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Abstract 
 
  

The main topic of this thesis is the quasi-optical analysis of optical systems 

for experiments used to measure the polarisation anisotropies of the cosmic 

microwave background.  The polarisation signal is so low and difficult to measure 

that very accurate modelling and a deep understanding and characterisation of the 

instruments used to make such measurements is essential.     

 

The two instruments investigated in this thesis are the Millimetre-Wave 

Bolometric Interferometer (MBI) and the Q and U Bolometric Interferometer for 

Cosmology (QUBIC), both of which are collaborations between institutes in Europe 

and the United States.  A prototype of MBI called MBI-4 has already been built and 

has been used for experimental observations.  The main aim of this prototype has 

been to prove the concept of bolometric interferometry for measurements of the 

CMB.  In this thesis the optical combiner of MBI-4 is designed and modelled in 

detail, taking into account mechanical tolerances and truncations effects, amongst 

others.  The QUBIC instrument is currently in the design stage, having evolved from 

both MBI-4 and BRAIN, an experiment located in Antarctica as a test for a more 

elaborate instrument.  The optical design of QUBIC is also analysed, including a 

physical optics analysis of lenses, although not in the same detail as MBI-4.    

 

A number of techniques are used in this analysis, including Gaussian beam 

modes and physical optics, to allow for a complete model of the optical systems to 

be obtained.  As part of this modelling, a mode-matching technique is applied to 

predict the beam patterns of horn antennas.   In this thesis, the technique is extended 

to include a transition from rectangular to circular waveguide geometries as such a 

junction occurs in the MBI back-to-back horns. 

 

The results obtained in this thesis give a useful insight into the power and 

usefulness of various optical design and analysis techniques as well as criteria for the 

successful design of current and future interferometry experiments. 
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Chapter 1 

 

Introduction 
 

1.1 Introduction 

 

In this Chapter we look at an overview of the electromagnetic spectrum and 

in particular the astronomy carried out by observing in the THz region.  This is 

followed by an introduction to the Big Bang theory and the cosmic microwave 

background radiation that remained after this event occurred.   

 

The cosmic microwave background is of such significance in cosmology that 

its discovery has led to extensive efforts to measure it as accurately as possible using 

a series of ground-based, balloon borne and satellite experiments.  Here we outline 

these experiments, and in particular introduce the Millimetre-Wave Bolometric 

Interferometer (MBI) and the Q U Bolometric Interferometer for Cosmology 

(QUBIC).  The astronomy carried out at THz frequencies is examined with a 

particular emphasis on the cosmic microwave background and the advantages and 

disadvantages of both interferometers and imaging systems for such measurements 

are discussed. 

 

This thesis investigates the operation of bolometric interferometers, MBI and 

QUBIC, which will be used to measure the polarisation of the cosmic microwave 

background.  With this in mind we look at both interference and polarisation of 

electromagnetic radiation with a particular focus on the Stokes parameters.  Finally, 

a summary of the remainder of the thesis is given.  We start by taking a brief look at 

the electromagnetic spectrum.  

 

1.2 The Electromagnetic Spectrum     
 

1.2.1 Overview of the Electromagnetic Spectrum 

 

Astronomical objects emit radiation in all parts of the spectrum (Table 1.1), 

however, the Earth‟s atmosphere limits what we can actually detect.  Ultraviolet and 
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shorter wavelengths are blocked whereas visible light can pass through.  The 

atmosphere is also transparent to some infrared wavelengths and radio waves, giving 

rise to two main transmission windows. 

 

Until relatively recently, astronomers could only observe and gather 

information in the visible part of the electromagnetic spectrum due to the lack of 

detector technology.  In the middle of the 20
th

 century the radio part of the spectrum 

opened up thanks to advancements in radar technology that had taken place during 

World War II.  In more recent times developments in detector technology, in 

particular at THz frequencies, has provided an opportunity for astronomers and 

scientists to explore new areas of astronomy.  

 

The Electromagnetic Spectrum 

Region Wavelength Frequency (Hz) 

Radio >1mm <3x10
11

 

Infrared 700nm – 1mm 3x10
11

 – 4.3x10
14

 

Visible 400nm – 700nm 4.3x10
14

 – 7.5x10
14

 

Ultraviolet 10nm – 400nm 7.5x10
14

 – 3x10
16

 

X-ray 0.1nm – 10nm 3x10
16

 – 3x10
18

 

Gamma-ray <0.1nm >3x10
18

 

Table 1.1 The different regions of the electromagnetic spectrum and their corresponding wavelengths 

and frequencies. 

 

1.2.2 Terahertz Radiation and Astronomy 

 

In 1932, Karl Jansky detected radio emissions from our own galaxy, the 

Milky Way (Verschuur and Kellermann, 1988).  This new phenomenon of observing 

non-visible radiation from space created a new branch of astronomy.  Previously 

unseen objects in the universe could now be observed.  In the last few decades the 

techniques of radio astronomy have been vastly improved and the wavelengths that 

can be detected have been getting shorter, something that is technically more 

difficult.  At the same time in optical astronomy the observable wavelengths have 
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been getting longer, extending well into the infrared.  It is only in the past twenty 

years however, that astronomers have focused on the area between these 

wavelengths, the submillimetre region, and it is now possible to observe these 

wavelengths as well.  This region of the electromagnetic spectrum (Figure 1.1) is 

referred to as the far infrared, the submillimetre or the terahertz region. 

 

 

Figure 1.1 The electromagnetic spectrum illustrating waves of different wavelength and frequency. 

 

This part of the spectrum, corresponding to the frequency range 0.1–10 THz, 

was one of the last electromagnetic wavebands to be exploited, hence the other 

name, “THz gap”.  Until recently, the availability of sources and detectors for 

radiation in this particular range of frequencies was very limited.  Significant 

progress has been achieved in the last decade, for the most part driven by the 

potential applications of THz radiation (often now referred to as T-rays) in medical 

imaging and security.  THz frequencies have always been important in the fields of 

atmospheric physics and astronomy. 

 

THz or submillimetre-wave astronomy is, as its name implies, concerned 

with making observations of the sky in the very far-infrared region of the 

electromagnetic spectrum. Several features of this waveband make it of vital 
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importance for astronomy. There is a great deal of dust and gas in the interstellar 

medium (ISM) of our Galaxy and like many other cool objects, they emit most of 

their radiation in the far infrared.  The continuum emission from dust clouds in the 

ISM has quite a broadband spectrum, characteristic of blackbody radiation.  From 

Wien‟s displacement law, mK102898.0 2

max

T , the intensity of emission of 

these clouds at temperatures from 10K to 100K peaks in the submillimetre region 

(Holliday, 1999).  As an example, Figure 1.2 shows the continuum emission 

spectrum of 2 ultra-compact HII regions (Caltech Astronomy Department website). 

 

 

Figure 1.2 The continuum emission spectrum of 2 G45 Ultra-compact HII regions (Caltech 

Astronomy Department website). 

 

Dust clouds are of great interest to astronomers as it is from these that stars 

and planets are formed when self-gravity overcomes thermal, turbulent and magnetic 

pressures causing them to collapse (Ray and Beckwith, 1992).  When observing at 

submillimetre wavelengths dust grains in these clouds become transparent making it 

possible to look deep inside regions that are obscured at optical wavelengths, 

allowing astronomers to investigate and further develop theories on the very early 

stages of star birth, a process not yet fully understood.  The continuum emission is 

most sensitively detected using bolometers, which are devices that simply absorb 

incident radiation and warm up.  This changes their resistance so that when fed with 

a constant bias current a change in voltage is produced across the device (Ray and 
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Beckwith, 1992).  Bolometric detectors are usually held in a liquid helium cryostat at 

the focus of a large reflector to improve sensitivity to the levels required for doing 

useful astronomy.  

 

Besides the continuum, interstellar dust and gas clouds likely emit some 

40,000 individual spectral lines, only a few thousand of which have been resolved 

and many of these have not yet been identified. Much of the terahertz band has yet to 

be mapped with sufficient resolution to avoid signal masking from spectral line 

clutter.  Some THz bands are obscured by atmospheric absorption making ground 

based observations impossible (White, 2006).  Results (Hauser et al., 1998) from the 

NASA Cosmic Background Explorer (COBE) Diffuse Infrared Background 

Experiment (DIRBE) and from examining the spectral energy distributions in 

observable galaxies, indicate that approximately one-half of the total luminosity and 

98% of the photons emitted since the „Big Bang‟ fall into the submillimetre and far 

infrared, i.e. the THz band. Much of this energy is being radiated by cool interstellar 

dust. Older galaxies like the Milky Way have a much greater abundance of dust 

making submillimetre detectors true probes of the universe. 

 

Synchrotron radiation is yet another form of radiation observed at 

submillimetre wavelengths.  It is caused by streams of particles moving at relativistic 

speeds through a magnetic field.  Matter spiralling towards a black hole generates 

such emissions as does our own Sun when charged particles are ejected outward 

through its magnetic field.   

 

THz observations also offer the best opportunity yet to probe the universe as 

it was not long after its creation in the Big Bang, about 14 billion years ago. The 

universe was much hotter and denser in the past but the relic radiation, the cosmic 

microwave background has since cooled to just below 3K and now its blackbody 

power spectrum peaks at millimetre wavelengths (Siegel, 2002).  Since this thesis is 

concerned with the optical design of instruments whose aim is to observe the cosmic 

microwave background radiation it is discussed in more detail in the next section.  
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1.3 The Cosmic Microwave Background (CMB) 

 

Georges Lamaître, professor of physics and astronomer at the Catholic 

University of Leuven, Belgium, first pointed out that if the universe is expanding, 

there must have been an era in the past when it was much more dense than it is now.  

During this hot, dense era, approximately 14 billion years ago, a massive expansion 

occurred creating not only subatomic particles and matter but also space and time, 

and the universe has been expanding ever since.  This event was named the Big Bang 

by Fred Hoyle, a steady-state cosmologist, in an attempt to ridicule the theory.  

However, the theory survived the ridicule, the name remained and we now refer to 

all cosmological models with an evolving universe as big bang cosmologies.  There 

are several different theoretical models that attempt to describe the universe as we 

know it today and only a detailed study of the remnant radiation from the big bang, 

known as the cosmic microwave background (CMB) radiation, will distinguish 

between these theories and put further constraints on the cosmological model. 

 

Two physicists at the Bell Telephone Laboratories in Holmdel, New Jersey, 

Arno Penzias and Robert Wilson, accidentally detected this radiation while using a 

very sensitive radio telescope for both communication and radio astronomy, and 

reported their findings in 1965 (Penzias and Wilson, 1965).  To have accurately 

calibrated results they had to understand all sources of noise in their system.  There 

was an unaccounted for signal at a very low level that appeared to be from either the 

system itself or everywhere in the sky.  After careful analysis they were confident 

that it was the latter, however they only had measurements at one wavelength and so 

could not confirm the shape of the spectrum but found that the intensity 

corresponded to a blackbody at a temperature of approximately 3K.  It was clear that 

Penzias and Wilson had found the CMB radiation and further confirmation came 

when a group at Princeton carried out similar observations at a different wavelength 

and found that the radiation was present and that the spectrum was indeed consistent 

with that of a blackbody.  For their painstaking work in detecting this signal, Penzias 

and Wilson were awarded the Nobel Prize in Physics in 1977. 
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Figure 1.3 Schematic diagram of the Big Bang theory (Lawrence Berkley National Laboratory 

website). 

 

1.3.1 The Big Bang and the CMB 

 

The field of observational cosmology is a growing one and a combination of 

theory and observations will increase our understanding of what happened in the 

very early universe.  In theoretical models it is assumed on the largest scales that at 

any instant the general properties, such as density and composition, are the same 

everywhere and that the universe appears the same in all directions, that is, that the 

universe is both homogeneous and isotropic.  Until the early 1970‟s there were 

vigorous debates about whether or not the universe was the same at all times, a so-

called steady-state universe.  However a long chain of observational evidence has 

been amassed against the steady-state theory, including the discovery of the remnant 

CBM radiation in 1965, and few hold it today with evolving theories, or big bang 

cosmologies, taking the upper hand. 
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Following from Lamaître‟s idea of a hot dense universe, George Gamow, a 

Russian physicist, suggested in 1946 that when the universe was less than about 200 

seconds old the temperature was greater than one billion Kelvin, hot enough for 

nuclear reactions to proceed rapidly.  In 1948, Ralph Alpher, Hans Bethe and 

Gamow showed that these nuclear reactions might be able to explain the current 

abundance of helium in the universe (Alpher et al., 1948).  In a more thorough 

analysis of the problem, Alpher and Robert Herman found that the early universe 

should have been filled with radiation and that its remnant should be detectable as a 

low intensity background of microwaves throughout the sky (Alpher and Herman, 

1975), CMB radiation.   

 

 The CMB radiation itself was released approximately 380,000 years after the 

Big Bang (Bennett et al., 2003a).  Before this, when the universe was young enough 

to have its temperature higher than 4000K, the hydrogen atoms were ionised and the 

universe was a plasma of ions and electrons coupled strongly to the photon field 

(photon-baryon fluid).  The large Thompson scattering cross-section of the electrons 

resulted in a short mean free path for the photons and hence an opaque universe in 

thermal equilibrium.  Because of these multiple reflections the spectrum of the 

photons was that of a blackbody with a temperature the same as that of the matter.  

The COBE satellite measured this predicted blackbody profile to within 1% accuracy 

(Mather et al., 1990) as outlined in section 1.3.2.  As the universe expanded its 

density decreased and the temperature dropped below 4000K, at which point the 

electrons and protons could combine to form neutral elements (hydrogen) in a 

process known as recombination (Turner, 1996; Lineweaver, 1999).  The photons, as 

they interact very weakly with neutral atoms, decoupled from the matter and the 

universe became transparent to the radiation.  Since the matter was now free from 

radiation pressure the denser areas coalesced under the influence of gravity to form 

stars and galaxies, and in fact the one in 100,000 variations observed in the CMB are 

exactly the right amplitude to form the large scale structures we see today (Hu and 

White, 2004).   

 

The universe is constantly expanding and the temperature of the CMB 

radiation has subsequently cooled to approximately 2.73K with the peak wavelength 

of the radiation lying the in THz region of the electromagnetic spectrum.  The CMB 
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photons that are detected today were last scattered at the time of decoupling and 

therefore cosmologists studying this radiation are effectively looking through the 

universe back at a time when it was opaque.  The apparent source of the photons, 

when the universe became transparent for the first time, is referred to as the „surface 

of last scattering‟.  

 

 

 

Figure 1.4 The timeline of the universe showing the radius and particle horizon (Hu and White, 

2004). 

 

Measurements of the blackbody spectrum of the CMB have made the big 

bang theory the most widely accepted model of the early universe (Spergel et al., 

2003).  However, this model alone does not explain all observed phenomena of the 

CMB and additions have had to be made to the original model.  In 1981, Alan Guth 

developed the theory of inflation as an explanation for the large scale uniformity of 

the universe (Guth, 1981).  Alexei Starobinski had developed a similar theory the 

year before (Starobinski 1980), however Guth modified this to allow for a graceful 

exit from inflation, a modification independently made by Andrei Linde (Linde, 

1982) and by Andreas Albrecht and Paul Steinhardt (Albrecht and Steinhardt, 1982).  

The theory of cosmological inflation postulates that at the end of the grand 
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unification epoch, 10
-36

 seconds after the big bang, the universe underwent a period 

of exponential expansion or „inflation‟ for approximately 10
-32

 seconds (Prantzos, 

2000).  During this time the energy density of the universe was dominated by a 

vacuum energy or „cosmological constant‟.  When the nature of this vacuum 

changed the universe underwent a phase change, resulting in the rapid expansion.  

The large scale properties of the universe, widely separated parts of which were in 

casual contact before inflation, were preserved by this event (Figure 1.4).  Since 

Guth‟s early work, each of these observations has received further confirmation, 

most impressively by the observations of the CMB made by the WMAP satellite 

(NASA‟s WMAP website).   

