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Abstract 

We review recent applications of equivariant dimensional reduction techniques to the construction of 
Yang-Mills-Higgs-Dirac theories with dynamical mass generation and exactly massless chiral femions. 
(Based on invited talk given by the first author at the 2nd School on "Quantum Gravity and Quantum Ge- 
ometry" session of the 9th Hellenic School on Elementary Particle Physics and Gravity, Corfu, Greece, 
September 13-20 2009. To be published in General Relativity and Gravitation.) 

1 A brief history of dimensional reduction 

The idea that the observed fbndamental forces in Cdimensions can be understood in terms of the dynamics 
of a simpler higher dimensional theory is now nearly 90 years old [l]. Starting from a 5-dimensional theory 
on a manifold M5 = M4 x s l ,  where M4 is a curved Cdimensional space-time and the fifth dimension is 
a perfect circle with radius T ,  and taking the 5-dimensional line element to be (0 5 y < 27r): 

where A(x) = Ak(x)dxk is a Cdimensional vector potential, the 5-dimensional Einstein action reduces to 

where F = dA is a U(1) field strength in 4-dimensions and F2 = Fk,FkV. 
If we now introduce extra matter, e.g. a scalar field a, and perform a harmonic expansion on S1, 

then the 5-dimensional kinetic term for gives rise to an infinite tower of massive fields in M 4 ,  d,(x), 
with masses m, = F. 

A non-abelian generalisation of the Kaluza-Klein idea uses a d-dimensional manifold Md = M4 x SIR,  
with R c S compact Lie groups. The co-set space S I R  has isometry group S and holonomy group R. 
Performing the integral JSIRdp over the internal space, with d p  the S-invariant measure on S IR ,  leads 

to Yang-Mills gauge theory in Cdimensions with gauge group S ;  e.g. s2 N SU(2)/U(l), with SU(2) 
isometry and U(1) holonomy, gives 4-dimensional Einstein-Yang-Mills theory with gauge group SU(2), 
see e.g. [2]. 

Alternatively, one can start from d-dimensional Yang-Mills theory on M4 x S I R  with gauge group G. 
Forgacs and Manton [3] showed that interesting symmetry breaking effects can occur if R C G and one 
chooses a specific embedding R v G. Integrating over S I R  then gives a Yang-Mills-Higgs system on M 4 ,  



with a gauge group K which is the centraliser of R in G, i.e. K C G with [R, K ]  = 0 (see also [4]). Upon 
dimensional reduction the internal components of the d-dimensional gauge field d play the r6le of Higgs 
fields in Cdimensions and a Higgs potential is generated from the d-dimensional Yang-Mills action: 

A, (x) (6dimensional gauge fields) 
@,(x) (6dimensional Higgs fields) 

(here x, are co-ordinates on M 4 ,  ya co-ordinates on SIR). The full d-dimensional Yang-Mills action, with 
field strength 3, reduces as 

where Tr denotes trace over the d-dimensional gauge group G and t r  is over the 4-dimensional gauge 
group K. Furthermore the Higgs potential can break K dynamically. In particular if S c G, then V(@) 
breaks K spontaneously to K', the centraliser of S in G, [S, K'] = 0. 

Consider again the simplest case S2 N SU(2)/U(1), where S E SU(2) and R U(1). For example 
if G = SU(3) then indeed S C G and in the first step R L, G: U(1) L, SU(3) breaking SU(3) to 
K = SU(2) x U(1). Upon reduction the Cdimensional Higgs doublet, @,, a = 1,2, dynamically breaks 
SU(2) x U(1) + K'  E U(l),  which is the centraliser of S = SU(2) in G = SU(3). Going beyond SU(2) 
symmetry on the co-set space, a harmonic expansion of, for example, a scalar field @ on S2 N SU(2)/U(1), 

generates a tower of higher modes, qbl,(x), which have masses Mf = in 4-dimensions. 
Much of the steam was taken out of the co-set space dimensional reduction programme with Witten's 

proof that spinors on M 4  x S I R  cannot give a chiral theory on M 4  [5]. 
Reviews of co-set space dimensional reduction are given in [6] and [7]. 

