ESTIMATES FOR OPERATOR NORMS ON WEIGHTED SPACES
AND REVERSE JENSEN INEQUALITIES

STEPHEN M. BUCKLEY

ABSTRACT. We examine the dependence on the A, norm of w of the operator norms
of singular integrals, maximal functions, and other operators in LP(w). We also
examine connections between some fairly general reverse Jensen inequalities and the
Ap and RH), weight conditions.

1. INTRODUCTION

A question of considerable interest in harmonic analysis is, “What types of
weights w have the property that T is bounded on LP(w)?”, where 1 < p < oo,
and T is an operator which is bounded on the (unweighted) space LP (typically
T is the Hardy-Littlewood maximal operator, singular integral operators, or vari-
ous related operators of interest in harmonic analysis). This type of question has
been answered to a large extent by the work of Muckenhoupt, Hunt, Wheeden,
Coifman, C. Fefferman, and others. In particular, it is known that Muckenhoupt’s
A, condition is a necessary and sufficient condition for boundedness in the case
of the Hardy-Littlewood maximal operator or singular integral operators (see [15],
[13], and [4]). However, the dependence of the resulting operator norms on the
“badness” of the A, weight has never been adequately examined. We carry out
this investigation in section 2, where we also give a new proof of the boundedness
of the Hardy-Littlewood maximal operator on LP(w), for w € A,.

A, and RH, conditions are particular types of “reverse Jensen” inequalities
which hold uniformly for all cubes. In section 3, we examine more general reverse
Jensen inequalities (which hold uniformly for all cubes) with respect to some dou-
bling measure ¢ on R™, and show how they are related to the usual A,(dy) and
RH,(dp) conditions. Let us now introduce some notation and give some basic
definitions.

For any set S C R"™, |S] is the Lebesgue measure of S. We will use the term
“weight” to refer to any non-negative locally integrable function which is not every-

1
where zero. For any measure p, we write ][ gdpy = ——— / gdp (if p is Lebesgue
s s

1(S)
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measure, we write gg = ][g. If w is a weight, we will write w(S) = [gw. By

a “cube” in R", we will mfean an n-fold product of intervals of equal length (i.e.
every face of the cube is perpendicular to a coordinate axis). If @ is a cube, rQ will
denote the cube concentric with ) whose sidelength is 7 times that of @ (the “r-fold
dilate” of Q). w will always denote a weight on R™ and p is a real number in the
range (1,00), unless otherwise stated. For any positive quantities X,Y, “X ~ Y”
will mean “1/C < X/Y < C”, where C is independent of the weight w (but may
depend on n, p, and the operator 7). For any exponent p, p’ denotes the dual

exponent p/(p — 1).

Definition. A singular integral operator is a principal value convolution operator
T:f— K=xfin R"”, where the real-valued kernel K satisfies the following size
and cancellation conditions:

1K || < C
C
K (z)] < —=
||
Cly| 7]
K(z) - K(z —y)| < f Ladly
|K(z) (z—y)| < ot O yl <5

T* denotes the associated maximal singular integral operator which is defined by

T f(z) = sup |(K.XRo\B(0,e)) * [(2)]-

Definition. If p is a positive measure on R™, we say w is an A,(dp) weight (we
write w € Ap(dp)) if there is some K > 0 such that for all cubes @@ € R”,

<]{2wdp,> (]{Bw—l/(f’—l) dp,>p_1 < K. (1.1)

We say w is an A (dp) weight if, for all cubes @ € R™,

][ wdp < K ess inf w(zx). (1.2)
Q weQ

The smallest K for which (1.1) (or (1.2)) is true is referred to as the A,(dp)-
norm of w and will be denoted K, ., (resp. K, 1,,) or simply K,, ,. We also write
o in place of w=/(P=1) and refer to o as the dual weight of w. It is easy to see that
w € Ap(dp) if and only if 0 € A, (dp) and that Ky pryy = K{l’,”;;h. It is also clear
that w € Ay(dp) if and only if M, w < Kw (M, indicates the Hardy-Littlewood
maximal operator with respect to the measure p).
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Definition. We say w is an Ao (dp) weight if, for all cubes @, and all E C Q, we

have
v(E) wE)\*
@ =°¢ (u(Q)) (13)

for some C, e > 0, where dv = w dpu.

<

Until section 3, we are interested only in y = Lebesgue measure, and so we
suppress references to p (i.e. we write 4,, K,,, etc.). Weights of the form w, (z) =
|z|", the so-called power weights, provide the most basic examples of A, weights;
in fact w, € A,(R") if and only if —n < r < n(p —1). We have the following more
precise estimates (the proof is straightforward and so we omit it).

1
Lemma 1.4. If0 < 0 < 1, then u(z) = |v| "9 € A, and K, ~ 5 for any
1
. — n(p—1)(1-4
p > 1; also, v(z) = |z|"P~D0=9) ¢ Ap and K, ~ ST

It is easy to prove that the dual space of L?(w) is L¥ (). In addition, we have
the following useful lemma, whose easy proof we also omit.

Lemma 1.5. If a singular integral operator T  is bounded on LP(w) and on LP (o)
for some 1 < p < oo, then the two associated operator norms of T are equal.

2. BOUNDS FOR OPERATOR NORMS

In this section, C' will denote a generic positive constant independent of every-
thing, except possibly the dimension n, exponent p, and operator T. Also, for any
weights given as examples, § will denote a positive quantity which tends to 0.

We now look at several important operators which are bounded on LP(w) spaces
iff w € Ay, and examine how the resulting operator norms depend on K, the
Ap-norm of w. Our first main goal will be to do this for the Hardy-Littlewood
maximal operator. We give a new proof of boundedness which gives a best possible
dependence estimate. First of all, we need a few preparatory lemmas.

