
Q-Learning for Cognitive Radios
Neil Hosey Susan Bergin Irene Macaluso Diarmuid 0' Donohue

Dept. of Computer Science Dept. of Computer Science, CTVR, Dept. of Computer Science,

NU1 Maynooth NU1 Maynooth, Trinity College, NU1 Maynooth,
Maynooth, Co. Kildare Maynooth, Co. Kildare Dublin 2 Maynooth, Co. Kildare

Email: nhosey @cs.nuim.ie

Abstract-Machine Learning approaches such as Reinforce-
ment Learning (RL) can be used to solve problems such as
spectrum sensing and channel allocation in the cognitive radio
domain. These approaches have been applied to other similiar
domains such as in mobile telephone networks and have shown

greater performance than the static channel allocation
schemes used.

The objective of this research is to use an RL technique
known as Q-Learning to provide a possible solution for allocating
channels in a wireless network containing independent cognitive
nodes. Q-Learning is an attractive algorithm for such a problem
because of the low computational demands per iteration. Many
or the current proposed techniques suggest using a negotiation
policy between two nodes to decide on which channel each may
use, however a considerable problem with this is the overhead
involved in the negotiation involved between the nodes. This
paper suggests an approach where each node acts as an individual
independant node, with virtually no collaboration with the other
nodes.

Results have shown that using such a technique gives fast
convergence on an optimal solution when correct rates are chosen.
It has also shown that the algorithm is very scalable, in that as the
network grows, the state-action space does not grow sufficiently
to cause major memory or computational demands.

Research in the area of cognitive radio (CR) has broadened
significantly in the past number of years since it was first
Presented by Mitola in 1999 [l]. It is now recognised as
being an essential replacement for the current regulation of the
elechomagnetic spectrum where vast bands of usable spectra

being underutilised. One such example of this was in the
USA where the Spectrum Policy Task Force [2] had found that
for a particular period on a police broadcasting channel, the

channel occupancy was less than 15% , while the peak
was nearly 85%. This has led to much research into

Ihe area of opportunistically accessing underutilised spectrum
where no primary user is currently active.

The goal of this research is to not focus on primary and
users in a frequency domain, but rather to allow

each Cognitive node to learn by its own mistakes. In this case,
Considers the environment to include all other cog-

nodes, and any other transmitters working on the same
" ~ e l s as being part of the environment. This will ensure
lo even distribution of channels not only for the cognitive
nodes, but also for any other type of wireless communication
device. It is hoped that future work will look at primary and

secondary users working in the same environment using a
Q-Learning approach. Much of the research in this area has
focused on cooperative sensing where nodes within a cognitive
radio network share information about the environment. There
are several levels on which this can happen [3], which at the
very least have a need for a control channel to pass information
between nodes. This alone can lead to massive overheads on
a network as the number of nodes and the amount of data
shared increases. The proposed solution to this is individual
sensing where each node is a single cognitive entity having
the ability to acquire information about the environment or
network without the help of other nodes in its vicinity.

This is achieved using a reinforcement learning algorithm
known as Q-Learning whereby the agent goes through a phase
of learning before it can converge on an optimal solution for
channel allocation. In this learning phase, the node makes
decisions on what channels to select pseudo-randomly, the
outcome of taking these actions will weigh strongly on what
decisions are made later on. Once a node has finished learning,
it can then make decisions on what it has learned. The ability
for a node to be able to preempt whether a channel is going to
be in use before accessing it allows it to optimise bandwidth
usage for itself and any other nodes that may be accessing the
same channel.

The rest of this paper is organised as follows. First, an
overview of reinforcement learning is presented, along with
an in-depth look at Q-Learning and how it is applicable to
this domain. Details on how Q-Learning has been applied in
channel selection in cognitive networks are provided. Results
and outcomes of simulations performed are then given,
followed by current and future work. Finally, conclusions
from this work and possible future work in this area are
provided.

A. Application of Reinforcement Learning

Reinforcement Learning is a machine learning technique
whereby an agent interacts with an environment in the hope of
achieving a goal. This interaction occurs on a continual basis
with the hope of the agent being able to learn to function
in an optimal fashion within that environment. The way in
which the agent interacts with the environment is through a
series of actions that can be performed. These actions can have

positive or negative outcomes which can, over time, be used
to determine how best to work in the current environment. At
each point in time, an agent can be in a particular state, with
the ability to choose an action based on what it has learned
in previous iterations.

