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Abstract

Seriation is a data analytic tool for obtaining a permutation of a set of objects

with the goal of revealing structural information within the set of objects. The

purpose of this thesis is to investigate and develop tools for seriation with the

goal of using these tools to enhance data visualisation.

The particular focus of this thesis is on �dendrogram seriation� algorithms.

A dendrogram is a tree-like structure used for visualising the results of a hi-

erarchical clustering and the order of the leaves in a dendrogram provides a

permutation of a set of objects. Dendrogram seriation algorithms rearrange

the leaves of a dendrogram in order to �nd a permutation that optimises a

given criterion.

Dendrogram seriation algorithms are widely used, however, the research in

this area is often confusing because of inconsistent or inadequate terminology.

This thesis proposes new notation and terminology with the goal of better

understanding and comparing dendrogram seriation algorithms.

Seriation criteria measure the goodness of a permutation of a set of objects.

Popular seriation criteria include the path length of a permutation and mea-

suring anti-Robinson form in a symmetric matrix. This thesis proposes two

new seriation criteria, �lazy path length� and �banded anti-Robinson� form,

and demonstrates their e�ectiveness in improving a variety of visualisations.

The main contribution of this thesis is a new dendrogram seriation algo-

rithm. This algorithm improves on other dendrogram seriation algorithms and

is also �exible because it allows the user to either choose from a variety of se-

riation criteria, including the new criteria mentioned above, or to input their

own criteria.

Finally, this thesis performs a comparison of several seriation algorithms,

the results of which show that the proposed algorithm performs competitively

against other algorithms. This leads to a set of general guidelines for choosing

the most appropriate seriation algorithm for di�erent seriation interests and

visualisation settings.
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Chapter 1

Introduction

Every day, data analysts are faced with the task of understanding, extracting

and presenting useful information from data. Crucial to this task are data

visualisation tools because they reveal patterns, trends and other features that

are simply not shown in tables of data.

Given the importance of data visualisation, it is surprising how often one

sees poorly constructed graphics. Graphics often su�er from misleading or

inconsistent scales on axes, missing text, unnecessary �jazzing-up� of graphics

using 3-D or shading e�ects, inappropriate use of colour or poorly ordered data.

To combat these and other graphical errors many books and papers provide

general guidelines for constructing graphics (see, for example, Cleveland 1985,

1993, Chambers et al. 1983, Tufte 2001, Brewer 1994 and Zeileis et al. 2008).

Reordering data is another technique for improving data visualisation.

Graphics are generally constructed using the default ordering of variables,

cases or categories corresponding to the order in which they are listed in the

data. However, graphics are greatly improved when the data is systematically

reordered. For example, Cleveland (1993) ordered categories by their median

in multi-panel dot plots, Friendly (1994) ordered categories in mosaic displays

by their score on the �rst correspondence analysis direction and Hurley (2004)

ordered variables in scatterplot matrices so that interesting panels were po-

sitioned close to the main diagonal. In each of these situations, reordering

revealed patterns in data that were not obvious when the default order of

variables or categories was used.

Seriation is a term used for describing the systematic reordering of data

and is de�ned as follows:

De�nition 1.1. Seriation is a data analytic tool for obtaining a permutation

of a set of objects with the goal of revealing structural information within the

set of objects.
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There are other terms and techniques related to seriation. For example,

in archaeology, relative dating is a method for determining the chronological

order of artifacts or past events. In ecology, ordination is the collective term

for multivariate techniques that arrange objects along axes.

This chapter continues with a simple example of seriation and then de-

scribes the main issues and history of seriation. This chapter also outlines

the speci�c areas of seriation to which this thesis contributes and gives the

organisation of the rest of the thesis.

1.1 Seriation example

Der and Everitt (2001, pg. 307) described a dataset, where a large number of

people in the UK were surveyed and asked which of thirteen characteristics they

would associate with seven European countries. For demonstration purposes,

this example uses only nine of the characteristics. Table 1.1 contains the data,

where the ijth entry is the percentage of people who think that characteristic

i matches country j. One topic of interest for this dataset is �nding out which

countries are considered similar or dissimilar by the surveyed people.

Table 1.1: This table shows a subset of the data described in Der and Everitt
(2001, pg. 307). The ijth entry is the percentage of surveyed people who think
characteristic i matches country j.

UK Italy Spain Germany Ireland France Holland

Clever 6 1 1 8 2 2 4
Hardworking 29 10 12 38 22 5 28
Lazy 16 13 23 1 11 6 1
E�cient 26 6 3 41 5 6 24
Boring 13 6 7 11 9 8 13
Greedy 12 7 7 9 3 10 2
Easygoing 27 20 27 3 30 10 15
Sexy 4 19 8 1 1 21 2
Stylish 9 30 7 4 1 37 5

People are more adept at perceiving patterns using shapes and sizes than

they are using actual numbers. Therefore, tables or matrices are often better

represented using a so called table plot (also known as a �uctuation plot,

see, for example, Unwin et al. 2006, �5.4), where each entry in the table is

visualised by a box with area proportional to the value of the entry.

Figure 1.1.(a) shows a table plot of the data, where the rows and columns

are ordered as they appear in Table 1.1. The vertical lines through the boxes

2



are drawn in order to assist the reader in comparing the countries.

Even for such a small table plot, it is quite di�cult to see relationships

between the objects, or identify groups and trends in the data. Performing

these tasks is generally much simpler after seriating the rows and columns in

the data.

UK ITA SPA GER IRE FRA HOL

Stylish

Sexy

Easygoing

Greedy

Boring

Efficient

Lazy

Hardworking

Clever

FRA ITA SPA IRE UK HOL GER

Efficient

Hardworking

Easygoing

Lazy

Boring

Clever

Greedy

Sexy

Stylish

(a) Arbitrary ordering (b) Seriated rows and columns

Figure 1.1: The table plot in (a) visualises the data in Table 1.1, where the
rows and columns are ordered as in Table 1.1. The table plot in (b) visualises
the same data, except the rows and columns are seriated.

Figure 1.1.(b) shows a table plot of the same data, except the rows and

columns are ordered according to the �best� permutation of the countries and

the �best� permutation of the characteristics. For this example, the �best�

permutation is the one that optimises an objective function (namely the BAR

objective function of Section 3.4.2) that rewards permutations placing similar

objects close together, where similarity is measured using Euclidean distance.

Seriating the rows and the columns positions similarly sized boxes (i.e.

values) close together in the table plot in Figure 1.1.(b), which makes it easier

to see groups in the data and to see which countries are perceived as similar

by the surveyed people. Using Figure 1.1.(b), it is easy to see that France and

Italy scored similarly on all characteristics and were considered the two most

stylish and sexy countries. On the other hand, Germany, Holland and the

UK were not considered sexy or stylish but were considered more hardworking

and e�cient. This information is not as easily obtained from the table plot in

Figure 1.1.(a) or the raw percentages in Table 1.1.

This example treated the task of reordering the characteristics and coun-

tries in Table 1.1 as two separate seriation problems. An alternative seriation

problem involves simultaneously seriating both the characteristics and coun-

tries. However, seriation problems of this type are not considered in this thesis.

3



1.2 Challenges of seriation

Consider again the problem of seriating the characteristics in Table 1.1 (ig-

noring the problem of seriating the countries). This appears to be a small

seriation problem because there are only nine characteristics. However, for

n objects there are n! possible permutations, which means there are in fact

362,880 permutations of the characteristics in Table 1.1. So, what appeared

to be a small seriation problem is actually quite big!

Some of the 362,880 permutations of characteristics will improve the table

plot in Figure 1.1.(a), while other permutations will not. Therefore, one chal-

lenge in seriation is evaluating the �goodness� of a seriation. Robinson (1951)

presented the �rst formal method for evaluating a seriation and since 1951

many other methods or functions have been developed (see, for example, Hah-

sler et al. 2008). These functions are collectively known as �seriation criteria�

and are described in more detail in Section 2.3.

Although time consuming, it is possible to examine all 362,880 permuta-

tions of the characteristics in Table 1.1 and determine the best permutation

for a given seriation criterion. However, for much larger seriation problems,

an exhaustive search of all possible permutations is infeasible. Therefore, the

second challenge in seriation is obtaining a good permutation as e�ciently as

possible.

Many techniques are available for �nding a good permutation of a set of

objects. Generally, these algorithms are heuristics and produce good but not

necessarily optimal seriations. Chapter 2 gives an overview of di�erent seri-

ation methods and algorithms.

1.3 History of seriation

Kendall (1971) credited Sir W.M. Flinders Petrie (1899), an English Egyptol-

ogist, as being the �rst to use formal seriation methods. Hundreds of graves

were excavated in the Nile area and Petrie ordered these graves in chronological

order based on the objects he found in the graves. Unfortunately, according to

Kendall (1971), Petrie's writings are not easy to follow and most of his notes

and records are now destroyed. As a result, Petrie's seriation method is not

fully understood.

Unlike Petrie, Robinson (1951) provided a mathematical framework for

the problem of seriation. He proposed a desired form for a symmetric matrix,

whose elements are agreement indexes for a set of archaeological deposits. This

suggested form, now called Robinson form, has become an important concept
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in seriation.

Robinson (1951) was also the �rst to introduce a formal method for assess-

ing the goodness of seriation results. He used an agreement coe�cient between

rows of a matrix to quantify the �goodness� of a seriation result. Prior to Robin-

son's agreement coe�cient, researchers assessed seriation results subjectively

using intuitive judgement. Section 2.3.2 gives an account of Robinson form

and various functions for measuring it.

The Semiology of Graphics (Bertin 1983) is another highly in�uential piece

of work. One of the many ideas Bertin described in this monograph is the

�reorderable matrix�, where he showed that reordering the rows and columns of

a data matrix makes information easier to understand. Since then, reordering

the rows and columns of a matrix is a topic that has received much attention

in the literature (see, for example, Gale et al. 1984, Eisen et al. 1998 and Wu

et al. 2010).

Petrie (1899), Robinson (1951) and Bertin (1983) built the foundations for

many of today's developments in seriation and visualisation. Since 1967 many

papers have contributed signi�cantly to the combined areas of seriation and

visualisation including Eisen et al. (1998), Chen (2002), Friendly and Kwan

(2003) and Hurley (2004).

Software advancements have also in�uenced the development of seriation

and visualisation tools, particularly the software program R (R Development

Core Team 2010). R is a powerful software environment that provides the an-

alyst with free, easily accessible visualisation and seriation software. R also

provides the researcher a platform on which to share their seriation and visu-

alisation tools with a worldwide community.

1.4 Contributions of the thesis

The main motivation for the research in this thesis is the development of �ex-

ible seriation tools to help in extracting information from data. More speci�-

cally, this thesis contributes to the following areas:

Understanding dendrogram seriation.

Dendrogram seriation is a popular seriation method that is based on

hierarchical clustering and several such algorithms have been developed

(see, for example, Gruvaeus and Wainer 1972). However, due to inconsis-

tent terminology or lack of information, it is often di�cult to understand

exactly how a dendrogram seriation algorithm works and how it di�ers

from other algorithms. This thesis focusses on dendrogram seriation and
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develops notation and terminology for describing dendrogram seriation

algorithms.

A new dendrogram seriation algorithm.

The new algorithm allows the user to choose from many di�erent seri-

ation criteria. Existing seriation algorithms focus on one seriation crite-

rion only and so the proposed algorithm is more �exible. This algorithm

also contains improvements on currently available dendrogram seriation

algorithms.

New seriation criteria.

This thesis proposes new criteria for evaluating the goodness of a seri-

ation and describes applications of these criteria to a variety of visuali-

sation settings.

A comparison of seriation algorithms.

This thesis compares the performance of the proposed algorithm with

several other seriation algorithms, and provides guidelines for choosing

suitable seriation algorithms for di�erent seriation interests and visuali-

sation settings.

This thesis concerns seriation based on a symmetric dissimilarity matrix

D = [di,j], where di,j represents the dissimilarity between objects i and j, and

di,i = 0, for 1 6 i, j 6 n. Carroll and Arabie (1980) refer to such a matrix D

as �two-way� because D has two dimensions, and �one-mode� because the rows

and columns of D refer to the same set of objects. Seriation is also possible for

�two-mode� dissimilarity data (see, for example, the data in Table 1.1), where

the rows and columns refer to two di�erent sets of objects (see, for example,

Hubert et al. 2006).

A dissimilarity measure, for example correlation or Euclidean distance,

measures the dissimilarity of two objects. However, it is also possible to use

other measures for seriation which are not dissimilarity measures, for exam-

ple visualisation based measures. Wilkinson et al. (2005) described several

�scagnostic� indexes, which measure the �interestingness� of a scatterplot pro-

duced by two variables. Peng et al. (2004) also designed visualisation based

measures, which measure �clutter� in components of various statistical graphics

including the panels in parallel coordinates plots and scatterplot matrices.

Note that, for convenience, this thesis uses the term �dissimilarity' to refer

to all measures, regardless of whether or not the measure is in fact a dissimi-

larity measure.
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1.5 Organisation of the thesis

This chapter has set the scene for the importance of seriation in data visualisa-

tion and gave a short account of the beginnings of seriation. It also discussed

the main issues with seriation and outlined the speci�c areas to which this

thesis contributes. The rest of the thesis is organised as follows.

Chapter 2 provides an overview of dendrogram seriation, which includes

an account of the �rst dendrogram seriation algorithm (Gruvaeus and Wainer

1972) and a discussion of various reasons for the increasing popularity of den-

drogram seriation. The chapter then focusses on di�erent seriation criteria and

goes on to survey many other seriation methods and algorithms.

Chapter 3 introduces a new dendrogram seriation algorithm called DendSer.

DendSer is more �exible than other seriation algorithms because it allows the

user to choose from a variety of seriation criteria including two new criteria,

which are described in Section 3.4. Chapter 3 also develops notation and ter-

minology for describing an important parameter of dendrogram seriation that

is generally not discussed in the literature. This parameter tells DendSer which

permutations to examine and Section 3.6 shows that the most suitable setting

for this parameter depends on the choice of seriation criterion.

Chapter 4 presents many visualisation applications of DendSer. The va-

riety of examples highlights not only the �exibility of DendSer but also the

application of the new seriation criteria.

Chapter 5 compares the performance of DendSer with several other seri-

ation algorithms. The algorithms are assessed based on how well they recover

hidden patterns in data and how well they optimise various seriation criteria.

This comparison study results in a set of guidelines for helping the user choose

the most suitable seriation algorithm for their speci�c seriation applications.

Finally, Chapter 6 summarises and discusses the main contributions of the

thesis.
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Chapter 2

Dendrogram seriation and other

seriation methods

2.1 Introduction

This chapter provides an overview of seriation, with particular emphasis on

dendrogram seriation.

Section 2.2 introduces dendrogram seriation and gives an account of the

�rst dendrogram seriation algorithm (Gruvaeus and Wainer 1972). This sec-

tion also discusses some reasons for the increasing popularity of dendrogram

seriation.

Typically, seriation algorithms try to �nd a permutation of a set of objects

that optimises a speci�c goodness of seriation criterion. Two popular seriation

criteria are minimising the path length of a permutation and optimising a

function that measures how well a symmetric matrix follows anti-Robinson

form (Robinson 1951). Section 2.3 gives an account of path length and anti-

Robinson form, and also mentions other available seriation criteria.

The example in Section 2.4 uses heatmaps and di�erent seriation criteria to

demonstrate the e�ectiveness of the dendrogram seriation algorithm described

in Gruvaeus and Wainer (1972). This example also uses modi�ed versions of

icicle plots (Kruskal and Landwehr 1983) to visualise how the algorithm works.

Researchers have used various methods to tackle the problem of seriation.

Section 2.5 gives a brief account of many of these methods including Travelling

Salesperson heuristics and dimension reduction techniques. Figure 2.5 shows

a two-way categorisation of seriation algorithms, the �rst according to method

and the second according to the criterion that the algorithm tries to optimise.

The chapter concludes with a brief summary.
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2.2 Dendrogram seriation algorithms

This section describes one branch of seriation algorithms called �dendrogram

seriation� algorithms.

Cluster analysis is a general term for a range of statistical techniques that

aim to classify objects into groups based on their similarity, where objects in

the same group are more similar than objects from di�erent groups. Many

di�erent clustering methods are available including hierarchical clustering, k-

means and model-based clustering (Fraley and Raftery 1999, 2002). This sec-

tion focusses on hierarchical clustering, speci�cally agglomerative hierarchical

clustering.

Agglomerative hierarchical clustering begins with all objects in individual

clusters and then iteratively merges the two most similar clusters until all

objects are in the same cluster. The linkage used in the hierarchical clustering

de�nes the similarity of two clusters. Single linkage de�nes the similarity of

two clusters to be the minimum distance between elements of each cluster,

whereas complete linkage de�nes the similarity of clusters to be the maximum

distance between elements of each cluster. Average linkage falls in between

these two extremes and de�nes the similarity of two clusters to be the mean

distance between elements of each cluster.

A simple graphic for visualising the results of a hierarchical clustering is

a binary tree-like structure called a dendrogram shown in Figure 2.1. The

●

●

●

●

●

●

●

●

A B

C

D

E 0
2

4
6

8

H
ei

gh
t

A B C D E

●

●

●

●

Figure 2.1: Example of a dendrogram visualising a hierarchical clustering of
�ve random data objects.

root of a dendrogram represents a single cluster containing all objects and the

leaves (at the bottom of the dendrogram in Figure 2.1 represent the individual

objects. A dendrogram visualising a hierarchical clustering of n objects has n−
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1 nodes (represented by black dots in Figure 2.1), which represent the clusters

merged at each step of the hierarchical clustering process. Dendrograms are

usually drawn vertically with the root node at the top. The vertical axis

represents the level of similarity, or height at which clusters are merged.

2.2.1 Dendrograms and seriation

The order of the leaves in a dendrogram provides a permutation of a set of

objects. However, the leaf ordering is not unique. A dendrogram with n leaves

has n−1 nodes and each of these nodes can be rearranged resulting in a total of

2n−1 possible permutations of the objects. �Dendrogram seriation� algorithms

rearrange the nodes in a dendrogram in order to obtain a permutation of the

leaves (i.e. objects) that optimises some seriation criterion.

Dendrogram seriation dates back to Gruvaeus and Wainer (1972), whose

motivation was to obtain a unique ordering of the objects from a hierarchical

clustering. Their algorithm examines each node N in a dendrogram and rear-

ranges the left and right sub-nodes of N so that the two most similar objects

at the edges of the sub-nodes are placed adjacently. Figure 2.2 illustrates the

four comparisons made by the algorithm from Gruvaeus and Wainer (1972),

where nodes marked with a circle indicate that the leaves in these nodes are

reversed. For example, if dBD = min(dBC , dBD, dAC , dAD), where d is some

dissimilarity measure, then the algorithm selects the second dendrogram.
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Figure 2.2: Illustration of the dendrogram seriation algorithm described in
Gruvaeus and Wainer (1972)

Dendrogram seriation has become increasingly popular since 1972 with

several papers describing new algorithms and applications (Degerman 1982,

Gale et al. 1984, Eisen et al. 1998, Alon et al. 1999, Wishart 1999, Bar-

Joseph et al. 2001, Morris et al. 2003, Forina et al. 2007, Tien et al. 2008 and

Wu et al. 2010). These algorithms use various node operations for rearranging

the nodes in a dendrogram: some exchange the branches of a node and others

reverse the leaves in a node. However, the descriptions of these node operations

are often quite vague or even omitted.
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2.2.2 Advantages of dendrogram seriation

There are several reasons for the increasing popularity of dendrogram seriation.

First of all, dendrogram seriation is based on hierarchical clustering, which is

generally well-known and well-understood. Dendrogram seriation also simpli-

�es the problem of reordering n objects by reducing the size of the search space

from n! possible permutations to 2n−1 possible permutations.

Dendrogram seriation is also very �exible compared to other seriation meth-

ods. Many algorithms have been developed, which optimise di�erent seriation

criteria such as the path length criterion (Bar-Joseph et al. 2001, Forina et

al. 2007) and anti-Robinson criteria (Wishart 1999, Morris et al. 2003). Den-

drogram seriation has also been successfully applied to many visualisation set-

tings including scatterplot matrices, parallel coordinates plots (Hurley 2004)

and heatmaps (see, for example, Gale et al. 1984, Eisen et al. 1999).

Also, if the user is interested in clustering their data as well as seriating

their data, then dendrogram seriation algorithms are a convenient tool. How-

ever, Chapter 5 shows that dendrogram seriation algorithms produce results

that are competitive with other seriation algorithms that are not based on

hierarchical clustering. Therefore, dendrogram seriation algorithms are very

useful, regardless of the user's clustering interests.

2.3 Seriation criteria

Two seriation criteria that frequently feature in the literature are path length

and anti-Robinson form. This section provides a formal de�nition of these two

seriation criteria and also gives a brief account of their visualisation applica-

tions.

2.3.1 Path length

The shortest path problem is a variation of the well-known Travelling Salesper-

son Problem (TSP). Given n cities, the goal of the TSP is to �nd the shortest

tour that starts from a selected city, visits each city once and returns to the

starting city. With the shortest path problem, there is no return to the starting

city.

In relation to seriation, the following cost function measures the path length

of a permutation:

De�nition 2.1. Take a set of n objects, where di,j is the dissimilarity value

between objects i and j. For a permutation π of the objects, the path length

11



cost function is de�ned as:

PL(π) =
n−1∑
i=1

dπ(i),π(i+1), (2.1)

where π(i) is the object in the ith position of π.

A permutation minimising the PL cost function aims to place similar ob-

jects adjacently, which makes minimising the PL cost function a suitable goal

for seriation.

The path length criterion has been successfully applied to a variety of

statistical visualisations. Hurley (2004) described why the path length criterion

is suitable when seriating variables in a parallel coordinates plot. Bar-Joseph

et al. (2001) showed that minimising the path length of a permutation helps

to reveal biological structure in heatmaps of gene expression data. Hahsler

and Hornik (2007) used the path length criterion to seriate a heatmap of a

dissimilarity matrix.

2.3.2 Robinson form

Consider a symmetric matrix where the values in the matrix are non-increasing

as one moves away from the diagonal. A matrix with this pattern is said to

have �Robinson� form after the statistician W.S. Robinson, who �rst described

this pattern in Robinson (1951). Similarly, a matrix where the values are non-

decreasing as one moves away from the diagonal is said to have �anti-Robinson�

form.

De�nition 2.2. A symmetric matrix D = [di,j], for 1 6 i, j 6 n, has anti-

Robinson form if di,k 6 di,j and dk,j 6 di,j, for i < k < j.

The following is an example of a symmetric matrix that follows anti-Robinson

form:

AR matrix =


0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0

 (2.2)

Anti-Robinson form is a natural concept for seriation. If a dissimilarity

matrix has anti-Robinson form, then the smallest dissimilarity values are close
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to the main diagonal and the largest values are far away from the main diag-

onal. This means that objects with low dissimilarity are close together in the

corresponding permutation and objects with high dissimilarity are far apart.

Anti-Robinson form has several applications in seriating statistical graph-

ics. Gale et al. (1984) and Wishart (1999) aimed to seriate dissimilarity

matrices so that they were as close as possible to anti-Robinson form, in order

to produce more visually appealing heatmaps. Morris et al. (2003) applied

anti-Robinson form to improving visualisations of networks. Hurley (2004) de-

scribed how anti-Robinson form is a desirable pattern for a scatterplot matrix.

Several algorithms exist that uncover anti-Robinson form if it is present

in a matrix (see, for example, Hubert 1974). However, in most cases, anti-

Robinson form is not present in symmetric matrices and so it is generally only

possible to reorder a matrix so that it follows approximate anti-Robinson form.

Therefore, it is useful to be able to measure how close a matrix is to following

anti-Robinson form.