Lemma 2.1 [4]. If w € A, then w € A,_., where € ~ K&,,_pp’, and Ky p—e <
CKyp.

The next lemma, due to Besicovitch [1], is commonly referred to as the Besicov-
itch covering lemma. A proof of it can be found in [11, pp. 2-5]. Note that (ii) and
(iii) just say that the sequence of cubes can be distributed into a bounded number
of disjoint families.



a olrnkIN M., bUUKLIKY

Lemma 2.2. Suppose that A C R"™ is bounded and that for each v € A, Q, is a
cube centered at x. Then we can choose, from among {Qy : © € A}, a (possibly
finite) sequence {Q;} and an associated sequence of integers {m;} such that

7
(ii)) 1 <m; < N,,, where N,, depends only on n.
(i) Qs and Q; are disjoint if m; = m;.

We say an operator is of weak-type p, with respect to the measure p, if

C“f”LP(du))p

(07

W({Tf > ) < (

The smallest such C is referred to as weak-type LP(du)-norm of T. We can now
state a precise version of the Marcinkiewicz interpolation theorem with respect to
a positive measure p (the statement of this result given here, for p being Lebesgue
measure, is a special case of the result as proved by Zygmund [18]).

Lemma 2.3. Suppose 1 < pg < p1 < oo and that T is a sublinear operator of weak-
type po and p1, with respect to the measure pu, with norms Ry and Ry respectively,
then T is actually bounded on LP(du) for all p9 < p < p1. In fact, for any
0<t<l,

1T f | e (apy < CeRy ™" REN| f1l Loe (ape)

1 1—-1 t 2Pt
where — = +—andC’ft:—( LS — >
bt Po P bt \P1—DPt Pt —DPo

We shall only need to apply this lemma where py and p; are in some fixed
interval [1,S], £ = 1/2 and Ry, Ry < R. In this case, writing p = py /5, we simply

get the inequality

CR
NT fllze(ap) < m”f“Lp(du)

where C' depends only on S.

Lemma 2.4. If f € LP(w) and fg, > a > 0 for each of the disjoint cubes {Qy},

then »
Zw(Qk) S Kw <||f||f%> .

k

Proof. We can assume that f(z) > 0 and that [|f||zr) = 1, without loss of
generality. Now,

w(Qr)
<@y e
‘Xk: a|Qk| ¢ L?' (o) H
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1 1/p’
w(Qr)?
< (2}; WU(QIJ)
1/p'

KI/P’
< g . A ,
<= Zw(Qk) , since o € A,

k

and so,

KPP K
> w(@Qk) < =—-. 0O

aP aP
k

Using lemma 2.4, our first main theorem is now easy to state and prove.

Theorem 2.5. If w € A, then ||Mf||ip(w) < C’Kg||f||ﬁp(w). The power KP? s
best possible.

Proof. First, we show that for 1 < p < o0,

w{Mf > a}) < CKu([[fllLe(w)/@)?- (2.6)

Without loss of generality, we assume that f(x) > 0 and that [|f||zr@w) = 1. Sup-
pose that M f(z) > a > 0 so that fo, > o for some cube @, centered at z. Let

r =z :|z] <r,Mf(x) > a}. The Besicovich covering lemma tells us that A,
can be covered by the union of N,, collections of disjoint cubes, on each of which
the mean value of f is at least a. Choose the collection {Q}, whose union has
maximal w-measure. Thus, w(A,) < Nyw (U, Qx) < CKy/aoP, by lemma 2.4.
Letting r — oo, we get (2.6).

Suppose now that p > 1. By lemma 2.1, w is also an A,_. weight with com-
parable norm, where ¢ ~ K} pp and, trivially, w is an A,;. weight, with norm no
larger than K, . Applymg the Marcinkiewicz interpolation theorem to the cor-
responding weak-type results at p — € and p + €, we get the strong-type result we
require with the indicated bound for the operator norm.

To see that the power K, 5,' is best possible, we give an example for R (a similar
example works in R™ for any n). Let w(z) = |z|®~D(1=%) 5o that K, ~ 1/6P~!

by lemma 1.4. Now, f(z) = |z|7*°X[g 1] € LP(w). It is easy to see that M f > /

)
and so, |Mf||’£p(w)/||f||§p(w) >Co P ~KL. O

Remark 2.7. The proof of Coifman and Fefferman [4], will also give the best
possible exponent K? P , when the proof is examined closely, but some other proofs
of the boundedness of M, e.g. [14], will not do so. The dependence in the weak-
(p,p) inequality (2.6) was found and shown to be best possible by Muckenhoupt
[15].
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Remark 2.8. It is easy to prove, using (2.6), that if w € A, for some ¢ < p, then
||Mf||IL’p(w) < CKyy f||1£p(w), where C' = C), , now depends on ¢ as well as p (and

Cp.q gets very large when ¢ is very close to p).

Theorem 2.5 neatly sews up the dependence for the Hardy-Littlewood maximal
operator. The dependence for singular integral operators is not at all as easy to
handle and, in fact, we shall not be able to find the best power of K,,. The best
we can do is as follows, which actually takes care of the maximal singular integral
operator T™.

Theorem 2.9. If w € Ay, then |T*f|[}, ., < CKE*2|f[7,,
of K., in this inequality must lie in the interval [max(p,p’),p’ + p].