2 Equivariant dimensional reduction 

2.1 General construction 

Equivariant dimensional reduction is a systematic procedure for including internal fluxes on S I R  (instantons 
andlor monopoles of R-fields) which are 'symmetric' (equivariant) under S [8,9]. It relies on the fact that, 
with suitable restrictions on S and R, there is a one-to-one correspondence between S-equivariant complex 
vector bundles over M d  

B + M d = M 4  x SIR,  

and R-equivariant bundles over M4, 
E  + M4, 

where S acts on the space M d  via the trivial action on M4 and by the standard left translation action on 
S I R  (we shall restrict ourselves to the case where S and R are compact and the embedding R L, S is 
maximal). If B and E are ck vector bundles there is a commutative diagram of bundle maps 

induce c ~ T E - B T c ~  

I I 



where the induction map is defined by 

h E R, (g ,  e )  E S  x E, h . (g ,  e )  = (gh-l,  h e )  B. 

In general the reduction gives rise to quiver gauge theories on M4. Including spinor fields, coupling to 
background equivariant fluxes, can give rise to chiral theories on M4. One expects zero modes of the Dirac 
operator on S I R  to manifest themselves as massless chiral fermions in M4 but, as we shall see, Yukawa 
couplings are induced and the dimensional reduction can give masses to some zero modes [lo, 1 11. 

2.2 A simple example: Complex projective line 

Consider once again the simplest non-trivial example with S  S S U ( 2 )  and R S U ( 1 ) ,  giving a 2- 
dimensional sphere s2 N S U ( S ) / U ( l )  (or projective line c P 1 ) ,  and with G S U ( k ) .  Choosing an 
embedding S  v G gives a decomposition U ( k )  -+ nzo U ( k i ) ,  where k  = CEO ki, associated with the 
m + 1-dimensional irreducible representation of S U ( 2 ) .  Let g E G, v E ck and vi E cki. Then, as a 
k  x k  matrix, g decomposes as 

where S U ( 2 )  acts on g as a (m + 1) x (m + 1)  block matrix. Each subspace vi transforms under U ( k i )  c 
U ( k )  and carries a U ( 1 )  charge pi = m - 22, -m I pi I m. 

Introducing a complex co-ordinate y on S 2  (of radius T ) ,  

we write the potential and field strength for a monopole of charge p  in these co-ordinates as 

The U ( k )  gauge potential, a Lie algebra valued 1-form A on Md, now splits into ki x k j  blocks 

where A  = CBE~A', a = CBz0am-2i, A i ( x )  is a U ( k i )  gauge connection on Mq, and @ ( x )  will acquire 
the interpretation as a set of Higgs fields. As a (m + 1 )  x (m + 1)  block matrix 

where each $i is a ki-l x ki matrix transforming under U ( k i - 1 ) ~  x U  ( k i ) ~ .  AS a (m + 1)  x (m + 1)  matrix 
the Higgs field is 

0 $1 0 . - .  

@ =  . . 

0 0 0 . . .  



Dimensional reduction generates a Cdimensional Higgs potential, 

where g is the 6-dimensional gauge coupling. The minimisation of the Higgs potential gives a vacuum 
structure that depends on the monopole charges pi = m - 2i. 

2.2.1 Example: S U ( 3 )  + S U ( 2 )  x U ( 1 )  + U ( 1 )  

As a concrete example, consider the case with G E SU(3)  and m = 1 (fundamental of SU(2)) ,  so that 
k = 3 and ko = 2, kl = 1 .  In this case there is one unit charge monopole and one anti-monopole sector in 
the internal space which give a symmetry breaking pattern 

reduction SU(3) - SU(2) x U ( 1 )  
dynamics 

U ( l ) >  

so K E SU(2)  x U(1 )  is broken dynamically to U ( 1 )  (for details, see [lo]). 
There is only one Higgs multiplet, 4, which is a 2-component vector, and the minimum of V ( ) )  is at 

$0 = (g) in a suitable gauge. Perhubing around this vacuum gives ) = (+: h ) ,  with h real. and 

the Higgs mass works out to be m h  = +. 
The three gauge boson masses are mw* = imZ = while the Weinberg angle evaluates to 

&T 

sin2 Ow = 2. Clearly this is not a phenomenologically viable model for electroweak interactions, as the 
gauge boson masses and the Weinberg angle are wrong, but it is nevertheless instructive. 

