makes model design at all levels a subjective process. In addition 

to the variety of AOGCM drivers that could be chosen, there is a wide range of 

parameterizations schemes used in regional modelling also. Choices must be made 

about what to include in a climate model, what to exclude, what to parameterize, and 

how, what driver to use, what dynamical core to use, and these decisions introduce 

uncertainties (Tebaldi et al., 2007). As a result, intermodel variability, that is 

variation in predictions due to the choice or model, is an important issue especially at 

regional modelling level, where the range of models to choose from is quite large. 

The choice of which model or models to utilize is not arbitrary, as it can be 

based on assessing model skill. But this can never be a truly objective choice. Blyth 

(1972) makes a distinction between knowledge, defined as beliefs held by the entire 

scientific field, and subjective beliefs, defined as the personal beliefs of the 

individuals. A knowledge-guided decision can be made about models, using a 

measure of model skill acknowledged by the modelling community, but there are 

many such measures.  Although some are used more frequently than others, there is 
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still no designated index for intercomparison.  So the choice must be partially 

subjective as the decision of how to assess skill is made by the individual and not 

commonly agreed by the scientific field 

Model intercomparison has been by far the most common technique for 

comprehensively determining the systematic errors in models. Many 

intercomparisons have been carried out on GCMs (e.g. the Coupled Model 

Intercomparison Project (CMIP3), the Arctic Ocean Model Intercomparison Project 

(AOMIP), and the Ocean-Carbon Cycle Model Intercomparison Project (OCMIP)). 

But it is only in more recent years that intercomparison of regional models has come 

to the fore, with coordinated projects such as PRUDENCE (Prediction of Regional 

scenarios and Uncertainties for Defining EuropeaN Climate change risks and 

Effects) and ENSEMBLES.  

Model performance can be interpreted in different ways and quantified using 

a variety of metrics, using the observed climatic records for comparison. 

Additionally, there are a variety of skill scores that can applied, including mean 

square error, Brier score (Stefanova and Krishnamurti, 2002) and ignorance, amongst 

others. Multiple statistics of climate must be considered to provide a full picture of 

model skill. Often, the statistical moment relied on for such comparison is the 

seasonal average of particular climate variables. But this may not always provide a 

full picture of model skill. A change in the mean can have a disproportionate effect 

on the extremes of a distribution because other characteristics such as the variance 

are also altered by the mean change. Therefore, a model which predicts mean 

seasonal trends accurately may not possess the same skill at modelling extremes (e.g. 

Hanson et al., 2007).  

Aside to the subjectivity of methods that account for model differences, there 

are a number of philosophical arguments as to whether the results obtained from any 

of these methods are truly legitimate. The terms “validation”, “verification” and 

confirmation” are often encountered in climate modelling literature, and all are 

commonly used refer to the general process of comparing a climate model’s output 

over a control period to the observed climate record as a means of establishing 

reliability. But in the philosophical sense, each has a distinct meaning and it is 

possible for a model to be validated without essentially being verified. Validation 
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means that a model has met specified performance standards and is therefore suitable 

for a particular use (Rykiel, 1995), while verification refers to the demonstration of 

the “truth” of the model as a basis for reliability. However there are fundamental 

barriers to the validation and verification of computer models of natural systems.  

First, is it impossible to demonstrate the truth of any proposition except in a 

closed system (Oreskes, 1994). A natural system is not closed. It is not isolated from 

the environment, but can instead be influenced by events outside of the conceptual 

boundaries imposed on it for the purposes of study. It is also dynamical, with 

components that change over time. Theoretically, if there are errors in the hindcast, 

then the future projections will have the same errors. This assumes that the errors are 

systematic ones, that if a model consistently underestimates a variable by a certain 

amount, it is possible to correct the results by that amount each time. This is 

sometimes referred to as tuning the model, and there are different ways this can be 

carried out. This route also demands the assumption the errors are constant in time 

and under different forcing conditions, which is a large assumption to make. Moberg 

and Jones (2004), having carried out such a comparison with the model HadRM3P, 

do not mention tuning as a next step but acknowledge that due to the presence of 

errors in the hindcast any future projections made using this model should be 

interpreted with caution.  

Secondly, it has been argued that any technique which uses observations to 

verify models is misleading (Stainforth et al., 2007), as the model is simulating a 

state of the system that has not been experienced before. Therefore verification of a 

model’s performance can only ever be partial. To expand on this verification, we 

could also consider other criteria such as the model’s ability to simulate changes in 

paleoclimates; a model that simulates both the recent and distant past effectively is 

more credible than a model that has been tested only on a 20th century control run. 

Models can also be assessed based on how many of the characteristics desirable in a 

climate model they possess, such as individual treatment of GHGs, high resolution, 

peer reviewed publications, number of runs completed to capture natural variability 

(Hulme et al., 2003) but this is less of a quantitative and more of a qualitative 

analysis.  
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Thirdly, in theory model intercomparison aims to identify important 

differences between models and the cause of such differences. However in reality, a 

deficiency in a model could result from a number of issues. A temperature bias, for 

example, could arise due to an error in how the model handles cloud cover, or in how 

the topography is resolved at that resolution. The error could even be the result of a 

summation of different errors. To definitively locate the source of a particular error, 

it would be necessary to run the model in question many times, varying a particular 

parameterization or combination of parameterizations each time while holding 

everything else constant. However, due to restraints on time and computer resources, 

such an approach is often not viable.  

The delta-change method is an alternative approach, in which the differences 

between control and future runs for various variables are extracted and applied to an 

observed present-day climatology, the underlying assumption is that models simulate 

relative changes better than absolutes (Hay et al., 2000), so the reliability of the 

method is not affected by the RCM’s deficiencies in reproducing the current climate. 

But this method only accounts for the change in mean, not changes in other 

characteristics of the distribution. Theoretically, one could extract difference in other 

characteristics like variance and range of extremes to construct a fuller picture of the 

distribution, and adjust the observed present data based on the modelled change. 

However, an unstated assumption of the method is that the relative change is the 

climate change signal, that errors remain constant in time and are accounted for in 

the differencing procedure and so are not a part of the relative change. The main 

argument against tuning is that model biases may not be consistent over time and this 

argument remains valid in this context. 

Even if model biases and errors cannot be comprehensively accounted for, 

knowing they are present is valuable information in itself. The propensity for errors 

could serve as a qualitative measure of how reliable a model is. However, agreement 

between model output and observed climate does not signify that the model is an 

accurate representation of the real system, and this must be acknowledged. But the 

model should reflect the behaviour of the real system if it is to be suitable for 

contributing to scenario development. 
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2.5. WORKING WITH UNCERTAINTY: ENSEMBLES 

AND PROBABILITIES 

A model can have skill at modelling one climate pattern and lack skill at 

modelling another. The model that simulates average seasonal trends accurately may 

not give a true picture of future changes in extreme events, which due to their sudden 

nature can cause much greater damage over a short space of time compared to a 

gradual change. Results that vary depending on choice of model are not very reliable, 

and decisions need to be based on robust findings. For one particular variable or 

location, a single best model may perform well, but when considering all aspects of 

climate and uncertainty, a combination of several different models, known as an 

ensemble, provides better overall skill and as a result, higher reliability (Tebaldi and 

Knutti, 2007). Ensemble techniques are in widespread use in the climate modelling 

community and have been used to characterize the spread of climate responses for a 

range of variables, impacts and regions. 

 

2.5.1 Multi-model ensembles 
One method of producing an ensemble is to combine multiple predictions 

from different models. This is called a multi-model ensemble. Ideally, individual 

ensemble members should all possess high skill by themselves and be independent of 

one another. However, such ensembles are   sometimes known as “ensembles of 

opportunity” (Stone et al., 2007), as members are sometimes chosen more for their 

availability than their demonstrated skill, a tactic which of course has the potential to 

generate misleading output (Allen and Stainforth, 2002). The ensemble should have 

an outcome distribution similar to the natural distribution if it is to be reliable. Multi-

model ensembles allow a range of different models to contribute to the overall 

projection so that intermodel variability is fully sampled and represented in the 

spread of the projections. It is also a logical approach to take in order to account for 

intra-model variability, as it allows a more complete range of possible future climate 

scenarios to be sampled.  

The precise reason why an ensemble so often performs better than the 

individual “best” model is debatable. Doblas-Reyes et al. (2000) attributes the 
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improvement to the use of different models and the increased ensemble size, while 

Hagedorn et al. (2005) states that a large part of the ensemble’s superiority is due to 

error cancellation, and argues that if a model existed that performed poorly in every 

measure, it could only add skill to an ensemble in this way. Conversely, Weigel et al. 

(2008) have argued that even a poor model can add skill, but only if the model’s poor 

performance is due to over-confidence and not low potential predictability.  If the 

ensemble members already have the correct spread and central value, the ensemble 

technique will do little to improve performance. The conclusions of Weigel et al. 

(2008) were drawn from experiments with a simple model, and the link between 

over-confidence and the success of the ensemble technique was verified using real 

model data. It seems that though these studies look at the question from different 

perspectives, they have come to a similar conclusion: there is nothing to be gained by 

including models that are fundamentally flawed in their performance. If a poor model 

is taken to mean an overconfident one, then this model can be compensated for using 

the ensemble. But if we take poor to mean a model that misrepresents the climate 

system, then only revisiting the mechanics of the model and looking for ways to 

improve its parameterizations can truly improve such a model.  

 

2.5.2 Perturbed physics ensembles  
An ensemble may also consist of different runs of the same model (Barnett et 

al., 2006), each with perturbed versions of the original model physics. In theory, by 

varying the physical parameters of the model, uncertainties due to parameterization 

choice are represented in the spread of the output. The key advantage is that the 

sampling of uncertainty is more systematic than it would be in a multi-model 

ensemble whose members are chosen on an opportunity basis (Murphy et al., 2007). 

One can choose a single skilful model and run many iterations rather than many 

models of varying skill. Of course, this approach requires a subjective decision to be 

made about which single model to use, and the most skilful model in the present may 

not remain skilful under future forcing conditions. While a perturbed physics 

approach is highly useful for quantifying variability within the model, it cannot 

characterize intermodel variability like a multi-model ensemble can.  
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The optimal approach to characterizing both internal model variations and 

intermodel variability would be to use a multi-model perturbed-physics ensemble. 

The traditional multi-model ensemble is formed by combining output from single 

iterations of many different models to construct a distribution of climate parameters. 

Combining perturbed physics distributions from individual models rather than single 

outputs would give a fuller sample of uncertainties, an approach similar to that of 

Christensen et al. (2001), which used two 8-member ensembles from different 

RCMs.   

A larger ensemble will naturally capture a greater proportion of uncertainty. 

The distributed computing project climateprediction.net has been used to create 

multi-thousand member ensembles of GCM experiments (e.g. Piani et al., 2005; 

Sanderson et al., 2008). However to date, RCM perturbed physics ensembles have 

been much smaller in size, for example the 8-member ensemble of Lynn et al. 

(2009), the 10-member 10 year ensembles of Lucas-Picher et al. (2008) or the 25-

member ensembles of Yang and Arritt (2002). Due to the time and computer 

resource constraints associated with regional modelling and the limitations of current 

computing standards, it is not feasible to produce RCM ensembles of similar size to 

the current suite of GCM ensembles. While the perturbed physics technique has great 

potential in regional climate modelling, the multi-thousand ensemble is currently 

more suitable for GCM use than RCM. Hawkins and Sutton (2009) note the 

importance of targeting investments in climate science on the areas with the greatest 

potential for reducing uncertainty and indeed it may be worth focusing on the 

problem of computer power. Better resources would enable more complex models to 

be run as well as larger ensembles. 

 

2.5.3 Ensemble theory 
For ensemble scenarios to be considered reliable, it is important that the 

performance of the individual members are assessed carefully. It is also essential that 

the methods used to generate such ensembles are valid (Leung et al., 2003). As with 

RCM development, there is a level of subjectivity in ensemble construction. To 

formulate robust climate scenarios, assumptions need to be justified. 
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A key question any climate modeller must answer is whether to use 

information about a model’s performance in the present to constrain the influence of 

its future output on the overall ensemble. One can consider all outcomes equally 

likely and blindly average the ensemble members’ projections, or assign weights to 

models based on a measurable performance criterion. The Reliability Ensemble 

Averaging (REA) (Giorgi and Mearns, 2003) approach is one such quantitative 

approach, which assigns a weighting function to each model in an ensemble based on 

their performance at simulating the present climate, and their convergence. 

Essentially it defined a model as reliable if both its present-day bias and its distance 

from the simulated ensemble mean are within the range of natural variability. As bias 

or distance grows, the model is assumed to become less reliable. Giorgi and Mearns 

(2003) applied the method to a set of GCM experiments. All models in the ensemble 

contributed at least one maximum positive or negative regional present-day bias. Yet 

skilful performance in the present does not necessarily equate to a good performance 

in the future. It is impossible to state with certainty how a model will perform at 

representing climates under unprecedented forcing conditions. However, it is hard to 

see how a model lacking skill at representing the current climate would have better 

skill at modelling a future climate. Therefore, while there is an argument to be made 

for constraining poorly performing models based on their present-day skill, one must 

be careful not to mistake present-day skill for a guarantee of future skill. 

Model convergence is the second criterion used in the REA method: the 

further a model’s result is from the ensemble mean, the less reliable it is taken to be. 

But while present-day performance at least can be measured against empirical data, 

there are real issues regarding whether assessing models based on convergence can 

be considered a valid reliability criterion. Convergence does not immediately imply 

correctness, and if a model diverges from the values projected by other models, this 

does not mean it is wrong. In an ideal world, all ensemble members would be 

independent, but in reality there may be underlying similarities that lead a group of 

models to converge, such as sharing the same GCM driver or dynamical core, or 

having a key parameterization scheme in common. Alternatively, the absence or 

inclusion of certain parameterizations may be key. Rockel and Woth (2007) studied 

changes in wind speed over Europe using an ensemble of RCMs, and discovered that 

the absence of a gust parameterization leads to much poorer simulation of high wind 
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speeds or “storm peaks”. This may even contribute to the lack of agreement between 

models about changes in the future behaviour of mid-latitude storms, as reported by 

Meehl et al. (2000). Additionally, as the region to which a model is applied has an 

influence on how it performs (Haylock et al., 2006; Hellstrom, 2001; Jacob et al., 

2007), a model can be an outlier in one region but not in another. Without empirical 

data to compare future projections to, it would be unwise to discount a model just 

because other models disagree with it. It could be very skilful, and the convergence 

of its peers traceable to one of the aforementioned underlying factors. The reliability 

of the model convergence criterion depends on the independence of the models in the 

ensemble, which is often difficult to establish. 

As our understanding of the climate system and the climate models we design 

based on this understanding are incomplete, we must assume that all models provide 

credible future scenarios even though they differ in their design and outcomes, unless 

a clear and justifiable reason to omit a particular model is found. It is better to 

exercise caution and work with a large range that is more likely to contain the true 

outcome than to be overconfident and work with a smaller range that does not 

contain it at all. The range of outcomes supplied by climate models becomes part of a 

chain of inferences; regional effects are inferred from global effects which are in turn 

used to infer and prioritize adaptive decisions. In the words of Frame et al. (2007: 

1986) we “run the risk of building inferential edifices on unstable foundations,” a 

situation best avoided where costly investment decisions must be made. 

 

2.5.4 Ensembles with probability 
Approaches like the REA technique are quantitative but not probabilistic. An 

advantage of such a technique is that one avoids making assumptions about 

distributions, which is required for a probabilistic approach. But probabilities are 

very useful in climate science. The IPCC Third Assessment Report (2001) assigned 

descriptive terminology to probability ranges. For example, a probability range of 

10-33% was described as unlikely, while a probability range of 1-10% was described 

as very unlikely. Patt and Dessai (2005) investigated how people link descriptive 

phrases with probability ranges and found that they use intuitive heuristics rather 

than formal definitions. Given the same descriptive terms to describe a high 
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magnitude event and a low magnitude event, people interpret the language to mean 

the high magnitude event is less likely, leading them to actually underestimate the 

damage that could be expected and under-respond to the threat of the high magnitude 

event. A quantitative approach without probabilistic interpretation is open to 

subjective and possibly biased interpretation, which could result in decision-makers 

under-responding to climate change. In most cases, decision-makers and planners 

will be better served by a probability distribution of possible changes as opposed to a 

selection of possible scenarios. The potential for bias can be lessened by utilizing 

both numerical probability ranges and probability language and the recent 

availability of ensembles of data from multiple modelling centres makes it feasible to 

attach probability to scenarios. 

Probabilistic methodologies have a history of use within short and medium 

range weather forecasting, where they are recognized as being more reliable than 

single deterministic forecasts. Their application to climate projections is a logical 

step. Räisänen & Palmer (2001) demonstrate how a GCM ensemble can be treated as 

a probabilistic forecast, with intermodel uncertainty characterized by the ensemble 

dispersion. Furthering this methodology, one can utilize probability distribution 

functions (PDFs) or cumulative distribution functions (CDFs) as a technique for 

quantifying uncertainties in RCM output as well as GCM.  

The probabilities used by climate change researchers are not classical 

frequentist probabilities. They would be better defined as Bayesian probabilities 

(Dessai and Hulme, 2004). Bayesian probability is very applicable to climate change 

simulations as it assigns probability to propositions that are uncertain. A prior 

distribution is specified for the uncertain quantities of interest, which is independent 

of any data available for them. The prior distribution can also be expert-based. An 

observed distribution is then ascribed to modelled data. The likelihood of the 

modelled distribution as a function of parameter values is calculated, and this 

likelihood function is multiplied by the prior distribution. When normalized, this 

provides the posterior distribution, which is a distribution of unit probability over all 

possible values. An empirical estimate of the posterior distribution can be obtained 

through sampling with the Markov Chain Monte Carlo (MCMC) simulation method. 

The mode of the distribution is then the parameter estimate and "probability 

intervals" (the Bayesian analogue of confidence intervals) can be calculated. 
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This methodology interprets probability as a measure of a state of knowledge. 

But the “state of knowledge” can be subjective. For example, Bayesian statistics 

could be used to make a quantitative determination of climate change impacts, but it 

would be based on a prior assessment of the probability of anthropogenically induced 

climate change. This assessment would have to be subjective, and the use of different 

equally plausible priors would yield different priors (Barnett et al., 1999). But as 

Berliner et al. (2000) asserts, Bayesian statistics acknowledges that it is imperfect by 

stating the assumptions and quantifying them so that the sensitivity of the results can 

also be assessed. Objective Bayesian probability also exists (Berger et al., 2001), 

which utilizes a non-informative, non-subjective prior. But this can lead to paradoxes 

as outlined by Krieglar (2005) who notes that if you have assumed complete 

ignorance regarding future atmospheric CO2 concentration, you cannot also make 

this assumption for the associated radiative forcing as it is logarithmically dependant. 

Taking a strictly objective view can also lead to the exclusion of qualitative 

information which has the potential to be very valuable.  

Different researchers have adopted variations of the methodology, some more 

objective and some more subjective. An objective approach was used by Jones 

(2000a), which relied on properties of classic probability distributions. If the 

uncertainties associated with various sources are taken to be uniform and 

independent, then when multiplied together they will yield a peaked probability 

distribution. In this way, PDFs are created for key climatic variables relating to 

irrigation supply in Victoria, Australia. In practice, it is common to assume a uniform 

distribution over the appropriate range of values for the prior distribution. Jones 

(2000a) is particularly objective, however, in that the absence of assumptions extends 

to the posterior distribution. Jones’ results suggest that some adaptation will be 

required in the area by 2030, with a theoretical critical threshold existing at around 

2050. A similar approach was applied by Fealy (2010) to the Irish domain. These 

conclusions, with probabilities attached, are the kind of information that decision 

makers can begin making adaptation decisions with. 

Tebaldi et al. (2005) proposed a Bayesian analysis approach to determining 

probability density functions of temperature change, which would formalize the 

performance and convergence criterion that the REA method first quantified. Similar 

to Jones (2000a), uniform, uninformative prior distributions are adopted, to avoid 
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making assumptions about the prior distributions that could be construed as 

subjective. But in the Bayesian methodology described by Tebaldi et al. (2005), the 

criteria of performance and convergence effect the posterior distribution. 

Performance is formalized in the likelihood function as the distance between the ith 

simulation of a parameter and the best approximation to the truth. Convergence is 

formalized as the distance of the ith future projection from the consensus estimate of 

the ensemble. As discussed, it is highly debatable whether convergence is a valid 

criterion to use in assessing models. Tebaldi et al. (2004) proposed a variant of the 

methodology in which convergence could be weighted differently relative to 

performance. There is a multiplicative factor in the likelihood function that 

represents a model’s performance in the future, and by constraining this, it become 

possible to model a larger variance for future projections than present. The Bayesian 

method was applied to the same ensemble of GCMs as the REA method, and used to 

assess temperature change due to climate change in a number of case study areas. 

Northern Europe in both summer and winter displayed a wide range of uncertainty, 

due to lack of agreement between the GCMs. Other case study areas displayed 

tighter distributions, signalling greater certainty. This method has also been applied 

to simulations of regional precipitation change (Tebaldi et al., 2004) using an 

ensemble of nine GCMs. It should be noted that in Tebaldi et al. (2004) “regional” 

has been used to describe areas of sub-continental scale. For the Northern Europe 

region, it was found that precipitation changes in summer were relatively small. But 

summer climate in Europe is quite dependant on small-scale processes that GCMs 

are unable to resolve (Vidale et al., 2007), which may be a reason for this result.  

Both the objective and subjective methodologies have their own merits. If the 

avoidance of assumptions is paramount, then the objective method would be the 

appropriate choice. For some research, this is extremely important as it is perceived 

that subjective choice introduces further uncertainty to the problem. Conversely, 

there is an argument that by treating model outcomes as equally likely, even when 

the evidence from control runs suggests differences in skill levels, an important 

opportunity for quantifying uncertainty for the benefit of the end-user has been 

missed. Ultimately, as the choice between objective and subjective probabilities 

introduces its own layer to the cascade of uncertainty. One of the challenges of 
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developing future climate scenarios is determining whether a probabilistic approach 

is merited and if so, what technique is most suitable. 

 

2.6 CONCLUSIONS 

As Collins (2007: 1958) states: 

“the very fact that a team of people can produce a simulation 
that bears a passing resemblance to the world we live in is, in 
retrospect, a significant feat”.  

 

Yet a simulation can never capture the complexities of the real system. Any 

numerical model is limited by the knowledge the scientist has about the real system, 

and the computing resources available to run it. As a result, uncertainty is 

unavoidable in regional climate scenarios and indeed in any geographical discipline 

which utilizes numerical modelling.  

As adaptation strategies may require costly infrastructure it may at first seem 

unwise to use RCM output to inform such decisions.  Strategic decisions may be 

flawed if decision-makers assume risks are well-characterized when they are not. 

However, the cost of inaction is likely to be far greater than the cost of early, 

adaptive measures (Stern, 2006). If climate sensitivity is at the upper end of the range 

specified by the IPCC, steps towards adaptation must be taken to reduce the risks to 

people, infrastructure and the natural environment. 

The uncertainties in regional climate model output must be identified and 

acknowledged for the information to be put to best use using approaches appropriate 

to the deep uncertainty of the situation (Lempert et al., 2004). By working with a 

range of models decision-makers can build strategies that cater for a range of 

plausible futures. Rather than looking for an optimum strategy which depends upon 

precise projections, decision-makers can build robust strategies that are open to 

critique and revision (Baer and Risbey, 2009) and will be beneficial under a range of 

different conditions (Popper et al., 2005). 
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Uncertainty in regional climate model output cannot be eliminated. What is 

more, the growing and present concern of climate change means that we cannot wait 

until the tools are perfected before making decisions about adaptation. Fortunately, 

uncertainty in RCMs can be minimized, quantified and communicated effectively, 

and in spite of their uncertainties, regional climate models can provide valuable 

information for the robust decision-making process. In the next chapter, approaches 

to climate adaptation and the role of climate models in this process are discussed in 

greater detail. Key concepts from which the work in this thesis emerges will be 

discussed, with particular reference to the theories of knowledge that underpin these 

concepts and a conceptual framework for the optimal use of climate models is 

formed.  
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CHAPTER 3  
 CONCEPTUAL FRAMEWORK  

 

3.1. MOTIVATION: THE ROLE OF RCMS IN 

CLIMATE PLANNING 

There are two major schools of thought on climate adaptation planning. The 

top-down approach uses modelled scenarios of future climate to gauge impacts and 

determine what level of adaptation is required while the bottom-up approach focuses 

on assessing the vulnerability and adaptive capacity of the community (Figure 3.1). 

 

Figure 3.1: The bottom-up and top-down approaches to climate adaptation planning. While top-
down planning relies heavily on robust model outcomes, bottom-up planning uses vulnerability to 

present climate extremes to gauge potential impacts of climate change.(Source: after Dessai et al., 
2005). 
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This approach takes the view that as climate models and future climate scenarios are 

subject to much uncertainty, present or recent historic climate variability is a better 

proxy for near-future climate change. Such an approach focuses more on the 

stakeholders and at-risk population and what adaptation measures will mean for them 

than the top-down approach (Burton, 2002).  The advantage of such an approach is 

that the process of adaptation is explored and factors that might constrain or render 

unviable certain adaptive measures are recognized and accounted for in the planning 

process (Smit and Wandel, 2006). Approaches like this that emphasize the societal 

concerns associated with the scientific question of climate change are grounded in 

post-positivistic research philosophy, which explores research questions through the 

subjective interpretations of individuals (Dyer et al., 2003). Discussing the 

qualitative techniques often applied in post-positivist research, Kvale (1996: 239) 

states that:  

 

“Truth is constructed through a dialogue; valid knowledge 
claims emerge as conflicting interpretations and action 
possibilities are discussed and negotiated among the members 
of a community.”  

 

Traditionally, the top-down approach to planning, which strongly emphasizes 

the need for accurate climate model projections, has not highlighted the human 

element of adaptation. After all, adaptive recommendations are of little use if there 

are barriers to their implementation in a community. However, while past climate 

can be a important guide to understanding future changes, it is not necessarily a 

robust predictor of these changes and as such, may not be the best source of 

information on which to base adaptation decisions (Dessai and Hulme, 2004). 

Climate models provide valuable information about future climates and when the 

uncertainty surrounding their outputs is communicated correctly they can be very 

informative in the adaptation planning process.  
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3.2 DETERMINISTIC APPROACHES TO CLIMATE 

MODELLING 

 Early work in the field of climate modelling employed deterministic, single-

trajectory methodologies. This approach utilizes a single RCM, providing one 

projection of future climate which heavily underestimates uncertainty.  For example, 

Fried et al. (2004) uses GCM output to investigate changes in the behaviour of 

wildfires in California under climate change and notes that the results of the wildfire 

impacts model are sensitive to GCM choice. The model chosen is an intermediary 

model that lies between those producing the greatest and least change in wildfire 

behaviour, but this approach leaves much potential for either over- or under-

adaptation. Other examples of climate impacts studies which utilize a single climate 

model include extreme precipitation (Jones and Reid, 2001), food impacts (Parry et 

al., 2004) and health impacts (Tanser et al., 2003). 

This approach is based on the assumption that a “best” model is identifiable. 

However, there are a number of issues with this assumption. The deterministic 

approach relies on developing a single model that captures reality as accurately as 

possible, but there are myriad obstacles in the way of this goal. This approach is 

rooted heavily in positivist research philosophy, which focuses solely on the data of 

experience, for example, observations and experimental results.  However, all such 

knowledge could, in principle, be mistaken. All empirical or evidence-based 

knowledge may have to be revised or rethought if further observations reveal 

previously unknown information. Knowledge is fallible and as such, certainty is 

impossible. For example, in a system undergoing change there are many phenomena 

that cannot be verified by experience. As such, the model that best approximates 

observed climate is not guaranteed to perform with the same skill under different 

forcing conditions. 

Irwin (2010) describes the gaps in a positivist approach to climate science, 

taking the example of heat-stress to trees in the Amazon basin. A positivist approach 

might involve counting stressed and healthy trees to determine regional climate 

impacts, developing a model that can only ever approximate the real system and 

relying on the meteorological offices of sometimes distant countries for accurate 

observations and metadata to calibrate and drive the model.  Irwin (2010:3) notes: 
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“Positivism expects a logical formula that explains the matter 
of the Earth. Complexity is read as a set of complicated causal 
stimuli that needs to be included in the model. The unknown 
and the uncertain are just the yet-to-be-discovered or better 
still, the yet-to-be-deduced.”  

 

 It is clear that the inherent uncertainties involved in understanding and 

modelling the climate system mean that a deterministic approach is not applicable. 

The attempt to develop as objective an approach as possible does not rule out all 

subjectivities. As noted in Chapter 2, climate modelling is based on key assumptions 

which are fundamentally unverifiable by experience. In modelling climate states that 

have not been experienced before, it cannot be stated with certainty that climate 

processes and feedbacks will behave as they are currently observed to behave. The 

climate system is a non-linear system and processes that have been replicated and 

investigated in laboratory conditions cannot be assumed to behave the same way in 

the real climate system. In utilizing climate models to generate future scenarios, it 

cannot be stated with certainty that a single model will perform in different forcing 

conditions as it has been observed to perform in present-day control simulations.  

 

3.3 MULTI-MODEL APPROACHES TO CLIMATE 

MODELLING  

This intersection between science and society is especially important in the 

field of climate modelling. The mathematical and physical representation of the 

climate system cannot be pursued in isolation as there are human interests and 

societal concerns to address. Hulme (2007: 1) suggests that the task of “making 

human sense of climate change” may be beyond the scope of positivist science. As 

such, while improving the numerical representation of the climate is clearly 

beneficial to climate planning, a more useful approach would also attempt to address 

the consequences of model uncertainty and speculate as to the best course of action 

in light of this uncertainty. Referring to conservation studies, Robertson and Hull 
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(2001) describe the need for information that is scientifically robust yet also 

reflective of the pragmatic nature of the adaptation decision-making process. 

Where decisions are based on a single future projection, there is great 

potential for over- or under-estimation of the level of risk and this may lead to mal-

adaptation. The multi-model method is a more pragmatic approach to regional 

climate modelling which acknowledges that all models are potentially lacking in skill 

and therefore it is unwise to rely on a single model. It also recognizes that all models 

represent a possible potential future and by utilizing output from many models, more 

of these potential futures are sampled. This technique is an improvement from 

deterministic studies in that it provides a more robust basis for climate adaptation and 

policy decisions  

However, while the approach constructs a fuller picture of the range of 

potential futures, it does not address uncertainty inherent in the models. A significant 

issue with the multi-model approach is how to proceed when projections lack 

coherency with each other. Coherentism is a knowledge theory which holds that a 

complete set of beliefs form a system in which beliefs support each other. 

Importantly, for such a system to be justified, all the beliefs must be consistent with 

one another (Lightbody, 2006). Consider an ensemble of climate model projections 

as a belief set about future climate and it becomes apparent that such a system lacks 

justification as often, model outputs are distinctly inconsistent with each other. For 

example, if one model projects an increase in rainfall under climate change and 

another model projects a decrease (Figure 3.2), how should decision-makers seeking 

to incorporate climate change into policy proceed?  

Since there is always a possibility of error in current certainties, uncertainty is 

unavoidable. However, it is worth considering if any of this uncertainty is reducible. 

One possible way to improve the multi-model approach would be to include some 

experiential knowledge about the individual models in the ensemble. There is a clear 

need to weight models based on their skill, to form a more coherent set of future 

projections and reduce the occurrence of contradictory scenarios which are of little 

use to the adaptation decision-making process. Of course, weighting model 

projections can be a subjective approach but it can be made more robust by using 
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multiple diagnostics metrics and attempting to account for as much uncertainty as 

possible (Tebaldi and Knutti, 2007). 

 

Figure 3.2: European precipitation projections for 2070-2100 relative to simulated present day 
climate under different SRES scenarios. While model outputs are consistent with each other for 
winter, the models project both increases and decreases in precipitation for summer (Source: 

Carter and Fronzek, 2008). 

 

3.4 MODEL VALIDATION AND VERIFICATION  

Although all information is potentially mistaken, it does not have to be 

viewed from the position of skepticism; that is, viewed with doubt. The work of 

Pierce (1868), one of the first to develop pragmatism as a philosophical theory, 

provides a reconciliation of the seemingly opposing concepts of fallibilism and 

antiskepticism of information. Peirce was a 'contrite fallibilist' (Ormerod, 2006:897), 

a viewpoint which argues that while current knowledge may require revision as 

errors emerge, this does not prevent any progress being made.  

Validation, in the applied rather than the philosophical sense, provides an 

opportunity to progress the level of understanding of climate modelling while also 

improving the models themselves through further development and revision. Rather 



 66

than seeking to be absolutely certain of climate models and their projections, it is 

possible to conduct research in a self-correcting manner and make progress with the 

awareness that knowledge may need to be reviewed. Climate model validation is at 

its most robust when it fits this description, with validation outcomes forming the 

basis for on-going model development rather than being perceived as an end-point of 

the model development process (Figure 3.3). 

However, traditional approaches to model validation have relied on a 

foundationalist approach to research, assuming that basic beliefs such as model skill 

in hindcasts support derived beliefs, such as confidence in future projections. Yet the 

experiential evidence of the control or hind-cast run is fallible and as such, 

derivations of future skill informed only be mean-based analyses may be flawed. 

Conversely, when all future projections are given equal weight, the result is an 

incomplete attempt at coherentism as outlined in the previous section, as model 

outcomes may significantly contradict each other, limiting their usefulness.  

 

 

Figure 3.3: A schematic to describe the model development and validation process, with validation 
outcomes providing feedback for on-going model development (Source: Universite Catholique de 

Louvain http://stratus.astr.ucl.ac.be/textbook, accessed 23/07/2010).  
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An optimum approach would resemble the intermediate theory that Haack 

(1993) refers to as foundherentism. It would allow experiential justification as well 

as mutual dependence among projections. Such an approach would consider the 

results of present-day validations in the context of how the climate system should 

behave and how other climate models have been observed to perform. Considering 

the self-consistancy of the model in simulating the large-scale climate phenomena 

influencing a region and their effects on regional climate may give a better picture of 

how a model performs and how it arrives at its projections. The approach of using 

both extensive experiential evidence and an ensemble of possible projections has the 

potential for increased reliability, which in turn provides a more robust basis for 

decision-making. 

However, it is also important to note that there are limits to what can be 

accomplished through model validation. Verifying the wealth of interdisciplinary 

scientific information incorporated into models and confirming the inevitable 

assumptions on which they are based is beyond the scope of this thesis and indeed is 

not its aim. Rather than concerning itself with the components of each model, this 

thesis aims to investigate how the model as a whole performs at simulating various 

aspects of and influences on Irish climate. 

 

3.5 APPROACH USED IN THIS THESIS  

Model validation studies are often grounded on the assumption that skill at 

modelling the key impact variables of temperature and precipitation in the present 

day is a robust indicator of skill at modelling these variables under future climate 

conditions and increased GHG forcing. While other variables may be introduced to 

further discuss and explain the primary results, quantitative analysis of skill tends to 

be limited to temperature and precipitation. Additionally, the spatiotemporal nature 

of climate is often neglected in validation studies. For example, while Reichler and 

Kim (2008) evaluate GCMs on a range of climate variables, only the time-mean 

climate state is considered with data limitations cited as a reason for this.  

In reality, there is no reason to suppose that a model which simulates these 

mean characteristics well is doing so for the right reasons, without investigating the 
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interplay between variables as various spatial scales more closely. A model’s 

projections may be skilful but its explanations of the climate phenomena underlying 

those projections may not be. Brown (2004:377) notes: 

 

“…limiting an assessment of uncertainty to model outputs can 
lead to models that appear more or less useful than their 
statements about the world would imply, encouraging 
optimism and pessimism (ignorance) in decision-making 
respectively”  

 

This thesis seeks to determine an optimum approach for extracting useful 

information from climate models for use in regional impacts assessment, using 

numerical techniques to quantify error and analyze model representation of the 

climate phenomena underlying the mean values. Models assessed in this manner are 

likely to be more useful in climate adaptation and planning than models assessed on 

their simulation of climate averages. As such, the research presented in this thesis is 

both exploratory and confirmatory (Dyer et al., 2003). While the comprehensive 

investigation of model skill in the Irish domain is exploratory, the thesis also looks to 

verify whether the assumptions commonly made in RCM skill assessments are truly 

robust and is therefore confirmatory. 
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CHAPTER 4  
MODEL SKILL AT SIMULAT ING 

INTERANNUAL AND MEAN 
ANNUAL CLIMATE PATTERNS 

(1961-1990)  

 

4.1. INTRODUCTION 

Temperature and precipitation are two key variables which are of paramount 

importance in determining potential future climate impacts. Therefore an important 

requirement for any RCM aiming to provide useful information about future climate 

is that it must first be able to skilfully represent these parameters in the current 

climate.  

However, traditional approaches to model skill assessment based on 

averaging data across a domain and compiling skill scores have not fully 

characterized the deep uncertainty that can potentially underlie mean values. For 

example, a change in mean is likely to directly affect areas such as agricultural and 

biodiversity, but may also have the indirect effect of altering other aspects of the 

climate distribution, such as the variability. Additionally, skilful representation of the 

mean climate is no guarantee that the model captures the complex dynamics of the 

climate system, as pseudo-skill can arise through the cancellation of different errors 

within the model also. In short, skill scores can be made much more useful when 

they are accompanied by an explanation of how skill or deficiencies arise. An 

examination of mean and variability together along with an investigative analysis of 

results obtained will therefore provide a more complete assessment of model skill. 

An apparently skilful simulation of mean values does not guarantee that the model is 

able to capture the complex climate processes and interactions that underlie these 

mean values. 

This chapter will assess the temporal characteristics of precipitation and 

temperature and determining how well they are characterized by traditional 
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assessment methods. Model skill at representing mean trends and variability of the 

climate on both interannual and mean annual timescales is assessed, as these are key 

statistics in terms of developing climate adaptation strategy. Present-day climate 

simulations from the models in question, covering the baseline period of 1961-1990, 

are compared to the observed baseline climate to identify model errors and biases.  

The simulations were made available through the EC project PRUDENCE 

(Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate 

change risks and Effects) (Christensen et al., 2007). Only single simulations are 

available for majority of models, with the exceptions of HadRM3P, HIRHAM driven 

by HadAM3H and ARPEGE. Where there are more than one simulation with the 

same model, they are assigned a unique identifier (e.g. –H for HadCH3/HadAM3H, -

E4 for ECHAM4-OPYC, -a). These are given in Table 4.1. Uppercase –H or –E 

signifies a variation in GCM driver while lowercase –a, -b or –c signifies different 

iterations of the same model.  

 

GCM RCM   Reference 
HadCM3/HadAM3P 
Pope et al. (2000) 

HadRM3P-a      
 

HadRM3P-b      HadRM3P-c Moberg and Jones (2004) 
 

HadCM3/HadAM3H 
Pope et al. (2000) 

PROMES             
RACMO 
CHRM 
CLM 
REGCM 
REMO 
RCAO-H 
HIRHAM-a      

 
 
 
 
 
 
 
HIRHAM-b 

 
 
 
 
 
 
 
HIRHAM-c 

Castro et al. (1993) 
Räisänen et al. (2004) 
Vidale et al. (2003) 
Doms and Schlatter (2002) 
Giorgi et al. (1993) 
Jacob and Podzun (1997) 
Döscher et al. (2002) 
Christensen et al. (1996) 

ECHAM4-OPYC/ECHAM5 
Roeckner et al. (1996) 

HIRHAM-E5    

Observed SSTs ARPEGE-a ARPEGE-b ARPEGE-c Déqué et al. (1998) 
ECHAM4-OPYC 
Roeckner et al. (1996) 

RCAO-E4 
HIRHAM-E4 

   

 

Table 4.1: Summary of models under investigation (Source: Christensen et al., 2007). 

 

4.2 BACKGROUND 

For the purposes of this study, model skill is defined as the degree to which 

the modelled climate and observed climate distributions correspond. This is similar 

to Murphy’s (1993) definition of forecast quality as the degree to which the forecast 

and the actual events correspond. One must then consider the attributes that 
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contribute to a skilful projection, and how to quantify them. The field of short-term 

weather-forecasting already utilizes a wealth of methodologies for validating and 

verifying forecasts (Barnston, 1992; Casati et al., 2008; Murphy and Wilks, 1998) 

that can be adopted for the assessment of climate model skill. However, a challenge 

in the application of skill scores to climate model data is that while there are certain 

skill scores that are more widely used than others, there is no set of scores which is 

commonly agreed upon by the climate modelling community. Additionally, the 

suitability of a metric to assess the data and research questions must be considered. 

Therefore, while the score itself is a quantitative measure of skill, the process of skill 

assessment has an element of subjectivity also. 

RCM data has both temporal and spatial components and if model outputs are 

to be useful in informing climate adaptation strategy and climate impacts studies, 

they should simulate both the temporal and spatial characteristics of the climate 

system. This chapter will assess temporal aspects of the modelled Irish climate.  

Patterns occur on a number of different time-scales in the climate system. Examples 

include annual climatologies and interannual variations. Even the large-scale modes 

of natural climate variability such as the North Atlantic Oscillation (NAO) display 

temporal patterns. Of course, no model can match the complexity of the real climate 

system and as such, perfect accuracy cannot be expected. However, for a climate 

model to be considered skilful, it should reasonably approximate observed statistics 

and characteristics such as these. 

At different timescales, different skill metrics must be used due to inherent 

characteristics of the climate model data. For example, RCM data has no temporal 

consistency with observations due to the lack of temporal coherence between actual 

and GCM modelled climate. Different GCM data or reanalysis data can be used to 

derive boundary conditions for RCM and each set of boundary conditions can 

generate a different but mathematically valid simulation. The boundary value 

problem in RCMs is what is mathematically referred to as a non-homogeneous 

problem, meaning that there is no unique set of “correct” values. Even small 

differences in the boundary conditions can lead to quite different model outcomes, as 

demonstrated by Mooney et al. (2010), yet all are mathematically valid. In this way, 

the differences between observed climate conditions and GCM modelled conditions 

lead the RCM simulation to evolve differently to the observed climate, resulting in a 
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lack of temporal consistency between the RCM simulation and the observations. As 

such, one cannot look for association between observations and modelled output at 

the interannual timescale. However, by considering the model data as a distribution 

of possible outcomes other aspects can be analyzed. For example, the interannual 

variability can be quantified by the standard deviation of the distribution of outcomes  

(Giorgi et al,. 2004; Sato et al., 2007). 