) The best power

Proof. The proof of the boundedness of T* on LP(w) for w € A, given in [4] will
give the required exponent, as long as we sharpen one of the inequalities used,
namely the good-\ inequality

Hz e Q:T"f>2a,Mf <ya}| < Cv|Q|,

which holds for any cube @ in the Whitney decomposition of {T*f > a}. We
replace it by the sharp good-A inequality

{z € Q:T"f > 20, Mf < ya}| < Ce™7|Q), (2.10)

for such cubes, which is proven in lemma 2.13 below.

To see that the dependence is best possible, we give examples on R (similar
examples can be found in R™ for n > 1). Choose w(x) = |z|®~D(1=%) and f(z) =
2| 71X 11, so that [ fPw =1/§. For « > 2, H f(z) ~ 1/6z and so

|V~ 15 5

Since 0P ~ K{l’,’ the best power must be at least p’. Since the operator norm for
T : LP(w) — LP(w) can be at least CKJ, /P the operator norm for T : L¥ (o) —

L? (o) is also at least CKL/P = CK,. Thus, the best power in our estimate must
be at least max(p,p’) (an explicit example is provided by f(x) = x‘SX[O,l] (z) and
T = H; it is easy to show that ||H f||1r(w,—1,0)) > CKuwllfllLrw). O

We must now prove the sharp good-A inequality (2.10). The proof is a modifi-
cation, using standard good-A techniques, of Hunt’s main result in [12] which deals
with the conjugate function on the unit circle. First we state an elementary lemma
which is needed.
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Lemma 2.11. Suppose f € L*>°(Q) and that T is an operator for which

(o To(a) > o] < (M)

(07

for all g € LP and sufficiently large p and o, C' being a constant independent of p.
Then,

{z: Tf(w) > a}| < Ce” = Q).

Proof. 1t suffices to prove this result for large «, since the result is trivial otherwise.
Let K = ||f|lco- Since f € L>®(Q), f € LP(Q) for all 1 < p < oo and ||f]|, <
IQ|YPK, and so

o s 7i(@) > b < (L) < i) ()

o
Letting p = we get the required result. [

eK’

Remark 2.12. If T is the maximal operator, a singular integral operator, or a
maximal singular integral operator, then it satisfies the condition of the above
lemma (see [16, p. 48]).

Lemma 2.13. Let Q =|JQ; be the Whitney covering of {T*f > a}. Then

{z€Q; : T*f(z) > 2a, Mf(x) < ya}| < Ce7|Q].

Proof. We can clearly assume that M f(z9) < o for some zy € Q;, and that v

is small. We write f = f1 + f2, where f1 = flOOQja and fg = fRn\lOOQj. By
standard estimation (as in the proof of theorem III in [4]), we get that, for z € @Q;,

3
T*fo(z) < a+ Cya < ;, if v is small enough.

To handle f;, we first let Q' = J Py be the Whitney decomposition of {M f; >
2"ya}, where n is the dimension. Note that ||fi|| < (101)"ya|Q;|, and so €' C

200Q;. Let
o {0 e
(fi)p,, =€ Py

and b = f; —g. Then g is supported in 200Q;, ||g9]|cc < Cya and so, by lemma
2.11,

* o —c
{r €Q; T > T} < Cem/1|Qy].

As for b, let us define Q" = [ J2P. Since ka b =0, we have, for z ¢ Q"

<Z/ DIK (@ —t) — Kz — t)],
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where tj is the centre of P,. It follows that

Ok
Tb(z) < / b() < _ ) it
3 A e
Ok
< Cya — = CvyalA(x
Xk: 5k+1 + (tk _ x)n+1 ( )

where ¢y, is the diameter of P.

Carleson’s [2] exponential estimate of A tells us that
c —c
{r € Q: Alw) > ) < Ce 1Q51,

and so, since M f(z) > ya if z € Q"
He € Q; : T*b(z) > a/4, M f(x) < ya}| < Ce_c/7|Qj|.

This, together with our estimates for fy and g, is easily seen to imply the desired
result. [J

Let us now examine K,-dependence of operator norms for a particular class
of weights, namely power weights. In the case of the Hardy-Littlewood maximal
operator on power weighted spaces, we can clearly do no better than theorem 2.5
(or remark 2.8 for negative power weights, which are in A;), since all our examples
so far have involved power weights. However, in contrast to the case of general
A, weights, we can also give a best possible dependence result for singular integral
operators.

Theorem 2.14. If T is a singular integral operator on R"and 0 < § < 1, then

0) w({T*f > ) < S [ iflw, i w(a) = faf 0,
(ii) [|T*f[Pw < CKL, [ [f|Pw, if w(z) = |z|7(=9).
(i) [ 17" flow < CKE [|fPPw,  if w(z) = o005,

The exponents in (i)-(iii) are best possible.

Proof. We first prove (i). By normalization, we can assume that ||f[/z1,) = 1.
We write A; = {z € R™ : 27 < |z] < 27}, f; = fX4,, fi1 = [X{jz|<2i+2}, and
fj,? = f — fj,l- Clearly,

oo

w({T*f > a}) = Z w({T*f > a} N Ay)

2

IN
(]
£
-
g
Sk
Vv
Q
~
[N}
——
D)
G
Il
02!
|45}
9
<
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Now,

Sp< Y 27UEOUTH ) > a2} N A
Jj=—00

> 9—jn(1-9)
<C Z _ / \fial ] by the unweighted theory

, o
j=—00

:%vz 9—jn(1-9) Z /|fk|

Jj=—00 k<j+1

k=—o0 j>k—1

C & C
<& T g-nka-) / <<
<= k:Z_oo Ful <

As for S3, we note first that,

. o = —kn(1—0)
1_/|f|w—§k:/Ak fozc 3 2 /Ak|f|
- knd
>C >y 2 ]{1 |£]

k=—oc0

and so, if z € A; then

T*fio(r) < Y T fr@) <C| Y /A /()]

