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Abstract-Machine Learning approaches such as Reinforce- 
ment Learning (RL) can be used to solve problems such as 
spectrum sensing and channel allocation in the cognitive radio 
domain. These approaches have been applied to other similiar 
domains such as in mobile telephone networks and have shown 

greater performance than the static channel allocation 
schemes used. 

The objective of this research is to use an RL technique 
known as Q-Learning to provide a possible solution for allocating 
channels in a wireless network containing independent cognitive 
nodes. Q-Learning is an attractive algorithm for such a problem 
because of the low computational demands per iteration. Many 
or the current proposed techniques suggest using a negotiation 
policy between two nodes to decide on which channel each may 
use, however a considerable problem with this is the overhead 
involved in the negotiation involved between the nodes. This 
paper suggests an approach where each node acts as an individual 
independant node, with virtually no collaboration with the other 
nodes. 

Results have shown that using such a technique gives fast 
convergence on an optimal solution when correct rates are chosen. 
It has also shown that the algorithm is very scalable, in that as the 
network grows, the state-action space does not grow sufficiently 
to cause major memory or computational demands. 

Research in the area of cognitive radio (CR) has broadened 
significantly in the past number of years since it was first 
Presented by Mitola in 1999 [l]. It is now recognised as 
being an essential replacement for the current regulation of the 
elechomagnetic spectrum where vast bands of usable spectra 

being underutilised. One such example of this was in the 
USA where the Spectrum Policy Task Force [2] had found that 
for a particular period on a police broadcasting channel, the 

channel occupancy was less than 15% , while the peak 
was nearly 85%. This has led to much research into 

Ihe area of opportunistically accessing underutilised spectrum 
where no primary user is currently active. 

The goal of this research is to not focus on primary and 
users in a frequency domain, but rather to allow 

each Cognitive node to learn by its own mistakes. In this case, 
Considers the environment to include all other cog- 

nodes, and any other transmitters working on the same 
" ~ e l s  as being part of the environment. This will ensure 
lo even distribution of channels not only for the cognitive 
nodes, but also for any other type of wireless communication 
device. It is hoped that future work will look at primary and 

secondary users working in the same environment using a 
Q-Learning approach. Much of the research in this area has 
focused on cooperative sensing where nodes within a cognitive 
radio network share information about the environment. There 
are several levels on which this can happen [3], which at the 
very least have a need for a control channel to pass information 
between nodes. This alone can lead to massive overheads on 
a network as the number of nodes and the amount of data 
shared increases. The proposed solution to this is individual 
sensing where each node is a single cognitive entity having 
the ability to acquire information about the environment or 
network without the help of other nodes in its vicinity. 

This is achieved using a reinforcement learning algorithm 
known as Q-Learning whereby the agent goes through a phase 
of learning before it can converge on an optimal solution for 
channel allocation. In this learning phase, the node makes 
decisions on what channels to select pseudo-randomly, the 
outcome of taking these actions will weigh strongly on what 
decisions are made later on. Once a node has finished learning, 
it can then make decisions on what it has learned. The ability 
for a node to be able to preempt whether a channel is going to 
be in use before accessing it allows it to optimise bandwidth 
usage for itself and any other nodes that may be accessing the 
same channel. 

The rest of this paper is organised as follows. First, an 
overview of reinforcement learning is presented, along with 
an in-depth look at Q-Learning and how it is applicable to 
this domain. Details on how Q-Learning has been applied in 
channel selection in cognitive networks are provided. Results 
and outcomes of simulations performed are then given, 
followed by current and future work. Finally, conclusions 
from this work and possible future work in this area are 
provided. 

A. Application of Reinforcement Learning 

Reinforcement Learning is a machine learning technique 
whereby an agent interacts with an environment in the hope of 
achieving a goal. This interaction occurs on a continual basis 
with the hope of the agent being able to learn to function 
in an optimal fashion within that environment. The way in 
which the agent interacts with the environment is through a 
series of actions that can be performed. These actions can have 



positive or negative outcomes which can, over time, be used 
to determine how best to work in the current environment. At 
each point in time, an agent can be in a particular state, with 
the ability to choose an action based on what it has learned 
in previous iterations. 