Murphy (1993) specified various attributes that effect forecast quality, such 

as error or bias and association. Error is the difference between individual pairs of 

observations and model projections while bias is the difference between the average 

of all observed values and the average of all projected values. Association is the 

strength of the linear relationship between the observations and the projected data. 

For this assessment, metrics are required that quantify the extent to which model 

projections of climate means and variances display attributes such as accuracy and 

association. 

However, a wide variety of tests exist for determining differences of means 

and variances and association between different datasets. The appropriate choice 

depends on the nature of the data being analyzed. Many of the most commonly used 

tests, such as the T-test for means, assume that the data in question is normally 

distributed. Such tests are referred to as parametric statistics. Vidale et al. (2007) 

notes that for a small dataset such as seasonal means, moment-based statistics are 

more robust than nonparametric statistics. This is because parametric methods have a 

higher statistical efficiency (Scherrer et al., 2005). However, while the T-test has 

been found to be fairly robust to departures from normality (Boneau, 1960; 

Sawilowsky and Blair, 1992)  certain tests, such as the F-test for variance, are less 

robust when applied to non-normal data (Brown and Forsythe, 1974). In such cases, 

non-parametric statistics may be required. If the assumptions being made are correct, 

parametric methods can produce more skilful results than parametric statistics, but if 

the assumptions are incorrect and a parametric method is applied, it can generate a 

misleading result. Therefore, it is important to first determine whether the data is 

normal in distribution or not.  

It is also important to consider the focus of the analysis when choosing tests. 

For example, there are two commonly used coefficients for determining the 
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correlation between datasets. The Pearson coefficient is parametric while the 

Spearman coefficient is non-parametric. As such, the Pearson coefficient is more 

sensitive to outliers than the Spearman coefficient, as Spearman ranks the data under 

investigation as part of its calculation, which dampens the effect of outliers. 

However, in a modelled annual climatology such outliers are highly undesirable as 

they distort the annual pattern. Pearson’s sensitivity to outliers, which could be 

considered a disadvantage in a different situation, is advantageous in this analysis as 

it penalizes models with outliers and weights models without outliers as more skilful.  

 

4.3 INTERANNUAL VARIABILITY 

4.3.1 Review of methods 
The first part of this assessment focuses on interannual variability. Large-

scale modes of climate variability such as the North Atlantic Oscillation (NAO) 

operate on somewhat regular cycles lasting from several months to several years (An 

et al., 2005; Vallis and Gerber, 2008; Vimont, 2005).  Mean temperature and 

precipitation can be influenced by these modes, depending on what stage of their 

cycles they are at. Climate change could potential disrupt these modes or heighten 

their effects (Latif and Keenlyside, 2009; Paeth et al., 1999; Yeh and Kirtman, 

2007). Therefore it is important that climate models skilfully represent interannual 

variability, that is, variation in temperature or precipitation from year to year, as this 

is the scale at which changes to the large-scale climate modes tend to be most 

apparent. 

Climate models are not and cannot be “predictions” of the future, due to the 

large number of uncertainties involved (Palmer et al., 2005). As the RCMs under 

investigation are driven by data from multiple GCMs they cannot be expected to 

reproduce observed climate anomalies in chronological order. The climate system is 

highly sensitive to changes in initial conditions, much like a chaotic system, and in 

any forecast errors in initial conditions grow exponentially over time (Gustafsson et 

al., 1998; Rabier et al., 1996). Even models specifically designed to study a 

particular climate mode experience a decrease in predictive skill as lead time 

increases (Latif et al., 1998). As such, one cannot expect the RCMs to model positive 
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NAO phases, for example, exactly where they occur in the observed timeline. 

Therefore, directly comparing the observed and projected time series of interannual 

data is of no value in determining model skill. 

However, the purpose of a climate model is not to give a skilful forecast of 

weather on a given day 20 years from now, but a skilful representation of the mean 

climate and variations in climate that could be expected.  As such, the present-day 

run of the model should not be expected to model particular weather events in the 

correct chronological order. Instead, it is more useful to consider the possible climate 

outcomes projected by the model as a frequency distribution. The statistics of the 

distribution of modelled outcomes must be compared to the same statistics of the 

observed climate to examine model skill at representing interannual variability (e.g. 

Giorgi et al., 2004).  

Graphical techniques can be useful to provide a visual representation of the 

data and form preliminary comments about the skill of the models. A rank histogram 

(Hamill, 2001) can be used to assess how well the true interannual variability is 

represented by an unweighted average ensemble (Figure 4.1).  

 

 

Figure 4.1: Shapes of rank histograms. 
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The observed annual values are ranked from lowest to highest, to give the 

values for the frequency bins. The values from each ensemble member are also 

ranked from lowest to highest and assigned to the appropriate frequency bin. If the 

models in the ensemble represent the observed distribution skilfully, one would 

expect equal frequencies across the bins. Therefore, a flat histogram indicates that 

the ensemble spread represents the true interannual variability well. However, exact 

flatness is not expected because with a finite number of model simulations it is 

unlikely that the true distribution will be fully sampled (Descamps and Talagrand, 

2007). 

Another possible outcome is overpopulation of the highest and lowest ranks, 

resulting in a U-shaped histogram. If the histogram is U-shaped, the majority of 

modelled values are falling outside the range of the observed distribution. In such a 

case, the ensemble spread may be too large, leading to an overestimation of 

interannual variability. One may also find overpopulation of the central ranks, 

resulting in a dome-shaped histogram. A dome shaped histogram forms when the 

majority of modelled values fall well inside the range of the observed distribution. 

This result suggests that the ensemble spread is too small and fails to capture the 

extremes of the true distribution. A final possibility is an asymmetric histogram, in 

which overpopulation occurs towards one end of the histogram but not the other. An 

asymmetric histogram indicates that the ensemble spread is skewed.  

The observed and projected distributions for each model can also be 

compared using a Q-Q plot which is a plot of the quantiles of the two distributions 

against each other (Beirlant et al., 2007).  The more similar the distributions, the 

closer the data will fall to the 45O line y=x. If the distributions are identical, the 

points will fall precisely on that line. A guide to the shapes the Q-Q plot may take 

and the inferences that can be made about each distribution from the Q-Q plot is 

given in Figure 4.2.  

The correlation coefficient of a linear regression line through the points could 

be used as a numerical measure of fit to quantify how similar the distributions are, 

but would overlook a mean shift. Instead, a combination of metrics is used to fully 

capture model skill. Interannual variability can be quantified using the temporal 

standard deviation, an approach used by Giorgi et al. (2004). However, standard 
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deviation is not sensitive to shifts in data; for example, the standard deviation of the 

sequence (1, 2, 3, 4, 5, 6) is the same as the standard deviation of the sequence (11, 

12, 13, 14, 15, 16).  Standard deviation is a measure of the dispersion of a data set 

from its mean, and does not consider whether the modelled mean is skilful or correct 

when compared to the observed mean. Hence, using the temporal standard deviation 

as a metric identifies models that simulate the shape of the distribution well, but does 

not distinguish whether the distribution is shifted, either by consistently 

overestimating or underestimating the variable. To determine whether such shifts are 

also occurring, the means of the observed and modelled datasets must also be 

compared.  

 

Figure 4.2: Shapes of Q-Q plots. 

 

A significance test should also be applied to determine whether the observed 

and modelled data are significantly different. If the assumption of normality is 

fulfilled, parametric methods can be chosen for significance testing, namely the F-

test for variance and the T-test for means. As is standard practice in tests of 

significance, a null hypothesis of “no difference” between the observed and modelled 

distributions is initially prescribed. A test statistic is calculated to measure 
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compatibility between the data and this null hypothesis. The test consists of 

calculating the probability of obtaining a statistic as different or more different from 

the observed statistic, assuming that the null hypothesis is correct. If this probability 

is sufficiently low, then the difference between the observed and modelled statistics 

is said to be "statistically significant". A confidence level alpha is selected and the 

test result is compared to this value to assess whether it is sufficiently low. Levels of 

0.05 and 0.01 are most commonly used. 

 

4.3.2 Methodology 

As temporal consistency between modelled output and observations cannot 

be expected at the interannual scale, model output must be considered as a 

distribution of possible outcomes and assessed using statistics that quantify 

variability and means rather than association. 

The Shapiro-Wilk test  is used to determine whether data comes from a 

normal population (Shapiro and Wilk, 1965). The null hypothesis is that the data 

came from a normal population, and this is rejected at the alpha significance level if 

the p-value of the test statistic is less than chosen alpha level. The Shapiro-Wilk test 

statistic is calculated as: 

 

Equation 4.1: Shapiro-Wilk test statistic 
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where 

 x(i) = the ith smallest value in the sample, 

x  = the sample mean and 

ai = a set of constants, given by:  
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where 

m = (m1,...,mn)T, the expected values of the order 
statistics of independent and identically-distributed 
random variables sampled from the standard normal 
distribution and 

V = the covariance matrix of those order statistics. 

 

Interannual variability is visualized using the rank histogram and Q-Q 

plotting. Interannual variability is measured using the temporal standard deviation:  

Equation 4.2: Temporal standard deviation 
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where   

N = number of years of data (30) and  

x  = 30 year average 

The percentage error of  σmodelled  with respect to σobserved is also used to 

quantify agreement between observed and modelled data. For the variance metric, 

the two-tailed F test is used to verify whether the observed and modelled data have 

equal variances. The F test statistic is defined as: 

Equation 4.3: F test statistic 

22
mo ssF   

where  

2
os  = variance of the observed data and  

2
ms = variances of the modelled data. 

 

Bias and percentage error of the modelled mean with respect to the observed 

mean is also calculated. The T-test is used to assess whether the observed and 
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modelled means are significantly different to each other, using the results of the F 

test to choose between the homoscedastic, “equal variance” T-test or the 

heteroscedastic, “unequal variance” T-test. 

Gridded observational data provided by Met Eireann to the British Irish 

Council and made available via the BIC was used to evaluate the RCMs (BIC, 2003). 

This data is chosen for its high resolution of 5km. Other available observation-based 

data such as the NCAR/NCEP or ERA-40 reanalysis data, due to their global 

coverage, are currently available on a much coarser grid of 2.5o and as such, would 

have to be interpolated to the finer grid used by the RCMs to create a comparable 

dataset. This approach has significant potential for error as the interpolated values are 

only approximations based on the coarser data. In the case of Ireland, conversely, 

transforming observation-based data from a very fine grid to the grid used by the 

RCMs is more desirable as the regridded values are based on a network of finely 

resolved data points.  

 

4.3.3 Results 
Results of the Shapiro-Wilk test for normality are given in Table 4.1. At 

α=0.05, the critical W value is 0.93, therefore a test statistic W of less than 0.93 

indicates non-normality at the 95% confidence level. Datasets with a test statistic 

indicating non-normality are highlighted with grey shading. However, the majority 

of datasets are found to be normal. Importantly, the observed interannual datasets are 

all found to be normal. As the observed data that the models are to be compared with 

is normally distributed and the majority of the modelled data is also normally 

distributed, parametric tests are chosen to quantify skill at the interannual scale. 

When constructing RCM ensembles, one option is an unweighted mean 

ensemble in which all members are taken to have equal skill. The rank histogram 

provides some quick insights into the performance of such an ensemble. However, as 

noted by Hamill (2001) in relation to the Talagrand technique, visual assessment 

tools can potentially be misleading as they are open to misinterpretation. Therefore, 

closer inspection of the data is warranted to both confirm and further characterize the 

issues identified from the rank histogram analysis.  
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Table 4.1: Results of Shapiro-Wilk test for normality performed on yearly and seasonal interannual data for 1961-1990 over the Irish domain.  At α=0.05, the 
critical W value is 0.93, therefore a test statistic W of less than 0.93 indicates non-normality at the 95% confidence level. Datasets with a test statistic 

indicating non-normality are highlighted with grey shading.

Observed HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HI RHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4
Yearly
Temperature 0.97 0.94 0.97 0.95 0.97 0.95 0.93 0.95 0.94 0.96 0.95 0.90 0.98 0.97 0.99 0.95 0.97 0.96 0.97 0.98
Precipitation 0.98 0.96 0.97 0.98 0.94 0.96 0.95 0.96 0.96 0.95 0.97 0.96 0.95 0.96 0.98 0.98 0.96 0.98 0.97 0.97

Winter
Temperature 0.95 0.97 0.96 0.94 0.92 0.95 0.95 0.96 0.97 0.95 0.95 0.95 0.94 0.96 0.96 0.92 0.97 0.97 0.97 0.96
Precipitation 0.99 0.93 0.99 0.98 0.98 0.96 0.98 0.97 0.99 0.97 0.96 0.94 0.99 0.93 0.98 0.97 0.96 0.97 0.97 0.98

Spring
Temperature 0.95 0.93 0.98 0.95 0.96 0.98 0.97 0.97 0.98 0.96 0.98 0.97 0.97 0.96 0.98 0.93 0.96 0.97 0.93 0.95
Precipitation 0.98 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.98 0.97 0.98 0.97 0.95 0.97 0.97 0.98 0.96 0.97 0.98 0.97

Summer
Temperature 0.94 0.98 0.96 0.97 0.92 0.97 0.96 0.97 0.94 0.97 0.97 0.97 0.94 0.92 0.96 0.94 0.98 0.97 0.96 0.96
Precipitation 0.97 0.97 0.97 0.98 0.96 0.98 0.98 0.98 0.98 0.96 0.97 0.93 0.98 0.98 0.97 0.96 0.98 0.93 0.97 0.95

Autumn
Temperature 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.96 0.95 0.99 0.90 0.96 0.96 0.96 0.97 0.95
Precipitation 0.97 0.97 0.98 0.98 0.92 0.94 0.96 0.97 0.95 0.98 0.96 0.95 0.97 0.95 0.98 0.96 0.99 0.95 0.94 0.94
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4.3.4 Results: Temperature 
The rank histogram for interannual variability of temperature is quite 

asymmetric, with overestimation in the highest rank and underestimation in the lower 

ranks (Figure 4.3a).  
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Figure 4.3: Rank histograms for interannual temperature data (1961-1990). Bins are derived from 
observations. 

If the ensemble were skilful, one would expect approximately the same 

number of occurrences in each bin. This histogram suggests that the ensemble 

underestimates the lower extremes of the distribution while overestimating the upper 

a) 

b) c) 

d) e) 
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extremes. This behaviour may also be caused by a systematic bias within certain 

models which would shift data uniformly upwards, or may arise through the 

combination ensemble members with both of these types of error. 

Further insights can be gained by applying the rank histogram to the seasonal 

interannual datasets. From these graphs it is evident that the biases identified in the 

year graph are most notable in winter (Figure 4.3b). In all other seasons, the 

histogram forms a dome-like shape which suggests that the observed range of 

variability of the distribution is not being captured by the models (Figure 4.3c, d and 

e). The Q-Q plotting technique is used to further inspect output from the individual 

ensemble members, to determine how closely the modelled distribution of 

interannual values resembles the observed distribution. 

 

 

 

 

 

Figure  4.4: Q-Q plots of modelled versus observed interannual winter temperature (oC) for the 
period 1961-1990. 

 

The majority of models display a positive bias in winter, with the lower tails 

of the distribution particularly overestimated (Figure 4.4). There are some exceptions 

however. For example, CHRM and HIRHAM-E5 both capture the observed 
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distribution quite skilfully. Additionally, the models ARPEGE-a, ARPEGE-b and 

HIRHAM-c approximate the observed distribution except at the lower tail, where 

overestimation occurs. These results are in keeping with the rank histogram of mean-

ensemble winter temperature.  

In spring, a combination of model biases in the individual models gives rise 

to the mean-ensemble rank histogram. Many models overestimate temperature in 

spring, in particular the upper-central values and the extreme lower values of the 

distribution (Figure 4.5). Examples of this bias can be seen in the Q-Q plots of 

RCAO-E4, RACMO and REMO. However, certain models such as PROMES and 

CHRM underestimate the lower values of the distribution, balancing the 

overestimation errors of other models when taken as a mean-ensemble. As such, 

overestimation of central values is the effect that remains and is captured in the rank 

histogram. 

 

 

 

 

Figure 4.5: Q-Q plots of modelled versus observed interannual spring temperature (oC) for the 
period 1961-1990. 
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Most of the models capture the observed distribution in summer quite 

skilfully, with HadRM3P-a, HadRM3P-c and HIRHAM-E5 in particular performing 

well (Figure 4.6). The shape of the rank histogram is again the result of a 

combination of different biases amongst the individual models, which highlights the 

importance of examining individual model skill before attempting to construct an 

ensemble. Several models underestimate the upper values of the distribution, for 

example PROMES, ARPEGE-a and ARPEGE-b, leading to lower population in 

those ranks and higher population in the lower ranks. Conversely, a number of 

different models overestimate the lower and central values, for example RACMO 

and REMO. The combination of these biases results in a rank histogram for the 

mean-ensemble with low population in the upper ranks and higher population in the 

lower ranks. Rather than error cancellation, which occurs in spring data, the summer 

data is affected by what could be described as error accumulation. 

 

 

 

 

Figure 4.6: Q-Q plots of modelled versus observed interannual summer temperature (oC) for the 
period 1961-1990. 
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Autumn is perhaps the season in which the greatest number of individual 

models best approximate the observed distribution (Figure 4.7). In particular, all five 

simulations using HIRHAM (HIRHAM-a, HIRHAM-b, HIRHAM-c, HIRHAM-E5 

and HIRHAM-E4) represent the observed distribution well. Again, a combination of 

biases on the tails of the modelled distributions leads to the dome-shaped rank 

histogram. 

 

 

 

 

Figure 4.7: Q-Q plots of modelled versus observed interannual autumn temperature (oC) for the 
period 1961-1990. 

 

Additionally, skill metrics are calculated to assess the models’ abilities at 

simulating climate means and variances. Biases are expressed as a percentage of the 

observed mean or variance and the significance of any differences identified is 

assessed using the F-test or t-test.  Results are given in Table 4.2 a and b, with 

significant values for the F-test and t-test marked as bold. These metrics quantify the 

errors observed in the rank histograms and Q-Q plots. 
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 Winter 
 HadCM3/HadAM3P HadCM3/HadAM3H ECHAM5 Observed SSTs ECHAM4-OPYC 

 HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4 

S.Dev. 0.89 0.78 0.69 0.66 0.80 0.81 0.67 0.72 0.61 0.61 0.79 0.65 0.69 0.88 0.77 0.65 0.53 0.59 0.78 

Bias -0.03 -0.14 -0.22 -0.26 -0.11 -0.11 -0.24 -0.19 -0.30 -0.30 -0.12 -0.27 -0.22 -0.04 -0.15 -0.26 -0.38 -0.32 -0.13 

% Bias -3.1% -15.1% -24.4% -28.1% -12.6% -11.8% -26.4% -20.7% -33.1% -33.3% -13.0% -29.0% -24.4% -4.1% -15.9% -28.4% -42.0% -35.3% -14.3% 

F-test 0.87 0.38 0.14 0.08 0.47 0.50 0.10 0.22 0.03 0.03 0.46 0.07 0.14 0.82 0.36 0.08 0.00 0.02 0.41 

                    

Mean 5.70 5.71 5.98 6.51 6.12 4.61 6.35 6.34 6.49 6.58 5.56 5.42 4.98 4.95 5.21 4.94 5.36 7.17 5.73 

Bias 1.01 1.02 1.29 1.82 1.43 -0.08 1.66 1.65 1.80 1.89 0.87 0.73 0.29 0.26 0.52 0.25 0.67 2.48 1.04 

% Bias 21.5% 21.8% 27.5% 38.8% 30.5% -1.6% 35.4% 35.2% 38.4% 40.4% 18.5% 15.7% 6.1% 5.6% 11.1% 5.4% 14.4% 52.9% 22.3% 

T-test 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.27 0.02 0.23 0.00 0.00 0.00 

 Spring 
 HadCM3/HadAM3P HadCM3/HadAM3H ECHAM5 Observed SSTs ECHAM4-OPYC 

 HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4 

S.Dev. 0.51 0.58 0.61 0.71 0.67 0.68 0.61 0.70 0.54 0.61 0.65 0.82 0.64 0.59 0.57 0.46 0.56 0.73 0.84 

Bias -0.10 -0.03 0.00 0.10 0.06 0.07 0.00 0.09 -0.07 0.00 0.04 0.21 0.03 -0.02 -0.04 -0.15 -0.05 0.12 0.23 

% Bias -16.5% -5.7% 0.1% 15.8% 9.6% 11.1% 0.6% 14.3% -12.3% 0.4% 6.7% 34.2% 5.5% -2.5% -6.9% -24.5% -8.9% 19.9% 37.8% 

F-test 0.34 0.76 1.00 0.43 0.62 0.57 0.98 0.48 0.49 0.98 0.73 0.12 0.77 0.89 0.70 0.14 0.62 0.33 0.09 

                    

Mean 8.26 8.26 8.29 7.54 8.66 7.57 8.31 7.86 8.71 8.82 7.90 8.02 7.76 8.51 7.79 7.92 7.64 8.94 8.18 

Bias 0.42 0.42 0.45 -0.30 0.82 -0.27 0.46 0.01 0.87 0.97 0.06 0.18 -0.08 0.67 -0.05 0.08 -0.20 1.10 0.34 

% Bias 5.3% 5.4% 5.7% -3.8% 10.4% -3.5% 5.9% 0.2% 11.0% 12.4% 0.8% 2.3% -1.0% 8.6% -0.6% 1.0% -2.6% 14.0% 4.4% 

T-test 0.01 0.01 0.01 0.09 0.00 0.11 0.01 0.94 0.00 0.00 0.71 0.34 0.64 0.00 0.76 0.59 0.19 0.00 0.08 

 

Table 4.2a: Skill metrics for interannual temperature (Winter and Spring), for 1961-1990. Significant test values are given in bold. Grey titles represent driving 
GCMs/boundary data. 
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 Summer 
 HadCM3/HadAM3P HadCM3/HadAM3H ECHAM5 Observed SSTs ECHAM4-OPYC 

 HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4 

S.Dev. 0.67 0.60 0.66 0.56 0.50 0.50 0.50 0.62 0.45 0.48 0.59 0.65 0.72 0.72 0.39 0.37 0.49 0.59 0.76 

Bias -0.03 -0.10 -0.04 -0.15 -0.20 -0.20 -0.21 -0.08 -0.26 -0.23 -0.11 -0.05 0.01 0.01 -0.31 -0.33 -0.21 -0.11 0.05 

% Bias -4.8% -14.2% -6.2% -20.9% -28.6% -28.9% -29.4% -11.9% -36.5% -32.1% -15.9% -7.4% 2.0% 1.6% -44.3% -47.1% -30.5% -15.5% 7.7% 

F-test 0.79 0.41 0.73 0.21 0.08 0.07 0.07 0.50 0.02 0.04 0.36 0.68 0.92 0.93 0.00 0.00 0.05 0.37 0.69 

                    

Mean 14.11 13.87 13.98 13.22 14.49 13.24 13.89 13.56 14.34 13.99 14.03 14.13 14.13 14.48 13.56 13.39 13.30 14.00 13.74 

Bias 0.23 -0.01 0.10 -0.65 0.61 -0.63 0.01 -0.32 0.46 0.12 0.15 0.25 0.25 0.60 -0.32 -0.49 -0.57 0.12 -0.14 

% Bias 1.7% -0.1% 0.7% -4.7% 4.4% -4.6% 0.1% -2.3% 3.3% 0.8% 1.1% 1.8% 1.8% 4.3% -2.3% -3.5% -4.1% 0.9% -1.0% 

T-test 0.21 0.96 0.57 0.00 0.00 0.00 0.93 0.07 0.00 0.47 0.38 0.16 0.18 0.00 0.04 0.00 0.00 0.48 0.47 

 Autumn 
 HadCM3/HadAM3P HadCM3/HadAM3H ECHAM5 Observed SSTs ECHAM4-OPYC 

 HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4 

S.Dev. 0.66 0.52 0.66 0.59 0.56 0.55 0.48 0.60 0.54 0.52 0.59 0.51 0.71 0.64 0.56 0.74 0.47 0.62 0.74 

Bias 0.07 -0.07 0.07 0.00 -0.02 -0.03 -0.11 0.01 -0.05 -0.07 0.01 -0.08 0.12 0.05 -0.02 0.16 -0.12 0.03 0.15 

% Bias 12.0% -11.6% 12.4% 0.2% -4.2% -5.4% -18.2% 2.3% -8.6% -11.7% 1.0% -13.7% 20.8% 8.4% -3.7% 26.7% -19.7% 5.4% 25.8% 

F-test 0.54 0.51 0.53 0.99 0.82 0.77 0.29 0.90 0.63 0.51 0.96 0.43 0.32 0.67 0.84 0.21 0.24 0.78 0.22 

                    

Mean 9.87 9.83 9.82 9.83 10.01 8.77 10.08 9.94 10.33 10.40 9.58 9.67 9.49 9.74 9.18 9.41 9.26 10.53 9.56 

Bias 0.26 0.83 0.82 0.83 1.01 -0.23 1.08 0.94 1.32 1.39 0.58 0.66 0.48 0.73 0.18 0.41 0.25 1.53 0.56 

% Bias 2.7% 9.2% 9.1% 9.2% 11.2% -2.6% 12.0% 10.4% 14.7% 15.5% 6.4% 7.4% 5.3% 8.1% 2.0% 4.5% 2.8% 17.0% 6.2% 

T-test 0.12 0.13 0.21 0.16 0.01 0.00 0.00 0.04 0.00 0.00 0.85 0.71 0.46 0.44 0.01 0.25 0.01 0.00 0.77 

 

Table 4.2b: Skill metrics for interannual temperature (Summer and Autumn), for 1961-1990. Significant test values are given in bold. Grey titles represent driving 
GCMs/boundary data. 
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In winter, the t-test confirms statistically significant differences in means in 

the majority of models, with CHRM, HIRHAM-c, HIRHAM-E5 and ARPEGE-b the 

only exceptions (Table 4.2). However, the models capture the observed variability of 

winter temperature, quantified be the temporal standard deviation, more skilfully. 

Only four models are found to have significantly different standard deviations to the 

observed data, namely REMO, RCAO-H, ARPEGE-c and RCAO-E4. The small, 

insignificant differences in variance coupled with a more significant change in mean 

all point towards a systematic model bias in which the entire distribution is shifted, 

preserving the variance but altering the mean. 

In spring and autumn, variability is also well-described by the models, with 

no individual model displaying a significantly different variance to the observed. 

However, in summer, five models are found to have significant variability biases, 

ranging from -47.1% to -30.5% of the observed standard deviation. Conversely, 

significant differences in means occur in all seasons, in ten models in spring, eight in 

summer and nine in winter. While the t-test identifies these differences as significant, 

they are much smaller than the errors observed in winter.  

 

4.3.5 Results: Precipitation 
The rank histogram for interannual values of precipitation is quite different in 

shape to the temperature histogram (Figure 4.8a). It is approximately flat across the 

first six bins. However, the seventh bin has exceptionally low frequency and the final 

bin has much higher frequency of occurrences. Examination of the seasonal data 

reveals different patterns in each season which average each other out to give the 

annual average pattern. In winter and spring, the graph is dome-shaped, suggesting 

that the models fail to capture the range of observed variability (Figures 4.8b and c). 

In summer, the dome shape is still apparent but is much less pronounced (Figure 

4.8d). In autumn, two key patterns emerge. The histogram is quite asymmetric, 

suggesting a downwards shift in the modelled distributions (Figure 4.8e). However, 

there is also overestimation in the upper bin which suggestions that some models 

may have a wet bias in autumn. 
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Figure 4.8: Rank histograms for interannual precipitation data. Bins are derived from 
observations. 

 

 A dominant feature across the majority of winter Q-Q plots is the dense 

clustering of central values, suggesting that the central values of the model 

distributions are less dispersed than the observed (Figure 4.9). Additionally, certain 

models overestimate values on the lower tail of their distributions. For example, 

RCAO-H, ARPEGE-b and ARPEGE-c all overestimate lower tail values leading to 

low population in the lowest  bins of the histogram and extra population in the 

middle bins. Much greater overestimation that occurs on the upper tails of models 

a) 

b) c) 

d) e) 
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such as CLM, RCAO-H and RCAO-E4, resulting in low populations in the upper 

bins and overpopulation in the uppermost bin, with values falling beyond the 

observed range. Similar patterns can be observed in spring. However, in spring, the 

central values are more evenly dispersed along the expected line, which may account 

for the less pronounced shape of the rank histogram (Figure 4.10).  

Figure 4.9: Q-Q plots of modelled versus observed interannual winter precipitation (mm/day) for 
the period 1961-1990. 

 

In summer, many of the models capture the observed distribution quite well 

(Figure 4.11). For example, the Q-Q plots of HIRHAM-b, HIRHAM-c, HIRHAM-

E5 and ARPEGE-b follow the expected line, indicating a high level of agreement 

between observed and modelled distributions. As such, this rank histogram is 

somewhat flatter than winter and spring. Underestimation on the upper tails of 

HadRM3P-a, HadRM3P-b and HadRM3P-c may account for the low population in 

the penultimate bin of the rank histogram. Conversely, the Q-Q plots of REMO, 
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REGCM and CLM suggest that their upper tails are more dispersed than observed, 

which may account for the overpopulation in the final bin of the rank histogram. 

 

 

 

 

Figure 4.10: Q-Q plots of modelled versus observed interannual spring precipitation (mm/day) for 
the period 1961-1990. 

 

In autumn, many of the models such as CHRM, HadRM3P-a, HadRM3P-b 

and ARPEGE-a display a downwards shift in their distributions, relative to the 

observed distribution, which may explain the somewhat asymmetric shape of the 

rank histogram (Figure 4.12). However, several other models display overestimation 

on the upper tail of their distributions, such as CLM and RCAO-H. Additionally, one 

model, RCAO-E4 appears to overestimate the distribution of precipitation. The 

combination of these error patterns may explain the overpopulation spike in the 

upper bin of the rank histogram.  
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Figure 4.11: Q-Q plots of modelled versus observed interannual summer precipitation (mm/day) for 
the period 1961-1990. 
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Figure 4.12: Q-Q plots of modelled versus observed interannual autumn precipitation (mm/day) for 
the period 1961-1990. 
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Skill metrics are used to quantify the biases identified through visual 

inspection. Results are given in Table 4.3a and b. In winter, the t-test confirms 

statistically significant differences in means in 11 out of 19 models. However, only 

five are found to have a significantly different standard deviation to the observed. 

Although most of the differences in variability are not significant, it is clear that on 

the whole the models underestimate variability, with seven models overestimating 

variability compared to the twelve that underestimate it. These results agree with the 

interpretation of the dome-shaped rank histogram. 

In spring, though no statistically significant differences in variability are 

identified, the biases are again mostly negative, with only two models overestimating 

variability. Again, several models are found to have significantly different means to 

the observed, with both positive and negative biases occurring. Results for summer 

are quite similar, though one model, REMO, is found to have a statistically 

significant difference in variability to the observed for this season. In autumn, four 

models, CLM, REGCM, REMO and RCAO-H, display a statistically significant 

difference in variability. Again, several models are found to have significantly 

different means to the observed. 

 

4.3.6 The effect of GCM driver choice on interannual variability 
Table 4.4 summarizes the seasonal percentage bias of the interannual data standard 

deviation and mean with respect to the observed dataset. Vertical patterns within 

GCM-driver groupings, indicating a bias common to all RCMs driven by the same 

GCM, suggest errors due to issues with the GCM output used to drive the RCMs. For 

example, as temperature variability in winter and summer appears to be 

underestimated in all the HadAM3H-driven models, this suggests an error with the 

HadAM3H data used to drive the models. However it is also possible that RCMs 

driven by the same GCM exhibit similar biases for different underlying reasons. 

Many processes affect modelled temperature so it is conceivable that a cloud 

parameterization deficiency in one model and an albedo error in another could lead 

to the same average error in temperature. 
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 Winter 
 HadCM3/HadAM3P HadCM3/HadAM3H ECHAM5 Observed SSTs ECHAM4-OPYC 

 HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4 

S.Dev. 0.56 0.61 0.49 0.78 0.88 0.64 1.10 0.92 0.92 1.01 0.72 0.54 0.50 0.52 0.68 0.52 0.60 1.03 0.95 

Bias -0.24 -0.19 -0.30 -0.01 0.08 -0.16 0.30 0.12 0.12 0.21 -0.08 -0.26 -0.30 -0.28 -0.12 -0.27 -0.20 0.23 0.15 

% Bias -30.2% -23.8% -38.1% -1.8% 10.0% -19.5% 38.0% 15.6% 15.4% 26.6% -10.0% -32.8% -37.3% -34.6% -15.1% -34.3% -25.2% 28.5% 19.3% 

F-test 0.06 0.15 0.01 0.92 0.61 0.25 0.09 0.44 0.45 0.21 0.57 0.04 0.01 0.03 0.38 0.03 0.12 0.18 0.35 

                    

Mean 3.07 3.15 3.09 4.06 4.39 3.07 5.41 4.37 4.62 5.17 3.80 3.57 3.42 3.71 4.02 3.88 4.22 4.78 3.84 

Bias -0.62 -0.55 -0.60 0.36 0.69 -0.63 1.71 0.67 0.93 1.47 0.10 -0.12 -0.28 0.01 0.32 0.19 0.53 1.08 0.14 

% Bias -16.8% -14.8% -16.3% 9.9% 18.8% -17.0% 46.3% 18.3% 25.1% 39.8% 2.8% -3.3% -7.5% 0.4% 8.7% 5.0% 14.3% 29.3% 3.8% 

T-test 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.50 0.12 0.94 0.10 0.30 0.01 0.00 0.54 

 Spring 
 HadCM3/HadAM3P HadCM3/HadAM3H ECHAM5 Observed SSTs ECHAM4-OPYC 

 HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4 

S.Dev. 0.55 0.44 0.50 0.47 0.44 0.44 0.57 0.49 0.60 0.49 0.43 0.54 0.49 0.58 0.62 0.60 0.56 0.74 0.68 

Bias -0.08 -0.19 -0.13 -0.16 -0.19 -0.20 -0.07 -0.14 -0.03 -0.14 -0.20 -0.10 -0.14 -0.06 -0.01 -0.03 -0.07 0.10 0.04 

% Bias -13.2% -29.9% -20.9% -25.3% -29.8% -31.1% -10.5% -21.9% -5.0% -22.8% -31.5% -15.5% -22.3% -9.1% -1.9% -4.5% -11.4% 16.3% 6.7% 

F-test 0.45 0.06 0.21 0.12 0.06 0.05 0.55 0.19 0.78 0.17 0.05 0.37 0.18 0.61 0.92 0.81 0.52 0.42 0.73 

                    

Mean 2.17 2.09 2.19 2.50 2.78 2.20 3.39 2.97 3.48 3.03 2.71 2.79 2.83 2.84 3.00 2.96 3.32 2.94 2.82 

Bias -0.39 -0.46 -0.37 -0.05 0.22 -0.36 0.84 0.42 0.92 0.48 0.15 0.24 0.28 0.28 0.44 0.40 0.77 0.38 0.27 

% Bias -15.2% -18.1% -14.4% -2.0% 8.7% -14.0% 32.9% 16.3% 36.2% 18.7% 6.1% 9.3% 10.8% 11.0% 17.3% 15.8% 30.2% 15.1% 10.4% 

T-test 0.02 0.00 0.02 0.73 0.13 0.01 0.00 0.01 0.00 0.00 0.28 0.13 0.07 0.08 0.01 0.02 0.00 0.04 0.13 

 

Table 4.3a: Skill metrics for interannual precipitation (Winter and Spring), for 1961-1990. Significant test values are given in bold. Grey titles represent driving 
GCMs/boundary data. 
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 Summer 
 HadCM3/HadAM3P HadCM3/HadAM3H ECHAM5 Observed SSTs ECHAM4-OPYC 

 HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4 

S.Dev. 0.51 0.43 0.58 0.56 0.62 0.70 0.77 0.78 0.85 0.69 0.65 0.63 0.49 0.64 0.54 0.52 0.59 0.55 0.57 

Bias -0.06 -0.14 0.02 0.00 0.05 0.13 0.20 0.21 0.28 0.13 0.08 0.06 -0.07 0.07 -0.03 -0.04 0.02 -0.02 0.00 

% Bias -9.9% -24.6% 2.9% -0.7% 9.4% 22.9% 35.1% 37.4% 49.4% 22.3% 14.7% 10.0% -13.1% 12.0% -4.6% -7.8% 4.4% -3.8% -0.2% 

F-test 0.58 0.13 0.88 0.97 0.63 0.27 0.11 0.09 0.03 0.28 0.47 0.61 0.45 0.54 0.80 0.66 0.82 0.84 0.99 

                    

Mean 1.62 1.68 1.59 2.84 2.79 2.42 3.19 3.18 3.39 3.02 2.74 2.62 2.56 2.27 2.36 2.41 2.53 3.07 3.03 

Bias -0.83 -0.78 -0.86 0.39 0.34 -0.03 0.74 0.73 0.93 0.57 0.29 0.16 0.11 -0.18 -0.09 -0.04 0.08 0.61 0.57 

% Bias -33.8% -31.6% -35.2% 16.0% 13.7% -1.3% 30.0% 29.7% 38.0% 23.2% 11.7% 6.7% 4.3% -7.4% -3.7% -1.6% 3.3% 25.0% 23.4% 

T-test 0.00 0.00 0.00 0.01 0.04 0.85 0.00 0.00 0.00 0.00 0.08 0.30 0.45 0.26 0.54 0.79 0.60 0.00 0.00 

 Autumn 
 HadCM3/HadAM3P HadCM3/HadAM3H ECHAM5 Observed SSTs ECHAM4-OPYC 

 HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4 

S.Dev. 0.70 0.66 0.63 0.87 0.84 0.62 0.99 0.95 0.93 0.92 0.74 0.70 0.80 0.63 0.64 0.57 0.66 0.87 0.72 

Bias 0.07 0.03 0.00 0.24 0.22 -0.01 0.36 0.32 0.30 0.29 0.12 0.07 0.18 0.00 0.01 -0.06 0.03 0.24 0.09 

% Bias 11.0% 4.8% 0.6% 38.6% 34.4% -1.3% 56.9% 51.0% 47.3% 46.5% 18.5% 10.9% 27.9% 0.8% 1.1% -9.1% 5.4% 37.9% 13.9% 

F-test 0.58 0.80 0.98 0.08 0.12 0.95 0.02 0.03 0.04 0.04 0.37 0.58 0.19 0.97 0.95 0.61 0.78 0.09 0.49 

                    

Mean 2.79 2.54 2.67 3.51 3.45 2.41 4.16 3.58 3.71 3.89 3.03 3.25 3.05 3.32 2.87 3.33 3.15 5.11 4.21 

Bias -0.76 -1.01 -0.88 -0.04 -0.10 -1.14 0.61 0.03 0.15 0.33 -0.52 -0.30 -0.50 -0.23 -0.68 -0.22 -0.40 1.56 0.66 

% Bias -21.3% -28.5% -24.9% -1.1% -2.8% -32.2% 17.1% 0.9% 4.4% 9.4% -14.7% -8.5% -14.0% -6.5% -19.2% -6.2% -11.2% 43.9% 18.5% 

T-test 0.00 0.00 0.00 0.85 0.61 0.00 0.01 0.88 0.46 0.11 0.01 0.09 0.01 0.17 0.00 0.17 0.02 0.00 0.00 

 

Table 4.3b: Skill metrics for interannual precipitation (Summer and Autumn), for 1961-1990. Significant test values are given in bold. Grey titles represent driving 
GCMs/boundary data. 
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 # # # # # # # # # # # # # # # # # # # # #
-100% 0 100%  

Table 4.4: Seasonal percentage bias of standard deviation (variability) and mean for interannual temperature and precipitation data.

 
Temperature:  

Standard Deviation % Bias Temperature: Mean % Bias 
Precipitation:  

Standard Deviation % Bias Precipitation: Mean % Bias 

 YEAR DJF MAM JJA SON YEAR DJF MAM JJA SON YEAR DJF MAM JJA SON YEAR DJF MAM JJA SON 

HadRM3P-a 
                                        

HadRM3P-b 
                                        

HadRM3P-c 
                                        

PROMES 
                                        

RACMO 
                                        

CHRM 
                                        

CLM 
                                        

REGCM 
                                        

REMO 
                                        

RCAO-E4 
                                        

HIRHAM-a 
                                        

HIRHAM-b 
                                        

HIRHAM-c 
                                        

HIRHAM-E5 
                                        

ARPEGE-a 
                                        

ARPEGE-b 
                                        

ARPEGE-c 
                                        

RCAO-E4 
                                        

HIRHAM-E4 
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However, sharing a GCM driver is an important commonality and where the 

same bias occurs across RCMs driven by the same GCM, the driving model must be 

considered as a source of bias. Conversely, horizontal patterns indicate errors arising 

due to differences in model construction. For example, HadRM3P and CHRM show 

a marked underestimation of precipitation quantities across the year while the other 

HadAM3H driven models show positive biases or smaller mixed biases. This 

suggests that certain processes governing precipitation amounts in the Irish domain 

may be represented less skilfully in HadRM3P and CHRM. 

It is clear that error in the interannual variability between modelled and 

observed temperature is greatest in winter and summer. Biases are entirely negative 

in winter, mostly negative in summer, mostly positive in spring and mixed in 

autumn. Error in the mean of the interannual values is greater in winter than all other 

seasons and biases are almost all positive. The exceptions are CHRM (all seasons) 

and PROMES (spring and summer only).  

For precipitation, biases are more mixed. Precipitation variability is 

underestimated in spring in all the HadAM3H-driven models. While precipitation 

variability is overestimated in all other seasons, it is most greatly overestimated in 

autumn in the majority of models. Conversely, in the two models driven by 

ECHAM4-OPYC, summer is the only season when underestimation occurs. In 

addition to the errors relation to HadRM3P and CHRM, there are two further errors 

to note regarding precipitation amounts. The ARPEGE and HIRHAM sub-ensembles 

both underestimate precipitation amounts in autumn in all three ensemble members, 

suggesting internal RCM error in ARPEGE and HIRHAM. 

Variability of temperature is underestimated in winter and summer, 

overestimated in spring and biases are mixed in autumn. Conversely, variability of 

precipitation is underestimated in spring, overestimated in summer and autumn and 

biases are mixed in winter.  Positive temperature biases tend to correspond to 

positive precipitation biases also, possibly due to the higher temperatures promoting 

excessive evaporation. This behaviour is seen in the majority of models, but not all. 

In an analysis of limited area model output over Europe, Christensen et al. (1996) 

notes that overestimation of precipitation is generally found in areas of orographic 

precipitation. This may be another factor to consider and will be discussed further in 
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the next chapter, which will examine spatial performance. Overall, these findings 

suggest the possibility of a link between precipitation amounts and temperature, 

though experimentation with the individual models would be required to establish 

whether this is truly a causal relationship.  However there does not seem to be any 

link between variability of temperature and precipitation. 