 

Temperature Anisotropies 

 

Although the COBE satellite measured the temperature of the CMB 

blackbody spectrum to great accuracy this result was perhaps overshadowed by its 

detection of variations at the level of one part in 100,000 in the temperature of the 

CBM (Smoot et al., 1992).  If the temperature was completely uniform this would 

have indicated that matter was distributed evenly at the surface of last scattering and 

concentrations of matter such as galaxies and galaxy clusters would not exist in 

today‟s universe.  Since the COBE experiment, WMAP has made more sophisticated 

measurements (Bennett et al., 2003a) and revealed that the characteristic sizes of the 

CMB temperature variations follow the distinctive pattern predicted by cosmological 

theory.  Figure 1.5 shows an all-sky map of temperature anisotropies from the 2003 

data release of the WMAP satellite.  Scientists have used this information to 

precisely estimate the age, composition and geometry of the universe. 

 

The exponential expansion of the early universe provides a physical 

mechanism for triggering the primordial sound waves by means of quantum 

fluctuations (Guth and Pi, 1982) and it also solves the horizon problem, an issue 

which involves the rate of expansion and the speed at which information can travel. 

 



 

  11 

 

Figure 1.5 Full sky temperature anisotropy map from WMAP results released in 2003 (NASA‟s 

WMAP website). 

 

The CMB temperature fluctuations can be represented by a sum of spherical 

harmonics (Smoot and Scott, 1998) as, 

 









 l

lm

lmlm

l

Ya
T

T
),(),(

2



         

(1.1) 

 

where   and   represent spherical angles and l is the Legendre multipole (≈  / , 

where   is the angular separation between two points on the sky).  The 1l  dipole 

term is omitted because the intrinsic CBM dipole is obscured by the apparent dipole 

resulting from the Earth‟s motion with respect to the reference frame defined by the 

CMB.  It is convenient to represent the spectrum of angular scale sizes of the CMB 

temperature fluctuations, T , as a plot of power, 2/)1( lCll  , where 
2

lml aC   

(Coles and Lucchin 1995), as a function of multipole , l (Figure 1.6).  Up to now it 

has been the aim of CMB experiments to measure the magnitude of the various 

multipole amplitudes, lC , as accurately as possible for comparison with the 

predictions of theoretical models. 

 

The early universe contained sound waves generated from small disturbances 

in gas density caused by scattering of photons off electrons.  The compressions of 
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the sound waves heated the gas while the rarefactions cooled it, giving rise to 

temperature fluctuations.  At recombination, when the photons were released, those 

emitted from hotter, denser regions were more energetic than those emitted from 

rarefied regions and so the pattern of hot and cold spots induced by the sound waves 

was frozen into the CMB.  In Figure 1.6 it can be seen that the regions with the 

greatest variations subtend about one degree across the sky, representing the 

fundamental acoustic mode that just had time to complete one 

compression/rarefaction cycle before decoupling.  Other peaks in temperature 

contrast represent the different harmonic modes that end in compression or 

rarefaction. 

 

 

Figure 1.6 An example of the CMB temperature power spectrum with the key features labelled. 

 

 The flat region at low multipoles corresponds to angles greater than the 

horizon size at recombination and is known as the Sachs-Wolfe plateau (White and 

Cohn, 2002).  The fluctuations at these angular scales are due to both scalar 

perturbations, which are longitudinal waves resulting in density fluctuations, and 

tensor perturbations, or gravitational waves, predicted by Einstein in 1918 in his 

Theory of General Relativity.  Since tensor fluctuations or primordial gravitational 

waves are stretched during inflation they are negligible on sub-horizon angular 
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scales and the temperature fluctuations on these scales are caused by scalar 

perturbations only.   

 

The importance of the CMB power spectrum is in its shape and in particular 

the location and relative heights of the acoustic peaks.  The location of the first peak 

in l-space probes the horizon size at decoupling, measuring the geometry of the 

universe on the largest scale possible leading directly to constraints on 0 , the total 

energy density of the universe in units of critical density.  Other cosmological 

parameters that are constrained by power spectrum are h - the Hubble constant in 

units of 100km/s/Mpc, b  - the fractional density of baryonic matter in the universe, 

m  - the fractional density of matter, including baryonic and dark, and   - the 

fractional density of dark energy, where 0 m .   

 

While measuring the temperature anisotropies of the CMB has placed 

constraints on the cosmological parameters outlined above, degeneracies between 

some combinations of parameters still exist.  Therefore a detailed study of not only 

the temperature variations but also the polarisation properties of the CMB is required 

to conclusively distinguish between current theories and accurately constrain 

cosmological parameters.  It is now the goal of CMB experiments to measure the 

polarisation anisotropies. 

 

 

CMB Polarisation 

 

 The cosmic microwave background has three measurable properties: its 

frequency spectrum, which has been confirmed to be that of a blackbody at 2.73K; 

the temperature anisotropies discussed above which have been measured in detail by 

WMAP; and also anisotropies in polarisation resulting from the temperature 

fluctuations at recombination.  If the temperature anisotropies we observe are the 

result of primordial fluctuations then their presence at the surface of last scattering 

would polarise the CMB anisotropies themselves.  The verification of this 

polarisation on small scales would therefore represent a fundamental check on our 

basic assumptions about the behaviour of fluctuations in the universe and would help 
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in reconstructing the model of the fluctuations from the observed power spectrum.  

Also, since the polarisation probes the era of last scattering directly, as opposed to 

the temperature fluctuations which may evolve over time, the localisation in time 

provides a powerful constraint for reconstructing the sources of anisotropy.   

 

 The degree of linear polarisation of the CMB is related to the quadrupole 

temperature anisotropy at last scattering (Figure 1.7).  In general, if an incident 

unpolarised photon scatters off an electron, the photon becomes polarised in the 

plane perpendicular to the incoming direction (Figure 1.8).  However, the number of 

free electrons in universe before recombination meant that photons could only travel 

relatively short distances before scattering.  The temperature of the photons remained 

uniform over these distances and therefore polarisation was not achieved via 

Thompson scattering because of the isotropic radiation field.  After recombination 

the mean free path of photons became much greater and it was possible for the 

scattering of two photons from parts of the sky at different temperatures to scatter off 

the same electron.  In such a case where there is a quadrupole anisotropy (Figure 1.7) 

in temperature between the photons, polarisation is obtained via anisotropic 

Thompson scattering.  If we consider Figure 1.8, hot radiation is incident on the 

scattering electron from the above and below, and cooler radiation is incident from 

the left and right.  The result is a wave linearly polarised in the same direction as the 

hotter photon, that is, in the direction of travel of the cooler photon. 

 

 

Figure 1.7 Left: An m=0 pattern arising from a scalar perturbation.  Right: An m=2 pattern arising 

from a tensor perturbation, (Hu and White, 1997). 
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Figure 1.8 Warm radiation is incident from the top and bottom while cooler radiation is incident from 

the left and right, corresponding to a quadrupole anisotropy in the local temperature distribution.  The 

electron does not scatter radiation polarised along the line of sight (the polarisation must be 

perpendicular to the outgoing wavevector) leading to a partially polarised outgoing wave (Hinderks, 

2005). 

 

 

The total intensity, I, of the CMB radiation can be decomposed into polarised 

and unpolarised components, Ip and Iup, such that 

 

            upp III   (1.2) 

 

and the degree of polarisation, p, is defined by the ratio of the polarised 

intensity to the total intensity 

 

            
I

I
p

p
 . (1.3) 

     

  

The polarisation pattern of the CMB is generally decomposed into two components.  

The two linear Stokes parameters Q and U (described in more detail in section 1.4.4) 

combine on the spherical sky as a tensor which can be decomposed into a scalar 

field, usually referred to the E mode of polarisation, and a pseudo-scalar field, 

referred to as the B mode of polarisation (where the V Stokes parameter, which 

quantifies the degree of circular polarisation present, is expected to be zero for the 
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CMB).  The E and B definitions are chosen by analogy to electric and magnetic 

fields since B modes have curl and E modes are free from curl (Rusholme et al., 

2002).  In Figure 1.9 we see the orientation of both polarisations, the B modes being 

the same as E modes having undergone a 45 degree rotation.  Figure 1.10 shows E 

and B hot spots formed from the superposition of eight properly phased plane waves 

of the form shown in Figure 1.9 evenly distributed in angle.  The handedness of the 

B modes is apparent, unlike the E modes which are invariant under reflection.    

 

 

Figure 1.9 Example of E (left) and B (right) plane wave modes (Hinderks, 2005). 

 

 

 This particular decomposition into E and B modes (rather than Q and U) is 

also physically useful.  Scalar perturbations only produce E mode polarisation 

(Zaldarriaga, 2001) and therefore the E mode signal is dominated by contributions 

from the density fluctuations in the primordial plasma that are in turn the dominant 

source of the temperature anisotropy signal.  Vector and tensor perturbations result 

in both E and B mode polarisations (White and Cohn, 2002), but since inflationary 

models do not support vector perturbations we expect the B mode polarisation to be 

due to the intrinsic polarisation of gravitational waves, or tensor modes that result in 

a mixture of Stokes Q and U on the sky (Hu and White, 1997).  In fact, the B mode 

signal has two separate sources, the first being the relic gravitational wave radiation 

generated in the early universe by inflation and the second being the gravitational 

lensing of E mode polarisation by intervening foreground structures in the universe.  

This lensing effect mixes some of the polarised power between E and B modes and 
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occurs at smaller angular scales where it dominates the expected B mode signal.  

This sets a limit of approximately 10
-4 

on the values of the tensor to scalar ratio that 

could be measured even with a perfect instrument (Knox and Song, 2002).  If the 

relic tensor modes lie below this level they cannot be measured from the CMB. 

 

 

 

Figure 1.10 E and B hot spots formed from the superposition of plane waves.  The handedness of B 

modes is apparent while the E modes are invariant under reflection (Hinderks, 2005). 

 

 

The observed polarisation on the sky arises from the superposition of signals 

from many different scalar and tensor modes with randomly orientated wave vectors 

and therefore the sky pattern will contain both Stokes Q and U components.  These 

parameters do not allow for easy separation of the contributions form scalar and 

tensor modes and therefore we us the E-B decomposition mentioned above to 
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overcome this.  This decomposition results in a set of coefficients for the multipole 

expansion of the polarisation field, lmE  and lmB , analogous to the lma  term in 

Equation 1.1 for the temperature field, from which six power spectra can be formed: 

TT

lC , TE

lC , EE

lC , BB

lC , TB

lC  and EB

lC .  The last two of these vanish since the B field 

has opposite parity to the T and E fields and the remaining four spectra completely 

describe the two-point statistics of the CMB (Hinderks, 2005).  Figure 1.11 shows 

simulated spectra where it is clearly seen that the E-mode spectrum, which is 

dominated by scalar perturbations, lies more than an order of magnitude below the 

temperature spectrum, and as with the temperature spectrum, acoustic oscillations 

lead to peaks in the E-mode spectrum.   

 

 

Figure 1.11 The four CMB power spectra for the standard cosmological model.  The dashed line 

shows the gravitational wave contribution to the E and B spectra assuming a value of r=0.1.  Figure 

taken from Carlstrom et al. (2003). 
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 Since only photons that scattered in an optically thin region near last 

scattering could have had a quadrupole anisotropy, only a small percentage of the 

CMB radiation is polarised.  The amount of polarisation was predicted to be at a 

level 10% lower than the temperature anisotropy (Hu and White, 1997), a prediction 

confirmed by the first polarisation measurements made by DASI (Kovac et al., 

2002).  While detection of B mode polarisation due to gravitational lensing would be 

a significant achievement in both technology and science, it is the B mode 

polarisation due to gravitional waves that will tell us more about the theory of 

inflation and is currently the holy grail of cosmology.  

 

In the past 20 years CMB experiments have provided scientists with data 

which corroborates the theories that have been developed in this area, for example 

the detection of the peaks in the power spectrum is consistent with the standard 

cosmological model.  However, to conduct further investigation into inflation and 

dark energy, Figure 1.11 makes it clear that researchers need a new generation of 

CMB telescopes that can observe the radiation with even greater sensitivity and 

resolution.  In the next section we look at some past, present and future experiments 

dedicated to characterising the CMB.  

 

 

1.3.2 Past, Present and Future CMB Experiments 

 

On the 18
th

 November 1989, the Cosmic Background Explorer (COBE) 

(Figure 1.12) was launched, only the second satellite experiment dedicated to 

measuring the CMB radiation (the first space experiment was the Relikt on board the 

Prognoz 9 satellite launched in the 1
st
 of July 1983).  There were three instruments 

on board, a Diffuse Infrared Background Experiment (DIRBE) to search for the 

cosmic infrared background radiation, a Differential Microwave Radiometer (DMR) 

to map structure in the cosmic radiation and a Far Infrared Absolute 

Spectrophotometer (FIRAS) to compare the spectrum of the cosmic microwave 

background radiation with a precise blackbody.   
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Figure 1.12 An artist‟s impression of the Cosmic Background Explorer, COBE (Lawrence Berkley 

National Laboratory website). 

 

The DMR instrument consisted of six differential microwave radiometers 

made up of two channels that operated at 31.5GHz, 53GHz and 90GHz (Bennett et 

al., 1992).  Multi-frequency data is required to separate the CMB from foreground 

signals.  Each differential radiometer measured the difference in power received 

from two directions in the sky separated by 60 degrees using a pair of horn antennas 

with a 7 degree FWHM beam.  The FIRAS instrument was a polarising Michelson 

interferometer operated differentially with an internal reference blackbody and 

calibrated by an external blackbody having an estimated emissivity of 0.9999 

(Mather et al., 1999).  It covered the wavelength range from 0.1 to 10mm in two 

spectral channels separated at 0.5mm and had approximately 5% spectral resolution. 

 

Each COBE instrument yielded a major cosmological discovery but it was 

the DMR experiment that found the intrinsic temperature anisotropies of the CMB 

(Figure 1.13) for the first time at a level of 510/  TT .  FIRAS also confirmed 

that the CMB spectrum is that of a nearly perfect blackbody (Figure 1.14) with a 

temperature of 2.725±0.002K (Mather et al., 1994), an observation which matches 

the predictions of the Big Bang theory extremely well. 

 



 

  21 

Almost a decade after the launch of COBE, in 1998 the balloon borne 

experiment BOOMERanG (Balloon Observations Of Millimetric Extragalactic 

Radiation ANd Geophysics) (see Figure 1.15) made its first long duration flight over 

Antarctica.  The telescope contained a 1.2m off-axis primary mirror and was flown 

at an altitude of 120,000ft.  The detector system consisted of a bolometric array that 

was cryogenically cooled to 0.28K and operated at 90GHz, 150GHz, 240GHz and 

400GHz.  The instrument performed extremely well and mapped 3% of the sky with 

an angular resolution of 10', forty times finer than COBE (Netterfield et al., 2002).  

A second flight of 14 days duration made in 2003 in which the instrument was 

modified to be polarisation sensitive resulted in a statistical detection of the 

polarisation anisotropies of the CMB. 

 

 

Figure 1.13 The temperature anisotropies in the cosmic microwave background as measured by the 

Differential Microwave Radiometer (DMR) on board the COBE satellite.  The temperature 

fluctuations are extremely small, only one part in 100,000 compared to the 2.73K average temperature 

of the radiation field (NASA‟s Legacy Archive for Microwave Background Data Analysis website). 