_ n
E>j4+1 E>j4+1 |~y

<c| > ]ék|f|

k>j+1
< 02790,
. —1
But if 2790 > cq, then j < % = jo. It follows that
n

2n6j0

1 K,
ad a

Sy < / || =070 dip ~
|z <270

We next prove (iii). Here w(z) = |z|®~D1=9_ We define A; as before, but now
we define f;1 = fX{jz|<2-1}, and fj2 = f — fj1. Now, as in the S; case of (i),

<0y 2D / fis

j=—00

p
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_c Z / el | 3 2me-na-o

k=—o00 ]<k+1
<c Z g (p—1)(1- 6)/|f|
k=—o00

§0/|f|”w-

As for the other terms, it is easy to see that if x € A; then T* f; 1 < CMf; 1 <
CM f(x). Now using theorem 2.5, we get

Z / T fi1[Pw < C’/ M f|Pw < CKP /|f|Pw
j=—00
Part (iii) now follows readily from the estimates of the last two paragraphs.

We next prove (ii). To see this, let w(z) = |z|*®-1D(1=9)_ By (iii), we have

1T fll 2oy < CKEP|| £l o (),

and so by lemma 1.5,
17 Fll 1 (o) < CREP1 £,

But Kﬁ,’é,p = K,y and o(z) = |z|~"(=% giving us our required result on L? (o).

We are left with giving examples to show that the exponents in (i)-(iii) are best

possible. In (i), we let f = X[y o), T = H, the Hilbert transform, and o = 1/3.
1

1
Then |H f(z)| > 1/2 for € [0,1] and / 2|10 de = 5™ K,,. In (ii) and (iii),
0
the examples given in the proof of theorem 2.9 suffice. [

We now turn our attention to the Marcinkiewicz integral operator Jq, associated
with an open set Q of finite measure, which is defined for all f : Q@ — [0, 00) by the

equation
5(y)
0= [ 10 s g

where §(y) = dist(y, Q2¢). This is the version of the Marcinkiewicz integral operator
used by Carleson in [2]. Jgq is an important tool for controlling singular integral op-
erators (see [16]). The following result summarizes the dependence of the resulting
operator norm on the A, norm of w.

Theorem 2.15. If 1 < p < oo, then Jq is bounded on LP(w) uniformly for all
open § of finite measure if and only if w € A,. Furthermore, ||Jof||rewrr) <
CKuyl fllLr(w,0)- The dependence on K, is best possible.

To prove theorem 2.15, we first need the following lemma.
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Lemma 2.16. For any functions f,g > 0,
| treng<c [ p
n Q

Proof. By Fubini’s theorem,

/n(JQf da:—/ fly (/ ST i(g—mn“ dx) dy.

Letting Ay = {u € R"™ : 2%§(y) < |u|] < 2*T15(y)} and making the change of
variable u = x — y, we get

g(x) / y+u ) du / g(y + u) du
dr <
/n S(y)"tt +lz — g™t T Ju<ow) S o(y)ntt Z Ay, fur

< CMg) <1+Z2 )

CMg(y)
oy

<
The required result now follows easily.

Proof of theorem 2.15. Suppose Jq is bounded on LP(w) uniformly for all open € of
finite measure. Fix a cube ), and let 2 = 2(). Then, for any non-negative function
f supported on Q, Jogf(z) ~ fo forall x € Q. If p > 1, let f = Xow~1/P~1),
Because Jaq is bounded on LP(w), it follows that

p
</ w) <][ w—l/(p—1)> SC/ w1/ =1
Q Q Q

which clearly implies w € A,,.

For the case p =1, let f = Xg for an arbitrary measurable subset S of (). The
boundedness of Jyg on LP(w) now implies that

If we take S = {z € Q : w(z) < a} for any a > a¢ = ess infg w, and then let
a — ag, we get wg < Cay, i.e. w € A;.

In proving the converse, we may assume, without loss of generality, that f is
supported on © and that ||f||zr(w) = 1. The case p = 1 follows by letting g = w in
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lemma 2.16, so we assume 1 < p < oo. If g is a function for which ||g|| ;) =1,
then lemma 2.16 tells us that,

[ wng<c [ rug |
e (fra) " (o) "

< CKPT = CKy,p

The required boundedness follows by duality. To see that this dependence is best
possible, we let w(z) = |z|7', f(z) = 2°X}gqj(z), and Q@ = (0,1). Now for
0 < x <1, it is clear that

1t 5—1 _(1_5'36)
JQf(_$)>§/my dy_T

and so,

1

1
||Jf||Lp(w ~1,0]) ~ 2P

0
—146 _ “HADO =
| Gl = o =

whereas ||f||’£p(w) =1/(p+1)d. Since K, ~ 1/4, it follows that |[.J f||z» /|| fl|r(w) >
CK,, as required. [

Remark 2.17. Our three operator dependence results

IM A2y < CRE 1)
IT A2y < CEE £
VT2 0y < ORI )

tie together well intuitively because, if f is a function of bounded support B then,
roughly speaking, J f can be as “nasty” as T'f near B, but tends to be smaller than
it far from B, whereas M f can control T'f far away from B, but not near B.