Lateral boundary conditions are known to significantly impact RCM output 

(Denis et al., 2003; Wu et al., 2005). Giorgi et al. (2004) notes that large-scale mid-

tropospheric circulations in a regional model are primarily controlled by the forcing 

boundary conditions, and this in turn effects the surface variables. However, a skill 

scoring approach to model assessment does not indicate that GCM choice is the 

source of this error. To determine the extent to which boundary conditions influence 

the interannual variability of these models, interannual values from models with the 

same drivers are plotted together for temperature (Figure 4.13) and precipitation 

(Figure 4.14). Although the GCM-driven models will not simulate climate events in 

the same chronological order as is observed, if GCM input is a key factor then RCMs 

with the same driver should have similar patterns of interannual variability.  

Only models driven by HadAM3H and ECHAM4-OPYC are included in this 

analysis as those models which are part of a perturbed sub-ensemble cannot be 

compared in this manner, due to the small differences in driving conditions which are 

introduced to create the different sub-ensemble members. Even the members of the 

ARPEGE sub-ensemble are very different to both each other and the observations. 

One would expect these models to come closest to matching the observed interannual 

variability as they are driven by observed SSTs, but they do not. However, even 

between observed datasets there can be differences (Betts et al., 2006; Grotjahn, 

2008; Ma et al., 2008). While the observations on which they are based may be the 

same, different interpolation techniques could be used to fit observations to the grid 

used by the model. While the resulting difference in the final dataset could be very 

small, it has been shown by Chu (1999) and Collins and Allen (2002) that even 

seemingly small perturbations to boundary conditions can lead to significantly 

different projections. 

In winter, almost all models driven by HadAM3H display very similar 

patterns for interannual temperature. This suggests that driving information is the 
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predominant influence in determining both the variability and magnitude of modelled 

winter temperatures. There is one exception, CHRM, which displays a similar pattern 

of interannual evolution to the other models but a different magnitude of 

temperatures.  This error is still small relative to the observed temperature, and hence 

was not noticeable in the seasonal analysis. However, it does suggest that while 

variability in CHRM is governed by the boundary conditions supplied by 

HadAM3H, there is a systematic bias in winter that is unique to this model. 

Similarly, autumn temperatures appear to be predominantly influenced by boundary 

conditions in the HadAM3H-driven models, with the exception of CHRM. In spring 

and summer, the general pattern of interannual variability is similar in these models, 

but results do not fall in as tight a range as for winter and autumn. This suggests that 

while boundary conditions are still important in spring and summer, differences in 

internal regional model physics becomes more influential than in autumn and winter.  

All of the single experiments share these characteristics, as well as one 

experiment from the HIRHAM sub-ensembles driven by HadAM3H. This suggests 

that the interannual variability of temperature in these models is quite sensitive to 

boundary conditions, as even the small perturbations applied to create the sub-

ensembles result in very different results. As there is only one model driven by 

ECHAM5 and only a sub-ensemble of one model driven by HadRM3H, no 

conclusions can be drawn about the behaviour of these simulations.  

Conversely, the two models driven by ECHAM4-OPYC agree with each 

other the most in summer. While the evolution of the interannual pattern is similar in 

all seasons, the magnitudes of temperature agree most in summer and least in winter. 

This suggests that while the lateral boundary conditions are highly influential for the 

ECHAM4-OPYC-driven models, other factors must also be considered. As there are 

only two models driven by this GCM, it is more difficult to draw conclusions about 

them. RCAO-H and HIRHAM-a driven by HadAM3H did not display any great 

differences to the other HadAM3H models, which would suggest that internal RCM 

differences are not the source of this discrepancy. 
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Figure 4.13: Interannual evolution of temperature over 1961-1990, categorized by driving GCM. 
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Figure 4.14: Interannual evolution of precipitation over 1961-1990, categorized by driving GCM. 

 

But the GCM driver is the same, therefore there are no differences in 

boundary conditions to account for a systematic difference between the RCMs. 
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However, the error of a particular GCM-RCM combination is not just composed of 

GCM error and RCM error. There is also a GCM-RCM interaction component, 

which could account for the results obtained here. Ferro (2004) decomposed the 

spatial variation of several PRUDENCE experiments into its component parts and 

found that GCM-RCM interaction was a significant component at a number of 

gridpoints within the Irish domain. 

The results obtained when the same models are plotted together for precipitation 

are slightly different to those obtained for temperature. With respect to the yearly, 

winter and autumn values, CHRM shares the same interannual pattern of evolution as 

the other HadAM3H-driven models, but is systematically biased. This suggests that 

while variability in CHRM is controlled by the boundary conditions supplied by the 

GCM, precipitation amounts are influenced by some characteristic of the RCM itself. 

The range of the models is greatest in winter and smallest in summer for both the 

HadAM3H and ECHAM4-OPYC driven models. Overall, results suggest that like 

temperature, precipitation variability in the various RCMs is significantly influenced 

by the lateral boundary conditions supplied by the GCM.  

 

4.4 MEAN ANNUAL CLIMATOLOGY 

4.4.1 Review of methods 
The next consideration in this analysis is how well the models represent 

means and variations across the year. For the purpose of this analysis, seasons are 

defined as: December, January, February (DJF); March, April, May (MAM); June, 

July, August (JJA) and September, October, November (SON).  The climatological 

year is calculated by averaging the 30 January datasets from the 30 years of data, the 

30 February datasets and so on to produce a 30-year average for each month, which 

forms a series of twelve average values.  

Murphy (1993) notes that traditionally, forecast verification methods have 

been “measure-oriented”, focusing on quantifying model bias. Mean square error, 

which penalizes larger errors more heavily than smaller ones, and mean absolute 

error are cited as examples of this approach. However, while both of these metrics 

are quite widely used, they do not give any indication of the direction of model 
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biases, only the magnitude. Therefore, if both magnitude and direction of model 

errors need to be quantified, mean percentage error would be a more appropriate 

choice. Though lesser used, this metric gives a fuller picture of model error.  

In addition to bias, association is an important skill at the mean annual scale 

and the correlation coefficient can be used to quantify the level of similarity between 

the observed and modelled climatologies. Zheng and Frederiksen (1998) note that the 

correlation coefficient can be a misleading indicator of skill at the interannual scale, 

as due to the chaotic nature of the climate system, even small differences in initial 

conditions can lead to very different climate projections. However, unlike 

interannual datasets, one can compare observed and modelled mean climatologies 

directly. As the comparison is between mean values over 30 years rather than 

absolute values for a single year, the models should simulate the annual cycle 

skilfully. For example, Barnston et al. (1999) uses temporal correlation along with 

root-mean-square error to quantify model skill in ENSO prediction, by measuring the 

level of association between model forecasts and observed El Niňo episodes  

A number of different coefficients are used for different situations. In a 

modelled annual climatology outliers are highly undesirable as they distort the 

annual pattern. As discussed, in this instance, the Pearson correlation coefficient is 

chosen as due to its sensitivity to outliers, it weights models with outliers as less 

skilful than those without outliers. Additionally, the Pearson coefficient specifically 

tests a linear relationship while the Spearman rho is a test of monotonic association. 

Two identical datasets will clearly have the highest degree of linear dependency. If a 

model simulates the climatological year with a high degree of skill, there should be 

minimal departure between the modelled output from the climatological year as 

calculated using observed data. Therefore the optimum metric is the coefficient 

which tests linear association, another reason why the Pearson coefficient is better 

suited to this analysis. Examples of the Pearson coefficient being applied to climate 

data include Cohen and Fletcher (2007), who used the Pearson coefficient to measure 

association between observed winter climate and hindcasts from a statistical model 

and Lal et al. (2007), who applied the Pearson coefficient to observed and simulated 

10-year time series for temperature and precipitation in Fiji. 
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However, this metric is insensitive to differences in mean and variance. A 

model might consistently overestimate temperature or precipitation throughout the 

year, but as long as the annual cycle of the modelled variable mirrors the pattern of 

the observational climatological year, the model would score highly using the 

correlation coefficient as a metric. Therefore, another validation statistic is required. 

The Nash-Sutcliffe model efficiency coefficient, originally developed to assess the 

predictive power of hydrological models, can also be used as a validation statistic for 

climate models (Nash and Sutcliffe, 1970). An example of its application to non-

hydrological data is Chen et al. (2004), who used the efficiency coefficient as a 

measure of skill for global radiation models. It has also been used as a regional 

climate model skill metric. For example, Evans et al. (2004) used the Nash-Sutcliffe 

efficiency coefficient to quantify the skill of the regional model RegCM at modelling 

temperature and precipitation in the Middle East, using observational data for 

comparison. 

Significance of the efficiency coefficient for efficiencies greater than zero is 

also calculated. As computed values of the efficiency coefficient are sample values, 

the underlying population may in fact have a different true distribution value. 

Hypothesis testing is therefore carried out to determine the likelihood of a calculated 

efficiency coefficient having come from a population whose true efficiency is 0.5 or 

higher (McCuen et al., 2006). 

Possible outcomes for the annual climatology metrics are summarized in 

Table 4.5. The optimum outcome would be high correlation and efficiency scores, 

accompanied by low model bias. This would indicate a model with little systematic 

error that also simulates the annual trend skilfully. Failing that, high correlation 

accompanied by lower efficiency and high model bias scores would indicate a model 

that simulates the annual trend well but has a systematic bias. The final possibility is 

a low correlation and efficiency scores accompanied by a low model bias. A low bias 

score is not useful in the absence of a high correlation score. This indicates that the 

model overestimates or underestimates the magnitude of the variable by a different 

amount each month, resulting in a low average bias but distorting the annual trend so 

that it does not represent the observed pattern. 
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 High bias  

(low efficiency) 

Low bias 

(high efficiency) 

High correlation Good representation of 
annual pattern, with 
systematic bias 

Optimum result: 

Good representation of 
annual pattern, with no 
systematic bias 

Low correlation Least desirable result: 

Poor representation of 
annual pattern, and 
systematic bias 

Poor representation of 
annual pattern, but no 
systematic bias 

 

 

Table 4.5: Outcomes for correlation/efficiency tests 

 

 

4.4.2 Methodology 
The second part of the assessment examines the mean monthly time series of 

climatological means for each model. Modelled mean annual climatologies were 

compared to the observed mean annual climatology using four validation statistics: 

bias, correlation, efficiency and trend. In addition to identifying any model errors or 

systematic biases using the mean squared error (MSE) metric, two “goodness of fit” 

metrics are applied, namely the Pearson correlation coefficient and the Nash-

Sutcliffe efficiency. The Pearson correlation coefficient is sensitive to extreme values 

or outliers in the data while the Nash-Sutcliffe efficiency is also sensitive to 

differences in mean and variance.  The significance of differences between the 

modelled and observed climatologies is also calculated. 

The Pearson correlation coefficient is chosen as a metric of association as it is 

known to be highly sensitive to outliers in the data. The Pearson correlation 

coefficient is less suited to identifying unknown relationships between smaller 

datasets, due to the possibility of a high r value occurring by chance. However, in 

this case the relationship between the datasets is known, a covarying relationship is 

expected between the observed and modelled data and the Pearson correlation 

coefficient is used to quantify the known relationship rather than identify an 

unknown relationship. Additionally, the significance of all r values is tested to ensure 
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that high r values are truly indicative of covariation. For the annual climatology of a 

particular climatic variable x, the Pearson coefficient is calculated as: 

Equation 4.4: Pearson correlation coefficient 

  

m

T

1t

 . 

1

 
  o

m
t
mo

t
o xxxx

Tr




  

where, 

 o = standard deviation of the observed data, 

 m = standard deviation of the modelled data, 

ox = mean of the observed data, 

mx = mean of the modelled data, 

T = number of entries in the datasets, 

xo
t = observed data at time t and 

xm
t = model output at time t. 

 

Pearson correlation coefficients range from −1 to 1, with a perfect score of 1.  A 

score of 0 indicates that there is no linear relationship between the observations and 

the modelled data, while a negative score indicates a decreasing linear relationship. 

Significance of the correlation is determined by the result of an F-test and the 

associated P value for the F-test is given. For a confidence level of 95%, if P<0.05, 

then the null hypothesis (that there is no statistically significant association between 

observed and modelled data) is rejected. Conversely, if P >0.05, then the null 

hypothesis is accepted.  

Nash–Sutcliffe efficiencies can range from −∞ to 1, with a perfect score of 1.  

An efficiency score less than zero occurs when the residual variance is larger than 

the data variance and is indicative of a very deficient model. The Nash-Sutcliffe 

coefficient is calculated as: 
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Equation 4.5: Nash-Sutcliffe coefficient 
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where 

ox = mean of the observed data, 

T = number of entries in the datasets, 

xo
t = observed data at time t and 

xm
t = model output at time t. 

 

Significance of the efficiency coefficient is calculated for efficiencies greater 

than zero. A series of equations is used to transform the theoretical distribution of the 

efficiency index to a normal distribution. From McCuen et al. (2006) 

Equation 4.6: Significance of the Nash-Sutcliffe 
coefficient 
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The standard normal distribution table can then be used to compare the z-

score to a critical value. For a confidence level of 95%, the critical value for the 

normal distribution is 2.576. Therefore, when z is greater than 2.576, P is less than 

0.05. The null hypothesis (that the calculated efficiency coefficient is based on a 

population whose true efficiency is 0.5 or less) is rejected and the efficiency 
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coefficient is considered significant. Conversely, if z<2.576 then P>0.05, and the null 

hypothesis is accepted. 

One final analysis is carried out to further characterize fluctuations in model 

skill across the year. Bias is represented using the mean percentage error (MPE). 

Mean percentage error is chosen over mean absolute error or mean squared error as it 

maintains the sign of the bias. Annual mean percentage error EA of each model is 

calculated as 

Equation 4.7: Mean percentage error 
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where 

xo
t = observed data at time t and 

xm
t = model output at time t. 

 

 

 MPE of zero means that the model is very skilful. While values of mean error other 

than zero are in themselves meaningless, they are useful for comparative purposes. A 

seasonal breakdown of contribution to MPE is also assessed. To calculate 

contribution to annual MPE for a particular season, all other seasons are assumed to 

have perfect skill. Therefore the seasonal contribution ES is calculated as: 

Equation 4.8: To determine the seasonal 
contribution to MPE 
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where 

xo
t = observed data at time t and 

xm
t = model output at time t. 
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From the seasonal analysis, models with seasonal biases can be sorted from those 

with random biases. A model that is biased in a particular season alone has the 

potential to provide useful information about the rest of the annual cycle. However, a 

model with biases that do not follow a set pattern is less useful as the source of those 

types of biases are harder to diagnose.    

 

4.4.3 Results: Temperature 
An initial analysis of the annual climatology data, the ensemble climatology 

plot, indicates the skill of the overall ensemble of models at capturing the annual 

cycles of temperature and precipitation. However, ensembles can give skilful results 

for the wrong reasons if their skill is a by-product of bias cancellation rather than real 

predictive skill. Therefore it is also necessary to look at the climatology plots of the 

individual ensemble members to gauge how well they simulate the observed mean 

annual pattern. Additionally, skill metrics are calculated to assess the models’ 

abilities at simulating these patterns.   

The mean annual climatology plot for temperature indicates that the ensemble 

members simulate the observed annual pattern well, except in winter months (Figure 

4.15).  

 
Figure 4.15: Ensemble mean annual climatology for temperature (dashed line), including ensemble 

range (green) and observed mean annual climatology (solid line) for 1961-1990. 
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The mean annual temperature follows a typical cycle, cooler in winter and 

warmer in summer, and the models all reflect this. From November until March, the 

models tend to overestimate monthly temperature values. The bias is as high as 2oC 

in some ensemble members and is most noticeable in February, when all models 

overestimate the observed temperature. It is also notable that from March to May, the 

ensemble average almost perfectly corresponds to the observed climatology, yet the 

ensemble member range indicates both overestimation and underestimation amongst 

the individual models. This behaviour has two possible causes. One possibility is that 

the majority of models simulate the observed pattern for springtime well, and the 

range is caused by a small number of outliers. The other possibility is that the 

majority of models are biased and these biases cancel each other out to give a 

favourable average. The individual ensemble members must be examined in more 

detail to determine which is the case.  

 Next, mean annual climatology plots are generated for individual models, 

with the observed climatology included for reference (Figure 4.16). As indicated by 

the ensemble climatology, most of the models overestimate temperature in winter. 

This lack of skill in winter greatly contrasts with the high level of skill the models 

possess throughout the rest of the year. It is most noticeable for RCAO-E4, driven by 

ECHAM4-OPYC.  This model simulates summer temperatures with high accuracy, 

but starting in late autumn it becomes increasingly biased, peaking with a maximum 

bias of almost 3oC in January. The bias becomes smaller again over spring.  

The three ARPEGE experiments, which are all driven by observed SSTs, 

perform markedly better in winter than many of the other models. Only very small 

biases occur in all three simulations. The greater accuracy and realism of the driving 

information for these models may be a reason for their higher levels of skill. 

However, a small minority of GCM-driven models in this ensemble also demonstrate 

skill in winter. HIRHAM driven by ECHAM5 simulates the observed climatology 

almost perfectly, with very minimal bias. The skill of this simulation may indicate 

that ECHAM5 provides more skilful driving information that the other GCMs, but as 

only one model in the ensemble is driven by ECHAM5, this cannot be confirmed. 

However, the third member of the HIRHAM ensemble, driven by HadAM3H, also 

provides very skilful output. Experiments in this sub-ensemble are driven by 
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perturbed data from the same GCM, and the other members of this ensemble exhibit 

the same winter bias as the majority of the models. It is possible that the 

perturbations applied for the third simulation resulted in more realistic driving data, 

or that the different outcomes represent the range of internal model variability for 

this model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.16: RCM mean annual climatology for temperature for 1961-1990. Observations are 
represented by the dotted line. Months are displayed on the x-axis and temperature in oC is 

displayed on the y-axis. 
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The agreement between the experiments in the ARPEGE ensemble could 

correspond to a lower level of internal variability in the ARPEGE model. CHRM, 

which is also driven by HadAM3H, simulates winter temperatures more skilfully 

than its peers, but unlike the other models it underestimates temperature during the 

rest of the year by approximately 1oC. It is difficult to attribute the winter skill of this 

model.  Multiple RCMs can interact with the same GCM in different ways, and the 

overall response is a combination of GCM response, RCM response and interactive 

effects (Kaufman et al., 2008). The skill of these particular simulations may be a 

result of their unique GCM-RCM interaction.  

Skill is quantified using the skill metrics outlined previously and are 

summarized in Table 4.6. Significant correlations are marked in bold. The optimum 

outcome is a high correlation and efficiency score, accompanied by low model error. 

Failing that, high correlation accompanied by lower efficiency and high model error 

scores is preferable to a low correlation and efficiency scores accompanied by a low 

model error.  

All the models have near-perfect Pearson correlation values of 0.98 or higher. 

This indicates that the models simulate the annual pattern of temperature well, and 

that there are no outliers in the data. The Nash-Sutcliffe scores are also high, though 

not as high as the Pearson scores. Nash-Sutcliffe scores range from 0.84 to 0.99, 

which suggests that while the pattern may be well-represented, there is a bias in 

magnitude in some models. The bias, quantified using the mean absolute error, is 

greatest in the models with the lowest Nash-Sutcliffe scores.  

The most notable biases are RCAO driven by ECHAM4-OPYC, which has a 

Nash-Sutcliffe score of 0.84, RCAO driven by HadAM3H which has a Nash-

Sutcliffe score of 0.90 and REMO driven by HadAM3H which has a Nash-Sutcliffe 

score of 0.91. These Nash-Sutcliffe scores correspond to annual mean percentage 

errors of 20.55%, 16.27%, and 15.77% respectively. However, the largest portion of 

this error stems from the winter months. Mean percentage error contributions from 

spring, summer and autumn are much smaller. 
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ECHAM5
HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4

r 1.00 0.99 0.99 0.98 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99 1.00 0.99 1.00 0.99 0.99 0.99
E 0.97 0.97 0.96 0.91 0.93 0.97 0.93 0.94 0.91 0.90 0.98 0.98 0.99 0.98 0.98 0.98 0.97 0.84 0.97

%    
Error
Year 8.25% 7.99% 9.49% 9.09% 12.76% -4.53% 12.39% 9.82% 15.77% 16.27% 5.22% 5.30% 1.46% 5.07% 1.45% 0.91% 1.47% 20.55% 6.94%
DJF 5.54% 5.63% 7.05% 9.83% 7.80% -0.24% 9.03% 9.00% 9.77% 10.26% 4.82% 4.05% 1.67% 1.39% 2.96% 1.55% 3.78% 13.38% 5.75%
MAM 1.31% 1.45% 1.56% -0.77% 2.52% -1.00% 1.58% 0.10% 2.84% 3.25% 0.05% 0.32% -0.48% 2.11% 0.02% 0.60% -0.43% 3.96% 1.36%
JJA 0.08% -0.02% 0.18% -1.17% 1.11% -1.13% 0.03% -0.57% 0.84% 0.22% 0.26% 0.46% 0.44% 1.09% -0.59% -0.89% -1.04% 0.21% -0.27%
SON -2.68% 0.94% 0.69% 1.20% 1.32% -2.17% 1.75% 1.30% 2.32% 2.54% 0.08% 0.47% -0.17% 0.48% -0.95% -0.34% -0.84% 2.99% 0.09%

HadCM3/HadAM3P HadCM3/HadAM3H Observed SSTs ECHAM4-OPYC

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6: Annual climatology skill metrics for temperature for 1961-1990e, where r denotes Pearson correlation coefficient and E denotes Nash-Sutcliffe efficiency 
index. Significant values of r and E are marked in bold print.
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4.4.4 Results: Precipitation 
The mean annual climatology plot for precipitation indicates that the 

ensemble members are less skilful at simulating this parameter (Figure 4.17). The 

range of the individual ensemble members is quite large throughout the year. The 

model range reaches 3 mm/day in September, corresponding to a range of 55.9 mm 

to 145.8 mm total precipitation for the month. Conversely, observed precipitation lies 

between 2 mm/day and 3.8 mm/day, a range of just 1.8 mm/day, for the entire year. 

This suggests that intermodel variability is much greater than the annual variability 

of precipitation. Additionally, while the ensemble average compares favourably with 

the observations in terms of magnitude, it follows a much smoother pattern than is 

observed. While the general trend of decreasing precipitation from January to July 

and increasing precipitation from July to December is identifiable, the ensemble 

average does not capture in detail the differences in precipitation from month to 

month. Again, closer examination of the individual ensemble members is required to 

determine if the skill of the ensemble can be improved.  
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Figure 4.17: Ensemble mean annual climatology for precipitation (dashed line), including ensemble 
range (grey) and observed mean annual climatology (solid line) for 1961-1990. 
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The observed annual pattern for precipitation is characterized by a general 

decrescendo-crescendo pattern. However, there is a lot of month-to-month variation 

in the precipitation pattern which the models have difficulty capturing (Figure 4.18).  

RACMO and the ARPEGE sub-ensemble simulate a much smoother pattern 

than observed, which captures the overall trend but not the month-to-month 

variation. Several models capture the general trend but model specific features at the 

wrong time. For example, HadRM3P-a, HadRM3P-b and HadRM3P-c model 

August, not July, as the driest month. Conversely, PROMES models May as the 

driest month, with precipitation increasing throughout the summer. 

CHRM models precipitation minimums in March/April and 

September/October, with an increase in precipitation over summer. This pattern is 

quite unlike the observed pattern, with winter being the only part of the cycle which 

is represented somewhat skilfully. CLM, RCAO-H and RCAO-E4 overestimate 

precipitation throughout the year, but the greatest biases occur in autumn and winter 

months, possibly as a result of their warm temperature biases.  

Skill varies more between models for precipitation than for temperature 

(Table 4.7). Nash Sutcliffe scores are very low. Out of 19 experiments, 12 have 

Nash-Sutcliffe scores of less than zero. This indicates that the variance of the errors 

in the modelled data is larger than the observed variance of the parameter. These 

models lack skill at representing the magnitude of precipitation.  

However, the models with the lowest Nash-Sutcliffe scores have some of the 

highest Pearson scores. The model with the highest Pearson score is RCAO-E4, 

which has a very low Nash-Sutcliffe score of -3.89. This indicates that while this 

model simulates the annual pattern of precipitation well, it has a large systematic 

bias. In fact, significant association was found between all of the RCMs and the 

observed data, using the Pearson coefficient and associated significance test.  

However, none of the Nash-Sutcliffe efficiencies were found to be 

significant. Considering magnitude and pattern together, the most skilful models are 

HIRHAM-b and ARPEGE-b. Both models have Pearson scores greater than 0.70 and 

positive Nash-Sutcliffe scores, though the low to moderate Nash-Sutcliffe scores 

indicate that there are some biases in the models. 
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Figure 4.18: RCM mean annual climatology for precipitation for 1961-1990. Observations are 
represented by the dotted line. Months are displayed on the x-axis and precipitation in mm/day is 

displayed on the y-axis. 
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ECHAM5
HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4

r 0.87 0.82 0.83 0.90 0.86 0.61 0.87 0.85 0.76 0.86 0.78 0.85 0.70 0.81 0.64 0.85 0.72 0.92 0.87
E 0.07 -0.18 -0.27 -0.07 0.01 -0.13 -2.98 -0.59 -1.96 -1.81 0.54 0.61 0.47 0.57 0.17 0.49 -0.06 -3.89 -0.24

%    
Error
Year -16.84% -18.44% -17.97% 12.22% 16.29% -10.65% 39.56% 23.61% 33.98% 30.34% 7.92% 7.58% 5.02% 5.59% 7.38% 9.67% 15.88% 36.36% 21.40%
DJF -2.92% -2.38% -2.77% 4.10% 6.50% -2.97% 13.82% 6.41% 8.23% 12.11% 2.30% 0.83% -0.45% 1.69% 4.14% 2.98% 5.48% 9.41% 2.63%
MAM -2.69% -3.46% -2.51% 0.78% 3.55% -2.26% 9.85% 5.62% 10.94% 6.12% 2.99% 3.86% 4.30% 4.29% 5.76% 5.36% 9.19% 5.19% 4.13%
JJA -7.29% -6.61% -7.66% 5.80% 5.24% 1.43% 9.56% 9.55% 11.85% 7.84% 4.79% 3.36% 3.00% -0.33% 0.82% 1.29% 2.44% 8.10% 7.71%
SON -3.94% -5.99% -5.03% 1.53% 1.00% -6.85% 6.33% 2.02% 2.96% 4.26% -2.15% -0.47% -1.84% -0.06% -3.34% 0.04% -1.23% 13.66% 6.92%

Precipitation

HadCM3/HadAM3P HadCM3/HadAM3H Observed SSTs ECHAM4-OPYC

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.7: Annual climatology skill metrics for precipitation for 1961-1990, where r denotes Pearson correlation coefficient and E denotes Nash-Sutcliffe efficiency 
index. Significant values of r and E are marked in bold print.
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4.5 DISCUSSION AND CONCLUSIONS 

 This chapter presented a preliminary analysis of model skill using a skill-

scores approach. Interannual variability and the mean annual climatology were the 

focus of this analysis.  

The RCMs have a tendency to overestimate interannual variability for 

temperature in spring and precipitation in summer and autumn. There is also a 

tendency to underestimate interannual variability for temperature in winter and 

summer, and precipitation in spring. Biases for temperature in autumn and 

precipitation in winter are more mixed. Interannual variability of both temperature 

and precipitation is found to be largely governed by the choice of GCM driver. This 

is expected as lateral boundary conditions are known to be a dominant factor in 

determining RCM interannual variability (Giorgi et al., 2004). This analysis 

highlights the importance of considering both GCM and RCM choice in nested 

climate modelling experiments with care, as GCM choice is a highly significant 

factor in determining interannual variability. If the GCM does not capture the true 

range of interannual variability, then corresponding RCM simulations cannot be 

expected to simulate interannual variability correctly either.  

An issue that was raised in previous chapters is the concept that uncertainty, 

when improperly accounted for in climate model scenarios, can lead to an over or 

underestimation of risk, which in turn leads to mal-adaptation. This analysis of 

interannual variability illustrates this point. There are 19 simulations included and 

one would expect that an ensemble based on this number of simulations would 

adequately capture the range of possible future outcomes. Yet with regards to 

interannual variability, the RCMs that share a GCM driver give such similar results 

that they cannot possibly be considered independent experiments. With regards to 

this particular aspect of the climate, the ensemble approach gives a sense that more 

outcomes are captured and as such, that uncertainty is reduced. Only with closer 

inspection does it become apparent that the RCMs with shared GCM drivers are 

effectively the same in terms of interannual variability. These findings suggest that 

the multi-model ensemble approach has the potential to be much more robust if all 

ensemble members are driven by a different GCM, or by perturbed versions of the 

same GCM where only a single GCM is available. 
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To identify any patterns in the model errors, seasonal errors for temperature 

and precipitation are calculated and graphed. Seasonal errors are assessed by 

comparing the seasonal contributions to total annual mean error for each model. A 

colour-block graph was compiled which enables comparison among GCM driver 

groups and between climate parameters and seasons (Figure 4.19). In general, a 

vertical pattern indicates a possible GCM-related error while horizontal patterns 

indicate errors unique to a specific RCM. The models with the greatest bias are 

immediately apparent in Figure 4.19 and in the majority of cases, winter error 

contributes most to overall error.  

CHRM, which was one of the few models to simulate winter temperature 

skilfully, has a negative bias of almost -0.5oC due to errors in its representation of 

summer and autumn temperature. Seasonal contribution to annual average error is 

again very different for precipitation than for temperature. CHRM, which displayed a 

notable overall cold temperature bias, models drier conditions also. CHRM’s greatest 

underestimation of precipitation occurs in autumn, which was also the season when it 

underestimated temperature the most. This behaviour is to be expected, due to the 

link between temperature and atmospheric moisture amounts.  Conversely, the 

HadRM3P sub-ensemble models consistently drier conditions than observed, despite 

exhibiting a warm temperature bias. This suggests that HadRM3P’s precipitation bias 

is not linked to its temperature bias, but is a result of another model error. Winter 

bias accounted for the largest share of annual temperature bias. However, 

precipitation biases in most models are instead quite equal in magnitude across the 

year. RACMO, CLM and RCAO, both driven by HadAM3H, are the only models 

with a winter bias that is somewhat large relative to spring, summer and autumn bias. 

Overall, the RCM simulations analyzed here are quite skilful in their 

representation of temperature, but less adept at representing precipitation and 

particularly the annual climatology of precipitation. Using skill scores it is possible 

to identify a number of errors in this selection of RCMs (Table 4.8). However, while 

analysis of the data can give some clues as to the source of the error, without closer 

investigation there can be no conclusive statement made about the nature of model 

errors or the robustness of model skill. As discussed in previous chapters, skill at 

representing the mean climate may not indicate skill at simulating the climate 

phenomena underlying the mean climate. Models which appear to simulate the 
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climate skilfully based on a skill-scores assessment may derive their apparent “skill” 

from error cancellation. Conversely, models which appear to be significantly biased 

may capture the dynamics of the climate system quite well. Without examining the 

RCM data in more detail, there is no way of knowing whether the RCMs are 

genuinely skilful or highly uncertain. Additional analysis is required, as formulating 

future scenarios without deeper investigation of the models’ skill levels would result 

in a high degree of uncharacterized uncertainty associated with those future 

scenarios. 

 Temperature Precipitation 
 YEAR DJF MAM JJA SON YEAR DJF MAM JJA SON 

HadRM3P-a 
                    

HadRM3P-b 
             

HadRM3P-c 
             

PROMES 
             

RACMO 
             

CHRM 
             

CLM 
             

REGCM 
             

REMO 
             

RCAO-E4 
             

HIRHAM-a 
             

HIRHAM-b 
             

HIRHAM-c 
                    

HIRHAM-E5 
                    

ARPEGE-a 
                    

ARPEGE-b 
              

ARPEGE-c 
                    

RCAO-E4 
              

HIRHAM-E4 
                    

 

       
Table 4.8: Seasonal errors on mean annual climatology of temperature and precipitation for 1961-

1990

-30% 0 30%
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While this skill score analysis has identified a number of model errors, further 

research is required to help explain how these errors arise and to identify models 

which are genuinely skilful. The next step is an analysis of the simulated spatial 

patterns, to determine how skilful the models are at capturing the dominant spatial 

patterns of temperature and precipitation. As different patterns are influenced by 

different factors, this will help to identify sources of model errors.  A spatial analysis 

will also indicate how well the models represent the regional details that arise due to 

differences in topography, such as orographic precipitation. With greater knowledge 

of how the RCMs perform, there is greater potential to account for the uncertainty 

associated with their outputs, which in turn creates the potential for more robust 

decisions about climate planning and adaptation.  
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CHAPTER 5  
MODEL SKILL AT SIMULAT ING 
SPAT IAL CLIMATE PATT ERNS 

(1961-1990)  

 

5.1 INTRODUCTION 

In this chapter, model skill at representing the mean seasonal spatial patterns 

is assessed, along with the spatial variability of key climate patterns on monthly 

timescales. Having analyzed certain temporal characteristics of the modelled data, 

the next aspect to examine is the monthly spatial data. National figures for means and 

variances are useful at a national level to inform policy decisions.  However, as a 

result of locational effects, the climatological means of temperature and rainfall as 

calculated for the entire domain may not fully describe climate at the regional/local 

scale. Similarly, the impacts associated with an average, domain-wide change in 

climate may not accurately reflect the location-specific change and related impacts at 

the regional scale. A spatial analysis is therefore important to assess spatial skill and 

to help identify areas of low skill in the individual models.   

The first part of this assessment focuses on mean seasonal spatial patterns for 

both temperature and precipitation. Recalling Murphy’s (1993) definitions of error 

and bias, the average of the differences between individual observed and modelled 

gridcells is used to quantify spatial bias rather than the difference between the spatial 

averages, which was used in the previous chapter. The spatial correlation is used to 

quantify agreement between the observed and modelled mean patterns. The Pearson 

correlation coefficient is used for its sensitivity to extreme values, which makes it 

useful for identifying models with a geographically specific bias. The significance of 

differences between the modelled and observed climate patterns is also calculated. 

Mean spatial patterns are the result of many processes and factors, and a 

model may be skilful at simulating a particular subset of those processes and the 

associated component pattern although it may lack skill at representing the average 
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climate pattern. Therefore, empirical orthogonal function (EOF) analysis is used to 

investigate interannual variability of spatial patterns.  Model EOF patterns are 

compared to the EOF patterns of the observed data and the explained variance of 

each mode is compared also.   

An analysis of spatial patterns may provide further insights into whether a 

model is displaying genuine skill or skill due to error cancellation. In Chapter 4, 

certain models emerged as having smaller levels of error than others when their 

nationally averaged values for temperature and precipitation are compared to the 

observed over annual timescales. However, an agreeable average is not necessarily a 

sign of a skilful model, as the right combination of both positive and negative biases 

in the individual gridcells would also lead to an apparently skilful average. 

Therefore, it is important to check that spatial patterns are represented skilfully, to be 

certain whether a model is exhibiting genuine skill. If the models can be shown to 

possess high skill when compared with present-day observations, they are much 

more likely to be useful tools for planning and decision-making 

 

5.2 MEAN SEASONAL SPATIAL PATTERNS 

5.2.1 Methodology 

 Spatial correlations are widely used for assessing model skill at simulating 

spatial patterns. Essentially, a spatial correlation treats a two-dimensional data field 

as a list of individual points, from which the Pearson correlation coefficient is 

calculated. The spatial correlation has been demonstrated to be a useful method for 

quantifying model performance at representing a variety of spatial patterns. Spatial 

correlation has been used as a model skill metric by Leung and Ghan (1999), who 

used spatial correlations to demonstrate the increased skill of an RCM over a GCM 

in the Pacific Northwest. Spatial correlations were also employed by Pan et al. 

(2001) to determine how skilfully RCMs simulate the observed precipitation patterns 

of the United States and also to determine the similarity between present-day and 

future modelled precipitation patterns. Additionally, Miller et al. (2006) used spatial 

correlations to determine AOGCM skill at representing the Northern and Southern 

hemisphere annular modes of variability. 
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Seasonal spatial patterns are extracted by calculating the mean temperature 

and precipitation at each gridcell across all relevant months. For example, the spatial 

pattern of winter temperature is derived from the averages of all December, January 

and February values at each grid cell. Both the modelled patterns and the bias of the 

modelled patterns with respect to the observed are mapped.  To obtain comparable 

observed spatial data, the BIC data is regridded to the grid resolution of the RCMs 

and the RCM land-sea mask is applied to the regridded observational data. To 

quantify agreement between the observed and modelled patterns, the spatial 

correlation coefficient is calculated as follows:  

 

Equation 5.1: Spatial correlation coefficient 
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where  

G = number of gridcells, 

 o = standard deviation of the observed data, 

 m = standard deviation of the modelled data, 

ox = mean of the observed data, 

mx = mean of the modelled data, 

xo
g = observed data at gridcell g and 

xm
g = model output at gridcell g. 

 

The mean spatial bias of each model is also calculated as the average of the 

differences between observed and modelled values at each gridcell: 
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Equation 5.2: Spatial bias 
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where  

G = number of gridcells, 

xo
g = observed data at gridcell g and 

xm
g = model output at gridcell g. 

 

5.2.2 Results: Temperature 
 Spatial patterns for temperature in spring and the associated bias with respect 

to observations are given in Figures 5.1 and 5.2. Several models are notably warmer 

than observed, namely RACMO, REMO, RCAO-H, HIRHAM-E5 and RCAO-E4. 

Warm biases are particularly apparent in the midlands in certain models, such as 

HadRM3P-a, b and c. However, several other models are slightly cooler than 

observed, such as PROMES, CHRM and REGCM. The unweighted ensemble 

average is also given for illustrative purposes. When all the models are treated as an 

ensemble, with equal skill assumed and no weighting to account for model 

differences, the net result is a spatial pattern that is close to the observed, with 

minimal bias. This is a clear example of an ensemble getting the right answer for the 

wrong reasons, as adopting such an approach would leave uncertainties associated 

with the individual model’s outputs unexplored.  

Spatial patterns for summer temperature and the associated bias are given in 

Figures 5.3 and 5.4. The models which displayed a cool bias in spring, such as 

PROMES, CHRM and REGCM, display an enhanced negative bias  with CHRM in 

particular displaying biases of up to -1.49oC in some gridcells. ARPEGE-a, 

ARPEGE-b and ARPEGE-c also exhibit an increased cool bias in summer compared 

with spring. Some of the warm biased models, namely RACMO, REMO and 

HIRHAM-E5 remain positively biased in most gridcells but RCAO-H and RCAO-E4 

model much smaller biases in summer than in spring, suggesting that RCAO as an 

RCM has greater skill at modelling summer climate than spring climate for Ireland.  
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HadRM3P-a              HadRM3P-a HadRM3P-a

PROMES RACMO                       CHRM                        CLM REGCM      

REMO                         RCAO-H                      HIRHAM-a                HIRHAM-b                 HIRHAM-c

HIRHAM-E5

ARPEGE-a                   ARPEGE-b                  ARPEGE-c

RCAO-E4                   HIRHAM-E4                                                   Observed   Ensemble Av.                               

oC

 

Figure 5.1: Modelled temperature over Ireland in spring (MAM) for the 1961-1990 baseline period. 
Models are classified according to GCM driver group: First row-HadCM3/HadAM3P, second and 
third row – HadCM3/HadAM3H, fourth row- ECHAM4-OPYC/ECHAM5, fifth row- Observed SSTs, 

sixth row (left) – ECHAM4-OPYC. 
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Figure 5.2: Bias of modelled temperature compared with observed over Ireland in spring (MAM) 
for the 1961-1990 baseline period. Models are classified according to GCM driver group: First 

row-HadCM3/HadAM3P, second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-
OPYC/ECHAM5, fifth row- Observed SSTs, sixth row (left) – ECHAM4-OPYC. 

HadRM3P-a              HadRM3P-b              HadRM3P-c

 oC 
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Figure 5.3: Modelled temperature over Ireland in summer (JJA) for the 1961-1990 baseline period. 
Models are classified according to GCM driver group: First row-HadCM3/HadAM3P, second and 
third row – HadCM3/HadAM3H, fourth row- ECHAM4-OPYC/ECHAM5, fifth row- Observed SSTs, 

sixth row (left) – ECHAM4-OPYC. 
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Figure 5.4: Bias of modelled temperature compared with observed over Ireland in summer (JJA) for 
the 1961-1990 baseline period. Models are classified according to GCM driver group: First row-

HadCM3/HadAM3P, second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-
OPYC/ECHAM5, fifth row- Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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Several models which exhibit a mostly warm bias display a cool bias over 

one to two gridcells in the east to north-east. Examples include CLM, RCAO-H, 

HIRHAM-a, HIRHAM-b, HIRHAM-c and HIRHAM-E5. Again, when the models 

are treated as an unweighted ensemble, the ensemble average yields a spatial pattern 

that is close to the observed, with minimal bias as the warm and cool models cancel 

each other out. 

Spatial patterns for autumn temperature and the associated bias are given in 

Figures 5.5 and 5.6.  PROMES and REGCM, which are predominantly cool in 

summer, model autumn climate with much less bias. However, CHRM, ARPEGE-a, 

ARPEGE-b and ARPEGE-c are model cooler temperatures than observed, similar to 

their performance in summer. The cool bias in CHRM is systematic across the Irish 

domain while the ARPEGE simulations exhibit a warm bias across some north-

western grid-cells also. Overall, the majority of models tend towards slightly warmer 

temperatures than observed in autumn, with the greatest warm biases occurring in 

REMO, RCAO-H and RCAO-E4.  Again, the unweighted ensemble average is close 

to the observed pattern, with minimal bias.  