 

The next significant satellite experiment after COBE was the Wilkinson 

Microwave Anisotropy Probe (WMAP) (Figure 1.16), a NASA Explorer mission 

which was launched on the 6
th

 January 2001.  The mission was designed to 

determine the geometry, content and evolution of the universe via a 13arcminute-

FWHM resolution full sky map of the temperature anisotropies of the cosmic 

microwave background radiation.  The WMAP optics consisted of two back-to-back 

off-axis Gregorian telescopes with 1.4m x 1.6m primary reflectors and 0.9m x 1.0m 
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secondary reflectors.  The radiometric system contained differential polarisation 

sensitive receivers with HEMT amplifiers used for detection.  With its small angular 

resolution and the ability to measure polarisation anisotropies in the CMB, WMAP 

has generated full sky maps and discovered that the universe was re-ionised earlier 

than previously believed.  The first results from this experiment were released in 

February 2003 (Bennett et al., 2003a) and the data derived from the WMAP sky 

maps has 45 times the sensitivity and 33 times the angular resolution of the COBE 

DMR mission. 

 

 

Figure 1.14 The spectrum measured by the FIRAS experiment on board the COBE satellite compared 

to the theoretical blackbody spectrum for a temperature of 2.725K (Institute for Astronomy at the 

University of Hawaii website).  

 

 

Although both the BOOMERanG experiment and WMAP detected the 

polarisation of the CMB, it was a ground based experiment called DASI (Degree 

Angular Scale Interferometer) that first detected this small signal during 

measurements taken in the South Pole winter of 2001 and 2002 (Kovac et al., 2002).  

DASI was a 13-element interferometer designed to measure the temperature and 

polarization anisotropy of the CMB over a large range of scales with high sensitivity. 

The instrument used cooled HEMT amplifiers running between 26GHz-36GHz, in 
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10 1-GHz channels and operated from the US National Science Foundation‟s 

Amundsen-Scott South Pole station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15 Left: The receiver from the BOOMERanG Experiment (Hallym University Dept of 

Physics website).  Right: The polarisation anisotropies of the CMB at 145GHz as measured by 

BOOMERanG (Caltech Astronomy Department website). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 Left: An artist‟s impression of the WMAP satellite (NASA‟s WMAP website).  Right: 

The WMAP 5-year TT power spectrum along with recent results from the ACBAR (Reichardt et al., 

2009, purple), Boomerang (Jones et al., 2006, green), and CBI (Readhead et al., 2004a, red) 

experiments. The curve is the best-fit ΛCDM model to the WMAP data (Nolta et al., 2009). 
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Figure 1.17 The Degree Angular Scale Interferometer (DASI) located at the US National Science 

Foundation‟s Admunsen-Scott South Pole station (Chicago University Department of Astronomy and 

Astrophysics website). 

 

 

Figure 1.18 QUaD measurements of the TT, TE, EE, and BB power spectra compared to results from 

the WMAP, ACBAR, BICEP, B03, CBI, CAPMAP, MAXIPOL, and DASI experiments (Brown et 

al., 2009).  The BB measurements are plotted as 95% upper limits. The smooth black curves in each 

panel are the power spectra expected in the best-fit ACDM model to the WMAP 5-year data. 
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Even more sensitive instruments have been deployed in the last number of 

years.  Between 2005 and 2007 the QUaD (Quest at DASI) experiment (see Figure 

1.17), also situated at the US National Science Foundation‟s Admunsen-Scott South 

Pole station and which the research group at NUI Maynooth were heavily involved 

(O‟Sullivan et al., 2008), has made high precision measurements of the E-mode 

polarisation of the CMB radiation.  QUaD is a bolometer-based polarimeter 

optimized for CMB polarization measurements.  It uses an on-axis Cassegrain design 

with an under-illuminated 2.6m primary mirror for an angular resolution of 

4.6arcmin at 150GHz.  The focal plane consisted of thirty-one corrugated feed horns, 

each feeding a polarisation-sensitive bolometer (PSB) pair which measures the 

intensity of the radiation in orthogonal linear polarisations as the telescope scans 

across the sky.  These signals are then processed into a map of the polarisation 

pattern on the sky.  The results obtained by QUaD (Figures 1.18 and 1.19) agree well 

with the predictions made by the standard cosmological model in which the content 

of the universe is dominated by dark matter (Stanford University QUaD website). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.19 Left: The focal plane of the QUaD telescope with 31 corrugated feed horn antennas 

(Stanford University QUaD website).  Right: The process of the gravitational collapse of clumps 

while the universe is very hot sets up certain resonances in the matter that causes the polarization 

patterns to be particularly strong for clumps of a particular size. These resonances can be seen in the 

graph, which shows the polarization strength as a function of the angular size of the clump on the sky. 

The solid line shows the predictions of the standard cosmological model, and the points show the 

QUaD measurements (Stanford University QUaD website). 
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Further to this, the PLANCK Surveyor satellite (Figure 1.20) was launched 

on the 14
th

 May 2009 having been selected as the third Medium-Sized Mission (M3) 

of ESA‟s Horizon 2000 Program and is today part of its Cosmic Vision Program.  It 

is designed to image both the temperature and polarisation anisotropies of the cosmic 

microwave background radiation over the whole sky with unprecedented sensitivity 

and angular resolution (5') over a wide frequency range (Tauber, 2005) and will 

provide more information than any other CMB experiment to date. 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Figure 1.20 Left: Artist's impression of the PLANCK focal plane which is located directly below the 

telescope primary mirror (visible at the top). It comprises the HFI bolometric detector array (small 

feed horns on golden circular base) and the LFI radio receiver array (larger feed horns around the 

HFI). The box holding the feed horns is made transparent in this view, to also show the elements 

inside and behind it (ESA‟s PLANCK website).  Right: The satellite just after mating with the Ariane 

5 ECA launcher (ESA‟s PLANCK website). 

   

 The PLANCK experiment has ten times the sensitivity and more than fifty 

times the angular resolution (5' for most channels) of the COBE satellite.  There are 

two instruments on board: the High Frequency Instrument (HFI) and the Low 

Frequency Instrument (LFI), which are fed by a 1.5m Gregorian telescope system 

with an optical configuration that minimises off-axis distortions.  LFI consists of an 
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array of radio receivers cooled to 20K by a scorpion cooler and sensitive to radiation 

in the frequency range of 30 to 70GHz.  Its best angular resolution is 10' and its 

temperature sensitivity is 12mK.  This array forms a ring around the HFI detectors as 

shown in Figure 1.20.  HFI consists of an array of thirty-six back-to-back horn 

antennas, sixteen of which are coupled to polarisation sensitive bolometric detectors.  

The HFI detectors are split into six channels centred on the following frequencies: 

100GHz, 143GHz, 217GHz, 353GHz, 545GHz and 857GHz, each with a 33% 

bandwidth (some of the higher frequencies are not sensitive to polarisation), and 

were chosen so that contaminating foregrounds can be determined to provide 

accurate measurements of the CMB radiation.  Although PLANCK will essentially 

extract all the scientific information possible from temperature anisotropies it will 

not do this for polarisation and is very unlikely to measure B-modes (it will however 

provide much information on polarised foregrounds).  The research group at NUI 

Maynooth was heavily involved in the design of the corrugated horn antennas for all 

channels of the HFI instrument on board the PLANCK Surveyor (Gleeson, 2004).    

 

Considerable progress in the field of observational cosmology has clearly 

been made over the last 20 years and the push is now on to commission a new 

generation of still more sensitive instruments to detect and measure the B-modes.  To 

achieve this sensitivity new techniques are being tested and this thesis describes two 

experiments that use one promising technique: bolometric interferometry.  The two 

instruments making use of this novel approach to measuring CMB polarisation 

characteristics are the Millimetre-Wave Bolometric Interferometer (MBI) and the Q 

U Bolometric Interferometer for Cosmology (QUBIC).  MBI is acting as a 

pathfinder for the EPIC mission, a concept formed as part of NASA‟s Physics of the 

Cosmos program, formerly the Beyond Einstein program.  The QUBIC instrument is 

a joint venture between Europe and the United States and it is hoped that a first 

module will see light in the summer of 2011.  A detailed discussion on both of these 

instruments is given in Chapters 3 to 6. 

 

This is a summary of a selection of past and present instruments dedicated to 

measuring the temperature and polarisation anisotropies of the cosmic microwave 

background radiation.  Although only a few experiments are outlined here it provides  
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Name 
Year 

Deployed 

Frequency 

(GHz) 

Angular 

Scale (l) 
Detection Type 

Measured 

Quantity 

(T=Temperature, 

P=Polarisation) 

Ground-Based Experiments 

CAT 1994 13.5-16.5 300-500 Interferometer T 

ACBAR 2001 150-274 200-3000 Bolometer T 

DASI 2001 26-36 100-900 Interferometer T and P 

CAPMAP 2002 40, 90 1800-3000 MMIC/HEMT T and P 

CBI 2002 26-36 
300-3500(T) 

400-4250(P) 
Interferometer T and P 

VSA 2002 26-36 150-1800 Interferometer T 

QUEST 2005 100-150 25-2500 Bolometer P 

AMiBA 2007 86-102 800-8000 Interferometer T and P 

SPT 2007 150 11000 Bolometer T and P 

ACT 2008 148-277 8000 Bolometer T 

AMI Future 12-18 1080-22000 Interferometer T 

QUIET Future 40-90 180-1800 HEMT T and P 

SZA Future 26-115 >1500 Interferometer T 

Balloon-Borne Experiments 

MAXIMA 1995 150-420 36-1080 Bolometer T 

QMAP 1996 30-140 900 HEMT/SIS T 

BOOMERanG 1997 90-410 25-1200 Bolometer T 

Archeops 1999 143-545 10-1000 Bolometer T and P 

BOOMERanG03 2003 145-345 25-1800 Bolometer P 

EBEX Future 150-450 1350 Bolometer T and P 

SPIDER Future 90-210 180 Bolometer P 

Satellite Experiments 

RELIKT 1983 37 33 Radiometer T 

COBE 1989 31.5-90 2-30 Radiometer T 

WMAP 2001 23-94 2-9000 Radiometer T and P 

PLANCK 2009 30-857 2-2000 Bolometer T and P 

Table 1.2 A sample of past, present and future experiments to measure the cosmic microwave 

background radiation. 

 

 

a clear illustration of the importance of these measurements and the improvements in 

technology that have been made over the last two decades.  With such improvements 
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instruments are becoming much more sensitive to signals with smaller amplitudes, 

not least from the reduced cost of making detectors and components due to the 

evolution in manufacturing technologies, something which will be necessary if the 

elusive B modes are to be measured in full.  Table 1.2 provides a more 

comprehensive list of CMB experiments and it can be clearly seen that significant 

progress has been made and will hopefully continue to be made moving into the 

future with advancements in technology and a better understanding of the 

cosmological model.  

 

 

1.3.3 Other Applications of Terahertz Imaging 

 

Applications of THz radiation are also being implemented in a wide range of 

fields outside the traditional niches of space science and molecular line spectroscopy.  

These include biomedical imaging, defence and security, and the detection of 

narcotics.  A summary of some of these applications, which is given by White 

(White, 2006), is outlined below and shows the importance of exploring this region 

of the spectrum further.  The results of work in this thesis will be useful for the 

design of THz optical system in general. 

 

THz radiation is non-ionizing and not highly scattered in tissues, therefore 

making it attractive for use in biomedical applications such as Terahertz Pulsed 

Imaging or TPI (Pickwell and Wallace, 2006).  TPI is a novel, noninvasive, imaging 

modality that uses pulses of electromagnetic radiation in the frequency range of 0.1 

to 10THz (Mogensen and Jemec, 2007) and has been used to image a variety of 

human tissues such as teeth, skin and breast.  The sensitivity of THz absorption to 

water content of a sample as a means of extracting medically useful information has 

been investigated by the THz Optics group at NUI Maynooth (McAuley et al., 2006) 

and the development in the last few years of practical methods to generate and detect 

broadband pulses of THz radiation that can be contained within portable systems 

suitable for clinical studies has led to its use in the detection of skin and breast 

cancers (Fitzgerald et al., 2006).  In a study to compare THz images with results 

from standard histological examinations to determine the feasibility of this technique  
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in diagnosing colon cancer results showed, for the first time, that images generated 

with radiation in the THz range can reliably distinguish between normal colon, 

tumour, and even dysplastic tissue in excised tissue samples. 

 

Other areas making use of radiation at THz frequencies are the identification 

of explosive and biological materials using THz reflective time domain spectroscopy 

(THz-RTDS) (Wang et al., 2009) and  and the detection of concealed weapons using 

stand-off imaging system (Luukanen, 2010).  

 

 

1.4 Interference and Polarisation 

 

Radiation at THz frequencies experiences the same interference and 

polarisation phenomena as other forms of electromagnetic radiation.  If we are to 

understand the polarisation characteristics of the cosmic microwave background and 

the bolometric interferometers that are being designed to make measurements of 

such characteristics then it is important to understand both interference and 

polarisation effects.  In the next few sections we look at interference and the 

operation of an interferometer as well as polarisation and the Stokes parameters that 

the interferometer can measure.  

 

 

1.4.1 Interference and the Interferometer 

 

Interference is the combining of two or more waves that meet in one point in 

space.  When two harmonic waves of the same frequency and wavelength but 

differing in phase combine, the resultant wave is also harmonic and its amplitude 

depends on the phase difference.  The phase difference   between the two waves is 

often the result of a difference in path length r , where in general   

 

        


 2
r

 .  (1.4) 
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The superposition of beams of strictly monochromatic light always gives rise to 

interference, however, light produced from a real physical source is never strictly 

monochromatic.  The amplitude and phase undergo irregular fluctuations which are 

much too fast for the eye or a physical detector to follow (Born and Wolf, 1999).  If 

the two beams originate from the same source, the fluctuations are in general 

correlated and the beams are said to be completely or partially coherent, depending 

on whether the correlation is complete or partial.  If the beams originate from 

different sources then the fluctuations are completely uncorrelated and the beams are 

said to be mutually incoherent and so no interference is observed. 

 

The superposition principle states that if the function 1  and 2  are separate 

solutions to the wave equation, 
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where   is the speed of the wave, then the sum of these functions  21   is also 

a solution.  In accordance with this, the electric field E at a point in space arising 

from separate fields 1E , 2E , … of various contributing sources is given by 

 

         ...21  EEE   . (1.6) 
 

 

Since the field E  varies in time extremely quickly it is very difficult to detect its 

phase.  However, the irradiance or intensity can be measured using physical sensors 

such as photocells or bolometers.  This intensity of light is defined as the time 

average (T) of the amount of energy which crosses in unit time a unit area 

perpendicular to the direction of energy flow (Born and Wolf, 1999) and is 

proportional to the square of the amplitude of the electric field (Hecht, 1998), 

 

         
T

ocI 2
E . (1.7) 
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Within a linear, homogeneous, isotropic dielectric, this expression for the intensity 

becomes 

 

         
T

I 2
E . (1.8) 

 

 

Consider the case of two monochromatic waves of the same frequency 

propagating in a homogeneous medium.  The separation a  between the sources (S1 

and S2) of these waves is much greater than the wavelength   and the point of 

observation P  is sufficiently far from the sources so that at that point the wavefronts 

will be planar as shown in Figures 1.21 and. 1.22  We will consider only linearly 

polarised waves of the form 

 

          11011 cos),(   tt rkErE  (1.9) 
 

and 

          22022 cos),(   tt rkErE . (1.10) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.21 Waves from two point sources create approximately plane waves at the point P some 

large distance away. 
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Figure 1.22 Plane wavefronts approaching point P with E01 and E02 depicting polarisation directions. 