Hubert et al. (2001, pg. 55) de�ned two merit functions which measure

how well a matrix follows anti-Robinson form. The �rst function computes the

number of pairs of values that satisfy the conditions in De�nition 2.2 minus

the number of pairs that violate those conditions (such a pair is referred to, in

this thesis, as an �anti-Robinson violation�). The second function is a weighted

version of the �rst. Chen (2002) also described a loss function for measuring

anti-Robinson form, which counts only violations of anti-Robinson form. He

also described a weighted version of this measure. These four anti-Robinson

functions are implemented in the R package seriation (Hahsler et al. 2010).

Hubert et al. (2006) described another anti-Robinson merit function, which

sums the values of the element-wise product of a dissimilarity matrix and a

target matrix. The target matrix is a dissimilarity matrix between unit spaced

objects on a straight line and so follows anti-Robinson form. For example,

Equation 2.2 gives such a target matrix for n = 5. Formally, for a permutation

π of n objects, the merit function from Hubert et al. (2006) is de�ned as

follows:

ARc(π) =
∑

|i−j|6n−1

|i− j|dπ(i),π(j). (2.3)

Maximising the function in Equation 2.3 is equivalent to maximising the

Pearson correlation between the dissimilarities di,j and their corresponding

|i − j| values. Therefore, this thesis refers to the anti-Robinson function in

Equation 2.3 as ARc, where c denotes correlation.

There are many functions related to Equation 2.3, two of which Caraux

and Pinloche (2005) call the �least squares� and �inertia� functions. The least
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squares loss function is de�ned as follows:

LS(π) =
∑

|i−j|6n−1

(|i− j| − dπ(i),π(j))2. (2.4)

Expanding Equation 2.4 gives the following:

LS(π) =
∑

|i−j|6n−1

|i− j|2−2
∑

|i−j|6n−1

|i− j|dπ(i),π(j) +
∑

|i−j|6n−1

(dπ(i),π(j))
2. (2.5)

In the expansion of LS(π) in Equation 2.5, disregarding the constant �rst and

third terms and also the scalar 2 in the middle term, it is clear that minimising

Equation 2.4 is equivalent to maximising Equation 2.3.

The inertia merit function places emphasis on pushing large dissimilarities

away from the main diagonal, as opposed to pulling small dissimilarities close

to the main diagonal:

IN(π) =
∑

|i−j|6n−1

dπ(i),π(j)|i− j|2. (2.6)

Equation 2.6 di�ers from Equation 2.3 by multiplying the dissimilarities by

|i− j|2 instead of |i− j|.

2.3.3 Other seriation criteria

Path length, anti-Robinson form, least squares and inertia are examples of

seriation criteria that are based on dissimilarities between objects (as are the

two new seriation criteria described in Sections 3.4.1 and 3.4.2). The following

criteria may be based on either a dissimilarity matrix or the data matrix itself.

Niermann (2005) de�ned two stress measures called Moore stress and Neu-

mann stress, which compare the entries in a matrix with their neighbours.

The smaller the stress value of a matrix, the more similar the entries are to

their neighbours. McCormick et al. (1972) de�ned a similar measure called

the �measure of e�ectiveness�, which is described in Section 2.5.4. These three

criteria are implemented in the R package seriation (Hahsler et al. 2010).

2.4 Dendrogram seriation example

This example demonstrates the use of the dendrogram seriation algorithm

described in Gruvaeus and Wainer (1972) (referred to here as the �GW� algo-

rithm).
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The well-known Iris dataset (Fisher 1936) contains four measurements of

150 irises. For demonstration purposes, this example uses a random sample

of twenty irises. After standardising the variables, the irises are hierarchically

clustered using Euclidean distance and average linkage. (Note that throughout

this thesis standardising is done in the conventional way, i.e. standardising to

zero mean and unit standard deviation.)

Figure 2.3 shows two dendrograms visualising the results of the hierarchi-

cal clustering and two heatmaps of the Euclidean distance matrix, where the

colour scale black to white represents low to high Euclidean distance. The

permutation of the irises in the dendrogram in Figure 2.3.(a) is used to order

the rows/columns of the corresponding heatmap. The dendrogram in Figure

2.3.(b) is rearranged by the GW algorithm and the new permutation of irises

is used to order the rows/columns in the corresponding heatmap.
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(a) Initial leaf order (b) GW leaf order

Figure 2.3: Dendrograms and heatmaps of the Euclidean distance matrix for
a sample of irises from the Iris dataset. The heatmap in (a) is constructed
using the permutation of irises from the initial dendrogram. The heatmap in
(b) is constructed using the permutation of irises returned from the algorithm
described in Gruvaeus and Wainer (1972). The colour scale black to white
represents low to high Euclidean distance.

The heatmap in Figure 2.3.(a) shows three dark blocks around the main

diagonal, which indicate three clusters of similar irises. The �rst and third clus-
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ters of irises (blocks in the north-west and south-east corners of the heatmap

in Figure 2.3.(a)) are also similar to each other, which is indicated by the dark

patch at their intersection in the north-east corner of the heatmap. The iris

labelled as 10 (second last on the main diagonal in Figure 2.3.(a)) appears to

be misplaced because this iris is not similar to the other irises in the third

block but is similar to some of the irises in the middle block.

The GW algorithm rearranges the initial dendrogram so that similar irises

are placed closer together. This results in the two clusters of similar irises

that are separated in Figure 2.3.(a) being placed adjacently in the heatmap in

Figure 2.3.(b). These two clusters roughly correspond to two similar species

of iris and the third cluster, placed in the south-east corner of the heatmap in

Figure 2.3.(b) roughly corresponds to a third di�erent species of iris.

The GW algorithm produces a more visually appealing heatmap. It also

reduces the path length of the initial permutation by approximately 28% and

almost halves the number of anti-Robinson violations in the Euclidean distance

matrix visualised by the heatmap in Figure 2.3.(a).

Icicle plots (Kruskal and Landwehr 1983) allow an alternative examination

of the e�ect of the GW algorithm. Figure 2.4 contains two icicle plots visu-

alising the hierarchical clustering of the sample of twenty irises from the Iris

dataset. The columns in the icicle plots represent the objects with the object

labels written at the bottom of the columns. The ith row in the icicle plots

indicates which pair of objects or clusters are merged at the ith step of the

hierarchical clustering process (i.e. the ith row corresponds to the ith node

in the dendrogram). The node labels are written on the left hand side of the

icicle plots. The merge point of the clusters is represented by a vertical dashed

line. The entire hierarchical clustering process is observed by reading the icicle

plot from the bottom row to the top.

The objects (i.e. columns) in the icicle plots in Figures 2.4.(a) and (b) are

ordered according to the initial permutation from the hierarchical clustering

and the permutation returned from the GW algorithm respectively. The icicle

plots are also modi�ed from those described in Kruskal and Landwehr (1983)

so that each node is coloured according to the mean of the Euclidean distances

between adjacent objects in the node. The colour scale, light to dark green,

represents low to high mean Euclidean distance.

In Figure 2.4.(a), the nodes N16 (left section), N12 (middle section) and N17

(right section) are highlighted using black lines. These three nodes correspond

to the three clusters of irises shown in the heatmap in Figure 2.3.(a), where

N16 and N17 correspond to the two more similar clusters of irises.

The icicle plot in Figure 2.4.(b) shows that the GW algorithm swaps N12
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Figure 2.4: Icicle plots visualising a hierarchical clustering of a sample of the
cases from the Iris dataset. The objects (columns) in the icicle plot in (a) are
ordered according to the initial permutation from the dendrogram in Figure
2.3.(a). The objects (columns) in the icicle plot in (b) are ordered according to
the dendrogram seriation algorithm described in Gruvaeus and Wainer (1972).
The nodes are coloured according to the mean Euclidean distance between
adjacent objects in the nodes. Light to dark green indicates low to high mean
Euclidean distance between adjacent objects respectively. The same colour
scale is used for both icicle plots.
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and N17. Comparing the layout of the �blocks� that make up N12 and N17

shows that the GW algorithm also rearranges various sub-nodes of N12 and

N17, which leads to noticeably lower mean adjacent Euclidean distance values

for N12 and N17 (indicated by the lighter green colour of N12 and N17 in

Figure 2.4.(b)). All of these node rearrangements lead to a noticeably lower

mean adjacent Euclidean distance value for the node N18, which merges the

objects in N12 and N17.

The GW algorithm also rearranges various sub-nodes of N16, which is again

observed by comparing the �blocks� that make up N16 in Figures 2.4.(a) and

(b). These node rearrangements, combined with the node rearrangements of

N12, N17 and their sub-nodes, lead to the lighter green colour of the �nal node

N19 in the icicle plot in Figure 2.4.(b), which indicates that the permutation

returned by the GW algorithm has a shorter path length than the initial per-

mutation from the hierarchical clustering.

2.5 Other seriation methods

Many di�erent algorithms have been used for seriation. Figure 2.5 provides an

overview and classi�cation of several of these algorithms.

The rows in Figure 2.5 categorise the algorithms according to the seriation

criterion (path length, anti-Robinson form or other) that they aim to optimise.

The columns classify the algorithms into �ve categories of seriation method:

(i) Dendrogram seriation, (ii) Travelling Salesperson Problem (TSP) heuris-

tics, (iii) Partial enumeration, (iv) Dimension reduction and (v) a category

containing algorithms that do not �t into the previous four categories.

Section 2.2 already discussed the Dendrogram seriation category of algo-

rithms. This section gives a brief account of the other four categories of seri-

ation methods in Figure 2.5.

2.5.1 Heuristics for the Travelling Salesperson Problem

The second column in Figure 2.5 gives an overview of heuristic algorithms for

the Travelling Salesperson Problem (TSP). The TSP is a well known and well

researched combinatorial optimisation problem (see, for example, Lawler et al.

1985). Given n cities, the goal of the TSP is to �nd the shortest tour that

starts from a selected city, visits each city once and returns to the starting city.

The shortest path problem is similar to the TSP except there is no return

to the starting city. In other words, the goal of the shortest path problem is

to �nd a permutation of the cities that minimises the path length criterion.
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The TSP can be transformed into the shortest path problem by inserting a

�dummy� city, which has zero dissimilarity to all other cities (Gar�nkel 1985).

The position of the dummy city in the TSP solution represents the cutting

point for �nding the shortest path. Through this simple transformation, al-

gorithms designed for solving the TSP may also be used to solve the shortest

path problem.

Finding the exact solution to a TSP with n cities is an NP-hard problem

(see, for example, Garey and Johnson 1979). Small TSPs can be optimally

solved using dynamic programming or branch-and-bound methods. However,

for larger TSPs, it is more e�cient to use heuristic algorithms to �nd good but

not necessarily optimal solutions.

TSP heuristics divide into two groups: tour construction heuristics and tour

improvement heuristics. Construction heuristics include nearest neighbour,

repetitive nearest neighbour and various insertion heuristics (see, for example,

Johnson and Papadimitriou 1985). Two improvement heuristics are k-Opt (see,

for example, Croes 1958) and the Lin-Kernighan heuristic (Lin and Kernighan

1973). A general strategy for solving a TSP is to use a construction heuristic

to create an initial tour and then improve the tour using an improvement

heuristic.

The R package TSP (Hahsler and Hornik 2009) implements the TSP heuris-

tic algorithms listed above.

2.5.2 Partial enumeration methods

The third column in Figure 2.5 lists two seriation algorithms, which are based

on partial enumeration techniques. Both of these algorithms aim to optimise

some anti-Robinson function.

For small numbers of objects, the optimal seriation solution can be found

by listing and checking all possible permutations. However, Brusco and Stahl

(2005) stated that this brute-force approach is currently infeasible for more

than thirteen objects. Hubert et al. (2001) used dynamic programming meth-

ods to optimally seriate twenty or so objects, and Brusco and Stahl (2005)

claimed that depending on the data, branch-and-bound methods can optimally

seriate up to 40 objects.

Hubert et al. (2001, �2) described a seriation algorithm based on dynamic

programming, where the goal is to optimise an anti-Robinson function. Dy-

namic programming is a method for e�ciently solving optimisation problems.

The method involves storing results of sub-problem calculations, which the

algorithm then re-uses. Avoiding the re-calculation of the sub-problems sig-
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ni�cantly reduces the time required to search for the optimal solution. How-

ever, even with this short-cut, dynamic programming is only suitable for small

seriation problems because of its large memory requirements for storing the

sub-problem results (Hubert et al. 2001, pg. 88).

Branch-and-bound is an alternative approach to dynamic programming.

Brusco and Stahl (2005) described a forward branching algorithm for �nding a

permutation that optimises an anti-Robinson function. Their algorithm builds

permutations using an iterative selection of objects for the next position in

the permutation. At each step, the algorithm tests a partial permutation to

see if it can lead to a better solution than a current best solution. When a

partial permutation fails a particular test, the algorithm abandons the partial

permutation and investigates a new partial permutation.

The branch-and-bound algorithm from Brusco and Stahl (2005) is available

in the R seriation package (Hahsler et al. 2010)

2.5.3 Dimension reduction techniques

The fourth column in Figure 2.5 lists several seriation algorithms that are

based on dimension reduction techniques such as principal components analy-

sis (PCA), correspondence analysis (CA) and multidimensional scaling (MDS).

For example, Kendall (1971) used MDS techniques to seriate tombs in a ceme-

tery at Münsingen-Rain.

Friendly and Kwan (2003) used algorithms based on eigen decompositions

to demonstrate their idea of �e�ect-ordered data displays�. They used CA

to seriate the categories in a mosaic display and they seriated the variables

in parallel coordinates plots according to their weight on the �rst principal

component.

Friendly and Kwan (2003) also described a �correlation ordering� algorithm,

which seriates variables according to the angles formed by the �rst two eigen-

vectors of the correlation matrix. They used this algorithm to seriate the rays

in star glyphs and also to seriate corrgrams (Friendly 2002), which are color-

coded mappings of correlation matrices. The correlation ordering algorithm is

implemented in the R package corrgram (Wright 2006).

Atkins et al. (1998) described a seriation algorithm based on spectral

analysis. They constructed the Laplacian of a dissimilarity matrix and found

the eigenvector corresponding to the smallest non-zero eigenvalue. They then

sorted the elements in the eigenvector to get a seriation of the objects.

Hastie et al. (2009) discussed clustering methods based on spectral analy-

sis. Standard clustering methods have proven useful in seriation and so spec-
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tral clustering and its near relative kernal principal components could also be

investigated as seriation algorithms.

2.5.4 Other seriation algorithms

This section summarises the seriation algorithms listed in the �fth column in

Figure 2.5, which are algorithms that do not fall into the previous categories.

Simulated annealing

Brusco et al. (2007) described a simulated annealing algorithm called ARSA,

which tries to maximise a merit function that measures anti-Robinson form

(namely the ARc function in Equation 2.3). The algorithm begins with an

arbitrary permutation and creates a new permutation by randomly deciding

to either swap two objects or relocate a single object in the permutation.

If the new permutation increases the merit function then it is accepted and

the algorithm continues by creating a new permutation from the accepted

permutation. If the new permutation decreases the merit function then it is

accepted with probability inversely proportional to the amount by which the

merit function is decreased. The algorithm continues until it reaches an upper

limit for the amount of permutations that it can examine or reject.

The logic for allowing the algorithm to accept permutations that decrease

the merit function is to avoid a solution that is a local optima, which is a

permutation that is worse than the global maximum but better than any of

its neighbours.

The ARSA algorithm is available in the R package seriation (Hahsler et

al. 2010).

Rank-two ellipse seriation

Consider a sequence of correlation matrices R = (R(1), R(2), . . .), where R(1) is

the correlation matrix of a symmetric dissimilarity matrix D and R(i) is the

correlation matrix of R(i−1), i > 1. Chen (2002) presented a �rank-two ellipse�

(R2E) seriation algorithm based on this sequence of correlation matrices. He

described how the rank of R(i) reduces as i increases and when R(i) reaches rank

two, the objects fall on an ellipse in two-dimensional space. The R2E algorithm

then orders the objects based on their position on the ellipse. Chen used his

R2E seriation algorithm to rearrange heatmaps and presented an example in

which the R2E algorithm is useful for �nding approximate anti-Robinson form

in dissimilarity matrices.
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The R2E seriation algorithm is implemented in the software package GAP

(Wu et al. 2010) and also in the R package seriation (Hahsler et al. 2010).

Bond energy algorithm

The Bond Energy Algorithm (BEA) (McCormick et al. 1972) is a greedy

heuristic for separately seriating the rows and columns of a two-way two-mode

n× p matrix A. The goal of the BEA is to group large elements of A together

and McCormick et al. (1972) proposed to measure this using the so called

measure of e�ectiveness (ME):

ME(A) =
1

2

n∑
i=1

p∑
j=1

ai,j[ai,j+1 + ai,j−1 + ai+1,j + ai−1,j]. (2.7)

McCormick et al. (1972) used the BEA to seriate binary and non-binary

data. However, Arabie and Hubert (1990) questioned the use of the BEA on

non-binary data.

The BEA is available in the R package seriation (Hahsler et al. 2010).

This package also implements the use of TSP heuristics for maximising the

ME.

Clustering based methods

Section 2.2 discussed seriation algorithms based on hierarchical clustering,

however seriation methods can also be based on other clustering algorithms

such as k-means or model-based clustering (Fraley and Raftery 1999, 2002).

For example, Hahsler et al. (2008) used the ARSA (Brusco et al. 2008) seri-

ation algorithm to reorder within the clusters and also between the clusters of

a k-means solution in order to obtain a seriation of a set of objects.

Self organising maps (SOMs; Kohonen 1984) can also be used in conjunc-

tion with seriation algorithms. SOMs arrange a set of objects into sections of

a k dimensional array, where k is usually one or two. One may view SOMs

as a clustering method similar to k-means because SOMs place similar objects

in the same section and so the sections are equivalent to clusters. Given the

results of a SOM, one may reorder the objects within each section of the array

and reorder the sections themselves using some seriation algorithm such as

ARSA in order to obtain a permutation of a set of objects.
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2.6 Summary

This chapter presented an overview of seriation methods and criteria with

Figure 2.5 providing a visual overview of several seriation algorithms.

Section 2.2 focussed on dendrogram seriation, including a brief account

of the �rst dendrogram seriation algorithm (Gruvaeus and Wainer 1972) and

a discussion of various reasons for the increasing popularity of dendrogram

seriation. Section 2.4 also described an example demonstrating the use of

dendrogram seriation algorithms.

Section 2.3 concerned seriation criteria and gave a detailed description of

path length and anti-Robinson form, which are two of the more frequently

used seriation criteria.

Section 2.5 continued the categorisation of seriation methods and gave a

brief summary of several algorithms. Later in this thesis, Chapter 5 compares

the performance of many of the seriation algorithms included in Figure 2.5.
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Chapter 3

DendSer: a new dendrogram

seriation algorithm

3.1 Introduction

This chapter presents a new dendrogram seriation algorithm called DendSer.

DendSer allows the user to choose di�erent methods for rearranging the

nodes in a dendrogram. Rearranging nodes, whether exchanging branches or

reversing the order of the leaves in a node, is a key aspect of dendrogram

seriation, however it receives little attention in the literature. Section 3.3

develops notation and terminology for describing how to rearrange a node

and de�nes several node operations, which rearrange or operate on nodes in

di�erent ways.

Existing seriation algorithms focus on optimising one seriation criterion

only. DendSer is more �exible because it allows the user to choose from a

variety of seriation criteria or to input their own criteria. Section 3.4 describes

the di�erent criteria that the user may choose from, which include path length,

anti-Robinson form and two new seriation criteria called �lazy path length� and

�banded anti-Robinson� form.

Section 3.5 highlights how DendSer provides a general framework for imple-

menting several other dendrogram seriation algorithms (Gruvaeus and Wainer

1972, Degerman 1982, Gale et al. 1984, Eisen et al. 1999, Tien et al. 2008,

Alon et al. 1999, Wishart 1999 and Wu et al. 2010). However, other den-

drogram seriation algorithms (Bar-Joseph et al. 2001, Morris et al. 2003 and

Forina et al. 2007) do not �t into the DendSer framework.

Section 3.6 investigates which of the node operations de�ned in Section

3.3 is the most suitable for use in DendSer when optimising di�erent seriation

criteria. For each of four criteria, Section 3.6.2 performs a simulation study in
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order to examine both the goodness of the permutations returned by DendSer

when used with di�erent node operations and the amount of work each node

operation creates for DendSer.

The chapter ends with a brief summary.

3.2 A new dendrogram seriation algorithm

The pseudo-code for a new dendrogram seriation algorithm called DendSer is

given below.

Algorithm 1 DendSer: Dendrogram seriation algorithm
Require: Dendrogram ∆, cost function F , node operation T
n← # leaves in ∆
maxloops ← maximum # iterations
nloops ← 1
π∗ ← initial permutation of leaves in ∆
change ← TRUE
while change do
πcur ← π∗

for i = 1 to n− 1 do
Ni ← ith node in ∆
{π1, . . . , πk} ← set of permutations returned by T (Ni; ∆)
(F1, . . . , Fk)← F (π1), . . . , F (πk)
πnew ← argmin(F1, . . . , Fk)
if F (πnew) < F (πcur) then
update ∆ according to πnew
πcur ← πnew

end if

end for

if (πcur = π∗ or nloops = maxloops) then
change ← FALSE

else

π∗ ← πcur
nloops ← nloops + 1

end if

end while

return π∗

DendSer takes in a dendrogram ∆, a cost function F and a node operation

T . The cost function F takes in a permutation and either a symmetric dissim-

ilarity matrix or a vector of weights and evaluates the permutation using some

seriation criterion (see Section 3.4). A node operation T takes in a dendrogram

∆ and a node N and returns a set containing permutations of the leaves in ∆

corresponding to some operation on N (see Section 3.3).
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DendSer selects each node N in turn, starting at the �rst node formed by

the hierarchical clustering process and ending at the root node. The algorithm

then evaluates the original permutation of the leaves and the permutations

returned by T (N ; ∆). The permutation minimising the cost function F is kept

and ∆ is updated according to this permutation. The algorithm then moves

onto the next node. One iteration is complete when the algorithm has applied

T to all of the n−1 nodes. If an iteration results in an improved permutation of

the leaves, then the algorithm goes through another iteration. The algorithm

stops when a full iteration fails to improve the permutation of the leaves or

the maximum number of iterations is reached.

DendSer provides a number of choices for the node operation T and the

seriation criterion F , which Sections 3.3 and 3.4 now describe.

3.3 Node operations

Dendrogram seriation algorithms are generally greedy algorithms and work by

examining one or two nodes at a time, with the goal of �nding permutations of

the leaves that improve some criterion. For example, as shown in Figure 2.2,

the algorithm described in Gruvaeus and Wainer (1972) examines two nodes

at a time in order to place the most similar edge leaves adjacently.

There are many ways of rearranging the nodes in a dendrogram and existing

dendrogram seriation algorithms use di�erent methods that o�er di�erent per-

mutations. However, researchers rarely provide much information about their

chosen method. Di�erent papers also use di�erent terminology for describing

dendrogram seriation. Due to both the lack of information and inconsistent

terminology, the reader sometimes �nds it di�cult to understand how a par-

ticular algorithm works and also how it di�ers from other algorithms.

This section develops unifying terminology for describing dendrogram se-

riation algorithms and de�nes several node operations, which rearrange or

operate on nodes in di�erent ways. Each of these node operations provides a

di�erent choice for the node operation T in DendSer.

3.3.1 Re�ection and translation

The following are two ways of rearranging or operating on a node in a dendro-

gram:

De�nition 3.1. The re�ection of a node N in a dendrogram reverses the order

of the leaves in N .

27



De�nition 3.2. Let Nl and Nr be the left and right sub-nodes of a node N in

a dendrogram. The translation of N swaps the positions of Nl and Nr but does

not change the order of the leaves in Nl and Nr.