By way of contrast with the K,,-dependence of the above operators let us finish

|Q| where @

is some cube. Ty is of course dominated by the maximal operator, which proves
that for any w € A,, Ty is bounded on LP(w) (at least for 1 < p < oo0) with
norm-dependence on w of the form Kﬁ,’. Intuitively, however, Ty is so “close” to
the identity operator that we expect to be able to get a better exponent than p’.
The following lemma shows that this is indeed the case (simple examples show it
is best possible).

by looking at simple averaging operators of the form T (f) = f *
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Lemma 2.18. If1 < p < oo, Ty is bounded on LP(w) uniformly for all cubes Q
if and only if w € A,. Furthermore, for any cube Q) centered at 0, ||TQf||I£p(w) <

CKwaHip@,)

Proof. We may assume, without loss of generality, that f > 0. This allows us to
also assume () is centered at 0, since otherwise we can bound Tq f by a constant
(dependent on @) times Ty f where @’ is the smallest cube centered at 0 containing

Q.

Divide R"™ into the unique mesh M of cubes of equal sidelength and disjoint
interiors for which @Q € M. Suppose first that f is supported in some Q9 € M and
so Tq f is supported in 3Qo. If p > 1 then by Holder’s inequality,

/ <|Q| f) : @/SQO </<Q+m)mczo fPy)w(y) dy) o(Qo)? w(z) da

as required. In the case p = 1, we simply estimate

G Lo (L o) ueras < & ([ ) ([ wi) ressinto
<o ([ 1v).

For a general function f, we simply decompose f = >  fX¢, and we get the
ceM
required result because of the limited amount of overlap among the supports of the

X
functions {|6Q| x (fXe)cem- O

3. REVERSE JENSEN INEQUALITIES

In this section, we examine some rather general reverse Jensen inequalities and
show their connection to the conditions A,(dp) and RHy(dp). The RH,(dp) condi-
tion (defined below) was first examined by Gehring [10] (in the case u = Lebesgue
measure), and it was Coifman and C. Fefferman [4] who first showed the close re-
lation between RH, and A, conditions (they showed that a weight is in some A4,
space if and only if it is in some RH, space, but there is no possible relationship
between p and q).

Since then, the RH, condition has become important in its own right in the
theory of elliptic operators on Lipschitz spaces. Dahlberg [5] showed that the
Dirichlet problem for such operators is solvable with LP boundary values if and
only if harmonic measure is in RH,(do), where do is surface measure. For further
results in this direction, see [6], [7] and [8].
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We say a positive measure p is a doubling measure, p € D, if 4(2Q) < Cu(Q)
for all cubes ). We say w is a doubling weight if w dz is a doubling measure. If Q)
is a cube we denote by 1(Q) the sidelength of Q. We define log’ = = log(2 + =).

Definition. If p € D and 1 < p < 0o, we say that w is a RH,(dp) weight if

( [ i) ek f v 51)

for all cubes ). The smallest such K is referred to as the RH,(dp)-norm of w.

Condition (3.1) is often called a “reverse Holder inequality”, because it is
Holder’s inequality with the direction of the inequality reversed (Holder’s inequal-
ity is of course true with K = 1). More generally, if ||.|[1,¢o and ||.||2,¢ are norms
for functions defined on an arbitrary cube (), and Jensen’s inequality implies that
1fll1,0 < Cil|fll2,Q, then we refer to the condition ||w||2,9 < Cal|w]||1,@ as a reverse
Jensen inequality (we will only be interested in such inequalities when they hold
uniformly for all cubes Q).

If 41 and po are positive doubling measures, we say that pq is comparable to
p1(E) pa(E)

(@) p2(Q)
E C @, and every cube Q. Let us now state a result taken directly from [4], which

is very useful for our purposes.

o if there exist a, § € (0, 1) such that

< (8 whenever < «a for every

Lemma 3.2. If p; and ps are positive doubling measures, the following are equi-
valent

(i) There exists C,6 > 0 such that for every E C Q C R",

p2(E) w(E)\°
(@) =© (m(Q))

(ii) pe is comparable to ;.
(iii) w1 is comparable to ps.
(iv) dus = w(x)dpi(x) and for every cube Q,

e
<][ w'to d,u1> SC’][ wdty.
Q Q

Lemma 3.2 allows us to prove the following lemma, which generalizes to A, (du)
and RH,(dpu), results which are well-known for ;1 = Lebesgue measure. For the rest
of the section, y is an arbitrary but fixed doubling measure on R", and dv = w dp.
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Lemma 3.3. If w € Ay (du) then v € D. Furthermore,

A(dp) = | RHy(dp)= |J Aqdp).
1<p<oo 1<g<oo

Proof. If we prove that v € D, the rest of the lemma follows fairly easily from
lemma 3.2 (alternatively, it is implied by theorem 15 in chapter 1 of Stréomberg and
Torchinsky [17]), so we shall confine ourselves to proving that v € D.

First note that the condition g € D is equivalent to assuming there is some
C71 > 0 for which

w@Q') < Cru(Q) (3.4)

for all cubes @@, Q" which are adjacent and of equal size.

We will now show, roughly speaking, that a very thin slice from a side of a cube
has very small y-measure compared with the full cube. For simplicity, we will prove
this for the cube Qo = {z : |z;| < 1} and the slice Sc = {x : |z;| < 1,21 > 1 — €}.

We divide @y into 2™ cubes of sidelength 1, half of which are in the slice S;.
Applying the estimate (3.4) to each subcube in S; and its adjacent subcube in

Qo\S1, gives us the inequality p(S7) < 1(Qop). This process can be continued

Cy
C1+1
1(Sy—+) (to see this, simply divide Sy into 2kn+n—k

Ch
Ci+ e
cubes of sidelength 2~ (k+1), half of which are in Sy—(x+1), and half in Sy—x\Sy—(k+1) ).

C k+1
Thus p(Sy-r) < ( - 1) 4(Qo), and so

to give M(SQ—(k—Q—l))

p(Se)/m@) =0 (e—0). (3-5)

Clearly, the above argument will work equally well if we let Q¢ be an arbitrary
HQ)

and, in fact, the convergence in (3.5) is
€

cube and S, be a slice of thickness

uniform for all such cubes and slices.