Lastly, spatial patterns for temperature in winter and bias with respect to 

observations are given in Figures 5.7 and 5.8.  The most important feature to note is 

that when treated as an unweighted ensemble, winter temperature is significantly 

overestimated, suggesting deficiencies that do not cancel out in the averaging process 

(Figure 5.7). The majority of the models tend towards significantly warmer 

temperatures in winter and while some models, such as CHRM and HIRHAM-E5 

display cool biases in specific gridcells, there are no models which give 

systematically cooler output. The ARPEGE simulations, which were cooler than 

observed in autumn, model winter temperatures more skilfully, though they too 

display warm biases over certain gridcells in the north-west. The unweighted 

ensemble average displays low levels of bias overall, however the errors in the 

individual ensemble members are reflected in the unweighted ensemble. For 

example, there is a slight negative bias in certain gridcells on the east coast, a result 

of the large negative bias in these gridcells in the various simulations using 

HIRHAM. The bias is diminished when these models are averaged with the other 

ensemble members, but the error is still apparent.    
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Figure 5.5: Modelled temperature over Ireland in autumn (SON) for the 1961-1990 baseline period. 
Models are classified according to GCM driver group: First row-HadCM3/HadAM3P, second and 
third row – HadCM3/HadAM3H, fourth row- ECHAM4-OPYC/ECHAM5, fifth row- Observed SSTs, 

sixth row (left) – ECHAM4-OPYC. 
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Figure 5.6: Bias of modelled temperature compared with observed over Ireland in autumn (SON) 
for the 1961-1990 baseline period. Models are classified according to GCM driver group: First 

row-HadCM3/HadAM3P, second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-
OPYC/ECHAM5, fifth row- Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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Figure 5.7: Modelled temperature over Ireland in winter (DJF) for the 1961-1990 baseline period. 
Models are classified according to GCM driver group: First row-HadCM3/HadAM3P, second and 
third row – HadCM3/HadAM3H, fourth row- ECHAM4-OPYC/ECHAM5, fifth row- Observed SSTs, 

sixth row (left) – ECHAM4-OPYC. 
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Figure 5.8: Bias of modelled temperature compared with observed over Ireland in winter (DJF) for 
the 1961-1990 baseline period. Models are classified according to GCM driver group: First row-

HadCM3/HadAM3P, second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-
OPYC/ECHAM5, fifth row- Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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5.2.3 Results: Precipitation 
Spatial patterns for precipitation in spring and the associated bias with respect 

to observations are given in Figures 5.9 and 5.10. Several models are wetter than 

observed. Some of these models also display a positive temperature bias, which may 

offer an explanation for the positive precipitation biases. In a warmer climate, there 

is more heat available for evaporation, which is turn leads to increased availability of 

atmospheric water vapour for precipitation in the model. In the case of RACMO, 

REMO, RCAO-H, HIRHAM-E5 and RCAO-E4, this may contribute to the wet 

biases exhibited in spring. Similarly, PROMES and CHRM, which were slightly 

cooler than observed, are also slightly drier. However, REGCM, which displayed a 

cool temperature bias, is now found to simulate wetter conditions than observed. 

Conversely, the three simulations using HadRM3P were warmer than observed yet 

tend towards drier conditions. The processes underlying these biases are not so 

apparent.  The unweighted ensemble average is again close to the observed pattern, 

as drier models nullify the effects of wetter models.  

Spatial patterns for summer precipitation and the associated bias with respect 

to observations are given in Figures 5.11 and 5.12.  There are some differences 

between the spring and summer spatial maps. The HadRM3P simulations remain 

drier than observed. However the ARPEGE simulations, which tended towards 

wetter conditions in most gridcells in the previous season, now display a much more 

limited wet bias, affecting only the north-eastern gridcells. PROMES, which was a 

cool model in summer is now found to tend towards wetter conditions, particularly 

along the west coast. Similarly, REGCM, another cool model in summer, displays a 

significant wet bias across the Irish domain. 

CHRM, also a cool model, simulates a small dry bias across some gridcells 

but wetter conditions to the north-east. Indeed, the wet bias over the north-eastern 

gridcells is a feature of most models and as a result, while the unweighted ensemble 

average is close to observed in most areas, the wet bias is still present in this area. 

Sweeney (1989) states that based on observed data, increased rainfall in this area is 

associated with cyclonic circulation activity, which may indicate that the models lack 

skill in simulating the large-scale circulations or their effects on regional climate 

patterns. Another concern is the range of individual model errors and deficiencies 

that an unweighted ensemble approach would disguise. 
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Figure 5.9: Modelled precipitation over Ireland in spring (MAM) for the 1961-1990 baseline 
period. Models are classified according to GCM driver group: First row-HadCM3/HadAM3P, 
second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-OPYC/ECHAM5, fifth row- 

Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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Figure 5.10: Bias of modelled precipitation compared with observed over Ireland spring (MAM) for 
the 1961-1990 baseline period. Models are classified according to GCM driver group: First row-

HadCM3/HadAM3P, second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-
OPYC/ECHAM5, fifth row- Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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Figure 5.11: Modelled precipitation over Ireland in summer (JJA) for the 1961-1990 baseline 
period. Models are classified according to GCM driver group: First row-HadCM3/HadAM3P, 
second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-OPYC/ECHAM5, fifth row- 

Observed SSTs, sixth row (left) – ECHAM4-OPYC. 

 

 

 

 

HadRM3P-a              HadRM3P-b              HadRM3P-c

 mm/day 



 139

HadRM3P-a              HadRM3P-a HadRM3P-a

PROMES RACMO                       CHRM                        CLM REGCM      

REMO                         RCAO-H                      HIRHAM-a                HIRHAM-b                 HIRHAM-c

HIRHAM-E5

ARPEGE-a                   ARPEGE-b                  ARPEGE-c

RCAO-E4                   HIRHAM-E4                                                              Ensemble Av.                            

mm/day

 

Figure 5.12: Bias of modelled precipitation compared with observed over Ireland summer (JJA) for 
the 1961-1990 baseline period. Models are classified according to GCM driver group: First row-

HadCM3/HadAM3P, second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-
OPYC/ECHAM5, fifth row- Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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Spatial patterns for autumn precipitation and the associated bias are given in 

Figures 5.13 and 5.14.  PROMES and REGCM model autumn temperature with 

much less bias than in summer and similarly, their outputs for precipitation are closer 

to observed in autumn. The driest models are the HadRM3P models and CHRM, 

although the HadRM3P models simulate wetter conditions than observed in some 

north-eastern gridcells. Such behaviour is to be expected in CHRM, as it is quite a 

cool model in autumn. However, the three simulations of HadRM3P are all warmer 

than observed in this season and as such, a dry bias across so much of the country is 

an unexpected outcome.  One model, RCAO-E4 is particularly wet in autumn. This 

model was also found to have a warm bias Simulations using HIRHAM, such as 

HIRHAM-a, HIRHAM-b, HIRHAM-c and HIRHAM-E5, tend towards wetter 

conditions in a specific gridcell which lies one cell inland from the east coast. Due to 

proximity to the Wicklow mountains, a rain shadow effect is expected in this area. 

Therefore, the positive precipitation bias may indicate that this model fails to capture 

certain orographic effects.. When taken as an unweighted ensemble, the model biases 

largely cancel each other out with the exception, again, of the wet bias over the 

north-eastern part of the domain. 

Spatial patterns for precipitation in winter and bias with respect to 

observations are given in Figures 5.15 and 5.16.  Although winter temperature in the 

unweighted ensemble was significantly overestimated, precipitation in the 

unweighted ensemble appears much closer to the observations.  While several of the 

warmer models such as RACMO, CLM, REGCM, RCAH-H and RCAO-E4 also 

tend towards wetter conditions, other models that were warmer than observed in the 

temperature analysis are either drier than observed or exhibit a combination of wet 

and dry biases.  

For example, the HadRM3P simulations are all predominantly dry in winter, 

but PROMES and REMO, which were systematically warmer across the domain, 

exhibit an unsystematic pattern of precipitation bias. Several models, such as 

ARPEGE-a, ARPEGE-b, HIRHAM-E5, HIRHAM-E4 and HIRHAM-a are wetter in 

the midlands than in coastal regions, contributing to a slight wet bias in this area 

when the models are taken as an ensemble. 
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Figure 5.13: Modelled precipitation over Ireland in autumn (SON) for the 1961-1990 baseline 
period. Models are classified according to GCM driver group: First row-HadCM3/HadAM3P, 
second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-OPYC/ECHAM5, fifth row- 

Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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Figure 5.14: Bias of modelled precipitation compared with observed over Ireland autumn (SON) for 
the 1961-1990 baseline period. Models are classified according to GCM driver group: First row-

HadCM3/HadAM3P, second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-
OPYC/ECHAM5, fifth row- Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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Figure 5.15: Modelled precipitation over Ireland in winter (DJF) for the 1961-1990 baseline 
period. Models are classified according to GCM driver group: First row-HadCM3/HadAM3P, 
second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-OPYC/ECHAM5, fifth row- 

Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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Figure 5.16: Bias of modelled precipitation compared with observed over Ireland winter (DJF) for 
the 1961-1990 baseline period. Models are classified according to GCM driver group: First row-

HadCM3/HadAM3P, second and third row – HadCM3/HadAM3H, fourth row- ECHAM4-
OPYC/ECHAM5, fifth row- Observed SSTs, sixth row (left) – ECHAM4-OPYC. 
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5.2.4 Further analysis and discussion 
Table 5.1 gives the average bias, highest bias for a single gridcell, lowest bias 

for a single gridcell and correlation between modelled and observed patterns for each 

model in each season. These values pose a number of questions about what 

constitutes model skill and what characteristics to look for in a skilful model. 

While bias scores indicate how much a model over or underestimates climate 

parameters, correlation scores indicate how skilfully they model spatial patterns, 

omitting systematic bias. A model may have low average bias, but if the 

corresponding correlation score is also low, this indicates that the bias is not spatially 

consistent. Conversely, a model with high average bias could have a high spatial 

correlation score, indicating an ability to model the spatial pattern and the presence 

of a systematic model bias.  

Ideally, a model would capture both the spatial pattern and the magnitude of 

the climate variable with skill. However, it is evident from this table that no models 

behave in this way. The models with the highest correlation scores, such as RCAO-H 

and RCAO-E4 also have high average bias scores. For example, in winter, both 

models have correlation scores greater than 0.88 for temperature and greater than 

0.73 for precipitation, signifying a strong association between the observed and 

modelled spatial pattern.  

Yet RCAO-H overestimates temperature by an average of 1.88oC and 

precipitation by an average of 1.47mm/day, while RCAO-E4 overestimates 

temperature by 2.46oC on average and precipitation by 1.07mm/day.Conversely, 

several models with low average bias such as the ARPEGE simulations for 

temperature also have lower correlation scores, signifying a lesser level of 

association between the observed and modelled pattern. Although the average bias is 

low, from gridcell to gridcell, biases vary from approximately -1 to +4oC in these 

three simulations. As the biases vary in space and are not systematic across the 

domain, the spatial pattern is distorted, resulting in output that does not correlate well 

with the observed spatial pattern. 

Figures 5.17 and 5.18 illustrate this problem. These graphs show both 

absolute values for bias and values of r from the climate model skill analysis for 

temperature and precipitation. 
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Temperature

HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4
MAM Av. 0.46 0.46 0.46 -0.32 0.80 -0.29 0.45 0.00 0.85 0.96 0.05 0.17 -0.09 0.66 -0.06 0.07 -0.22 1.08 0.33
MAM Max 1.56 1.56 1.56 0.65 1.73 0.62 1.70 0.90 2.01 1.80 1.27 1.26 1.22 1.55 1.77 1.84 1.71 1.94 1.41
MAM Min -0.34 -0.44 -0.34 -0.89 0.33 -0.98 -0.35 -0.53 0.24 0.29 -0.68 -0.65 -0.89 -0.06 -0.63 -0.52 -0.83 0.15 -0.45
MAM r 0.66 0.63 0.64 0.74 0.77 0.67 0.65 0.71 0.74 0.68 0.68 0.66 0.52 0.67 0.55 0.54 0.58 0.68 0.71
JJA Av. 0.26 -0.04 0.06 -0.67 0.60 -0.65 0.00 -0.33 0.45 0.10 0.14 0.23 0.24 0.59 -0.33 -0.50 -0.59 0.10 -0.16
JJA Max 0.96 0.66 0.86 0.15 1.76 0.29 0.68 0.51 1.30 0.99 0.89 0.95 0.96 1.53 0.80 0.63 0.53 1.06 0.54
JJA Min -0.74 -0.84 -0.84 -1.27 -0.49 -1.49 -1.37 -0.90 -0.10 -0.86 -1.44 -1.53 -1.46 -1.19 -0.83 -1.02 -1.15 -1.30 -1.89
JJA r 0.73 0.76 0.75 0.80 0.68 0.68 0.66 0.74 0.73 0.64 0.66 0.62 0.76 0.65 0.77 0.77 0.58 0.54 0.56
SON Av. 0.26 0.26 0.16 0.20 0.38 -0.85 0.46 0.31 0.70 0.77 -0.05 0.04 -0.14 0.11 -0.44 -0.22 -0.37 0.90 -0.07
SON Max 2.66 2.56 2.56 1.24 1.54 -0.24 2.12 1.39 2.17 1.59 2.83 2.89 2.77 3.00 2.21 2.27 2.21 1.76 2.70
SON Min -0.64 -0.74 -0.74 -0.50 -0.47 -1.81 -0.23 -0.30 0.06 0.26 -0.99 -0.95 -1.14 -0.94 -1.39 -1.13 -1.27 0.36 -1.01
SON r 0.53 0.55 0.54 0.80 0.79 0.71 0.72 0.81 0.80 0.88 0.54 0.53 0.52 0.55 0.57 0.60 0.58 0.88 0.55
DJF Av. 1.06 1.06 1.26 1.80 1.41 -0.09 1.65 1.64 1.79 1.88 0.86 0.73 0.24 0.25 0.50 0.24 0.67 2.46 1.02
DJF Max 3.86 3.86 3.96 2.91 2.88 0.38 4.05 3.05 3.53 2.80 4.36 4.28 4.02 4.09 4.21 4.05 4.24 3.29 4.05
DJF Min -0.04 -0.04 0.26 0.64 0.51 -1.36 0.65 0.75 0.90 1.24 -0.54 -0.66 -1.37 -1.20 -0.68 -1.02 -0.48 1.83 -0.31
DJF r 0.57 0.59 0.59 0.73 0.82 0.77 0.66 0.85 0.76 0.88 0.51 0.49 0.62 0.48 0.60 0.62 0.58 0.91 0.55

Precipitation

HadRM3P-a HadRM3P-b HadRM3P-c PROMES RACMO CHRM CLM REGCM REMO RCAO-H HIRHAM-a HIRHAM-b HIRHAM-c HIRHAM-E5 ARPEGE-a ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4
MAM Av. -0.39 -0.46 -0.37 -0.05 0.22 -0.36 0.84 0.41 0.93 0.48 0.15 0.23 0.27 0.28 0.44 0.40 0.77 0.38 0.26
MAM Max 0.59 0.57 0.70 0.62 0.87 0.28 1.89 1.30 1.76 1.03 1.17 1.31 1.45 1.43 0.93 0.90 1.22 0.93 1.19
MAM Min -1.07 -1.28 -1.09 -0.86 -0.47 -1.01 0.09 -0.68 0.12 -0.30 -1.06 -0.97 -0.93 -0.86 -0.62 -0.74 -0.18 -0.75 -0.61

MAM R2 0.71 0.66 0.65 0.79 0.73 0.87 0.77 0.51 0.75 0.71 0.75 0.77 0.75 0.78 0.68 0.66 0.70 0.59 0.71
JJA Av. -0.83 -0.78 -0.87 0.39 0.34 -0.03 0.74 0.73 0.93 0.57 0.29 0.17 0.11 -0.18 -0.09 -0.04 0.08 0.62 0.58
JJA Max 0.57 0.59 0.50 1.28 1.19 1.31 1.36 1.80 1.74 1.19 1.45 1.34 1.23 0.86 1.07 1.02 1.16 1.29 1.76
JJA Min -1.51 -1.47 -1.54 -0.33 -0.49 -0.80 -0.27 -0.62 0.09 -0.25 -1.07 -1.15 -1.21 -1.10 -1.27 -1.20 -1.21 -0.26 -0.88

JJA R2 0.42 0.41 0.42 0.84 0.62 0.24 0.79 0.30 0.47 0.64 0.56 0.58 0.59 0.62 0.22 0.35 0.24 0.60 0.51
SON Av. -0.77 -1.02 -0.89 -0.04 -0.10 -1.15 0.61 0.03 0.16 0.33 -0.53 -0.31 -0.50 -0.23 -0.69 -0.22 -0.41 1.56 0.65
SON Max 1.38 1.08 1.21 1.12 1.09 0.34 2.63 1.38 2.63 1.32 1.08 1.18 1.09 1.44 1.00 1.33 1.23 2.32 2.11
SON Min -2.55 -2.75 -2.59 -1.29 -1.51 -2.64 -0.27 -1.72 -0.97 -1.28 -1.69 -1.53 -1.74 -1.31 -2.44 -2.01 -2.13 0.47 -0.36

SON R2 0.49 0.48 0.53 0.82 0.76 0.89 0.79 0.67 0.73 0.83 0.78 0.79 0.77 0.81 0.65 0.74 0.70 0.85 0.85
DJF Av. -0.63 -0.56 -0.63 0.36 0.69 -0.63 1.72 0.68 0.92 1.47 0.10 -0.14 -0.31 0.00 0.31 0.18 0.54 1.07 0.13
DJF Max 0.70 0.62 0.57 2.12 1.96 0.17 4.65 2.14 3.98 2.53 1.19 1.07 0.68 1.17 2.19 1.99 2.16 2.10 1.24
DJF Min -1.81 -1.65 -1.62 -1.44 -0.64 -1.69 0.19 -0.80 -0.96 0.00 -0.72 -1.01 -1.17 -0.92 -1.44 -1.55 -1.11 -0.82 -1.06

DJF R2 0.77 0.81 0.78 0.82 0.81 0.86 0.76 0.71 0.67 0.78 0.87 0.85 0.86 0.84 0.72 0.73 0.75 0.73 0.83  

Table 5.1: Average bias (Av.), maximum individual gridcell bias (Max), minimum individual gridcell bias (Min) and Pearson coefficient of correlation between observed 
and modelled spatial pattern (r) for temperature (oC, top) and precipitation (mm/day, bottom) for 1961-1990.
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The green line denotes the range above which r values can be considered as high and 

indicative of skill at simulating the spatial pattern. Pearson r values can be between -

1 and 1 but values closer to 1 signify a strong covariation. Therefore, 0.7 is chosen as 

the threshold above which models are considered as skilful. Immediately it is clear 

that with the exceptions of summer temperature, autumn and winter precipitation, 

most seasons do not have a large selection of models with Pearson r values of 0.7 or 

greater. The problem is compounded by the fact that in many cases, the highest r 

values are also accompanied by the largest biases, for example in the case of 

PROMES for summer temperature, RCAO for autumn and winter temperature and 

CLM for summer and winter precipitation The question from a climate planning and 

decision-making point of view is, in light of the various model uncertainties that 

have presented themselves, what constitutes the most reliable set of models? 

Arguably, a systematic bias is more desirable than a random one, as it has more 

potential to be accounted for in subsequent scenario development. 

This analysis of mean spatial patterns for temperature and precipitation has 

uncovered a variety of spatial errors, but further analysis is required to determine the 

cause of those errors. Differences in how the various models resolve complex 

orography, how they respond to different types of land-use or how accurately the 

relevant large-scale circulations are simulated in both RCM and driving GCM can all 

influence the skill of the model and lead to better skill in one gridcell than another. 

There are a great number of processes that could potentially lead to the various 

model biases found in this analysis and verifying each parameterization and process 

that could be the cause falls beyond the scope of this thesis.  

In light of this limitation, it is worth considering model spatial skill on a more 

macroscopic scale. Rather than attempting to validate models on a gridcell by 

gridcell basis, an alternative approach would be to consider how the models perform 

at simulating the key components of spatial variability. It has been shown that all 

models exhibit a range of biases in their mean seasonal patterns and as such, based 

on these results, none of the models can be considered “correct”. However, if they 

are able to capture the key components of spatial variability in spite of those biases, 

they may be potentially useful. Therefore, spatial variability will be assessed in more 

detail using Empirical Orthogonal Function (EOF) analysis. 
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Figure 5.17: Graphs of model absolute bias and r values for temperature (1961-1990). The green line denotes the range above which r values can be considered to denote 
a strong association (greater than 0.7) between modelled and observed spatial patterns. Bars illust rate absolute value of average error (x-axis). Dots illustrate r values 

(y-axis). 
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Figure 5.18: Graphs of model absolute bias and r values for precipitation (1961-1990). The green line denotes the range above which r values can be considered to 
denote a strong association (greater than 0.7) between modelled and observed spatial patterns. Bars illustrate absolute value of average error (x-axis). Dots illustrate r 

values (y-axis). 
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5.3 EOF ANALYSIS OF MONTHLY SPATIAL DATA 

5.3.1 Background 
A model may possess skill at representing key components of the pattern that 

is not apparent when looking at the mean distribution pattern alone. For example, it 

may capture the gradients of precipitation of the west and north-west while failing to 

simulate observed conditions in other parts of the country. Empirical orthogonal 

function (EOF) analysis provides a method for determining model skill in 

representing component patterns. Essentially, EOF analysis deconstructs interannual 

climate data into component patterns, each of which explain a certain amount of 

variance in the original data. These patterns can be extracted for both the observed 

and modelled data and compared. The method is widely used in climate science. For 

example Kim and North (1993) use the technique to study temperature variability in 

a stochastic climate model. Fyfe et al. (1999) applied EOF analysis to modelled data 

to determine how well models capture the Arctic and Antarctic Oscillations. In 

particular, Wang et al. (2006) applies this method to Irish climate data. However, 

only a single simulation from one climate model was used in that instance and only 

precipitation output was considered. As such, the work presented in this thesis 

provides a useful opportunity to identify whether the EOF technique can also be 

useful for Irish temperature data. 

 Peixoto and Oort (1992: 492-495) provide a clear introduction to the 

mathematical background of this method. There are some important nuances in the 

preprocessing of data for EOF analysis, which lead to different variants of the 

method and which will be discussed later. Consider a spatial climate data-set 

composed of N maps, each defined at a particular step in time, and each with M 

elements. Each map can be represented by a Mx1 column vector fn. If we consider 

the full time series as an array of these column vectors, we arrive at an MxN matrix: 
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Equation 5.3: Spatial climate data matrix 
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where  

 rows represent the M points on each map and  

columns represent the N maps. 

 

Therefore, element fmn represents the model output for gridpoint m at time n. This is 

the data matrix employed in EOF analysis. 

 The N vectors exist in an M-dimensional linear vector space, directed from 

the origin to some point in that space. If there is correlation between the vectors, the 

expected result would be the formation of clusters, as the vectors tend towards a 

preferred direction. To determine whether such correlations exist, the orthogonal 

basis in the vector space {e1, e2, …, eM) is defined so that each vector em best 

represents the clustering of the fn map vectors. This set of vectors, {e} are the 

empirical orthogonal functions.  

Equation 5.4: {e}, the set of empirical orthogonal 
functions 

To find {e} the expression  

 
2

1

1 



N

n
mn ef

N
 

is maximized for m=1,2,…,M subject to the 
conditions  

eT
mej = 0 and 

 eT
mem = 1 and for all j≠m.  

  

As the vectors of {e} are assumed to be mutually orthonormal (i.e. both 

orthogonal and of unit length), these conditions are derived from the definition of the 
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dot product for spatial vectors. Noting that the transpose of the product of two 

matrices is the same as the product of the transposes in reverse order and considering 

the data matrix F, the expression becomes: 

Equation 5.5: To calculate  the diagonal matrix of 
eigenvalues 

m
T
mm

TT
mm eReeFFe

N
eF

N
 ][1][1 2

 

where  

R =the covariance matrix of the data.   

Maximizing the expression results in the equation: 

(R-λI)em=0 

 

As I is the unit matrix of order M, λI is a diagonal matrix with the eigenvalues 

as diagonal elements. The sum of the eigenvalues is the total variance of the data. To 

calculate the associated eigenvectors, the system of equations associated with the 

equation (R-λI)em=0 must be solved for each eigenvalue. To solve, we utilize the 

point that as em ≠ 0, it follows that |R-λI| = 0 if solutions are to exist. By arranging the 

eigenvectors in descending order based on their associated eigenvalues, one can 

determine which eigenvectors explain the greatest amount of variance. The 

eigenvalue can be expressed as a percentage, which is the percentage variance 

explained by each eigenvector. 

The eigenvectors are independent and mutually orthonormal. They represent 

key components of the spatial patterns, such that any of the original data vectors fn 

can be expressed as a linear combination of eigenvectors. As a different combination 

is required to represent each original data vector, each eigenvector em has a different 

coefficient in each time-step, which denotes the weight of the component represented 

by em, at times-step N. Plotting these coefficients over time for a particular 

eigenvector gives a visual indication of how the importance of that mode changes 

over time. This time amplitude series accompanies each spatial pattern and also 

illustrates how the actual pattern at each time step compares with the spatial loading 

pattern in question. Positive peaks signify time steps at which the actual pattern was 
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very similar to the spatial loading pattern, and negative troughs signify timesteps at 

which the patterns were very different.  

With the mathematics of the analysis established, the first stage in EOF 

analysis is preparing the data, and this is the point at which the mode of 

decomposition is selected. Various methods are available, which use either the 

covariance matrix or the correlation matrix. Covariance is a measure of the degree to 

which variables vary together, and when generated, the covariance matrix describes 

this linear coupling for the elements of the input data matrix. The correlation matrix 

is generated by standardizing the data prior to the generation of the covariance 

matrix.  

S-mode analysis uses the covariance matrix. It requires that that the 

climatological mean at each point be subtracted from the data, to generate time-

centred data, before the analysis. The aim of this operation is to remove the 

component of the data which is relatively easy to discover, i.e. the mean, so that the 

attention of the subsequent analysis is entirely focused on the variability around the 

mean, i.e. the anomaly (van den Dool, 2007: 12). R-mode analysis (Davis, 1973: 

503), so named because it uses the correlation matrix, is identical to S-mode apart 

from the standardization procedure.  

Both methods are used when the aim of the analysis is to examine the spatial 

patterns in the data. Other methods exist, such as T-mode analysis, for analyses 

where the focus is on the temporal evolution of the spatial patterns. T-mode uses the 

transpose of the S mode input data, making the focus of the analysis patterns in time 

periods rather than space (Mohapatra et al., 2003). As the focus of this work is 

spatial patterns, the choice is between S-mode and R-mode, and the covariance or 

correlation matrix. 

The correlation matrix is a necessity when data with different units is being 

analyzed. Wilks (2006: 471) explains that if one performs an EOF analysis using 

precipitation data in inches and temperature data in OF with no prior standardization, 

the variance of the temperature data dominates. In these units, the range of variation 

of temperature appears larger than the range of variation in precipitation. 

Standardizing the data and using the correlation matrix instead makes the two 

datasets comparable. A unit change in one is equivalent to a unit change in the other, 
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and the analysis can be carried out without interference from artefacts of different 

measurement systems. As the input data in the analysis does not fall into this 

category, the mode of decomposition is not preordained by the data and the merits of 

the two methods are assessed to determine the more suitable one.  

In a discussion of eigenvector-based map-pattern classifications, Yarnal 

(1993: 82) advocates using the correlation matrix so that variance gradients do not 

impact the analysis. If the variances from point to point in the input data differ 

greatly, the regions with greatest variance will dominate the analysis, and potentially 

distort the spatial patterns. Overland and Preisendorfer (1982) explain that this 

sensitivity of the covariance matrix to variance gradients is not necessarily a negative 

point, as the method can be employed specifically to uncover regions of unusually 

high variance.  

 Overland and Preisendorfer (1982) also states that the correlation matrix is 

particularly suited to detecting spatial patterns. When using a covariance matrix, the 

diagonal elements are the variance of each point. The result is that in addition to 

covariance between points, variance at each point contributes to the formation of the 

eigenvector also. Conversely, the diagonal elements of the correlation matrix will 

always equal one, as these are the correlations of each point with itself, so only off-

diagonal elements, i.e. the correlations between points, will contribute when 

determining eigenvectors.  

An issue encountered when performing an EOF analysis is whether or not to 

rotate the eigenvectors. By removing less significant axis, the principal axes are 

allowed to rotate further, such that their loadings are either significantly high (plus or 

minus 1) or insignificant (0). This makes the resulting spatial modes somewhat easier 

to interpret (Wilks, 2006). If one chooses to rotate there are multiple methods that 

can be applied. Rotation can be either orthogonal (varimax rotation scheme) or 

oblique. Oblique rotation is more extreme than orthogonal, making it even easier to 

interpret the resulting EOFs, but because orthogonality is not preserved, it is possible 

for axes to be correlated with each other. Using oblique methods, it would be 

possible to recapture the original variables as factors (Davis, 1973: 517), a futile 

result in exchange for a time-consuming analysis. Using varimax rotation keeps the 

axes at right angles with each other, preserving orthogonality. However, the first 
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mode is no longer the pattern that explains the most variance, as the axes do not 

coincide with the principal axes of the variance-covariance ellipsoid. The variance is 

spread more uniformly amongst the rotated eigenvectors (Wilks, 2006).  

Sometimes it is necessary to rotate axes. For example, rotation can be applied 

to remove Buell patterns (Yarnal, 1993) which are statistical artefacts unrelated to 

spatial variation in the data. Buell patterns can occur when using a rectangular 

domain in which variation at each grid point is strongly correlated with that of the 

neighbouring grid point. They manifest as a monopole first mode, as the central grid 

points have the highest correlations with their neighbours, and a dipole second mode 

orientated in the longest spatial dimension, as the points furthest apart appear have 

the strongest negative correlations (Figure 5.19). As the Irish domain is significantly 

longer along its y axis that on its x axis, it may be susceptible to Buell patterns and 

this issue will be examined in further detail.   

Varimax rotation is also used to obtain localized modes (e.g. Hannachi et al., 

2007; Wang et al., 2005). Yet Dommenget et al. (2001) demonstrate that both 

regular EOF methods and varimax methods do not necessarily reproduce the centres 

of action of the real modes. So while there are situations in which varimax rotation 

has its uses, it does not guarantee “improved” results. Climate model skill assessment 

is already a subjective science, with many assumptions being made. Without a 

reasoned argument for applying a rotation, the procedure is likely to add another 

layer of subjectivity in an already biased process (Davis, 1973: 517).  One strategy 

would be to apply EOF analysis first and then assess whether rotation could be 

beneficial.  

Once generated, the principle EOFs, those that explain the highest proportion 

of variance in the original data, can be extracted and plotted as contour maps. One 

can then identify centres of activity and determine whether activity in particular areas 

is related, or inversely related, or not at all related. Two key patterns are the 

monopole and the dipole (Figure 5.20). The monopole describes a pattern with 

positive loadings on all the grid points, meaning that activity at all points is related. 

The dipole describes a pattern with both positive and negative loadings on various 

areas of the grid, meaning that activity is inversely related in those areas. However, it 

is important to keep in mind that the patterns revealed in the modes do not always 
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represent physical phenomena. The investigator must use his or her own discretion to 

determine whether the pattern is significant or simply a statistical artefact.    
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Figure 5.19: Example of typical Buell patterns.  

 

Dipole

Monopole  
Figure 5.20: Example of monopole (left) and dipole (right) patterns. 

 

5.3.2 Methodology 
The EOF approach applied in this analysis is a correlation matrix, rotated 

approach. While the covariance matrix is useful for identifying areas of greatest 

variance or “action centres” within data, the correlation matrix is used here as the 
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goal is to extract the key spatial patterns within the data. The correlation matrix is 

generated by standardizing the data prior to the generation of the covariance matrix. 

To determine whether or not the modelled output is susceptible to Buell 

patterns, EOF analysis was carried out on the January and June datasets for both 

temperature and precipitation. The output was both rotated and left unrotated and 

compared to the patterns described by Buell (1975) and further discussed by 

Richman (1986). 

Figure 5.21 shows the first three EOF patterns from the HadRM3P simulation 

using January precipitation data, first without rotation and second with rotation 

applied. Without rotation of the eigenvectors, the EOF patterns are typical Buell 

patterns consisting of a “duck egg” positive pattern for mode 1 and positive/negative 

patterns centred along the longest horizontal and vertical axes of the domain for 

modes 2 and 3.  

Several models were checked at random to determine whether a rotated 

approach was required. The non-rotated patterns in Figure 5.21 are illustrative of the 

behaviour of all models tested. That is, without rotation, all models tested produced 

Buell patterns. Therefore, a rotated approach was adopted to remove Buell patterns 

from the EOF modes. The EOF analysis was applied to the January, April, July and 

October monthly data for each model. One month from each season was chosen. The 

first five EOF patterns are mapped and similarities or differences between these and 

the first five observed EOF patterns are discussed.  

For January and July, the associated time amplitude functions are graphed 

also. The temporal component of the EOF analysis is examined in less detail here 

than the spatial component as the focus of this chapter is spatial patterns and the 

temporal analysis carried out in the previous chapter identified that interannual 

variability is highly influenced by the choice of driving GCM. 
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(a) HadRM3P-a (correlation matrix, non-rotated)

(b) HadRM3P-a (correlation matrix, rotated)

Mode 1                            Mode 2           Mode 3

(a) HadRM3P-a (correlation matrix, non-rotated)

(b) HadRM3P-a (correlation matrix, rotated)

Mode 1                            Mode 2           Mode 3

 

Figure 5.21: The first three EOF patterns from the HadRM3P simulation using January 
precipitation data, first with rotation omitted (a) and second with rotation applied (b). Patterns 

obtained without rotation of the axes are typical Buell patterns. 

 

However, examination of the time amplitude data will help to confirm the 

findings of the previous chapter.  Models with the same GCM driver are plotted 

together, to determine whether their time amplitude series have any shared 

characteristics. As such, only the models driven by HadAM3H and ECHAM4-OPYC 

are included as the limited number of simulations available for the other drivers 

limits the ability to draw such comparisons. Similar spatial patterns from different 

RCMs are identified visually and plotted together, regardless of the order they appear 

in the EOF analysis of the individual model, allowing the time evolution of particular 

patterns to be examined.  
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5.3.3 Results: Observed patterns versus modelled patterns 
Percentage variance explained was plotted against EOF mode number to 

determine the “nick point” within the datasets, that is, the EOF mode number at 

which percentage variance explained falls off to insignificant levels. From the graph 

(Figure 5.22) it is clear than in most cases, percentage variance explained falls off to 

less than 5% after the third EOF mode. The only exception is precipitation in July. 

Modes 3 and 4 in this dataset have similar levels of percentage variance explained 

and after mode 4, the percentage variance explained falls to less than 6% after that. 

This may reflect the more localized nature of summer precipitation patterns. While 

large-scale drivers play a major role in determining winter precipitation in Ireland, in 

summer, local factors such as sub-gridscale effects are likely to dominate. As such, 

modes after the third mode are omitted from the analysis, with the exception of July 

precipitation.  
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Figure 5.22: Percentage variance explained versus EOF mode number for observed temperature 
and precipitation. With the exception of July precipitation, percentage variance explained falls off 

to less than 5% after the third EOF mode.  
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Figure 5.23: First three EOF patterns for observed temperature for 1961-1990. Patterns after the 
third are omitted as the nick point in percentage variance explained is reached at 3 modes. 
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Figure 5.24: Observed seasonal temperature patterns for 1961-1990. 

EOF patterns for observed temperature are shown in Figure 5.23. 

Temperatures do not vary much across Ireland (Figure 5.24) and as such, the EOF 

patterns for temperature do not have clear action centres and are quite uniform across 

the country. There are no particular areas which contribute significantly to a single 

EOF pattern, but rather all gridcells contribute suggesting that the temperature EOF 

patterns are based on large-scale rather than regional processes and effects.  

The percentage variance explained by each pattern also does not vary 

significantly from month to month, suggesting underlying processes which do not 

have a temporal component. For example, in January and April, the first EOF mode 

pattern is a north-south low to high gradient, potentially indicative of the effects of 

latitude on temperature. This pattern is also evident in Mode 3 for July and Mode 2 

for October. 

Another pattern which appears in each month is a east or north-east to west 

high to low gradient. This is the third mode in January and October and the second 

pattern in April and July. Such a pattern may be related to orographic details. 

Temperature decreases with altitude and terrain in the west and south-west is more 

mountainous than in the east.  

In July and October, there is an action centre situated in the north-west.  This 

pattern also occurs in January, where it is the second pattern and in April where it is 

the third pattern. While the south coast is warmer than the north coast, the coolest 

areas of Ireland are those inland (Figure 5.24). Therefore, this pattern may represent 

a portion of the coastal-inland temperature difference that was not captured in the 

south-north gradient pattern. 
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Figure 5.25: First three EOF patterns for observed precipitation for 1961-1990. Patterns after the 
third are omitted as the nick point in percentage variance explained is reached at 3 modes, except 

in the case of July, where a fourth mode is included. 
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Both EOF patterns based on monthly observed precipitation data and the actual 

observed seasonal spatial patterns for precipitation are given in Figures 5.25 and 5.26 

respectively. Observed patterns are given to help elucidate the physical processes, if 

any, underlying the EOF patterns. The first EOF pattern consists of an action centre 

in the north-west of the country. This pattern is consistent in all four months 

analyzed The combination of prevailing westerly winds and mountainous terrain in 

this region results in high levels of precipitation in this area, particularly in winter 

months, so this pattern does have a physical basis. The second EOF pattern is also 

consistent across all four months and consists of an action centre situated in the south 

to south-west. Again, the combination of westerly airflow from the Atlantic and 

mountainous terrain in this area leads to high levels of precipitation variability, 

particularly in winter.  

Winter                           Spring                          Summer                        Autumn

7mm/day

0mm/day

 

Figure 5.26: Observed seasonal precipitation patterns for 1961-1990. 

 

 The percentage variance explained by these patterns varies in each month, 

reflecting the relative influence of the underlying processes at different times of the 

year. For example, the Mode 1 pattern explains 44.1% of variance in January, but 

this decreases to 37.6% in April, 30.2% in July and increases again to 35.1% in 

October. This may indicate the strengthening in winter of westerlies due to the NAO 

and the weakening of the westerlies again in spring and summer as the NAO breaks 

down. Conversely, percentage variance explained by the Mode 2 pattern varies 

slightly less, remaining at 31.5% to 33.5% in January, April and October, but falling 

to 22.2% in July. Wang et al. (2007) note that this increased spatial variability in 

Irish summer precipitation may be due an increase in convective rainfall in summer, 

which tends to be intense in nature and distributed over a small area. 
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 Convective rainfall may be the process underlying the third mode of July 

variability, which explains 18% of variance in July precipitation. This pattern has an 

action centre situated on the east coast, approximating the greater Dublin area. This 

is likely to be due to the proximity of this area to the Wicklow Mountains. As the 

Wicklow Mountains are a plateau, their orography and the rainfall associated with 

them is likely to be better resolved than mountain ranges to the west which contain 

tall peaks. Urban effects may also play a role. Bornstein and Lin (1999) suggest that 

the urban heat island effect of a city can induce a convective zone in summertime, 

leading to increased precipitation.  

The third precipitation EOF pattern in January, April and October and the 

fourth pattern in July is one with an action centre situated to the north-east. This 

again may be due to the orographic rainfall effects produced by certain mountain 

ranges in this area. As this area is sheltered from the prevailing winds to a certain 

extent by the more mountainous west coast, this pattern explains a smaller 

percentage of the overall variability.  

An interesting test of model skill is to examine whether the models capture 

these spatial patterns and the percentage variance associated with each pattern. The 

spatial patterns of precipitation relate strongly to terrain type and large-scale 

circulation patterns. Failure to capture these patterns may indicate a lack of skill in 

resolving orographic or in modelling how the prevailing winds change in strength 

throughout the year. In particular, several studies have demonstrated the link between 

the NAO and precipitation variability in the north-west of Ireland (e.g. Wibig, 1999; 

Murphy and Washington, 2001), so failure to simulate spatial patterns and 

percentage variance explained with skill may indicate deficiencies in the models’ 

representations of large-scale drivers such as this.   
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5.3.4 Results: RCM temperature 
 Spatial EOF patterns and the variance associated with them for modelled 

January temperature data are given in Figure 5.27. Although the lack of spatial 

variability makes specific patterns difficult to discern, it appears as though the 

models capture the observed EOF patterns well. However, the percentage variance 

associated with the spatial patterns differs from the observed. 

While ARPEGE-a, ARPEGE-b and ARPEGE-c have a first EOF pattern 

similar to the observed, with a low to high gradient running from north to south, in 

most models this pattern is the second of third EOF pattern (for example, HIRHAM-

a, HIRHAM-b, HIRHAM-c, HIRHAM-E5, REGCM, REMO, RCAO-H, CLM). As 

such, the percentage explained variance associated with this pattern is lower in many 

of the models than in the observed EOFs. For example, while 38.3% of variance is 

associated with the north to south pattern in the observed data, in REGCM this 

pattern is the third EOF pattern and is only associated with 24.4% of variance.  

Results suggest that while the patterns themselves are represented in the 

models, the extent to which they reflect temperature variability is not represented as 

well. In the observed data, each of the first three patterns for January is associated 

with a significant portion of explained variance, with 28.1% of variance attributed to 

the third EOF pattern. In many of the models, these proportions are approximated 

well. However, in some cases the variance values do not match the observed values. 

For example, ARPEGE-b and ARPEGE-c overestimate the variability associated 

with the first pattern, with 46.6% and 42.3% of variance associated with their first 

EOF pattern but only 10.8% and 11.3% respectively associated with their third. The 

ARPEGE simulations scored quite highly in the temporal skill analysis of Chapter 4, 

yet there are indications that the processes underlying the skilful mean values may 

not be well-represented in the model. 
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Figure 5.27: Modelled EOF patterns and associated percentage variance explained for January 
temperature data (1961-1990). 
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Observed EOF patterns for April are quite similar to those observed in 

January and the observed percentage variance explained values are also very close in 

both months (Figure 5.28). Interestingly, the model values for the percentage 

variance explained by April EOF patterns are very different to the observed, with 

many models displaying much higher values associated with their first pattern and 

much smaller values associated with their second pattern. 

The most extreme example is HIRHAM-c, which has an associated 

percentage variance value of 80.7% attached to its first EOF pattern, compared with 

the observed EOF value of 37.6%. The models which associate very high levels of 

variance with their first mode also display a different and very specific pattern that is 

not present in the observed EOF patterns. HIRHAM-b, HIRHAM-c, HIRHAM-E5 

and HIRHAM-E4 all have strong action centres in specific gridcells along the east 

coast in their mode 2 pattern and these same gridcells contribute less than the others 

in the mode 1 pattern. Results suggest that the processes or phenomena dominating 

temperature variability in April in these simulations are very different to the 

processes that influence observed temperature variability. Additionally, it is 

interesting to note that all these simulations are variations using the HIRHAM model. 

This strongly suggests an issue specific to this RCM, as even with different driving 

GCMs the same pattern appears. 