The overall goal is to find an optimal policy that maps each 
state to an action an agent should take in those states [ S ] .  
Figure 1 shows how the agent interacts with the environment 
and uses this to determine its next state. 

Take Action 
at 

Fig. 1. Agent-Environment Relationship 

To represent this formally, we assume the agent receives the 
next state from the environment as shown in figure 1 at each 
iteration of the algorithm, st E S ,  where S is the set of possible 
states and t = 0 , 1 , 2 ,  . . . for each individual discrete timestep 
or iteration. On receiving this state, an action is chosen, at E 
A(s t )  where A(s t )  is the set of possible actions that can be 
taken in state st. On taking this action, the agent observes 
the result, and receives a reward rt+l where rt+l E 3. After 
taking this action, the agent has now moved into a new state, 
st+l. At each iteration of the algorithm, a policy is created 
that maps the action taken, at to the state st and this policy is 
denoted by r t ( s t ,  at) .  The way in which this mapping occurs 
is dependent on each RL algorithm and is usually based on 
one of a number of action selection strategies which will be 
described in the next section. 

B. Q Learning Algorithm 

Q-Learning is an RL off-policy temporal-difference learning 
algorithm introduced by Watkins in 1989. The algorithm works 
by learning an action-value function that gives an expected 
utility of taking an action in a particular state and following 
that policy thereafter [6]. The environment in which the agents 
exist can be modelled as a Markov Decision Process. The 
agent-environment shown in Figure 1 consists of a number of 
steps: 

Agent examines state xt E X 
Action at E A is taken based on xt 
A transition occurs as a result of action at being taken, 

and a new state xt + 1 is taken into account. A reward is 
generated based on this transition, rt. 

The reward, rt ,  that is returned is then stored or learned 
for that state action pair, and the above process is repeated. 

The goal of repeating this process is for the agent to find 
an optimal policy r* E iTT for each state xt E X in a 
recursive manner. The fact that the Q-Learning algorithm cao 
converge on T* without having any prior knowledge of the 
environment makes it very suitable for cognitive radio channel 
selection because of the unpredicability of other nodes and the 
electromagnetic spectrum. 

The algorithm can be described as a simple value iteration 
update as shown below: 

Q ( % ,  at)  +- &(st ,  at)  + at )  x [rt 

+r x max,Q(st+l, a )  - Q(st ,  at)]  (1) 

where cr(st, a t )  is the learning rate where 0 < cr 5 1 and 
which represents to what extent newly acquired information 
will be taken into account. A learning rate of 1 will mean 
that only the most recent rewards will be taken into account 
whereas a learning rate of 0 will mean the agent will learn 
nothing, and any current reward will be discarded. The 
discount factor, y, 0 < y < 1, decides how important future 
rewards are for the agent. Another thing that makes the 
Q-Learning algorithm suitable for this type of problem is r 

because it has been shown [ 7 ]  that Q-Learning will converge ' 

with a probability of 1 as long as each state action pair is 
visited infinately as the learning rate approaches zero. The 
way in which the Q function in Equation 1 is implemented 
can be shown in the pseudocode: 

For each episode, while s is not terminal 
Sense environment and state s 
For each iteration: 

Choose a from s  using certain policy 
Take action a, observe output, r ,  st+l 
Update Q value for state-action pair (eqn. 1) 
S St+1 

Loop I 

Loop i , 
I 

The electromagnetic spectrum environment that the agent 
is working in is very unpredictable, making it suitable to use 
an off-policy RL algorithm such as Q-Learning so as to allow 
a period of random exploration before following the target 
policy of the agent. The policy used in selecting which action 
to take is dependent on the type of policy used. The simplest 
example is to select the action with the greatest reward for 
that state, although this may not always lead to an optimal 
solution as it would lead to a totally greedy policy that would 
not explore parts of the state space that would not appear to 
be advantageous but could lead to an optimal solution in the 
future. 

&-Greedy is an example of a strategy that overcomes this 
problem. It does so by only selecting the best action I-& of 
the time and another action is chosen randomly selected for 
the remainder of the time, E. The value of E is in the range 
0 < E 5 1. The higher the value, the more random exploration 



occur. A similiar strategy known as &-decreasing strategy 
is what is used in this experiment. The main difference 
beween this and &-Greedy is that E decreases over a period 
of time so that the agent goes through a period of random 

or learning before becoming totally exploitative. 