We are now ready to show that v € D. Given a cube g, let us write Q).
(1 + €)Qp for any € > 0. Since one can get Qo from Q. by removing 2n slices of
thickness €l(Q), it follows that

M(QE\QO)
1(Qe)

uniformly for all cubes Qp. Using the fact that v € Ay (du) we conclude that

(Q(C;%O) <3 for some sufficiently small € > 0. Thus v(Q.) < 2r(Qp) which we
Ve

can iterate to get the doubling condition v(Q1) < 2Fv(Qy) for any k > log;,.(2). O

—0 (e = 0)
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Given exponents 0 < ¢ < p < 00, it is natural to consider the more general
reverse Holder’s inequality,

(é w? du> ok (é ' du> v (3.6)

Let us denote by RH,, ,(dp) the class of weights satisfying (3.6) for all cubes Q. In
fact we have not introduced anything new: if p > 1 then RH, ,(dp) = RH,(dp)
for any 0 < ¢ < p. This follows as a special case of the “self-improving” nature of
these weights: if w € RH, 4(dp), then w € RH), ,(dp) for any 0 < r < ¢. To see
this, we use both reverse and normal Holder inequalities to get

(fran) " < (f o)

q—r b—ag

(o) (f )

which clearly implies that w € RH) . (dp).

It is reasonable to extend the definition of RH,(du) so that it is defined for all
p > 0 by the equation RH,(du) = RH, 4(du) for any ¢ < p. The next lemma,
which links RH,(dp) with Ay (dp), is now easy to prove (this lemma is also to be
found in Stromberg and Torchinsky[17]).

Lemma 3.7. If 0 < p < oo, then w € RHy(dp) if and only if w? € Ay (du).

Proof. If wP € A (dp) then, by lemma 3.3, w? € RH,(dp) for some ¢ > 1. Thus
w € RH,o(dp) C RH,(dp).

For the converse, we may assume p = 1. If w € RH;(dp) then, for any 0 < ¢ < 1,
w? € RHy/4(dp) and so w? € Ap(dp) for some 1 < p < oo by lemma 3.3. It follows
that

() () <o (o) () <

The inequality between the first and last terms is essentially the defining inequality
for w € Ap-114(dp), and so w € Axo(dp). O
q

Remark 3.8. We showed at the beginning of this proof that if w € RH,(du), then
w € RHyy(dp) for some € > 0. This analog for RH), of lemma 2.1 was first proved
by Gehring [10] in the case u = Lebesgue measure.

The following lemma gives a couple of useful alternative characterizations of
Ao (dp) (the first of which is a reverse Jensen inequality). Part (i), for p = Lebesgue
measure, is due to Garcia-Cuerva and Rubio de Francia [9], and part (ii) is due to
Coifman and C. Fefferman [4].
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Lemma 3.9. FEach of the following is equivalent to w € A (dp).

(i) For all cubes @,
][ wdp < Cexp <][ logwdu> .
Q Q

(ii) There are constants o and (3 such that for all cubes Q,

p{r e @ : w(z) > pr(Q)/m@)}) > an(@Q). (3.10)

Proof. We prove only (i), as the easy proof of (ii) for Lebesgue measure in [4] can
be readily modified to handle the more general case. To prove (i), suppose that
w € Aoo(dp). Then

—1/e
][wdu§0<][ w_edu> < Cexp <][ logwdp,>
Q Q Q

where the first inequality is because w € A,(dp) for some 1 < ¢, and the second

inequality is by Jensen’s lemma (since log z= Ve is convex).

Conversely, if (i) is satisfied, then we can apply Jensen’s inequality with respect
to the convex function e*/2 to get

2
][wd,ugCexp (][ logwdu> §C’<][ wl/zd,u>
Q Q Q

which implies w € Ao (dp). O

We shall now examine more general reverse Jensen inequalities, but first we need
to introduce some notation. Let F' be the class of continuous increasing functions
mapping [0, 00) onto itself. If ¢ € F, we define

oz = 10> 0 f o (L) aute) <1y

if it exists. If ¢ is convex, this is the usual Orlicz norm with respect to (Q-normalized
Lebesgue measure. In other cases, this “norm” can still be defined but it does not
satisfy the triangle inequality.

If g1, o € F, o] ! is convex, and ¢3(22)/da(x) > 14 €5, then it follows from
Jensen’s inequality that, for all cubes Q, || fll¢, (zo)(an) < Cllfllgs(Lo)(dn)s C being a
constant that depends only on ¢s0¢7 (1) and €, (the €, condition is unnecessary if
¢20¢p7 (1) > 1). We are interested in the connection between conditions involving
Ap(dp) or RHp(dpe) and inequalities of reverse Jensen type which hold uniformly
for all cubes, i.e. inequalities of the form

||w||¢>2(LQ)(d,u) S CO||w||¢>1(LQ)(d,u) for all cubes Q, (3.11)
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where w is some weight, Cj is some constant and ¢y o ¢7 " is convex (or satisfies
some related condition). For example, if ¢o(z) = 22, and ¢1(z) = z, then (3.11) is
the defining condition for w € RHy(dpu).

We are mainly interested in functions which “grow like powers of x” (as op-
posed to exponentially, or logarithmically, or other such growth), so we will make
assumptions such as ¢;(2z) < C;di(x) or ¢;(2x) > (1 + €;)¢p;(z) whenever they are
useful for our purposes.