2.2.2 Example: S U ( 3 k f )  + S U ( k f )  

As a second example take G E SU(k) .  Let m = 2 (adjoint of SU(2))  and choose ko = kl = k2 = kt,  SO 

that k = 3kt. There are now three sectors in the internal space, one charge two monopole, its anti-monopole, 
and a trivial sector. The symmetry breaking scheme in this case is 

SU(3kt)  S U ( ~ ' ) ~  x ~ ( 1 ) ~  
dynamics 

SU(kt)di,,. 

There are two Higgs multiplets, and 4 2 ,  both of which are k x k matrices. The Higgs potential is 

and we expand )i around the vacuum as 

with hi = hf , i  = 1,2. 
Diagonalising the Higgs mass matrix produces two distinct eigenvalues m: = 3, 5.  There are kt2 - 1 

gauge bosons with mass m$, = &, kt2 - 1 with m&, = &, while two 2-bosons acquire masses m i  = 
1 2 - 9 z 7  andmz 1 - p. 



2.2.3 Quiver diagrams 

This construction generates quiver gauge theories on M4. Writing the Lie algebra of SU(2) in the form 
[J3, J f ]  = f 2J*, the Higgs fields give rise to a chain of bundle maps ai: 

The isometry group SU(2) is rather special in that there is only one raising and one lowering operator, so the 
quiver diagram is always a chain. Higher rank isometry and holonomy groups generate more complicated 
quiver diagrams in general. 

2.3 A more general example: Complex projective plane 

As a more general example consider Cp2 N SU(3)/U(2) (for details see [9] and [ l  11). Label the irre- 
ducible representations of SU(3) by ( 1 ,  I), corresponding to the Young tableau 

Denote irreducible representations of SU(2) x U(1) by (n,  m) ,  with n = 21 (isospin) and m = 3Y 
(hypercharge). Then under the embedding U(2) + SU(3), the irreducible representations decompose as 
( 1 ,  1)  + ~ ( n ,  m )  := Wl,i, where Wl,i represents the set of all SU(2) x U(1) irreducible representations in 

(1,i). For example, W I , ~  has two elements: 3 + 21 @ 1-2.  

The root diagram for SU(3) is 

For any given irreducible representation ( 1 ,  I } ,  E,, and E,,+,, map between elements of Wl,i with different 
isospin and can be decomposed into components that increase the isospin and components that decrease it: 

with 
~ n f i : ( n , m ) + ( n f l , m + 3 ) ,  ~ ; ~ + , , : ( n , m ) + ( n f l , m + 3 ) .  

Choosing a basis of orthonormal 1-forms for CP' which is compatible with the complex structure, pl ,  
-1 -2 p2, p , p , define the Lie-algebra valued I-forms pzm,  together with their complex conjugates, via the 

relations 

There is then a Higgs field, qb;,,, associated with each PEm. 



2.3.1 Example: Adjoint representation 

For example, the adjoint representation I = i = 1 of S U ( 3 )  decomposes as 

where the different S U ( 2 )  x U ( 1 )  representations are also indicated by their usual particle physics notation. 
Choosing the gauge group to be 

G = U ( k )  + U(kl ,3 )  U(k1,-3) U(k2,0) X U(k0,0), 

with k = 2k1,3 + 2k1,-3 + 3k2,o + k O , ~ ,  there are four Higgs fields mapping between the S U ( 2 )  x U ( 1 )  
representations and the quiver diagram assumes the form 

For illustrative purposes, we further specialise to the case k1,3 = k1,-3 = k2,0 = kO,O = kt .  Then 
dimensional reduction gives K S U ( k t ) 4 ,  

and q5;,, are kt x kt complex matrices acted on by some S U ( k t ) L  x S U ( k t ) R  subgroup. The symmetry is 
further reduced by dynamical symmetry breaking 

s u ( 8 k t )  + S U ( ~ ' ) ~  x ~ ( 1 ) ~  + SU(kt)diag 

and the Higgs potential minimised by 

e m 0  = -un,rn1 2gr 

where u&, u;,, Uc0 ,  U1,-3 are four unitary matrices satisfying one extra condition 

ucou{3 = U$OU1,-3. 