 

Since we are concerned only with relative irradiances or intensities within the same 

medium, we can neglect the constants in Equation 1.8 and write 
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and consequently  
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Taking the time average of both sides yields 
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where 2112 2 EE I  is known as the interference term (Born and Wolf, 1999).  To 

evaluate this term we start by writing 

 

            2211020121 coscos   tt rkrkEEEE  (1.16) 
 

 

or equivalently 
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kkEEEE
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The time average of some function )(tf  taken over an interval T  is given by 

 

         
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Tt
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tdtf
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tf )(
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)( . (1.18) 

 

 

The period,  , of the harmonic functions is  /2  and we assume .T   In this 

case the T/1  coefficient in front of the integral has a dominant effect.  If we also 

assume that 
2

1
cos 2 

T
t  , 

2

1
sin 2 

T
t  and 0sincos 

T
tt 

 
we can use 

these to multiply out and average Equation 1.17 to give 

 

          2211020121 cos
2

1
  rkrkEEEE

T
. (1.19) 

 

 

The interference term is then 

 

         cos020112 EE I  (1.20) 
 

 

where   is equal to  2211   rkrk  and represents the phase difference 

arising from the combined path length and initial phase angle difference. 
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If we consider the situation where 01E  and 02E  are parallel the irradiance 

can be reduced to a scalar expression given by 

 

         cos020112 EEI  . (1.21) 
 

 

We can also write 
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2
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and therefore the interference term becomes 

 

         cos2 2112 III 
  
and  

2

2
022

22
E

I
T
 E  (1.23) 

 

 

whereby the total irradiance is 

 

         cos2 2121 IIIII  . (1.24) 
 

 

At various points in space the total irradiance can be greater than, less than or equal 

to 21 II  , depending on the interference term, or more appropriately the phase 

difference  .  A maximum irradiance is obtained when 1cos  , which occurs 

when ,...4,2,0   ., in other words the waves are in phase which results in 

total constructive interference.  A minimum irradiance is obtained when the waves 

are 180  out of phase, that is, when ,...5,3,    and this is referred to as 

total destructive interference. 

     

The observation of such interference between electromagnetic waves 

experimentally requires the use of an interferometer.  As mentioned above, the two 

beams experiencing the interference need to be derived from the same source and 

there are two ways of doing this.  The first method is to divide the wavefront of a 

beam from a single source into separate sources, as in Young‟s double-slit 
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experiment (see section 1.4.2) or as is done by using a diffraction grating.  This 

method is known as division of wavefront and is carried out by a wavefront-splitting 

interferometer.  The second technique is called division of amplitude and involves 

dividing the amplitude of the single incident beam onto the amplitude-splitting 

interferometer by means of partial reflection, obtaining identical wavefronts that can 

be brought together by different paths.   Amplitude-splitting interferometers include 

the Michelson spectral interferometer and the Fabry-Perot interferometer while 

wavefront-splitting interferometers include the Rayleigh and Fizeau interferometers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.23 The fringe pattern formed (bottom) when two separate fringe patterns (top) from 

individual sources are superimposed.  Part (a) shows the peaks coinciding while parts (b) and (c) 

show the peaks at different degrees of displacement.  The off-axis distance is given on the x-axis of 

each plot while the intensity is shown on the y-axis. 

 

Armand Fizeau (1819–1896) carried out an experiment in 1868 which was 

developed further by Michelson twenty years later (Tolansky, 1973).  Fizeau 

considered what would happen if the light from two separate sources, for example 

two stars close to each other, were observed at a single wavelength.  As mentioned 

earlier there would be no coherence between two such sources and therefore no 

interference would occur.  However, it is possible to produce interference fringes 

from each source separately and superpose the two systems.  Assuming the two 

sources are of similar intensity then one system can be moved relative to the other 
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and the fringes will experience constructive or destructive interference as shown in 

Figure 1.23.  In part (a) the peaks of the two systems coincide and clear bright 

fringes are produced.  Part (b) shows that if the systems are displaced by 

approximately one quarter of a fringe then a broadened pattern occurs, and finally a 

one-half fringe displacement as in part (c) results in uniform illumination and the 

fringes disappear. 

 

We have so far seen that the creation of a fringe pattern from the interference 

of two or more sources of light can be achieved through the use of various types of 

interferometer.  In the next section we discuss the Fizeau interferometer in more 

detail since it is this type of device that is used as a beam combiner in MBI-4.   

 

 

1.4.2 The Fizeau Interferometer 

 

In an interferometer with an array of N>2 antennas the signals are combined 

in such a way that interference fringes are measured for all possible baselines (N(N-

1)/2 antenna pairs).  This beam combination can occur in two different ways: 

pairwise combination or all-in-one combination (Zmuidzinas, 2003).  In the first 

method the power from each of the N antennas in the array is split N-1 ways, adding 

the signals in a pairwise fashion, squaring the signals and extracting the interference 

term.  This disadvantage of this method lies in the fact that it produces extremely low 

signal levels at each of the required N(N-1)/2 detectors (Timbie and Tucker, 2008). 

 

In the case of the all-in-one method of combination, the signals from each 

antenna are split and combined in such a way that linear combinations of all the 

antennas signals are formed at each of the outputs of the beam combiner (Figure 

1.24).  This method avoids the problem of large numbers of detectors and the low 

signal levels that are evident in the pairwise scheme.  Orthomode transducers 

(OMT‟s) are inserted after the antennas to allow the Stokes parameters to be 

determined simultaneously.      
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A Fizeau interferometer uses the all-in-one method of combining beams 

where the signals from redundant baselines can be added together to improve the 

signal-to-noise ratio at each bolometer compared to the pairwise combination 

method (Charlassier et al., 2008).  The signals reaching each bolometer are 

multiplexed in such a way that a portion of the visibility of each baseline appears at 

each bolometer.  When the signals are combined the resultant sensitivity is 

comparable to that of a filled-dish with an array of bolometers coupled to the same 

number of modes (N) on the sky (Zmuidzinas, 2003).  All-in-one systems process 

antenna signals in two different ways.  In the first mode of operation the signals from 

different antennas are interfered to measure the visibility for each baseline, where 

each visibility selects a narrow range of l (multipole) values and has no response to 

very low multiples.  The second mode is used to measure large spatial frequencies 

(low l) and involves combining signals from each antenna with other signals from 

the same antenna (autocorrelation).  

 

In MBI-4 the Fizeau beam combiner is essentially a Cassegrain telescope 

where all the signals from feed horn antennas illuminate the primary mirror and are 

correlated on an array of detectors at the focal plane.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.24 A schematic diagram of a Fizeau adding interferometer with N > 2 where the top 

triangles represent corrugated conical horn antennas (Malu and Timbie, 2010). 
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1.4.3 Polarisation 

 

Light propagates as a transverse electromagnetic wave and the polarisation of 

this wave is a description of the behaviour of the electric field vector E  in the plane 

(generally called the xy plane) that is perpendicular to the direction of propagation, 

generally z (Smith and King, 2000).  The plane of polarisation is defined as the 

plane containing the ray, i.e. the z -axis, and the electric field vector.  If the vector 

E  remains in a fixed direction the wave is said to be linearly or plane polarised, if it 

changes randomly in time then the wave is randomly polarised or unpolarised.  The 

vector E  can also rotate uniformly in the xy -plane giving rise to circular 

polarisation, either right or left-handed, depending on the direction of rotation, and a 

combination of plane and circular polarisations results in elliptical polarisation.     

 

Let us first consider linear polarisation and let two orthogonal optical 

disturbances be represented by, 

 

   tkzEtz oxx  cosˆ, iE  (1.25) 
 

 

and 

 

     tkzEtz oyy cosˆ, iE  (1.26) 

 

where   is the relative phase difference between the waves meaning yE  lags xE  

when 0  and yE  leads xE  when 0 .  The resultant field is the vector sum of 

the individual waves, 

 

     tztztz yx ,,, EEE   (1.27) 

 

or in the case where both waves are in phase Equation 1.27 can be written as  

 

   tkzEE oyox  cosˆˆ jiE . (1.28) 
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From this we can see that the resultant wave has a fixed amplitude given by 

oyox EE ji ˆˆ   which means that this wave is also linearly polarised as shown in Figure 

1.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.25 In part (a) the E-field is shown to be linearly polarised in the second and fourth 

quadrants.  A portion of the same field is shown looking along the z-axis in part (b). 

 

If we consider the case where ooyox EEE  , in other words both 

constituent amplitudes are equal, and the phase difference  m22/   where 

,...2,1,0 m , the resultant wave is said to be circularly polarised.  In this case, 

 

   tkzEtz ox  cosˆ, iE  (1.29) 

 

and 

 

   tkzEtz oy  sinˆ, jE  (1.30) 
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and the resultant wave is given by 

 

    tkztkzEo   sinˆcosˆ jiE  (1.31) 

 

and is right circularly polarised (see Figure 1.26).  The electric field vector makes 

one complete rotation as the wave propagates a distance of one wavelength.  In 

comparison, if  m22/   where again ,...2,1,0 m , then the resultant 

wave, 

 

    tkztkzEo   sinˆcosˆ jiE  (1.32) 

 

rotates anticlockwise and is left circularly polarised. 

 

 

Figure 1.26 Part (a) shows right-circular polarisation at some arbitrary point along the axis of 

propagation while part (b) shows elliptical polarisation. 

 

Finally, elliptically polarised radiation, of which linear and circular 

polarisations are special cases, results when the electric field vector E both rotates 

and changes in magnitude as it does so.  If we recall that 
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 tkzEE oxx  cos  (1.33) 

 

and 

 

   tkzEE oyy cos  (1.34) 

 

following Hecht (1998) we can derive an expression for the curve traced out by the 

tip of E .  Since the equation of the curve should not be a function of either position 

or time we can eliminate the  tkz   dependence starting with the expansion of the 

expression for yE  into 

 

     sinsincoscos tkztkz
E

E

oy

y
  (1.35) 

 

and combining it with oxx EE /  from Equation 1.33 to give 
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E
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E
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 . (1.36) 

 

It then follows from Equation 1.33 that 
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and so Equation 1.36 leads to 
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Finally, rearranging the terms yields 
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which is the equation for an ellipse making an angle   with the yxEE -coordinate 

system (see Figure 1.26) such that 
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If we set 0  or equivalently ,...2/5,2/3,2/   , then Equation 1.39 

may be reduced to  
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where the principle axis of the ellipse is aligned with the coordinate axis.  Figure 

1.27 shows various polarisation configurations where at 2/  or 2/3  the light 

would be circularly polarised if oyox EE  , however, in this example oxoy EE  .   

 

 

 

 

 

 

Figure 1.27 Various polarisation configurations. 
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state respectively and elliptical light is said to be in an E-state.  We will refer to these 

polarisation states further on.     

 

 

1.4.4 The Stokes Parameters 

 

So far we have considered the parameters of light in terms of the electric field 

vector E  with the most general case being light that is elliptically polarised.  The 

endpoint of E  was envisioned as continuously sweeping out an ellipse over a period 

equal to that of the propagating wave.  This time period is far too short to be detected 

and therefore in practice, average measurements are made over comparatively long 

time intervals.  This more modern representation of polarised light has its origins in 

1852 with the invention of the Stokes Vector by the physicist G. G. Stokes as a 

method of predicting the result of adding two incoherent beams (Shurcliff and 

Ballard, 1964).  He introduced four quantities that are only functions of observables 

of the electromagnetic wave and are called the Stokes Polarisation Parameters (e.g. 

Collett, 2005). 

 

To define these parameters we consider a system of four filters which each 

transmit half the light incident on them with the other half being discarded.  The first 

filter is isotropic and hence passes all polarisation states equally.  The second and 

third are linear polarisers whose transmission axes are horizontal and at 045  

respectively and the last polariser is a circular one which is opaque to L-states.  The 

transmission intensity of each of the filters is given by 0I , 1I , 2I  and 3I  and from 

these the Stokes parameters are defined as 

 

02II   (1.42) 

01 22 IIQ   (1.43) 

02 22 IIU   (1.44) 

03 22 IIV   (1.45) 
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where I is simply the incident irradiance on the system, and Q, U and V specify the 

state of polarisation.  The second parameter, Q, describes the tendency to obtain 

either a horizontal ( 0Q ) or a vertical ( 0Q ) P-state polarisation.  If the beam 

displays no preferential orientation with respect to the axis ( 0Q ), it may be 

elliptical at  45 , circular or unpolarised.  In a similar manner U implies a tendency 

for a P-state polarisation orientated at  45  when 0U  and 0U  respectively or 

neither when 0U  and finally V describes the preponderance of right-handedness 

( 0V ), left-handedness ( 0V ) or neither ( 0V ) (Collett, 2005).  

 

If we have the expression 

 

  )(cos)(ˆ)( ttzktEt xoxx   iE  (1.46) 

 

and  

 

  )(cos)(ˆ)( ttzktEt yoyy   jE  (1.47) 

 

with 

 

)()()( ttt yx EEE   (1.48) 

 

we can rewrite the Stokes parameters as (Hecht, 1970) 
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0   (1.49) 

T
y

T
x EEQ 2

0

2

0   (1.50) 

TyxEEU cos2 00  (1.51) 

TyxEEV sin2 00  (1.52) 

 

where xy   .  If the beam is unpolarised then 
T

oy
T

ox EE
22

 , neither 

averaging to zero because the amplitude squared is always positive.  In this case  
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Polarisation State 

 

Stokes Parameters Schematic Diagram 

Horizontal P-state  0,0,1,1  
 

 

 

 

Vertical P-state 

 

 

 0,0,1,1   

 

 

 

P-state at  45   0,1,0,1  

 

 

 

P-state at  45   0,1,0,1   

 

 

 

 

 

R-state 

 

 

 1,0,0,1  

 

 

 

 

 

L-state 

 

 

 1,0,0,1   

 

 

 

 

Table 1.3 The normalised representation of the Stokes parameters for various polarisation states. 

 

T
y

T
x EEI 2

0

2

0   but Q, U and V all equal zero, the latter two because both cos  

and sin  average zero independently of the amplitudes.  In some instances it may be 

convenient to normalise these parameters by dividing each one by I and hence using 

an incident beam of unit intensity.  The set of Stokes parameters for natural light 

using this normalised representation is given by  0,0,0,1 .  If the light is 
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horizontally polarised it has no vertical component and the parameters are  0,0,1,1  

and similarly for vertical polarisation we have  0,0,1,1  .  Table 1.3 shows 

examples of sets of Stokes parameters for different polarisation states.   

 

1.5 Imaging versus Interferometry 

 

The CMB E-mode polarisation signal is small and the B mode polarisation 

signal is even smaller.  The B mode signal will be at most ~0.1μK, so control and 

minimisation of systematic effects is essential (Hamilton et. al., 2008; Tucker and 

Timbie, 2008).  The choice of using an interferometer over a traditional imaging 

system for cosmic microwave background measurements lies mainly in the potential 

control of these systematic effects, which in certain circumstances are more 

manageable in interferometers.  In the past, interferometers have proven to be 

powerful tools for CMB observations with instruments such as CAT (Baker et al., 

1999), VSA (Dickinson et al., 2004), DASI (Halverson et al., 2002) and CBI 

(Readhead et al., 2004a) making measurements of the temperature anisotropies at 

centimetre wavelengths.  DASI was also the first instrument to detect the CMB 

polarisation (Kovac et al., 2002, Leitch et al., 2005) and CBI has done the same at 

smaller angular scales (Readhead et al., 2004b, Cartwright et al., 2005). 

 

The simplicity of an interferometric optical system eliminates numerous 

systematic problems that plague imaging optical systems.  For example, instead of a 

single reflector antenna the interferometers discussed in this thesis use arrays of 

corrugated horn antennas which have extremely low sidelobes and easily calculable, 

symmetric beam patterns.  The lack of reflections from optical surfaces (in front of 

the horns) means a reduction in the spurious instrumental polarisation that is 

unavoidably induced by imaging optical systems.  There are a number of additional 

factors that must also be taken into account when choosing which system best suits 

the particular requirements of an instrument; angular resolution is one of these 

factors.  For a monolithic dish with a diameter equal to the length of a two-element 

interferometer baseline, the interferometer has an angular resolution approximately 

twice that of the monolithic dish (Ali et al., 2003).  The reason for this is due to the 
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fact that for acceptable sidelobe performance, the edge illumination of the monolithic 

dish must be tapered considerably, which reduces the effective aperture diameter.  