Forina et al. (2007) �rst used the term translation. Re�ecting or translating

a node N does not change the hierarchy represented by N , only the order of

the leaves in N . For example, consider the dendrogram ∆ in Figure 3.1.(a)

with the nodes labelled N1, N2,. . ., N7 according to their height. Figure 3.1.(b)

shows the dendrogram ∆ with the node N5 re�ected and Figure 3.1.(c) shows

the dendrogram ∆ with the node N5 translated.

1 2 3 4 5 6 7 8

N1
N2

N3
N4

N5

N6

             N7

(a) ∆: Initial dendrogram

1 7 6 5 4 3 2 8

N1
N2

N3
N4

N5

N6

             N7

1 5 6 7 2 3 4 8

N1

N2
N3

N4

N5

N6

             N7

(b) Re�ect N5 (c) Translate N5

Figure 3.1: The node N5 in the dendrogram in (a) is re�ected in the dendro-
gram in (b) and translated in the dendrogram in (c).

For a node N in a dendrogram ∆, the node operations R0 and T0 return

the following sets of permutations:

R0(N ; ∆) = {permutation of leaves in ∆ after re�ecting N}, (3.1)

T0(N ; ∆) = {permutation of leaves in ∆ after translating N}. (3.2)

For example, consider again the dendrogram ∆ in Figure 3.1.(a). R0(N5; ∆)
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returns a set containing the permutation of leaves shown in the dendrogram

in Figure 3.1.(b) and T0(N5; ∆) returns a set containing the permutation of

leaves shown in the dendrogram in Figure 3.1.(c), i.e.

R0(N5; ∆) = {(1, 7, 6, 5, 4, 3, 2, 8)},

T0(N5; ∆) = {(1, 5, 6, 7, 2, 3, 4, 8)}.

Note that if a node N in a dendrogram ∆ has only two leaves, then

R0(N ; ∆) = T0(N ; ∆). For convenience, R0(N ; ∆) also refers to the dendro-

gram ∆ with N re�ected. Similarly, T0(N ; ∆) also refers to the dendrogram

∆ with N translated.

3.3.2 Extensions of R0 and T0

R0 and T0 operate directly on a node N and so they operate on N at a depth

of zero. The following de�nes two node operations that operate on N at a

depth of one, i.e. the left and right sub-nodes of N .

For a node N with three or more leaves and sub-nodes Nl and Nr in a

dendrogram ∆, R1(N ; ∆) returns a set containing up to three unique per-

mutations of the leaves in ∆: one corresponding to the re�ection of Nl, one

corresponding to the re�ection of Nr and one corresponding to the re�ection

of both Nl and Nr. Similarly, T1(N ; ∆) returns a set containing up to three

unique permutations of the leaves in ∆: one corresponding to the translation

of Nl, one corresponding to the translation of Nr and one corresponding to

the translation of both Nl and Nr. These node operations may be written as

follows:

R1(N ; ∆) = R0(Nl; ∆) ∪R0(Nr; ∆) ∪R0(Nl, Nr; ∆), (3.3)

T1(N ; ∆) = T0(Nl; ∆) ∪ T0(Nr; ∆) ∪ T0(Nl, Nr; ∆). (3.4)

In Equation 3.3, R0(Nl, Nr; ∆) returns a set containing the permutation

of the leaves in ∆ after �rst re�ecting Nl and then re�ecting Nr. Similarly,

in Equation 3.4, T0(Nl, Nr; ∆) returns a set containing the permutation of

the leaves in ∆ after �rst translating Nl and then translating Nr. Note that,

although R0(Nl, Nr; ∆) and T0(Nl, Nr; ∆) are de�ned to operate on the nodes

Nl and Nr in a speci�c order, changing this order does not a�ect the returned

permutation (see Properties 1 and 2 in Section 3.3.3).

Note that, if either of the left and right sub-nodes of a node N has only one

leaf, then R1(N,∆) and T1(N,∆) each return a set containing only two unique
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permutations of the leaves in a dendrogram ∆. This is because re�ecting or

translating a node with only one leaf does not rearrange the node.

Applying R1 and T1 to N5 in the dendrogram ∆ in Figure 3.1.(a) returns

the following sets of permutations of the leaves in ∆:

R1(N5; ∆) = R0(N3; ∆) ∪R0(N4; ∆) ∪R0(N3, N4; ∆)

= {(1, 4, 3, 2, 5, 6, 7, 8), (1, 2, 3, 4, 7, 6, 5, 8), (1, 4, 3, 2, 7, 6, 5, 8)},

T1(N5; ∆) = T0(N3; ∆) ∪ T0(N4; ∆) ∪ T0(N3, N4; ∆)

= {(1, 3, 4, 2, 5, 6, 7, 8), (1, 2, 3, 4, 7, 5, 6, 8), (1, 3, 4, 2, 7, 5, 6, 8)}.

The following two node operations operate on a node N at both depths of

zero and one. R01(N ; ∆) returns a set containing up to seven unique permuta-

tions of the leaves in ∆ corresponding to all possible combinations of re�ecting

N , Nl and Nr. Similarly, T01(N ; ∆) returns a set containing up to seven unique

permutations of the leaves in ∆ corresponding to all possible combinations of

translating N , Nl and Nr. These node operations may be written as follows:

R01(N ; ∆) = R0(N ; ∆) ∪R1(N ; ∆) ∪R1(N ;R0(N ; ∆)), (3.5)

T01(N ; ∆) = T0(N ; ∆) ∪ T1(N ; ∆) ∪ T1(N ;T0(N ; ∆)). (3.6)

In Equation 3.5, the notation R1(N ;R0(N ; ∆)) means apply R1 to the node

N in the dendrogram represented by R0(N ; ∆), which is the dendrogram ∆

with N re�ected. Similarly, in Equation 3.6, T1(N ;T0(N ; ∆)) means apply

T1 to the node N in the dendrogram represented by T0(N ; ∆), which is the

dendrogam ∆ with N translated. Note that if the sub-nodes, Nl and Nr, of

a node N in a dendrogram ∆ have one or two leaves each, then R01(N ; ∆) =

T01(N ; ∆).

Applying R01 and T01 to N5 in the dendrogram ∆ in Figure 3.1.(a) returns

the following sets of permutations of the leaves in ∆:

R01(N5; ∆) = R0(N5; ∆) ∪R1(N5; ∆) ∪R1(N5;R0(N5; ∆))

= {(1, 7, 6, 5, 4, 3, 2, 8),

(1, 4, 3, 2, 5, 6, 7, 8), (1, 2, 3, 4, 7, 6, 5, 8), (1, 4, 3, 2, 7, 6, 5, 8),

(1, 5, 6, 7, 4, 3, 2, 8), (1, 7, 6, 5, 2, 3, 4, 8), (1, 5, 6, 7, 2, 3, 4, 8)},

T01(N5; ∆) = T0(N5; ∆) ∪ T1(N5; ∆) ∪ T1(N5;T0(N5; ∆))

= {(1, 5, 6, 7, 2, 3, 4, 8),
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(1, 3, 4, 2, 5, 6, 7, 8), (1, 2, 3, 4, 7, 5, 6, 8), (1, 3, 4, 2, 7, 5, 6, 8),

(1, 7, 5, 6, 2, 3, 4, 8), (1, 5, 6, 7, 3, 4, 2, 8), (1, 7, 5, 6, 3, 4, 2, 8)}.

Node operations may be extended to operate on nodes at any combination

of depths, not just zero and one. The most extreme node operation is one that

returns a set containing unique permutations of the leaves in a dendrogram

corresponding to all possible combinations of re�ecting or translating the nodes

at all depths of a node N .

The �nal node operation de�ned in this section uses both re�ection and

translation and is simply the union of the results of R0 and T0:

C0(N ; ∆) = R0(N ; ∆) ∪ T0(N ; ∆). (3.7)

Applying C0 to N5 in the dendrogram ∆ in Figure 3.1.(a) returns the

following set of permutations of the leaves in ∆:

C0(N5; ∆) = R0(N5; ∆) ∪ T0(N5; ∆)

= {(1, 7, 6, 5, 4, 3, 2, 8), (1, 5, 6, 7, 2, 3, 4, 8)}.

DendSer allows the user to choose the node operation T from all seven node

operations de�ned in this section: R0, T0, R1, T1, R01, T01 and C0. Some of

these node operations are new and some are used in other dendrogram seriation

algorithms:

• The algorithm described in Gruvaeus and Wainer (1972) used the node

operation R1.

• The algorithms described in Degerman (1982), Gale et al. (1984), Eisen

et al. (1998) and Tien et al. (1998) used the node operation T0.

• The algorithms described in Wishart (1999) and Morris et al. (2003)

used the node operation R0.

Section 3.6 investigates the suitability of these node operations when using

DendSer to optimise di�erent seriation criteria.

3.3.3 Properties of node operations

The following is a list of properties of the node operations de�ned in Sections

3.3.1 and 3.3.2. In each of the following, N is a node in a dendrogram ∆. See

Appendix A for proofs of these properties.
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Property 1. The order in which R0 operates on two nodes Na and Nb does

not a�ect the returned permutation, i.e.

R0(Nb;R0(Na; ∆)) = R0(Na;R0(Nb; ∆)). (3.8)

Equation 3.8 may be written using the following simpler notation:

R0(Na, Nb; ∆) = R0(Nb, Na; ∆). (3.9)

Equation 3.9 extends to any number of nodes.

Property 2. The order in which T0 operates on two nodes Na and Nb does

not a�ect the returned permutation, i.e.

T0(Nb;T0(Na; ∆)) = T0(Na;T0(Nb; ∆)). (3.10)

Equation 3.10 may be written using the following simpler notation:

T0(Na, Nb; ∆) = T0(Nb, Na; ∆). (3.11)

Equation 3.11 extends to any number of nodes.

Property 3. The following relationships hold between R0 and T0:

T0(N ; ∆) = R0(N,Nl, Nr; ∆), (3.12)

where Nl and Nr are the left and right sub-nodes of N .

R0(N ; ∆) = T0(Na, . . . , Nk, N ; ∆), (3.13)

where Na, . . . , Nk are all of the descendant sub-nodes of N .

Property 4. The sets of permutations returned by some node operations are

subsets of the sets of permutations returned by other node operations:

(a) T0(N ; ∆) ⊆ R01(N ; ∆).

(b) R0(N ; ∆) ⊆ R01(N ; ∆).

(c) R1(N ; ∆) ⊆ R01(N ; ∆).

(d) T0(N ; ∆) ⊆ T01(N ; ∆).

(e) T1(N ; ∆) ⊆ T01(N ; ∆).

(f) C0(N ; ∆) ⊆ R01(N ; ∆).
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(g) R0(N ; ∆) ⊆ C0(N ; ∆).

(h) T0(N ; ∆) ⊆ C0(N ; ∆).

Property 5. The node operations R0 and R1 are commutative, i.e.

R1(N ;R0(N ; ∆)) = R0(N ;R1(N ; ∆)). (3.14)

Property 6. The node operations T0 and T1 are commutative, i.e.

T1(N ;T0(N ; ∆)) = T0(N ;T1(N ; ∆)). (3.15)

3.4 Seriation criteria

Existing seriation algorithms focus on one seriation criterion. For example,

the algorithms from Bar-Joseph et al. (2001), Forina et al. (2007) and TSP

heuristics (see Section 2.5.1) minimise the path length of permutations, while

the algorithms in Brusco et al. (2008), Wishart (1999) and Morris et al. (2003)

focus on anti-Robinson form.

DendSer is more �exible and provides a number of choices for the seriation

criterion F . These choices include the path length and anti-Robinson criteria

and also new criteria described in the following subsections. This thesis uses

the following cost function for the path length criterion:

PL(π) =
n−1∑
i=1

dπ(i),π(i+1). (3.16)

For measuring anti-Robinson form, this thesis uses the following cost function

version of the ARc merit function described in Hubert et al. (2006) (see

Equation 2.3):

ARc(π) =
∑

|i−j|6n−1

ndπ(i),π(j) −
∑

|i−j|6n−1

|i− j|dπ(i),π(j) (3.17)

=
∑

|i−j|6n−1

(n− |i− j|)dπ(i),π(j). (3.18)

Alternatively, the user may choose from the criteria provided by the R

package seriation (Hahsler et al. 2010) or they may input their own user-

de�ned measure.
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3.4.1 Lazy path length

The lazy path length criterion, as the name suggests, is a variation of the path

length criterion. Given a set of objects with dissimilarities between them, the

goal is to �nd a permutation of the objects that:

1. has a short path length and

2. has the dissimilarities between adjacent objects generally increasing.

The following cost function measures how well a permutation satis�es this

desired criterion:

De�nition 3.3. Consider a set of n objects, where di,j is the dissimilarity

value for objects i and j. For a permutation π of the objects, the lazy path

length cost function is de�ned as follows:

LPL(π) =
n−1∑
i=1

(n− i)dπ(i),π(i+1). (3.19)

The LPL cost function is a weighted measure of the path length of a permuta-

tion, where dissimilarities at the beginning of the permutation are given more

weight than dissimilarities near the end of the permutation. The LPL cost

function is O(n) and so is fast to compute.

Figure 3.2 illustrates an application of the lazy path length criterion. The

path through the points in Figure 3.2.(a) corresponds to an arbitrary permu-

tation of thirteen randomly generated points. The triangle indicates where

the permutation begins and the heights of the bars beneath the scatterplot

represent the Euclidean distances between adjacent points in the permutation.

The scatterplot in Figure 3.2.(b) shows the path corresponding to the per-

mutation obtained by using DendSer with the PL cost function and the node

operation R01. The path length of this permutation is 13.2 and the bars show

that the smallest Euclidean distances occur in the middle of the permutation.

Applying DendSer with the LPL cost function and the node operation R01

returns the path through the points shown in Figure 3.2.(c). The bars show

that the smallest Euclidean distances are positioned close to the beginning of

the permutation and the path length of the permutation is still short with a

value of 13.58.

The lazy path length criterion may also be described in terms of the Trav-

elling Salesperson Problem. The goal of the Travelling Salesperson Problem is

for a salesperson to visit a set of cities by travelling as short a distance as pos-

sible. With the lazy path length criterion (ignoring the return to the starting
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Figure 3.2: The paths through the points in (a), (b) and (c) correspond to an
arbitrary permutation, a permutation returned by using DendSer with the PL
cost function and a permutation returned by using DendSer with the LPL cost
function, respectively. The triangles in the scatterplots indicate where the per-
mutations begin and the bars beneath the scatterplots represent the Euclidean
distances between adjacent objects in the corresponding permutations.

city), the salesperson still wants to travel as short a distance as possible but

yet he is somewhat lazy in that he tries to visit the next closest city at each

step. Hence the name lazy path length.

Note that the lazy path length criterion is related to some variations of the

TSP, which also aim to satisfy two goals (see, for example, Gutin and Punnen

2002). However, the proposed lazy path length criterion described here is not

discussed elsewhere.

The motivation for developing the lazy path length criterion comes from

Hurley (2004), who discussed the visualisation concept of placing interesting

features in prominent positions of statistical graphics. For example, Hurley

(2004) seriated variables in scatterplot matrices so that interesting panels were

positioned close to the main diagonal, which made it easier to observe trends

and groups in data. Sections 4.1 and 4.3 present examples where seriating

variables using the lazy path length criterion is e�ective in making interesting

features more prominent in parallel coordinates plots and scatterplot matrices.

3.4.2 Banded anti-Robinson form

This section introduces a new seriation criterion called banded anti-Robinson

form, which is a variation of anti-Robinson form.

Section 2.3.2 described anti-Robinson (AR) form and brie�y outlined sev-
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eral functions for measuring AR form in dissimilarity matrices. Optimising

AR form in a dissimilarity matrix aims to �t every element of the matrix into

a speci�c pattern. However, this pattern is quite strict and may be too rigid

for some dissimilarity matrices. Therefore, this section proposes to �relax� AR

form and instead use banded anti-Robinson form, which may be described as

a hybrid of the path length and anti-Robinson criteria.

As with AR form, a matrix following banded AR form has small values

close to the main diagonal, but only the values within a band of width w

around the main diagonal satisfy AR form.

De�nition 3.4. A symmetric matrix D = [di,j], for 1 6 i, j 6 n, has banded

anti-Robinson form if for a band-width w with w < n:

• di,k 6 di,j and dk,j 6 di,j, for i < k < j and |i− j| 6 w.

• di,j 6 di′,j′, for |i− j| 6 w and |i′ − j′| > w.

The following cost function measures how well a permutation satis�es

banded AR form:

De�nition 3.5. Consider a set of n objects, where di,j is the dissimilarity

value between objects i and j and let w be the band-width, where w < n. For a

permutation π of the objects, the banded anti-Robinson cost function is de�ned

as:

BAR(π) =
∑
|i−j|6w

(w + 1− |i− j|)dπ(i),π(j). (3.20)

The BAR cost function may be computed in O(nw) time. Tien et al.

(2008) also de�ned a function for measuring local AR form, which counts the

number of AR violations in a band of width w around the main diagonal of a

dissimilarity matrix.

This thesis uses w = bn5c for the BAR cost function because this value

seems to work well in practice. Note that if w = 1, then the BAR cost function

is equal to the PL cost function in Equation 3.16 because if w = 1, then

BAR(π) =
∑
|i−j|61

(1 + 1− 1)dπ(i),π(j), (3.21)

which is written more simply as:

BAR(π) =
n−1∑
i=1

dπ(i),π(i+1). (3.22)
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If the band-width covers the entire dissimilarity matrix, then w = n − 1

and so

BAR(π) =
∑

|i−j|6n−1

(n− 1 + 1− |i− j|)dπ(i),π(j), (3.23)

which simpli�es to

BAR(π) =
∑

|i−j|6n−1

(n− |i− j|)dπ(i),π(j). (3.24)

Therefore, when w = n − 1 the BAR cost function is equal to the ARc cost

function in Equation 3.18.

The following example demonstrates how the banded anti-Robinson crite-

rion is a compromise between the path length and anti-Robinson criteria.

The Laser dataset is available in the R package tourr (Cook and Wickham

2010) and comes from an experiment at Bellcore, where physicists investigated

the performance of a laser. The dataset contains 64 rows and four variables,

which are the current applied to the laser (front and back), and the power and

wavelength output of the laser.

After standardising the variables, the rows of the Laser dataset are hierar-

chically clustered using Euclidean distance and average linkage. The dendro-

gram is then seriated using DendSer with each of the cost functions PL, BAR

and ARc. The node operations used in DendSer are R01 for PL and BAR, and

T0 for ARc. Section 3.6 justi�es these choices of node operations.

Figures 3.3.(a), (b) and (c) show heatmaps of the Euclidean distance ma-

trix, whose rows/columns are ordered according to the permutations returned

by DendSer with each of PL, BAR and ARc respectively. The colour scale,

black to white, represents low to high Euclidean distances. Beneath each of the

heatmaps is a corresponding scatterplot of di,j versus |i− j| with the Pearson

correlation of di,j and |i− j| written above the scatterplots. These scatterplots

are referred to as Shepard plots (see, for example, Cox and Cox 1994, pg. 54).

For each seriation, this example reports the Pearson correlation value instead

of the ARc value because the correlation values are more meaningful.

The Shepard plots and correlations show that, of the three criteria, DendSer

with ARc results in the Euclidean distance matrix (Figure 3.3.(c)) being the

closest to anti-Robinson form, while DendSer with PL results in the Euclidean

distance matrix (Figure 3.3.(a)) being the furthest from anti-Robinson form.

DendSer with BAR results in the Euclidean distance matrix (Figure 3.3.(b))

being closer to anti-Robinson form than the PL seriation of the matrix but not

as close as the ARc seriation of the matrix.
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Correlation = 0.8

d(i,j)
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(a) DendSer + PL (b) DendSer + BAR (c) DendSer + ARc

Figure 3.3: Heatmaps of the Euclidean distance matrix for the rows in the
Laser dataset. The heatmaps in (a), (b) and (c) are ordered according to the
permutations returned by using DendSer with each of PL, BAR and ARc,
respectively. The colour scale black to white represents low to high Euclidean
distances. Beneath each heatmap is a corresponding scatterplot (Shepard plot)
of di,j versus |i−j| with the Pearson correlation of di,j and |i−j| written above
the scatterplots.

This example also suggests that anti-Robinson form may be too rigid a

structure for some dissimilarity matrices. DendSer with ARc results in the

heatmap of the Euclidean distance matrix (Figure 3.3.(c)) displaying lots of

white squares close to the main diagonal. This �chess-board� e�ect makes it

di�cult to discern any structure in the Euclidean distance matrix. On the

other hand, DendSer with BAR results in a visually �smoother� heatmap of

the Euclidean distance matrix (Figure 3.3.(b)).

Section 5.3.7 revisits the Laser dataset and discusses how DendSer with

BAR results a more interpretable heatmap of the Euclidean distance matrix

for the rows in the Laser dataset than the heatmap resulting from DendSer

with ARc and also the heatmaps resulting from some of the other seriation

algorithms listed in Figure 2.5. Sections 4.5 and 4.6 discuss other datasets

where minimising the BAR cost function produces more informative seriation

results than minimising the ARc cost function.
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3.4.3 LeafSort

This section introduces a cost function which measures how well weights on

the leaves in a dendrogram increase as one reads from left to right.

Consider a set of objects with weights and visualise a hierarchical clustering

of the objects using a dendrogram. The leaves in the dendrogram represent

the objects and so each leaf has a corresponding weight. Given this situation,

the following dendrogram seriation algorithm (described in Degerman 1982,

Gale et al. 1984, Eisen et al. 1998 and Tien et al. 2008) examines each node

N in the dendrogram and proceeds as follows:

1. Compute the mean weight of the leaves for the left and right sub-nodes

of N . Denote these weights by w̄L and w̄R respectively.

2. If w̄R < w̄L then N is translated, otherwise N remains unchanged.

The end result of this �leaf sorting� algorithm is a rearrangement of the den-

drogram, where the leaf weights generally increase as one reads from left to

right.

Figure 3.4 illustrates a simple application of the leaf sorting algorithm. The

dendrogram in Figure 3.4.(a) visualises a hierarchical clustering of thirteen

randomly generated data objects. Each of these objects has a weight, which

is represented by a circle beneath the leaves of the dendrogram. The leaf

weights in Figure 3.4.(a) are in no particular order. However, through a series

of node translations, the leaf weights can be ordered so that they are generally

increasing as one reads from left to right, as shown in the dendrogram in Figure

3.4.(b).

The leaf sorting algorithm has been proposed by a number of authors, who

di�er in their method of weighting the leaves. Degerman (1982) computed a

hierarchical clustering of eight body parts and weighted the body parts accord-

ing to their anatomical position. He then rearranged the dendrogram so that

the permutation of the leaves (i.e. body parts) were ordered according to their

anatomical position. Eisen et al. (1998) weighted genes using some value, for

example their mean gene expression level. They then computed a hierarchical

clustering of the genes and used the leaf sorting algorithm to rearrange the

leaves of the dendrogram so that leaves (i.e. genes) with smaller weights were

placed earlier in the permutation.

Gale et al. (1984) generated an �external� permutation of a set of objects

using an unspeci�ed seriation algorithm aimed at optimising anti-Robinson

form. They weighted each object by their position in the external permuta-

tion, i.e. the object in the ith position has a weight of i. They then computed
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(a) Initial dendrogram (b) Increasing leaf weights

Figure 3.4: The dendrogram in (a) represents a hierarchical clustering of thir-
teen random data objects. Each of these objects has a corresponding weight,
which is represented by a circle beneath the leaves of the dendrogram. The
leaf weights in (a) are in no particular order. The dendrogram in (b) is a
rearranged version of (a), which now has the leaf weights generally increasing
from left to right.

a hierarchical clustering of the same set of objects and rearranged the dendro-

gram so that the resulting permutation of the leaves was as close as possible

to the external permutation. Tien et al. (2008) used the same method as

Gale et al. (1984) where the external permutation was generated using either

the R2E seriation algorithm (Chen 2002) or the results of a one-dimensional

self-organising map (Kohonen 1984).