2.3.2 Quiver diagrams 

For a general S U ( 3 )  irreducible representation, {I ,  i), the quiver diagram is 
- - 

J,-(214)) (l+l,l-I) 

The total number of Higgs matrices (blue links) is 215 + 1 + 7, while the number of gauge groups (green 
dots) is ( I  + 1) ( i  + 1) .  If k,,, = kt are all equal, then all Higgs fields are kt x kt matrices and V(@) is 
minimised by those Higgs fields all proportional to unitary matrices, with constraints of the form (1) on the 
unitary matrices around any plaquette. Interpreting the Higgs fields as a S U ( k t )  lattice gauge field on the 
quiver lattice, the constraints are satisfied by demanding the trivial gauge configuration on the quiver lattice. 



3 Fermions and Yukawa couplings 

3.1 lbisted Dirac operators on S2 

To study how dimensionally reduced fermions and Yukawa couplings emerge in these models, we first 
consider the simplest non-trivial example of s2. Represent the Dirac operator for a fermion with unit charge 
in the presence of a magnetic monopole on S2 of charge p by D$). Mathematically, this is the Dirac operator 
twisted with the p-th tensor power of the tautological line bundle L [12]. 

For a given p, the eigenspinors will be denoted by ~ j , ~ ; l  and have eigenvalues 

so that 
D(P) s z  xj,p;l(y) = ~ j , p ~ j , p ; l ( ~ ) .  

For p even the quantum number j is half-integral while for odd p it is integral: in both cases j 2 
and the degeneracy is 2 j  + 1, labelled by 1 = 0,1, . . . ,2 j .  The eigenspinors can be decomposed into their 
positive and negative chirality components 

where the sign corresponds to the sign of the eigenvalue. 
In addition, for the special value j = when p f 0, there are (pl zero modes: for p > 1 there are p 

negative chirality modes, which we denote by 

while for p 5 - 1 there are Ipl positive chirality modes, 

For a given monopole charge, the index of the Dirac operator is 

Index (D$)) = -p .  

The Dirac operator on M6 splits up into the direct sum of Cdimensional and 2-dimensional Dirac 
operators 

D(6) = D(4) @ 1 2  + 75  @ Dsz. 

At first sight zero modes of the Dirac operator on s2 might be expected to manifest themselves as massless 
fermions for the Dirac operator on M 4 ,  but we shall see below that this is not always the case. 

After dimensional reduction a fermion on M 6 ,  e.g. in the fundamental of U(k), will decompose as 

where the f signs refer to the s2 chirality, not Cdimensional or 6-dimensional chirality. Indeed 9 itself 
could be either Dirac or Weyl in 6-dimensions. In the equivariant dimensional reduction framework only 
zero modes on s2 are compatible with SU(2) symmetry: j > correspond to higher harmonics which 



do not have this symmetry and correspond to Cdimensional fermions with masses of order $. Focusing on 
zero modes, the 6-dimensional fermions \kr decompose as 

iJ-(x19) = @pi-1- T=O ~)P~;T(~>x,;T(Y)I $+ = 0 (pi 2 I),  
I~il-1 

Q+(x> Y) = mr=0 @ ~ ~ ; T ( x ) x ~ ; ~ ( Y ) *  Q- = O (pi < -I), 

where GpiiT(x) and Ilr,,;,(x) are either Dirac spinors in Cdimensions, if iJ is Dirac in 6-dimensions, or Weyl 
spinors of opposite chirality, if \k is Weyl in 6-dimensions. 