The effective edge taper of the interferometer is much smaller and so the effective 

diameter is almost equal to the length of the baseline, and so a higher resolution is 

obtained. 

 

Single dish imaging systems also require some form of chopping by either 

steering the primary mirror or nutating the secondary mirror (Timbie and Tucker, 

2008), however, interferometers do not require this rapid chopping and therefore the 

time constant of the bolometers used can be relatively long.  Interferometers also 

provide direct 2D imaging and do not need the rapid scanning of the beam on the sky 

as imagers do and therefore, for ground-based experiments, the signal from an 

interferometer is significantly less affected by the atmosphere (Church, 1995). 

 

If we consider an interferometer with n apertures there are 2/)1( nn  

baselines (i.e. the n beams can be combined in 2/)1( nn  pairs).  However, the n 

beams can also be combined into a single beam, which results in a multiplexing 

advantage and therefore, since the photon signal-to-noise ratio is increased, detectors 

with a lower sensitivity can be used.  Also, by having all the beams traverse 

symmetric paths, unmeasured path changes in the optics due to temperature 

variations for example, are minimised.  In order to accomplish multiplexing, each 

pair of telescope beams must be modulated at a unique frequency so the signal from 

the telescope pairs can be recovered.  With an array of ND detectors, there is also an 

increase in observation speed since there are now effectively many interferometers 

operating simultaneously. 

 

Hu et al. (2003) have studied systematic effects in imaging polarisation 

experiments, something which Bunn (2007) has extended as well as performing 

similar calculations for interferometers.  Table 1.4 outlines a variety of systematic 

errors and how they are managed in imaging and interferometric instruments.  The 

relative importance of these effects in interferometric systems differs from imaging 

systems with some sources of error in imaging systems being dramatically reduced 

in interferometers (Timbie and Tucker, 2008).  



 

  49 

A Comparison of Systematic Effects 

Systematic Effect Imaging System Solution Interferometer Solution 

Cross-polar beam response Instrument rotation and 

correction in analysis 

Instrument rotation and non-

reflective optics 

Beam ellipticity Instrument rotation and small 

beam width 

No T to E and B leakage from 

beams; instrument rotation 

Polarised sidelobes Correction in analysis Correction in analysis 

Instrumental polarisation Rotation of instrument and 

correction in analysis 

Clean non-reflective optics 

Polarisation angle Construction and 

characterisation 

No T to E and B leakage from 

beams; construction and 

characterisation 

Relative pointing Rotation of instrument and dual 

polarisation pixels 

No T to E and B leakage from 

beams; instrument rotation 

Relative calibration Measure calibration using 

temperature anisotropies 

Detector comparison not 

required for mapping or 

measuring Q and U 

Relative calibration drift Control scan-synchronous drift 

to 10
-9

 level 

All signals on all detectors 

Optics temperature drifts Cool optics to ~3K and stabilise 

to <μK 

No reflective optics 

1/f noise in detectors Scanning strategy and phase 

modulation/lock-in 

Instant measurement of power 

spectrum without scanning 

Astrophysical foregrounds Multiple frequency bands Multiple frequency bands 

Table 1.4 A comparison of systematic effects and the method used to overcome them using both an 

imager and an interferometer (Tucker and Timbie, 2009). 

 

For example, interferometry solves many of the problems (see Table 1.4) 

related to mismatched beams and pointing errors raised by Hu et al. (Hu et al., 2003) 

since the Stokes parameters are measured directly without differencing the signal 

from separate detectors.  An interferometer measures the Stokes parameters by 

correlating the component of the electric field captured by each antenna with the 

component from all of the other antennas as outlined in sections 1.4.1. and 1.4.4.  

Differential pointing errors and different beam shapes for different antennas do not 

cause leakage from T into E- and B-modes (Tucker and Timbie, 2009).  Antenna 

pattern differences do cause distortion of the observed polarisation field so errors in 
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modelling beam shapes and pointing causes mixing between E and B.  Coupling 

between intensity and polarisation will also arise if the beams have cross-polar 

contributions.  Therefore, beam mismatches are less of a worry than cross-

polarisation, the reverse of which is true for an imaging system.  An interferometer is 

inherently less sensitive to beam ellipticity and in its imaging mode, the very 

symmetric patterns of the corrugated conical feed horns also minimises the effect 

(Kaplan and Delabrouille, 2002). 

 

A significant challenge in CMB polarisation measurements is the separation 

of the very weak B-modes from the much stronger E-modes.  Unless a full-sky map 

is made with infinite angular resolution, the two modes leak into each other (Lewis 

et al., 2002, Bunn, 2003).  However, it has been shown (Park et al., 2003, Park and 

Ng, 2004) that an interferometer can separate the E- and B-modes more cleanly than 

an imaging system, although realistic calculations and simulations remain to be done 

(Timbie and Tucker, 2008).  Separation of these modes requires precise knowledge 

of the orientation of the polarisation and errors in this angle will mix Q into U and 

therefore E-modes into B-modes.  To keep this mixing below the 0.003% level the 

error in angle must be kept below 0.003 radians or 0.2 degrees, something which is 

feasible by careful construction and characterisation of the system (Tucker and 

Timbie, 2008).  Also, like imaging systems, foregrounds also pose a problem for 

interferometers, however, the removal of these signals can be done in visibility 

space, something which has been studied by Bunn (2003). 

 

 

1.6 The Millimetre-Wave Bolometric Interferometer 

 

1.6.1 Overview of the MBI Project 

 

The Millimetre-Wave Bolometric Interferometer (MBI) is a project in which 

the THz Optics Research Group at NUI Maynooth are involved in collaboration with 

the National Aeronautics and Space Administration (NASA), Lawrence Livermore 

National Laboratories, Brown University, Cardiff University, Northwestern 
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University, the University of California at San Diego, the University of Richmond 

and the University of Wisconsin-Madison.  While it was envisaged that a 64-element 

instrument would eventually be built once the concept of bolometric interferometry 

was proved with a 4-element prototype, a new instrument called the Q U Bolometric 

Interferometer for Cosmology (QUBIC) is now being designed.  This instrument will 

combine the techniques used by both MBI-4 and BRAIN (section 1.7.1) with the 

first module expected to be built by the summer of 2011.    

 

A number of multiple-aperture optical telescopes are now operating or are 

under construction including CHARA, a six telescope interferometric array, and the 

Palomar Testbed Interferometer (PTI), a 110m baseline stellar interferometer.  These 

ground based telescopes have served as demonstrations of the technologies needed to 

build NASA‟s Space Interferometry Mission (Boker and Allen, 1999), which will 

accurately determine the positions and distances of stars.  However, relatively few 

demonstrations of the relevant technologies have occurred in the far-infrared and 

none have been carried out at millimetre and submillimetre wavelengths even though 

imaging interferometry forms the basis for several planned and proposed NASA and 

ESA missions.  For example, the Terrestrial Planet Finder (TPF) will detect nearby 

stars using infrared interferometry and ESA is planning a similar mission called 

DARWIN (Darwin website) to be launched in 2015.  Two other interferometer 

missions are under consideration by NASA, the Submillimetre Probe of the 

Evolution of Cosmic Structure (SPECS) and a possible predecessor to SPECS called 

the Space Infrared Interferometric Telescope (SPIRIT). 

 

 

1.6.2 Science with MBI 

 

CMB Polarisation 

 

Cosmology is now a data-rich, high precision area of astrophysics with a 

standard model that has been well constrained by a variety of observations such as 

those by COBE (Smoot et al., 1992) and WMAP (Spergel et al., 2008), and many 

more ground-based and balloon-borne experiments in between (section 1.3.2).  
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Current telescopes such as PLANK and QUIET will also provide data to help 

constrain the cosmological model even further.  Together with measurements of the 

temperature anisotropy and spectral information of the CMB, observations of the 

polarisation are now beginning to rule out some models of inflation and 

measurements of the low energy CMB are probing physics at the highest energies 

ever studied.  Future polarisation measurements will bring into sharper focus our 

understanding of the early universe (Tucker and Timbie, 2009).  As described in 

section 1.3.1, E- and B-mode polarisation components probe different physical 

phenomena with the search for B-mode polarisation being a direct search for 

primordial gravitational waves produced during an inflationary epoch.  If this tensor 

B-component is detected we will have a direct probe of the universe at far earlier 

times than any other method can provide.  The ration of tensor to scalar perturbations 

is denoted by the quantity ST / .   

 

Other than the signature of the primordial tensor perturbations which were 

imprinted on the CMB at the time of last scattering and are a relic of the extremely 

early universe, the dominant source of B polarisation in the CMB is expected to be 

gravitational lensing of E modes by large scale structure, a contribution produced at 

a much later time. 

 

Initial measurements of the E-type polarisation have already been made 

(Brown et al., 2009) and upper limits on B-type polarisation have been established.  

The angular resolution and observing strategy of MBI are chosen to study CMB 

polarisation at l values from ~2 to 500.  The ultimate goal is to measure three 

features expected in the B-mode power spectrum: the peak at l ~ 5 caused by 

reionisation, the peak near l ~ 100 that arises from the last scattering surface and the 

low l shoulder of the gravitational lensing signal which peaks near l ~ 1000.    

 

 

Galactic Studies 

 

It is envisaged that MBI will also be used to carry out galactic observations, 

for example mapping magnetic fields in dense regions of star formation by 

measuring the wavelength-dependant polarisation properties of dust.  Observations 
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of the thermal component of the dust radiation have revealed that the wavelength-

dependence of the polarisation is quite strong.  There is only a small amount of data 

which focuses specifically on molecular cloud envelopes but it provides a consistent 

picture of a degree of polarisation that falls with wavelength in the far-infrared and 

then begins to rise in the submillimetre, near 350μm in wavelength.  These results 

have been explained using a model in which the efficiency of grain alignment is 

correlated with exposure to radiation from both embedded stars and external sources 

(Hildebrand et al., 1999).  The importance of understanding the properties of grain 

alignment lies in the fact that studies of polarised dust emission provide one of the 

few methods of mapping the magnetic fields mentioned above.  Without the physical 

understanding it is difficult to determine, for any given line-of-sight, which specific 

regions are being sampled, within an extended, heterogeneous and complex 

molecular cloud (Ali et al., 2003). 

 

Summary 

 

MBI-4 is a prototype instrument to demonstrate and prove the concept of 

using a bolometric interferometer to measure the polarisation of the CMB.  However, 

if the large MBI-type instrument (such as MBI-64 or QUBIC) with a baseline of 

approximately 6m as described by Ali et al. (2003) is constructed it should be 

possible to address the following scientific goals: 

 

 Characterise the polarization of the CMB.  The instrument would 

simultaneously measure the temperature and polarisation anisotropy of the 

CMB at angular scales from 30′ to 40″.  

 Characterise clustering in the far-infrared background (FIRB). 

 Measure and map magnetic fields near the centre of the galaxy by measuring 

the Faraday rotation of synchrotron radiation. 

 Measure the wavelength-dependant properties of dust polarisation. 

 Image the Sunyaev-Zeldovich (SZ) effect in clusters of galaxies. 

 Spectrally separate the kinetic and thermal SZ effects. 

 Search for CMB and point source foregrounds. 
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MBI will serve as a test-bed for a possible future space-based interferometer 

mission to measure the polarisation of the CMB.  NASA has identified measuring 

the polarisation of the CMB as a high-priority goal.  Several members of the MBI 

team are leading one of the mission-concept studies for the Beyond Einstein Inflation 

Probe, for which MBI is serving as a pathfinder.  The characterisation of polarised 

foregrounds at millimetre wavelengths is essential to the planning of the Beyond 

Einstein Inflation Probe as indicated by NASA, the US National Science Foundation 

(NSF) and the US Department of Energy (DOE) task force planning for the next 

generation CMB polarisation mission.      

 

 

1.7 The QU Bolometric Interferometer for Cosmology 

 

1.7.1 Overview of the BRAIN and QUBIC Projects 

 

BRAIN (Background RAdiation INterferometer) is another bolometric 

interferometer project run by a consortium from Europe and the US.  To reduce the 

impact of atmospheric emission (Hanany and Rosenkranz, 2003) the Concordia 

station in Dome-C was chosen as the best site for observations.  This station is a 

French–Italian base placed on the Antarctic plateau at ~1100Km from both Mario 

Zucchelli and Dumont D‟Urville stations where low humidity and absence of wind 

create the best conditions for astrophysical observations (Polenta et al., 2007).  A 

pathfinder for the instrument was built and brought to the observation site with the 

aim of testing the cryogenic system.  Short observations of the atmospheric emission 

were made for a few elevations and the acquired data fit very well the secant law as 

expected for atmospherical emission, however, measurements repeated at different 

azimuth and during different days would be needed to obtain a statistically 

significant estimation of the transparency of the atmosphere at 145 GHz. The 

BRAIN pathfinder proved the concept of cryogenics needed for measurements of the 

CMB at Dome C, much the same as the MBI-4 instrument was built as prototype to 

test the concept of bolometric interferometry.  It was decided by both groups, the 

MBI team and the BRAIN team, to collaborate on a project, one that would use the 
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findings of both MBI-4 and the BRAIN pathfinder to design and create one state-of-

the-art bolometric interferometer known as the Q U Bolometric Interferometer for 

Cosmology (QUBIC).  Further details of the instrument and the design and analysis 

of its optical system are given in Chapter 4.  

 

1.7.2 Science and Challenges with QUBIC 

 

The scientific objective of the QUBIC instrument is very similar to that of 

MBI and BRAIN, that is, to generate a complete polarisation map of the cosmic 

microwave background (in a small section of sky), and in particular to measure the 

B-type polarisation generated by gravitational wave perturbations.  Although 

detection of the lensing signal would not have the same revolutionary importance as 

detection of the tensor signal, it may provide powerful corroborative evidence of our 

understanding of the physics of CMB polarisation, and would be a valuable 

discovery in itself. 

 

 

Figure 1.28 This figure, from Bennett et al., (2003b) shows the rms anisotropy as a function of 

frequency from the CMB (red line) and three known sources of foreground emission: synchrotron, 

free-free, and thermal dust emission. The composite galactic emission for two sky cuts, retaining 77% 

and 85% of the sky respectively, are shown as dashed lines. The five WMAP radiometer bands are 

indicated in the background. 
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Due to the extremely small amplitude of the B mode signal its detection will 

pose formidable although not insurmountable challenges.  The sensitivity required 

should be achievable by observing for approximately one year with around 10
3
 

detectors, however foregrounds (see Figure 1.28) and systematic effects will prove to 

be the most difficult challenges.  With regards to foregrounds, known sources of 

polarised foreground emission such as galactic dust and synchrotron radiation are 

expected to be larger than the cosmological signal.  However, the experience of past 

experiments such as WMAP suggest that with multi-frequency data it will be 

possible to characterise and remove these unwanted foreground signals from the 

data.  The result from the PLANCK satellite will be very important for background 

removal. 

 

Systematic errors are the other chief challenge and any experiment hoping to 

characterise the CMB B-mode polarisation will require unprecedented control of 

systematic effects.  In the past, interferometry has proved to be a powerful technique 

for reducing systematic errors in CMB experiments and the QUBIC team believe 

that the potential for improved control of the systematics in a bolometric 

interferometer is one of the main reasons for exploring this option for characterising 

the CMB B-modes. 

 

With such sensitivity and characterisation of systematic effects required it is 

essential that the system as a whole is fully understood.  The THz Optics group at 

NUI Maynooth were involved in the design and modelling of the optical system 

which plays a vital role in the successful operation of the instrument.  Chapter 6 

describes the instrument in more detail and analyses a number of possible optical 

system for the beam combiner.  