Applying DendSer with the following cost function and the node operation

T0 performs the leaf sorting algorithm:

De�nition 3.6. Consider a set of n objects with corresponding weights wi, for

1 6 i 6 n. For a permutation π of the objects, the LeafSort cost function is

de�ned as:

LS(π) = −
n∑
i=1

iwπ(i). (3.25)

To see why DendSer with the LS cost function and the node operation T0

performs the leaf sorting algorithm, consider, for example, the node N4 in the

dendrogram in Figure 3.5. DendSer with LS and T0 translates N4 if

−(w4 + 2w5 + 3w1 + 4w2 + 5w3) < −(w1 + 2w2 + 3w3 + 4w4 + 5w5). (3.26)

This condition simpli�es to

w1 + w2 + w3

3
>
w4 + w5

2
. (3.27)
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Therefore, DendSer with LS and T0 translates N4 if the mean weight of the

leaves in N2 is less than the mean weight of the leaves in N3. This is true for

any number of leaves in N2 and N3.

      N4

N1

N2

N3

w1 w2 w3 w4 w5

Figure 3.5: Dendrogram visualising a hierarchical clustering of �ve random
data objects. The values wi, for 1 6 i 6 5, represent the leaf weights.

The LS cost function is O(n) and so is fast to compute. It is clear that

if one considers all n! permutations, then the permutation minimising the LS

cost function is the same permutation obtained by sorting the objects by their

weight. However, this permutation may not be one of the 2n−1 permutations

permitted by a dendrogram. Minimising the LS cost function over the 2n−1

permutations permitted by a dendrogram combines the bene�ts of clustering

with the bene�ts of sorting.

The following explains why DendSer with LS and T0 converges in one iter-

ation. Let N be a node with sub-nodes Na and Nb. During the �rst iteration

of DendSer with LS and T0, if the mean weight of the leaves in Na is less than

the mean weight of the leaves in Nb, then DendSer places Na to the left of Nb.

The mean weight of the leaves in Na and Nb is una�ected by any node transla-

tions that DendSer may perform elsewhere in the dendrogram during the �rst

iteration. This means that if DendSer examines the node N during a second

iteration, then DendSer would still keep Na on the left of Nb and so DendSer

would make no changes during a second iteration. Therefore, DendSer with

LS and T0 only requires one iteration to converge.

According to its documentation, the reorder.dendrogram function in the

R package stats (R Development Core Team 2010) appears to be equivalent

to using DendSer with LS and T0. However, the following shows that this is

not the case.

Consider again the dendrogram in Figure 3.5. The reorder.dendrogram

function, when used with agglo.fun=mean, translates N4 if the weight of N2

is less than the weight of N3. However, reorder.dendrogram computes the

weight of a node using the previously calculated weights of the sub-nodes.

For example, the reorder.dendrogram function computes the weight of N3 in
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Figure 3.5 as

Weight of N3 =
Weight of N1 + w3

2
, (3.28)

where the weight of N1 is
w1 + w2

2
. This means that the weight of N3 simpli�es

to:

Weight of N3 =
w1 + w2 + 2w3

4
. (3.29)

These calculations show that reorder.dendrogram may not weight a node N

by the mean weight of the leaves in N . Therefore, the reorder.dendrogram

function is not equivalent to DendSer with LS and T0, and does not accurately

perform the leaf sorting algorithm described above.

3.4.4 EdgeDist

Applying DendSer with the following cost function and the R1 node operation

performs the algorithm described in Gruvaeus and Wainer (1972) (referred to

here as the GW algorithm):

De�nition 3.7. Consider a set of n objects, where di,j is the dissimilarity

between objects i and j. Let N be a node in a dendrogram and let π(k), . . . , π(k+

m) be the ordered leaves in N. Then the EdgeDist cost function takes in a

permutation π and a node N, and computes the path length of the leaves in N ,

i.e.

ED(π,N) =
k+m−1∑
i=k

dπ(i),π(i+1). (3.30)

The following explains why DendSer with ED and R1 performs the GW

algorithm (see the description of the GW algorithm in Section 2.2.1). Consider

the �rst dendrogram in Figure 3.6 with leaves A, B, C and D, where the ED

value for the node N is dA,B + dB,C + dC,D. Applying the node operation

R1 to N produces the remaining three dendrograms in Figure 3.6, where the

circles over the branches indicate which nodes are re�ected in order to produce

each dendrogram. Computing the ED value for N in each of these three

dendrograms still involves dA,B and dC,D but the middle term dB,C changes to

dB,D, dA,C and dA,D respectively. This means that choosing the permutation

giving the lowest ED value forN is equivalent to choosing the permutation that

places the most similar objects at the edges of the sub-nodes of N adjacently.

The EdgeDist criterion may be described as a �local� path length criterion

because it computes the path length of a permutation π �local� to a node

N . Note that the EdgeDist criterion makes sense for dendrogram seriation

algorithms only, whereas the other criteria discussed in this section may be

optimised using methods other than dendrogram seriation.
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Figure 3.6: Applying the node operation R1 to the node N in the �rst den-
drogram produces the remaining three dendrograms, each with leaves A, B,
C and D. The circles over the branches indicate which nodes are re�ected in
order to produce each dendrogram.

The following explains why DendSer with ED and R1 converges in one

iteration. During the �rst iteration, DendSer arranges a node N according

to the minimum of the possible ED values for N . The ED values for N and

the arrangement of N according to the minimum ED value are una�ected by

other node re�ections that DendSer may perform during the �rst iteration.

This means that DendSer will make no changes during a second iteration and

so DendSer with ED and R1 requires only one iteration to converge.

Using DendSer with ED and R01 returns the same result as DendSer with

ED and R1 because for a node N in a dendrogram ∆, R1(N ; ∆) ⊆ R01(N ; ∆)

and the extra permutations returned by R01(N ; ∆) are equivalent, in the

EdgeDist sense, to those returned by R1(N ; ∆). This is because the extra

permutations returned by R01(N ; ∆) result from re�ecting N in the initial ar-

rangement of ∆ and re�ecting N in each of the dendrograms represented by

R0(Nl; ∆), R0(Nr; ∆) and R0(Nl, Nr; ∆) (i.e. the dendrograms represented by

R1(N ; ∆)). However, re�ecting N does not a�ect the ED value of N .

Using DendSer with ED and either T0, R0, C0, T1 or T01 does not, in general,

produce the same results as DendSer with ED and R1. This is because, for

a node N in a dendrogram ∆, R0(N ; ∆), T0(N ; ∆), C0(N ; ∆), T1(N ; ∆) and

T01(N ; ∆) do not, in general, produce the same permutations as R1(N ; ∆).

However, it is possible that using DendSer with ED and either T0, R0, C0,

T1 or T01 may result in a permutation with a shorter path length than the

permutation returned by using DendSer with ED and R1.

3.5 A general framework for dendrogram seri-

ation algorithms

DendSer uses the following general framework for dendrogram seriation:

1. Node selection: select each node N in a dendrogram ∆ one-by-one in a
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bottom-up manner, i.e. start with the �rst node formed by the hierar-

chical clustering process and end with the root node.

2. Node operation: rearrange N using a node operation T .

3. Seriation criterion: check if a new permutation returned by T (N ; ∆)

improves a criterion or cost function F . If so, then arrange N according

to the new permutation, otherwise keep N in its original position.

4. Stopping criterion: stop when a full iteration fails to �nd any improve-

ments to the cost function F , where one iteration is complete when all

nodes in ∆ have been examined.

Many of the dendrogram seriation algorithms listed in Figure 2.5 �t into the

DendSer framework. For example, Section 3.4.3 described how using DendSer

with the LS cost function and the T0 node operation performs the �leaf sorting�

algorithm described in Degerman (1982), Gale et al. (1984), Eisen et al. (1998)

and Tien et al. (2008). Section 3.4.4 described how using DendSer with the

ED criterion and the R1 node operation performs the algorithm described in

Gruvaeus and Wainer (1972). Both the leaf sorting and the Gruvaeus and

Wainer (1972) algorithms stop after just one iteration.

DendSer can also perform the algorithm outlined in Wishart (1999). This

algorithm selects each node in a bottom-up manner, uses the R0 node oper-

ation, evaluates new permutations using a cost function similar to ARc and

stops when a full iteration fails to �nd any improvement to the cost function.

Alon et al. (1999) andWu et al. (2010) also described dendrogram seriation

algorithms that �t into the DendSer framework. These algorithms rearrange

nodes based on the distance to their �uncle� or �grand-uncle� node. For exam-

ple, consider the dendrogram in Figure 3.7, where N3 is the uncle of N1, and

N6 is the grand-uncle of N1:

• The algorithm described in Alon et al. (1999) rearranges the node N5

if d(C(N1), C(N3)) < d(C(N2), C(N3)), where C(N) denotes the cen-

troid of a node N (the distance measure d is unspeci�ed but is possibly

Euclidean distance).

• The �Uncle algorithm� described in Wu et al. (2010) is similar to the

algorithm in Alon et al. (1999) except for the distance measure d. The

Uncle algorithm rearranges N5 if d(N1, N3) < d(N2, N3), where d(Na, Nb)

is the mean dissimilarity between the leaves in the node Na and the

leaves in the node Nb, for whatever dissimilarity measure is used in the

hierarchical clustering process.
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• Wu et al. (2010) also described a �Grandpa algorithm�, which rearranges

N5 if d(N1, N6) < d(N2, N6), where the distance d is the same as for the

Uncle algorithm.

A B C D E F G H I

N1 N2

N3 N4

N5 N6

N7

                  N8

Figure 3.7: Dendrogram visualising a hierarchical clustering of nine random
data objects. The node N3 is the uncle of N1, and N6 is the grand-uncle of
N1.

Alon et al. (1999) and Wu et al. (2010) did not specify how their algorithms

rearrange the nodes but worked examples suggest that the algorithm in Alon

et al. (1999) and the Uncle algorithm use the R0 node operation, while the

Grandpa algorithm uses the T0 node operation. These three algorithms also

require just one iteration to converge.

The criteria developed in this thesis do not currently enable DendSer to

perform the algorithms described in Alon et al. (1999) and Wu et al. (2010),

however appropriate criteria may be developed in future.

The following three dendrogram seriation algorithms do not �t into the

DendSer framework.

Morris et al. (2003) described a simulated annealing based dendrogram

seriation algorithm. This algorithm randomly selects a node N in a dendro-

gram ∆ and if R0(N ; ∆) produces a permutation that improves the ARc cost

function, then N stays re�ected. Otherwise, N stays re�ected with probabil-

ity inversely proportional to the increased cost of the permutation produced

by R0(N ; ∆). The algorithm then repeats the process on another randomly

selected node and continues until no improvement in the cost function is found

for 20,000 node re�ections.

Forina et al. (2007) described the following dendrogram seriation algo-

rithm:

1. The algorithm works top-down, i.e. it begins with the root node, Nn−1,
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where n is the number of objects. A minimum and maximum value for

a depth parameter is also speci�ed.

2. The algorithm selects nodes within the speci�ed depth of Nn−1. For

example, if the nodes are labelled according to height, then for depth = 2

the selected nodes are {Nn−1, Nn−2}, for depth = 3 the selected nodes

are {Nn−1, Nn−2, Nn−3} and so on. Note that the selected nodes are not

necessarily nested nodes.

3. The algorithm evaluates permutations corresponding to all possible com-

binations of applying the node operation T0 to the selected nodes. The

permutation with the shortest path length is kept and the dendrogram

is updated according to this permutation.

4. The algorithm then increases the depth by one and repeats Steps 2 and

3.

5. When the maximum depth is reached, the algorithm repeats Steps 2-4

on the next lowest node in the hierarchy and continues until it reaches a

speci�ed lowest node.

6. After all required nodes have been examined, the algorithm either stops

or repeats Steps 1-5 using R0 instead of T0.

Bar-Joseph et al. (2001) presented their Optimal Leaf Ordering (OLO)

algorithm, which they described as being similar to dynamic programming.

The di�erence between the OLO algorithm and all other algorithms described

in this section is that the OLO algorithm is not a heuristic algorithm, i.e. the

OLO algorithm is guaranteed to �nd the permutation from the dendrogram

that minimises the path length criterion.

Table 3.1 provides an overview of the dendrogram seriation algorithms

described in this section. The �rst column contains the references for each

algorithm. The second and third columns contain the seriation criterion and

the node operation (where relevant) for each algorithm respectively. The fourth

column summarises the way in which each algorithm examines the nodes in

a dendrogram and the �fth column summarises the stopping criterion for the

algorithm. Finally, the sixth column indicates whether or not each algorithm

�ts into the DendSer framework.
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3.6 Choice of node operation

This section investigates the best choice of node operation for use in DendSer

when optimising each of the following criteria: path length, lazy path length,

anti-Robinson form and banded anti-Robinson form. The node operations

are assessed based on both the goodness of the seriation results returned by

DendSer when used with each node operation and also the e�ciency of DendSer

when used with each node operation.

This section does not investigate the LS or ED cost functions because the

LS cost function is designed to sort leaves by their weights and requires the

T0 node operation, and the ED cost function is designed for the Gruvaeus and

Wainer (1972) algorithm and requires the R1 node operation.

It is di�cult to �nd intuitive arguments as to why a particular node op-

eration is the most suitable when using DendSer to optimise the path length

or lazy path length criteria. However, for anti-Robinson and banded anti-

Robinson form, the following argues that the node operation T0 is more suitable

than the node operation R0.

Consider the arbitrary dendrogram in Figure 3.8 and the outline of the

A B
N

A

B

A1

A2

B1

B2

→ →

↑

↑

Figure 3.8: The nodes A and B in the dendrogram have been arranged so
that areas of the dissimilarity matrix that contain dissimilarities involving the
objects in A and B follow anti-Robinson form; these areas are A1, A2, B1 and
B2. The arrow indicates that the values in the marked areas are increasing as
one moves away from the main diagonal.

corresponding dissimilarity matrix below the dendrogram. The areas in the

dissimilarity matrix marked A and B contain the dissimilarities between the
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objects within the nodes A and B respectively. The areas A1 and B1 contain

the dissimilarities between the objects to the left of node A and the objects

in nodes A and B respectively. Similarly, the areas A2 and B2 contain the

dissimilarities between the objects to the right of node B and the objects in

nodes A and B respectively.

Assume that the nodes A and B are arranged so that the values in the

areas A1, B1, A2 and B2 in the dissimilarity matrix follow anti-Robinson form.

This is shown by the direction of the arrows in the areas A1, A2, B1 and B2,

which indicate that the values are increasing as one moves away from the main

diagonal. The values in B1 may be lower than the values in A1 or the values

in A2 may be lower than the values in B2, which means that placing node B

on the left of node A in the dendrogram would bring the dissimilarity matrix

closer to following anti-Robinson form.

There are two ways of placing node B on the left of node A: translate the

node N or re�ect N . Figures 3.9.(a) and (b) illustrate the e�ect of translating

B A

N

B

A

B1

B2

A1

A2

→ →

↑

↑

B A

N
R

R

B

A

B1

B2

A1

A2

← ←

↓

↓

R

R R

R

R

R

(a) Translate N (b) Re�ect N

Figure 3.9: Figures (a) and (b) show the same dendrogram as in Figure 3.8.
In (a), N is translated and so the values within A1, A2, B1 and B2 in the dis-
similarity matrix still satisfy anti-Robinson form, as indicated by the direction
of the arrows. In (b), N is re�ected, which reverses the objects within A and
B. This means that the values within AR1 , A

R
2 , B

R
1 and BR

2 in the dissimilarity
matrix are also reversed and so do not follow anti-Robinson form, as indicated
by the direction of the arrows.

and re�ecting N respectively on the dissimilarity matrix. Translating N pre-

serves the order of the objects within the nodes A and B, and so, as indicated

by the arrows in Figure 3.9.(a), the values in the areas A1, B1, A2 and B2 still
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follow anti-Robinson form. However, re�ecting N reverses the order of the ob-

jects within the nodes A and B, which means that the values in the areas A1,

B1, A2 and B2 are also reversed, as indicated by the arrows in Figure 3.9.(b).

Therefore, the values in these areas no longer follow anti-Robinson form.

In summary, translating N retains previous arrangements of nodes in a

dendrogram, whereas re�ecting N undoes previous arrangements. Therefore,

it seems that the node operation T0 is more suitable than the node operation

R0 when using DendSer to optimise anti-Robinson criteria. This suggests that

T0 is also more suitable than R0 when using DendSer to optimise banded anti-

Robinson criteria.

3.6.1 Measuring the e�ciency of DendSer

DendSer generally requires more than one iteration to converge when minimis-

ing PL, LPL, ARc and BAR, regardless of the chosen node operation. There-

fore, it is somewhat complicated to assess the e�ciency of DendSer when used

with di�erent node operations.

For example, the previous section argued that T0 is suitable when us-

ing DendSer to minimise the ARc cost function. This suggests that T01,

R01 and C0 are also suitable node operations to use in DendSer when min-

imising the ARc cost function (because for a node N in a dendrogram ∆,

T0(N ; ∆) ⊆ T01(N ; ∆), T0(N ; ∆) ⊆ R01(N ; ∆) and T0(N ; ∆) ⊆ C0(N ; ∆)).

T0 appears to give DendSer the least amount of work because it produces the

fewest permutations per node for DendSer to evaluate. However, DendSer may

converge faster with T01, R01 or C0 than with T0.

The workload of DendSer is broken down as follows:

1. For each iteration required until convergence:

(a) for each node N in a dendrogram ∆:

i. calculate the cost function F for each of the permutations re-

turned by T (N ; ∆), where T is the node operation.

ii. update ∆ according to the permutation with the lowest cost.

This workload gives DendSer the following time complexity:

# iterations×O(n)× ((O(F )×# perms returned by T ) +O(n)). (3.31)

For each node operation T , assessing the e�ciency of DendSer when used

with T requires counting the number of times DendSer computes F and the

number of times DendSer updates the dendrogram.
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Table 3.2 summarises the complexity of DendSer when used in conjunction

with each of the cost functions discussed in Section 3.4.

Table 3.2: Time complexity of DendSer when used in conjunction with di�erent
cost functions.

Cost function F Complexity of F Complexity of DendSer + F
PL

O(n) # iterations × O(n2)
LPL
ARc

O(n2) # iterations × O(n3)
BAR
LS

O(n) O(n2)
ED

Note that DendSer usually converges in less than ten iterations when used

in conjunction with either the PL, LPL, ARc or BAR cost function. Also note

that the implementation of the BAR cost function used in this thesis is O(n2).

3.6.2 Simulation study

The following simulation study investigates which node operation is most suit-

able for use in DendSer when minimising PL, LPL, ARc and BAR:

1. For each of the Iris (Fisher 1936), Laser (see Section 3.4.2) and Sleep

(Allison and Cicchetti 1976) datasets:

(a) Create 100 samples, each with �fty randomly selected cases and

standardised variables (all variables are used for the Laser and Sleep

datasets, and all variables except the species variable are used for

the Iris dataset).

2. For each sample:

(a) Construct a hierarchical clustering of the cases using Euclidean dis-

tance and average linkage.

(b) Seriate the dendrogram using DendSer with F = PL and each of

R0, T0, R1, T1, R01, T01 and C0.

(c) Record:

i. The value of F for each of the seven permutations returned.

ii. The number of times DendSer updates the dendrogram for each

of the seven runs.
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iii. The number of times DendSer computes F for each of the seven

runs.

iv. The number of times DendSer with C0 preferred the R0 or T0

option.

3. Repeat Steps 1 and 2 with F = LPL, ARc and BAR.

The following reports the results of the simulation study for each cost

function. The number of times DendSer updated a dendrogram is not reported

because the choice of node operation had no e�ect on this value. Note that

for each cost function F , the mean number of times DendSer computed F

is only reported for the node operations that resulted in DendSer producing

permutations with low cost values.

Also, the following results correspond to average linkage, however the re-

sults are similar for single, complete and Ward's linkage.

Simulation results for the PL cost function

For each dataset, the axes in Figure 3.10.(a) show the mean of the PL values

for each of the seven node operations relative to the PL values for R01. The

�rst axis in Figure 3.10.(a) shows the overall mean relative PL value for each

of the node operations.
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Figure 3.10: For each dataset, the axes in Figure (a) show the mean of the
PL values for each of the node operations relative to the PL values for R01.
The �rst axis shows the overall mean relative PL value for each of the node
operations. The plot in (b) shows the mean number of times that DendSer
computed the PL cost function when used with R01 and C0. The legend orders
the node operations according to the �rst axis in Figure (a).

The mean relative PL value for R01 is equal to one. If a node operation

T has a mean relative PL value greater than one, then DendSer with PL
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and T returned permutations having, on average, higher PL values than the

corresponding permutations returned by DendSer with PL and R01. Similarly,

if a node operation T has a mean relative PL value less than one, then DendSer

with PL and T returned permutations having, on average, lower PL values than

the corresponding permutations returned by DendSer with PL and R01.

Figure 3.10.(b) shows the overall mean number of times DendSer computed

the PL cost function when used with C0 and R01 (these �gures are consistent

across all three datasets). The legend in Figure 3.10 orders the node operations

according to the �rst axis in the parallel coordinates plot in Figure 3.10.(a).

Figure 3.10.(a) shows that DendSer with R01 produced permutations with

the lowest PL values. However, DendSer with C0 performed almost as well as

DendSer with R01 and Figure 3.10.(b) shows that DendSer with C0 calculated

the PL cost function far less then DendSer with R01. Therefore, it may be

more e�cient to use DendSer with C0 when seriating large numbers of objects

using the PL cost function.

Simulation results for the LPL cost function

Figure 3.11 shows the simulation results for the LPL cost function, where

Figures 3.11.(a) and (b) are constructed as in Figure 3.10.
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Figure 3.11: For each dataset, the axes in Figure (a) show the mean of the
LPL values for each of the node operations relative to the LPL values for R01.
The �rst axis shows the overall mean relative LPL value for each of the node
operations. The plot in (b) shows the mean number of times that DendSer
computed the LPL cost function when used with R01 and C0. The legend
orders the node operations according to the �rst axis in Figure (a).

Figure 3.11.(a) shows that DendSer with R01 and C0 produced permuta-

tions with the lowest LPL values for all datasets. Although DendSer with R01

performed slightly better than DendSer with C0, Figure 3.11.(b) shows that

DendSer with C0 computed the LPL cost function far less than DendSer with
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R01. Therefore, it is more e�cient to use DendSer with C0 when seriating large

numbers of objects using the LPL cost function.

Simulation results for the ARc cost function

Figure 3.12 shows the simulation results for the ARc cost function, where

Figures 3.12.(a) and (b) are constructed as in Figure 3.10. Note that in Figure

3.12.(a), the yellow line for R1 is plotted beneath the purple line for R0, and

the lines for T01, R01 and T0 are plotted beneath the blue line for C0.
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Figure 3.12: For each dataset, the axes in Figure (a) show the mean of the
ARc values for each of the node operations relative to the ARc values for R01.
The �rst axis shows the overall mean relative ARc value for each of the node
operations. The plot in (b) shows the mean number of times that DendSer
computed the ARc cost function when used with T0, C0, T01 and R01. The
legend orders the node operations according to the �rst axis in Figure (a).

Figure 3.12.(a) shows that DendSer with either T01, R01, C0 or T0 performed

equally well for all datasets. However, Figure 3.12.(b) shows that DendSer with

T0 computed the ARc cost function less often than DendSer with either R01,

T01 or C0. Therefore, T0 is the best choice of node operation for use in DendSer

when minimising the ARc cost function.

Note that DendSer with T0 produced permutations with lower ARc values

than DendSer with R0. This agrees with the argument in the beginning of

Section 3.6 that T0 is more suitable than R0 when using DendSer to optimise

anti-Robinson form.