If there is some ¢ > 0 for which
b1(x) > Pa(cx) for all z > 0, (3.12)
then (3.11) is trivially true, so we confine our interest to the case where
b1(x)/pa(cx) =0 (z — 00) for all ¢ > 0. (3.13)

This is not a very restrictive assumption because, if ¢o o ¢51_1 is convex and if
(14 €2)pa(x) < ¢2(22) < Cappa(z) (in which case (3.13) can be written simply as
¢1(x)/p2(x) — 0 (x — 00)), it is easily seen that (3.13) is true whenever (3.12)
is false. Interestingly, (3.13) makes superfluous the assumption that ¢y o ¢7" is
convex. In fact, our first result is the following.

Proposition 3.14. If ¢y is convex, and (3.13) and (3.11) are both satisfied, then
w € Ax(dp).

Proof. Suppose that w ¢ Ao (dp). Let us fix 0 < € < 1/4 and let m be so large

¢1(z) -1 (M .
that ———=— < € whenever = > — }. Then, by lemma 3.9, there is a cube
#2(/Co) 1 o () y
@ for which u(S) > (1 — E)'M(Q)’ where
b1 (1/2)
S={zeQ :wk) < =—"—=1 wdnu}.
by 1(1) Q
Letting w = $, we see that ][ wdp < ¢71(1) by Jensen’s lemma.
[wllg1 (2g) e Q

Thus, ifx € S, ¢1(w(z)) < 1/2 and so fQ\S ¢prow > 1/2. Since u(Q\S) < p(Q)/m,
it follows that

R 1
f¢wwW2—
I 4

where L = {z € Q : ¢1(w(x)) > 7}. From our definition of m, we get

w 1
— — 1.
]2@ <00> dp > 1 >

This contradicts (3.11), and so w € A (dp), as required. [
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As an example of this proposition, the case ¢1(z) = z, ¢2(x) = zlog™ z, p =
Lebesgue measure, is to be found in [7]. Proposition 3.14 says that weaker condi-
tions, such as that given by ¢1(z) = z, ¢2(x) = zlog™ logt x are also sufficient to
guarantee © € Ay (dp).

Ideally, we would like to generalize lemma 3.7 by eliminating the hypothesis that
¢1 is convex from the above theorem and proving that, assuming (3.13), ¢go 0w €
Aso(dp) if and only if (3.11) holds. Unfortunately, this is not true. For example,
let p = Lebesgue measure, w(z) = min(1, 2~ ?), ¢1(z) = z/? and

10~
o) = { z, T >

10922, z < 10710

1
Then (3.11) is true, but ¢o(w(x)) behaves like — for large x, and so it is not an A,
x

function.

Upon reflection, this counterexample reveals why we cannot prove such a result.
If ¢(x) is very small for z < xg, the exact values of ¢(z) for z < xo have very little
effect on the ¢(Lg)-norm of a function, whereas the A, (du) condition is very much
dependent on the relative size of the weight at different points, but independent
of the average value of the weight in the interval. Also, whatever result we can
get should reflect the invariance of reverse Jensen inequalities (involving a weight
w) under the transformations w — bw (b > 0) and the invariance of the condition
¢ ow € Ax(dp) under the transformations ¢ — r¢ (r > 0). The next theorem
is fairly close to the result we want; it has the advantage of being true, but the
disadvantage of involving a whole family of reverse Holder inequalities, and thus
being a more difficult condition to verify.

Theorem 3.15. If ¢1,¢2 € F, ¢1(x)/x — 0 (xr — 00), and (1 + €2)pa(z) <
$2(2z) < Cogo(x), then the following are equivalent:

(1) 1wy (zo)@n) < Collwll(giotres))(Lo)du), for all 7 >0, and all cubes Q.
(ii) ¢2(bw) € Ay for every b > 0.

Proof. Suppose (i) is true, but, for some fixed b > 0, wy = ¢2(bw) ¢ Ax(dp). We
may assume Cp > 1 without loss of generality. Let us fix ¢ > 0 and choose m so

large that ¢1_(x) < € whenever z > ¢ * (%)
x

1
Since we ¢ Ao, there is a cube @ for which u(S) > (1 — —)u(Q), where
m

S={zxeQ : wg(x)gw]éwgdu}

and K = C’;OgZ’ (©0)F1 We choose r so that fQ b1(rwe) dp = p(Q). It follows from

our hypotheses that fQ rwa dp < Kp(Q) and so, for all z € S, ¢1(rwa(z)) < 1/2.
Arguing as in proposition 3.14, we get

][ rwy dp > 1/4e,
Q
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which is a contradiction for ¢ < 1/4K.

Conversely, if (ii) is true, we show that (i) is true for fixed but arbitrary r > 0.
Since (ii) is true for all b > 0, we can assume ||w|| (4, 0r¢s)(Lo)(du) = 1, Without loss
of generality . But now, by lemma 3.9, we get that

p{z € Q = rha(w(z)) > Brez ocw)q}) > ap(@Q)

1
for some « and (. It follows that ][ roo(w) dp < B¢f1(2/a) because, if this were
Q

not so, then

p{z € Q : dr(rge(w(z))) > 2/a}) > an(Q),

which contradicts the assumption [|w||g,orgs(Lo)(@n) = 1. It now follows from the
“1 + e2” rate of growth assumption on ¢ that ||wl|,¢, (L)) is bounded, as re-
quired. [

In the case ¢2(z) = z, the parameters r and b in theorem 3.15 become super-
fluous, and so we get the following corollary.