 However, other models that do capture the observed patterns also tend to 

misrepresent the associated variance explained. For example, ARPEGE-a, ARPEGE-

b, ARPEGE-c and CLM all approximate the correct pattern for EOF mode 1 but 

associate excessive percentages of variance with the pattern when compared to the 

observed EOFs. Again, this suggests that the importance of this pattern and the 

processes that give rise to it are overestimated by these models. Alternatively, it may 

also suggest that other processes that influence temperature in April are not as 

dominant as they should be within the models. 
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Figure 5.28: Modelled EOF patterns and associated percentage variance explained for April 
temperature data (1961-1990). 
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Summer temperature is known to be more homogeneous than winter 

temperature so it is not surprising that the modelled EOF patterns display more 

spatial variability in July than in previous months (Figure 5.29). However, the 

observed EOF patterns for July did not display this level of spatial variability and 

were in fact very similar to the patterns obtained in previous months. This suggests 

that the models in some cases are overestimating the importance of small-scale 

regional temperature effects, leading to excessive levels of variance being associated 

with patterns and processes that are not that dominant in reality. 

In the HIRHAM simulations, specific gridcells on the east coast form a 

spatial pattern. It is worth noting that when the average spatial patterns for summer 

were examined, the HIRHAM simulations were found to overestimate temperature 

except in those gridcells, where temperature is underestimated. As such, the 

variability of these gridcells is so different to the others that the EOF technique 

identifies a separate mode for them.   

However in July, there is a similar issue with the ARPEGE simulations. 

ARPEGE-a, ARPEGE-b and ARPEGE-c all have a third EOF mode with strong 

actions centres in specific gridcells in the north-west and north-east. This pattern is 

associated with between 9.7% and 13.6% of variance in these simulations. In the 

seasonal spatial patterns analysis, these gridcells were found to behave differently to 

their surrounding gridcells, modelling slightly warmer temperatures, but this 

difference in behaviour is actually much more pronounced in the winter and spring 

mean seasonal patterns. As such, it is surprising that the EOF patterns did not capture 

it in January and April.   

EOF patterns for October temperature data are given in Figure 5.30 and 

display similar characteristics to other months. In general, the spatial patterns are 

well represented, though the associated percentage variance varies. Additionally, 

HIRHAM and ARPEGE simulations still display very specific EOF patterns which 

suggest that these models have difficulties resolving temperature correctly in these 

particular gridcells.  
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Figure 5.29: Modelled EOF patterns and associated percentage variance explained for July 
temperature data (1961-1990). 
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Figure 5.30: Modelled EOF patterns and associated percentage variance explained for October 

temperature data (1961-1990). 
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5.3.5 Results: Precipitation 
In January (Figure 5.31), HadRM3P-a, HadRM3P-b, HadRM3P-c and 

PROMES all capture the first and second mode patterns and their associated 

percentage variability quite well. However, the third EOF pattern is not the same as 

the observed third EOF pattern, as the action centre in the models is situated to the 

east rather than the north-east. 

The majority of models capture the first EOF pattern with skill, however 

there are exceptions. RACMO, CHRM, REGCM, REMO, HIRHAM-E5, ARPEGE-

b and ARPEGE-c all have a first EOF pattern that is unlike the observed in January. 

Instead, the second EOF pattern best resembles the observed first EOF pattern. 

The percentage variance associated with the north-west action centre pattern, 

whether it occurs as the first or second EOF pattern, varies from approximately 35% 

in ARPEGE-c, CHRM and REGCM to 48% in HadRM3P-b. In fact, the observed 

value is 44%. Most of the models underestimate the variance associated with this 

pattern, suggesting that westerly airflow, which would be most responsible for 

bringing precipitation to this area, is underestimated in the models. Some models do 

overestimate the associated variance of this pattern, namely the HadRM3P 

simulations and RCAO-E4, suggesting an overestimation of the underlying airflow 

type.  

In April (Figure 5.32), observed patterns are similar to January, but notably, 

the percentage variance associated with the first pattern falls from 44.1% to 37.6%. 

Some models simulate associated percentage variance of less than 40%, such as 

HadRM3P-a, HIRHAM-E5 and RCAO. However, many models significantly 

overestimate the variance associated with the north-west centred pattern in April, 

with CHRM in particular displaying an associated variance value of over 50%. This 

suggests that this precipitation pattern occurs much more frequently than observed in 

certain models.  
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Figure 5.31: Modelled EOF patterns and associated percentage variance explained for January 
precipitation data (1961-1990). 
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Figure 5.32: Modelled EOF patterns and associated percentage variance explained for April 
precipitation data (1961-1990). 
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For July (Figure 5.33), observed percentage variance explained did not fall to 

insignificant levels until the fourth EOF mode. This most likely reflects the greater 

levels of spatial variability associated with summer precipitation. If the models are to 

represent summer precipitation well, they should capture the same four EOF patterns 

and similar levels of associated variance. However, many of the models reach 

insignificant levels of variance after the third mode. HadRM3P-b, CHRM, 

HIRHAM-E5, ARPEGE-b and RCAO-E4 all have less that 5% variance associated 

with their fourth mode. Yet the observed fourth EOF pattern was a significant pattern 

with 17.2% of variance associated with it. These results suggest that these particular 

models simulate July precipitation as being more homogenous, dominated by fewer 

patterns than it actually is.  

Several models simulate the spatial patterns skilfully, for example, CLM, 

REMO and REGCM. However, no models simulate the EOF modes in the correct 

order. Only HIRHAM-E5 has a first mode pattern similar to the observed first mode 

pattern, though it overestimates the variance associated with it. This suggests that the 

pattern that dominates the observed data is not as influential as it should be in the 

models, except in HIRHAM-E5 where its influence is overestimated. 

Finally, precipitation EOF patterns for October modelled data are given in 

Figure 5.34. As autumn precipitation is more heterogeneous than summer 

precipitation, once again only three modes are required to capture the significant 

spatial patterns. Many models capture the spatial patterns quite skilfully and in the 

correct order. HadRM3P-c, PROMES, RACMO, CLM, REGCM, RCAO-E4 and the 

three ARPEGE simulations all capture the appropriate spatial patterns in the correct 

order, although the actual percentage variance associated with each pattern varies 

between models. Other models simulate the correct patterns but in the wrong order, 

but this is still a positive outcome as the key components of spatial variability are 

represented.  
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Figure 5.33: Modelled EOF patterns and associated percentage variance explained for July 
precipitation data (1961-1990). 
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 Figure 5.34: Modelled EOF patterns and associated percentage variance explained for October 
precipitation data (1961-1990). 
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5.3.6 Results: Modelled time amplitude series 
 The findings of Chapter 4 suggested that interannual variability in the RCMs 

is strongly governed by the driving GCM. The time amplitude series from the EOF 

analysis are used to further elucidate this point. Where a single GCM was used to 

drive more than one RCM, the time amplitude functions from those GCM groups are 

plotted together to determine whether there are similarities in the temporal evolution 

of the modelled time amplitude series.   
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Figure 5.35: Time amplitude series of temperature EOF mode 1 for HadAM3H-driven models (left) 
and ECHAM4-OPYC-driven models (right) in January (top) and July (bottom).  

 

It is clear from the plots in Figures 5.35, 5.36, 5.37 and 5.38 that there is a 

GCM influence on the time amplitude series of both the first and second EOF modes. 
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RCMs driven by the same GCM follow very similar temporal evolutions in their time 

amplitude series, suggesting that these components of the spatial pattern are heavily 

influenced by GCM boundary conditions. The slight variations between RCMs are 

most likely due to differences in how the individual RCMs parameterize different 

processes. 
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 Figure 5.36: Time amplitude series of temperature EOF mode 2 for HadAM3H-driven models (left) 
and ECHAM4-OPYC-driven models (right) in January (top) and July (bottom).   

 

While the boundary conditions from the GCM appear to be the most 

dominant factor influencing interannual variability, the internal model physics of the 

individual model also plays a part. One particular model, PROMES, behaves slightly 

different to the other HadAM3H driven models. While it does follow approximately 



 180

the same temporal evolution as the other models driven by this GCM, the other 

models cluster far more tightly together, with very little individual variation. 
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Figure 5.37: Time amplitude series of precipitation EOF mode 1 for HadAM3H-driven models (left) 
and ECHAM4-OPYC-driven models (right) in January (top) and July (bottom). 

 

PROMES exhibits much more variation, suggesting that its internal model 

physics influence its interannual variability more so that in the other models. This 

outcome is interesting as it reaffirms the importance of both GCM and RCM choice 

in scenario development. If interannual variability were determined by GCM choice 

alone, the RCM choice, concerning this climate parameter at least, would be 

arbitrary. However, as both GCM and RCM have an influence, both choices must be 

carefully considered. 
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Figure 5.38: Time amplitude series of precipitation EOF mode 2 for HadAM3H-driven models (left) 
and ECHAM4-OPYC-driven models (right) in January (top) and July (bottom). 

 

5.4 DISCUSSION AND CONCLUSIONS 

 Some key questions arise out of the results of this chapter, surrounding the 

nature of model skill. Firstly, the results of the seasonal pattern assessment indicate 

that on the surface, an ensemble can appear as skilful, simulating climatic patterns 

close to those observed. Yet in reality, the average ensemble can hide a variety of 

errors among the individual models. The analysis illustrated how models which over 

or underestimate temperature or precipitation can be combined to create an 

apparently “skilful” ensemble. However, such skill does not result from genuine 

model skill. It arises from error cancellation and if such errors were to change in any 
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way under different forcing conditions, the skill of the ensemble would not hold. 

Ensembles are proposed as a means of increasing reliability and confidence in model 

projections, yet if they are constructed in an opportunistic manner, they have the 

potential to negatively affect decisions made about climate planning and 

sustainability. Such ensembles may have the outward appearance of decreasing 

uncertainty through the inclusion of multiple projections, although in fact the 

uncertainty associated with the individual ensemble members can be quite large and 

unaccounted for. 

Another issue which arises is the suitability of domain-wide means and 

variances as a metric for model skill. As evidenced in this analysis, a model may 

overestimate a climate parameter in one part of the country and underestimate it in 

another part of the country and none of this information is represented in a spatial 

average. For example, ARPEGE-a, ARPEGE-b and ARPEGE-c appear to be skilful 

models when considered based on their domain-wide skill scores alone (Table 4.4). 

Yet in the seasonal spatial pattern analysis and the EOF analysis, questions arose 

about how these models resolve temperature in particular gridcells to the north-west 

of the country. The prevailing westerlies which are controlled to a large extent by the 

North Atlantic Oscillation are a dominant influence on climate. Therefore, not only 

do these spatial errors reduce confidence in these simulations’ projections of climate 

in these specific gridcells, they also raise questions about the representation of the 

underlying large-scale processes which govern climate in this area. 

 The results of this chapter also raise questions about what constitutes a skilful 

climate model. When no model emerges as skilful in every regard examined, the 

question is no longer which models are right, but which models are most useful. In 

the analysis of seasonal spatial patterns, two key categories of model emerged: those 

which simulate a low level of bias but fail to capture the spatial pattern with skill, 

and those which simulate a high level of bias but do capture the observed pattern 

well. Errors that have a potential physical explanation are more desirable than those 

that have no discernable explanation, as these can be communicated and accounted 

for in subsequent impacts analysis. For example, the absence of any representation of 

urban effects may cause the models to simulate cooler temperatures in urbanized 

regions than is observed (Giorgi et al., 2004) and this may account for the cool biases 

around the Dublin area in the summer temperature simulations of some models. 
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Arguably, a systematic bias, which does not interfere with the spatial pattern, 

is a more desirable bias to have in a model as there is potential to account for such a 

bias in subsequent scenario development. If a model overestimates temperature, for 

example, by the same amount in every gridcell in the present day simulation, the 

error can potentially be corrected in future simulations by subtracting that amount 

from each grid cell. Of course, there is the possibility that the error will not remain 

constant over time and under different forcing conditions, that it may change in 

magnitude, making the correction applied insufficient, or become more random in 

space. However, if errors are random in space to start with, if they occur randomly in 

the present-day control run and as such interfere with spatial pattern resulting in 

output that does not resemble the observed pattern, there is even less potential to 

work with such errors as they are likely to be the result of several different 

deficiencies in the internal model physics rather than a single deficiency. As one 

attempts to correct for more and more deficiencies, there is inevitably growing 

uncertainty surrounding how these errors will behave under different forcing 

conditions and through time. As such, although a model with systematic bias is less 

than ideal, it has more potential to be useful and less potential for uncertainty than a 

model that exhibits random errors that differ in magnitude and sign in different parts 

of the country. 

Finally, the EOF analysis suggests that models can generate the correct 

spatial pattern and even the correct EOF component patterns, but that the influence 

of one pattern versus another may not be captured. This may indicate that while the 

physical processes that control temperature and precipitation are represented well in 

the models, their strength or dominance in the region is not represented well. As 

such, the next step is to examine these physical processes in greater detail, 

investigating the large-scale physical processes and phenomena that control 

temperature and precipitation on the regional Irish scale.   
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CHAPTER 6  
AN ANALYSIS OF THE IMPACT 
OF LARGE-SCALE DRIVERS ON 
MODELLED CLIMATE:  NORTH 

ATLANT IC OSCILLAT ION 

 

6.1. INTRODUCTION 

The previous two chapters highlighted the possible role of large-scale forcing 

mechanisms on spatial and temporal patterns of temperature and precipitation for 

Ireland. The simulation of winter temperatures appeared to be a deficiency across the 

majority of models and as the North Atlantic Oscillation (NAO) is a key driver of 

winter climate in Ireland, further analysis is required to investigate how skilfully the 

NAO is represented in the models and determine whether representation of this 

large-scale driver is a contributing factor in the regional errors observed in the earlier 

analysis. 

While the assessment techniques applied so far, skill scoring and EOF 

analysis, have identified a number of errors in the RCM simulations of Irish climate, 

they do not indicate with any certainty the sources of these errors. Examination of the 

data may suggest whether a bias is GCM or RCM related, whether it is random or 

systematic, but a fuller analysis is required to determine how both the deficiencies 

and the abilities identified in the models so far arise. In addition to explaining errors 

identified in the models, this analysis may also help to determine if the skill 

demonstrated by the models in the earlier assessments arises out of skilful simulation 

or the cancellation of errors in different processes within the models.  

This question is of paramount importance as models whose skill is derived 

from error cancellation cannot be relied upon under different climate scenarios. 

Varying emissions concentrations may affect different processes to different degrees, 

so error cancellation cannot be depended upon to remain constant through time and 
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under different forcings conditions. Additionally, for testing adaptation strategies and 

aiding in the climate planning process, models with genuine skill are far more 

preferable to models whose skill is due to error cancellation. A model that captures 

the large-scale drivers of climate in a region with skill is likely to be a much more 

robust and reliable tool. Even if there are biases in such a model, biases can be 

corrected but deficiencies in the model’s representation of key processes may only be 

resolved through model improvements. 

This chapter focuses on the representation of the NAO at various temporal 

scales. At the European domain scale, mean sea level pressure patterns in each 

season are examined to identify potential errors in the representation of the Icelandic 

Low – Azores High pressure gradient. Then, for a sub-set of case study models that 

are illustrative of the key differences between the models, the 1961-1990 data is 

categorized into NAO positive (NAO+) and NAO negative (NAO-) years. Spatial 

patterns of mean sea level pressure, temperature and precipitation across the UK and 

Ireland are examined to determine whether the models capture the effects of NAO 

phase on the relevant climate parameters. Finally, the effect of large-scale errors on 

regional climate is assessed. A modified weather classification approach is used to 

examine the frequency of wind directions across Ireland in the six case study models 

and to determine associated precipitation amounts. Errors in the representation of the 

regional climate and their relationship, if any, to errors in the representation of the 

NAO are discussed.  

 

6.2 THE NORTH ATLANTIC OSCILLATION 

The North Atlantic Oscillation is a large-scale decadal mode of natural 

climate variability that influences climate in the whole North Atlantic region and in 

Europe particularly. It is most dominant in the northern hemisphere winter months. 

The NAO is largely an atmospheric mode of variability, unlike the El Nino Southern 

Oscillation (ENSO) in the Pacific which demonstrates a coupling between the ocean 

and atmosphere. The NAO is closely related to the Arctic Oscillation, however the 

NAO is viewed as the more relevant and robust pattern of Northern Hemisphere 
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variability, particularly as the NAO is represented in a more physically consistent 

way through principal components analysis than the AO (Ambaum et al., 2001). 

The NAO arises due to the east-west oscillatory motions of the Icelandic Low 

and the Azores high permanent pressure systems. The NAO can be defined using 

differences in meteorological station data and for this approach, a measure of the 

Icelandic Low is taken as sea level pressure at Reykjavik, Iceland, as this is the only 

station in this area with a sufficiently long record on which to base calculation. The 

Azores High may vary, as Lisbon, Ponta Delgada and Gibraltar are all weather 

stations near the centre of the high pressure system, but the choice of location makes 

little difference to the overall calculation (Osborn, 2001). The relative strengths and 

positions of the two systems vary from year to year, affecting climate in the North 

Atlantic region in a number of ways. 

The phases of the NAO and their effects on North Atlantic climate are 

illustrated in Figure 6.1. In positive NAO years, the pressure is below average 

towards Iceland and above average towards the Azores. The resulting difference in 

pressure between the two centres is large, resulting in stronger westerly and 

southwesterly winds. These winds bring warm maritime air from the North Atlantic 

to Central and Western Europe, leading to mild and wet winters in this region and 

cool summers. Conversely, the Mediterranean experiences drier conditions in a 

positive NAO year.  

In negative NAO years, the Azores high pressure is weaker than average, 

with above average pressure in the Iceland area. In this case, westerlies are 

suppressed and without the moderating influence of the mild maritime winds, 

temperatures in Northwest Europe become more extreme. The region instead 

experiences a greater frequency of north or northeasterly winds. Winters become 

colder and drier for Northwest Europe, including Ireland, with the possibility of 

snow and severe frosts. Additionally, the Atlantic storm tracks which so greatly 

influence European rainfall are diverted towards Spain and Portugal. As a result, the 

Mediterranean experiences wetter than average conditions and increased storm 

activity in winter.  
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Positive NAO phase                                    Negative NAO phase 

Figure 6.1: Effects of positive NAO phase (left) and negative NAO phase (right) on climate in the 
North Atlantic region. In positive NAO phases, Central and Northwestern Europe experience 

warmer, wetter conditions due to stronger westerly winds from the Atlantic. A positive NAO phase 
also results in drier conditions in the Mediterranean and can contribute to warmer conditions in 

North America. In negative NAO phases, conditions are reversed, with Northern Europe 
experiencing very cold winters and extremely warm summers, while the Mediterranean experiences 

increased rainfall and storminess (Source: USGCRP, 2000: 
http://www.usgcrp.gov/usgcrp/seminars/000320FO.html, accessed 03/08/2010). 

 

In addition to its impact on European climate, the NAO is also believed to 

have an impact on weather in eastern North America. In positive NAO years, this 

region experience stronger southerly winds (Hurrell, 1995). This can suppress the 

flow of cold air from the Arctic to the north, which can contribute to warmer winter 

conditions in much of North America, especially if other modes of variability with a 

greater affect on the area, such as ENSO, are also in a warming phase. Additionally, 

there is a strong correlation between the positioning of the Azores High pressure 

system and the direction of storm paths for North Atlantic hurricanes. When the 

system is positioned further south, storms tracks are diverted towards the Gulf of 

Mexico, while a northern position allows storms to travel upward towards the North 

American Atlantic Coast (Scott et al., 2003).  

Predictability of the NAO has been a matter of much investigation, as 

knowledge of future NAO behaviour can provide an indication of future European 

winter climate. Saunders et al. (2003) find that summer extent of snow cover in 

North America and Northern Europe can be used as a predictor of upcoming winter 
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NAO state while Rodwell et al. (1999) find that North Atlantic sea surface 

temperatures can be used to reconstruct much of the multiannual to multidecadal 

variability of the winter NAO over the past half century.  

Quasi-decadal variability of the NAO has been especially pronounced over 

the period of 1960-1990 (Figure 6.2). There has been an observed trend in winter 

over this period towards a positive NAO phase, contributing to warmer winter 

temperatures in Europe. Precipitation has also been greater than average over 

northern Europe, and this has also been linked to NAO behaviour (Hurrell, 1995).  

The climatic conditions that the NAO brings also have a range of ecological effects. 

For example, NAO-induced weather conditions impact the population dynamics of 

bird species in both North America (Nott et al., 2002) and Europe (Saethar et al., 

2000) by affecting their food resources. The effects of the recent positive NAO phase 

on sea temperatures also have impacts on marine species. The NAO positive phase 

has brought colder temperatures to the Labrador Sea but warmer conditions to the 

North Sea. Different species have different optimum temperatures and so are affected 

to varying degrees by changes in sea temperature. For example, the snow crab 

population in the Labrador Sea has thrived as it has a lower optimum temperature, 

while survival rates for the cod larvae population in the same area are reduced as 

they are at their lower temperature threshold in the colder water (Pearson, 2009).  

The effect of climate change on the NAO is a matter of debate. Paeth et al. 

(1999) finds that radiative forcing due to increased CO2 concentration influences the 

variability of the NAO in climate models, regardless of model version, on time scales 

of 60 years and longer. However, Gillett et al. (2003) notes that while the majority of 

climate models simulate an increase in winter NAO index strength in response to 

increased anthropogenic forcing, there are some exceptions. Hartmann et al. (2000) 

suggests that increased greenhouse gas concentrations in their climate model 

simulation induce an enhancement of the meridional temperature gradient in the 

lower stratosphere. Such a mechanism could be responsible for a shift towards a 

positive NAO trend such as that which has been observed in recent decades. 
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Figure 6.2:Winter (December through March) index of the North Atlantic Oscillation (NAO) based 
on the difference of normalized sea level pressure (SLP) between Lisbon, Portugal and 

Stykkisholmur/Reykjavik, Iceland since 1864, with a five year moving average (black) (Source: 
CGD's Climate Analysis Section.) 

 

Due to the importance of the NAO as an influence on climate in the North 

Atlantic region, the range of impacts associated with its phases and the potential for 

climate change to alter its behaviour, it is highly desirable that the models used to 

inform and test climate adaptation strategies in Ireland are able to capture this mode 

of variability in a skilful manner.   

 The representation of the NAO in GCMs has been the focus of some study. 

Osborn et al. (1999) investigated the realism of the NAO in the Hadley Centre GCM 

HadCM2, a predecessor of the current HadCM3. The HadCM2 GCM was compared 

to observations and was found to be largely skilful in a 1400 year control integration, 

with the exception of the period from the 1960s to the 1990s. An analysis of 30 year 

trends showed that the five observed trends starting between 1962 and 1966 

exceeded the highest modelled trend. However, Collins et al. (2001)  examined the 

representation of NAO in HadCM3 and found that recent absolute values of the NAO 

did lie within the range of natural variability for the updated model, although the 

recent rate of change was inconsistent with model variability. Stephenson et al. 

(2006) assessed the NAO in control and transient GCM simulations for 18 GCMs, 
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including HadCM3, and found that HadCM3 was a notable exception in terms of its 

representation of NAO. While the majority of models overestimated the observed 

mean wintertime NAO index, HadCM3 underestimated it. These findings suggest 

that while there may be some issues with representation of the NAO in the Hadley 

AOGCMs, overestimation of the absolute values of NAO is not one of those issues.   

The RCMs driven by HadCM3 are driven using a double nested technique in 

which the AOGCM is used to drive an AGCM, which in turn drives the RCM. Jacob 

et al. (2007) examined performance at the European scale of the PRUDENCE RCMs 

driven by the HadAM3H atmosphere-only GCM. This driving model was also found 

to display a stronger pressure gradient than observed across much of Europe, along 

with excessively high winter temperatures and precipitation rates. Therefore there is 

a strong possibility that mean sea level pressure bias in the driving AGCM 

propagates through to these RCMs, potentially leading to similar effects on 

temperature and precipitation.  

 

6.3. ANALYSIS OF WINTER MEAN SEA LEVEL 

PRESSURE ACROSS EUROPE 

The RCMs in this study have been found to display consistent errors with the 

representation of winter temperatures, modelling milder winters than observed. To 

further investigate the cause of this bias, seasonal mean sea level pressure (MSLP) 

maps for each RCM are compared to the ERA-40 reanalysis dataset, as the dataset 

used previously does not contain MSLP data. Bias between the RCMs and the 

observations is plotted to determine whether pressure systems are accurately 

represented. 

 The ERA-40 dataset is produced by the ECMWF and describes global 

atmosphere and surface conditions from 1957 to 2001. To produce the reanalysis 

dataset, relevant meteorological observations from a range of different sources, such 

as meteorological stations, ship and buoy measurements and satellite observations, 

are assimilated using a variation of the ECMWF/Météo-France Integrated 

Forecasting System (IFS) which outputs data at 2.5o latitude by 2.5o longitude 
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resolution. As such, reanalysis data is observation-based, through a model is used to 

reanalyze the observed data and outputs data on a gridded format. The ERA-40 data 

is interpolated from its native grid to the finer grid used by the RCMs, but as this 

analysis is focused on a larger domain and on large-scale patterns, error at the 

regional scale is less of a concern than in previous chapters.  

 

6.3.1 Analysis 
Overall, biases in spring are generally much smaller than in winter, with the 

exception of the ARPEGE sub-ensemble (Figure 6.3a and b). In spring, all three 

iterations of this model markedly underestimate MSLP across the northern half of the 

continent, including Ireland. This lower-than-observed pressure may account for the 

overestimation of rainfall in this model in spring. In summer, biases are again small 

in most models and mostly appear related to orography (Figure 6.4a and b). Consider 

the positive MSLP bias present over the Alps in all models except the three 

HadRM3P simulations. MSLP is pressure at the given elevation reduced to sea level. 

Therefore errors in MSLP may be linked to errors in the representation of pressure 

and elevation. As pressure decreases with altitude, pressure over the Alps is quite 

low. However, as the Alps are fold mountains they are more difficult for a climate 

model to resolve compared to other types of mountain, such as plateau mountains. 

The Alps contain numerous high peaks whose resolution poses a challenge as they 

occur on such a small scale relative to the grids used by climate models. Inadequate 

resolution of these peaks may lead to an underestimation of elevation in certain 

gridcells, which would in turn result in higher pressure values than expected and 

higher MSLP values than expected, when compared with observations.  
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Figure 6.3a: Modelled mean sea level pressure for spring (MAM), measured in hPa for 1961-1990. 

 



 193

-20hPa                                                               0                                                        +20hPa

HadRM3P-a HadRM3P-b HadRM3P-c

PROMES RACMO CHRM                                      CLM

REGCM REMO RCAO HIRHAM-a

HIRHAM-b                                 HIRHAM-c HIRHAM-E5 ARPEGE-a

ARPEGE-b ARPEGE-c RCAO-E4 HIRHAM-E4

 
Figure 6.3b: Bias of modelled mean sea level pressure relative to observed for spring (MAM), 

measured in hPa for 1961-1990. 
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Figure 6.4a: Modelled mean sea level pressure for summer (JJA), measured in hPa for 1961-1990. 
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Figure 6.4b: Bias of modelled mean sea level presuure relative to observed for summer (JJA), 
measured in hPa. ), measured in hPa for 1961-1990. 

 

In autumn, observed MSLP shows the north-south pressure gradient 

developing (Figure 6.5a). However, modelled MSLP in many of the RCMs is 

overestimated in low pressure areas and underestimated in high pressure areas, 
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leading to a smaller difference between pressure centres than is observed. Some 

orographic bias is still present in mountainous regions, but becomes less noticeable 

in the context of the larger-scale bias across the domain as a whole (Figure 6.5b). 
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Figure 6.5a: Modelled mean sea level pressure for autumn (SON), measured in hPa for 1961-1990. 
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Figure 6.5b: Bias of modelled mean sea level pressure relative to observed for autumn (SON), 
measured in hPa for 1961-1990. 

 

In winter, observed mean sea level pressure forms a low to high gradient 

from north to south (Figure 6.6a). However, many of the models simulate lower 

mean sea level pressure than observed in the northern half of the domain, including 

Ireland, the United Kingdom and Scandinavia, and higher mean sea level pressure 
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than observed across central Europe and the Mediterranean (Figure 6.6b). All models 

driven by HadAM3H and ECHAM5 follow this pattern. The result is a greater 

difference been the high and low pressure centres.  
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Figure 6.6a: Modelled mean sea level pressure for winter (DJF), measured in hPa for 1961-1990. 
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Figure 6.6b: Bias of modelled mean sea level pressure relative to observed for winter  (DJF), 
measured in hPa for 1961-1990. 

 

The pattern of mean sea level pressure bias and the effects on simulated Irish 

winter temperature and precipitation appear to correspond with positive North 

Atlantic Oscillation (NAO) behaviour. In positive NAO years, the pressure gradient 

across Europe is enhanced, resulting in increased westerlies and leading to warmer, 

wetter winters in Western Europe. In most of the models, the winter pressure 
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gradient is steeper than observed and there are positive precipitation and temperature 

biases, consistent with positive NAO behaviour. The HadRM3P sub-ensemble and 

the CHRM model are the only exceptions as both simulate drier conditions than 

observed in winter. 

Overall, these findings suggest that in winter, the RCMs are greatly 

influenced by errors in the large-scale pressure systems that constitute the NAO.  In 

spring and summer, MSLP errors relating to orography occur in certain areas, as the 

resolving limitations of RCMs can lead to elevations and correspondingly 

atmospheric pressure in mountainous areas being misrepresented. As the NAO is a 

large scale mode of climate variability, it is logical to examine the driving GCMs as 

a source of error in mean sea level pressure. The bias patterns identified in the RCMs 

tend to be quite similar for RCMs driven by the same GCM and as RCM output in 

winter is governed by large-scale processes is it quite possible that the mean sea level 

pressure biases identified in the RCMs are due to errors in the driving GCMs.  

 

6.4 ANALYSIS OF UK AND IRISH CLIMATE 

PATTERNS IN NAO POSITIVE AND NEGATIVE 

YEARS 

6.4.1 Data and methods 
 As the error patterns that emerge from the analysis of seasonal mean sea level 

pressure appear to be consistent across GCM driver groups, a sub-set of models 

representative of the overall ensemble is chosen for further investigation. The 

simulations chosen are HadRM3P-a, RCAO-H, HIRHAM-E5, ARPEGE-a and 

RCAO-E4, driven by HadAM3P, HadAM3H, ECHAM5, observed SSTs and 

ECHAM4-OPYC respectively. The case study models include one RCM driven by 

each of the GCMs. The focus of this section is assessing models’ abilities to capture 

climate patterns over the UK and Ireland in NAO+ and NAO- years. As the NAO is 

most dominant in winter, the NAO indices and all spatial patterns are based on 

winter data.   
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The observed NAO index cannot be used to identify NAO+/- years in the 

models, as differences in the initial and boundary conditions of the models lead the 

individual simulations to evolve differently to what is observed. However, if the 

models are to be reliable, one would expect the modelled frequency distribution of 

NAO+/- years to be similar to observations. A model NAO index is calculated for 

each model based on the simulated pressure difference between the Icelandic Low 

and Azores High, to identify model NAO+/- years. As the domain of the RCMs does 

not include Reykjavik, the closest available point (14W, 64N) was used to represent 

this station. Lisbon (9W, 38N) is chosen as the southern point. Therefore the pressure 

centres are defined as: 

Equation 6.1: Definition of pressure centres 

PR = PReykjavik = P[14W,65N] 

PL = PLisbon = P[9W,38N] 

where P = mean sea level pressure. 

 

The model NAO index was than calculated as follows: 

Equation 6.2: To calculate NAO index 

 

At each pressure centre: 
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To eliminate noise in the data, years with an NAO index value of between -1 

and +1 were omitted from the analysis. NAO+ years were defined as years with an 

NAO index greater than +1, while NAO- years were defined as years with an NAO 

index of less than -1.  

 As this method uses different pressure centre points to those commonly used 

to calculate the NAO index, validity of the method was tested by applying it to 

ERA40 mean sea level pressure data and comparing results with the NAO index 

calculated by the Climate Analysis Section at the National Centre for Atmospheric 

Research (NCAR). As illustrated in Figure 6.7, the difference in location makes little 

difference to the calculation and the method used to calculate NAO index in this 

thesis yields a very similar result when compared to the true NAO index. 

Comparision of NAO calculation with true NAO index
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Figure. 6.7: Comparison of calculated NAO index based on ERA40 data (blue) with NCAR NAO 
index (pink). Indices are comparable in terms of both magnitude and temporal pattern.  

 

 For mean sea level pressure, temperature and precipitation, the mean spatial 

pattern associated with NAO+ years was obtained by averaging the NAO+ datasets 

at each point. The same calculation was carried out for NAO- years and maps of 

these mean spatial patterns were produced.  
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6.4.2 Results: Modelled frequency of NAO+/- years 
 Figure 6.8 illustrates the differences in frequency of NAO+/- years in a sub-

sample of different RCMs. The models capture the number of positive NAO years 

quite skilfully, though all models underestimate the number of negative NAO years. 

However, overall these differences are quite small and results suggest that these 

RCMs are able to capture the distribution of positive and negative modes of the NAO 

over the period of analysis. This is a welcome outcome as the years 1961-1990 were 

marked by a shift towards predominantly positive NAO activity and the models’ 

ability to capture the observed frequencies suggests that they have captured this 

large-scale mode of variability. However, this does not guarantee that the effects of 

NAO activity on climate will also be simulated well. Further analysis is required to 

determine this. 

ERA40 HadRM3P-a RCAO-H ARPEGE-a HIRHAM-E5 RCAO-E4
NAO+ 9 9 10 9 11 9
NAO- 10 7 9 9 8 9

0

2

4

6

8

10

12

ERA40 HadRM3P-a RCAO-H ARPEGE-a HIRHAM-E5 RCAO-E4

NAO+ NAO-

 

Figure 6.8: Frequency of NAO+/- years in RCMs, compared with observed frequencies over 1961-
1990. The observed dataset, ERA40, is highlighted in grey. Orange bars denote NAO+ years and 

blue bars denote NAO- years. 

 

6.4.3 Results: Observed NAO+/- patterns 
For the observed patterns, ERA40 temperature and precipitation data was 

used, as this dataset, though coarser than the dataset used previously, includes sea 

gridcells. As such, it was necessary to interpolate the ERA40 data from 2.5o to 0.5o 
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resolution, making this data a less precise representation of Irish climate on a 

regional scale.  

NAO positive phase NAO negative phase

(a) Mean sea level pressure (hPa)

(b) Temperature (K)

(c) Precipitation (mm/day)
 

Figure 6.9: Observed average spatial patterns of mean sea level pressure (a), temperature (b) and 
precipitation (c) over the UK and Ireland in positive NAO years (left) and negative years (right) 

over 1961-1990. 
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Spatial patterns based on this data are provided as an indicator of expected 

NAO+/- behaviour on a large scale, rather than for comparison with modelled output 

on a fine scale. Observed winter spatial patterns associated with NAO phases are 

given in Figure 6.9. In NAO+ years, there is a distinct pressure gradient across the 

area, while in NAO- years MSLP across the area is more uniform (Figure 6.9a). The 

effects of NAO activity on regional climate are evident. In positive NAO years, 

temperatures are warmer (Figure 6.9b) and there is more precipitation (Figure 6.9c). 

The increased precipitation is especially noticeable in areas which are more exposed 

to the Atlantic, such as the west coast of Ireland.  

The models have demonstrated an ability to capture the frequency of NAO+/- 

years, but an ability to simulate the effects of NAO activity on regional climate 

would be more valuable. Models which capture these regional effects provide a much 

fuller picture of this large-scale driver. As the NAO influences much of winter 

climate in this region, skilful representation of not only the frequency of occurrence 

of its phases but also its regional climatic effects would be a very desirable ability in 

a climate model. 

 

6.4.4 Case Study 1: HadRM3P-a driven by HadAM3P 

Spatial pattern maps for HadRM3P-a are given in Figure 6.10. It is clear from 

Figure 6.10a, the map of mean sea level pressure patterns, that HadRM3P does 

capture the enhanced pressure gradient associated with a positive NAO phase. 

However, MSLP in negative NAO years is not as uniform across the domain as in 

observations. Instead, a slight gradient is associated with NAO negative years.  

The mean sea level pressure maps for the European domain, with no NAO 

division of data, showed a marked negative bias to the north of the domain and a 

marked positive bias to the south in HadRM3P-a. The analysis of the UK and Irish 

domain shows that this error arises through the combination of a slight pressure 

gradient in NAO negative phases and an enhanced gradient in NAO positive phases 

(Figure 6.10a). MSLP to the north of the domain is lower than observed, while 

MSLP to the south is higher.  



 206

NAO positive phase NAO negative phase

(a) Mean sea level pressure (hPa)

(b) Temperature (K)

(c) Precipitation (mm/day)

 

Figure 6.10: Average spatial patterns of mean sea level pressure (a), temperature (b) and 
precipitation (c) over the UK and Ireland in positive NAO years (left) and negative years (right), as 

modelled by the HadRM3P-a RCM simulation over 1961-1990. 
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With an enhanced pressure gradient, one might expect the HadRM3P-a 

simulation to also model enhanced NAO effects on regional climate. While 

temperature (Figure 6.10b) over the ocean in NAO positive years is warmer than in 

NAO negative years, with the warm temperatures clearly reaching further north, the 

difference on land is somewhat less pronounced.  The skill score assessment in 

Chapter 4 identified that for the Ireland, HadRM3P-a models warmer winter 

temperatures than observed and so representation of the NAO may contribute to this 

error. 

The model captures increased precipitation of the NAO positive phase over 

Western Scotland (Figure 6.10c), however in the observed NAO patterns the 

increased precipitation is a domain-wide characteristic and not restricted to this 

specific area. For Ireland, there is minimal difference between positive and negative 

NAO years. This may explain the drier than observed winter conditions simulated by 

this model for Ireland.  

 

6.4.5 Case Study 2: RCAO-H driven by HadAM3H 
 Spatial patterns for RCAO-H are given in Figure 6.11. In the skill scores 

assessment, this model simulated warmer and wetter average winter conditions than 

observed and it also models a steeper average pressure gradient for winter, conditions 

which could correspond to enhanced NAO effects.  

 Like HadRM3P-a, this model simulates a slight pressure gradient across the 

UK and Ireland in NAO negative years, rather than the more uniform conditions 

expected based on the observational patterns. In NAO positive phases, the pressure 

gradient is quite pronounced and in combination, this could explain the gradient seen 

in the average winter MSLP maps (Figure 6.11a). 

 Again, an important consideration is whether the enhanced NAO positive 

MSLP conditions are associated with the biases in temperature and precipitation. 

However, temperature over both ocean and land exhibits a very similar pattern in 

both NAO positive and negative years with only slight differences in parts of the 

domain (Figure 6.11b). If the positive bias were the result of an overactive NAO in 
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the model, one would expect NAO positive years to be significantly warmer than 

NAO negative years, but this is not the case.    

NAO positive phase NAO negative phase

(a) Mean sea level pressure (hPa)

(b) Temperature (K)

(c) Precipitation (mm/day)
 

Figure 6.11: Average spatial patterns of mean sea level pressure (a), temperature (b) and 
precipitation (c) over the UK and Ireland in positive NAO years (left) and negative years (right), as 

modelled by the RCAO-H RCM simulation over 1961-1990. 
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However, this model captures the increased precipitation of the NAO positive 

phase well particularly over Western Ireland and Scotland (Figure 6.11c). Since the 

pressure gradient is enhanced in RCAO-H and the model captures the effects of 

NAO activity on precipitation with skill, the wetter than observed winter conditions 

simulated by this model may be attributable to its representation of the NAO. To 

determine this more conclusively, the next section of the analysis will investigate 

whether the excess modelled precipitation is associated with westerly winds, which 

are largely controlled by the NAO, or other sources. 

 

6.4.6 Case Study 3: HIRHAM-E5 driven by ECHAM5 
 Spatial patterns for HIRHAM-E5 are given in Figure 6.12. In the skill scores 

assessment, this model simulated average winter conditions for temperature and 

precipitation that were quite close to the observed, but it also models a much lower 

MSLP across the north of the European domain in winter, and a higher MSLP across 

the Mediterranean. The result is a steeper average pressure gradient for winter. One 

would expect such an error to influence the simulation of average temperature and 

precipitation, yet this model simulates the averages of these climate parameters with 

apparent skill. Further analysis is required to determine the level of confidence with 

which output from this model should be considered. 

 Although there is a notable bias in the model’s representation of seasonal 

average MSLP, it captures the difference in pressure patterns between NAO positive 

and negative years quite well (Figure 6.12a). NAO positive years are characterized 

by a noticeable pressure gradient across the UK and Ireland, while MSLP in NAO 

negative years is more uniform across this sub-section of the model domain. The 

model appears to capture the pressure differences that underlie the NAO, but it is 

important to also consider whether these pressure differences have the effect on 

temperature and precipitation that is expected. Temperature does appear to be 

warmer in NAO positive years than in NAO negative years both over the ocean and 

on land and this pattern is especially apparent over ocean gridcells (Figure 6.12b). 

This model does capture increased precipitation in the NAO positive phase, 

particularly over Western Ireland and Scotland (Figure 6.12c). These results suggest 

that HIRHAM-E5 captures the NAO and its associated effects on regional climate 
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reasonably well. However, if the NAO is captured accurately, such large biases in 

MSLP should lead to an amplification of NAO behaviour, yet this has not occurred 

here. 

NAO positive phase NAO negative phase

(a) Mean sea level pressure (hPa)

(b) Temperature (K)

(c) Precipitation (mm/day)
 

Figure 6.12: Average spatial patterns of mean sea level pressure (a), temperature (b) and 
precipitation (c) over the UK and Ireland in positive NAO years (left) and negative years (right), as 

modelled by the HIRHAM-E5 RCM simulation over 1961-1990. 
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6.4.7 Case Study 4: ARPEGE-a driven by Observed SSTs 
 Spatial patterns for ARPEGE-a are given in Figure 6.13. In the skill scores 

assessment, this model simulated average winter conditions for temperature and 

precipitation that were quite close to the observed, but it also models a much steeper 

average pressure gradient for winter than any other model, which is a cause for 

decreased confidence in its skill. 

 ARPEGE-a appears to model a pronounced pressure gradient regardless of 

NAO phase (Figure 6.13a). Although pressure across the north of the UK and Irish 

domain is lower in NAO positive years, it is only slightly higher in NAO negative 

years. Certainly, the modelled NAO negative pattern could not be described as 

uniform as the observed pattern was. 

 Correspondingly, there is minimal difference between the temperature 

patterns associated with NAO positive and NAO negative years in this model (Figure 

6.13b).  However there is an effect on precipitation, with NAO positive years tending 

towards wetter conditions, particularly over Western Scotland (Figure 6.13c). 