Simulation results for the BAR cost function

Figure 3.13 shows the simulation results for the BAR cost function, where

Figures 3.13.(a) and (b) are constructed as in Figure 3.10.

Figure 3.13.(a) shows that DendSer with either R01, C0 or T01 performed

almost equally well for the Iris and Sleep datasets, while DendSer with R01
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Figure 3.13: For each dataset, the axes in Figure (a) show the mean of the
BAR values for each of the node operations relative to the BAR values for R01.
The �rst axis shows the overall mean relative BAR value for each of the node
operations. The plot in (b) shows the mean number of times that DendSer
computed the BAR cost function when used with C0, T01 and R01. The legend
orders the node operations according to the �rst axis in Figure (a).

performed better for the Laser dataset. However, Figure 3.13.(b) shows that

DendSer with C0 calculated the BAR cost function far less than DendSer with

either R01 and T01. Therefore, it may be more e�cient to use DendSer with

C0 when seriating large numbers of objects using the BAR cost function.

These results somewhat agree with the argument in the beginning of Section

3.6 that T0 is more suitable than R0 when using DendSer to optimise banded

anti-Robinson criteria. This is because DendSer with BAR and C0 preferred

the T0 option over the R0 option in approximately 84% of cases.

3.6.3 Discussion

Based on the results of the simulation study, Table 3.3 recommends suitable

node operations to use in DendSer when minimising each of the examined cost

functions.

Table 3.3: Recommended node operations to use in DendSer when minimising
di�erent cost functions.

Cost function Node operation
ARc T0
BAR R01 & C0

PL R01 & C0

LPL R01 & C0

Of the seven node operations examined in this study, DendSer with R01
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produced permutations with the lowest cost values for PL, LPL and BAR.

DendSer with R01 also performed equally well as DendSer with T0 for the

ARc cost function (see Figure 3.12.(a)). This versatility of R01 suggests that

it is a suitable node operation for use in DendSer when minimising other

cost functions that were not examined in this study. DendSer with C0 also

performed consistently well for all four cost functions and so the node operation

C0 is also quite �exible and is a more e�cient, although in some cases slightly

less optimal, alternative to R01.

Note the both of the node operations, R01 and C0, are newly de�ned in

this thesis and have not been implemented in other dendrogram seriation al-

gorithms.

The simulation results for the ARc cost function shown in Figure 3.12.(a)

suggest that some currently available dendrogram seriation algorithms are

not using the most suitable node operation. Wishart (1999) and Morris et

al. (2005) presented dendrogram seriation algorithms for optimising an anti-

Robinson function with both of these algorithms using R0 as the node opera-

tion. However, the simulation results in Figure 3.12.(a) suggest that both of

these algorithms could be improved by using T0 instead of R0 because DendSer

with T0 produced permutations with better ARc values than DendSer with R0.

3.7 Summary

This chapter presented a new dendrogram seriation algorithm called DendSer.

One of the features of DendSer is the choice of how to rearrange the nodes

in a dendrogram, which is an important but generally ignored aspect of dendro-

gram seriation. Section 3.3 developed notation and terminology for describing

dendrogram seriation algorithms and de�ned several node operations, which

rearrange or operate on nodes in di�erent ways.

DendSer is a �exible seriation algorithm, allowing the user to choose from

a variety of seriation criteria including path length and anti-Robinson form.

The choice of criteria also includes two new seriation criteria called lazy path

length and banded anti-Robinson form, which are described in Sections 3.4.1

and 3.4.2.

Section 3.5 discussed how DendSer provides a general framework for den-

drogram seriation with several algorithms �tting into this framework (Gru-

vaeus and Wainer 1972, Degerman 1982, Gale et al. 1984, Eisen et al. 1998,

Tien et al. 2008, Alon et al. 1999, Wishart 1999 and Wu et al. 2010). This

section then gave a brief account of three other dendrogram seriation algo-
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rithms (Bar-Joseph et al. 2001, Morris et al. 2003 and Forina et al. 2007)

that do not �t into the DendSer framework. Table 3.1 provides an overview of

all algorithms discussed in Section 3.5.

Section 3.6 investigated the most suitable choice of node operation for use

in DendSer when minimising each of the following cost functions: PL, LPL,

ARc and BAR. For each cost function, the simulation study in Section 3.6.2

examined both the goodness of the permutations returned by DendSer when

used with each of the node operations and the amount of work each node

operation created for DendSer. The �ndings of Section 3.6.2 are summarised

in Table 3.3.
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Chapter 4

Applications of DendSer

4.1 Introduction

This chapter presents visualisation applications of the DendSer algorithm.

Section 4.2 describes an analysis of Pottery data (Tubb et al. 1980). For

this data, seriating a heatmap, an array of glyphs and a parallel coordinates

plot using DendSer helps to informally assess the goodness of a hierarchical

clustering solution and answer various questions about the resulting clusters.

The example in Section 4.3 shows how DendSer with the LeafSort criterion

may be used to order genes in a heatmap according to the algorithm described

in Eisen et al. (1998) (see Section 3.4.3).

Section 4.4 uses the lazy path length criterion to place interesting panels

in a prominent position in a scatterplot matrix, thereby making it easier to

extract interesting information from data.

Section 4.5 explains why optimising an anti-Robinson criterion may pro-

duce uninformative results when seriating data that follow a speci�c pattern

called a �circumplex� pattern, whereas optimising banded anti-Robinson form

or path length is more suitable for seriating this type of data.

Section 4.6 explores a larger dataset that also follows a circumplex pattern.

In this case, DendSer with the banded anti-Robinson criterion produces more

informative seriation results than DendSer with the path length criterion.

Note that in all of the following examples, DendSer is used with the node

operation R01 when minimising the PL, LPL and BAR cost functions, and

the node operation T0 when minimising the ARc and LS cost functions. See

Section 3.6 for justi�cation of these choices of node operations.

The chapter ends with a brief summary and discussion.
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4.2 Pottery data

Tubb et al. (1980) analysed data on the chemical composition of Romano-

British pottery found at di�erent kiln sites in Britain. The dataset used in this

example contains nine chemical measurements of 45 pieces of pottery. The �ve

kiln sites at which the pottery pieces were found are Llanedeyrn and Caldicot

(both in Wales), Islands Thorns and Ashley Rails (both in Hampshire) and

Gloucester.

The �rst step in analysing this data is to see if the pots cluster into distinct

groups based on their chemical composition. Figure 4.1 shows a dendrogram

visualising a hierarchical clustering of the pots using Euclidean distance and

average linkage. This dendrogram suggests that there are three distinct clusters

of pots.
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Figure 4.1: Dendrogram visualising a hierarchical clustering (average linkage)
of the pots in the Pottery dataset.

The heatmap of the Euclidean distance matrix for the Pottery data, shown

in Figure 4.2.(a), allows an informal assessment of the hierarchical clustering

solution. The rows and columns of the heatmap in Figure 4.2.(a) are ordered

according to the permutation of the 45 pots from the dendrogram in Figure

4.1. In Figure 4.2.(b), the row and column ordering is obtained from the same

dendrogram except the dendrogram has been rearranged using DendSer with

BAR. Using DendSer to optimise banded anti-Robinson form in the Euclidean
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(a) Initial ordering from dendrogram (b) DendSer + BAR

Figure 4.2: Heatmaps of the Euclidean distance matrix for the pots in the
Pottery dataset. The heatmap in (a) is ordered according to the permutation
from the dendrogram in Figure 4.1. The heatmap in (b) is ordered according
to the permutation of the pots returned by using DendSer with BAR. The
colour scale black to white represents low to high Euclidean distances.

distance matrix results in a more contiguous display of colour in the heatmap,

making it easier to determine clustering patterns in the data. Based on both

the dendrogram in Figure 4.1 and the heatmap in Figure 4.2.(b), the pots are

divided into three clusters.

An array of glyphs is another useful visualisation for analysing clustering

results. Figure 4.3.(a) shows an array of star glyphs (see, for example, Ward

2002), one star for each pot, with the stars coloured according to the three

cluster solution. The stars are ordered according to the permutation of the

pots returned by DendSer with BAR, as in Figure 4.2.(b). The array shows

that pots in the same cluster have similarly shaped stars and pots from di�erent

clusters have di�erently shaped stars.

The array of stars may also be used to examine how the three clusters relate

to the kiln sites at which the pots were found. In the array in Figure 4.3.(b),

the stars are coloured according to their corresponding kiln sites and ordered

as in Figure 4.3.(a). It is clear that cluster 1 contains the pots found at Islands

Thorns and Ashley Rails, cluster 2 contains the pots found at Gloucester and

cluster 3 contains the pots found at Llanedeyrn and Caldicot. Therefore, the

clusters correspond exactly to Hampshire, Gloucester and Wales, which are

the three regions in which the pots were found.

This example now explores the chemical composition of the three clusters

using the parallel coordinates plots (PCPs) in Figure 4.4. The lines in Figure

4.4.(a) are coloured according to the three cluster solution (or equivalently, the
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Cluster 1 Cluster 2 Cluster 3
Gloucester Llanedeyrn Caldicot

Islands Thorns Ashley Rails

(a) 3-cluster solution (b) Kiln sites

Figure 4.3: The stars in the array in (a) are coloured according to the three
cluster solution from the hierarchical clustering of the pots in the Pottery
dataset. The stars in the array in (b) are coloured according to the Kiln sites
at which the pots were found. The stars in both arrays are ordered according
to the permutation of the pots returned by using DendSer with the BAR cost
function.

regions) and the variables are ordered arbitrarily. The lines in this PCP are

quite �zig-zaggy� and the panels show poor separation of the three clusters.

For exploring the cluster di�erences, a desirable permutation of the vari-

ables is one that results in the PCP panels showing good separation of the

three clusters. The following de�nes a merit measure, which rewards such

panels. Let x̄i,k be the mean value of variable i for the pots in cluster k, where

variable i is scaled to lie in the unit interval [0, 1] (note that this is the usual

choice of scaling for a PCP). Let di,j(k1, k2) be the Euclidean distance between

the cluster centroids on the variables i and j for the clusters k1 and k2, i.e.

di,j(k1, k2) =
√

(x̄i,k1 − x̄i,k2)2 + (x̄j,k1 − x̄j,k2)2. (4.1)

Then, for two variables i and j, the merit measure, mi,j, is de�ned to be the

following:

mi,j = di,j(1, 2) + di,j(1, 3) + di,j(2, 3). (4.2)

The larger the mi,j value, the better the separation of the three clusters in

the PCP panel formed by the variables i and j. The merit values mi,j form a

merit matrix M = [mi,j], for 1 6 i, j,6 9. The merit matrix M is converted

61



Fe2O3 BaO K2O Al2O3 MgO TiO2 CaO Na2O MnO

(a) Arbitrary ordering

MgO Fe2O3 K2O MnO CaO Al2O3 TiO2 Na2O BaO

(b) DendSer + LPL

Figure 4.4: The variables in the PCP in (a) are arbitrarily ordered. The
variables in the PCP in (b) are ordered according to the permutation returned
by using DendSer with the LPL cost function. The lines are coloured according
to the three cluster solution from the hierarchical clustering of the Pottery data.

into a loss matrix L = [li,j] using the transformation L = max(M) − M .

Therefore, the smaller the li,j value, the better the separation of the three

clusters in the PCP panel formed by the variables i and j.

The variables are now hierarchically clustered using the loss matrix L and

average linkage. DendSer with the LPL cost function returns a permutation

of the variables with a small sum of the loss values between adjacent vari-

ables, with the loss values generally increasing along the permutation. This

permutation is used to construct the PCP in Figure 4.4.(b).

The PCP in Figure 4.4.(b) now contains panels that show better separa-

tion of the clusters, which makes it easier to extract information about the

di�erences between the chemical composition of the three clusters of pots.

Minimising the LPL cost function also positions panels showing the most sep-

aration of the three clusters at the beginning of the PCP and panels showing

the least separation of the three clusters at the end. Given that people gener-

ally read from left to right, it follows that people are also likely to examine a

PCP from left to right (or top to bottom, depending on the orientation of the

PCP). Therefore, placing the most �interesting� panels at the beginning of the

PCP allows the analyst to immediately see features of interest in the data.

Figure 4.4.(b) clearly shows that the pots from Hampshire (blue lines) con-
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tain the lowest levels of magnesium (MgO), iron (Fe2O3), potassium (K2O),

manganese (MnO) and calcium (CaO). The pots from Wales (orange lines)

contain the highest levels of magnesium (MgO), potassium (K2O), and man-

ganese (MnO), and the lowest levels of aluminium (Al2O3). The pots from

Gloucester (green lines) contain the highest levels of iron (Fe2O3) and calcium

(CaO), and medium levels of magnesium (MgO), potassium (K2O) and man-

ganese (MnO). The arbitrarily ordered PCP in Figure 4.4.(a) requires much

closer inspection in order to extract the above information.

4.3 Cancer data

In the following example, DendSer with the LeafSort criterion demonstrates

the method described in Eisen et al. (1998) (see Section 3.4.3).

Khan et al. (2001) described gene expression data containing 2308 genes

and 88 tumours, where the 88 tumours fall into �ve categories of cancer. Fig-

ure 4.5.(a) shows the heatmap of the gene expressions, where the genes (rows)

are ordered according to the permutation obtained from a hierarchical cluster-

ing of the genes using average linkage and Euclidean distance. The tumours

(columns) are ordered according to their cancer type. The colour scale green

to red represents low to high expression.

The heatmap in Figure 4.5.(a) shows large bands of red and green indicat-

ing groups of genes with similar expression levels. However, the initial ordering

from the dendrogram places two groups of genes with high expression (red ar-

eas) at opposite ends of the heatmap. In Figure 4.5.(b), the gene ordering is

obtained from the same hierarchical clustering as in Figure 4.5.(a). The di�er-

ence is that, in this case, the dendrogram is rearranged using DendSer with the

LS cost function, where the leaf (i.e. gene) weight is the mean expression level

for that gene. The resulting permutation places the groups of high expression

genes adjacently in the heatmap in Figure 4.5.(b), which now shows a general

trend of low to high expression in the genes.

Although DendSer with LS appears to work well for this example, a more

sensible general method for ordering genes may be to use DendSer with either

the PL, BAR or ARc cost function. This is because minimising PL, BAR,

or ARc places similar genes close together in the heatmap. This is not a

guaranteed result of using DendSer with LS because two genes having the

same mean expression level does not imply that the genes are similar.

However, gene expression datasets typically contain thousands of genes

meaning that DendSer with PL, BAR or ARc may be too time consuming.
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(a) Initial ordering from dendrogram (b) DendSer + LS

Low
expression

High
expression

Figure 4.5: Heatmaps of the gene expression dataset described in Khan et al.
(2001). The rows (i.e. genes) of the heatmap in (a) are ordered according
to the permutation obtained from a hierarchical clustering of the genes using
Euclidean distance and average linkage. The rows (i.e. genes) of the heatmap
in (b) are ordered according to DendSer with the LS cost function.

For such large datasets, it may be more e�cient to use DendSer with LS (i.e.

the method from Eisen et al. 1998) because it runs in a faster time than

DendSer with either PL, BAR or ARc (see Table 3.2).

4.4 Sleep data

Based on Bertin's (1983) concept of �diagonalisation�, Hurley (2004) proposed

seriating variables in scatterplot matrices so that interesting panels were placed

close to the main diagonal. The logic behind this is that interesting panels are

placed in a prominent position, making it easier for the analyst to observe

features of interest in the data.

Seriation with either the PL, BAR or ARc cost function is one way of po-

sitioning interesting panels close to the main diagonal. However, this example

shows that seriating variables using DendSer with the lazy path length cri-

terion makes interesting panels even more prominent by not only positioning

interesting panels close to the main diagonal but also positioning the most
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interesting panels in the north-west of the scatterplot matrix.

Outliers are one of the �rst features to look for when analysing data and

scatterplot matrices are a convenient visualisation tool for revealing bivariate

outliers in data. Figure 4.6 shows a scatterplot matrix of the Sleep data (Al-

lison and Cicchetti 1976), which contains ten measurements on 62 mammals.

The bars in the lower triangle of the scatterplot matrix represent the Outlying

scagnostic index (Wilkinson et al. 2005) for each of the corresponding scatter-

plots in the upper triangle. The Outlying scagnostic index is a merit measure

with values lying in the unit interval [0, 1]. The dashed lines in the panels in

the lower triangle of the scatterplot matrix represent the value 0.5.

SWS

P

PS

BodyWt

SE

TS

BrainWt

Life

GP

D

Figure 4.6: Scatterplot matrix of the Sleep dataset, constructed using an ar-
bitrary ordering of the variables. The bars in the lower triangle represent the
Outlying scagnostic value for each of the corresponding scatterplots and the
dashed lines in the panels in the lower triangle represent the value 0.5.

The Outlying scagnostic values form a merit matrix M = [mi,j], for 1 6

i, j 6 10, wheremi,j is the Outlying scagnostic value for the scatterplot formed

by variables i and j. The larger the value of mi,j, the stronger the presence of

outliers in the scatterplot formed by variables i and j. The merit matrix M is

converted into a loss matrix L using the transformation L = 1−M .

After computing a hierarchical clustering of L using average linkage, the

corresponding dendrogram is rearranged using DendSer with the LPL cost

function. The scatterplot in Figure 4.7 is constructed using the resulting per-
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mutation of variables.

Minimising the LPL cost function positions panels with the most extreme

outliers (panels with an Outlying scagnostic value of 0.5 or more) in the

north-west of the scatterplot matrix, making it easier to see that the vari-

ables BrainWt and BodyWt contain two extreme outliers (Asian and African

elephant) and the variable Life contains one, less extreme, outlier (Human).

These outliers are not as clearly observed from the arbitrarily ordered scatter-

plot matrix in Figure 4.6.

GP

BrainWt

BodyWt

Life

SWS

TS

PS

D

P

SE

Figure 4.7: Scatterplot matrix of the Sleep data, with variables ordered ac-
cording to DendSer with LPL. The bars in the lower triangle represent the
Outlying scagnostic value for each of the corresponding scatterplots and the
dashed lines in the panels in the lower triangle represent the value 0.5.

Note that the Outlying scagnostic index is an example of a visualisation

based measure because, for two variables i and j, it measures the �interesting-

ness� of the scatterplot produced by variables i and j. The above application

could also be done for other scagnostic indexes (Wilkinson et al. 2005).

4.5 Morse code data

Rothkopf (1957) described an experiment, where inexperienced subjects lis-

tened to pairs of morse codes and then decided whether a pair of codes were

identical. The data used in this example contain the results for the ten single
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digits, where the ijth entry in the data is the percentage of subjects who said

codes i and j were identical after hearing code i �rst and then code j.

The data is an asymmetric similarity matrix, denoted by S, because the

response to hearing code i �rst and then code j may not be the same as

the reponse to hearing code j �rst and then code i. Following Everitt and

Dunn (2001), S is symmetrised by averaging the corresponding pairs of o�-

diagonal elements. After this, S is converted into a dissimilarity matrix using

the transformation D = 100− S.
Applying two dimensional classical multidimensional scaling to D results

in the plot shown in Figure 4.8, where the dashed and dotted lines illustrate

the morse codes for the digits. This plot visualises a two dimensional represen-

tation of the dissimilarities between the codes: similar codes are close together

and dissimilar codes are far apart.
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Figure 4.8: Scatterplot of the two dimensional classical multidimensional scal-
ing solution for the dissimilarity matrix of the digits in the Morse code dataset.
The dashed and dotted lines illustrate the morse codes for the digits.

The ten codes fall onto a circle and if the codes are ordered along this cir-

cle, then the corresponding dissimilarity matrix follows a �circumplex� pattern

(see, for example, Wilkinson 2005, �16.5). A dissimilarity matrix follows a

circumplex pattern if when moving away from the main diagonal in the ma-

trix, the dissimilarities begin low, then increase to a point and then decrease

becoming low again. The heatmap in Figure 4.9.(a) shows the circumplex pat-

tern in the dissimilarity matrix for the Morse code data, where black to white

represents low to high dissimilarities.
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The codes are clustered using average linkage applied to D and the den-

drogram is rearranged using DendSer with each of the PL, BAR and ARc

cost functions. The paths through the points in the scatterplots in Figures

4.9.(a), (b) and (c) correspond to the permutations returned by DendSer with

each of PL, BAR and ARc respectively. The rows/columns in the heatmaps

of the dissimilarity matrix beneath the scatterplots are ordered according to

the corresponding permutations.
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(a) DendSer + PL (b) DendSer + BAR (c) DendSer + ARc

Figure 4.9: The path through the points in the scatterplot in (a) corresponds to
the permutation of digits from using DendSer with PL. The same permutation
of digits is used to order the rows/columns in the corresponding heatmap of the
dissimilarity matrix of the digits. In (b) the digits are ordered using DendSer
with BAR and in (c) the digits are ordered using DendSer with ARc.

DendSer with ARc fails to recover the circular ordering of the morse codes

for the following reason. If a dissimilarity matrix follows anti-Robinson form,

then the values in this matrix increase when moving away from the main di-

agonal. However, in a circumplex dissimilarity matrix, the values increase and

then decrease when moving away from the main diagonal. It is the region of

low values in the north-east and south-west corners of a circumplex dissimi-

larity matrix (see, for example, the heatmap in Figure 4.9.(a)) that messes up

the anti-Robinson pattern.

DendSer with both PL and BAR recover the circular ordering of the morse

codes because neither of these cost functions are a�ected by the region of low

values in the north-east and south-west corners of a circumplex dissimilarity

68



matrix. The PL cost function is the sum of the values just o� the main diagonal

of a dissimilarity matrix and the BAR cost function is a weighted sum of the

values in the �rst two diagonals o� the main diagonal. (Note that this example

uses the default value of w for BAR, which is n/5 = 2.)

4.6 Fibroblast data

Fibroblasts are a cell type in the body that construct various tissues such as

skin. Iyer et al. (1999) analysed �broblasts in order to determine the impor-

tance of �broblasts in wound repair. In their experiment, human �broblasts

were grown in culture and then deprived of serum for 48 hours. The serum was

added back and the expression level of 8613 genes was measured at twelve times

ranging from 0 minutes to 24 hours after the re-introduction of the serum. Of

the 8613 genes measured, the expression of 517 genes changed substantially

in response to the serum. The reader is referred to Iyer et al. (1999) for full

details and results of the experiment and the selection process of the 517 genes.

The dataset used in this example contains the expression, relative to time

0, of the 517 genes at twelve di�erent time points: 0, 15 minutes, 30 minutes,

1 hour, 2 hours, 3 hours, 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24

hours. Following Eisen et al. (1998), the log transform of the data using base

two is taken and so the ijth entry in the dataset is now:

log2

(
expression of gene i at time j

expression of gene i at time 0

)
. (4.3)

With the Fibroblast data, interest lies in �nding groups of genes that behave

similarly and so a hierarchical clustering of the genes (using Ward's linkage)

is performed, where the dissimilarity between genes i and j is measured using

1− Pearson correlation(i, j), as suggested in Eisen et al. (1998).

Figure 4.10 shows heatmaps of the gene expressions, where the genes (rows)

are ordered according to the permutations returned from DendSer with each

of the PL, ARc and BAR cost functions respectively. The large patches of

red and green indicate groups of genes that share similar expression patterns.

Notice that reading the BAR ordered heatmap in Figure 4.10.(c) from top

to bottom shows a smoother transition between the expression of the genes

than that shown in the ARc ordered heatmap in Figure 4.10.(b) and a slightly

smoother transition between the expression of the genes than that shown in

the PL ordered heatmap in Figure 4.10.(a).