 

 

1.8 Synopsis and Thesis Outline 

 

In this chapter I have given an introductory overview of the theory of the 

CMB, its origin and the importance of making accurate measurements of the 

extremely faint polarisation properties.  I have described some of the best known 
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experiments to date and outlined the measurements that are yet to be made.  Since 

this thesis is concerned with bolometric interferometers that will be used to measure 

the polarisation of the CMB I have also outlined the basic formalism of 

interferometry and polarisation.  This was followed by a look at imaging versus 

interferometry and the systematic effects that can occur with these instruments.  I 

have described the MBI-4 and QUBIC experiments, the optics of which I have been 

involved in analysing.  The difficulty and importance of measuring CMB modes is 

the motivation behind the accurate optical characterisation that forms the basis for 

much of the rest of this thesis. 

 

Chapter 2 introduces the analytical tools used throughout this thesis for 

modelling spatially coherent beam propagation in quasi-optical systems.  We begin 

by looking at ray tracing, a technique in which diffraction effects are neglected but 

which proves to be very useful in the initial design of an optical system.  This is 

followed by a discussion on Fresnel diffraction analysis and Gaussian beam mode 

analysis, both of which assume scalar representations of the field and take diffraction 

into account.  In the case of the Fresnel approach, an example consisting of a circular 

aperture with a stop is provided, while for Gaussian beam modes a double-slit 

interferometer is considered.  The final technique discussed in Chapter 2 is physical 

optics.  Unlike the previous techniques, this method of analysis considers the full 

vector description of the field and provides a very accurate tool for modelling optical 

systems.  Chapter 2 finishes with a description of the software used to carry out the 

work in this thesis.  I introduce MODAL, a software package developed at NUIM 

and which was used most extensively throughout this work.  

 

In Chapter 3 we consider the Millimetre-Wave Bolometric Interferometer 

(MBI) and the work done on the optical design of the beam combiner.  We begin by 

looking at the MBI-4 instrumentation before examining in detail the design of the 

optical system.  A first approximation using geometrical optics is presented before a 

preliminary investigation of the diffraction effects that take place in the beam 

combiner. 

   

Chapter 4 discusses the electromagnetic modelling of horn antennas and 

waveguides.  We begin by looking at smooth-walled horn antennas and their 
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implementation as detector horns in MBI-4.  This is followed by an analysis of the 

phase-flattening lenses used within the MBI-4 instrument and the effect of using 

these lenses with different horn designs.  Corrugated conical horn antennas are also 

considered in this chapter where their beam patterns are analysed and compared to 

those of the smooth-walled horn.  A scattering matrix approach to analysing quasi-

optical system is discussed and used to investigate the performance of the back-to-

back corrugated horns of MBI-4.  The concept of extending the mode-matching code 

to include rectangular-to-circular transitions is investigated with an example given.  

Finally, this chapter looks at the effects of waveguide arrays on the individual beam 

patterns of elements within those arrays.  This is important in terms of MBI and 

QUBIC where the focal plane will contain many detector elements.        

 

Chapter 5 investigates the MBI-4 instrument in more detail.  A full scattering 

matrix describing the beam combiner is calculated using physical optics and 

mechanical tolerances are analysed.  The frequency dependency of the instrument is 

also considered.  Finally, Chapter 5 simulates lab measurements that were taken with 

the MBI-4 instrument in 2010.  

 

Chapter 6 is concerned with the Q and U Bolometric Interferometer for 

Cosmology (QUBIC), an evolution of the MBI-4 project.  We begin by looking at 

the science that QUBIC will carry out and the challenges it will face.  This is 

followed by a description of the instrument and an analysis of the optical beam 

combiner.  Three designs for the beam combiner are considered, two of which 

contain mirrors while the third is composed of lenses.  In all three cases a physical 

optics analysis is carried out and the fringe patterns at the image plane examined.  

Commercial physical optics packages do not yet include the option of lenses and so 

extensive use was made of the in-house software MODAL.   

 

Chapter 7 looks at the overall conclusions drawn from the work in this thesis.  

The most significant results are highlighted and possible future work in both the 

analysis of optical systems and software is discussed.         
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Chapter 2 

Analytical Tools for Modelling 

Quasi-Optical Systems  
 

2.1 Introduction 

 

This chapter is concerned with a detailed description of the techniques that 

are appropriate for modelling spatially coherent beam propagation in quasi-optical 

systems.  Some examples of the applications of these techniques to analyses 

performed as part of the project work for this thesis will also be described.  To begin 

with, it is appropriate to give a brief explanation as to what quasi-optics or long 

wavelength optics analysis actually entails. 

 

Quasi-optics deals with the propagation of a beam of radiation that is 

reasonably well collimated but has relatively small extent, in wavelengths, in the 

direction transverse to the axis of propagation (Goldsmith, 1982).  It spans the 

middle ground between geometrical optics, where the wavelength is assumed to be 

zero, and diffraction-dominated propagation, where at some plane along the optical 

axis the beam width is approximately equal to the wavelength.  Quasi-optics 

therefore includes the situation of a beam of radiation whose diameter is only 

moderately large when measured in wavelengths (approximately 10 to 100).   

 

For different regions of the electromagnetic spectrum, different specialised 

approaches to understanding the physics involved in propagation are appropriate.  

Metallic conducting and dielectric waveguides are often used at microwave 

frequencies to guide an electromagnetic beam, but these structures become lossy at 

high frequencies because of the materials involved.  The power loss per unit length 

of dielectric materials generally increases at least as fast as linearly with frequency, 

but loss proportional to the square of frequency is found in the millimetre and 

submillimetre range (Goldsmith, 1982).  For a rectangular metallic waveguide the 

loss increases with frequency to the power of 1.5.  This is where quasi-optics 

provides a low-loss beam guide solution by taking advantage of the essentially 

lossless nature of propagation in free space.  Lenses and mirrors are still used for 
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focusing the propagating beam, but they are relatively well separated from each 

other and are quite thin so that the loss per unit length over which the beam travels is 

greatly reduced. 

 

Four optical analytical techniques were employed in the work described in 

this thesis, these being: geometrical optics (ray tracing), Fresnel diffraction, 

Gaussian beam modes and physical optics (electromagnetics).  In the next section we 

begin by looking at ray tracing.  

 

 

2.2 Ray Tracing Analysis 

 

2.2.1 Background 

 

In his famous book, Opticks (Newton, 1979), first published in 1704, Isaac 

Newton described light as a stream of particles or corpuscles called a ray.  This 

satisfactorily explained rectilinear propagation and allowed him to develop theories 

of reflection and refraction.  Huygens also had ideas of how light could be 

represented by a ray.  He postulated that light is propagated as a wavefront and that 

at any instant, every point on the wavefront is a source of secondary wavelets, which 

propagate outwards as spherical waves.  These secondary wavelets then combine to 

form a new wavefront (see for example, Smith and King, 2000).  A ray can then be 

drawn as the normal to the wavefront (see Figure 2.1). 

 

 

 

 

 

 

Figure 2.1 Every point on the old wavefront becomes a source of Huygens‟ wavelets. These then 

recombine to form the new wavefront.  The ray can then be drawn as the normal to the wavefront. 
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We can also use Huygens‟ wavelets to understand the processes of reflection 

and refraction, both of which allow us to analyse almost any optical system.  The ray 

tracing in this thesis was carried out using a program called ZEMAX (see section 

2.6), which enables a quick and accurate analysis using both of the above properties 

of radiation.  The technique does not take diffraction into account.  However, ray 

tracing is very useful if the wavelength is much less than the size of the components 

in the optical system, particularly in the initial design stages and ZEMAX (one of the 

industry standards for ray tracing) has a well developed optimisation facility.     

 

2.2.2 Ray Tracing Through an On-Axis Cassegrain System 

 

The purpose of this section is to present an example of how ZEMAX may be 

used to analyse an optical system.  The example given is one of the QUaD (Q and U 

Extra-galactic Sub-mm Telescope) Cassegrain telescope system (e.g. O‟Sullivan et 

al., 2008).  It consists of a primary collecting mirror, a secondary mirror, two 

focusing lenses and a waveplate (Piccirillo et al., 2001).  It is the layout of the 

primary and secondary mirrors that defines the system as being Cassegrain.  QUaD 

was used for measuring the polarisation properties of the CMB.  This type of system 

is implemented in many astronomical optical telescopes, including MBI.  The radius 

of curvature, thickness and type of material was entered into the Lens Data Editor of 

ZEMAX (see section 2.6) for each surface contained in the system as shown in 

Figure 2.2.  

 

 

 

 

 

 

 

Figure 2.2 Lens Data editor of ZEMAX.  This window contains the data about each surface in the 

Cassegrain system. 
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The apodisation of the primary mirror was selected (in this case it is 

uniformly illuminated) and then the rays were propagated.  They travelled from 

infinity to the primary mirror where they were reflected onto the secondary mirror.  

The light then passed through the two lenses, followed by a waveplate and on to the 

image plane.  The refractive index of both lenses was taken to be 2.2, while for the 

waveplate (present in the initial design) the refractive index was assumed to be 1.6. 

 

  The hyperbolic convex secondary mirror has one focus coincident with the 

focus of the coaxial concave primary mirror.  It is often convenient to arrange the 

second focus to lie at the pole of the primary mirror.  The rays pass through an 

aperture at this focus point where the light can be viewed or recorded.  The diagram 

below (Figure 2.3) shows the layout of the QUaD Cassegrain system complete with 

the rays, which appear to be incident from infinity.  The image is then obtained at the 

image plane. 

 

 

 

 

 

 

 

 

Figure 2.3 A two-dimensional layout of the Cassegrain system as produced by ZEMAX.  The rays 

can be seen striking the primary mirror from infinity before being reflected from the secondary.  They 

then pass through the aperture at the pole of the primary where image can be viewed. 

 

ZEMAX
 
also allows the generation of a point-spread function at the image plane as 

shown in Figure 2.4 and the viewing of a three-dimensional model of the system 

(Figure 2.5).  
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Figure 2.4 Point-spread function at the image plane of the Cassegrain system above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 A 3D model of the Cassegrain telescope as generated in ZEMAX. 

 

 

This example has shown the relative ease with which ray tracing can be done 

and also the power of ray tracing when designing and analysing optical systems.  

The question of whether the optical components are aligned and positioned correctly 

is solved immediately, and the focal points of the system can be found.  It is 

therefore useful as a visual aid when designing quasi-optical systems but for long 
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wavelength diffraction-limited systems, it must be used in conjunction with other 

analysis techniques such as Gaussian beam modes or Fresnel diffraction, which will 

be the topic of the following section. 

 

 

2.3 Fresnel Diffraction Analysis 

 

2.3.1 Background 

 

Augustin Jean Fresnel (1788-1827) introduced an ad-hoc theory to deal with 

diffraction in the near field region of a propagating beam (Smith and King, 2000).  

This region extends right up to the diffracting element itself and is known as the 

Huygens-Fresnel Principle.  According to the simple Huygens‟ Principle as 

discussed in section 2.2.1, at any instant every point on a primary wavefront is a 

continuous emitter of secondary wavelets radiated uniformly in all directions.  

Experimentally however, there was no wave found travelling back towards the 

source.  Therefore, the theoretical model had to be modified to change the radiation 

pattern of the secondary emitters, which invoked an obliquity factor given by, 

 

              cos1
2

1
)( K . (2.1) 

 

This expression was actually derived theoretically by Kirchhoff, Fresnel simply 

conjectured about its form (Hecht, 1998).  The obliquity factor has its maximum 

value, 1)0( K , in the forward direction and also dispenses with the backward 

wave, since 0)( K .  Having solved the problem of the secondary wavelets 

travelling backwards towards the source, the Fresnel Integral, described next, 

(combined with the obliquity factor) is the most commonly used approach to 

analysing Fresnel diffraction of optical components in quasi-optical systems. 
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2.3.2 The Fresnel Integral  

 

With reference to the co-ordinate system shown in Figure 2.6, consider an 

aperture in an opaque screen that is illuminated by monochromatic light of 

wavelength .  The observation plane is positioned at a distance z along the axis 

normal to the aperture.  From the Huygens-Fresnel principle, the field amplitude at 

the point  11, yx  may be described by (Goodman, 1968), 

 

               
 

  

0

00

01

01
0011 cos1

exp
,

1
,

S

dydx
r

jkr
yxU

j
yxU 


 (2.2) 

 

where  cos1  is the obliquity factor with   being the angle between the unit 

vector perpendicular to the aperture, n̂, and the unit vector parallel to the vector 01r , 

01r̂ .  The value of the obliquity factor lies between zero and one, which implies that 

there is no backward wave motion, and causes the amplitude per unit area to 

decrease as the viewing angle increases.   yxU ,  is a scalar function at the point 

 yx,  representing one of the field components at that point assuming all other 

components can be treated in the same manner (Goodman, 1968). 

 

 

 

 

 

 

 

 

Figure 2.6 Co-ordinate system for the definition of the Fresnel integral. 

 

As described earlier, Equation 2.2 is derived from the fact that each point on 

the aperture plane is a source of Huygens‟ wavelets.  Each source of spherical waves, 

 00 , yx , is weighted with the field associated with that point,  00 , yxU .  At the 
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observation plane, if analysis is restricted to an area close to the z-axis and it is 

assumed that z is much greater than the maximum linear dimension of the aperture, 

then two approximations may be assumed.  The first is that 01r  is approximately 

equal to z and the second is that cos  is approximately equal to one.  Taking these 

into account, the field distribution at the observation plane can be re-expressed as, 
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We see that the 01r  term in the exponential is not replaced with z, since the resulting 

errors will be multiplied by a large number k   /2  and consequently phase 

errors much greater than one radian may be generated.  The famous Fresnel 

assumption describes how the phase term in Equation 2.3 may be approximated in 

relation to the distance z between the observer plane and the input plane.  The 

distance 01r  between a point ),,( 0000 zyxP , on the input plane and a point 

),,( 1111 zyxP , on the output plane is given by, 
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on setting 00 z  at the aperture plane and zz 1 .  Expanding 01r  using the binomial 

expansion yields to first order that, 
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When the distance z is sufficiently large for this approximation to be an accurate one 

(i.e. /2 2az  ), the observer is said to be in a region of Fresnel diffraction, which 

results in the well-known Fresnel approximation for the field distribution, 
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However, as z becomes larger, the higher order terms in the binomial expansion can 

no longer be neglected (Goubau, 1969) and the Fresnel integral breaks down.  In that 

case, Equation 2.6 is then best re-expressed in terms of a spherical co-ordinate 

system.   

 

When using Fresnel integrals to analyse a full quasi-optical system, a double 

integral must be performed numerically at each optical phase transforming 

component to evaluate the field at the next component.  This can prove very time-

consuming computationally and it is therefore usually the case that Fresnel integrals 

are only used in the analysis of a single component of the system.  This will provide 

a complete description of the field at this component.  As an example, a uniformly 

illuminated circular aperture with a stop at its centre (see Figure 2.7) was analysed 

using Fresnel integrals.  This is a simple model of a Cassegrain telescope illuminated 

by a far field source on the axis of the telescope.  Since MBI is a Cassegrain system 

this example was carried out as part of the work for this thesis.     

 

 

 

 

 

 

 

 

 

    

Figure 2.7 Opaque screen with a circular aperture and a stop at its centre. 

 

The graphs shown in Figures 2.8, 2.9 and 2.10 are reconstructions of the field 

where λ = 1mm, the circular aperture had a radius of 10mm and the stop a radius of 

2mm.  Figure 2.8 shows the field at the plane of the aperture, Figure 2.9 shows the 
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field after being propagated a distance of 20mm (20 ) and Figure 2.10 is the far 

field pattern, with a propagation distance of 200mm (200 ), which is seen to have 

an approximate airy pattern as expected (although without deep nulls and higher 

sidelobe (diffraction ring) levels.  The fields are similar to those obtained using a 

Gaussian beam mode analysis of the same system as carried out by Curran (2002).    

 

 

 

 

 

 

 

 

Figure 2.8 The amplitude of the field at the plane of the aperture and stop.  The Fresnel field is the 

field assumed at the plane of the aperture while the field constructed using Gaussian beam modes, 

discussed in section 2.4, is shown for comparison. 