111. ALGORITHM IMPLEMENTATION 

TO explain how Q-Learning was used for this problem, an 
of how each state, action, and reward is structured 

is provided. First, the available spectrum was broken up into a 
m b e r  of channels which could be used for communication. 
The number of channels available, C, that was used in this 
experiment was 4, but can change depending on available 
spectrum. This amount of channels was chosen to provide 
8 simple case, although any number of channels could be 
chosen as this implementation does not suffer from scalability 
problems. 

The state was defined as a 2-dimensional structure 

where the 1st dimension, tr t ,  represents the number of 
channels that a node is currently transmitting on at that time, 
0 < trt 5 C and, the 2nd dimension, i f t ,  represents the 
number of channels that an agent attempted to transmit on 
but were in use at that time, 0 2 i ft < trt. The number of 
interfering channels is based on the number of channels in 
use, either by other nodes or through interference that are 
within range of the node. Through sensing the environment, 
a binary 2 dimensional vector, i f t(c) is populated as per 
equation 2. 

1 if channel c at time t is in use. 
i f t ( s )  = { 0 otherwise (3) 

where Q = 1,2 ,  ..., C .  This vector is scanned at each 
iteration upon taking an action to move to the next state. As 
the network may be spread over a large area, and would not 
be a fully-connected network as a result of wireless 
restrictions on distance, a connectivity vector, V is used to 
store what cognitive nodes are within range. This is only 
needed for simulations as a real world implementation would 
Only be able to sense nodes within the wireless transceivers 
m&um distance. There are 3 possible actions that can be 
taken by an agent at a particular timestep: 

1 - do nothing. 
11- acquire a channel. 
In - drop a channel. 

Action I will not acquire or drop any channels, action I1 
will acquire a channel for transmission, and action will 
drop a channel that it already has in use. The channel that 
$ selected for drop or acquire is completely random in this 
Uplementation, but future work may allow an agent to learn 
which channels are good and which are bad. 

There.is m immediate reward or punishment received for 
%g action at while in state st. Although there are many 

posible ways in which to calculate a reward in such an 
instance, it is important to ensure that 'the agent doesn't 
act in a greedy manner, by acquiring as many channels as 
possible leaving other nodes in the network, or surrounding 
networks starved of bandwidth. The proposed function shown 
in equation 4 ensures that the number of active channels is 
proportionately greater than the number of intefering channels. 
The weighted interfering channels forces a punishment to 
any agent that acquires a hnigh proportion of channels in an 
environment where channel usage is high. 

r(st ,  at) = trt - (trt x i f t )  - 1 (4) 

This function ensures the channels are evenly distributed 
between all the nodes of the network, and also for other 
devices operating in the same environment. A simple example 
would be where an agent is transmitting on 2 channels and 
had also attempted to transmit and failed on another channel 
after action 1 or acquire channel was chosen, the state the 
agent would be in is s t (2, l ) .  So the reward calculated based 
on equation 4 is 

In this case, it is a small punishment that the agent receives 
for this state-action pair. It shows that because the agent is 
transmitting on 2 channels, but interfering on one of them 
channels, the reward is negative. 

As mentioned in the previous section, the policy by which 
the actions are chosen for Q-Learning is based on a particular 
strategy, and in this case a hybrid on &-Greedy known as the 
&-Decreasing strategy. The idea of this is, as explained in the 
previous section is to allow the agent to go through a period 
of random learning or exploration before exploiting what it 
has learned. 

Many of the simulations that we have carried out have used 
a value for & of 0.8. An example of how action selection 
occurs is as follows. In the first iteration of the algorithm, 
there is a 80% probability that a random action will be chosen 
(exploration) and a 20% probability that the best (or max Q 
value) action will be chosen (exploitation). As the algorithm 
progresses, this value decreases to allow the agent to slowly 
transform into an agent that selects the best action based on 
what it  has learned rather than randomly hopping through the 
state space, thus exploiting the information it has gathered. 
As & approaches zero, the agent should eventually converge 
on a stable, non-greedy state that uses an appropriate amount 
of channels without causing interference to other nodes in 
the environment. It then converges on a fured state where the 
agent is transfering over a fixed number of channels until the 
environment changes enough to warrent a re-learning. These 
changes could be due to other nodes leaving or joining the 
network or other outside interference. 