 This model produces a range of different results with little consistency 

between them. There is a significant mean winter pressure gradient bias, but little 

preservation of the temperature patterns associated with NAO phases at the regional 

scale. This suggests that the NAO is not properly represented in the model. One 

would expect an error in such an important large-scale driver to have impacts on 

regional climate. Without the moderating effect of the NAO, simulated winter 

climate should be colder and drier than observed, yet ARPEGE-a simulated winter 

climate averages close to the observed. With such a range of errors occurring and 

problems emerging in the model’s ability to simulate a driver as important as NAO, 

it is possible that ARPEGE-a derives its skill from error cancellation rather than 

genuine ability. 
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NAO positive phase NAO negative phase

(a) Mean sea level pressure (hPa)

(b) Temperature (K)

(c) Precipitation (mm/day)

 

Figure 6.13: Average spatial patterns of mean sea level pressure (a), temperature (b) and 
precipitation (c) over the UK and Ireland in positive NAO years (left) and negative years (right), as 

modelled by the ARPEGE-a RCM simulation over 1961-1990. 
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6.4.8 Case Study 5: RCAO-E4 driven by ECHAM4-OPYC 
 Spatial patterns for RCAO-E4 are given in Figure 6.14. In the skill scores 

assessment, this model simulated much warmer and wetter winter conditions for 

temperature and precipitation than the observed. Based on those biases, this model 

appears to be a less skilful model than the other ensemble members. However, this 

model was one of only two that did not simulate a heightened pressure gradient 

across Europe in winter. Instead, RCAO-E4 displayed a systematic positive MSLP 

bias across the domain.  

 It is evident from the NAO-related MSLP patterns that pressure in this model 

is indeed much higher than in the others. However, the model does capture the 

difference in pressure patterns for positive and negative NAO years (Figure 6.14a), 

with a north-south gradient occurring in positive years and more uniform conditions 

occurring in negative years. 

 There is a notable difference between the temperature patterns associated 

with NAO positive and NAO negative years in this model (Figure 6.14b), with NAO 

positive years simulated as warmer. Additionally, this warming is more apparent 

over land gridcells than in some of the other models. There is also an effect on 

precipitation, with NAO positive years tending towards wetter conditions (Figure 

6.14c).  

 Although this model simulates erroneous values for mean temperature and 

precipitation, it captures the dynamics of the NAO quite well. While the systematic 

pressure bias should not interfere with the gradient of pressure across the domain, 

further analysis may indicate whether this error has caused amplified NAO effects, 

which could in turn explain the systematic errors in temperature and precipitation.  
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NAO positive phase NAO negative phase

(a) Mean sea level pressure (hPa)

(b) Temperature (K)

(c) Precipitation (mm/day)
 

Figure 6.14: Average spatial patterns of mean sea level pressure (a), temperature (b) and 
precipitation (c) over the UK and Ireland in positive NAO years (left) and negative years (right), as 

modelled by the RCAO-E4 RCM simulation over 1961-1990. 
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6.4.9 Summary 
 The RCMs examined in this section display varying levels of skill in 

simulating the effect of an important large-scale climate driver, the NAO, on regional 

climate patterns.  

HadRM3P displays the least skill. In both NAO+ and NAO- years, a north-

south MSLP gradient can be observed. However, such a pattern should not be present 

in NAO- years. There is little difference in precipitation patterns over the UK and 

Ireland in NAO+ and NAO- years, suggesting that the influence of this driver on 

precipitation may not be represented well in the model. However, there is a slight 

increase in temperature in NAO+ years, suggesting that the model may possess some 

skill in representing this aspect of the NAO’s influence on regional climate. 

RCAO-H and ARPEGE-a also exhibit a MSLP gradient in both NAO+ and 

NAO- years. Both of these models also fail to capture the effects of NAO variability 

on temperature patterns. However, both RCAO-H and ARPEGE-a tend towards 

significantly wetter conditions in NAO+ years. This feature is particularly noticeable 

over mountainous areas. While these two models do not possess skill in simulating 

all aspects of the NAO’s influence on regional climate, they are quite successful in 

capturing the precipitation patterns associated with NAO phases. 

Finally, both HIRHAM-E5 and RCAO-E4 successfully simulate the MSLP, 

temperature and precipitation effects of NAO+ and NAO- years. NAO+ years are 

characterized by a noticeable pressure gradient which is absent in NAO- years. 

NAO+ years are also warmer and wetter on average in these models than NAO- 

years. As such, HIRHAM-E5 and RCAO-E4 display the most skill at simulating the 

effects of the large-scale driver on regional climate patterns. 
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6.5 THE IMPACT OF LARGE-SCALE VARIABILITY 

ON SIMULATED IRISH CLIMATE  

6.5.1 Data and methods 
To further explore the underlying cause of the RCM errors and assess 

whether errors in the representation of the large-scale driver effect the simulation of 

regional climate, an objective weather classification was applied to 5 RCMs. The 

RCMs chosen are HadRM3P (a) and RCAO driven by HadCM3/HadAM3H, 

HIRHAM driven by ECHAM4-OPYC/ECHAM5, RCAO driven by ECHAM4-

OPYC and ARPEGE (a). An automatic Lamb classification (Jenkinson and Collison, 

1977) uses a set of simple rules applied to gridded pressure maps to determine 

westerly flow, southerly flow and so forth. Applications of the technique include  

Goodess and Palutikof (1998) who applied automatic Lamb classification tosouth-

east Spain and Linderson (2001) who used the technique to analyse data for southern 

Scandinavia. Here it is used to classify the monthly data underlying the seasonal 

MSLP maps. Equations are calculated using the points indicated in Figure 6.15, to 

determine the predominant wind direction in each winter month. Monthly data rather 

than seasonal data is used in this analysis as wind direction varies on a much finer 

temporal scale than seasonal. If W is positive and S is negative, 360o is added to D. 

In all other cases, 180o is added. Equations are adapted from Jones et al. (1993): 

Equation 6.3: To determine wind direction 
frequency  

Note: 2 is a multiplier, not a point reference. 
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where  

W = westerly flow, 

S = southerly flow,  

D = wind direction and 

53.5o = the bisecting latitude of the analysis grid 
(Figure 6.15). 
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Although wind direction can vary on a daily basis, a comparison of monthly 

data from RCAO driven by ECHAM4 and daily data from the ECHAM4 GCM 

shows that applying the method to monthly data adequately captures the overall 

shape of the wind direction frequency distribution (Figure 6.16). The frequencies 

with which the various wind directions occur and precipitation amounts associated 

with each classification are extracted from the data. As precipitation output is in units 

of mm/day, this figure is multiplied by 30, the number of days in the ‘modelled 

month’, to determine total monthly rainfall and summed over a number of months to 

determine the total precipitation associated with a wind direction.  
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Figure 6.15: Grid used for wind direction calculations.  
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Frequency of wind directions based on monthly data from RCAO driven by ECHAM4
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Figure 6.16: Wind frequency distributions from monthly data from RCAO driven by ECHAM4 (top) 
and daily ECHAM4 GCM data (bottom) for 1961-1990. 

 

6.5.2 Results 
Figures 6.17a and b displays observed and modelled wind direction 

frequencies and associated precipitation amounts for the case study models. The 

most noticeable characteristic of these graphs is that none of the models skilfully 

simulate the observed wind direction distribution. While HadRM3P-a and RCAO-H 

display a similar wind direction distribution, perhaps due to sharing GCM drivers 
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from the same model centre, the associated precipitation amounts are quite different. 

Most of the rainfall in these models is associated with south-westerly winds and this 

wind direction occurs with similar frequency in both models. 

Frequency of wind directions and associated precipitation amounts
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Figure 6.17a: Observed and modelled wind frequency distributions from monthly data 



 220

Frequency of wind directions and associated precipitation amounts 
(HIRHAM driven by ECHAM5 - Winter)
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Figure 6.17b: Observed and modelled wind frequency distributions from monthly data 
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However, in RCAO-H more rain is associated with these winds, making it a 

wetter model overall. Although HadRM3P-a slightly overestimates south-westerly 

rain compared to the observed, it underestimates rain associated with all other win 

directions, resulting in a drier model overall than observed.  

In both HIRHAM-E5 driven by ECHAM5 and RCAO-E4 driven by 

ECHAM4-OPYC, the difference in frequency between south-westerlies and 

westerlies is less pronounced. However, more precipitation is associated with these 

wind directions in RCAO-E4, making it a wetter model. In HIRHAM-E5, although 

the fractions of precipitation that can be attributed to the different wind directions are 

not the same as the observed, when totaled they amount to a similar level of rain, 

making HIRHAM-E5 apparently more skilful model overall.  

Unlike the other models, ARPEGE considerably overestimates the frequency 

of westerlies, and has a correspondingly large amount of associated precipitation. 

However, while the other models also have some contributions from the south-east, 

south and northwest directions, these winds are greatly underestimated in the 

ARPEGE simulation. As a result, these wind directions contribute only a small 

amount of rain to the ARPEGE total. Therefore, on balance, it appears to model the 

observed winter precipitation skilfully. In fact, it produces the right overall 

precipitation amount for the wrong reasons.  

ECHAM4-OPYC, which was used to drive RCAO-E4, is an AOGCM and 

exhibited systematic MSLP bias. This suggests that the differences in RCAO-E4’s 

modelled wind direction frequencies and precipitation amounts are a result of 

RCAO-E4’s internal model construction, as a systematic MSLP bias should not 

impact the pressure difference across Europe. As both simulations of RCAO, with 

different driving GCMs, tend towards wetter conditions, and all simulations of 

HIRHAM, again with different driving GCMs, tend to represent overall precipitation 

skilfully, it would seem that RCAO is simply a wetter RCM. However, analysis of 

wind frequency in one HIRHAM simulation does suggest that the model may 

simulate overall precipitation well for the wrong reasons.  

It is interesting to note that the models driven by HadAM3P, HadAM3H and 

ECHAM5 have similar spatial patterns of MSLP bias. All three of these models are 

AGCMs, used as part of a double-nested technique to drive the RCMs. This may 
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indicate that for a maritime country like Ireland, a fully-coupled AOGCM is a better 

choice of driver. 

 

6.6 DISCUSSION AND CONCLUSIONS 

The results of this chapter illustrate that model averages are not a good 

indicator of a model’s ability to simulating the climate phenomena that underpin 

mean temperature and precipitation. Five case study models were chosen, to 

represent the RCM/GCM combinations of the full ensemble. Results are summarized 

in Table 6.1.  

The NAO is associated with changes in temperature and precipitation when 

variation in the pressure difference between the Azores High and Iceland Low alter 

the monthly mean flow over the Atlantic, shifting storm tracks northwards (Hurrell 

and van Loon 1997). Only two of the case studies, HIRHAM-E5 and RCAO-E4, 

capture the MSLP, temperature and precipitation patterns associated with NAO 

activity. As such, errors in representation of the pressure systems could have 

significant impacts on the winter climate of the other case study models. However it 

is important to note that mean temperature and precipitation values in a RCM are 

affected by many factors within the model and it is unlikely that any one source can 

account for all the errors identified.   

As noted earlier, the similarity of MSLP error patterns within GCM driver 

groups may indicate that errors in the representation of the NAO may arise in the 

GCM and cascade through to the RCM outputs.  In an analysis of mean circulation 

indices in GCMs, van Ulden et al. (2007) found positive westerly biases in of the 

HadAM3H AGCM, ARPEGE (included as a variable resolution AGCM) and the 

ECHAM4-OPYC AOGCM, which also suggests that RCM errors in NAO 

representation arise from the boundary conditions supplied by the GCM drivers.  

However, it is clear from the results of this chapter that RCMs can respond 

quite differently to GCM deficiencies. Only in ARPEGE-a is the westerly bias 

reported in the literature carried through to the regional simulation. In all the other 

case study models, the south-westerlies are the notable bias. The HadAM3H GCM, 
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which is used to model many of the simulations in the ensemble, has a tendency to 

model a steeper pressure gradient than the observed (Jacob et al., 2007), which in 

turn would impact how the RCMs driven by this model, such as case study 2, 

RCAO-H, driven by HadAM3H, represent temperature and precipitation. 

Model Mean 
winter 
temperature

Mean winter 
precipitation

Winter  
MSLP bias 

Winter wind 
frequencies 

NAO+/- 
patterns 

Case study 1: 
HadRM3P-a 

Warmer than 
observed 

Drier than 
observed 

Enhanced 
gradient 

More SW winds 
but associated 
precip is lower 
than expected. 

MSLP gradient 
still present in 
NAO- years. 
Slight NAO+/-
temp effect but 
little precip effect 
over Ireland.  

Case study 2: 
RCAO-H 

Warmer than 
observed 

Wetter than 
observed 

Enhanced 
gradient 

More SW and 
associated precip. 

MSLP gradient 
still present in 
NAO- years. 
Captures precip 
effects but little 
temp effect. 

Case study 3: 
HIRHAM-
E5 

Close to 
observed 

Close to 
observed 

Enhanced 
gradient 

Overestimated 
SW winds and 
precip, nullified 
by underestimated 
S winds and 
precip. 

Captures MSLP, 
temp and precip 
effects. 

Case study 4: 
ARPEGE-a 

Close to 
observed 

Close to 
observed 

Much 
enhanced 
gradient 

Much more W 
precip but other 
directions 
underestimated. 

Captures precip 
effects but little 
temp effect.MSLP 
gradient still 
present in NAO- 
years. 

Case study 5: 
RCAO-E4 

Much warmer 
than observed 

Wetter than 
observed 

Systematic 
bias 

More SW and W 
precip. 

Captures MSLP, 
temp and precip 
effects. 

Table 6.1: Summary of case study results. 

 

Although there is no information in climate modelling literature regarding 

HadAM3P specifically, it is closely related to HadAM3H and the models driven by it 

display the same issues regarding MSLP and temperature. This suggests that this 

driver is also less skilful at representing the observed pressure gradient. However, the 
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RCMs driven by HadAM3P, such as case study 1, HadRM3P-a, tend towards drier 

conditions, which is a marked departure from the behaviour of the other Hadley-

driven RCMs such as RCAO-H. Whether this is attributable to the RCM or the 

AGCM is unknown. 

The implications of these results on climate scenario development are very 

important. Many previous studies have used skill in representing the averages of key 

climate parameters such as temperature and precipitation as an indicator of overall 

model skill, but these results highlight the potential difficulties in this approach. 

  For example, ARPEGE-a, which has the greatest bias for MSLP also models 

the mean winter temperature and precipitation most skilfully. On closer 

investigation, this model fails to capture the spatial patterns of MSLP and 

temperature that are associated with NAO activity. ARPEGE-a does capture the 

effects of NAO activity on precipitation and in fact overestimates westerly winds and 

their associated precipitation. As such, one would expect this model to tend towards 

wetter conditions than observed in winter. Yet due to the under representation of 

other wind directions in this model, an apparently ‘skilful’ average winter 

precipitation amount is acquired. Based on average temperature and precipitation 

values, this model would appear to be one of the most skilful in the overall ensemble. 

However, on closer analysis it becomes apparent that this model derived much of its 

skill in regards to winter precipitation from error cancellation. Models that behave in 

this manner do not provide a robust basis for informing and testing climate strategy, 

as these type of errors cannot be relied upon to remain constant through time. If a 

change in forcing conditions effects the frequency of other winds and the 

precipitation associated with them but not the westerlies, the errors would no longer 

nullify each other and the resulting value for precipitation in that future forcing 

scenario would be flawed. Additionally, without investigating how the NAO is 

represented in the model, this uncertainty and the potential error associated with it 

would be unknown and unaccounted for in scenarios based on this model.  

Conversely, the ECHAM4-OPYC-driven models, such as case study 5, 

RCAO-E4, display a number of systematic biases in winter. MSLP is higher across 

the European domain and average values for Irish temperature and precipitation in 

winter are also higher. Yet this model captures all the spatial patterns associated with 
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NAO activity. The MSLP patterns associated with positive and negative NAO years 

are represented well and the temperature and precipitation patterns suggest that the 

effects of NAO activity on regional climate are also captured by the model. Based on 

climate averages, RCAO-E4 appears to be a less skilful model, yet it captures the 

climate dynamics that underpin mean winter temperature and precipitation quite 

well.  

 In light of these results, an important question is which model, if any, 

provides the most useful information. In this instance, as RCAO-E4 captures the 

dynamics of the climate system more realistically, it is arguably a more robust model 

than ARPEGE-a. Systematic errors in mean climate parameters can be overcome to 

varying degrees. For example, one technique, the delta change method, is to subtract 

the model’s present-day values from its future values to calculate the temperature or 

precipitation response to climate change and add this signal to the present-day 

observed climate to determine future scenarios. Such an approach may eliminate 

model systematic bias, although there is a possibility of the model bias changing 

through time and under different forcing conditions. Conversely, if there are errors in 

a model’s representation of important large-scale climate drivers, there is no way to 

overcome this apart from revising the model itself.  

In short, though there is uncertainty associated with RCAO-E4’s output, it 

has more potential usefulness than ARPEGE-a. As ARPEGE-a’s skill comes from 

error cancellation rather than genuine modelling ability, it is a much less reliable 

tool. The next consideration is whether this information can be used to inform future 

climate scenarios developed using the ensemble technique and what impact the 

inclusion or exclusion of information about model performance has on the resulting 

projection.  
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CHAPTER 7  
APPROACHES TO DEVELOPING 
FUTURE CLIMATE SCENARIOS 

 

7.1 INTRODUCTION 

The work presented thus far in this thesis has generated much information 

about the 19 RCMs under investigation, in particular the five case study models 

chosen for the NAO analysis. However, if this knowledge is to enhance the reliability 

of future scenarios and help account for the uncertainty surrounding modelled 

scenarios, a method must be used to create those scenarios which take the known 

information about RCM skill into account. 

To determine the difference in projections when varying levels of knowledge 

are used to inform model choice, a Bayesian model averaging (BMA) approach is 

used with the uncertainty surrounding the model reflected in the weights associated 

with each model. The BMA approach takes account of uncertainty in model 

selection, reducing the potential for over-confident projections (Hoeting et al., 1999). 

The technique can be used to construct a skill score-weighted ensemble probability 

distribution function (PDF) from the outcomes projected by different RCMs, which 

accounts for variations in model skill and reliability, to determine the most probable 

outcome. Various weighting schemes are applied, each of which is informed to a 

varying degree about model performance. Spatiotemporal skill scores, objective 

estimates of NAO representation skill and a combination of both spatiotemporal skill 

scores and NAO information are used to weight models, resulting in three different 

weighting schemes. Projections are also calculated using an unweighted approach, 

representative of a case in which all model projections are assumed to be equally 

likely, an assumption that has been proven to be unlikely based on the results of 

previous chapters. The outcomes obtained using each method are then compared and 

discussed. 

 



 227

7.2 APPROACHES TO GENERATING ENSEMBLE 

CLIMATE MODEL PROJECTIONS 

Simple ensemble methods have a history of use within short-term weather 

forecasting and a widely used approach is to treat the ensemble mean as a single 

projection or best estimate of future conditions (Whitaker and Loughe, 1998). This 

approach is often found to provide a more skilful projection compared with any 

single projection from an individual ensemble member.  

Examples of the mean ensemble method applied to climate model data 

include Gates et al. (1998), who assessed the skill of an ensemble of AOGCMs and 

Rinke et al. (2006), who used an ensemble of RCMs to investigate Arctic 

spatiotemporal patterns for a range of climate parameters. Both studies found that the 

ensemble means outperformed the individual models for certain climate parameters. 

However, Tracton and Kalnay (1993) note that the increase in skill is in part due to 

the cancellation of errors in the individual forecasts when the ensemble members are 

averaged. 

Error in the mean ensemble projection depends on the level of independence 

of model errors as well as the error associated with the individual models that 

compose the ensemble (Goerss, 2000). However, Abramowitz (2010) notes that the 

independence of models employed in ensembles is rarely quantified. Additionally, as 

demonstrated in Chapter 4 and Chapter 6, different RCMs driven by a common 

GCM can potentially give very similar projections for certain climate parameters, in 

this case the interannual variability. As such, there can be a high degree of 

uncertainty attached to mean ensemble projections if the error of the individual 

models and the independence of the projections is not assessed. 

If one model is particularly lacking in simulative skill, the ensemble mean 

forecast will be affected by this and so differences in skill should be considered when 

formulating ensemble projections (Grimit and Mass, 2002). Much information can be 

generated about model skill through validation and verification studies using present-

day observational data and incorporating this information into the ensemble 

projection provides an important opportunity to account for uncertainty and increase 

the confidence of the ensemble.  
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 Weighting systems often rely on skill scores calculated by comparing the 

modelled climate parameter and the observed. For example, Sanchez et al. (2009) 

weighted models based on the similarity of the modelled precipitation cumulative 

distribution function (CDF) to the observed, resulting in a more skilful ensemble 

simulation of precipitation. Similarly, Yun et al. (2004) used a weighted multi-model 

ensemble using EU DEMETER (Development of a European Multi-Model Ensemble 

System for Seasonal to Interannual Prediction) output to generate projections of 

seasonal climate, in which the weights were calculated based on  statistical 

relationships between individual AOGCM output and past observations. However, as 

Brown (2004) notes, simply comparing climate model outputs can result in model 

skill being under or overestimated. Skill in representing the mean field or a single 

key climate parameter does not guarantee that the processes and drivers that give rise 

to mean temperature or precipitation, for example, are adequately represented in the 

model. Lucarini et al. (2007) notes that the focus on mean fields has greatly 

influenced the development of GCMs and suggests that as the climate system is 

essentially a non-linear system it would be appropriate for model validation to 

include analysis of the representation of dynamical processes. This aspect of the 

model output was examined in Chapter 6 and results indicated that assessing the 

mean climate may not be the optimum way to characterize model skill, as 

deficiencies in the representation of large-scale drivers may not be detected. As such, 

weighting models based on seasonal mean skill-scores alone would leave much 

uncertainty arising from intermodel variability unaccounted for.  

Another approach is to weight models according to their relative agreement. 

This is a component of the REA approach (Giorgi and Mearns, 2001) and was 

subsequently applied in Tebaldi et al. (2004). Yet weighting according to relative 

agreement is also a potentially flawed approach. As noted by Abramowitz (2010), 

model independence is rarely quantified in climate modelling studies and shared 

parameterizations or GCM drivers may lead to a high degree of similarity between 

models. In such an instance, weighting by relative agreement may actually promote 

non-independent models over independent ones. The resulting convergence of 

outcomes would be highly overconfident. The application of ensemble methods is 

often understood to generate an increase in reliability (Tebaldi and Knutti, 2007), but 
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this reliability is optimised when ensemble members are independent and more 

limited when they are not. 

There are some examples in the literature of weighting approaches based on 

the models’ abilities to simulate the dynamics of the climate system rather than the 

mean fields. For example, Schmitter et al. (2005) used model skill in representing 

key hydrographic properties and circulation estimates to weight members in an 

AOGCM ensemble to form a best estimate of the future meridional overturning 

circulation (MOC) in the Atlantic. Yet the mean-based skill scores approach is the 

more widely-used technique. The research presented so far in this thesis has 

illustrated that assessing models based on statistics of temperature and precipitation 

alone can potentially result in a misleading conclusion about model skill, while 

assessing models based on their representation of key climate drivers can give a more 

comprehensive picture of model performance. As such, it follows that weighting 

model output for future time periods based on spatiotemporal skill scores alone may 

result in less reliable projections. Additionally, there may be an opportunity to reduce 

the uncertainty associated with future projections and improve their reliability by 

incorporating information about how key climate drivers are represented in the 

models. 

 

7.3 DATA AND METHODOLOGY 

RCM output for 2071-2100 was again obtained from the PRUDENCE data 

archive. As part of the PRUDENCE project, the same RCMs which have been 

analysed in previous chapters were also run for the period 2071-2100 using forcing 

conditions associated with a particular SRES scenario. For future projections, the 

ARPEGE RCM, which was forced using observed SSTs in the control period, was 

run using driving data from the HadCM3 AOGCM. 19 projections were generated 

for PRUDENCE using the A2 emissions scenario and eight were generated using the 

B2 emissions scenario. HadRM2P, HIRHAM and ARPEGE, which are each run 

three times to create sub-ensembles for the control and A2 scenarios, are only run 

once for the B2 scenario. Therefore, there are more simulations available for the A2 

scenario than the B2 scenario (Table 7.1). 
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GCM RCM A2 B2 

HadCM3/HadAM3P 
HadRM3P-a 

HadRM3P-b 

HadRM3P-c 

HadCM3/HadAM3H 

PROMES  

RACMO    

CHRM    

CLM    

REGCM  

REMO    

RCAO-H  

HIRHAM-a 

HIRHAM-b 

HIRHAM-c 

ECHAM4-OPYC/ ECHAM5 HIRHAM-E5    

Observed SSTs 
ARPEGE-a 

ARPEGE-b 

ARPEGE-c 

ECHAM4-OPYC RCAO-E4  

HIRHAM-E4  

 

Table 7.1: Availability of modelled data for the future emissions scenarios A2 and B2. 

 

The first selection of projections (Section 7.5) illustrates the difference in 

projections that occurs when different weighting schemes are used. For these 

projections, output from the five case study models only is used so that information 

from the NAO analysis can be incorporated into the weighting process. Additionally, 

these models are all driven by different GCM drivers and as such, provide a more 

independent sample than the full suite of models. 

Figure 7.1 outlines the various ensemble generation approaches that have 

been applied. Projections are calculated using the deterministic AEM approach, the 

BMA approach using equal weights (BMA-EQ), the BMA approach using 

spatiotemporal skill scores (BMA-SS), the BMA approach using skill in representing 

the NAO (BMA-NAO) and the BMA approach using both spatiotemporal skill 

scores and skill in representing the NAO to form a combined objective skill estimate 

(BMA-COM).  
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Figure 7.1: Diagram of ensemble generation approaches 

 

The second selection of projections (Section 7.6), utilizes the full suite of 

climate models and illustrates how the projection varies when a larger selection of 

models is used. The AEM, BMA-EQ and BMA-SS approaches are applied to the full 

selection of RCMs. However, the reduction in both model independence and 

information about skill must also be taken into account when assessing these 

projections.  

Projections are calculated for winter (DJF) and summer (JJA) temperature 

and precipitation data, under the A2 and B2 emissions scenarios. Projections are also 
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formulated for the A2 and B2 data combined, to attempt to capture some of the 

variability that is not accounted for by the individual scenarios. The A2 and B2 

combined projections using BMA-SS, BMA-NAO and BMA-COM approaches are 

given in Appendix A.  

 

7.4 OVERVIEW OF ENSEMBLE METHODS 

7.4.1 Arithmetic ensemble mean (AEM) approach 
The AEM approach assumes that all models are equally skilful and their 

projections are equally probably. Such an approach contains no information about 

model performance. While such an approach lacks the subjectivity that weighting 

inevitably introduces, there is also significant uncertainty regarding intermodel 

variability that is left unaccounted for. Projections from each model are treated as 

equally probable and given projections from N different models, the AEM is: 

 

Equation 7.1: Arithmetic ensemble mean 





N

n
nx

N
x

1

1
 

where 

x = the arithmetic ensemble mean, 

nx = the individual model projection for the climate 
parameter and 

N = the number of individual models. 

 

The resulting projection has no probability attached to it and although 

information about the range of potential future outcomes is communicated through 

graphical representation, no information about the likelihoods attached to the various 

projections is included in the AEM method.  

 



 233

7.4.2 Bayesian model averaging (BMA) approach using skill scores 
Another option is to use skill scores to weight output from different models 

based on how they perform. For this method, the skill-scores generated in Chapters 4 

and 5 are used to weight model projections using the BMA approach. Projections in 

which the weighting factors associated with the individual models are all equal are 

also calculated to consider the effects of omitting model skill.  

The bias associated with simulations of mean Irish temperature and 

precipitation  (Table 5.1), the temporal r values (Tables 4.6 and 4.7) and the spatial r 

value of the  underlying seasonal spatial data (Table 5.1) are used to inform future 

projections of Irish temperature and precipitation. First, the issue of systematic bias 

will be addressed by applying a correction to those models that require it.  

Developing scenarios based on the relative difference between future 

simulations and control simulations requires acceptance of the assumption that the 

difference between simulations is the climate change signal. This assumption holds 

only if model biases and errors stay constant over time and do not change under 

different forcing conditions. For example, if the bias of a model decreases under 

different forcing scenarios, the climate change signal of that model could be 

perceived to be smaller than it actually is. The results presented in this thesis have 

demonstrated that errors can have either systematic or random characteristics. Where 

errors are inconsistent over time or space in the control period (i.e. random errors), 

there is little reason to be confident that these patterns will remain constant under 

different forcing scenarios. Conversely, where errors are systematic in the control 

period, it is more conceivable that such errors may remain constant over time and 

under different forcing scenarios. As such, an approach which corrects errors while 

distinguishing between systematic and random bias was applied. 

An r value of 0.7 or higher is regarded as evidence of a strong association 

between the observed and modelled patterns, while values of less than 0.7 represent 

weak to moderate association. Models with a bias of greater than 10% of observed 

precipitation and temperature (0.37mm/day or 0.47oC in winter, 0.25mm/day or 

1.39oC in summer) and which display a Pearson r of greater than 0.7 were assumed 

to be systematically biased and were therefore corrected. Spatial r scores of less than 

0.7 are considered indicative of potentially random bias. This bias is not corrected as 
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one cannot assume that the bias will remain constant in time. For example, the results 

of the spatial analysis in Chapter 5 show that for winter temperature, RCAO has a 

spatial r value of 0.91 and a bias of +2.46oC, therefore this bias is corrected. 

Conversely, for summer, this model has a temperature bias of +0.1oC but a lower 

spatial r value of 0.54, therefore this bias is not corrected. The figures from which 

bias corrections are calculated can be found in Table 5.1. 

Where required, biases are corrected by subtracting the measured bias based 

on the present day simulation from the future value. Models with an r less than 0.7 

are not altered. This step minimizes bias in the models with a significant systematic 

error only. Models with random errors in the underling spatial data are left 

unchanged as those errors are less likely to retain the same spatial distribution pattern 

under different forcing conditions. For example, in the control period in winter, 

RCAO-H and RCAO-E4 have spatial r scores of greater than 0.7 and temperature 

biases of 1.88oC and 2.46oC respectively. Therefore, these biases are corrected in the 

future A2 scenario data, but the other models remain unchanged (Table 7.2). 

Winter temperature 2071-2100

Model HadRM3P-a RCAO-H HIRHAM-E5 ARPEGE-a RCAO-E4
Mean 7.42 8.12 6.63 6.96 10.12
Spatial r 0.53 0.88 0.55 0.57 0.88
Bias Correction - 1.88 - - 2.46
Corrected Mean 7.42 6.24 6.63 6.96 7.66  

Table 7.2: Example of bias correction using winter temperature data for the A2 scenario. 

 

This approach was assumed to be less subjective than assuming all model 

biases are systematic, but it is important to recognize that the decision of how to treat 

data before developing scenarios is another potential source of uncertainty. 

As outlined in Chapter 2, Bayesian statistics differs from frequentist statistics 

in that subjective information regarding the “level of knowledge” about projections 

can be incorporated into the ensemble projection through the use of an informative 

prior. In this case, the priors are the weights, determined based on the present-day 

skill scores. Models are weighted using their seasonal spatial r value and annual 

temporal r value for the parameter being examined. For each model the two scores 
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are averaged and the resulting score is squared so that very low skill is heavily 

weighted against.  These scores are normalized across the models contributing in 

each scenario so that they sum to one, giving the weights used in the spatiotemporal 

skill scores-based approach (BMA-SS). An example of the weightings calculation for 

the BMA-SS approach is given in Table 7.3. RCAO-E4 has both a high spatial r and 

temporal r score which combines to give a high weighting, while HadRM3P-a has a 

high temporal r score but a lower spatial r score and when combined, gives a lower 

weighting. 

Winter temperature 2071-2100

Model HadRM3P-a RCAO-H HIRHAM-E5 ARPEGE-a RCAO-E4
Mean 7.42 8.12 6.63 6.96 10.12

 

Weighting information: BMA-SS
Spatial r 0.53 0.88 0.55 0.57 0.88
Temporal r 1.00 1.00 1.00 0.99 0.99
Overall squared 
skill score 0.58 0.88 0.60 0.61 0.87

BMA-SS weights 0.16 0.25 0.17 0.17 0.25  

Table 7.3: Example of BMA-SS weightings using winter temperature data for the A2 scenario. 

 

For values within the combined range of all the models, the likelihood for 

each model is calculated. The likelihood associated with each model is the 

probability density associated with the climate parameter value for a normal 

distribution specified using the mean and standard deviation of that model: 

Equation 7.2: BMA model likelihood 

),|()|( 2nnn xxgxxp   

where 

)|( nxxp = the likelihood associated with a value of climate 
parameter x, given projections from model xn and  

),|( 2nn xxg = a theoretical normal distribution defined by 

mean nx and variance 2 from the future projections of each 
model. 
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As part of the assessment of temporal variability in Chapter 4, normality of 

both the temperature and precipitation 30 year seasonal datasets in the control period 

was tested using the Shapiro-Wilks test. For both parameters, the data was found to 

be largely normally distributed with only a small number of exceptions. Additionally, 

the Central Limit Theorem shows that as variables that are not normally distributed 

are summed, as it the case when daily precipitation, which is usually best 

approximated using the gamma or lognormal distribution, is accumulated and 

averaged into a seasonal figure, the PDF of the sum approaches the normal 

distribution. As such, it is valid to use the normal distribution to generate likelihood 

functions for future seasonal temperature and precipitation. These likelihoods are 

then multiplied by the respective priors to form the posterior distribution. In this 

case, the posterior is a weighted ensemble PDF, which takes account of intermodel 

uncertainty and information about model skill: 

Equation 7.3: BMA weighted ensemble PDF 

),|(),,...,|( 2

1
1 




N

n
nnn

T
N xxgwxxxxp  

where 

),,...,|( 1
T

N xxxxp = the ensemble PDF for the climate 

parameter x, given projections from N models Nxx ,...,1 and 

present-day data Tx , 

nw = the weight for each model and  

),|( 2nn xxg = a theoretical normal PDF for each model 

defined by mean nx and variance 2 from the future 
projections of each model. 

 

 

The inclusion of weights effectively constrains the extent to which less skilful 

models contribute to the ensemble projection and allows the models with the greatest 

level of reliability, based on performance in the present day, to contribute most. 
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7.4.3 BMA approach using skill scores and objective skill estimates 
The NAO analysis generated much information about model skill that is not 

as well quantified as the skill scores. Yet this information could further account for 

some of the uncertainty associated with the future climate scenario. Therefore, the 

models’ ability to capture the NAO effect on the temperature and precipitation will 

be used to add further weighting to the models.  

The five case study models are ranked based on their skill at simulating the 

NAO and its effects, as analysed in Chapter 6. HIRHAM-E5 and RCAO-E4 were 

found to be the most skilful, capturing the MSLP, temperature and precipitation 

patterns associated with NAO behaviour. The next best models are RCAO-H and 

ARPEGE-a, which capture the precipitation effects of the NAO but only slight 

temperature differences and incorrect MSLP patterns. Finally, the least skilful model 

is HadRM3P-a, which does not capture the precipitation or MSLP patterns associated 

with NAO behaviour for Ireland and only simulates a slight temperature difference 

between NAO+ and NAO- years.  

Scores of 0.99, 0.66 and 0.33 are assigned based on performance at 

simulating the NAO, ranging from 0.99 for the most skilful models to 0.33 for the 

least skilful, as outlined in Table 7.4.  

Overall skill 
levels

Skill score

= NAO+/- effects are modelled with skill HIGH 0.99

 ? = Slight NAO+/- effect is modelled MODERATE 0.66

= No NAO+/- effect is modelled LOW 0.33

NONE 0.00

Model HadRM3P-a RCAO-H HIRHAM-E5 ARPEGE-a RCAO-E4

MSLP     

Temperature ? ?  ? 

Precipitation     

Overall skill LOW MODERATE HIGH MODERATE HIGH

Skill score 0.33 0.66 0.99 0.66 0.99

Pr
es
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f 

N
AO

+/
- p

at
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rn
s

Legend

 

Table 7.4: NAO skill estimates based on analysis of model-simulated NAO in the control period. 
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This range was chosen to match the 0 to 1 range of the correlation 

coefficients and allows the different skill scores to be easily combined. These scores 

are again squared and normalized so that they sum to one to form the weights for the 

NAO-based approach (BMA-NAO). 

To generate scenarios that take both skill scores and NAO performance into 

account, normalized NAO skillscores are added to the normalized spatiotemporal 

skillscores to form a combined objective skill estimate. The objective skill estimates 

are then normalized to form the BMA weights for the combined approach (BMA-

COM). An example of the weightings calculations for the BMA-NAO and BMA-

COM approaches is given in Table 7.5. 

 

Winter temperature 2071-2100

Model HadRM3P-a RCAO-H HIRHAM-E5 ARPEGE-a RCAO-E4
Mean 7.42 8.12 6.63 6.96 10.12

 

Weighting information: BMA-SS
Spatial r 0.53 0.88 0.55 0.57 0.88
Temporal r 1.00 1.00 1.00 0.99 0.99
Overall squared 
skill score 0.58 0.88 0.60 0.61 0.87

BMA-SS weights 0.16 0.25 0.17 0.17 0.25

Weighting information: BMA-NAO
NAO skill score 0.33 0.66 0.99 0.66 0.99
NAO squared skill 
score 0.11 0.44 0.98 0.44 0.98

BMA-NAO weights 0.04 0.15 0.33 0.15 0.33

Weighting information: BMA-COM
SS+NAO 0.20 0.40 0.50 0.32 0.58
BMA-COM weights 0.10 0.20 0.25 0.16 0.29  

Table 7.5: Example of BMA-NAO and BMA-COM  weightings using winter temperature data for the 
A2 scenario. 
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7.5 RESULTS: FUTURE CLIMATE PROJECTIONS 

USING DIFFERING WEIGHTING SCHEMES  

7.5.1 Winter (DJF) temperature projections: A2 scenario 
Figure 7.2 shows a deterministic AEM projection for winter temperature 

under the A2 emissions scenario for 2071-2100. In this approach, no information 

generated from the control period assessments are used to inform the projection and 

all subjective decisions about whether bias is correctable or how to weight models 

are avoided. However, there is no likelihood attached to the projection. Should a 

decision-maker choose the mean ensemble or a particular model for developing 

adaptation policies, any decision based on either of these selections is likely to lead 

to under- or over-adaptation. Additionally, none of the uncertainty attached to the 

projection is accounted for. In this case, it is clear that one model, RCAO-E4, 

projects a very different outcome from the other models, which in turn affects the 

AEM.  

Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection (2071-2100)
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Figure 7.2: Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection 
based on these models for winter mean temperature under the A2 emissions scenario. Systematic 

bias has not been corrected and no skill information is used to construct the likelihood of individual 
projections. The grey line denotes observed winter mean temperature in the control period 1961-

1990. 
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In the control period, RCAO-E4 exhibited a systematic bias and correcting 

for this in the future projections may result in a more robust outcome. Therefore, 

although the decision to correct or weight output is a subjective one, it may be 

justifiable to develop more reliable projections.  

Figure 7.3 illustrates the contributions of the models under different 

weighting schemes. HIRHAM-E5 has a low spatiotemporal skill score, but a high 

NAO skill estimate. As such, in the BMA-SS projection, this model contributes less 

than in the BMA-NAO or BMA-COM projections. Conversely, RCAO-H scores 

highly in terms of its spatiotemporal skill score but is not as skilful at representing 

the NAO.  

 

Comparison of model weights using varying levels of skill information

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

RCAO-E4 0.25 0.33 0.29

ARPEGE-a 0.17 0.15 0.16

HIRHAM-E5 0.17 0.33 0.25

RCAO-H 0.25 0.15 0.20

HadRM3P-a 0.16 0.04 0.10
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Figure 7.3: Comparison of model weights using varying levels of skill information for winter mean 
temperature under the A2 emissions scenario. Systematic bias is corrected and scores indicate 

model skill based on performance in the present day. 

 
Figures 7.4 shows the BMA-EQ(a), BMA-SS(b), BMA-NAO(c) and BMA-

COM(d) ensemble projections. For this parameter, season and emissions scenario, 

the shape of the ensemble PDF varies little when different weighting schemes are 

applied.  
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A2 winter temperature projections (2071-2100) 
BMA-EQ RCM likelihood distributions and ensemble projection distribution (2071-2100)
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BMA-SS RCM likelihood distributions and ensemble projection distribution (2071-2100)
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Figure 7.4: Weighted RCM likelihood distributions and weighted ensemble projection distribution 
for winter mean temperature under the A2 emissions scenario, using a) BMA-EQ weighting and b) 

BMA-SS weighting. Systematic bias is corrected. The grey line denotes observed winter mean 
temperature in the control period 1961-1990 and the red dot denotes the most likely future 

projection. 

 
 

 
a) BMA-EQ RCM likelihood distributions and ensemble projection distribution 

 
b) BMA-SS RCM likelihood distributions and ensemble projection distribution 
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A2 winter temperature projections (2071-2100) 
BMA-NAO RCM likelihood distributions and ensemble projection distribution (2071-2100)
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BMA-COM RCM likelihood distributions and ensemble projection distribution (2071-2100)
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Figure 7.4 (continued): Weighted RCM likelihood distributions and weighted ensemble projection 
distribution for winter mean temperature under the A2 emissions scenario, using c) BMA-NAO 

weighting and d) BMA-COM weighting. Systematic bias is corrected. The grey line denotes 
observed winter mean temperature in the control period 1961-1990 and the red dot denotes the 

most likely future projection. 

 

 
c) BMA-NAO RCM likelihood distributions and ensemble projection distribution 

 

 
d) BMA-COM RCM likelihood distributions and ensemble projection distribution 
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The most likely temperature value, represented by the red dot, falls between 

6.8 and 7oC in all cases. However, the data underlying the averages changes 

significantly when different weightings are used, with different models emerging as 

the most influential in each weighting scheme. For example, HIRHAM-E5 is more 

influential when BMA-NAO weighting is used compared with BMA-SS weighting. 

Conversely, HadRM3P-a has a higher weight under BMA-SS weighting than it does 

under BMA-NAO weighting (Figure 7.3). Due to these differences, the contribution 

of each model to the ensemble PDF varies under each weighting scheme. Though 

similar results can be obtained for a mean projection even when the underlying data 

varies, but if there is to be confidence in the mean projection, the underlying data 

must be assessed and combined according to the relative merits and deficiencies of 

the models. 