Corollary 3.16. If¢1 € F, ¢p1(z)/z — 0 (x — o0) thenw € A, <= ||w||Lé2(du) <
Collwllg,(z.o)(am)-

Let us now look at a class of inequalities that generalize the definitions of A, (du)
and RHy(dp). We will replace the function z — 2P by a whole class of similar func-
tions, and associate a “norm” with each of these functions. We then define a partial
ordering on these functions which has the property that if one function precedes
another, its associated norm dominates the other; furthermore, for a particular
weight w, there is a reverse inequality between these norms of w holding uniformly
for all cubes if and only if a particular power of w is in A,(dp) for a particular p
(1 <p<o0)

We first define the class of functions Gy C F. If ¢ € F' then ¢ € GG if there are
constants a, € > 0 for which:

(a) az < §(z),

(b) ¢(z)/z" — 0 (z — o0) for all > 1,

(c) ¢(2z) = (1 + €)¢().
For example, the functions z +— z(log™ )", and z +— z(log™ log™ x)" are in G for
any r > 0. We then define

Gp={x—¢(f) : oGy}, for all p # 0

Go = {log}
¢ =JG,
PER

If ¢ € G,, then ¢ has domain [0, 00) if p > 0, and ¢ has domain (0, 00) if p < 0.
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Suppose ¢ € Gp. If p # 0, and so ¢(z) = ¢1(a?) for some ¢; € Gy, we define

|lwllg(Lo) () to mean prH;{I()LQ)(du)v where the latter norm is previously defined

because ¢ € F. If ¢ € F, then this definition of an ¢-norm is consistent with the
previous definition. We define ||wl|iog .,,(ap) in the obvious way, namely

||w||logLQ(d,u,) = exp <][ logwdu> .
Q

We also define a partial ordering < on G. Let ¢; € G, for ¢ = 1,2. Then

(i) For p1,p2 >0, ¢1 < ¢ whenever Z;;g
x

T $2
F <0 < h
(ii) For py,po ,  ¢1 < ¢2 whenever (@)

-0 (x— 0).

-0 (x—0).

(iii) For p1 <0 < p2, ¢1 <log < ¢s.

In particular, it follows from the above and properties (a) and (b) of Gy that if
p1 < p2 then ¢ < ¢o. Also, z — zP is a minimal element in G, for all p > 0 and
a maximal element in G, for all p < 0. The next lemma shows that this partial
ordering is indeed very natural for our purposes.

Lemma 3.17. If ¢1,¢p2 € G and ¢p1 < ¢ps then

lwllgs (2o)(dw) < Cllwllgs(ra)(dm-

Proof. Suppose ¢; € G, fori =1,2. If p; > 0, then ¢y, ¢ € F, and so the ¢;-norm
is as defined for ¢ € F. Now, since ¢y < ¢o, it follows that ¢q(z) < Ceo(z) for

all z > ¢7'(1/2). Letting @ = Y and L= {r e Q: p1(w) > 1/2}, it
0llgs 2.0)(am)

][¢2 du>—][¢1 du_;c

Since property (c) of G clearly extends to G, for all p > 0, the desired conclusion
follows easily.

follows that

If p» < 0, we can reduce to the first case by letting ¢;(z) = ¢;(1/x), because
(bl € G—pu QSZ < ¢17 and

[wllg:(£o)(any = I1/w “¢>(LQ)(du)

If p =0 (so ¢1 = log), then we can choose p such that 0 < p < po, and it
follows from Jensen’s inequality, and the previously handled “0 < p; < p2” case,

that
[wlhog(L o)) < llwller,aw < Cllwllpy o) -
We can reduce the case po = 0 to the case p; = 0 by taking reciprocal functions

i (x), as before. Finally, the case p; < 0 < po follows by combining the last two
cases. [l

We are now ready to state and prove the main theorem which classifies all
“reverse Jensen” inequalities involving functions in G.
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Theorem 3.18. Suppose ¢; € G, fori=1,2, and ¢1 < ¢2. Then, the inequality

||w||¢2(LQ)(du) < C||w||¢1(LQ)(dM) for all cubes Q (3.19)

1S equivalent to
(i) wP? € Ax(dp), if p1 > 0 (equivalently, w € RHp, (dp)).
P1 — P2
b1 )
(iii) wPr € Aoo(dp), if p2 <0 (equivalently, w=' € RH_,, (du)).

(il) wP? € A,(dp), if p2 > 0 > p1 (where r =

Proof. Let us first prove (i). It is sufficient to prove it in the case ps = 1, because of
the way we defined |lwl|4(zo)(au) for ¢ € Gy for p # 0. Suppose w satisfies (3.19).
If p; < 1, then by property (a) of G; we see that

lwllzy, < Cllwllg, zg)aw) < Cllwllg, o)

and so property (b) of G and corollary 3.16 together imply that w € A (dp), as
required. If p; = 1, then we can argue as in proposition 3.14 that w € A, (in
proposition 3.14, we assumed ¢ is convex, but we only used convexity to prove

~ . w
that w < C, where & =

—————  a fact that follows easily from property
Q ||w||¢1(LQ)(dp,)
(a) of Gy).

Conversely, if w € As(dp), then w € RHp(dp) for some p > 1, and so by
lemmas 3.9 and 3.17,

[wllg, (o) (amy < Cllwliey, < Cllwlhogze) @ < Cllwllpy o) an
as required.
Next, we prove (ii). If (3.19) is true then, by property (a) of Gy,
[wll 222 (auy < Cllwllgs Loy < Cllwllp, ey < Cllwllze @)

and the inequality between the first and last norms implies that wP? € A, (du),

P11 —

where r = P2 " Conversely, if w? € A, (dp), then wP2t¢ € A,.(du), and so
p1

(du)

lwllgs(zoyany < Cllwllprate gy < Cllwll piaszs < Clliwllp o) -
Q

Finally, (iii) follows from (i) by taking reciprocal functions ¢;, as in the proof of
lemma 3.17. 0O
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