As this value reduces overtime and effectively controls 
whether the agent is in a learning mode or not, it should 
be possible to adjust this value during the running of the 
algorithm. There are numerous reasons why we would want 



to do this but the most important is that the electromagnetic 
spectrum is an ever changing environment, and as long as it 
is slow changing, the agent can re-enter the learning phase 
when the environment has changed enough as to make what 
it has learned redundent. This forces the agent to re-learn SO 

that it can effectively operate in the altered environment again. 
This can be an ongoing process where the agent goes in and 
out of a learning phase whenever some metric that measures 
environmental change reaches some threshold. The function 
used in decreasing & is the same as the one used in decreasing 
a ,  which is explained below. 

The convergence of a discrete algorithm to an optimal policy 
is vital for this algorithm, and Watkins and Dayan have proved 
that Q-Learning does converge [7] as long as a number of 
conditions hold. The learning rate, at, where 0 5 a 5 1 
decreases at each iteration. We looked at 2 ways of decreasing 
a t ,  the lkst being to simply decrease it by a fixed value each 
time as shown in Equation 6. 

at = at - (at + EstNumI) (6) 

where EstNumI is the estimated number of iterations 
needed for the algorithm to converge. Another method for 
decreasing a suggested by Watkins was to decrease it based 
on the number of times a particular state-action pair, a(s ,  a)  
is visited. , 

. . 

where n(s, a )  is the number of times that state action pair has 
been visited. This alpha value will give 1, ;, t ,  .. at each visit 
to a particular state-action pair. 

Eventually the algorithm needs to converge on a particular 
state which tells the agent the optimal amount of channels it 
can transmit on without causing interference. This is achieved 
by allowing the policy to continue choosing actions until action 
0, 'do nothing' is chosen for a fixed number of iterations, 

Fig. 2. CNode Network 

world environment where there may be other radio operating 
in the same environment. As we wanted to model this as 
accurately as we could, we used nodes that could only 
transmit on 1 channel and in some cases 2 to ensure that 
the algorithm, for each agent or node would converge on 
an optimal solution each time in different scenarios. The 
way in which interference was represented in the simulated 
environment was using a 2 dimensional vector. An example 
of one is shown in the table below. 

NO N1 N3 N2 
N O 0  1 1  0 
N 1 1 O O 1  
N 3 1 O O 1  
N 2 0  1 1  0 

Table I .  Sample inte~erence vector over all nodes where 0 
represents if two nodes are not in interferable range and 1 if 

they are in range. 
meaning that the algorithm has reached a stage where it will 

Each node, as mentioned above has an interference vector , stay in the same state forever. 
which holds details on which nodes are within range that codd 1 

Finally, the greatest advantage of using this particular 
cause interference upon acquiring a channel. The connecting 

implementation is the small amount of memory and 
lines in Figure 2 represent 2 nodes being within interfering ' 

computational requirements needed. The state-action space 
range. For example, node 0 is within interfering range of nodes 

would be considered substantially smaller than many other 
1 and 3. For the purpose of these simulations, this table was 

problems that use Q-Learning. In a 4 channel network there 
used for determining interferable nodes within the network. In 

is a maximum of 16 possible states, with 3 possible actions a real world case, each node would need to determine which 1 

making a total state-action memory space of 48. Assuming 
nodes are within range themselves. We implemented this in 

the use of floating point numbers, the memory space used 
Java, as this was the first authors main language. ~lthough 

storing these Q values is only 192 bytes. 1 
this sufficed, future work will include implementing this on a 1 
number of SDR's, which would require a C implementation. 

IV. RESULTS AND FINDINGS 

A. Simulation B. Results I 
This work was based on a simple 4-node network as shown The simulations carried out were mainly focused on dif- 

in figure 2 for simulation purposes. ferent rates and different decreasing factors for E ,  y and A. 
We simulated an environment where there was 4 channels We also looked at how the overall interference throughout he 

available for transmission, although the number of channels network reduced as the agents neared convergence. Finally, we 
could be altered for each individual node to simulate a real looked at using different forms of action selection strategies. 