 

7.5.2 Winter (DJF) temperature projections: B2 scenario 
Figure 7.5 shows the AEM projection for winter temperature under the B2 

emissions scenario. As no HIRHAM-E5 B2 data is available, only four simulations 

are used, changing the weights and contributions of each model. Again, RCAO-E4 

has a significant effect on the AEM. Although a lack of convergence with other 

models is not a reason to disregard a model, when one projection has such a 

significant effect on the AEM, it is important to be as certain as is possible of the 

skill of that model. There is a definite argument for correcting the systematic bias 

RCAO-E4 appeared to exhibit in the control period. Figure 7.6 illustrates the 

contributions of the various models under different weighting schemes. RCAO-H has 

high spatiotemporal skill scores but is not as skilful as other models at representing 

the NAO.  RCAO-E4 is very skilful at capturing the effects of the NAO and has high 

spatiotemporal skill scores and when the scores are combined, it is the most reliable 

and therefore the most influential model in the ensemble.  

Figures 7.7 show the BMA-EQ(a), BMA-SS(b), BMA-NAO(c) and BMA-

COM(d) ensemble projections. Systematic bias is corrected in all these projections. 

The choice of weighting has a large effect on the shape of the ensemble PDF. The 

four models appear to form two separate peaks, with RCAO-E4 and HadRM3P-a 
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both peaking at approximately 7.2 to 7.6oC while RCAO-H and ARPEGE-a have 

most likely values of approximately 5.7oC and 6.3oC respectively.  

Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection
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Figure 7.5: Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection 

based on these models for winter mean temperature under the B2 emissions. Systematic bias has not 
been corrected and no skill information is used to construct the likelihood of individual projections. 

The grey line denotes observed winter mean temperature in the control period 1961-1990. 
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Figure 7.6: Comparison of model weights using varying levels of skill information for winter mean 

temperature under the B2 emissions scenario. Systematic bias is corrected and scores indicate 
model skill based on performance in the present day. 

 

 
Unaltered RCM mean projections and arithmetic ensemble mean (AEM) 
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B2 winter temperature projections (2071-2100) 

Equal weights RCM likelihood distributions and equal weights ensemble projection distribution
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BMA-SS weighted RCM likelihood distributions and ensemble projection distribution
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Figure 7.7: Weighted RCM likelihood distributions and weighted ensemble projection distribution 
for winter mean temperature under the B2 emissions scenario, using a) BMA-EQ weighting and b) 

BMA-SS weighting. Systematic bias is corrected. The grey line denotes observed winter mean 
temperature in the control period 1961-1990 and the red dot denotes the most likely future 

projection. 
 
 

a) BMA-EQ weighted RCM likelihood distributions and ensemble projection distribution 

b) BMA-SS weighted RCM likelihood distributions and ensemble projection distribution 
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B2 winter temperature projections (2071-2100) 
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Figure 7.7 (continued): Weighted RCM likelihood distributions and weighted ensemble projection 

distribution for winter mean temperature under the A2 emissions scenario, using c) BMA-NAO 
weighting and d) BMA-COM weighting. Systematic bias is corrected. The grey line denotes 

observed winter mean temperature in the control period 1961-1990 and the red dot denotes the 
most likely future projection. 

d) 

 
c) 
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When these models are combined, the resulting distribution is bimodal, but 

the degree of bimodality depends on the weighting scheme applied. For example, 

when all models are weighted equally (Figure 7.7a), the influence of RCAO-E4 is 

constrained by the equal inclusion of the other models and as such, the peak at 7.5oC 

is not very well developed.  However, when weights are introduced, the high scores 

of RCAO-E4 in both spatiotemporal metrics and NAO representation (Figure 7.6) 

make it a more influential model and the ensemble PDF takes on a much more 

pronounced bimodal shape, which is most apparent using the BMA-NAO approach 

(Figure 7.7c). For this parameter, season and emissions scenario, the shape of the 

ensemble PDF and the conclusions that might be drawn from it vary significantly 

when different weighting schemes are applied, making it especially important that 

the weightings chosen are genuinely representative of the predictive skill of the 

model and do not occur because of error cancellation.  

 

7.5.3 Summer (JJA) mean temperature: A2 emissions scenario  
Figure 7.8 shows a deterministic AEM projection for summer temperature 

under the A2 emissions scenario. For this parameter, season and emissions scenario, 

the AEM, represented by the black dashed line, is not overly influenced by any one 

model. There is a cluster of models around 16.4 to 17.2oC and one model each side 

of that cluster that could be considered an outlier. However, as there is a diverging 

model on both sides, the projections converge towards a central value. Of course, the 

deterministic approach reflects little information about the potential range of 

projections, which is why information about the likelihoods associated with the 

individual models needs to be included in the ensemble projection. 

Figure 7.9 illustrates the contributions of the various models under different 

weighting schemes. Skill at modelling the summer spatial pattern for temperature is 

now incorporated into the weighting, which alters the BMA-SS and BMA-COM 

weights. RCAO-E4 and RCAO-H are less skilful at simulating the summer spatial 

pattern than at simulating the winter spatial pattern and so have less influence in the 

calculation of summer projections. Figure 7.10 shows the BMA-EQ(a), BMA-SS(b), 

BMA-NAO(c) and BMA-COM(d) ensemble projections. 
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Figure 7.8: Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection 
based on these models for summer mean temperature under the A2 emissions scenario. No skill 
information is used to construct the likelihood of individual projections. The grey line denotes 

observed winter mean temperature in the control period 1961-1990. 
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Figure 7.9: Comparison of model weights using varying levels of skill information for summer mean 
temperature under the A2 emissions scenario. Systematic bias is corrected and scores indicate 

model skill based on performance in the present day. 
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Figure 7.10: Weighted RCM likelihood distributions and weighted ensemble projection distribution 
for summer mean temperature under the A2 emissions scenario, using a) BMA-EQ weighting and b) 
BMA-SS weighting. The grey line denotes observed winter mean temperature in the control period 

1961-1990 and the red dot denotes the most likely future projection. 
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Figure 7.10 (continued): Weighted RCM likelihood distributions and weighted ensemble projection 
distribution for summer mean temperature under the A2 emissions scenario, using c) BMA-NAO 

weighting and d) BMA-COM weighting. The grey line denotes observed winter mean temperature in 
the control period 1961-1990 and the red dot denotes the most likely future projection. 
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Systematic bias is corrected in all these projections. As for the winter A2 

projections, the distribution PDF has a single peak. The tails of the distribution PDF 

are quite long, ranging from 13 to 21oC with a most likely projection of 

approximately 16.5oC regardless of the weighting system used. However, an 

interesting feature is that the heaviness of the upper tail varies depending on the 

weighting system used. Under BMA-SS weighting, the upper tail is thinner (Figure 

7.10b), suggesting that these higher projections for temperature have a low likelihood 

associated with them, yet weighting based on skill scores alone has the potential to 

be quite unreliable. Under BMA-NAO weighting, the influence of RCAO-E4 is 

greater (Figure 7.9), contributing to a significantly heavier tail (Figure 7.10c). This 

means that higher levels of probability are attached to the upper extremes of the 

ensemble PDF. An increase in summer temperatures under climate change is likely 

to have a range of impacts for areas such as water resource management and health, 

with the extent of the impacts depending largely on the degree of temperature 

change. Therefore it is important that the likelihoods associated with summer 

temperature projections are robust, particularly on the upper tail of the distribution. 

 

7.5.4 Summer (JJA) mean temperature: B2 emissions scenario 
Figure 7.11 shows a deterministic AEM projection for summer temperature under the 

B2 emissions scenario. Similar to the A2 summer projection, the AEM is not 

particularly influenced by any one model and the individual model projections 

converge towards a central value, however there is no information contained in such 

a projection about the likelihood associated with the outcome. Figure 7.12 illustrates 

the contributions of the various models under different weighting schemes. There is a 

significant difference between the weights associated with RCAO-E4 under the 

BMA-SS and BMA-NAO weighting schemes. As HIRHAM-E5 is not available with 

B2 forcing, RCAO-E4 becomes the most skilful model for representing the NAO. 

However, this model is not as skilful when it is scored based on spatiotemporal 

metrics. The varying weights have significant effects on the probabilistic climate 

projections.  Figure 7.13 shows the BMA-EQ, BMA-SS, BMA-NAO and BMA-

COM ensemble projections. Under this emissions scenario, the choice of weighting 

has a large effect on the shade of the ensemble PDF.  
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Figure 7.11: Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection 
based on these models for summer mean temperature under the B2 emissions scenario. No skill 
information is used to construct the likelihood of individual projections. The grey line denotes 

observed winter mean temperature in the control period 1961-1990. 
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Figure 7.12: Comparison of model weights using varying levels of skill information for summer 
mean temperature under the B2 emissions scenario. Systematic bias is corrected and scores 

indicate model skill based on performance in the present day. 
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B2 summer temperature projections (2071-2100) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 d

en
sit

y

Temperature (oC)

a) BMA-EQ RCM likelihood distributions and equal weights ensemble projection distribution

HadRM3P-a

RCAO-H

ARPEGE-a

RCAO-E4

Weighted 
projection PDF

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 d

en
sit

y

Temperature (oC)

b) BMA-SS weighted RCM likelihood distributions and ensemble projection distribution

HadRM3P-a

RCAO-H

ARPEGE-a

RCAO-E4

Weighted 
projection PDF

 
Figure 7.13: Weighted RCM likelihood distributions and weighted ensemble projection distribution 
for summer mean temperature under the B2 emissions scenario, using a) BMA-EQ weighting and b) 
BMA-SS weighting. The grey line denotes observed winter mean temperature in the control period 

1961-1990 and the red dot denotes the most likely future projection. 
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Figure 7.13 (continued): Weighted RCM likelihood distributions and weighted ensemble projection 

distribution for summer mean temperature under the B2 emissions scenario, using c) BMA-NAO 
weighting and d) BMA-COM weighting. The grey line denotes observed winter mean temperature in 

the control period 1961-1990 and the red dot denotes the most likely future projection. 
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When equal weights or skill-score-based weights are applied, the ensemble 

PDF has a heavy upper tail and a most likely value for future temperature of 15.7oC. 

This value is slightly lower than the AEM of 16.1oC. However, when BMA-NAO or 

BMA-COM weighting is applied, the contribution of RCAO-E4 becomes much 

greater and the influence of other models which are less skilful at representing the 

NAO is constrained (Figure 7.12). As a result, the weighted ensemble PDF becomes 

bimodal, with peaks at 15.7oC and 17.6oC. The bimodal PDF is most pronounced for 

BMA-NAO weighting (Figure 7.13c) and less pronounced using BMA-COM 

weighting (Figure 7.13d). 

It appears that under the B2 forcing scenario, the shape of the temperature 

ensemble PDF in both winter and summer is significantly influenced by the choice of 

weighting scheme. Therefore it is vital that the weightings chosen are genuinely 

representative of the predictive skill of the model. There is a clear argument for 

choosing the BMA-COM approach as more information about model skill in the 

present day is incorporated into this weighting scheme that the others.  

 

7.5.5 Winter (DJF) precipitation projections: A2 scenario 
Figure 7.14 gives the deterministic AEM projection for winter precipitation 

under the A2 emissions scenario. As with previous deterministic projections, the 

range of possible outcomes is not reflected. Figure 7.15 illustrates the contributions 

of the models under different weighting schemes. When only skill scores are 

considered, the models appear to have similar levels of skill, with the exception of 

ARPEGE-a. When skill at representing the NAO is also taken into account, the 

weightings vary more.  

Figure 7.16 shows the BMA-EQ(a), BMA-SS(b), BMA-NAO(c) and BMA-

COM(d) ensemble projections. HadRM3P-a, RCAO-H and RCAO-E4 all receive a 

systematic bias correction as their spatial r scores in the present day were 0.7 or 

above and their bias was greater than 10% of observed winter precipitation.  
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Figure 7.14: Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection 

based on these models for winter mean precipitation under the A2 emissions scenario. Systematic 
bias has not been correction and no information is used to construct the likelihood of individual 

projections. 
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Figure 7.15: Comparison of model weights using varying levels of skill information for winter mean 

precipitation under the A2 emissions scenario. Systematic bias is corrected and scores indicate 
model skill based on performance in the present day. 

 



 257

 

A2 winter precipitation projections (2071-2100) 
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Figure 7.16: Weighted RCM likelihood distributions and weighted ensemble projection distribution 
for winter mean precipitation under the A2 emissions scenario, using a) BMA-EQ weighting and b) 
BMA-SS weighting. The grey line denotes observed winter mean temperature in the control period 

1961-1990 and the red dot denotes the most likely future projection. 
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Figure 7.16 (continued): Weighted RCM likelihood distributions and weighted ensemble projection 

distribution for winter mean precipitation under the A2 emissions scenario, using c) BMA-NAO 
weighting and d) BMA-COM weighting. The grey line denotes observed winter mean temperature in 

the control period 1961-1990 and the red dot denotes the most likely future projection 
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When equal weights or skill-score-based weights are applied, the ensemble 

PDF is normal-shaped. When BMA-NAO or BMA-COM weightings are used, this 

distribution becomes slightly less peaked. In the first two projections (Figures 7.16 a 

and b), the HadRM3P-a projection dominates. The 2071-2100 output from this 

model has a smaller standard deviation compared to other models, meaning that 

precipitation projections from this model are more likely to fall nearer the mean 

value. This results in a likelihood distribution with a greater peak relative to other 

models.This feature has an impact on the shape of the ensemble PDF under the 

BMA-EQ and BMA-SS approaches. However, HadRM3P-a demonstrated little skill 

in the NAO assessment in Chapter 6. As such, its weighting under the BMA-NAO 

and BMA-COM approaches is lower than the other models (Figure 7.15) and the 

lower weighting dampens its influence on the final weighted projection.  

In this instance, likelihood associated with the ensemble PDF was influenced 

by the projections of HadRM3P-a, yet the NAO assessment indicates that this model 

does not perform well in simulating the large-scale drivers of Irish climate. As such, 

its likelihood function is potentially over-confident and the reliability of the weighted 

ensemble PDF is in turn compromised. However, the advantage of the Bayesian 

approach is that further information about model skill, such as performance at 

simulating the NAO, can be incorporated into the projection to reflect more fully the 

state of knowledge about model skill. 

 

7.5.6 Winter (DJF) precipitation projections: B2 scenario 
Figure 7.17 illustrates the deterministic AEM projection for winter 

precipitation under the B2 emissions scenario. While the AEM reflects the median of 

the individual ensemble projections, the method offers little information about the 

range and likelihood of projections. Figure 7.18 illustrates the contributions of the 

various models under different weighting schemes. Figure 7.19 shows the BMA-EQ, 

BMA-SS, BMA-NAO and BMA-COM ensemble projections. The overall shape of 

the weighted ensemble PDF in all four cases is a normal shape with an elongated 

upper tail. However, the precise characteristics of the curve vary depending on the 

weighting used.  
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Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection
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Figure 7.17: Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection 
based on these models for winter mean precipitation under the B2 emissions. Systematic bias has 

not been correction and no information is used to construct the likelihood of individual projections. 
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Figure 7.18: Comparison of model weights using varying levels of skill information for winter mean 

precipitation under the B2 emissions scenario. Systematic bias is corrected and scores indicate 
model skill based on performance in the present day. 
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B2 winter precipitation projections (2071-2100) 

BMA-EQ RCM likelihood distributions and ensemble projection distribution
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BMA-SS weighted RCM likelihood distributions and ensemble projection distribution
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Figure 7.19 : Weighted RCM likelihood distributions and weighted ensemble projection distribution 
for winter mean precipitation under the B2 emissions scenario, using a) BMA-EQ weighting and b) 
BMA-SS weighting. The grey line denotes observed winter mean temperature in the control period 

1961-1990 and the red dot denotes the most likely future projection. 
 

a) 

b) 
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B2 winter precipitation projections (2071-2100) 
BMA-NAO weighted RCM likelihood distributions and ensemble projection distribution
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BMA-COM weighted RCM likelihood distributions and ensemble projection distribution
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Figure 7.19 (continued): Weighted RCM likelihood distributions and weighted ensemble projection 
distribution for winter mean precipitation under the B2 emissions scenario, using c) BMA-NAO 

weighting and d) BMA-COM weighting. The grey line denotes observed winter mean temperature in 
the control period 1961-1990 and the red dot denotes the most likely future projection. 
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When equal weights or skill-score-based weights are applied, the ensemble 

PDF is quite similar with a most likely value of between 4.0 and 4.2mm/day, 

although the BMA-SS PDF is more peaked. (Figure 7.19 a and b) Again, HadRM3P-

a has a very peaked likelihood distribution and when combined with a skilful 

spatiotemporal skill score, the resultant ensemble PDF appears more confident, with 

increased likelihood associated with the most likely projection.  

However, the projection may actually be over-confident, as the addition of 

NAO skill information into the weighting changes the projection considerable. 

HadRM3P-a demonstrated a low level of skill in simulating the NAO, therefore its 

lower weighting when this information is included dampens the initial high 

confidence associated with its projection, limiting its influence on the weighted 

ensemble PDF. Instead, RCAO-E4 becomes the key contributor to the ensemble 

PDF, as this model captured the NAO quite well (Figure 7.18). As such, the 

projection becomes heavier in the upper tail, signifying an enhanced level of 

likelihood associated with values at the upper end of the projection range (Figure 

7.19c). The most likely projected precipitation value under BMA-NAO weighting is 

4.3mm/day. The PDF is less peaked, signifying a decrease in the level of likelihood 

associated with the most likely projection. When both skill scores and NAO 

information are combined in the BMA-COM weightings, the most likely projected 

precipitation value is approximately 4.1mm/day (Figure 7.19d). 

 

7.5.7 Summer (JJA) mean precipitation: A2 emissions scenario  
Figure 7.20 illustrates the deterministic AEM projection for summer 

precipitation under the A2 emissions scenario. The AEM projects a decrease in 

rainfall, with the projection of HadRM3P-a lowering the average projection. 

However, in the control period, HadRM3P-a was found to be a dry model. Therefore, 

the application of the BMA technique has the potential to greatly increase the 

reliability of this projection. Figure 7.21 illustrates the contributions of the various 

models under different weighting schemes. Figure 7.22 shows the BMA-EQ(a), 

BMA-SS(b), BMA-NAO(c) and BMA-COM(d) ensemble projections. The overall 
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shape of the weighted ensemble PDF in all four cases is a normal shape, though the 

precise characteristics of the curve vary depending on the weighting used.  
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Figure 7.20: Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection for 

summer mean precipitation under the A2 emissions scenario. No skill information is used to 
construct the likelihood of individual projections. 
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Figure 7.21: Comparison of model weights using varying levels of skill information for summer 

mean precipitation under the A2 emissions scenario. Systematic bias is corrected and scores 
indicate model skill based on performance in the present day. 
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A2 summer precipitation projections (2071-2100) 
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Figure 7.22: Weighted RCM likelihood distributions and weighted ensemble projection distribution 
for summer mean precipitation under the A2 emissions scenario, using a) BMA-EQ weighting and 

b) BMA-SS weighting. The grey line denotes observed winter mean temperature in the control 
period 1961-1990 and the red dot denotes the most likely future projection 

n. 
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A2 summer precipitation projections (2071-2100) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 d

en
sit

y

Precipitation (mm/day)

c) BMA-NAO weighted RCM likelihood distributions and ensemble projection distribution

HadRM3P-a

RCAO-H

HIRHAM-E5

ARPEGE-a

RCAO-E4

Weighted 
projection PDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 d

en
sit

y

Precipitation (mm/day)

d) BMA-COM weighted RCM likelihood distributions and ensemble projection distribution

HadRM3P-a

RCAO-H

HIRHAM-E5

ARPEGE-a

RCAO-E4

Weighted 
projection PDF

 

Figure 7.22 (continued): Weighted RCM likelihood distributions and weighted ensemble projection 
distribution for summer mean precipitation under the A2 emissions scenario, using c) BMA-NAO 

weighting and d) BMA-COM weighting. The grey line denotes observed winter mean temperature in 
the control period 1961-1990 and the red dot denotes the most likely future projection 

 
 
 
. 
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When equal weights or skill-score-based weights are applied, the ensemble 

PDF is heavier on the lower tail, suggesting that extreme low values of precipitation 

are more likely than extreme high values of precipitation under the A2 scenario 

(Figure 7.22a and b). The influence of HadRM3P-a is evident here. This model 

tended towards drier conditions in the control period, though there was no significant 

systematic bias found or corrected for. However, it is important to note that bias in 

the control period may not be representative of bias under future forcing conditions. 

Model errors and biases may not stay constant under different forcing conditions and 

as such, the skill scores calculated for the control period may not reflect the skill of 

the model in a future time period. Incorporating other forms of skill assessment into 

the projection may add to the reliability of the projection 

The addition of NAO skill information into the weighting results in a more 

confident projection, illustrated by enhancement of the distribution peak. As 

HadRM3P-a demonstrated a low level of skill in simulating the NAO (Figure 7.21), 

its influence on the weighted ensemble PDF is dampened. The most likely projected 

precipitation value under BMA-NAO weighting is approximately 2.15mm/day, a 

decrease of 0.3mm/day compared with the control period (Figure 7.22c). This is a 

12% decrease, amounting to 9mm less precipitation over the course of a month. 

However, it must be noted that while this is the value with the highest likelihood 

associated with it, there is a range of both higher and lower values modelled by the 

RCMs and the full range of these outcomes must be considered for the purposes of 

robust climate planning. 

 

7.5.5 Summer (JJA) mean precipitation: B2 emissions scenario 
` Figure 7.23 illustrates the deterministic AEM projection for summer 

precipitation under the B2 emissions scenario. The model RCAO tends towards 

wetter conditions than observed in the control period, while HadRM3P-a tends 

towards much drier conditions. As such, the projection converges to a central value. 

The model RCAO-E4 tended towards slightly wetter conditions in the control period 

while HadRM3P-a exhibited a dry bias.  
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Figure 7.23: Unaltered RCM mean projections and arithmetic ensemble mean (AEM) projection 

based on these models for summer mean precipitation under the B2 emissions scenario. Systematic 
bias has not been correction and no information is used to construct the likelihood of individual 

projections. 
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Figure 7.24: Comparison of model weights using varying levels of skill information for summer 

mean precipitation under the B2 emissions scenario. Systematic bias is corrected and scores 
indicate model skill based on performance in the present day. 
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B2 summer precipitation projections (2071-2100) 
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Figure 7.25: Weighted RCM likelihood distributions and weighted ensemble projection distribution 
for summer mean precipitation under the B2 emissions scenario, using a) BMA-EQ weighting and 

b) BMA-SS  weighting. The grey line denotes observed winter mean temperature in the control 
period 1961-1990 and the red dot denotes the most likely future projection. 
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B2 summer precipitation projections (2071-2100) 
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Figure 7.25 (continued): Weighted RCM likelihood distributions and weighted ensemble projection 

distribution for summer mean precipitation under the B2 emissions scenario, using c) BMA-NAO 
weighting and d) BMA-COM weighting. The grey line denotes observed winter mean temperature in 

the control period 1961-1990 and the red dot denotes the most likely future projection. 
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However, when the spatial r score signifies that there is not a strong co-

variation between the observed and modelled pattern in the present day, the bias 

patterns cannot be considered systematic and are not corrected for.While forming 

projections using the relative change within the model would possibly overcome 

such errors, such an approach makes the unverifiable assumption that the relative 

change within the model is the climate change signal and that errors will not 

fluctuate over time. Inevitably, any method used to develop projections of future 

climate is susceptible to uncertainties of different kinds and communication of these 

uncertainties becomes the key issue.  

Figure 7.24 illustrates the contributions of the various models under different 

weighting schemes. Figure 7.25 shows the BMA-EQ(a), BMA-SS(b), BMA-NAO(c) 

and BMA-COM(d) ensemble projections. The overall shape of the weighted 

ensemble PDF varies considerably depending on the weighting used.  When equal 

weights are applied (Figure 7.25a), the ensemble PDF is heavy on the upper tail, but 

when skill scores are used (Figure 7.25b), the distribution starts to take on a bi-modal 

shape. HadRM3P-a, which has a smaller standard deviation in the future than the 

other models and simulated drier summer conditions in the control period that the 

other models, is a key contributor to this projection. The addition of NAO skill 

information into the weighting results in a distribution curve that is approximately 

normal. As RCAO-E4 modelled the NAO with considerable skill in the control 

period, it becomes the key contributor to the projection when NAO weights are used 

(Figure 7.24). As HadRM3P-a demonstrated a low level of skill in simulating the 

NAO, its influence on the weighted ensemble PDF is dampened. 

In this instance, neither skill scores or NAO information alone offer an 

optimal approach to generating a projection, as the most influential models in both 

cases are outlying models with a degree of uncertainty attached to their projections. 

The combined weighting approach may offer enhanced reliability and the Bayesian 

methodology offers the ability to quantify the uncertainty associated with these 

divergent precipitation signals and combine them into a single PDF. The most likely 

projected precipitation value under BMA-COM weighting is approximately 

2.07mm/day, a decrease of 0.38mm/day or 15% compared with the control period 

(Figure 7.25d).  Again, while this is the value with the highest likelihood associated 
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with it under the BMA-COM weighting approach, there is a range of both higher and 

lower projections to be taken into account. 

 

7.6 RESULTS: FUTURE CLIMATE PROJECTIONS 

WITH INCREASED ENSEMBLE SIZE 

7.6.1 Winter (DJF) mean temperature: A2 emissions scenario 
Projections of future winter temperature for the A2 emissions scenario using 

the full suite of available PRUDENCE simulations are given in Figure 7.26. These 

projections are calculated using the AEM(a), BMA-EQ(b) and BMA-SS(c) 

approaches. Weights which include NAO skill estimates cannot be applied as the 

NAO analysis carried out in Chapter 6 was conducted for a selected sample of 

models. The AEM approach (Figure 7.26a) shows how the deterministic means of 

each model lie relative to each other. Most models converge towards a central value 

but there are some clear outliers, namely the models driven by ECHAM-4/OPYC 

(RCAO-E4 and HIRHAM-E4) and CHRM. However, the convergence of the 

majority should not be taken as an indication of skill by itself, as the prevalence of 

models driven by HadAM3H makes the ensemble somewhat lacking in 

independence. Both the BMA-EQ and the BMA-SS (Figure 7.26 b and c) approaches 

produce a normal-shaped ensemble PDF with a most likely value of 6.8oC. These 

results are quite similar to the PDFs obtained using the selected sub-sample of 

models. The inclusion of a larger number of simulations in the calculation of the 

ensemble projection is often understood to provide an increase in reliability. 

However, this is not always the case and a smaller sample of more independent 

simulations should be considered a more robust ensemble than a larger sample of 

simulations that share common characteristics. 
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a) AEM approach: 2071-2100 winter mean temperature under A2 scenario with 19 simulations 
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b) BMA-EQ approach: 2071-2100 winter mean temperature under A2 scenario with 19 simulations 
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c) BMA-SS approach: 2071-2100 winter mean temperature under A2 scenario with 19 simulations 
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Figure 7.26: Projections for 2071-2100 winter mean temperature using a) AEM, b) BMA-EQ and c) 

BMA-SS approaches and 19 simulations. For a) and b), probability density  for individual 
projections are plotted on the left, to allow model PDFs to be distinguished. Red dot denotes most 

likely projection. Grey dashed line denotes observed mean in the control period. 
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7.6.2 Winter (DJF) mean temperature: B2 emissions scenario 
Projections of future winter temperature for the B2 emissions scenario, 

calculated using the AEM(a), BMA-EQ(b) and BMA-SS(c) approaches respectively 

and using the full suite of available PRUDENCE simulations, are given in Figure 

7.27. With fewer simulations available for the B2 scenario, and particularly less 

models driven by HadAM3H, this ensemble is more independent that the A2 

ensemble. Under the AEM approach (Figure 7.27a) the deterministic means 

converge less than they do for the A2 scenario. 

Both the BMA-EQ (Figure 7.27b) and the BMA-SS (Figure 7.27c)  

approaches produce a ensemble PDF which is approximately bell-shaped, though the 

upper tail is quite heavy. This is a very different shape to the bimodal PDF which 

emerges when the smaller sample is used. However, despite the increase in ensemble 

size, the lack of independence in the additional models means that these PDFs should 

be treated with caution. As there are more simulations available which using the 

HadCM3 AOGCM as a driver and less that used ECHAM4-OPYC, the influence of 

the models driven by ECHAM4-OPYC is constrained. In this case, the smaller 

sample of more independent simulations should be considered a more reliable 

projection. 

 

7.6.3 Summer (JJA) mean temperature: A2 emissions scenario 
Projections of future summer temperature for the A2 emissions scenario 

using the full suite of available PRUDENCE simulations are given in Figure 7.28. 

Weighted projection results are quite similar to the PDFs obtained using the select 

sample of models, with the BMA-EQ (Figure 7.28b) and BMA-SS (Figure 7.28c) 

approaches resulting in a bell-shaped PDF with long tails at both ends. 

As evidenced by the AEM graph (Figure 7.28a), the additional models tend to 

converge towards the same central value; therefore the inclusion of more models 

does not extend the range of the climate projections. Using the AEM approach 

(Figure 7.28a), the individual deterministic projections fall mostly between 15.4oC 

and 17.3oC, with the RCAO-E4 and HIRHAM-E4 appearing to diverge from the 

other models. However, again, this should not be considered a measure of skill as 

intermodel similarities have a great impact on how models converge or diverge.   



 275

 

a) AEM approach: 2071-2100 winter mean temperature under B2 scenario with 8 simulations 
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b) BMA-EQ approach: 2071-2100 winter mean temperature under B2 scenario with 8 simulations 
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c) BMA-SS approach: 2071-2100 winter mean temperature under B2 scenario with 8 simulations 
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Figure 7.27: Projections for 2071-2100 winter mean temperature using a) AEM, b) BMA-EQ and c) 

BMA-SS approaches and 8 simulations. Red dot denotes most likely projection. Grey dashed line 
denotes observed mean in the control period. 
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a) AEM approach: 2071-2100 summer mean temperature under A2 scenario with 19 simulations 
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b) BMA-EQ approach: 2071-2100 summer mean temperature under A2 scenario with 19 simulations 
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c) BMA-SS approach: 2071-2100 summer mean temperature under A2 scenario with 19 simulations 
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Figure 7.28: Projections for 2071-2100 summer mean temperature using a) AEM, b) BMA-EQ and 

c) BMA-SS approaches and 19 simulations. For a) and b), model likelihood PDFs are plotted on the 
left, to allow them to be distinguished. Red dot denotes most likely projection. Grey dashed line 

denotes observed mean in the control period. 
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Additionally, the convergence of many models towards the same value has the 

potential to induce overconfidence in the data. If the models were independent, then 

their convergence could be interpreted as strong evidence that the projection they 

converge towards is the most likely outcome. However as the models have 

significant similarities, their convergence is more likely to be a result of this lack of 

independence. This result illustrates the importance of interpreting the ensemble 

projection properly and understanding and communicating the uncertainties 

associated with the projection. 

 

7.6.4 Summer (JJA) mean temperature: B2 emissions scenario 
Projections of future summer temperature for the B2 emissions scenario, 

using the full suite of available PRUDENCE simulations, are given in Figure 7.29. 

Using the AEM approach, the ECHAM-4/OPYC models RCAO-E4 and HIRHAM-

E4 again appear to be outliers compared to the rest of the ensemble (Figure 7.29a). 

The BMA-EQ and the BMA-SS approaches produce a PDF which is approximately 

bell-shaped, with a heavy upper tail (Figure 7.29b and c). The bimodal shape 

obtained with the smaller sample is indiscernible. Yet when one looks closely at the 

individual model likelihood functions, two distributions are evident. The ECHAM4-

driven models simulate a very different distribution yet this characteristic is not 

evident in the ensemble PDF. The abundance of models driven by HadRM3P 

effectively cancels this feature out. Such an outcome provides strong motivation to 

select models for independence rather than sheer numbers. If models with shared 

characteristics must be used to generate ensemble projections, model independence 

should be quantified in some way and incorporated into the projection.  
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a) AEM approach: 2071-2100 summer mean temperature under B2 scenario with 8 simulations 
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b) BMA-EQ approach: 2071-2100 summer mean temperature under B2 scenario with 8 simulations 
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c) BMA-SS approach: 2071-2100 summer mean temperature under B2 scenario with 8 simulations 
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Figure 7.29: Projections for 2071-2100 summer mean temperature using a) AEM, b) BMA-EQ and 
c) BMA-SS approaches and 8 simulations. Red dot denotes most likely projection. Grey dashed line 

denotes observed mean in the control period. 
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7.6.5 Winter (DJF) mean precipitation: A2 emissions scenario 
Projections of future winter precipitation for the A2 emissions scenario using 

19 simulations are given in Figure 7.30. Before systematic bias is corrected for 

(Figure 7.30a), two of the HadRM3P simulations model drier conditions than 

observed in the control period. After systematic bias is corrected, all models agree on 

an increase in winter precipitation. However, the degree of change varies between 

models. When likelihood distributions are constructed for each model, first with 

BMA-EQ weighting (Figure 7.30b) and then with BMA-SS weighting (Figure 

7.30c), those driven by ECHAM-4/OPYC have a markedly different distribution to 

the other models. These distributions are flatter, signifying that precipitation values 

in these models are more dispersed about the mean than in the other models. This is 

to be expected as the standard deviation from which the distributions are constructed 

is dependent on the variability of the 2071-2100 data. As illustrated in Chapters 4 

and 6, the interannual variability of the models in the control period is influenced 

greatly by the choice of GCM, therefore while the RCMs vary in terms of projection 

mean, projected standard deviation is similar for models with the same GCM driver, 

resulting in similar likelihood distributions. 

 

7.6.6 Winter (DJF) mean precipitation: B2 emissions scenario 
Projections of future winter precipitation for the B2 emissions scenario using 

8 simulations are given in Figure 7.31. These projections are calculated using the 

AEM(a), BMA-EQ(b) and BMA-SS(c) approaches. With less simulations available, 

there is greater independence between the simulations used in this ensemble. 

Comparing Figure 7.31a and Figure 7.31b, correcting the systematic bias reduces the 

range of the individual projections, but the range of potential increase is still quite 

large. When systematic bias is corrected, the models simulate a precipitation increase 

of between 0.1mm/day and 1.5mm/day. This is a considerable range, amounting to 

between 3mm and 45mm of excess accumulated precipitation over a month. 

Consider the model HIRHAM-a, which modelled spatial precipitation patterns in the 

control period with skill, exhibiting only a 0.1mm/day bias.  
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a) AEM approach: 2071-2100 winter mean precipitation under A2 scenario with 19 simulations 

0

0.2

0.4

0.6

0.8

1

1.2

Pr
ob

ab
ilit

y 
de

ns
ity

Precipitation (mm/day)

HadRM3P-a
HadRM3P-b
HadRM3P-c
PROMES
RACMO
CHRM
CLM
REGCM
REMO
RCAO-H
HIRHAM-a
HIRHAM-b
HIRHAM-c
HIRHAM-E5
ARPEGE-a
ARPEGE-b
ARPEGE-c
RCAO-E4
HIRHAM-E4
AEM

 

b) BMA-EQ approach: 2071-2100 winter mean precipitation under A2 scenario with 19 simulations 
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c) BMA-SS approach: 2071-2100 winter mean precipitation under A2 scenario with 19 simulations 
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Figure 7.30: Projections for 2071-2100 winter mean precipitation using a) AEM, b) BMA-EQ and 
c) BMA-SS approaches and 19 simulations. For a) and b), individual likelihood PDFs are plotted 
on the left, to allow them to be distinguished. Red dot denotes most likely projection. Grey dashed 

line denotes observed mean in the control period. 
 



 281

a) AEM approach: 2071-2100 winter mean precipitation under B2 scenario with 8 simulations 
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b) BMA-EQ approach: 2071-2100 winter mean precipitation under B2 scenario with 8 simulations 
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c) BMA-SS approach: 2071-2100 winter mean precipitation under B2 scenario with 8 simulations 
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Figure 7.31: Projections for 2071-2100 winter mean precipitation using a) AEM, b) BMA-EQ and 
c) BMA-SS approaches and 8 simulations. Red dot denotes most likely projection. Grey dashed line 

denotes observed mean in the control period. 
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As this bias amounted to less than 10% of observed winter mean precipitation, it 

was not corrected for. Based on its skill in the control period, there is reason to have 

confidence in HIRHAM-a’s projections. However, HIRHAM-a models no 

discernible difference between winter mean precipitation for 2071-2100 under the B2 

emissions scenario and winter mean precipitation for 1961-1990.  

As there are no observations to compare future projections to, there is no way to 

determine which projections are closest to simulating the actual response of the 

climate system to the B2 forcing scenario. Interestingly, all the models modelled 

winter spatial precipitation patterns in the control period with skill and those that 

exhibited significant bias in the control period had this bias corrected. Therefore, the 

spread in projections reflects the varying response of each model to increased 

forcing. Results suggest that the response of the parameterizations governing winter 

precipitation in these models may not remain the same through time and under 

different forcing conditions, leading to a divergence of projections. As such, the 

representation of winter precipitation is clearly a key uncertainty for the RCMs. 

Projections using the BMA-EQ and BMA-SS approaches yield similar results. In 

light of the uncertainty surrounding this climate parameter and the limited 

information supplied by skill score-based assessments, the BMA-COM approach of 

combining skill scores with skill estimates based on the ability of models to capture 

large-scale atmospheric drivers may be more suitable and provide increased 

reliability in this instance. 

 

7.6.7 Summer (JJA) mean precipitation: A2 emissions scenario 
Projections of future summer precipitation for the A2 emissions scenario 

using 8 simulations are given in Figure 7.32. As spatial r values in the control period 

for summer mean precipitation were low to moderate in the majority of models, only 

two models, PROMES and CLM have their bias corrected in the future projections. 

As such, there is a degree of uncertainty in the A2 summer mean precipitation 

projections that cannot be accounted for. In the absence of evidence of systematic 

behaviour, applying a systematic correction to a random bias could lead to 

overconfidence, as the outcomes are constrained yet as the response of the model 
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parameterizations to the change in forcing is potentially non-stationary, uncertainty is 

still not accounted for.  

a) AEM approach: 2071-2100 summer mean precipitation under A2 scenario with 19 simulations 
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b) BMA-EQ approach: 2071-2100 summer mean precipitation under A2 scenario with 19 simulations 
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c) BMA-SS approach: 2071-2100 summer mean precipitation under A2 scenario with 19 simulations 
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Figure 7.32: Projections for 2071-2100 summer mean precipitation using a) AEM, b) BMA-EQ and 
c) BMA-SS approaches and 19 simulations. For a) and b), individual likelihood PDFs are plotted 
on the left, to allow them to be distinguished. Red dot denotes most likely projection. Grey dashed 

line denotes observed mean in the control period. 
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The majority of models simulate a decrease in precipitation relative to 

observed mean precipitation in the control period. Individual model projections for 

this climate parameter tend to converge to a central value (Figure 7.32a) and when 

likelihood functions are calculated, they tend to be quite confident. This is due to the 

small simulated standard deviations for this parameter in the 2071-2100 period. All 

models have a future projection standard deviation of 0.77mm/day or less, indicating 

that modelled precipitation values fall close to the mean modelled value in these 

RCMs. Both BMA-EQ and BMA-SS weighting produce a slight decrease in summer 

mean precipitation under the A2 scenario (Figures 7.32b and c), although the relative 

influence of the various ensemble members varies depending on the weighting used. 

 

7.6.8 Summer (JJA) mean precipitation: B2 emissions scenario 
Projections of future summer precipitation for the B2 emissions scenario 

using 8 simulations are given in Figure 7.33. Again, results highlight the complexity 

of determining which models are most skilful in simulating an altered climate state. 

Consider RCAO-E4 and HIRHAM-E4: RCAO-E4 simulates 0.45mm/day or 

13.5mm/month less precipitation under A2 forcing than it does under B2 forcing, 

while HIRHAM-E4 simulates 0.27mm/day or 8.1mm/month less. These responses 

are quite different, yet their skill scores for this parameter in the control period do not 

indicate that either model is significantly more skilful than the other. 

Both BMA-EQ and BMA-SS weighting produce a slight decrease in summer 

mean precipitation under the B2 scenario (Figures 7.33b and c), which is smaller 

than the decrease calculated for the A2 scenario. Again, the relative influence of the 

various ensemble members varies depending on the weighting used. Most noticeably, 

PROMES becomes much more influential under BMA-SS weighting, due to its high 

spatial r score of 0.84 in the control period. 
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a) AEM approach: 2071-2100 summer mean precipitation under B2 scenario with 8 simulations 
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b) BMA-EQ approach: 2071-2100 summer mean precipitation under B2 scenario with 8 simulations 
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c) BMA-SS approach: 2071-2100 summer mean precipitation under B2 scenario with 8 simulations 
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Figure 7.33: Projections for 2071-2100 summer mean precipitation using a) AEM, b) BMA-EQ and 
c) BMA-SS approaches and 8 simulations. Red dot denotes most likely projection. Grey dashed line 

denotes observed mean in the control period. 
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7.7 DISCUSSION AND CONCLUSIONS  

In this chapter, a systematic framework for the development of future climate 

scenarios was proposed which take into account information about different aspects 

of model skill. The results of the skill assessments presented in earlier chapters were 

used to inform the ensemble generation process. The BMA-EQ approach assumes 

that all models are equally skilful or could potentially be equally skilful under a 

future forcing scenario, given that a model’s performance under a difference forcing 

scenario may be more as well as less skilful compared to the control period. The 

BMA-SS approach assumes that skill in the control period is indicative of skill at 

modelling future climate states and weights projections according to the skill scores 

obtained from an assessment of the model control simulations. The BMA-NAO 

approach utilizes objective estimates of model skill at simulating the NAO, having 

identified that the skill score-based assessments did not detect deficiencies in the 

simulation of large-scale climate drivers. Finally, the BMA-COM approach 

recognizes the potential value of both skill scores and further analysis of the large 

scale drivers and weights models using a combination of the two assessment 

techniques.  

The first section of results in this chapter focused on the impact of using 

different weighting schemes based on varying levels of information about model 

performance. To assess the impact of different weighting schemes, ensemble 

projections were generated using the five case study models assessed in Chapter 6, so 

that the information gained about their representation of the NAO could be 

incorporated into the Bayesian Model Averaging technique. Under the A2 emissions 

scenario, the mean ensemble PDF for both winter and summer temperature changes 

little when different weighting schemes are used. However, the relative contributions 

of the ensemble members underlying that mean projection do vary (Figures 7.4 and 

7.10). 