Figure 4.11 shows heatmaps of the correlation matrices of the genes, where
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(a) DendSer + PL (b) DendSer + ARc (c) DendSer + BAR

<−3 >3
Log (ratio)2log2(ratio)

Figure 4.10: Heatmaps of the gene expressions in the Fibroblast dataset. In
(a)-(c), the genes (rows) are ordered according to the permutation returned by
DendSer with each of PL, ARc and BAR, respectively.

the genes (rows and columns) are ordered according to the permutations re-

turned from DendSer with each of PL, ARc and BAR respectively. Ordering

the genes using DendSer with BAR reveals a circumplex pattern in the cor-

relation matrix. This circumplex pattern explains why DendSer with ARc

produces a less informative ordering of the genes, for reasons discussed in Sec-

tion 4.5. However, unlike in Section 4.5, DendSer with PL also struggles to

�nd the circumplex pattern.

The PL cost function only considers dissimilarities between adjacent ob-

jects and so minimising PL generally reveals local structure in data but may

not reveal more global trends. However, the BAR cost function considers dis-

similarities between objects that are up to n/5 spaces apart (where n is the

number of objects) and so minimising BAR is more suitable for uncovering

global patterns in data. This may explain why the PL ordered heatmap in
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(a) DendSer + PL (b) DendSer + ARc

(c) DendSer + BAR

−1 1
Pearson correlation
Pearson correlation

Figure 4.11: Heatmaps of the correlation matrix for the 517 genes in the
Fibroblast dataset. In (a)-(c), the genes (rows and columns) are ordered ac-
cording to the permutation returned from DendSer with PL, ARc and BAR,
respectively.

Figure 4.11.(a) does not reveal the circumplex pattern as well as the BAR

ordered heatmap in Figure 4.11.(c).

The circumplex pattern is also revealed by the two dimensional classical

multidimensional scaling solution of the correlation matrix shown in Figure

4.12, where the 517 genes clearly form a circle.

Returning to the clustering solution, Figure 4.13 shows a heatmap of the

gene expressions, where the genes (rows) are ordered according to DendSer

with BAR. The colour bar beside the rows of the heatmap shows the eight

cluster solution from the hierarchical clustering (informal analysis and sub-

jective assessment suggested an eight cluster solution was appropriate). The

graphs on the right show the mean expression for the genes in the correspond-

ing clusters and the dashed line in the graphs represents the value zero.

Reading Figure 4.13 from top to bottom follows a general trend of moving
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Figure 4.12: Scatterplot of the two dimensional classical multidimensional scal-
ing solution of the correlation matrix for the genes in the Fibroblast dataset.

from high expression (A, B, C, D and E) to low expression (F, G and H). A

smooth transition between the clusters is also shown: the maximum expression

shifts from approximately 1 hour in cluster A to 24 hours in cluster E and then

back to 1 hour at the end of cluster H, the minimum expression shifts from

approximately 4 hours in cluster F to 24 hours in cluster H. Clusters A, B, F

and G also suggest that the expression of the genes behaves periodically over

time. The reader is referred to Spellman et al. (1999), who discussed various

reasons as to why genes behave in a periodic manner.

To summarise the analysis, seriating the genes using DendSer with BAR

revealed a circumplex pattern in the correlation matrix for the genes, which

was not as clearly revealed by using DendSer with PL and not at all revealed

by using DendSer with ARc. This circumplex pattern was also not revealed

by the analysis in Iyer et al. (1999) because they seriated the genes using

the method described in Eisen et al. (1998) (i.e. DendSer with the LS cost

function and the T0 node operation).

Due to the circumplex pattern, seriating using DendSer with BAR showed

a smoother transition between the expression of the genes in Figure 4.13 than

that shown in Figures 4.10.(a) and (b). This smooth transition made it easier

to observe global relationships between the clusters produced by the hierarchi-

cal clustering of the genes.
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Figure 4.13: Heatmap of the gene expressions in the Fibroblast dataset showing
the eight cluster solution from the hierarchical clustering. The genes (rows)
in the heatmap are ordered according to the permutation returned by using
DendSer with the BAR cost function. The graphs on the right show the mean
expression for the genes in the corresponding clusters. The dashed line on the
graphs represents the value 0.
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4.7 Summary

This chapter highlighted the �exibility of DendSer using several examples en-

compassing a variety of datasets, visualisations, dissimilarity measures and

cost functions, particularly the new cost functions BAR and LPL. This chap-

ter also points out that the user does not need to be interested in clustering

their data in order to use DendSer, as shown in the Sleep and Morse code

examples in Sections 4.4 and 4.5.

For the Pottery example in Section 4.2, DendSer with BAR worked well in

seriating the heatmap of the Euclidean distance matrix in Figure 4.2. DendSer

with BAR also produced good seriation results in the Morse code and Fibrob-

last examples in Sections 4.5 and 4.6, while DendSer with ARc produced less

informative seriation results because of the circumplex pattern. These ex-

amples suggest that the banded anti-Robinson criterion is suitable for a wider

range of data patterns than the anti-Robinson criterion. This �exible nature of

the banded anti-Robinson criterion is examined further at the end of Chapter

5.
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Chapter 5

A comparison of seriation

algorithms

5.1 Introduction

This chapter compares the performance of DendSer with seriation algorithms

that are available in the software program R (R Development Core Team 2010).

This comparison study follows a similar strategy to Chen (2002), Wilkinson

(2005, �16.5), Hahsler et al. (2008) and Tien et al. (2008), who seriated some

dataset(s) using a selection of seriation algorithms and then compared the

performance of the algorithms using heatmaps and seriation criteria such as

path length and anti-Robinson form.

This study, however, compares a broader set of algorithms: Hahsler et al.

(2008) did not include algorithms based on dimension reduction techniques,

Tien et al. (2008) did not include TSP heuristics, and Chen (2002) and Wilkin-

son (2005, �16.5) did not include algorithms such as the OLO algorithm (Bar-

Joseph et al. 2001) and ARSA (Brusco et al. 2007).

Section 5.2 lists the di�erent seriation algorithms and datasets used in the

comparison study, which include the datasets used by Wilkinson (2005, �16.5),

Chen (2002) and Hahsler et al. (2008). Section 5.3 compares the performance

of the selected algorithms using heatmaps and the path length, anti-Robinson

and banded anti-Robinson seriation criteria.

Section 5.4 summarises the performance of the algorithms and also dis-

cusses the e�ciency of the algorithms. Finally, Section 5.5 discusses the results

of the comparison study and gives guidelines on choosing the most suitable al-

gorithm for di�erent seriation interests and visualisations.
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5.2 Comparison Tools

5.2.1 Seriation algorithms

The algorithms selected for this comparison study are DendSer and those avail-

able in the software program R (R Development Core Team 2010).

Figure 5.1 illustrates the selected algorithms and is also an updated ver-

sion of the overview of seriation algorithms shown in Figure 2.5 because it

now includes DendSer. Note that DendSer is placed in the �Other� category

for �Dendrogram seriation� due to the variety of criteria that DendSer can op-

timise, however DendSer also �ts into the �Path length� and �Anti-Robinson

form� categories.

The following lists and categorises the algorithms selected for the compar-

ison study into three groups:

1. Algorithms minimising the path length criterion:

(a) TSP: orders objects by creating a tour using the farthest insertion

heuristic and then improving the tour using the 2-Opt heuristic

(Croes 1958), see Section 2.5.1.

(b) OLO: the Optimal Leaf Ordering algorithm from Bar-Joseph et al.

(2001) with average linkage (see Section 3.5).

(c) DendSer with the PL cost function, the node operation R01 and

average linkage.

2. Algorithms minimising the anti-Robinson or banded anti-Robinson cri-

teria:

(a) ARSA: the simulated annealing algorithm from Brusco et al. (2007)

that tries to maximise the ARc merit function in Equation 2.3 (see

Section 2.5.4).

(b) DendSer with the ARc cost function, the node operation T0 and

average linkage.

(c) DendSer with the BAR cost function, the node operation R01 and

average linkage.

3. Other:

(a) MDS1: orders objects using the one dimensional solution from

Kruskal's (1964a, 1964b) non-metric multidimensional scaling method.
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(b) PCA1: orders objects according to the scores on the �rst principal

component.

(c) SVD2: computes a singular value decomposition of the data and

orders the objects according to the angles formed by the �rst two

eigenvectors, see Friendly and Kwan (2003) and Section 2.5.3.

(d) R2E: the Rank-two Ellipse algorithm described in Chen (2002), see

Section 2.5.4. 1

At least one algorithm is selected from every category in Figure 5.1 except

the �Partial enumeration� category (see Section 2.5.2). This is because the dy-

namic programming (Hubert et al. 2001) and branch-and-bound (Brusco and

Stahl 2005) algorithms are not feasible for seriating even moderate numbers

of objects. (Note that DendSer with ARc �ts into the �Anti-Robinson form�

category for �Dendrogram seriation�.)

There are other algorithms implemented in the R seriation package (Hah-

sler et al. 2010) that are also not included in this comparison study. The

Bond Energy Algorithm (see McCormick et al. 1972 and Section 2.5.4) is

omitted because this algorithm generally performs poorly and Arabie and Hu-

bert (1990) questioned its use on non-binary data. The Gruvaeus and Wainer

(1972) method is also not included because it generally performs less well than

the OLO algorithm.

5.2.2 Datasets

This study compares the performance of the selected seriation algorithms us-

ing the Iris dataset (Fisher 1936) and the �ve synthetic datasets described

in Wilkinson (2005, �16.5). Using these datasets makes the results of the

comparison study in this chapter comparable to the results in Chen (2002),

Wilkinson (2005, �16.5) and Hahsler et al. (2008). This study also uses the

Laser dataset (see Section 3.4.2) because the seriation results for this dataset

help to understand how the seriation algorithms work and how they di�er from

each other.

The synthetic datasets have 80 rows and 80 columns, and are generated

using the formulae described in Wilkinson (2005, �16.5), which are included in

Appendix B. Figures 5.2.(a)-(e) show three heatmaps for the Band, Simplex,

Circumplex, Equi-correlation and Block datasets respectively. The �rst row of

1In the R2E algorithm, when the objects project onto an ellipse, there are two cutting

points for forming the permutation. The seriation package implementation of R2E chooses

the top most cutting point. However, the version used in this comparison study is adjusted

so that R2E chooses the cutting point where the two successive objects are the least similar.
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(a) Band (b) Simplex (c) Circumplex (d) Equi (e) Block

Figure 5.2: Heatmaps of the �ve synthetic datasets used in this comparison
study. Columns (a)-(e) show heatmaps for the Band, Simplex, Circumplex,
Equi-correlation and Block datasets respectively. The �rst row of heatmaps
visualise the raw data, where yellow to red indicates low to high values. The
second row of heatmaps visualise the Pearson correlation between the columns,
where red to blue indicates high positive to low negative correlation. The third
row of heatmaps visualise the Euclidean distance between the rows, where
black to white indicates low to high Euclidean distance.

heatmaps in Figure 5.2 visualise the raw data, where yellow to red indicates

low to high values. The second row of heatmaps visualise the Pearson corre-

lation between the columns, where red to blue indicates high positive to low

negative correlation. The third row of heatmaps visualise the Euclidean dis-

tance between the rows, where black to white indicates low to high Euclidean

distance.

The synthetic datasets are generated to have the following patterns:

1. In the Band dataset, the correlations between near columns are positive

and the correlations between distant columns are negative.

2. In the Simplex dataset, the correlation between all pairs of columns is

positive with the correlation between near columns higher than the cor-

relation between distant columns.

3. In the Circumplex dataset, the correlations between near columns are

positive and the correlations between distant columns are negative. The

�rst few columns and the last few columns are also positively correlated.

4. In the Equi-correlation dataset, the correlation between all pairs of columns

is quite large and positive.
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5. In the Block dataset, the columns divide into two blocks and the rows

divide into four blocks. The correlations between columns from the same

block are near one and the correlations between columns from di�erent

blocks are near zero.

Following Wilkinson (2005, �16.5), the synthetic datasets are scrambled by

randomly permuting the rows and columns, and the dissimilarity between the

rows and between the columns is computed using the Euclidean distance. The

Euclidean distance matrices for the columns in the synthetic datasets follow

the same patterns as the correlation matrices for the columns (shown in the

second row of Figure 5.2). This is because the columns are standardised, which

means that the Euclidean distance (di,j) and the correlation (ri,j) between the

columns i and j are related in the following way:

di,j =
√

(2n− 2)(1− ri,j). (5.1)

For each of the Iris and Laser datasets, the variables are standardised and

then the dissimilarity between the rows is computed using the Euclidean dis-

tance.

5.3 Results of the comparison study

For each of the seven datasets, the following sections compare the performance

of the seriation algorithms in two ways: how well they recover patterns in the

heatmaps of the dissimilarity matrices and how well they optimise the path

length, anti-Robinson and banded anti-Robinson criteria.

5.3.1 Band dataset

The algorithms perform similarly for both the rows and the columns in the

Band dataset and so this section only discusses the results for the columns.

Figure 5.3 shows ten heatmaps of the correlation matrix for the columns in the

Band dataset, where the rows/columns of the heatmaps are ordered according

to the permutations returned by the corresponding seriation algorithm.

Twenty Band datasets are generated and the columns in each dataset are

permuted using each of the seriation algorithms. For each seriation algorithm,

Figures 5.4.(a), (b) and (c) contain dotcharts showing the mean PL, ARc and

BAR values for the twenty permutations, relative to the best mean PL, ARc

and BAR values respectively. Within each dotchart, the algorithms are ordered

from top to bottom in order of best to worst.
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The heatmaps in Figure 5.3 show that all algorithms except TSP recover

the original pattern in the dissimilarity matrix for the columns in the Band

dataset, although some algorithms are more successful than others.

PCA1, MDS1, ARSA, DendSer+ARc (all in the second row of Figure 5.3)

and SVD2 (third row of Figure 5.3) produce the �smoothest� heatmaps and

Figure 5.4.(b) shows that these algorithms also produce permutations that have

the best ARc values. These �ve algorithms produce the smoothest heatmaps

because they are concerned with the global structure in the dissimilarity ma-

trix, which in this situation closely follows anti-Robinson form.
TSP DendSer+PL OLO DendSer+BAR

(a) TSP (b) DendSer+PL (c) OLO (d) DendSer+BARPCA1 MDS ARSA DendSer+AR

(e) PCA1 (f) MDS1 (g) ARSA (h) DendSer+ARcR2E SVD2

(i) R2E (j) SVD2

Figure 5.3: Heatmaps of the correlation matrix for the columns in the Band
dataset, where the rows/columns in the heatmaps are ordered according to the
permutations returned by the corresponding seriation algorithms.

DendSer+BAR, DendSer+PL and OLO (all in the �rst row of Figure 5.3)

produce heatmaps that are less smooth than the heatmaps produced by PCA1,

MDS1 ARSA, DendSer+ARc and SVD2. This is because these three algo-

rithms are not concerned with the global structure of the dissimilarity matrix:

DendSer+BAR is concerned with the structure within a band around the main

diagonal, and OLO and DendSer+PL are concerned with the structure just o�

the main diagonal. However, Figure 5.4.(c) shows that these three algorithms
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Figure 5.4: Dotcharts of the mean PL, ARc and BAR values, relative to the
best mean PL, ARc and BAR values respectively, for permutations of the
columns in twenty Band datasets returned by each seriation algorithm.

produce permutations having the best BAR values.

The R2E algorithm also results in a heatmap (Figure 5.3.(i)) that is less

smooth that the heatmaps corresponding to PCA1, MDS1, ARSA, SVD2 and

DendSer+ARc.

TSP �nds the shortest path through the columns (Figure 5.4.(a)), how-

ever TSP fails to recover the original pattern in the dissimilarity matrix. This

coincides with the dotcharts in Figures 5.4.(b) and (c), which show that the

permutations returned by TSP have the worst ARc and BAR values. TSP

produces the least smooth heatmap because it minimises the PL cost function

and so is only concerned with structure just o� the main diagonal in the dis-

similarity matrix. OLO and DendSer+PL also minimise the PL cost function,

however their underlying hierarchical clustering structure helps them produce

smoother heatmaps than TSP.

5.3.2 Simplex dataset

All algorithms except TSP recover the original pattern in the dissimilarity

matrix for the rows in the Simplex dataset. TSP does not recover the pattern

as well as the other algorithms for the same reason it does not successfully

recover the pattern in the columns for the Band dataset. The remainder of this

section concerns the seriation results for the columns in the Simplex dataset.

Figure 5.5 shows ten heatmaps of the correlation matrix for the columns

in the Simplex dataset, where the rows/columns of the heatmaps are ordered

according to the permutations returned by the corresponding seriation algo-

rithms.

Twenty Simplex datasets are generated and the columns in each dataset are

permuted using each of the seriation algorithms. For each seriation algorithm,

Figures 5.6.(a), (b) and (c) contain dotcharts showing the mean PL, ARc and

BAR values for the twenty permutations, relative to the best mean PL, ARc
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and BAR values respectively. Within each dotchart, the algorithms are ordered

from top to bottom in order of best to worst.

The heatmaps in Figure 5.5 show that DendSer+BAR, MDS1, ARSA,

DendSer+ARc and R2E are the most successful in recovering the original

pattern in the columns of the Simplex dataset. These �ve algorithms result

in the smoothest heatmaps and also produce permutations with the best ARc

and BAR values (Figures 5.6.(b) and (c)).

TSP DendSer+PL OLO DendSer+BAR

(a) TSP (b) DendSer+PL (c) OLO (d) DendSer+BARPCA1 MDS ARSA DendSer+AR

(e) PCA1 (f) MDS1 (g) ARSA (h) DendSer+ARcR2E SVD2

(i) R2E (j) SVD2

Figure 5.5: Heatmaps of the correlation matrix for the columns in the Simplex
dataset, where the rows/columns in the heatmaps are ordered according to the
permutations returned by the corresponding seriation algorithms.

TSP, DendSer+PL and OLO (all in the �rst row of Figure 5.5) result

in less smooth heatmaps because they minimise the PL cost function and

so are only concerned with structure just o� the main diagonal. However,

these three algorithms, unsurprisingly, produce permutations with the best

PL values (Figure 5.6.(a)).

The heatmap for PCA1 (Figure 5.5.(e)) shows a �grid� e�ect in the four

corners of the heatmap. This e�ect is explained by the following. Principal

components analysis is equivalent to classical multidimensional scaling (MDS)

with Euclidean distance (see, for example, Cox and Cox 1984, pg. 34). There-
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Figure 5.6: Dotcharts of the mean PL, ARc and BAR values, relative to the
best mean PL, ARc and BAR values respectively, for permutations of the
columns in twenty Simplex datasets returned by each seriation algorithm.

fore, ordering the columns according to the scores on the �rst principal com-

ponent is equivalent to ordering the columns according to the one dimensional

classical MDS solution of the Euclidean distance matrix for the columns in the

Simplex dataset.

Figure 5.7.(a) shows the two dimensional classical MDS solution for the

columns in the Simplex dataset, where the points are coloured according to

the original column indexes. The points form a horse-shoe shape (see Kendall

1971 for a discussion of the horse-shoe shape in MDS solutions) and so ordering

the columns based on the one dimensional solution mixes the blue and red

points at the ends of the horse-shoe with some of the green and orange points

respectively. This results in the grid e�ect in the heatmap in Figure 5.5.(e).
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Figure 5.7: Scatterplots of the two dimensional classical multidimensional scal-
ing solution of the Euclidean distance matrix for the columns in the Simplex
dataset, and the �rst and second eigenvectors of the columns.

SVD2 also results in a faint grid e�ect in the north-west and south-east

corners of the heatmap in Figure 5.5.(j). This is explained by examining Figure

5.7.(b), which shows a scatterplot of the �rst and second eigenvectors of the
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columns in the Simplex dataset with the points coloured according to the

original column indexes. SVD2 orders the objects according to the angles

formed by the eigenvectors in Figure 5.7.(b), however, SVD2 does not take the

length of the vectors into account. This means that SVD2 mixes some of the

blue and green points in the top of Figure 5.7.(b) together, and also some of

the red and orange points in the bottom of Figure 5.7.(b) together.

5.3.3 Circumplex dataset

The heatmaps in Figure 5.2.(c) show that the dissimilarity matrices for the

rows and columns in the Circumplex dataset follow a similar pattern. There-

fore, the algorithms perform similarly for both the rows and the columns in

the Circumplex dataset and so this section only discusses the results for the

rows.

Figure 5.8 shows ten heatmaps of the Euclidean distance matrix for the

rows in the Circumplex dataset, where the rows/columns of the heatmaps are

ordered according to the permutations returned by the seriation algorithms.
TSP DendSer+PL OLO DendSer+BAR

(a) TSP (b) DendSer+PL (c) OLO (d) DendSer+BARPCA1 MDS ARSA DendSer+AR

(e) PCA1 (f) MDS1 (g) ARSA (h) DendSer+ARcR2E SVD2

(i) R2E (j) SVD2

Figure 5.8: Heatmaps of the Euclidean distance matrix for the rows in the
Circumplex dataset, where the rows/columns in the heatmaps are ordered
according to the permutations returned by the corresponding seriation algo-
rithms.
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Twenty Circumplex datasets are generated and the rows in each dataset are

permuted using each of the seriation algorithms. For each seriation algorithm,

Figures 5.9.(a), (b) and (c) contain dotcharts showing the mean PL, ARc and

BAR values for the twenty permutations, relative to the best mean PL, ARc

and BAR values respectively. Within each dotchart, the algorithms are ordered

from top to bottom in order of best to worst.
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Figure 5.9: Dotcharts of the mean PL, ARc and BAR values, relative to the
best mean PL, ARc and BAR values respectively, for permutations of the rows
in twenty Circumplex datasets returned by each seriation algorithm.

Although PCA1, MDS1, ARSA and DendSer+ARc produce permutations

with the best ARc values (Figure 5.9.(b)), the heatmaps in the second row of

Figure 5.8 show that these algorithms fail to recover the original pattern in

the rows of the Circumplex dataset. ARSA and DendSer+ARc fail because

they try to optimise anti-Robinson form, which may not produce useful seri-

ation results when data follow a circumplex pattern (see Section 4.5). PCA1

and MDS1 fail because they are based on one dimensional representations of

data. However, the rows in the Circumplex dataset require two dimensions

to be adequately represented, as shown by the two dimensional classical MDS

solution of the Euclidean distance matrix for the rows in Figure 5.10.
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Figure 5.10: Scatterplot of the two dimensional classical multidimensional scal-
ing solution of the Euclidean distance matrix for the rows in the Circumplex
dataset. The points are coloured according to the original rows indexes.
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The �rst and third rows of heatmaps in Figure 5.8 show that the other six

algorithms recover the original pattern in the rows of the Circumplex dataset

with R2E, SVD2 and DendSer+BAR producing the smoothest heatmaps.

This coincides with Figure 5.9.(c), which shows that DendSer+BAR, R2E

and SVD2 produce permutations with the best BAR values. Figure 5.9.(a)

shows that TSP, OLO and DendSer+PL produce permutations with the best

PL values.

The remainder of this section compares the performance of DendSer+BAR

and DendSer+ARc on a smaller Circumplex dataset, which contains twenty

rows and twenty columns. The scatterplots in Figure 5.11 show the two di-

mensional classical MDS solution of the Euclidean distance matrix for the rows

in the smaller Circumplex dataset. The path through the points in the scat-

terplots in Figures 5.11.(a) and (b) correspond to the permutations returned

by DendSer+BAR and DendSer+ARc respectively. The same permutations

are used to order the rows/columns of the corresponding heatmaps of the Eu-

clidean distance matrix for the rows in the Circumplex dataset.
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Figure 5.11: The scatterplots show the two dimensional classical MDS solution
of the Euclidean distance matrix for the rows in a Circumplex dataset, which
contains twenty rows and twenty columns. The path through the points in Fig-
ures (a) and (b) correspond to the permutations returned by DendSer+BAR
and DendSer+ARc respectively. The same permutations are used to order the
rows/columns in the corresponding heatmaps of the Euclidean distance matrix.
The points in the scatterplots are coloured according to whether they belong to
the second last or third last node formed by the hierarchical clustering process.