The overall goal is to find an optimal policy that maps each
state to an action an agent should take in those states [S] .
Figure 1 shows how the agent interacts with the environment
and uses this to determine its next state.

Take Action
at

Fig. 1. Agent-Environment Relationship

To represent this formally, we assume the agent receives the
next state from the environment as shown in figure 1 at each
iteration of the algorithm, st E S , where S is the set of possible
states and t = 0 , 1 , 2 , . . . for each individual discrete timestep
or iteration. On receiving this state, an action is chosen, at E
A(s t) where A(s t) is the set of possible actions that can be
taken in state st. On taking this action, the agent observes
the result, and receives a reward rt+l where rt+l E 3. After
taking this action, the agent has now moved into a new state,
st+l. At each iteration of the algorithm, a policy is created
that maps the action taken, at to the state st and this policy is
denoted by r t (s t , at) . The way in which this mapping occurs
is dependent on each RL algorithm and is usually based on
one of a number of action selection strategies which will be
described in the next section.

B. Q Learning Algorithm

Q-Learning is an RL off-policy temporal-difference learning
algorithm introduced by Watkins in 1989. The algorithm works
by learning an action-value function that gives an expected
utility of taking an action in a particular state and following
that policy thereafter [6]. The environment in which the agents
exist can be modelled as a Markov Decision Process. The
agent-environment shown in Figure 1 consists of a number of
steps:

Agent examines state xt E X
Action at E A is taken based on xt
A transition occurs as a result of action at being taken,

and a new state xt + 1 is taken into account. A reward is
generated based on this transition, rt.

The reward, rt , that is returned is then stored or learned
for that state action pair, and the above process is repeated.

The goal of repeating this process is for the agent to find
an optimal policy r* E iTT for each state xt E X in a
recursive manner. The fact that the Q-Learning algorithm cao
converge on T* without having any prior knowledge of the
environment makes it very suitable for cognitive radio channel
selection because of the unpredicability of other nodes and the
electromagnetic spectrum.

The algorithm can be described as a simple value iteration
update as shown below:

Q (% , at) +- &(st , at) + at) x [rt

+r x max,Q(st+l, a) - Q(st , at)] (1)

where cr(st, a t) is the learning rate where 0 < cr 5 1 and
which represents to what extent newly acquired information
will be taken into account. A learning rate of 1 will mean
that only the most recent rewards will be taken into account
whereas a learning rate of 0 will mean the agent will learn
nothing, and any current reward will be discarded. The
discount factor, y, 0 < y < 1, decides how important future
rewards are for the agent. Another thing that makes the
Q-Learning algorithm suitable for this type of problem is r

because it has been shown [7] that Q-Learning will converge '

with a probability of 1 as long as each state action pair is
visited infinately as the learning rate approaches zero. The
way in which the Q function in Equation 1 is implemented
can be shown in the pseudocode:

For each episode, while s is not terminal
Sense environment and state s
For each iteration:

Choose a from s using certain policy
Take action a, observe output, r , st+l
Update Q value for state-action pair (eqn. 1)
S St+1

Loop I

Loop i ,
I

The electromagnetic spectrum environment that the agent
is working in is very unpredictable, making it suitable to use
an off-policy RL algorithm such as Q-Learning so as to allow
a period of random exploration before following the target
policy of the agent. The policy used in selecting which action
to take is dependent on the type of policy used. The simplest
example is to select the action with the greatest reward for
that state, although this may not always lead to an optimal
solution as it would lead to a totally greedy policy that would
not explore parts of the state space that would not appear to
be advantageous but could lead to an optimal solution in the
future.

&-Greedy is an example of a strategy that overcomes this
problem. It does so by only selecting the best action I-& of
the time and another action is chosen randomly selected for
the remainder of the time, E. The value of E is in the range
0 < E 5 1. The higher the value, the more random exploration

occur. A similiar strategy known as &-decreasing strategy
is what is used in this experiment. The main difference
beween this and &-Greedy is that E decreases over a period
of time so that the agent goes through a period of random

or learning before becoming totally exploitative.