An important finding is that under the B2 scenario, the mean ensemble PDF 

changes considerably for both winter and summer temperature, when different 

weighting schemes are applied (Figures 7.7 and 7.13). In summer especially, the 

BMA-SS approach of weighting based on aspects of performance in the control 

period results in an approximately normal curve with a single peak. However, when 
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weights are employed that reflect the ability to capture the effects of the NAO in the 

control period (BMA-NAO), the resulting ensemble PDF is bi-modal. In this 

instance, the models which perform best at simulating the NAO model a very 

different distribution to the models that perform skillfully at simulating the mean 

seasonal spatial pattern. 

Interestingly, in the control period the models were largely skilful at 

simulating the domain-wide mean summer temperature value, with modelled values 

falling within a 1.2oC range, but less skilful at simulating the actual spatial patterns 

that underlie that mean. However, under the A2 emissions scenario, individual model 

average projections are spread over a 2.6oC range. The increased divergence of mean 

projections for the 2071-2100 period suggests that the spatial bias patterns that gave 

rise to a skilful mean in the control period do not remain constant through time. 

The projections for 2071-2100 precipitation were also calculated. Again, the 

mean projection for both winter and summer precipitation under the B2 scenario 

changes considerably when different weighting schemes are used.  While there is 

little difference in the shape of the ensemble PDF under the A2 emissions scenario, 

the relative contribution of the individual ensemble members underlying that mean 

projection varies when different weighting schemes are used. As such, there is 

uncertainty attached to these projections that is not immediately apparent. 

In summer, precipitation projections are affected to a greater extent by 

varying the weighting scheme. As such, when different weighting schemes are used, 

different models emerge as the most influential in the ensemble. Due to the 

differences in their projections, this variability greatly alters the shape of the 

ensemble PDF. Under the A2 emissions scenario, varying the weighting scheme 

impacts the overall likelihood and the shape of the lower tail of the precipitation 

distribution (Figure 7.19). Using the BMA-EQ approach, the lower tail of the 

precipitation ensemble PDF under A2 forcing is heavy, meaning that a greater 

likelihood of occurrence is attached to these extremely low values. Using the BMA-

NAO approach, the lower tail of the precipitation ensemble PDF is considerably 

lighter. As such, there is uncertainty over the likelihood attached to extremely low 

levels of precipitation in summer. Although these values are not the most probable, 

having much lower likelihood attached to them than the most likely projection, such 



 288

low levels of summer precipitation would have considerable impacts associated with 

them if they were to occur. Therefore, it is in the interests of robust climate planning 

to take these values into consideration.  

Under the B2 emissions scenario the ensemble precipitation PDF varies with 

respect to both shape and maximum likelihood when different weightings are used 

(Figure 7.25). Under BMA-NAO and BMA-COM weighting, the distribution is 

approximately normal while under BMA-EQ and BMA-SS weighting, the 

distribution is skewed to the left. Projections for the B2 forcing scenario have a 

greater degree of uncertainty attached to them, particularly with regards to the upper 

extremes of the precipitation distribution, as the choice of weighting scheme 

introduces another layer of variability into the climate modelling process. Again, this 

creates the potential for significant mal-adaptation to occur if inappropriate skill 

metrics are employed or uncertainties are not suitably quantified. 

These findings highlight the need to move towards more comprehensive 

weighting approaches that incorporate information about model skill in areas beyond 

the mean climate state. The research presented in previous chapters has already 

demonstrated that skill score-based assessments of the mean climate state may not 

identify deficiencies in the simulation of large-scale climate drivers. As such, 

formulating future climate scenarios based on skill scoring assessments was found to 

be an unreliable approach and techniques which incorporate a fuller picture of model 

skill into the formulation of projections are required. 

The effect of variation in the weighting scheme is not always visible in the 

mean ensemble PDF, which highlights another important point. Even when the 

choice of weighting scheme does not change the shape of the ensemble PDF 

considerably, the data underlying the projection may be altered as different models 

become the key contributors to the projections. When such uncertainties are 

associated with the underlying data, it is highly important that these uncertainties are 

characterized and communicated, even if the mean projection is not largely affected. 

For example, the confidence that might be attached to a ensemble PDF which is 

dominated by a single RCM projection would be very different to the confidence that 

might be attached to a ensemble PDF in which all RCM converge and contribute 

equally, yet the overall shape of the ensemble PDF could be very similar.  
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As such it is important, when providing information for decision-makers, to 

consider not only the ensemble PDF but also how that PDF is formed. Rather than 

placing emphasis on the climate scenario as an end product, scenario development 

should be viewed as a process in which each step merits understanding and clarity. 

Not only is this in the interests of robust decision-making, it is in the interests of 

scientific credibility to ensure that any ensemble averaging technique offers a 

genuine increase in reliability rather than masking uncertainties in the data.  

The impact of ensemble size was also examined and while ensemble size has 

little impact on the A2 climate projections for temperature, incorporating the full 

suite of model projections into the B2 scenario further dampens the potential bi-

modal shape. This is due to the abundance of models driven by the HadAM3H 

AGCM. Similarly, the addition of extra models smoothes the B2 summer 

precipitation ensemble PDF, making it approximately normal in shape. 

As illustrated in earlier chapters, while RCMs driven by the same GCM vary 

in terms of spatial patterns, their temporal evolution over the simulation period is 

very similar, leading to a lack of independence between model projections. The 

application of ensemble techniques relies on the assumption that each simulation 

represents a different potential future outcome and that be including more 

projections, more of these potential future climates are sampled. When there is a lack 

of independence in the projections, the same outcomes are being sampled repeatedly, 

leading to over-confidence rather than increased reliability and this is illustrated quite 

effectively by these results. 

There are still benefits to be had from expanding ensemble size, as including 

more potential futures in an ensemble naturally increases the level of confidence 

attached with the ensemble projection. However, ensemble size should not be 

increased at the expense of independence. The addition of models that are not 

independent of each other does not result in greater sampling of potential future 

outcomes but only serves to falsely increase confidence in the shared characteristics 

of the projection. 

The independence of ensemble members is not often assessed or discussed in 

climate modelling studies, yet it has a large effect on how robust the ensemble 

projection actually is. If an ensemble projection is overly-influenced by one family of 
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models or one GCM driver and problems are later found within those models, the 

reliability of the projection as a whole is subsequently compromised. If ensemble 

members are independent, the effects of individual model errors are isolated and can 

be accounted for. There is a clear argument for placing a greater focus on model 

independence and for including an assessment or discussion of model independence 

in climate modelling studies that utilize ensemble approaches.  
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CHAPTER 8  
FINAL CONCLUSIONS 

 
RCMs have the potential to be a very useful tool to inform adaptation 

decision-making and test subsequent adaptation strategies. Yet RCMs cannot model 

climate precisely due to the inherent complexity of the climate system. If 

uncertainties in climate change projections are left unaccounted for, it is likely that 

any subsequent decisions made may lead to mal-adaptation. Therefore, improved 

information about the relative strengths and weaknesses of various models is 

essential and such information needs to be quantified and incorporated into ensemble 

projections of future climate 

The focus of this thesis was to develop a systematic framework for the 

construction of future scenarios utilizing regional climate models, which takes 

account of model uncertainty. To evaluate model skill and identify sources of 

uncertainty, the RCMs’ ability to simulate key aspects of the climate such as means 

and variability were initially assessed. The models were then assessed in their ability 

to represent the underlying large-scale climate dynamics, to determine whether skill 

in simulating the mean climate state is a reliable indicator of model performance. 

By identifying the spatial and temporal scales at which different models are 

informative and determining whether model skill is genuine or a result of error 

cancellation, ensemble projections were then constructed which take account of 

uncertainties stemming from model variability (Figure 8.1). Deterministic 

approaches such as the Arithmetic Ensemble Mean (AEM) incorporate no 

information about model skill or the likelihood associated with individual members 

in the ensemble and as such, do not provide a reliable basis for testing adaptation 

strategy.  For example, if one model in an ensemble projects an increase in 

precipitation and another model in the ensemble projects a decrease in precipitation, 

this presents an issue for adaptation decision-making as the optimum strategies for 

such projections are very different. However, when information about the likelihood 

associated with each projection is included, projections can provide a more robust 

basis for decision making.   



 292

 

Figure 8.1: Schematic diagram of approaches to scenario development  

 

When skill-scores such as the spatial and temporal r scores are used to weight 

individual ensemble members using a Bayesian Model Averaging approach (BMA-

SS), the ensemble PDF is also potentially unreliable as the findings from Chapter 6 

have shown that such skill scores may not reflect the skill of the model in simulating 

large-scale drivers of climate. Weighting models based on their ability to capture 

large-scale drivers (BMA-NAO) offers a more reliable approach. The optimum 

approach suggested by this research is to combine traditional skill scores with 

analysis of the large-scale drivers and weight individual ensemble members using 

both forms of skill information (BMA-COM). Looking forward, there may be 

opportunities to further refine this methodology by including other forms of skill 

assessment in the Bayesian approach to create future climate scenarios that have a 

greater level of confidence associated with them, which can aid decision-making and 

adaptation. 

Following on from the work presented in this thesis, a number of 

recommendations can be made that have the potential to make RCMs a more reliable 

tool for decision-making and enable robust adaptation decisions to be developed and 

tested. This chapter summarizes the key findings and recommendations of this thesis 

and highlights areas that could benefit from further research. 
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8.1 SUMMARY OF RESULTS 

Throughout this thesis, a range of regional climate models have been assessed 

based on their ability to simulate aspects of Irish climate in the control period 1961-

1990. Spatial and temporal characteristics of two key impact variables, temperature 

and precipitation, have been assessed, along with the model-simulated North Atlantic 

Oscillation. Table 8.1 summarizes the findings of the skill assessments carried out. 

Across the full range of metrics applied to both temperature and precipitation, 

and considering also the representation of the simulated NAO, the most skilful model 

for simulating the Irish domain is HIRHAM-E5. This model possesses moderate to 

high skill in almost all metrics, with the exception of wintertime interannual 

variability. As interannual variability has been shown to be highly dependant on the 

choice of driving GCM, it is important that GCM skill and GCM-RCM interaction be 

considered when choosing a GCM-RCM configuration. 

RCAO-E4 is also a skilful model in many regards, particularly in the 

simulation of NAO behaviour and impacts on regional climate. It models seasonal 

spatial patterns for both temperature and precipitation with skill in all seasons. 

Although it exhibits systematic bias on the seasonal means, this kind of bias is much 

easier to account for than randomly occurring biases. The model is less skilful at 

simulating patterns of interannual variability.  As this aspect of the climate is 

governed by GCM choice, coupling the regional model RCAO with the driving 

combination used by HIRHAM-E5 may potentially result in a more skilful 

simulation.  

As the analysis delved further into the data, errors emerge that are not 

apparent from an initial overview. For example, all models simulate the annual 

climatology for 1961-1990 with very high skill for temperature and less skill for 

precipitation.  
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MSLP Temperature Precipitation DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON
HadRM3P-a HadRM3P-a

HadRM3P-b HadRM3P-b

HadRM3P-c HadRM3P-c

PROMES PROMES

RACMO RACMO

CHRM CHRM

CLM CLM

REGCM REGCM

REMO REMO

RCAO-H RCAO-H

HIRHAM-a HIRHAM-a

HIRHAM-b HIRHAM-b

HIRHAM-c HIRHAM-c

HIRHAM-E5 HIRHAM-E5

ARPEGE-a ARPEGE-a

ARPEGE-b ARPEGE-b

ARPEGE-c ARPEGE-c

RCAO-E4 RCAO-E4

HIRHAM-E4 HIRHAM-E4

DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON
HadRM3P-a

High skill
HadRM3P-b

HadRM3P-c

PROMES

RACMO

CHRM

Moderately skillful
CLM

REGCM

REMO

RCAO-H

HIRHAM-a

Low skill
HIRHAM-b

HIRHAM-c

HIRHAM-E5

ARPEGE-a

ARPEGE-b

ARPEGE-c

RCAO-E4

HIRHAM-E4

NAO+/- spatial  patterns

a) North Atlantic 
Oscillation b) Temperature 
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Table 8.1: Summary of model skill assessments showing (a) skill in simulating the North Atlantic 
Oscillation, (b) temperature metrics and (c) precipitation metrics. 

 



 295

When the analysis is undertaken on a seasonal basis, biases emerge in 

particular seasons and when the seasonal spatial data is examined, diverse spatial 

errors patterns emerge. These findings highlight the critical importance of scale in 

model verification. Even if the model output is to be used at a national scale, it is 

important to assess model skill on a range of spatial and temporal scales as a model 

may appear skilful at the national scale due to error cancellation at a grid-scale level. 

For example, all simulations in the ARPEGE sub-ensemble simulates summer mean 

precipitation with a low overall bias, yet simulates the spatial pattern of summer 

precipitation with very low skill, indicating that the skill these models display in 

simulating the summer mean precipitation is actually derived from error cancellation 

in the summer spatial data. 

Additionally, skill in simulating mean climate patterns may not be a robust 

indicator of model performance. HadRM3P-a displayed particularly low skill in 

simulating the effects of the NAO on regional winter climate. Yet it captured the 

mean spatial pattern of winter temperature and precipitation with skill. Evidently, a 

model may simulate the correct mean climate state for the wrong reasons, failing to 

capture the climate dynamics which underlie the mean state.   

As such, it is important when assessing climate model projections to look not 

only at the level of agreement between modelled and observed parameters, but also 

at how that skill arises. If a model is to provide a credible, robust basis for informing 

policy, it is not sufficient for it to simulate the current climate with skill; it must also 

be skilful for the right reasons. Such an assessment needs to quantify not only how 

modelled climate parameters such as temperature and precipitation compare to the 

observed, but also how skilfully the dynamics of the climate system are represented 

in a model.   

Given the range of skill displayed by the various models, it is essential to 

incorporate a measure of model performance into ensemble generation techniques. 

However, as skill scores do not provide a comprehensive picture of model skill, it is 

necessary to move past ensemble generation techniques which rely on this type of 

skill assessment alone.  Chapter 7 presented a systematic framework for the 

construction of future scenarios which takes account of both spatio-temporal skill 

scores and skill in simulating the large-scale dynamics of the climate. By adopting a 
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combined weighting approach in which both skill scores and the ability to simulate 

large-scale dynamics are taken into account, uncertainty associated with model skill 

may be accounted for more fully, resulting in a more robust climate projection. 

Ensemble PDFs generated using NAO skill information (BMA-NAO) and the 

combined weighting approach (BMA-COM) were compared to ensemble PDFs 

generated using the assumption of equal likelihood (BMA-EQ) and spatio-temporal 

skill scores alone (BMA-SS) (Figures 7.4, 7.7, 7.10, 7.13, 7.16, 7.19, 7.22 and 7.25). 

In several cases the choice of weighting scheme significantly affects characteristics 

of the mean ensemble PDF. The likelihood associated with the most probable 

projection, the shape of the distribution tails and even the shape of the entire PDF 

can be affected by this choice. 

Planning for future climate scenarios may involve the building of costly 

infrastructure such as reservoirs and water pipelines and when there is uncertainty 

surrounding the level of change, there is the potential for under- or over-adaptation to 

occur. As such, the choice of ensemble generation method is an important 

consideration with implications for the decision-making process.  

 

8.2 ISSUES FOR IMPACT ASSESSMENT 

8.2.1 Model development and validation issues 
The results of the skill assessments carried out in earlier chapters and 

summarized in section 8.1 illustrate that assessments of the mean climate state may 

not reveal deficiencies in the simulation of the large-scale climate. Similarly, models 

that display significant systematic biases in the control period may capture the 

patterns of large-scale variability quite well. For example, while ARPEGE-a 

simulated the mean climate state with skill, it failed to capture certain regional 

climate patterns associated with NAO positive and negative phases. Conversely, 

RCAO-E4 modelled considerable systematic temperature, precipitation and MSLP 

biases in the mean winter climate, but captured the effects of NAO variability with 

skill. Evidently, a large bias is not necessarily indicative of a less reliable model and 

more importantly, little to no bias does not always guarantee a skilful simulation. In 

light of these findings, a key question is how to identify a skilful model.  
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Assessments of the mean climate state are a less reliable way of determining 

skill. As data is averaged, errors in the data underlying the average value can be 

masked, as is the case when overestimation of a climate parameter in one part of the 

domain combines with underestimation in another part of the domain to create an 

apparently skilful average. When skill is derived from error cancellation rather than 

genuine ability to model the dynamics of the climate system, it cannot be depended 

upon to remain constant through time and under different forcing scenarios. As such, 

the assumption that the relative difference between the control and future period is 

the signal of climate change, an approach which is often applied in climate change 

studies, is inherently flawed. Knowledge of the bias patterns and the nature of errors 

in the control period can enable the reduction of systematic bias in the future period, 

though some uncertainty still remains as the bias patterns diagnosed in the control 

period may change over time. However, when a model exhibits random bias rather 

than systematic bias in the control period, it becomes more difficult to account for 

the uncertainty associated with such a model. 

When a model is assessed based on its ability to simulate a mean state, no 

information is obtained about how the model arrives at that mean state. The model 

may generate the right answer for the wrong reasons and as long as skill assessment 

focuses on the mean climate state rather than the process through which that 

simulation is generated, the true predictive skill of the model might never come to 

light. Though there is no way to have full confidence in a model’s ability to simulate 

a future climate state, assessing models on their ability to capture the dynamics of the 

climate system is likely to be a more comprehensive approach to skill assessment. 

Such an approach focuses on how the model captures the dynamics rather than the 

mean state of the climate. Of course, a model that simulates the dynamics of the 

climate system and the effect of large-scale drivers with skill may be less skilful at 

simulating the mean climate state, but it is much more preferable for a model to 

simulate the dynamics of the climate system with skill and model a biased mean 

climate state than model the dynamics of the climate system incorrectly and model 

an unbiased mean climate state. 

RCMs are dynamical models of the climate system and their main advantage 

is that they are supposed to simulate the response of the climate system to changes in 

forcing in a physically consistent manner. Therefore it is only logical that verification 
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focuses not on the mean climate state but on whether the model is approximating the 

dynamics and interactions of the real climate system.  

 

8.2.2 Ensemble methods 
Unlike many other climate modelling studies, this thesis has focused less on 

the actual scenarios generated and more on the uncertainty associated with them. 

Arithmetic Mean Ensembles (e.g. Gates et al., 1998; Rinke et al., 2006) are limited 

in their usefulness by the lack of probability associated with them. Therefore, 

probabilistic approaches using various weighting schemes were compared.  

The future scenarios generated in Chapter 7 demonstrate that using an “equal 

likelihoods” weighting scheme, which allows randomly biased models and skilful or 

systematically biased models to contribute equally to an ensemble projection, can 

produce the same mean future projection as a skill-based weighting scheme 

depending on the parameter and season in question. However, in some cases, the 

weighting scheme chosen has a noticeable effect on the shape of the ensemble PDF. 

The choice of which weighting scheme to use is somewhat subjective, but the least 

reliable must be the equal weighting scheme as it contains no information on the skill 

of ensemble members. 

When a model that is randomly biased is used in ensemble generation, the 

only way such a model can contribute to the overall skill of the ensemble is through 

error cancellation. These findings support the view of Hagedorn et al. (2005) that a 

large part of the ensemble’s superiority is due to error cancellation and suggests that 

the use of different models and the increased ensemble size is not as significant a 

factor, as proposed by Doblas-Reyes et al. (2000). This kind of “skill” is not due to 

genuine predictive ability and ensembles generated in this manner are potentially 

unreliable, as the error patterns in different models may change over time and may 

not cancel each other so effectively in a future climate simulation. By using a 

weighting scheme that penalizes random bias, the influence of these models can be 

constrained.  

Weighting schemes based on skill scores, such as the REA method (Giorgi 

and Mearns, 2003; Tebaldi et al., 2004) offer an improvement, but as already 
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discussed, skill score-based assessments of the mean climate state do not offer 

information on the ability of the model to simulate the climate system as a whole. 

Incorporating information about the skill of the model in simulating large-scale 

drivers and patterns of variability, which can be accomplished using the Bayesian 

Model Averaging approach, offers a methodology for further constraining models 

that lack predictive skill, allowing models that perform well at simulating the 

dynamics of the climate system in the control period to contribute most to the future 

ensemble PDF.  

It is also worth noting that even when the mean ensemble PDF is similar 

using different weighting methods, often the data underlying the mean ensemble 

PDF varies considerably, posing a question not just of ensemble reliability but of 

scientific credibility. It is not sufficient to communicate the final outcome, the 

ensemble PDF, to climate decision-makers without also including information on the 

data underlying that outcome. When projections generated using different techniques 

converge, the natural response is increased confidence in the projections. Therefore it 

is important that the climate scientist communicates the underlying uncertainties and 

internal variability of the ensemble projection, to minimize the potential for 

overconfidence.  

Climate scientists and decision-makers are largely aware of the concept of 

cascading uncertainty in climate impacts assessment (Henderson-Sellers, 1993; 

Jones, 2000b; Mitchell and Hulme, 1999), in which uncertain emissions 

concentrations, GCM variability and RCM variability lead to uncertainty in climate 

impacts and the methods by which modelled data is transformed into climate 

scenarios and impacts assessments are another procedure in that chain of 

uncertainties and inferences. As such, variability in ensemble generation methods is a 

source of uncertainty that must be accounted for. Climate projections cannot be 

presented as definitive outputs and must be understood to be one plausible outcome 

from a chain of subjective decisions. 

The projections also highlight the importance of model independence when 

generating climate scenarios. As illustrated in Chapters 4 and 5, models driven using 

the same GCM produce very similar simulations of interannual variability, which 

could result in overconfidence in the variability projected by an ensemble, if the 
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ensemble is dominated by models with the same GCM driver. To comprehensively 

assess the independence of ensemble members, other factors should also be taken 

into account, such as key parameterizations. Additionally, the sensitivity of model 

output to key parameterization schemes should be assessed, to determine how 

significant a factor parameterization choice is for various climatological processes 

and identify those parameterizations that are of critical importance to independence. 

It may in fact be inadvisable for different modelling institutions to share code and 

parameterizations, as this limits the independence of model simulations and in turn, 

limits the range of possible futures that can be sampled.  

 

8.2.3 Robust decision making 
A key question that emerges from this research is how to optimize the 

usefulness of regional climate models and simultaneously quantify the uncertainty 

associated with their outputs in order to reduce the potential for mal-adaptation.  

Certainly, treating uncertain projections as “predictions” of future climate is a 

flawed approach and this kind of deterministic thinking is best avoided. As such, the 

“top-down” approach to developing climate adaptation strategies, in which scenarios 

from climate models provide input on the climate impacts to be accounted for in 

adaptation strategy is an unsatisfactory approach to adaptation. Such an approach 

ultimately leads to poor decision-making where model outputs are conflicting or 

contradictory, with no associated likelihoods. Given the uncertainty associated with 

climate model outputs, founding climate policy and adaptation strategies on model 

outputs alone is inadvisable and it is especially important that a single model is not 

used as a basis for decision-making. Given the range of different projections 

generated by different models, utilizing a single model would lead to a large degree 

of uncertainty and a high potential for mal-adaptation. Additionally, given that 

communities are not homogeneous in terms of exposure to vulnerability, such as age 

and socio-economic status, individuals and groups within a community are likely to 

be affected to varying degrees by climate impacts (Yamin et al., 2005). Therefore, 

the diverse needs the community must take a central role in determining adaptation 

strategy (Smit and Wandel, 2006).  However, adopting the “bottom-up” approach to 

adaptation is not without limitations either, as formulating adaptation measures based 
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on the vulnerability and adaptive capacity of a community does not address the issue 

of whether the strategies implemented will be sufficient to withstand the impacts of a 

projected change in climate.  

Perhaps the optimum approach combines ideas from both top-down and 

bottom-up thinking. Decisions for future adaptation cannot be made without 

information about likely future climate, but if model outputs are considered as 

“predictions” of climate, without any regard for the associated uncertainties, this may 

lead to over or under-adaptation. An alternative approach would be to use climate 

model outputs to test the robustness of a range of adaptation measures to different 

degrees of climate change, to identify measures that are likely to be beneficial under 

a range of potential future scenarios. In the words of Rummukainen (2010): 

“RCMs are not a panacea, but a tool in the arsenal of climate 

science.” 

 

Uncertainty is likely to always remain a part of modelling climate impacts 

because while new research increases our understanding of the climate system, 

aiding in the development of climate models, there is also the potential for new 

research to reveal previously unknown processes and interactions, which would then 

need to be accounted for in models also. As such, rather than attempting to reduce 

uncertainty through research before adaptation decisions can be made, strategies are 

needed that enable robust decision-making even in the presence of uncertainty. 

 As climate change is an on-going concern, in order for decision making to be 

robust, it must also be an on-going process, as suggested by Baer and Risbey (2009). 

Correspondingly, projections from climate models should not be treated as static 

information but considered as subject to change and further refinement, as our 

understanding of the climate system and our ability to model it increases., 

Vulnerability should be reassessed at regular intervals and adaptive measures re-

evaluated using the most up-to-date data, to ensure that strategy evolves and adapts 

to emerging environmental hazards, such as climate change impacts. 
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8.3 FUTURE PERSPECTIVES 

Following on from the work presented in this thesis, various recommendations 

can be made for further refining climate models and for utilizing them responsibly in 

decision-making.  

 

8.3.1 Model development 
Where a model lacks predictive skill, only further development of the model 

dynamics and refinement of the parameterizations can result in a genuine 

improvement in model skill. In light of the errors identified in this study, the 

representation of large-scale climate drivers particularly stands out as an area where 

model development could potentially be focused to improve overall skill. 

As several models failed to capture the pressure, temperature and 

precipitation patterns associated with the North Atlantic Oscillation, further study of 

the large-scale drivers of regional climate and their representation in models is 

clearly a key research area. The variability and effects of the NAO has been the focus 

of much research (e.g. Hurrel, 1995; Lamb, 1987; Rodwell et al., 1999) yet the 

analysis presented in Chapter 6 suggests that representing this information in a 

realistic simulation of Northern European climate remains a challenge.  

In some regions, the nature of the large-scale circulation patterns and drivers 

themselves are still being investigated, making their inclusion in climate models even 

more challenging. For example, due to the complex orography and the location of the 

Alps in a transition region between the Atlantic Ocean, the Mediterranean Sea and 

the European continent, links between Alpine climate variability and large-scale 

circulations are still being explored (e.g. Efthymiadis et al., 2007; Quadrelli et al., 

2001). Additionally, the response of these large-scale drivers to anthropogenic 

forcing needs to be considered.  

As such, further research on the large-scale dynamics that influence the 

climate of a region may bring about important improvements in regional climate 

modelling. Models which capture the processes and dynamical properties of the 

climate system with genuine skill would provide a much more robust platform for 

subsequent decision-making and strategy testing. 
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8.3.2 Model verification 
A framework for robust model assessment is required, which distinguishes 

genuine skill from skill derived from error cancellation. A variety of metrics have 

been applied in this thesis for the purpose of assessing model skill, but the most 

insightful approach has been the investigative approach adopted in Chapter 6 to 

examine the model-simulated NAO.  

This is not to say that skill scores or assessments of the mean climate state do 

not have a place in model validation studies. These approaches provide a quick and 

comparable indication of skill across multiple models and form a quantitative basis 

for weighting model projections. However, that basis is only robust if the skill levels 

indicated by the scoring approach actually reflect the level of predictive skill the 

models possess. This is where a more in-depth analysis may prove more helpful. 

As large-scale modes of variability play such an important role in shaping 

regional climate patterns, it would be remiss not to include them in an analysis of 

model skill. One of the ways in which climate change may manifest is through a 

change in the variability or patterns associated with such climate modes, therefore if 

there is to be confidence in a model’s ability to simulate the future climate, it is 

desirable that the model capture such effects in the control period. This thesis took 

the example of the North Atlantic Oscillation as an important large-scale driver of 

climate over Western Europe. Similarly, in a regional climate model being used to 

simulate North American, South American or Asian climate, an ability to capture the 

effects of the El Niño-Southern Oscillation would be an important measure of skill.  

Yet even if a model captures the mean state and dynamic properties of the 

current climate quite well, there is no guarantee of its skill under different forcing 

conditions. Skill in simulating paleoclimates may offer a means of assessing ability 

under different forcing conditions and that information could also be incorporated 

into the Bayesian Model Averaging approach. Looking again beyond the mean 

climate state, the ability of models to capture the frequency, magnitude and duration 

of various extreme events may offer another more rigorous skill metric. Given the 

potential for climate change to exacerbate the already adverse effects of extreme 
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events, it is especially important that climate models capture their characteristics 

skilfully. 

 

8.4 LIMITATIONS OF RESEARCH  

Although this thesis has aimed to account for a greater portion of the 

uncertainty attached to model projections, utilizing a BMA approach to weight 

model outputs using different skill metrics and further refine projections, there is still 

potential for mal-adaptation if the underlying assumptions on which these projections 

are based are not understood.  

The focus of this thesis has been regional climate model variability and skill, 

but as discussed in previous chapters, the RCMs are part of a chain of processes and 

inferences. At the outset, the choice of emissions scenarios used would lead to 

different projections. The PDFs produced are a set of possible scenarios based on the 

A2 and B2 emissions scenarios, but there are other potential scenarios that give rise 

to different levels of anthropogenic emissions, and these potential futures are not 

accounted for.  

This thesis has highlighted that different metrics of skill may give different 

results for a selection of models. Models may be skilful in one statistic of climate, 

but lack skill in another aspect. This thesis has aimed to provide a comprehensive 

skill assessment; however it also acknowledges that the choice of which metrics to 

use to measure model skill is a subjective choice. Variations in skill scores may 

occur when a different set of metrics is applied and this could impact the priors used 

in the BMA approach, which could in turn yield different projections to those 

presented.  

Measures of model skill are also conditional on the specific boundary data, 

GCM and RCM approach. If the same RCMs are driven by different GCMs or forced 

using different observational data sets in the control period, the resulting simulations 

may display more or less skill that those analysed in this study. Similarly, even slight 

variations in the technical details or parameterizations of a model may yield different 

results and assessing variations such as these fell outside the scope of this thesis. 
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Another assumption underlying the BMA approach is the choice of 

distribution for the modelled likelihood functions. In this thesis, that normal 

distribution is chosen as the parameters under investigation were assessed using the 

Shapiro Wilks test for normality and were found to be normally distributed at the 

interannual timescale in the control period. As such, there is a logical basis for 

choosing the normal distribution for the modelled likelihood functions. However, 

users of these scenarios much be aware of this key assumption, as varying the 

distribution used is likely to lead to different outcomes also.  

 

8.5 APPLICATIONS OF PROBABILISTIC SCENARIOS 

In the past, when the observed record provided some indication of future 

events, return periods could be determined from the observation and this information 

could be used to inform decision-making. However, under increased anthropogenic 

emissions, this is no longer a valid option. Large-scale projects such as 

ENSEMBLES (Weisheimer et al., 2009) and climateprediction.net (Stainforth et al., 

2005) have produced a wealth of modelled output at both GCM and RCM scale. 

However, as there is no single “best” model, a key question is how to utilize output 

from different models in the most intelligent way.  

Various studies have utilized probabilistic methods to combine model output 

and develop climate impacts assessments, for example Fronzek et al. (2010) utilize 

probabilities of climate change based on AOGCM output to assess the impacts of 

climate change on palsa (peaty permafrost mounds containing permanently frozen 

ice lenses) disappearance in Fennoscandia. Similarly, New et al. (2007), utilized 

climateprediction.net data to form impacts assessments for the water resources sector 

using a probabilistic framework and illustrated that with probabilistic rather than 

deterministic information, a PDF can be estimated and utilized to calculate risk, for 

example the risk of high flow events in a particular catchment area, and inform risk-

based judgments. Another example is the work of Bouwer et al. (2010), which uses 

flood scenarios and projections of flooding probabilities under climate change along 

with projections of socioeconomic change and a simple damage model to assess 

changes in future flood risk under climate change for a case study area in The 
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Netherlands. Bouwer et al. (2010) finds that using loss-probability curves may be a 

more appropriate approach than using single loss estimates, as such estimates may 

lead to underestimation of the impact of very high losses.  

Where probabilities form a part of the risk assessment and decision-making 

processes, it is important to understand the uncertainties associated with probabilistic 

methods. The research presented in this thesis uses the results from a comprehensive 

skill assessment to weight probabilistic projections of climate change and 

demonstrates that the different approaches to measuring model performance may 

yield different weights and subsequent projections. Of course, any weighting scheme 

adds a further layer of uncertainty to the decision-making process, due to the 

subjective choices inherent in model skill analysis (Christensen et al., 2010; 

Kjellstrom and Giorgi, 2010). As such, there are inevitable subjective components to 

these and indeed any other probabilistic scenarios. Clearly, probabilistic scenarios of 

climate change derived from the modelled data are a key factor in the impacts 

assessments and variation in the methods used to formulate probabilistic scenarios 

may yield different results, making uncertainty in probabilistic scenarios a key issue 

for the impacts assessment and adaptation communities.  

Where climate adaptation requires investment in costly infrastructure, 

decision-makers are likely to look to models for the relevant probabilities for key 

variables in future climate scenarios, to provide a similar quantitative basis for 

decision-making. Yet if that information is based on a flawed model or ensemble of 

models, then it does not actually make a firm basis for establishing policy or making 

adaptation decisions. Clearly, an alternative approach to decision-making, which 

acknowledges the uncertainty of the situation, is required. Given the subjective 

elements and various assumptions underlying the PDFs of future climate, it is vital 

that any climate adaptation decisions informed by these scenarios are guided by the 

framework of robust decision-making. The framework outlined by Wilby and Dessai 

(2010) for developing climate adaptation options is an example of such a framework, 

in which adaptation options are formulated based on assessing institutional 

vulnerability, emphasizing both observed climatic and non-climatic drivers and then 

tested using narratives of both climatic and non-climatic change (Figure 8.3).  
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Figure 8.2: Conceptual framework for a robust decision-making approach to climate adaptation 
planning, illustrating the role of climate change scenarios.(Source: afterWilby and Dessai, 2010). 

 

As such, the probabilistic scenarios of future climate produced in this thesis 

have very real applications, providing the climate change narratives required to test 

adaptation options developed through the robust decision-making framework. Rather 

than applying models to determining what the mean climate state will be towards the 

end of this century, it is more appropriate to use models to assess which adaptation 

measures, based on the vulnerability and adaptive capacity of the community, are 

likely to remain robust under different scenarios of anthropogenic climate change. In 

the words of Tukey (1962: 13): 

“Far better an approximate answer to the right question, which 

is often vague, than an exact answer to the wrong question, 

which can always be made precise.”  
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Decisions can be further refined and strategy can be allowed to evolve based on 

testing using models and periodic reassessments of potential impacts, as certain 

scenarios become more or less likely.  

Given that the ensemble projections presented in Chapter 7 indicate changes 

in temperature and precipitation under anthropogenic forcing, for all the approaches 

applied, adaptation measures are certainly required. The question is not whether to 

act, but how to act, and how climate models can best be utilized in informing those 

actions. Following the robust decision-making framework, a number of ‘low-regret’ 

or ‘no regret’ adaptation measures, which are beneficial under a wide range of 

climate scenarios, could be tested against these climate change scenarios and 

subsequent decisions could be made with regards to implementation. Given that all 

probabilistic climate scenarios have inherent subjective or conditional components, 

the potential for mal-adaption can be reduced by adopting ‘low-regret’ or ‘no regret’ 

adaptation measures. 

Consider the water resources sector as an example. Lopez et al. (2009) found 

that ensemble approaches provide a better understanding of potential future 

conditions as they relate to water resources management, compared with 

deterministic approaches. Therefore, there is much potential for the PDFs of future 

climate presented in this thesis to be beneficial in relation to impacts assessments for 

this sector. Ireland is known to be vulnerable to regional water shortages at certain times 

of the year (Charlton et al., 2006) and the PDFs of future summer precipitation in 

Ireland show that the most likely outcome is a decrease in precipitation under both 

A2 and B2 emissions scenarios. As such, there are several potential adaptation 

measures that could be considered and tested against the climate change scenarios. 

For example, water efficiency across various sectors could be improved by managing 

and maintaining pipe and drainage systems more effectively. Additionally, water 

sources could be better protected from pollution, to maximize the available 

resources. If measures to improve the utilization of resources are found to be 

insufficient, further options may be explored. For example, the construction of new 

reservoirs or desalinization plants might be considered to create new water sources 

(Arnell and Delaney, 2006). 
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Climate model projections provide a viable way of assessing potential futures 

and informing impacts assessment and adaptation strategy. However, as the results of 

impacts assessments or adaptation strategy testing are inevitably influenced by the 

choice of modelled data, the choice of probabilistic methods and the inherent 

subjectivities of these techniques, it is vital that decision-makers are aware of the 

uncertainties associated with the data. Similarly, the climate modelling community 

must seek to combine and present modelled data such that much of the associated 

uncertainty is quantified and accounted for, that the underlying assumptions and 

conditions of the data are clear and the projections themselves are accessible and 

interpretable. To optimize the usefulness of regional climate models, an independent, 

rigorously verified ensemble should be used, weighted to reflect skill at simulating a 

variety of statistics and characteristics of the climate system.  

 

8.6 PRINCIPAL FINDINGS  

 The mean annual climatology cycle of temperature is simulated with high skill by 

all models. However, models exhibit less skill in simulating the annual 

climatology of precipitation. The majority of models exhibit a positive 

temperature bias in winter, while modelling the rest of the seasons with skill.  

 Empirical Orthogonal function analysis shows that the majority of models 

capture the key component patterns of temperature and precipitation, though the 

percentage variance attached to them may differ from the observed.  

 Interannual variability across all seasons is largely influenced by the choice of 

GCM driver and less so by the choice of RCM. 

 Bias patterns for mean sea level pressure in winter are largely influenced by the 

choice of GCM driver.  

 Representation of the effects of NAO positive and negative behaviour on regional 

climate is a key area of uncertainty, with only two out of the five case study 

models simulating the expected mean sea level pressure, temperature and 

precipitation patterns. 
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 Simulation of wind direction frequency and also the precipitation associated with 

different wind directions is also a key area of uncertainty. 

 Error cancellation is identified as a major source of uncertainty. In addition to 

spatial errors patterns resulting in a skilful mean, errors in the precipitation 

amounts associated with different wind directions are also observed to cancel out 

in certain models.  

 Validating models using skill scores and assessments of the mean fields of 

temperature and precipitation does not detect errors in the representation of large-

scale climate drivers. 

 Incorporating information about skill in modelling the large-scale climate drivers 

into future climate projections, rather than weighting projections based on skill-

scores alone, can provide a more robust basis for generating future climate 

scenarios. 

 For certain combinations of season, climate parameter and forcing scenario, the 

choice of weighting scheme has a noticeable effect on the shape of the future 

ensemble PDF, making this another source of uncertainty. 

 For other combinations of season, climate parameter and forcing scenario, the 

shape of the future ensemble PDF is not changed by applying different weighting 

schemes, but the relative contributions of the underlying models are altered.  

 Model independence is more important than the number of models when 

generating robust ensemble projections. 

 

 

8.7 FUTURE WORK 

 Further study of large-scale drivers of regional climate, such as the NAO, and 

their representation in models is a key research area. 

 Increased awareness of model independence is critical and the sensitivity of 

model output to key parameterization schemes should be assessed.  
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 To increase the confidence associated with ensemble projections, a wider range 

of model skill information should be systematically incorporated into ensemble 

weighting schemes. In addition to skill in simulating large-scale drivers, skill in 

modelling extreme events could also be used to assess skill and weight model 

output. Skill in modelling paleoclimates could also be assessed, though due to the 

uncertainties surrounding paleoclimate data and the limited availability of 

observations, a detailed assessment such as the analysis carried out in this thesis 

may not be feasible.  

 This thesis has presented a framework which accounts for RCM uncertainties in 

probabilistic future scenarios, however uncertainties remain at the emissions 

scenario and GCM scale which are beyond the scope of this thesis. While 

emissions-related uncertainties will always remain an unknowable factor, by 

applying the same framework to the driving GCMs, uncertainty stemming from 

GCM errors and variability may also be accounted for in the future scenarios.  
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APPENDIX A:  COMBINED A2 
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Figure A.1: Projections for winter temperature (2071-2100) using both the A2 and B2 scenarios 

and 9 simulations. Three different weighting schemes were applied: a) BMA-SS weighting, b) BMA-
NAO weighting and c) BMA-COM weighting. 
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A.2 SUMMER TEMPERATURE (2071-2100) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 d

en
sit

y

Temperature (oC)

a) BMA-SS weighted RCM likelihood distributions and ensemble projection distribution

B2 HadRM3P-a

B2 RCAO-H

B2 ARPEGE-a

B2 RCAO-E4

A2 HadRM3P-a

A2 RCAO-H

A2 HIRHAM-E5

A2 ARPEGE-a

A2 RCAO-E4

Weighted 
projection PDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 d

en
sit

y

Temperature (oC)

b) BMA-NAO weighted RCM likelihood distributions and ensemble projection distribution

B2 HadRM3P-a

B2 RCAO-H

B2 ARPEGE-a

B2 RCAO-E4

A2 HadRM3P-a

A2 RCAO-H

A2 HIRHAM-E5

A2 ARPEGE-a

A2 RCAO-E4

Weighted 
projection PDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty
 d

en
sit

y

Temperature (oC)

c) BMA-COM weighted RCM likelihood distributions and ensemble projection distribution

B2 HadRM3P-a

B2 RCAO-H

B2 ARPEGE-a

B2 RCAO-E4

A2 HadRM3P-a

A2 RCAO-H

A2 HIRHAM-E5

A2 ARPEGE-a

A2 RCAO-E4

Weighted projection 
PDF

 

Figure A.2: Projections for summer temperature (2071-2100) using both the A2 and B2 scenarios 
and 9 simulations. Three different weighting schemes were applied: a) BMA-SS weighting, b) BMA-

NAO weighting and c) BMA-COM weighting. 

 



 314

A.3 WINTER PRECIPITATION (2071-2100) 
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Figure A.3: Projections for winter precipitation (2071-2100) using both the A2 and B2 scenarios 
and 9 simulations. Three different weighting schemes were applied: a) BMA-SS weighting, b) BMA-

NAO weighting and c) BMA-COM weighting. 
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A.4 SUMMER PRECIPITATION (2071-2100) 
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Figure A.4: Projections for summer precipitation (2071-2100) using both the A2 and B2 scenarios 
and 9 simulations. Three different weighting schemes were applied: a) BMA-SS weighting, b) BMA-

NAO weighting and c) BMA-COM weighting. 
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