Not all of the Cdimensional fermions qpiiT(x) and Ilr,,;,(x) are massless however [lo]. In 6 dimensions 
the Dirac operator involves the 6-dimensional gauge field, which includes the Higgs field after dimensional 
reduction, and these induce Cdimensional Yukawa couplings, allowing for the possibility of generating 
mass terms for 4-dimensional fermions through dynamical symmetry breaking. If, and only if, m is odd 
there is a kdimensional Yukawa coupling linking to @-I through 

For the example in 52.2.1, SU(3) + SU(2) x U(1) + U(1), we had ko = 2, kl = 1, and m = 1. In 
this case $1 transforms as 21 under SU(2) x U(1), @-I as 1-2, and 4 = 41 as 21. These Cdimensional 
fermions pick up a mass & via the Higgs vacuum expectation value, which is of the same order as the 
masses of the higher harmonic fermions arising from non-zero eigenvalues of the Dirac operator on s2 and 
therefore should be removed from consideration if we are assuming higher harmonics are too heavy to be 
relevant to the physics at low energies. 

3.2 SpinC structures on Cp2 

The issue of fermions on CP2 is complicated because there is a topological obstruction to the existence of 
a spin structure: due to the fact that the second Stiefel-Whitney class is non-vanishing [13] there is a global 
obstruction to defining spinors on CPn for even n. 

Nevertheless, fermions can be defined by coupling them to monopoles andfor instantons (spinc struc- 
tures). The full spectrum of the twisted Dirac operator is complicated but for equivariant dimensional reduc- 
tion we only need the zero modes. For fermions coupling to an equivariant monopole of magnetic charge m 
and an equivariant instanton of topological charge n ,  the index of the Dirac operator on C P ~  is [ l  11 

The fact that this is not an integer if n and nz have the same parity, i.e. they are either both even or 
both odd (e.g. n = m = 0), is related to the lack of spin structure on CP2. Under the embedding 
SU(2) x U(1) --, SU(3), (1,i) + @(n, m )  =: WIZ, n and m always have the same parity, so any 
equivariant monopole/instanton background arising from the embedding will not admit global spinors. We 
therefore allow for a further twist with a monopole of charge q E Z + 3 (29 odd) and the index for this 
twisted gauge field configuration is 

1 
1ndex ($*rn)) = - (n + 1) ((m + 2q)2 - (n + I ) ~ )  

8 

We shall denote the positive and negative chirality zero modes of this operator, with a given fixed q, by 
~ n + , ~ , ~  and x ; , ~ , ~  respectively (for notational clarity the degeneracy is not indicated). 

3.2.1 FundarnentaI representation 

For (1,i) = ( 1 , O )  we have (1,O) + (1 , l )  @ (0, -2), and choosing for example q = - results in 

Index (D!!t;$) = - 1, Index (~'0;::)) = 1. 



For example, the case k  = 3k' with kl,l = ko,-2 = k' gives a single k' x k' Higgs matrix and the symmetry 
reduction scheme 

~ U ( 3 k ' )  + S U ( k l )  x S U ( k l )  x U ( 1 )  + SU(k1) .  

+ With 29 = - 1, x ~ , - ~ , -  ; ( y )  and xE1,- I ( y )  are the only zero modes giving the equivariant decomposition 

where ~ , ! J ~ , - ~ ( X )  and $ l , l ( x )  are either Cdimensional Dirac spinors on M 4 ,  if @ is Dirac in &dimensions, 
or chiral spinors of opposite chirality in Cdimensions, if @ is chiral in &dimensions. The induced 4- 
dimensional Yukawa couplings generate a mass term for these spinors given by 

A different choice of q  leads to a different conclusion. Taking 29 = 3  results in 

1ndex (D?;)) = 3, 1ndex (D:;)) = 0 .  

There is no analogue of $ J ~ , - ~ ( X )  in this case and Yukawa couplings cannot generate a mass term in 4- 
dimensions. 

3.2.2 Adjoint representation 

Starting from the adjoint representation 

{ I ,  i} = { I ,  i} + ( 2 , o )  CB ( ~ 3 )  CB (1 ,  -3)  e (o ,o ) ,  
consider the symmetry breaking scheme 

SU(8k1)  -+ S U ( ~ ' ) ~  x ~ ( 1 ) ~  -+ S U ( k l ) .  