1) Experiments and final states: As discussed above, for 
each independent node, it will eventually settle on a state 
which would hopefully maximise spectrum usage without 
causing any interference with other nodes. Simple 4-node 
experiments have shown that this is the case. A sample 
of some of the experiments is shown in Table 2 and have 
shown good results. In each case, the output shows that the 
algorithm has converged on an optimal solution that uses the 
maximum amount of channels possible for each node without 
causing interference. 

Node0 Node1 Node2 Node3 Output 
1 4  4 4 4 2,2,2,2 
2 4 1 4 4 2,1,2,2 
3 4 1 1 4 3,1,1,3 
4 4 4 1 1 2,2,1,1 
5 4 2 3 4 2,2,2,2 
6 4 1 4 1 2,1,2,1 

Table 2. Output of results of channel usage 

The values shown in Table 2 for each experiment represent 
the number of channels available for transmission for each 
node. The output is the number of channels the algorithm 
converged to for each node respectively. In each of these cases, 
the number of channels is the maximum amount possible 
without causing interference with other nodes. The channels 
have also been divided equally without any communication or 
passing of information. 

1subsubsection~-reduction The speed at which the algorithm 
converges on a solution depends alot on how 6 is reduced. The 
faster this value is reduced, the quicker the algorithm moves 
into the exploitation phase. Results have shown that the faster 
6 is reduced the less chance it has to explore the state-action 
space in full and thus usually results in the algorithm 
converging on a bad solution. Figure 3 shows sampled results 
of how the interference of a single node transitions during 
the course of the learning of the environment every 1000 
iterations. 

It can be seen that for a large amount of the iterations 

-0 1 MO 2000 3000 4000 5003 

lime 

Fig. 3. Single Cognitive Node Interference Pattern over the course of learning 
environment in a 4 node 4 channel network. 

interfering on, and although it converges much quicker than a 
higher EstNurnl, each node will not acquire a fair amount of 
channels, with the one below acquiring all 4 channels, causing 
interference on the network with some nodes, whilst causing 
other nodes to not acquire any. 

at the beginning of the algorithm, the node is interfering time 

on all four channels available, but as it begins to transition 
into the exploitation phase, this number digresses and Fig. 4. Single Cognitive Node Interference Pattern where the algorithm does 

not converge on a good solution. 
eventually does not interfere on any channel. It has been 
explained that one of the rates at which decreases is based 
On the function: 

et = et - (ct +- EstNurnI) (8) 

In the case above, a value of 100,000 has been set for 
E s t ~ u r n l ,  meaning that at each iteration, it will be decreased 

ct + EstNurnI. I f  EstNurnl is decreased substantially, 
fbus causing a faster decrease in E ,  the algorithm will act in a 
much more erratic manner and will fail to converge on a fair 
Solution. Figure 4 illustrates an example where EstNurnI 
is set to 15000. It shows how in comparison to Figure 3, 
the algorithm fails to reduce the number of channels it is 

Therefore the selection of EstNurnI, must be large enough 
to allow an agent to traverse the state-action space enough 
before reaching an exploitative phase. 

2)  6-Decreasing vs. €-Greedy: The action selection strategy 
which appeared to work best was €-Decreasing. Many of 
the experiments carried out using €-Greedy resulted in the 
algorithm taking much more iterations to converge. While in 
comparison to €-Decreasing, which converged very quickly as 
long as robust values were chosen for the different rates. E- 

Decreasing allowed for greater exploration at the beginning, 
and greater exploitation towards convergence. This suited the 
needs of the experiments as the goal was to find an optimal 



solution for channel allocation. 
3)  y-Selection: How much of the future rewards the al- 

gorithm takes into account during the exploration phase very 
much depends on the initial selection of the discount factor, 
y. It has already been shown that Q-learning will converge 
with a probability of 1, but what what it converges to may 
not be good for what the algorithm hopes to achieve. It has 
been noted that the smaller y is, the less the probability that 
the algorithm could converge on a good solution, and usually 
resulted in a number of the nodes acting in a greedy fashion 
while other nodes not being able to acquire any channels. A 
lower bound on the learning rate was discovered, and if it was 
set below this bound, these problems would occur. As long as 
y is greater than the lower bound specified in Equation 8, the 
algorithm will strive to find a long term goal as opposed to 
only focusing on current goals. 