 

 

 

 

 

 

 

 

 

Figure 2.9 The amplitude of the field 20mm from the plane of the aperture and stop as generated 

using Fresnel integrals. The field generated using Gaussian beam modes (section 2.4) is shown for 

comparison. 
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Figure 2.10 The amplitude of the field 200mm from the plane of the aperture and stop as generated 

using Fresnel integrals.  The field generated using Gaussian beam modes (section 2.4) is shown for 

comparison. 

 

 

2.4 Gaussian Beam Mode Analysis 

 

2.4.1 Background 

 

Gaussian beam mode theory, which was developed for the analysis of laser 

cavities in the 1960‟s, was found to be both conceptually and computationally 

superior to diffraction integral techniques, such as the Fresnel Integral described in 

the previous section, in the analysis of millimetre/submillimetre-wave quasi-optical 

systems (Siegman, 1986).  Consider a monochromatic spatially coherent beam 

represented by the complex scalar field  zyxE ,, .  This beam can be considered to 

be composed of a linear sum of independently propagating complex modes 

represented by  zyxi ,, :  
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where iA  are the mode coefficients and each mode has a transverse amplitude 

distribution whose envelope is a Gaussian function (Lesurf, 1993).  These modes are 

solutions to the wave equation appropriate to quasi-optical propagation and so retain 

their form as they propagate.    In the next section I discuss the Gaussian beam mode 

sets most commonly used and show how they can be used in a computationally 

efficient method for modelling the propagation of diffracting free-space beams.   

 

 

2.4.2 Derivation of Gaussian Beam Modes 

 

In the derivation of Gaussian beam modes (here I follow that of Siegman, 

1986) two important assumptions are made.  Firstly, the radiation is assumed to be 

moving as a paraxial beam whose cross-sectional size is not so large that it can be 

treated as an infinite plane parallel wave.  By „paraxial‟ we mean that the beam is 

essentially moving along a given axis but with some diffraction taking place, so the 

beam spreads out into a small opening angle.  Secondly, we assume the radiation can 

be represented as a scalar field. 

 

The Gaussian beam modes are derived by finding modal solutions to the 

electric and magnetic wave equations in free space appropriate to paraxial 

propagation.  It is always true that (Martin and Lesurf, 1978), 
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and if the source of the radiation is monochromatic, then the wave equation for the 

case of the electric field reduces to the Helmholtz equation, 
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where,  /2k .  Assuming the electric field may be written in terms of 

independent scalar distributions ),,( zyxE , the three components of the electric field 

may be treated as separate scalar solutions of the wave equation and therefore 

Equation 1.8 may be written in the general form, 

 

            022  EkE  (2.11) 

 

where now E represents some typical component of the field.  If a wave is 

propagating in the z-direction then a solution of the form, 

 

            )exp(),,( jkzzyxE   (2.12) 

 

is appropriate, where ),,( zyx  is a slowly varying function with respect to z.  If we 

substitute this into Equation 2.11 we obtain, 
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or in polar co-ordinates, 
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where  varies so slowly with respect to z that its second derivative can be 

neglected (paraxial approximation).  The solutions to these equations are a set of 

modes analogous to the set of modes that characterise the propagation of radiation in 

a metallic waveguide.  The precise nature of the modal solutions clearly depends on 

the co-ordinate system chosen. 

 

For a system described in terms of cylindrical polar co-ordinates, the solution 

to the wave equation can be written in terms of a set of modes called Laguerre-

Gaussian modes, which are given by, 
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and 
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with  
nL  being an associated Laguerre polynomial of order n and degree  in 

 (Gradshteyn and Ryzhik, 1980).  In this case the full set of c

n  and s

n  are 

orthonormal.     

 

For a cylindrically symmetric system the Laguerre-Gaussian mode-set can be 

written as, 
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where 0nn    and  0

nL  is a normalised zeroth order Laguerre polynomial of 

degree n.  R, the phase radius of curvature, and W, the beam radius, are slowly 

varying functions of z and their evolution with z will be discussed in the next section.  

n  is called the “phase slippage”.  It is mode dependent and is given by the 

equation, 
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where z is the distance from the waist (where the beam is narrowest) along the axis 

of propagation.  Figure 2.11 shows the amplitude distributions of the lower order 

modes given by Equation 2.17.  The zeroth order mode has simply a Guassian 

profile while the increasing complexity of the higher order modes is apparent.  As 

Equation 2.17 is the symmetric subset of the associated Laguerre-Gaussian beam 

mode set there is only variation in the amplitude along r, the radial distance from the 

axis, with the electric field reversing directions in successive annular rings.  The 

more complicated structure of the associated Laguerre-Gaussian of Equation 2.16 

means the modes also vary with  ; the annular rings have azimuthal nulls as   

varies between 0 and 2 .  Examples of associated Laguerre-Gaussian modes where 

the Laguerre polynomials 

nL  of higher degrees ( ) and orders ( n ) are used are 

shown in Figure 2.12.  As the degree and order of the polynomial increases, more 

nulls and increasing complexity in the structure is introduced.  Note that it is the 

)cos( m  term which modulates the field and the effect of choosing the )sin( m  

mode instead of the cosine term is just to change the orientation of the field by 

m2/ . 

Figure 2.11 Laguerre modes of orders 0, 1, 2, 3 showing field amplitudes at the mode waist: (a) 
0

0L , 

(b) 
0

1L , (c) 
0

2L  and (d) 
0

3L  (Trappe, 2002). 
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1 2 3 4 

 

 

Figure 2.12 The associated Laguerre-Gaussian modes at a waist position for the case of (a) 
0

0L , (b) 

1

1L , (c) 
2

0L  and (d) 
2

2L  (Trappe, 2002). 

 

The expression for the Laguerre-Gaussian modes, Equation 2.17 for example, 
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may be broken down into a number of components which can be described and 

understood separately (components 1 to 4 above) in terms of the contribution each 

makes to the physical evolution of the beam as it propagates through free space 

(Trappe, 2002).  Component (1) normalises the generalised power in the beam so 

that the integral   rdrzrn 2),(  over any plane perpendicular to the beam is unity.  

Component 2 describes the amplitude variation of the mode across a cross-sectional 

plane.  This is a Gaussian function modulated by the Laguerre polynomial of order n.  
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The scale size of the amplitude pattern is a function of the propagation distance 

through the z dependence of the beam width parameter )(zW .  This expanding scale 

of the modal field distribution as it propagates away from the waist is the diffractive 

spreading of the beam discussed by Martin and Bowen (Martin and Bowen, 1993).  

Component 3 describes the variation of the phase of the beam-mode field over a 

cross sectional plane relative to the on-axis value.  This term has the format of a 

parabolic approximation to a spherical phase front that is correct within the limits of 

the paraxial approximation in the near field.  Finally, component 4 is the on-axis 

phase slippage, n , dependent on the individual mode number n, and is relative to 

the plane wave phase shift ikze .  The phase slippage term has important 

consequences for the evolution of the form of an arbitrary beam as it propagates.   

 

In Cartesian co-ordinates, the solution to the wave equation is given by a set 

of modes called Hermite-Gaussian modes, which are generally written as, 
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where m and n are transverse mode numbers and r is the radial off-axis distance from 

the beam centre (i.e. 222 yxr  ).  As with the Laguerre-Gaussian mode-set we 

must take into account the phase slippage, which can be written as, 
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where oW  is the beam waist radius and z is the distance away from the beam waist 

(where the beam is narrowest) along the axis of propagation.  The normalised 

Hermite-Gaussian function is defined by 

 

       
  







 
















2

2

25.0 )(
exp

2

)(!2

1
)(

zW

x

zW

x
H

zWm

xh m
m

m


        (2.21) 

 



 

  76 

where  mH  is a Hermite polynomial of order m in   (as defined in Gradshteyn 

and Ryzhik, 1980).  The Hermite-Gaussian beam modes are orthonormal in the sense 

that, 

 

            '''' nnmmnmmn dxdy  . (2.22) 

 

Figure 2.13 shows the different order Hermite-Gaussian functions and illustrates the 

increasing complexity of the higher order mode fields.   

 

Figure 2.13 The Hermite-Gaussian field distributions of (a) h00, (b) h11, (c) h22 and (d) h33 at a waist 

position (e.g. Trappe, 2002). 

 

 

2.4.3 Propagation of Gaussian Beam Modes 

 

Consider the fundamental mode of a Gaussian mode set.  It has a Gaussian 

profile and is the simplest mathematical solution to the Helmholtz equation.  This 

mode is given by, 
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and represents a Gaussian beam propagating in the z-direction, whose intensity 

profile does not change as it propagates except for a re-scaling factor as shown in 

Figure 2.14. The off-axis distance at which the amplitude is equal to e/1  times its 

on-axis value is given by the beam width parameter, W .  This parameter varies as 

the beam propagates along the z-axis and at some distance z away from the waist is 

given by (Goldsmith, 1998), 
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Figure 2.14 Propagating fundamental Gaussian beam mode showing both the change in width and the 

radius of curvature. 

 

where oW  is the beam radius at the waist (where W  is a minimum).  oW  is known as 

the beam waist radius. 
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Another property of the beam that varies as it propagates is called the phase 

front radius of curvature, R , which describes the curvature of the equiphase surface 

of the beam.  R  varies with propagation distance z according to (Goldsmith, 1996) 
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At the beam waist, the phase radius of curvature is infinite and the beam is 

similar to a plane wave (Figure 2.14), while at a large distance from the waist, the 

radius of curvature is just equal to that distance so that the beam looks like a 

spherical wave spreading from a point source at the waist.  Equations 2.24 and 2.25 

can be used to model the propagation of Gaussian beams in free space.  Furthermore, 

by using this method, the input plane does not necessarily have to be at a waist, that 

is, all that has to be known are the values of W and R locally and from this, 

expressions for the output waist and radius of curvature may be obtained. 

  

 

2.4.4 Multi-Moded Gaussian Beams 

 

A propagating beam of finite extent from a quasi-optical antenna, such as a 

horn or a lens, can often be approximated by a simple Gaussian profile (the 

fundamental mode).  By using only the fundamental mode, the gross properties of 

the beam can be easily obtained and the analysis of the optical system in question is 

greatly simplified.  For this reason, propagating the fundamental mode is used as a 

first order analysis.  For a more detailed evaluation of the beam properties (for non-

Gaussian beams), a multi-moded beam analysis must be used.  In this case, the field 

of the beam, E , is regarded as a linear combination of Gaussian beam modes, as in 

Equation 2.7 (typically most of the power in the beam is carried by the fundamental).  

Although the beam width W , and the phase front radius of curvature R , are mode 

independent, the phase slippage depends on the mode. 
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It is this phase slippage (see Equation 2.18) term that essentially determines 

how the amplitude profile changes as the beam diffracts, because different modes 

have different phase velocities.  If a field is not a pure mode, but rather consists of a 

sum of modes, the relative phase between different component modes varies along 

the axis of propagation since the phase slippage terms are functions of z , and are 

mode dependent.  Therefore, at any point along the propagating axis the field may be 

calculated by summing the individual Gaussian modes from which the beam is 

comprised with the correct phase slippages (Murphy and Egan, 1993).  Writing the 

field as a sum of Hermite-Gaussian modes, for example, yields the following 

equation, 
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where mnA  are the appropriate double indexed amplitudes.  In general mnA  values 

may also be complex.  The phase slippage may be incorporated into these amplitude 

coefficients as follows, 
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in which case the mode amplitudes actually evolve in phase as the beam propagates 

(effectively rotating in phase space, while maintaining a constant modulus) and   

does not now contain the phase slippage term.  It is usually more convenient to adopt 

such a convention.  We know that the modes are orthonormal, and from Equation 

2.22 we can write, 
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  mmmm dxxhxh )()(  (2.28) 

 

for the one-dimensional case.  Therefore, in terms of computing the mA  values for 

this one-dimensional case, we can write, over some transverse plane for which z is 

constant and the field ),( zxfE  is known, 
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Figure 2.8 shows a Gaussian beam mode reconstruction of the field across an 

aperture with a central stop.  Figures 2.9 and 2.10 show this field as it propagates 

from the aperture.  Equation 2.29 can be extended to the two-dimensional case to 

give, 
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It is possible to reconstruct the field using these mode coefficients at any point along 

the axis of propagation.  Also, if the mode set is orthonormal, then the sum, 
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
0

2

iAP  (2.32) 

 

is a measure of how good a fit a synthesised beam is to the beam being analysed 

(Heanue, 1995).  

 

 

 

2.4.5 ABCD Matrices 

 

For an optical system containing mirrors and lenses to collimate and focus 

the beam, a convenient method for keeping track of the beam characteristics is by 

using the ABCD matrix formulation.  This method is actually based on paraxial ray 
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propagation.  If a ray defined by the parameters in  (off-axis angle) and inx  (off-axis 

displacement) as shown in Figure 2.15, passes through some optical system S, and 

emerges with the parameters out  and outx , then these parameters may be related by, 
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where the elements of the ABCD matrix characterise the optical system. 

 

 

Figure 2.15 Optical system defined by ABCD matrix with input and output rays described by in  and 

inx , and out  and outx . 

 

 

According to Goldsmith (1998), and Siegman (1986), a Gaussian beam may be 

viewed as a spherical wave expanding from a complex valued point source, to which 

we may attribute a „complex radius of curvature‟, q, defined as, 
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We can also write (Siegman, 1986), 
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formulation allows us to determine not just outR , but outW  also, since from Equation 

2.36 we clearly obtain, 
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To calculate these values, all that must be known is the ABCD matrix that describes 

the optical system.  This matrix defines the effect of the system on the individual 

Gaussian beam modes as the beam propagates through it.  For free space 

propagation, the ABCD matrix is given by (Goldsmith, 1998), 
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where L is the propagation distance.  For the case of a thin lens, the amplitude 

distribution of the beam modes remains unchanged as usual, as does the beam width, 

W.  However, the phase-front radius of curvature, R, changes from inR  to outR , 

which is equivalent to saying that the lens acts as a phase transformer.  To determine 

how much R changes, we use the appropriate ABCD matrix, which characterises the 

beam passing through a thin lens of focal length f.  This matrix is given by (Siegman, 

1986), 
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The elements of the matrix can be used to write outR  in terms of inR , and outW  in 

terms of inW , as in Equation 2.37 and Equation 2.38 respectively.  This yields,  

 

            inout WW   (2.41) 

 

and 

 

            
fRR inout

111
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In this thin lens system matrix, the propagation through the finite distance 

between the surfaces of the lens is not taken into account.  Furthermore, it is 

assumed that all the power in the beam passes through the lens, that is, there is no 

truncation by the lens.  The table below (Table 2.1) shows some ABCD matrices for 

different optical systems.  Note also that the phase slippage term is given by (Martin 

and Bowen, 1993), 
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ABCD Matrix Physical Description 

Free space propagation 










10

1 L
 

 

 

Thin lens, focal length f 










 1/1

01

f
 

 

Curved mirror, normal incidence 










1/2
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R
 

 

Gaussian beam telescope 














21

2112

/0

/

ff

ffff
 

 

Curved dielectric interface, normal 

incidence     








 1/)(

01

12
Rnn

 
 

Table 2.1 ABCD matrices for a variety of optical systems. 