111. ALGORITHM IMPLEMENTATION

TO explain how Q-Learning was used for this problem, an
of how each state, action, and reward is structured

is provided. First, the available spectrum was broken up into a
m b e r of channels which could be used for communication.
The number of channels available, C, that was used in this
experiment was 4, but can change depending on available
spectrum. This amount of channels was chosen to provide
8 simple case, although any number of channels could be
chosen as this implementation does not suffer from scalability
problems.

The state was defined as a 2-dimensional structure

where the 1st dimension, tr t , represents the number of
channels that a node is currently transmitting on at that time,
0 < trt 5 C and, the 2nd dimension, i f t , represents the
number of channels that an agent attempted to transmit on
but were in use at that time, 0 2 i ft < trt. The number of
interfering channels is based on the number of channels in
use, either by other nodes or through interference that are
within range of the node. Through sensing the environment,
a binary 2 dimensional vector, i f t(c) is populated as per
equation 2.

1 if channel c at time t is in use.
i f t (s) = { 0 otherwise (3)

where Q = 1,2 , ..., C . This vector is scanned at each
iteration upon taking an action to move to the next state. As
the network may be spread over a large area, and would not
be a fully-connected network as a result of wireless
restrictions on distance, a connectivity vector, V is used to
store what cognitive nodes are within range. This is only
needed for simulations as a real world implementation would
Only be able to sense nodes within the wireless transceivers
m&um distance. There are 3 possible actions that can be
taken by an agent at a particular timestep:

1 - do nothing.
11- acquire a channel.
In - drop a channel.

Action I will not acquire or drop any channels, action I1
will acquire a channel for transmission, and action will
drop a channel that it already has in use. The channel that
$ selected for drop or acquire is completely random in this
Uplementation, but future work may allow an agent to learn
which channels are good and which are bad.

There.is m immediate reward or punishment received for
%g action at while in state st. Although there are many

posible ways in which to calculate a reward in such an
instance, it is important to ensure that 'the agent doesn't
act in a greedy manner, by acquiring as many channels as
possible leaving other nodes in the network, or surrounding
networks starved of bandwidth. The proposed function shown
in equation 4 ensures that the number of active channels is
proportionately greater than the number of intefering channels.
The weighted interfering channels forces a punishment to
any agent that acquires a hnigh proportion of channels in an
environment where channel usage is high.

r(st , at) = trt - (trt x i f t) - 1 (4)

This function ensures the channels are evenly distributed
between all the nodes of the network, and also for other
devices operating in the same environment. A simple example
would be where an agent is transmitting on 2 channels and
had also attempted to transmit and failed on another channel
after action 1 or acquire channel was chosen, the state the
agent would be in is s t (2, l) . So the reward calculated based
on equation 4 is

In this case, it is a small punishment that the agent receives
for this state-action pair. It shows that because the agent is
transmitting on 2 channels, but interfering on one of them
channels, the reward is negative.

As mentioned in the previous section, the policy by which
the actions are chosen for Q-Learning is based on a particular
strategy, and in this case a hybrid on &-Greedy known as the
&-Decreasing strategy. The idea of this is, as explained in the
previous section is to allow the agent to go through a period
of random learning or exploration before exploiting what it
has learned.

Many of the simulations that we have carried out have used
a value for & of 0.8. An example of how action selection
occurs is as follows. In the first iteration of the algorithm,
there is a 80% probability that a random action will be chosen
(exploration) and a 20% probability that the best (or max Q
value) action will be chosen (exploitation). As the algorithm
progresses, this value decreases to allow the agent to slowly
transform into an agent that selects the best action based on
what it has learned rather than randomly hopping through the
state space, thus exploiting the information it has gathered.
As & approaches zero, the agent should eventually converge
on a stable, non-greedy state that uses an appropriate amount
of channels without causing interference to other nodes in
the environment. It then converges on a fured state where the
agent is transfering over a fixed number of channels until the
environment changes enough to warrent a re-learning. These
changes could be due to other nodes leaving or joining the
network or other outside interference.