As with the larger Circumplex dataset discussed above, DendSer+BAR re-
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covers the circular ordering of the rows in the smaller Circumplex dataset, while

DendSer+ARc fails to do so. However, for this smaller Circumplex dataset,

the icicle plots in Figure 5.12 allow a closer inspection of the permutations

returned by DendSer+BAR and DendSer+ARc.
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0 = Proportion of anti-Robinson violations

Figure 5.12: Icicle plots visualising a hierarchical clustering of a Circum-
plex dataset The objects (columns) in (a) and (b) are ordered according to
DendSer+BAR and DendSer+ARc respectively. Each node is coloured ac-
cording to the proportion of anti-Robinson violations in the sub-Euclidean
distance matrix for the (ordered) objects in the node. The colour scale, light
to dark green, indicates low to high proportions of anti-Robinson violations
and white indicates zero anti-Robinson violations. The colour bar at the bot-
tom of the icicle plots indicates which objects belong to the nodes N17 and
N18.

The icicle plots are constructed as described in Section 2.4, however in

this case each node is coloured according to the proportion of anti-Robinson

violations in the sub-Euclidean distance matrix for the (ordered) objects in the

node. The colour scale, light to dark green, indicates low to high proportions

of anti-Robinson violations and white indicates zero anti-Robinson violations.

The groups of yellow and red points in the scatterplots in Figure 5.11

correspond to the objects that are contained in nodes N17 and N18 respectively

in the icicle plots in Figure 5.12. Both of these nodes are highlighted using

black lines in Figures 5.12.(a) and (b). The colour bar at the bottom of the

icicle plots indicates which objects belong to the nodes N17 and N18.

The icicle plots in Figure 5.12 show that DendSer+ARc results in less anti-

Robinson violations in the Euclidean distance matrix than DendSer+BAR.
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This is clear by the lighter green colour of the �nal node N19 in Figure 5.12.(b)

than in Figure 5.12.(a).

The icicle plot in Figure 5.12.(a) also shows that DendSer+BAR is more

concerned with good local anti-Robinson form in the Euclidean distance ma-

trix. This is shown by the white colour of the nodes N1, . . . , N17, which in-

dicates that the ordering of the objects in these nodes results in their corre-

sponding sub-Euclidean distance matrices following anti-Robinson form. The

node N18 is also coloured a very light green, which indicates that its corre-

sponding sub-Euclidean distance matrix contains a very small proportion of

anti-Robinson violations.

DendSer+ARc, however, sacri�ces good local anti-Robinson form in order

to produce better global anti-Robinson form in the Euclidean distance matrix.

This is shown by the dark green colour of the nodes N16 and N17, which

indicates that their corresponding sub-Euclidean distance matrices contain a

large proportion of anti-Robinson violations. The colour of the node N18 in

Figure 5.12.(b) is also slightly darker than in Figure 5.12.(a), which means that

the DendSer+ARc ordering of the objects leads to the sub-Euclidean distance

matrix for N18 containing a higher proportion of anti-Robinson violations than

the DendSer+BAR ordering of the objects.

5.3.4 Equi-correlation dataset

This section does not discuss the seriation results for the columns in the Equi-

correlation dataset because there is no structure for the algorithms to recover

(see the middle heatmap in Figure 5.2.(d)).

Figure 5.13 shows ten heatmaps of the Euclidean distance matrix for the

rows in the Equi-correlation dataset, where the rows/columns of the heatmap

are ordered according to the permutations returned by the corresponding se-

riation algorithms.

Twenty Equi-correlation datasets are generated and the rows in each dataset

are permuted using each of the seriation algorithms. For each seriation algo-

rithm, Figures 5.14.(a), (b) and (c) contain dotcharts showing the mean PL,

ARc and BAR values for the twenty permutations, relative to the best mean

PL, ARc and BAR values respectively. Within each dotchart, the algorithms

are ordered from top to bottom in order of best to worst. Note that TSP and

SVD2 produce permutations having very poor ARc values (1.092 and 1.098

respectively) and BAR values (1.083 and 1.156 respectively), and so the upper

limits for the x-axes in Figures 5.14.(b) and (c) are truncated to avoid loss of

resolution.
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TSP DendSer+PL OLO DendSer+BAR

(a) TSP (b) OLO (c) DendSer+PL (d) DendSer+BARPCA1 MDS ARSA DendSer+AR

(e) PCA1 (f) MDS1 (g) ARSA (h) DendSer+ARcR2E SVD2

(i) R2E (j) SVD2

Figure 5.13: Heatmaps of the Euclidean distance matrix for the rows in the
Equi-correlation dataset, where the rows/columns in the heatmaps are ordered
according to the permutations returned by the corresponding seriation algo-
rithms.
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Figure 5.14: Dotcharts of the mean PL, ARc and BAR values, relative to the
best mean PL, ARc and BAR values respectively, for permutations of the rows
in twenty Equi-correlation datasets returned by each seriation algorithms.

Figure 5.13 shows that all algorithms successfully recover the original pat-

tern in the rows for the Equi-correlation dataset except for TSP and SVD2.

TSP fails to recover the pattern as well as the other algorithms for the same

reason that it does not recover the pattern in the columns for the Band dataset.

The reason that SVD2 fails to recover the original pattern is explained by ex-

amining Figure 5.15, which shows a scatterplot of the �rst and second eigen-
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Figure 5.15: Scatterplot of the �rst and second eigenvectors of the rows in the
Equi-correlation dataset. The points are coloured according to the original
rows indexes.

vectors of the rows in the Equi-correlation dataset with the points coloured by

the original row indexes.

As discussed in the results for the Simplex dataset, SVD2 orders the rows

according to the angles formed by the eigenvectors in Figure 5.15 but does not

take the length of the vectors into account. Therefore, SVD2 mixes the blue

and green points together and also the red and yellow points.

For the eight algorithms that recover the original pattern, Figures 5.13 and

5.14 show that:

• PCA1, MDS1, ARSA and R2E produce permutations giving the smoothest

heatmaps and the best ARc and BAR values.

• DendSer+ARc and DendSer+BAR produce permutations giving the next

smoothest heatmaps and the next best ARc and BAR values.

• OLO and DendSer+PL produce permutations giving the least smooth

heatmaps, however these algorithms, along with TSP, produce permuta-

tions having the best PL values.

5.3.5 Block dataset

All of the algorithms recover the original two block pattern in the columns

for the Block dataset (see the middle heatmap in Figure 5.2.(e)) and so this

section only discusses the results for the rows in the Block dataset. Figure

5.16 shows ten heatmaps of the Euclidean distance matrix for the rows in the

Block dataset, where the rows/columns of the heatmaps are ordered according

to the permutations returned by the corresponding seriation algorithms.
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TSP DendSer+PL OLO DendSer+BAR

(a) TSP (b) DendSer+PL (c) OLO (d) DendSer+BARPCA1 MDS ARSA DendSer+AR

(e) PCA1 (f) MDS1 (g) ARSA (h) DendSer+ARcR2E SVD2

(i) R2E (j) SVD2

Figure 5.16: Heatmaps of the Euclidean distance matrix for the rows in the
Block dataset, where the rows/columns in the heatmaps are ordered according
to the permutations returned by the corresponding seriation algorithms.

Twenty Block datasets are generated and the rows in each dataset are

permuted using each of the seriation algorithms. For each seriation algorithm,

Figures 5.17.(a), (b) and (c) contain dotcharts showing the mean PL, ARc

and BAR values for the twenty permutations, relative to the best mean PL,

ARc and BAR values respectively. Within each dotchart, the algorithms are

ordered from top to bottom in order of best to worst.
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Figure 5.17: Dotcharts of the mean PL, ARc and BAR values, relative to the
best mean PL, ARc and BAR values respectively, for permutations of the rows
in twenty Block datasets returned by each seriation algorithms.
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The heatmaps in Figure 5.16 show that all of the algorithms except PCA1

and MDS1 recover the four blocks in the rows of the Block dataset. The reason

PCA1 does not recover the pattern is explained by examining Figure 5.18.(a),

which shows the two dimensional classical MDS solution of the Euclidean dis-

tance matrix for the rows in the Block dataset with the points coloured by the

original row indexes. The four blocks in the rows require two dimensions to

be adequately represented. However, PCA1 orders the rows according to the

one dimensional MDS solution, which means that PCA1 mixes the green and

blue blocks together, and also the red and yellow blocks.

Similarly, MDS1 fails to recover the four blocks because it orders the rows

according to the one dimensional non-metric (Kruskal 1964a, 1964b) MDS

solution of the Euclidean distance matrix for the rows. Figure 5.18.(b) shows

that the non-metric MDS solution also mixes the green and blue, and red and

yellow blocks together.
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Figure 5.18: Scatterplots of the two dimensional classical MDS solution and
the one dimensional non-metric MDS solution (Kruskal 1964a, 1964b) of the
Euclidean distance matrix for the rows in the Block dataset. The points are
coloured according to the original row indexes.

Note that, although the other seriation algorithms recover the four blocks

in the rows, they do not recover the original ordering of the blocks. The

heatmap of the Block dataset in Figure 5.19.(a) shows the original order of the

four blocks in the rows of the Block dataset. Some of the seriation algorithms

swap the third and fourth blocks, as shown in the heatmap in Figure 5.19.(b),

and some of the algorithms swap the �rst and second blocks, as shown in the

heatmap in Figure 5.19.(c).

The ordering of the four blocks recovered by the seriation algorithms is an

improvement over the original ordering. This is because the algorithms place

two similar blocks in the second and third positions along the main diagonal
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(a) (b) (c)

Figure 5.19: Heatmaps of the Block dataset, where yellow to red indicates low
to high values. Figure (a) shows the original ordering of the four blocks in the
rows, Figure (b) swaps the third and fourth blocks and Figure (c) swaps the
�rst and second blocks.

of the dissimilarity matrix for the rows (see, for example, Figure 5.16.(d)),

whereas the original ordering places two dissimilar blocks in the second and

third positions of the dissimilarity matrix for the rows (see the bottom heatmap

in Figure 5.2.(e)).

The dotcharts in Figure 5.17 point out the following features of the algo-

rithms:

• TSP, OLO and DendSer+PL produce permutations of the rows with the

best PL values.

• ARSA, MDS1 and DendSer+ARc produce permutations with the best

ARc values.

• DendSer+BAR, R2E and SVD2 produce permutations with the best

BAR values.

5.3.6 Iris dataset

Figure 5.20 shows ten heatmaps of the Euclidean distance matrix for the rows

in the Iris dataset, where the rows/columns of the heatmaps are ordered ac-

cording to the permutations returned by the corresponding algorithms. Figure

5.21 contains dotcharts of the PL, ARc and BAR values, relative to the best

PL, ARc and BAR values respectively, for each of the ten permutations.

Figure 5.20 shows that all of the algorithms recover the two block pattern

in the rows of the Iris dataset and the dotcharts in Figure 5.21 show that:

• TSP, OLO and DendSer+PL �nd the shortest paths through the rows.
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• ARSA and DendSer+ARc produce permutations with the best ARc val-

ues.

• DendSer+BAR and R2E produce permutations with the best BAR val-

ues.

TSP DendSer+PL OLO DendSer+BAR

(a) TSP (b) DendSer+PL (c) OLO (d) DendSer+BARPCA1 MDS ARSA DendSer+AR

(e) PCA1 (f) MDS1 (g) ARSA (h) DendSer+ARcR2E SVD2

(i) R2E (j) SVD2

Figure 5.20: Heatmaps of the Euclidean distance matrix for the rows in the
Iris dataset, where the rows/columns in the heatmaps are ordered according
to the permutations returned by the corresponding seriation algorithms.
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Figure 5.21: Dotcharts of the PL, ARc and BAR values, relative to the best
PL, ARc and BAR values respectively, for each of the permutations of the
rows in the Iris dataset returned by the seriation algorithms.

Hahsler et al. (2008) and Chen (2002) also compared the performance of

95



seriation algorithms using heatmaps of the Euclidean distance matrix of the

rows in the Iris dataset, and using the path length and anti-Robinson criteria.

The results in this section agree with Hahsler et al. (2008), who concluded

that ARSA is best for optimising anti-Robinson form, and TSP and OLO are

best for minimising path length. Chen (2002) also concluded that TSP is best

for minimising path length.

5.3.7 Laser dataset

Figure 5.22 shows ten heatmaps of the Euclidean distance matrix for the rows

in the Laser dataset, where the rows/columns of the heatmaps are ordered

according to the permutations returned by the corresponding algorithms. Be-

neath each of the heatmaps is a scatterplot of the two dimensional classical

MDS solution of the Euclidean distance matrix of the rows, where the path

through the points corresponds to the permutations returned by the algo-

rithms. The points in each scatterplot are coloured from blue to red according

to the order in which each path traverses the points. Figure 5.23 contains

dotcharts of the PL, ARc and BAR values, relative to the best PL, ARc and

BAR values respectively, for each of the ten permutations.

Although PCA1, MDS1, ARSA and DendSer+ARc produce permutations

with the best ARc values (Figure 5.23.(b)), their corresponding heatmaps in

the second row of Figure 5.22 show lots of white squares close to the main

diagonal. This �chess-board� e�ect makes it di�cult to perceive the structure

in the Euclidean distance matrix.

The heatmaps show this chess-board e�ect for the following reasons. PCA1

orders the rows according to the one dimensional classical MDS solution,

i.e. the projection of the points onto the x-axis in the scatterplot in Fig-

ure 5.22.(e). MDS1 and ARSA also appear to order the rows as if they project

approximately onto the x-axis in the scatterplots in Figures 5.22.(f) and (g).

DendSer+ARc very roughly orders the rows as if they project onto a straight

line running diagonally from the south-west to the north-east of the scatterplot

in Figure 5.22.(h).

R2E and SVD2 also produce heatmaps with a chess-board e�ect because

these two algorithms order the rows as if they project onto an ellipse, as shown

in Figures 5.22.(i) and (j).

The scatterplots of the MDS solutions in the �rst row of Figure 5.22 show

that TSP, DendSer+PL, OLO and DendSer+BAR produce permutations that

�weave� through the points, which results in the more interpretable heatmaps

in Figure 5.22.
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TSP DendSer+PL OLO DendSer+BAR

(a) TSP (b) DendSer+PL (c) OLO (d) DendSer+BARPCA1 MDS ARSA DendSer+AR

(e) PCA1 (f) MDS1 (g) ARSA (h) DendSer+ARcR2E SVD2

(i) R2E (j) SVD2

Figure 5.22: Seriated heatmaps of the Euclidean distance matrix for the rows
in the Laser dataset, where the rows/columns in the heatmaps are ordered
according to the permutations returned by the corresponding seriation algo-
rithms. Beneath each heatmap is a scatterplot of the two dimensional classical
MDS solution of the Euclidean distance matrix of the rows, where the path
through the points corresponds to the permutations returned by the seriation
algorithms. The points in each scatterplot are coloured from blue to red ac-
cording to the order in which each path traverses the points.
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In particular, DendSer+BAR and OLO produce the smoothest heatmaps

and also produce permutations having the best BAR values. Their correspond-

ing heatmaps also reveal �ve clusters of rows in the Laser dataset (indicated

by dark blocks around the main diagonals of the heatmaps), which are not as

clearly revealed by the other heatmaps. As one reads down the main diagonal

of the DendSer+BAR ordered heatmap in Figure 5.22.(d), observe that

• the �rst cluster is quite compact and roughly corresponds to the blue

points in the MDS solution.

• the second cluster is larger and roughly corresponds to the green and

yellow points in the MDS solution.

• the third and fourth clusters are also quite compact and roughly corre-

spond to the light orange and red points in the MDS solution respectively.

• the �fth cluster is very small and contains the two red points in the

north-east of the scatterplot of the MDS solution.
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Figure 5.23: Dotcharts of the PL, ARc and BAR values, relative to the best
PL, ARc and BAR values respectively, for each of the permutations of the
rows in the Laser dataset returned by the seriation algorithms.

5.4 Summary

The following sections summarise the performance of the seriation algorithms

based �rst on their heatmaps and second on how well each seriation algorithm

minimises the PL, ARc and BAR cost functions. Section 5.4.3 also brie�y

discusses the e�ciency of the algorithms.

5.4.1 Heatmaps

Sections 5.3.1-5.3.5 showed that most of the seriation algorithms recovered the

original patterns in the rows and/or columns of the �ve synthetic datasets.
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However, depending on the dataset, some algorithms were more successful

than others, while other algorithms completely failed to recover the original

pattern.

For the real datasets, Section 5.3.6 showed that all of the seriation algo-

rithms recovered the same two block structure in the rows of the Iris dataset.

However, for the Laser dataset, Section 5.3.7 showed that some algorithms

resulted in much more interpretable heatmaps than other algorithms.

Table 5.1 �grades� the algorithms on how well they performed for each

dataset except for the Iris dataset because all algorithms produced very similar

heatmaps for this dataset.

For each of the �ve synthetic datasets, the algorithms are graded on how

well they recovered the original patterns in the rows and/or columns: algo-

rithms graded with �A� were very successful in recovering the original pattern,

algorithms graded with �B� generally recovered the original pattern but were

not as successful (i.e. their heatmaps were not as smooth) as the �A-grade� al-

gorithms, and algorithms graded with �F� failed to recover the original pattern

in the rows and/or columns.

For the Laser dataset, algorithms graded with �A� resulted in the most

interpretable heatmaps, algorithms graded with �B� resulted in heatmaps that

were useful but not quite as interpretable as the �A-grade� algorithms, and

algorithms graded with �F� produced heatmaps that were very di�cult to

interpret.

Table 5.1: Summary of the performance of seriation algorithms in recovering
the original patterns in the �ve synthetic datasets and the usefulness of their
heatmaps for the Laser dataset.

Algorithm Band Simplex Circumplex Equi-cor Block Laser
TSP F F B F A B
DendSer+PL B B B B A B
OLO B B B B A A
DendSer+BAR B A A A A A
PCA1 A B F A F F
MDS1 A A F A F F
ARSA A A F A A F
DendSer+ARc A A F A A F
SVD2 A B A F A F
R2E B A A A A F

DendSer+PL, OLO, DendSer+BAR and R2E are the only algorithms that

recovered all of the original patterns in the synthetic datasets. However,
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DendSer+BAR and OLO also produced the most useful heatmaps for the

Laser dataset. Therefore, based on the heatmaps, DendSer+BAR and OLO

emerge as the strongest performing seriation algorithms of those examined in

this comparison study.

Wilkinson (2005, �16.5) used the �ve synthetic datasets to compare the

performance of a small set of seriation algorithms including the Gruvaeus and

Wainer (1972) method and MDS1. The performance of MDS1 in Table 5.1

coincides with Wilkinson's results.

Wilkinson also concluded that seriation methods based on cluster analysis

provide no real advantage unless the user is particularly interested in cluster-

ing their data. However, this conclusion is based on the performance of the

Gruvaeus and Wainer (1972) algorithm. The comparison study in this chapter

showed that better dendrogram seriation algorithms such as OLO and DendSer

(particularly DendSer with BAR) generally perform equally well, and in some

cases better, than seriation algorithms that are not based on cluster analysis.

5.4.2 Seriation criteria

Twenty samples of each of the synthetic datasets were generated and the rows

and columns in each sample were permuted using each of the seriation algo-

rithms. For each set of rows and columns in the synthetic datasets (except for

the columns in the Equi-correlation dataset), the mean PL value of the twenty

permutations returned by each algorithm is recorded. For each of the Iris and

Laser datasets, there is only one PL value for each of the seriation algorithms.

All of this information forms a table with eleven columns (nine for the syn-

thetic datasets and one each for the Iris and Laser datasets) and ten rows (one

for each seriation algorithm). The ijth entry in the table is the mean PL value

for algorithm i corresponding to data j. The columns of this table are stan-

dardised and seriated using DendSer with BAR (average linkage), where the

dissimilarity between the columns is computed using 1− Pearson correlation.

Figure 5.24 shows a parallel coordinates plot (PCP), where the axes cor-

respond to either the rows or columns in the seven datasets used in this com-

parison study and the lines show the standardised mean PL values for each of

the seriation algorithms. The �rst axis in the PCP shows the overall mean PL

value for each algorithm and the legend orders the algorithms according to the

�rst axis. DendSer with BAR places data (i.e. axes in the PCP) for which the

algorithms performed similarly close together in the PCP.

Figures 5.25 and 5.26 are constructed in the same way as Figure 5.24 and

show the mean ARc and BAR values for each algorithm.
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The parallel coordinates plot in Figure 5.24 shows that:

• TSP is the best algorithm for minimising the PL cost function.

• OLO is the best clustering based algorithm for minimising the PL cost

function with DendSer with PL performing almost as well. Note that

the OLO algorithm always �nds the permutation from a dendrogram

that minimises the PL cost function, whereas DendSer with PL is not

guaranteed to �nd the best permutation. However, based on the results

in Section 5.3, DendSer with PL produced permutations having PL val-

ues that were on average only 0.4% higher than the PL values of the

permutations returned by OLO.

• The worst algorithms for minimising the PL cost function are the al-

gorithms based on dimension reduction techniques: PCA1, MDS1 and

SVD2.
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Figure 5.24: Parallel coordinates plot of the standardised mean PL values of
the permutations returned by the seriation algorithms for the rows and columns
in each of the seven datasets used in this comparison study. The parallel axes
correspond to the data and the lines show the mean PL values for each of the
algorithms. The �rst parallel axis shows the overall mean PL value for each of
the algorithms.

The parallel coordinates plot in Figure 5.25 shows that:

• ARSA is the best algorithm for minimising the ARc cost function with

MDS1 also performing quite well.

• DendSer with ARc is the best clustering based algorithm for minimising

ARc.

• TSP, DendSer with PL and OLO produce the worst ARc values on av-

erage.
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Figure 5.25: Parallel coordinates plot of the standardised mean ARc values
of the permutations returned by the seriation algorithms for the rows and
columns in each of the seven datasets used in this comparison study. The
parallel axes correspond to the data and the lines show the mean ARc values
for each of the algorithms. The �rst parallel axis shows the overall mean ARc
value for each of the algorithms.

The parallel coordinates plot in Figure 5.26 shows that:

• DendSer with BAR is the best algorithm for minimising the BAR cost

function.

• PCA1 and TSP produce the worst BAR values on average.
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Figure 5.26: Parallel coordinates plot of the standardised mean BAR values
of the permutations returned by the seriation algorithms for the rows and
columns in each of the seven datasets used in this comparison study. The
parallel axes correspond to the data and the lines show the mean BAR values
for each of the algorithms. The �rst parallel axis shows the overall mean BAR
value for each of the algorithms.
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5.4.3 E�ciency of seriation algorithms

Another factor to consider when choosing a seriation algorithm is the complex-

ity of the algorithm. In each of the following complexities, n is the number of

objects to be seriated in an n× p matrix with p < n.

The TSP algorithm used in this comparison study (i.e. farthest insertion

with 2-Opt) is O(n2)×# iterations. However, there are better algorithms for

solving the TSP. See, for example, the Concorde algorithm (Applegate et al.

2000). The version of TSP algorithm used in this study was chosen because of

its availability in the R package.

The study showed that both ARSA and MDS1 performed well in minimis-

ing the ARc cost function. Both algorithms are O(n2)×# iterations. In prac-

tice, ARSA is the slowest algorithm to run of those compared in this study2.

The number of iterations for ARSA is very large (Brusco et al. 2007). MDS1

performs Kruskal's (1964a, 1964b) non-metric MDS method, implemented as

isoMDS in R, which the R documentation reports converges in approximately

10 iterations.

For the PL cost function, the OLO algorithm performed well and is O(n3)

(Bar-Joseph et al. 2001, 2003). DendSer with PL performed almost as well

(see Figure 5.24) and runs in time O(n2)×# iterations, where the number of

iterations is quite small (see Table 3.2).