It was also noted that any value over this threshold made 
very little difference in the both the number of the itera- 
tions needed to converge and the solution that the algorithm 
converged to. What is different between X and the other 
variables is that it is fixed. It does not decrease or increase 
throughout the course of the algorithm. This threshold is based 
on the fact that y is a discount factor for future awards. As 
this approaches zero, the less the algorithm considers future 
rewards of importance. This makes each individual agent work 
in a greedy fashion and only consider current rewards. 

4) a-Selection (initial): The learning rate, a as discussed 
earlier determines how much the algorithm takes into account 
what it learns at each iteration over what it has previously 
learned. In comparrison to other uses of Q-Learning, the 
importance of alpha is quite low. It has been noted, through 
multiple experiments, that as long as there is robust selection 
for E and y,  it does not matter what initial value is selected for 
a as long as it follows the basic criteria of being decreased 
appropriately through time (iterations) and in the range 
O < a < l .  

V. FUTURE WORK 

This research is still in the early stages, and current work is 
focusing on implementing such an algorithm on a number of 
Software Defined Radios (SDR) to develop a working example 
of how Q-Learning could be used in solving this problem. 
The Maynooth Adaptable Radio System (MARS) has been 
under development at NUT Maynooth's electronic engineering 
department since 2004 [8]. 

Current software demonstrations allow for transmission of 
images using the IRiS software architecture developed at 
the CTVR, Trinity College, Dublin and a large number of 
waveforms using a MARS demonstration application from 
a transmitter to a receiver. Implementing the Q-Learning 
algorithm on the MARS boards will give us a working example 
of a machine learning algorithm to this problem in a real world 
environment, although there are a number of challenges to 

Fig. 5. MARS Receiver and Transceiver Boards 

overcome first. Currently the transmitter and receiver boards 
run off separate machines, and since cognitive radios need 
to be fully duplex for both scanning and receiving, there is 
a need to have both boards running on the same machine. 
Current work will focus on determining if the kernel will be 
able to recognise both boards running concurrently. 

There are also a number of improvements to be made to 
the current algorithm. For example individual channels can be 
included so that agents will be able to differentiate between 
good channels and bad channels as opposed to whether a 
number of channels to use is good or not. This would vastly 
improve the performance of the algorithm in terms of avoiding 
interference. 

Although this is a completely independent learning algo- 
rithm with no co-operation with other nodes, it may be worth 
exploring what advantages some limited communication may 
have between nodes. One such example could be passing 
information about bad channels between nodes based on some 
threshold of the Q-Values. It has been mentioned that there 
is no communication between nodes, but in the real-time 
implementation, there may need to be a small low bandwidth 
control channel for communicating which channel a node is 
going to transmit on to another node. 

It may also be worth exploring how well a centralised 
approach would work using the Q-Learning algorithm by 
using a master-slave setup in a network. This would involve 
one fat node doing much of the computation and using a 
control channel to transmit channel usage information back 
and forth. 

VI. CONCLUSION 

In this paper, we have presented a simple RL technique 
for channel assignment in a network of independent cognitive 
nodes. This is achieved using a self-learning scheme based 
on a TD learning algorithm known as Q-Learning using a 2 
dimensional state in an unknown environment. Q-Learnings 
suitability to this is has been shown as it can take in unknown 
situations and act upon them using its own experiences. 

Simulations carried out on a 4 node network with 4 
channels have shown good results in fair non-greedy channel 
assignment, so much so as to pursue implementing this 



0, a number of Software Defined Radios in a real time 
environment with the future goal being to use this as a 
benchmark to measure other machine learning algorithms 
abilities to perform this task. 
The most significant advantage of this implementation is how 
small the memory, bandwidth and computational requirements 
are in comparison to many other cognitive radio channel 
assignment schemes. 
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