As this value reduces overtime and effectively controls
whether the agent is in a learning mode or not, it should
be possible to adjust this value during the running of the
algorithm. There are numerous reasons why we would want

to do this but the most important is that the electromagnetic
spectrum is an ever changing environment, and as long as it
is slow changing, the agent can re-enter the learning phase
when the environment has changed enough as to make what
it has learned redundent. This forces the agent to re-learn SO

that it can effectively operate in the altered environment again.
This can be an ongoing process where the agent goes in and
out of a learning phase whenever some metric that measures
environmental change reaches some threshold. The function
used in decreasing & is the same as the one used in decreasing
a , which is explained below.

The convergence of a discrete algorithm to an optimal policy
is vital for this algorithm, and Watkins and Dayan have proved
that Q-Learning does converge [7] as long as a number of
conditions hold. The learning rate, at, where 0 5 a 5 1
decreases at each iteration. We looked at 2 ways of decreasing
a t , the lkst being to simply decrease it by a fixed value each
time as shown in Equation 6.

at = at - (at + EstNumI) (6)

where EstNumI is the estimated number of iterations
needed for the algorithm to converge. Another method for
decreasing a suggested by Watkins was to decrease it based
on the number of times a particular state-action pair, a(s , a)
is visited. ,

. .

where n(s, a) is the number of times that state action pair has
been visited. This alpha value will give 1, ;, t , .. at each visit
to a particular state-action pair.

Eventually the algorithm needs to converge on a particular
state which tells the agent the optimal amount of channels it
can transmit on without causing interference. This is achieved
by allowing the policy to continue choosing actions until action
0, 'do nothing' is chosen for a fixed number of iterations,

Fig. 2. CNode Network

world environment where there may be other radio operating
in the same environment. As we wanted to model this as
accurately as we could, we used nodes that could only
transmit on 1 channel and in some cases 2 to ensure that
the algorithm, for each agent or node would converge on
an optimal solution each time in different scenarios. The
way in which interference was represented in the simulated
environment was using a 2 dimensional vector. An example
of one is shown in the table below.

NO N1 N3 N2
N O 0 1 1 0
N 1 1 O O 1
N 3 1 O O 1
N 2 0 1 1 0

Table I . Sample inte~erence vector over all nodes where 0
represents if two nodes are not in interferable range and 1 if

they are in range.
meaning that the algorithm has reached a stage where it will

Each node, as mentioned above has an interference vector , stay in the same state forever.
which holds details on which nodes are within range that codd 1

Finally, the greatest advantage of using this particular
cause interference upon acquiring a channel. The connecting

implementation is the small amount of memory and
lines in Figure 2 represent 2 nodes being within interfering '

computational requirements needed. The state-action space
range. For example, node 0 is within interfering range of nodes

would be considered substantially smaller than many other
1 and 3. For the purpose of these simulations, this table was

problems that use Q-Learning. In a 4 channel network there
used for determining interferable nodes within the network. In

is a maximum of 16 possible states, with 3 possible actions a real world case, each node would need to determine which 1

making a total state-action memory space of 48. Assuming
nodes are within range themselves. We implemented this in

the use of floating point numbers, the memory space used
Java, as this was the first authors main language. ~lthough

storing these Q values is only 192 bytes. 1
this sufficed, future work will include implementing this on a 1
number of SDR's, which would require a C implementation.

IV. RESULTS AND FINDINGS

A. Simulation B. Results I
This work was based on a simple 4-node network as shown The simulations carried out were mainly focused on dif-

in figure 2 for simulation purposes. ferent rates and different decreasing factors for E , y and A.
We simulated an environment where there was 4 channels We also looked at how the overall interference throughout he

available for transmission, although the number of channels network reduced as the agents neared convergence. Finally, we
could be altered for each individual node to simulate a real looked at using different forms of action selection strategies.

1) Experiments and final states: As discussed above, for
each independent node, it will eventually settle on a state
which would hopefully maximise spectrum usage without
causing any interference with other nodes. Simple 4-node
experiments have shown that this is the case. A sample
of some of the experiments is shown in Table 2 and have
shown good results. In each case, the output shows that the
algorithm has converged on an optimal solution that uses the
maximum amount of channels possible for each node without
causing interference.

Node0 Node1 Node2 Node3 Output
1 4 4 4 4 2,2,2,2
2 4 1 4 4 2,1,2,2
3 4 1 1 4 3,1,1,3
4 4 4 1 1 2,2,1,1
5 4 2 3 4 2,2,2,2
6 4 1 4 1 2,1,2,1

Table 2. Output of results of channel usage

The values shown in Table 2 for each experiment represent
the number of channels available for transmission for each
node. The output is the number of channels the algorithm
converged to for each node respectively. In each of these cases,
the number of channels is the maximum amount possible
without causing interference with other nodes. The channels
have also been divided equally without any communication or
passing of information.