Choosing, for example, q  = -; gives 

In this case Yukawa couplings generate a mass coupling the Cdimensional spinors &,3(x) and 7 , ! ~ ~ , ~ ( 2 ) ,  but 
the 8 flavours + 1 , - 3 ( ~ )  remain massless. 

4 Conclusions 

We have shown that equivariant dimensional reduction with a simple gauge group G gives the following: 

Gauge symmetry reduction G -+ K with only one gauge coupling in Cdimensions, even if K is 
semi-simple. 

Further dynamical symmetry breaking K  -+ K' where the vacuum and symmetry breaking patterns, 
including Higgs and gauge boson masses and Weinberg angles, can be deduced uniquely from group 
theory and induced representation theory. 



In certain cases the vacuum configuration is related to gauge dynamics on the quiver lattice: the Higgs 
vacuum corresponds to zero flux on the quiver lattice. 

When fermions are included, chiral theories with families emerge naturally from non-trivial fluxes 
on S/ R. 

Chiral fermions on M d  do not allow direct mass terms, but Yukawa couplings can give 4-dimensional 
masses to some of the resulting fermions on M4. Yukawa couplings can even give masses to some, 
but not all, zero modes. 

The gauge and fermion structure of equivariant dimensionally reduced field theories is clearly very rich. 
Standard model type Yukawa couplings, with different chiralities belonging to different irreducible repre- 
sentations of the gauge group, arise quite naturally in the models presented here, but an exhaustive analysis 
of all possibilities would be an ambitious programme and remains to be tackled. 

Acknowledgments 

We thank A. Chatzistawakidis and H. Steinacker for helpful discussions. The work of BPD is supported in 
part by the EU Research Training Network in Noncommutative Geometry (EU-NCG). The work of RJS is 
supported in part by grant STlG0005 1411 "String Theory Scotland" from the UK Science and Technology 
Facilities Council. 

References 

[ l ]  Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss. K 1 (1921) 966; 0. Klein, Z. Phys. 37 (1926) 895. 

[2] T. Appelquist, A. Chodos and P.G.O. Freund, Modern Kaluza-Klein Theories (Addison- Wesley, 1987). 

[3] P. Forghcs and N.S. Manton, Commun. Math. Phys. 72 (1980) 15; C.H. Taubes, Commun. Math. Phys. 
75 (1980) 207. 

[4] A. Chatzistawakidis, these proceedings. 

[5] E. Witten, in: Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the 
Fundamental Problems ofPhysics, eds. R. Jackiw, N.N. Khuri, S. Weinberg and E. Witten (MIT Press, 
1985), p. 227. 

[6] D. Kapetanakis and G. Zoupanos, Phys. Rept. 219 (1992) 1. 

[7] Y.A. Kubyshin, J.M. Mourao, G. Rudolph and I.P. Volobujev, Dimensional Reduction of Gauge Theo- 
ries, Spontaneous Compactification and Model Building (Springer, 1989). 

[8] L. ~lvarez-~611sul and 0. Garcia-Prada, J. Reine Angew. Math. 556 (2003) 1 
[arXiv:math.DG/O112 1601; Commun. Math. Phys. 238 (2003) 1 [arXiv:math.DG/O112 16 11. 

[9] 0. Lechtenfeld, A.D. Popov and R.J. Szabo, Progr. Theor. Phys. Suppl. 171 (2007) 258 
[arXiv:0706.0979 [hep-th]]. 

[lo] B.P. Dolan and R.J. Szabo, JHEP 03 (2009) 059 [arXiv:0901.2491 [hep-th]]. 

[ l  11 B.P. Dolan and R.J. Szabo, JHEP 08 (2009) 038 [arXiv:0905.4899 [hep-th]]. 

[12] R. Bott and L.W. Tu, Differential Forms in Algebraic Topology (Springer, 1982). 

[13] J.W. Milnor and J.D. Stasheff, Chatactenstic Classes (Princeton University Press, 1974). 