DendSer with either BAR or ARc runs in time O(n3)×# iterations, where

the number of iterations is small (see Table 3.2). The R2E algorithm also runs

in time O(n3)×# iterations (according to Tien et al. 2008).

PCA1 and SVD2 are the fastest algorithms running in time O(np2) (see,

for example, Golub and Van Loan 1996). However, these two algorithms do

not always produce the most informative seriation results (see, for example,

the performance of PCA1 and SVD2 for the Laser dataset in Figures 5.22.(e)

and (j), the performance of PCA1 for the Circumplex dataset in Figure 5.8.(e)

and the Block dataset in Figure 5.16.(e), and the performance of SVD2 for the

Equi-correlation dataset in Figure 5.13.(j)).

5.5 Discussion

From an optimisation point of view, TSP, ARSA and DendSer are the best

seriation algorithms for minimising the PL, ARc and BAR cost functions re-

spectively. For other cost functions, DendSer is currently the only option.

2The R implementation of ARSA is O(n4).
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Although the primary objective is to seriate data, the user may also have

additional interests. For example, the user may wish to obtain a clustering of

their data as well as a seriation or they may be interested in obtaining a low

dimensional representation of their data. The tree in Figure 5.27 summarises

the best choice of algorithm for di�erent seriation interests:

Seriation
interest

Seriation +
clustering

Seriation +
dimension reduction

Seriation only

Other criteria

Path Length

Other criteria

anti−Robinson

Path Length

Other criteria DendSer

      OLO,
DendSer+PL

PCA1, MDS1,
     SVD2

DendSer

ARSA, MDS1

TSP

*

*

Figure 5.27: Tree illustrating the best choice of seriation algorithm for partic-
ular seriation interests. Algorithms marked with �∗� indicate that they are a
more e�cient, although slightly less optimal, choice of algorithm.

5.5.1 Choice of seriation criterion

In two branches of Figure 5.27, the best choice of algorithm depends on the

seriation criterion that the user wishes to optimise. So, before the user decides

with seriation algorithm is best for their task, they must �rst decide which

seriation criterion is best for their task.

Visualisation

One factor in�uencing the choice of seriation criterion is the visualisation ap-

plication. For seriating parallel coordinates plots, Hurley (2004) described why

path length is a suitable criterion and Section 4.2 showed that lazy path length

is also useful. For seriating scatterplot matrices, Hurley (2004) described why

anti-Robinson form is a suitable criterion and Section 4.4 discussed how banded

anti-Robinson and lazy path length are also useful criteria.
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When seriating heatmaps, a common goal is to order the objects so that

the corresponding dissimilarity matrix follows anti-Robinson form (see, for

example, Gale et al. 1984 and Chen 2002). However, the examples and results

in Sections 4.5, 4.6 and 5.3 suggest that banded anti-Robinson form is a more

suitable choice of criterion when seriating heatmaps:

• For the Morse code and Fibroblast examples (Sections 4.5 and 4.6), min-

imising ARc using DendSer produced poor seriation results because the

corresponding dissimilarity matrices followed a circumplex pattern. How-

ever, DendSer with BAR produced more informative seriation results for

these two datasets.

• Optimising ARc using ARSA or DendSer also performed poorly for the

Laser dataset in Section 5.3.7 by producing a chess-board e�ect in the

heatmap of the Euclidean distance matrix (see Figures 5.22.(g) and (h)),

which made it di�cult to discern the structure in the data. However,

minimising BAR using DendSer resulted in a smoother, more inter-

pretable heatmap of the Euclidean distance matrix (Figure 5.22.(d)).

• The results in Sections 5.3.1-5.3.5 show that minimising BAR using

DendSer recovered the original pattern in all of the synthetic datasets,

whereas optimising ARc using ARSA or DendSer failed to recover the

original pattern in the Circumplex dataset.

Flexibility

The Morse code, Fibroblast and Laser examples show that seriating using anti-

Robinson form is not always appropriate. Also, determining whether or not

anti-Robinson form is suitable, prior to seriation, is generally di�cult (although

circumplex patterns may be revealed using dimension reduction techniques).

Therefore, seriating using anti-Robinson form may be �risky�.

The strong performance of DendSer with BAR for the datasets listed above

show that banded anti-Robinson form is suitable for a wider range of data

patterns than anti-Robinson form. Therefore, banded anti-Robinson form is a

�safer� and more �exible alternative to anti-Robinson form.

Global versus local

Path length is another possible alternative to anti-Robinson form. However,

just as optimising anti-Robinson form enforces too global a structure on a

dissimilarity matrix, optimising path length looks for too local a structure.
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Path length is only concerned with structure just o� the main diagonal in the

dissimilarity matrix and so generally reveals local structure in data but may

not reveal more global patterns. See, for example, the performance of the TSP

algorithm for the Band and Equi-correlation datasets in Sections 5.3.1 and

5.3.4.

Banded anti-Robinson form provides a compromise between the two ex-

tremes of path length and anti-Robinson form. For example, see the Laser and

Fibroblast datasets in Sections 3.4.2 and 4.6, where optimising banded anti-

Robinson form reveals more global trends that optimising path length but does

not impose as rigid a structure as when optimising anti-Robinson form.

These arguments all point to banded anti-Robinson form being an all-round

useful seriation criterion and so if the user chooses this criterion, then DendSer

is currently the only suitable seriation algorithm.
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Chapter 6

Concluding remarks

This chapter summarises and discusses the outcomes of the research described

in this thesis.

DendSer is a new �exible dendrogram seriation algorithm that allows the

user to choose from many seriation criteria and also to input their own cri-

teria. This is in contrast to other seriation algorithms, which generally focus

on one criterion only. DendSer also provides a general framework for perform-

ing several other dendrogram seriation algorithms such as those described in

Gruvaeus and Wainer (1972), Degerman (1982) and Wishart (1999).

The choice of seriation criteria for DendSer includes two new criteria called

banded anti-Robinson form and lazy path length, both of which have applica-

tions to a variety of visualisation settings, as shown in the examples in Chap-

ter 4. The motivation for the lazy path length criterion came from Hurley

(2004), who discussed the concept of placing interesting features in promi-

nent positions in statistical graphics such as scatterplot matrices and parallel

coordinates plots.

The original motivation for developing banded anti-Robinson form was the

poor performance of anti-Robinson form when seriating data that follow a

circumplex pattern. However, further investigation into banded anti-Robinson

form revealed that it is a very �exible seriation criterion and often results

in more meaningful visualisations than the more standard path length and

anti-Robinson criteria.

Other seriation criteria could also be developed. For example, a hybrid of

the lazy path length and banded anti-Robinson criteria could be developed,

which would aim to position the smallest values in a dissimilarity matrix in

the north east region of the matrix. This would extend the lazy path length

criterion, which aims to position the smallest values close to the beginning of

the main diagonal only. Such a criterion could have visualisation applications
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in seriating heatmaps and scatterplot matrices.

DendSer also gives the user a choice of how to rearrange the nodes in a

dendrogram, which is an important, yet generally ignored, feature of dendro-

gram seriation. This thesis developed notation and terminology for describing

how to rearrange nodes in a dendrogram and de�ned several di�erent node

operations, which rearrange or operate on nodes in di�erent ways. Some of

these node operations are used in existing dendrogram seriation algorithms,

while others are newly de�ned in this thesis.

This thesis also gives guidelines for the appropriate use of node operations

in DendSer. The choice of node operation is important because di�erent node

operations are suitable for di�erent seriation criteria and so using an inap-

propriate node operation may have a negative e�ect on the seriation results

returned by DendSer. The results of comparing the di�erent node operations

showed that DendSer, when used in conjunction with one of two new node

operations, performed better than when used in conjunction with one of the

node operations currently used in other dendrogram seriation algorithms.

The �exibility of DendSer is highlighted in Chapter 4, which described sev-

eral examples encompassing a variety of datasets, visualisations, dissimilarity

measures and seriation criteria. Other visualisation applications could also be

explored. For example, in correspondence, Al Inselberg discussed his idea of

ordering triples in parallel coordinates plots, which relates to the problem of

reading information between triples of variables in a parallel coordinates plot.

This problem suggests that when seriating the variables in a parallel coordi-

nates plot, the dissimilarity between variables that are up to two spaces apart

should be considered and not just the dissimilarity between adjacent variables.

Therefore, using DendSer to optimise the banded anti-Robinson criterion with

a band-width of two appears to be an appropriate seriation method for Insel-

berg's �triple ordering� problem.

This thesis explored many di�erent aspects of DendSer but some issues

remain to be investigated. For example, all uses of DendSer to date suggest

that DendSer will always converge. However, this property requires further

study. The choice of linkage is another issue that requires further inspection.

Di�erent linkages a�ect the results of hierarchical clustering and so they also

a�ect the results of dendrogram seriation algorithms. The extent of this e�ect

has yet to be investigated. The choice of dissimilarity measure also requires

further research.

Although this thesis approached the task of developing �exible seriation

tools by using hierarchical clustering based methods, there are other possi-

ble approaches. For example, simulated annealing algorithms such as ARSA
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(Brusco et al. 2007) could be modi�ed to also give the user a choice of seri-

ation criteria. However, one disadvantage of this particular approach is that

simulated annealing based seriation algorithms generally perform more slowly

than dendrogram seriation algorithms. Dendrogram seriation also seems more

appropriate for data visualisation applications because it marries together two

data analytic techniques: clustering and seriation.

As a �nal remark, the signi�cance of the research presented in this thesis

is that it provides practical seriation tools for enhancing data visualisation,

which will be made freely available to the worldwide statistical community via

a software package in the statistical program R (R Development Core Team

2010).
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Appendix A

Proofs of properties of node

operations

The following is a list of properties of the node operations de�ned in Sections

3.3.1 and 3.3.2. In each of the following, N is a node in a dendrogram ∆.

Property 1. The order in which R0 operates on two nodes Na and Nb does

not a�ect the returned permutation, i.e.

R0(Nb;R0(Na; ∆)) = R0(Na;R0(Nb; ∆)). (A.1)

Equation A.1 may be written using the following simpler notation:

R0(Na, Nb; ∆) = R0(Nb, Na; ∆). (A.2)

Equation A.2 extends to any number of nodes.

Proof of Property 1. The result in Equation A.2 is obvious if Na and Nb are

disjoint nodes in ∆. Showing that this result holds for the case when Na and

Nb are nested nodes relies on the fact that re�ecting a node N reverses the

order of the leaves in N and all descendant sub-nodes of N . Consider the

following.

Let Na be a node nested in Nb and without loss of generality, let Nb be the

root node of the dendrogram ∆ (see Figure A.1 for an example). Let L(Na)

be the ordered leaves in Na and let X and Y be the ordered leaves on the left

and right of Na respectively.

R0(Na, Nb; ∆) �rst re�ects Na and then Nb, changing the original permu-

tation of leaves from

X,L(Na), Y −→ X,L(Na), Y −→ Y , L(Na), X,
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where X indicates the reverse of X and similarly for L(Na) and Y .

R0(Nb, Na; ∆) �rst re�ects Nb and then Na, changing the original permu-

tation of leaves from

X,L(Na), Y −→ Y , L(Na), X −→ Y , L(Na), X.

Na

         Nb

X L(Na) Y

Figure A.1: An arbitrary dendrogram with the node Na nested within the root
node Nb. X and Y represent the ordered leaves to the left and right of Na,
and L(Na) represents the ordered leaves in Na.

R0(Na, Nb; ∆) = R0(Nb, Na; ∆) because, regardless of the order in which

Na and Nb are re�ected, the leaves in Nb are reversed once and the leaves in

Na are reversed twice. Take three nested nodes, Na nested in Nb nested in

Nc. Then R0(Na, Nb, Nc; ∆) reverses the leaves in Nc once, the leaves in Nb

twice and the leaves in Na three times, regardless of the order in which Na, Nb

and Nc are re�ected. Therefore, R0(Na, Nb, Nc; ∆) = R0(any permutation of

Na, Nb, Nc; ∆). This argument extends to any number of nested nodes.

Property 2. The order in which T0 operates on two nodes Na and Nb does

not a�ect the returned permutation, i.e.

T0(Nb;T0(Na; ∆)) = T0(Na;T0(Nb; ∆)). (A.3)

Equations A.3 may be written using the following simpler notation:

T0(Na, Nb; ∆) = T0(Nb, Na; ∆). (A.4)

Equation A.4 extends to any number of nodes.

Proof of Property 2. The result in Equation A.4 is obvious if Na and Nb are

disjoint nodes in ∆. Showing that this result holds for the case when Na and
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Nb are nested nodes relies on the fact that translating a node N does not a�ect

the order of the leaves in the descendant sub-nodes of N .

Let Na be a nested node in a node Nb (see, for example, Figure A.1) and

so translating Nb does not a�ect the order of the leaves in Na. Therefore,

T0(Na, Nb; ∆) = T0(Nb, Na; ∆) because, regardless of the order in which Na

and Nb are translated, the left and right sub-nodes of Na and Nb are swapped

once and only once. This argument extends to any number of nested nodes.

Property 3. The following relationships hold between R0 and T0:

T0(N ; ∆) = R0(N,Nl, Nr; ∆), (A.5)

where Nl and Nr are the left and right sub-nodes of N .

R0(N ; ∆) = T0(Na, . . . , Nk, N ; ∆), (A.6)

where Na, . . . , Nk are all of the descendant sub-nodes of N .

Proof of Property 3. Let Nl and Nr be the left and right sub-nodes of N .

Re�ecting N swaps the positions of Nl and Nr but also reverses the order

of the leaves in Nl and Nr and so re�ecting Nl and Nr after re�ecting N puts

the leaves in Nl and Nr back in their original order. Therefore, re�ecting N ,

Nr and Nl corresponds to the translation of N and so Equation A.5 is true.

Let N3 be a node in a dendrogram ∆1 and let N1 and N2 be the left and

right sub-nodes of N3 respectively. Assume that N1 and N2 are the only sub-

nodes of N3, i.e. N1 and N2 have at most two leaves each. See, for example,

the dendrogram ∆1 in Figure A.2.(a). Let L(Ni) be the ordered leaves in the

node Ni and let L(Ni) denote the reverse of the leaves in Ni.

T0(N1, N2, N3; ∆1) translates N1, then N2 and then N3 and so changes the

original permutation of the leaves from:

L(N1)L(N2) −→ L(N1)L(N2) −→ L(N1) L(N2) −→ L(N2) L(N1).

However, L(N2) L(N1) = L(N3) and so T0(N1, N2, N3; ∆1) = R0(N3; ∆1).

Now extend ∆1 in Figure A.2.(a) so that N3 and also a node N4 are the left

and right sub-nodes of a node N5. For ease of demonstration, assume N4 has

at most two leaves. See, for example, the dendrogram ∆2 in Figure A.2.(b).

The above argument shows that T0(N1, N2, N3; ∆2) = L(N3)L(N4) and so

T0(N1, N2, N3, N4, N5; ∆2) changes the permutation of leaves from

L(N3)L(N4) −→ L(N3) L(N4) −→ L(N4) L(N3).
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N1

N2

N3

L(N1) L(N2)

N1

N2

N3

N4

          N5

L(N1) L(N2) L(N4)

(a) Dendrogram ∆1 (b) Dendrogram ∆2

Figure A.2: The dendrogram ∆1 in Figure (a) visualises a hierarchical cluster-
ing of four randomly generated data objects. The dendrogram ∆2 in Figure
(b) extends ∆1 so that N3 is now a sub-node of a node N5. L(Ni) denotes the
ordered leaves in node Ni.

However, L(N4) L(N3) = L(N5) and so T0(N1, . . . , N5; ∆2) = R0(N5; ∆2).

This argument extends recursively to any number of nested nodes and so

Equation A.6 is true.

Property 4. The sets of permutations returned by some node operations are

subsets of the sets of permutations returned by other node operations:

(a) T0(N ; ∆) ⊆ R01(N ; ∆), follows from Equation A.5.

(b) R0(N ; ∆) ⊆ R01(N ; ∆), by de�nition of R01 in Equation 3.5.

(c) R1(N ; ∆) ⊆ R01(N ; ∆), by de�nition of R01 in Equation 3.5.

(d) T0(N ; ∆) ⊆ T01(N ; ∆), by de�nition of T01 in Equation 3.6.

(e) T1(N ; ∆) ⊆ T01(N ; ∆), by de�nition of T01 in Equation 3.6.

(f) C0(N ; ∆) ⊆ R01(N ; ∆), by Properties 4.(a) and 4.(b).

(g) R0(N ; ∆) ⊆ C0(N ; ∆), by de�nition of C0 in Equation 3.7.

(h) T0(N ; ∆) ⊆ C0(N ; ∆), by de�nition of C0 in Equation 3.7.

Property 5. The node operations R0 and R1 are commutative, i.e.

R1(N ;R0(N ; ∆)) = R0(N ;R1(N ; ∆)). (A.7)

Proof of Property 5. If Nl and Nr are the left and right sub-nodes of a

node N in a dendrogram ∆, then by de�nition

R1(N ; ∆) = R0(Nl; ∆) ∪R0(Nr; ∆) ∪R0(Nl, Nr; ∆). (A.8)
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Therefore, R1(N ;R0(N ; ∆)) can be written as:

R1(N ;R0(N ; ∆)) = R0(Nl;R0(N ; ∆)) ∪R0(Nr;R0(N ; ∆))

∪ R0(Nl, Nr;R0(N ; ∆)). (A.9)

Equation A.9 can be written using the following simpler notation:

R1(N ;R0(N ; ∆)) = R0(N,Nl; ∆) ∪R0(N,Nr; ∆) ∪R0(N,Nl, Nr; ∆).

(A.10)

Note that R0(N,Nl; ∆) �rst re�ects N and then re�ects Nl. Similarly,

R0(N,Nr; ∆) re�ects N �rst and then Nr and R0(N,Nl, Nr; ∆) re�ects

N �rst, then Nl and then Nr. However, Property 1 says that the order in

which R0 operates on a set of nodes does not a�ect the returned result.

Therefore, re�ecting N before applying R1 to N (i.e. R1(N ;R0(N ; ∆)))

produces the same set of permutations as re�ecting N after applying

R1 to N (i.e R0(N ;R1(N ; ∆))) and so Equation A.7 is true. (Note that

R0(N ;R1(N ; ∆)) re�ects N in each of the dendrograms represented by

R0(Nl; ∆), R0(Nr; ∆) and R0(Nl, Nr; ∆).)

Property 6. The node operations T0 and T1 are commutative, i.e.

T1(N ;T0(N ; ∆)) = T0(N ;T1(N ; ∆)). (A.11)

Proof of Property 6. If Nl and Nr are the left and right sub-nodes of a node

N in a dendrogram ∆, then by de�nition

T1(N ; ∆) = T0(Nl; ∆) ∪ T0(Nr; ∆) ∪ T0(Nl, Nr; ∆). (A.12)

Therefore, T1(N ;T0(N ; ∆)) can be written as:

T1(N ;T0(N ; ∆)) = T0(Nl;T0(N ; ∆)) ∪ T0(Nr;T0(N ; ∆))

∪ T0(Nl, Nr;T0(N ; ∆)). (A.13)

Equation A.13 can be written using the following simpler notation:

T1(N ;T0(N ; ∆)) = T0(N,Nl; ∆) ∪ T0(N,Nr; ∆) ∪ T0(N,Nl, Nr; ∆). (A.14)

Note that T0(N,Nl; ∆) �rst translates N and then translates Nl. Similarly,

T0(N,Nr; ∆) translates N �rst and then Nr and T0(N,Nl, Nr; ∆) translates

N �rst, then Nl and then Nr. However, Property 2 says that the order in

114



which T0 operates on a set of nodes does not a�ect the returned result. There-

fore, translating N before applying T1 to N (i.e. T1(N ;T0(N ; ∆))) produces

the same set of permutations as translating N after applying T1 to N (i.e

T0(N ;T1(N ; ∆))) and so Equation A.11 is true. (Note that T0(N ;T1(N ; ∆))

translates N in each of the dendrograms represented by T0(Nl; ∆), T0(Nr; ∆)

and T0(Nl, Nr; ∆).)
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Appendix B

Synthetic datasets

The following formulae for the Simplex, Band, Circumplex, Equi-correlation

and Block datasets are the same, or slightly modi�ed versions of, the formulae

used in Wilkinson (2005, �16.5). Wilkinson (2005, �16.5) did not report the

values he used for the various parameters in the following formulae. Therefore,

the parameter values used in this thesis are chosen so that the heatmaps of

the resulting data resemble the heatmaps in Wilkinson (2005, �16.5) as closely

as possible. After generating the values, the columns in each dataset are

standardised.

B.1 Simplex dataset

The Simplex dataset is generated using the following formula:

xij =
etij

1 + etij
+ uij, i = 1, . . . n, j = 1, . . . , p, (B.1)

where

tij =
sj − ri
b

,

sj =
j

p
,

ri =
i

n
.

The random error uij is a weighted standard normal random variable Z:

uij ∼ N(0, k). (B.2)

The parameter k determines the amount of random error in the data and

the positive non-zero parameter b determines the slope of the logistic function
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generated by the exponentials, i.e. the sharpness of the boundary between the

yellow and red regions in the top heatmap in Figure 5.2.(b). This thesis uses

b = 0.1 and k = 0.1. In the Simplex dataset, the correlation between all pairs

of columns is positive with the correlation between near columns higher than

the correlation between distant columns.

Note that Wilkinson (2005, �16.5) used ui,j ∼ N(0, ke−t
2
i,j) to create the

random error in the formula for the Simplex data. However, the formula for

ui,j in Equation B.2 results in data that appear more similar to the heatmaps

shown in Wilkinson (2005, �16.5).

B.2 Band dataset

The Band dataset is generated using the following formula:

xij = e−t
2
ij + uij, i = 1, . . . n, j = 1, . . . , p, (B.3)

where

tij =
sj − ri
b

,

sj =
j

p
,

ri =
i

n
.

The random error uij is a weighted standard normal random variable Z:

uij ∼ N(0, ke−t
2
ij). (B.4)

This thesis uses b = 1.05 and k = 0.15. With the Band dataset, correlations

between near columns are positive and correlations between distant columns

are negative.

B.3 Circumplex dataset

The Circumplex dataset is generated using the following formula:

xij = e−t
2
ij + uij, i = 1, . . . n, j = 1, . . . , p, (B.5)

where

tij = cos(π(sj − ri)),
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sj =
j

p
,

ri =
i

n
.

The random error uij is a weighted standard normal random variable Z:

uij ∼ N(0, ke−t
2
ij). (B.6)

This thesis uses k = 0.3. In the Circumplex dataset, correlations between

near columns are positive and correlations between distant columns are neg-

ative. However, for the Circumplex dataset distance is measured on the cir-

cumference of a circle and so the �rst few columns are positively correlated

with the last few columns.

B.4 Equi-correlation dataset

The Equi-correlation dataset is generated using the following formula:

xij = ti + uij, i = 1, . . . n, j = 1, . . . , p, (B.7)

where

ti =
bi

n
,

uij ∼ N(0, 1).

The parameter b determines the strength of the correlation between the columns

in the Equi-correlation dataset. This thesis uses b = 5, which results in the

correlations between all pairs of columns being quite large and positive.

B.5 Block dataset

The Block dataset is generated so that the columns divide into two blocks and

the rows divide into four blocks. In order to create this structure, the data

matrix is divided into eight sections, where the values in these sections are

generated as follows: 
N(0, 1) N(0, 1)

N(0, 1) N(2, 1)

N(2, 1) N(0, 1)

N(2, 1) N(2, 1)

 (B.8)
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In the Block dataset, correlations between columns from the same block

are near one and correlations between columns from di�erent blocks are near

zero. Note that Wilkinson (2005, �16.5) is unclear as to how he generates the

Block dataset and so the above method is possibly di�erent than the method

he uses.
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