1subsubsection~-reduction The speed at which the algorithm
converges on a solution depends alot on how 6 is reduced. The
faster this value is reduced, the quicker the algorithm moves
into the exploitation phase. Results have shown that the faster
6 is reduced the less chance it has to explore the state-action
space in full and thus usually results in the algorithm
converging on a bad solution. Figure 3 shows sampled results
of how the interference of a single node transitions during
the course of the learning of the environment every 1000
iterations.

It can be seen that for a large amount of the iterations

-0 1 MO 2000 3000 4000 5003

lime

Fig. 3. Single Cognitive Node Interference Pattern over the course of learning
environment in a 4 node 4 channel network.

interfering on, and although it converges much quicker than a
higher EstNurnl, each node will not acquire a fair amount of
channels, with the one below acquiring all 4 channels, causing
interference on the network with some nodes, whilst causing
other nodes to not acquire any.

at the beginning of the algorithm, the node is interfering time

on all four channels available, but as it begins to transition
into the exploitation phase, this number digresses and Fig. 4. Single Cognitive Node Interference Pattern where the algorithm does

not converge on a good solution.
eventually does not interfere on any channel. It has been
explained that one of the rates at which decreases is based
On the function:

et = et - (ct +- EstNurnI) (8)

In the case above, a value of 100,000 has been set for
E s t ~ u r n l , meaning that at each iteration, it will be decreased

ct + EstNurnI. I f EstNurnl is decreased substantially,
fbus causing a faster decrease in E , the algorithm will act in a
much more erratic manner and will fail to converge on a fair
Solution. Figure 4 illustrates an example where EstNurnI
is set to 15000. It shows how in comparison to Figure 3,
the algorithm fails to reduce the number of channels it is

Therefore the selection of EstNurnI, must be large enough
to allow an agent to traverse the state-action space enough
before reaching an exploitative phase.

2) 6-Decreasing vs. €-Greedy: The action selection strategy
which appeared to work best was €-Decreasing. Many of
the experiments carried out using €-Greedy resulted in the
algorithm taking much more iterations to converge. While in
comparison to €-Decreasing, which converged very quickly as
long as robust values were chosen for the different rates. E-

Decreasing allowed for greater exploration at the beginning,
and greater exploitation towards convergence. This suited the
needs of the experiments as the goal was to find an optimal

solution for channel allocation.
3) y-Selection: How much of the future rewards the al-

gorithm takes into account during the exploration phase very
much depends on the initial selection of the discount factor,
y. It has already been shown that Q-learning will converge
with a probability of 1, but what what it converges to may
not be good for what the algorithm hopes to achieve. It has
been noted that the smaller y is, the less the probability that
the algorithm could converge on a good solution, and usually
resulted in a number of the nodes acting in a greedy fashion
while other nodes not being able to acquire any channels. A
lower bound on the learning rate was discovered, and if it was
set below this bound, these problems would occur. As long as
y is greater than the lower bound specified in Equation 8, the
algorithm will strive to find a long term goal as opposed to
only focusing on current goals.

It was also noted that any value over this threshold made
very little difference in the both the number of the itera-
tions needed to converge and the solution that the algorithm
converged to. What is different between X and the other
variables is that it is fixed. It does not decrease or increase
throughout the course of the algorithm. This threshold is based
on the fact that y is a discount factor for future awards. As
this approaches zero, the less the algorithm considers future
rewards of importance. This makes each individual agent work
in a greedy fashion and only consider current rewards.

4) a-Selection (initial): The learning rate, a as discussed
earlier determines how much the algorithm takes into account
what it learns at each iteration over what it has previously
learned. In comparrison to other uses of Q-Learning, the
importance of alpha is quite low. It has been noted, through
multiple experiments, that as long as there is robust selection
for E and y, it does not matter what initial value is selected for
a as long as it follows the basic criteria of being decreased
appropriately through time (iterations) and in the range
O < a < l .

V. FUTURE WORK

This research is still in the early stages, and current work is
focusing on implementing such an algorithm on a number of
Software Defined Radios (SDR) to develop a working example
of how Q-Learning could be used in solving this problem.
The Maynooth Adaptable Radio System (MARS) has been
under development at NUT Maynooth's electronic engineering
department since 2004 [8].

Current software demonstrations allow for transmission of
images using the IRiS software architecture developed at
the CTVR, Trinity College, Dublin and a large number of
waveforms using a MARS demonstration application from
a transmitter to a receiver. Implementing the Q-Learning
algorithm on the MARS boards will give us a working example
of a machine learning algorithm to this problem in a real world
environment, although there are a number of challenges to

Fig. 5. MARS Receiver and Transceiver Boards

overcome first. Currently the transmitter and receiver boards
run off separate machines, and since cognitive radios need
to be fully duplex for both scanning and receiving, there is
a need to have both boards running on the same machine.
Current work will focus on determining if the kernel will be
able to recognise both boards running concurrently.

There are also a number of improvements to be made to
the current algorithm. For example individual channels can be
included so that agents will be able to differentiate between
good channels and bad channels as opposed to whether a
number of channels to use is good or not. This would vastly
improve the performance of the algorithm in terms of avoiding
interference.

Although this is a completely independent learning algo-
rithm with no co-operation with other nodes, it may be worth
exploring what advantages some limited communication may
have between nodes. One such example could be passing
information about bad channels between nodes based on some
threshold of the Q-Values. It has been mentioned that there
is no communication between nodes, but in the real-time
implementation, there may need to be a small low bandwidth
control channel for communicating which channel a node is
going to transmit on to another node.

It may also be worth exploring how well a centralised
approach would work using the Q-Learning algorithm by
using a master-slave setup in a network. This would involve
one fat node doing much of the computation and using a
control channel to transmit channel usage information back
and forth.

VI. CONCLUSION

In this paper, we have presented a simple RL technique
for channel assignment in a network of independent cognitive
nodes. This is achieved using a self-learning scheme based
on a TD learning algorithm known as Q-Learning using a 2
dimensional state in an unknown environment. Q-Learnings
suitability to this is has been shown as it can take in unknown
situations and act upon them using its own experiences.

Simulations carried out on a 4 node network with 4
channels have shown good results in fair non-greedy channel
assignment, so much so as to pursue implementing this

0, a number of Software Defined Radios in a real time
environment with the future goal being to use this as a
benchmark to measure other machine learning algorithms
abilities to perform this task.
The most significant advantage of this implementation is how
small the memory, bandwidth and computational requirements
are in comparison to many other cognitive radio channel
assignment schemes.

VII. ACKNOWLEDGEMENTS

This work has been carried out with the support of
Science Foundation Ireland (SFI) through the Centre for
~elecommunication Value Chain Research (CTVR) and the
Institute of Microelectronics and Wireless Systems at the
National University of Ireland, Maynooth.

[I] J. Mitola and G. Q. Maguire, Cognitive Radio:Making Sojiwure Radios
More Personal, IEEE Personal Communcatioos 1999

(21 FCC Spectrum Policy Task Force Report, ET Docket No. 02 - 135,
2002.

(31 S. M. Mishra, A. Sahai and R. W. Brodersen, Cooperative Sensing among
Cognitive Radios, In Proc. of the IEEE International Conference on
Comrnunication(ICC), pp. 1658 - 1663, 2006.

1141 N. Lilith and K Dogancy, Dynamic Channel Allocation for Mobile
Cellular Trafic using Reduced-State Reinforcement Learning, WCNC
2004 pp. 2195-2200.

[5] L. Kaelbling, M. L. Littman and A. W. Moore, Reinforcement Learning:
A Suwey, Journal of Artificial Intelligence Research 4-237-285, 1996.

[6] C. J. Watkins, Learning from Delayed Rcwardr, Pb.D Thesis, Cam-
bridge, 1989.

171 C. J. Watkins, Q Learning, Machine Learning , Volume 8 pp279-292,
1992.

[81 R Fauell Sojiware-Dejned Radio Demonstrators: An Example and
F m r e Trend, Centre for Telecommunications Value Chain Research,
Institute of Microelectronics and Wireless Systems, National University
of Ireland Maynooth, Maynooth, Co. Kildare, Ireland