 

 

2.4.6 GBM Analysis of a Two-Slit Interferometer 

 

Since this thesis is concerned with interferometers another example provided 

here is the Gaussian beam modes analysis of a two-slit interferometer.  The system is 

described in terms of Cartesian coordinates and therefore the field can be written as a 

sum of Hermite-Gaussian modes, 
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where m  are the Hermite-Gaussian modes given in Equation 2.21 and mA  are the 

appropriate mode amplitudes  can be calculated by 
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where in  is the field incident on the plane of the double-slit which is centred on the 

origin, a is the half width of the first slit, b is the half width of the second slit and d is 

the separation between the slit centres.  In this example the incident field was 

assumed to be a plane wave of amplitude 1, the slits each had a width of 50mm and 

the separation between their centres was 200mm.  This is very similar to the MBI-4 

beam combiner model used in Chapter 3.  The field at the plane of the double slits 

was reconstructed using 
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where z was assumed to be 0.  The results of this are given in Figure 2.16.  The 

ringing in the field is due to the finite number of modes being used in the 

reconstruction of the beam.  The far field interference pattern was also reconstructed 

and can be seen in Figure 2.17.  The 200mm baseline modelled here represents the 

longest of the MBI-4 baselines.  However, the 90mm shortest baseline was also 

modelled and as can be seen from the plot (Figure 2.17) the smaller baseline 

produces the widest fringes as expected from the theory of interferometry.  

 

In conclusion, the example analysed above demonstrates how Gaussian beam 

mode analysis proves to be very useful for analysis of diffraction effects.  We can 

easily switch between Cartesian co-ordinates, as in the case of the double-slit, to 

polar co-ordinates for systems with circular symmetry.  It is also possible to include 

focussing optical components such as curved mirrors and lenses in the analysis of a 

complete optical system.  Although the example here possesses a high degree of 

symmetry, it is also possible to analyse systems that are asymmetric, in which case a 
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greater number of modes are typically required for adequate representations.  The 

Gaussian beam mode (GBM) analysis work in thesis was carried out using both 

MODAL and in-house software written by the author.  

 

Figure 2.16 Reconstruction of the field at the plane of the surface containing the two slits. 

 

 

Figure 2.17 Reconstruction of the far field interference pattern produced from both a 90mm and 

200mm baseline. 
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2.5 Physical Optics Analysis 

 

2.5.1 Background 

 

In section 2.2, it was shown how geometrical optics could be used to analyse 

optical systems.  By this method, the radiation is treated as rays of light and 

diffraction effects are not taken into account.  Diffraction is taken into account in the 

case of Fresnel diffraction and Gaussian beam mode analysis, but electric fields are 

represented only by a scalar function and beams are assumed to be paraxial.  With 

physical optics, the topic of this section, the amplitude and phase of the true vector 

fields are included in the analysis and the paraxial approximation is not made.   

 

In physical optics, the field radiated by a scattering element (such as a 

reflector) is calculated using an approximate surface current distribution.  To 

calculate this field, two things must be known: the geometry and reflective properties 

of the reflector and the incident electric field.  If the surface of the reflector is 

perfectly conducting then the scattered field is generated by the currents induced on 

its surface from the incident field can then be found from the relation,    

 

            si EEE   (2.47) 

 

where E  is the total field, iE  is the incident field and sE  is the scattered field.  The 

first step in this process is to calculate the induced currents on the scattering surface.  

To do this extremely accurately involves techniques such as the Method of Moments 

(Harrington, 1967; Harrington, 1993) that become very time-consuming for large 

elements.  However, physical optics provides an easier method in which the surface 

currents are approximated, assuming that the surface of the scattering element is 

perfectly conducting and large in terms of wavelengths.  In the region where the 

incident field does not directly illuminate the surface the currents are assumed to be 

zero.  Calculating the field radiated by these currents involves no further 

approximations since the integral of the surface currents can be done with numerical 

integration with high precision.  If the scattering surface is not perfectly conducting 
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but the reflection and transmission coefficients are known, then the physical optics 

method can be used to approximate the equivalent electric and magnetic surface 

currents. 

 

When calculating the surface currents the approximation made by physical 

optics is in the assumption that the surface current at a specific point on a curved but 

perfectly conducting scattering element is the same as the surface current on an 

infinite planar surface which is tangent to the scattering surface at that point.  

Because of this assumption physical optics does not do as well as other techniques 

(such as the Method of Moments and the Physical Theory of Diffraction (Keller, 

1958)) in predicting the currents at surface edges or on very curved surfaces. 

 

The induced surface currents (which are induced by the incident magnetic 

field) on a perfectly conducting infinite planar surface with an arbitrary incident field 

are given by (Collin and Zucker, 1969), 

 

            ie HnJ  ˆ2  (2.48) 

 

and 

 

            im EnJ  ˆ2  (2.49) 

 

where eJ is the induced electric current, mJ  is the induced magnetic current, n̂  is the 

normal to the unit surface (pointing away from the illuminated surface), iH  is the 

incident magnetic field and iE  is the incident electric field.  The radiated fields 

resulting from the induced surface currents are found from (Collin and Zucker, 

1969), 
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where eA  is the electric vector potential, mA  is the magnetic vector potential, R  is 

the distance given by rr R  where r  is the observation point and r  is the 

integration variable, and S  is the surface of the scattering surface.  The radiated 

electric and magnetic fields are then found by applying the differential operators in 

Equations 2.52 and 2.53 respectively to give, 
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and 
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where rrrrRR  //ˆ R  and z  is the free space impedance (  /z ).  To 

obtain expressions for the far field electric and magnetic fields we multiply equations 

2.54 and 2.55 by a factor jkrkre  in the limit where r  ( r ) goes to infinity to give, 
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where r̂  is the far field direction rrr /ˆ  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Power density of the field at (a) the plane of the circular aperture with a stop, (b) 1mm 

from the aperture plane, (c) 20mm from the aperture plane and (d) 200mm from the aperture plane. 

 

(a) (b) 

(c) (d) 
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The physical optics analysis carried out in this thesis, in particular in chapters 

5 and 6 where the beam combiners of both MBI and QUBIC are modelled, was 

carried out using MODAL, a software package developed at NUIM and discussed in 

more detail in section 2.6.  In the next section we look at an example of the 

application of physical optics to a simple system.   

 

 

2.5.2 Physical Optics Analysis of an Aperture with Stop 

 

Presented in this section is an example of a physical optics analysis applied to 

a system comprising a circular aperture with a stop at its centre.  The circular 

aperture had a diameter of 20mm and the stop a diameter of 4mm, that is, the same 

system as that analysed in section 2.3.2 using the Fresnel integral method (and 

GBM).  The aperture was illuminated with a plane wave which had a wavelength of 

1mm and zero initial phase.   

 

 

 

  

 

 

 

 

 

 

 

Figure 2.19 A cut through the field at (a) the plane of the circular aperture with a stop and 1mm from 

this plane, and (b) 20mm and 200mm from the aperture plane. 

 

 

Figure 2.18 shows the power density of the field at the aperture and at the 

image plane, which was placed at three different distances from the aperture: 1mm, 

20mm and 200mm.  A cut across the centre of these fields is shown in Figure 2.19 

(a) (b) 
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where in part (a) the Poisson spot can be clearly seen.  This is also visible in Figure 

2.18 (b).  In Figure 2.20 it can be seen that both the GBM method and the Fresnel 

diffraction method presented in section 2.3.2 for the same system are in relatively 

good agreement with the physical optics results presented here.  However, although 

the general structure of the fields are the same it is clear that the assumptions made 

by both the GBM and Fresnel methods do have an effect on the resulting beam 

patterns. 

 

 

Figure 2.20 A cut through the field at (a) the plane of the circular aperture with a stop and 1mm from 

this plane, and (b) 20mm and 200mm from the aperture plane. 

 

 

2.6 Description of Modelling Software  

 

Throughout the work carried out for this thesis a number of software 

packages were used to model both the components of quasi optical systems and the 

overall systems themselves.  The use of several methods of analysis serves as a 

verification tool for the results obtained and also aids in the design process by 

allowing simple models, such as that achieved through geometrical optics, to be built 
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upon when creating more complex models.  In this section a brief outline of each of 

the software packages used will be given, starting with MODAL, the one that was 

used most extensively. 

 

MODAL  

 

MODAL (Maynooth Optical Design and Analysis Laboratory) (Gradziel et 

al., 2008) is a software package being developed by Dr. Marcin Gradziel under a 

Science Foundation Ireland (SFI) investigator grant.  The title of the SFI project is 

“The Development of an Integrated Quasi-Optical and Electromagnetic Numerical 

Simulator for the Computer Aided Design and Analysis of Novel Terahertz 

Systems” and the principle investigator is Prof. J.A. Murphy of NUIM.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 Screenshots showing the evolutions of MODAL.  Part (a) shows the MODAL prototype 

software from 2003 (White, 2006), part (b) shows MODAL in 2003 where a linear workflow has been 

implemented, part (c) shows the MODAL property editor available in 2005 and part (d) shows 

MODAL as being project based with integrating plotting, developed in 2006. 

(a) (b) 

(c) (d) 
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The initial idea for the software was to allow the quick design of an optical 

system in a real-time 3D environment in a user-friendly manner through the use of a 

flexible approach to system definition.  Also, users would be able to view the system 

from different camera angles in the 3D environment as well as view cuts and 3D 

contour plots of the field at any given plane.  The software was also being 

specifically designed to target the millimetre-wave/THz region of the spectrum with 

its unique propagation characteristics.  Commercially available packages perform 

best either in the RF/microwave, or IR domains, and a gap still remains between 

these two modalities in the THz band.  It was envisaged that the power of the 

software would arise from a wide range of analysis techniques (Fresnel diffraction, 

Gaussian beam modes and physical optics) combined with parallel processing 

(clusters or multiprocessor machines) where possible.  Unlike commercial software 

such as GRASP, we can update and modify MODAL to suit the systems we 

investigate at NUIM.  The author has work with Dr. Gradziel to tailor the software 

for the analysis of MBI. 

 

A prototype for the software was originally developed by Dr. David White 

(White, 2006), however further development has occurred over a number of years 

(see Figure 2.21) and the current version of MODAL (version 9.1r15) is in a beta 

development stage.  It was developed using C++ as a cross-platform application and 

can be operated under Linux 32 and 64 bit and Windows 32 bit.  The development of 

MODAL is a complex software project with Subversion being used to manage 

source code revisions and CMake for program building.  It makes use of a number of 

libraries such as FLTK/FLU for the user interface, OpenGL for 3D visualization of 

the system, PVM/CPPVM for parallel processing, fltkPlot for graphing and 

XMLWrapp/libxml2 for XML input and output.  In the current version of MODAL 

(not including external libraries) there are approximately 959 files containing a total 

of 90,000 lines of code.  This code based on templates with the equivalent C-code 

being bigger by a factor of 3 to 5.  Such a project would be unmanageable for one 

developer.           

 

In terms of the high level design of MODAL there are several classes of 

complex objects representing both physical objects and abstractions.  In the current 

version the fundamental components are: 
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 Project The project is viewed through the project window (Figure 2.22) and 

contains all the components required for defining and analysing an optical 

system by means of a user-defined set of objects and properties.  The project 

allows the user to add or remove objects, edit existing objects, save the project 

file or load an existing MODAL project.  The open project is visualised in real-

time in a separate window where the viewing properties such as camera angle 

and magnification properties can be adjusted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 An example of a MODAL project window and property editor.  

 

 

 Elements Elements represent optical elements within the system being defined, 

for example sources, detectors, lenses, mirrors and output planes.  The source 

elements are active sources of electromagnetic fields and there are a number of 

types to choose from such as a plane wave, a Hermite-Gaussian mode or a 

corrugated conical horn antenna.  MODAL has also been designed to implement 

the SCATTER antenna modelling code (see details of the SCATTER program 

further on in this section) and allows horn antenna “geometry files” to be 

imported.  More recently smooth-walled conical horns have also been added as a 

source option.   
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In terms of detectors, they are similar to the source elements but have a set of 

field modes that the incident field can couple to.  Also, the output planes allow 

the field to be evaluated at any defined plane within the system.   

 

All elements have certain standard properties such as a local frame of reference, 

which is defined in terms of its origin and three axes.  For sources there are other 

properties that need to be defined such as the geometry of the source (e.g. radius 

of a corrugated horn antenna), and also the properties of the field produced by 

the source (e.g. initial phase, radius of curvature, polarisation direction, 

frequency and power).  For elements such as mirrors and lenses the geometrical 

surface must also be defined.  The mirror surface is described in different ways, 

depending on the type of conic section required.  For example, a parabolic mirror 

is defined by a frame (whose centre can be at any point on the surface), the focal 

point and the direction from the focal point to the vertex, while both hyperbolic 

and ellipsoidal mirrors are defined again by the appropriate frame, but also by the 

two focal points.  When the surface is defined a bounding volume is used to 

select the section of the surface needed.  This is a geometrical solid, for example 

a cylinder, which cuts through the geometrical surface of the mirrors and 

therefore specifies the section of the mirror and its edges.  Lenses are defined by 

specifying the diameter of the lens, the centre thickness, the radius of curvature 

and conic constant of each of its surfaces, and the refractive index of the medium 

from which the lens is constructed.  The lenses do not have to be spherical in 

shape and if required data files describing more complex lens surfaces can be 

implemented.            

 

 Mapping Before propagating any electromagnetic fields a mapping is used to 

create an array of sample points on the surface of each element (see Figure 2.23).  

This is also required for visualisation of the system and establishes a relationship 

between a pair of indices (U and V) and the point on the surface.  MODAL uses 

ray tracing to achieve this whereby the mapping procedure generates a matrix of 

rays that are then cast onto the surface of the element to calculate points of 

intersection and surface normal.  The calculations are done by means of the 

surface geometry described above.  There are three forms of mapping available 

in MODAL at present: isometric mapping, perspective mapping and uniform far 
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field mapping.  In isometric mapping the rays are launched from a 2D grid of 

points in a given direction.  The position of the grid can be defined by the user.  

Perspective mapping also makes use of a 2D grid, however, the rays are launched 

from a point source through each of the points on the user-defined 2D grid.  The 

uniform far field mapping option launches a cone of rays from an arbitrary point.  

Each mapping can be used with a varying number of sample points in the U and 

V directions.         

 

 

 

 

 

Figure 2.23 Mapping of elements in MODAL is done using either (a) an isometric method or (b) a 

perspective method.  In the isometric method the rays originate from points on a grid while in the 

perspective method the rays are passed through the points on a grid but originate from a point source.   

 

 

 Propagator To calculate a field representation at a certain element with the 

defined system a propagator is used.  There are currently three classes of 

propagator in MODAL, these are source propagator, element propagator and far 

field propagator.  The source propagator calculates the field produced from a 

 

 

(b) 

(a) 
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source.  The element propagator calculates the reflected or transmitted field at an 

element by propagating the field from other propagators to (and possible 

through) the element.  The far field propagator calculates the far field for a given 

near field.  Each element propagator requires a source, which is in general a 

pointer to some other propagator.   

 

There are a number of different field representations and propagation techniques 

available to the user.  For the near field, defined on some surface, the user can 

choose from a scalar electric field or vector electric and magnetic fields.  In the 

case of a scalar field, the calculations are done using either Fresnel diffraction 

integrals, as discussed in detail in section 2.3, or Gaussian beam mode analysis, 

as presented in section 2.4.  MODAL also makes use of singular value 

decomposition analysis (SVD), which is discussed in more detail in Chapter 4.  

In the case of a vector field representation, physical optics (section 2.5) is used to 

calculate the required fields.  Far fields can also be expressed in terms of scalar 

or vector fields. 

 

 

 

 

 

 

 

Figure 2.24 Beam propagation through a simple biconvex lens. The refractive index of the lens 

material is n=1.5 and both surfaces are spherical with radii of curvature R=100mm. The centre 

thickness of the lens is 60mm and its diameter is 100mm.  The front surface of the lens is200 mm 

from the horn. The wavelength is λ=1mm, the corrugated horn source has an aperture radius a=5mm 

and a slant R=100mm (Gradziel et al., 2008).  The red lines show the equivalent Gaussian beam width 

and is used for visualization purposes only. 

 

When a lens in present within a system, as in Figure 2.24, it is modelled by 

considering the two lens surfaces as dielectric interfaces and only a physical 
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optics analysis can be used (Gradziel et al., 2008).  In this approach the incident 

field (see Figure 2.25) is decomposed into transmitted and reflected components, 

L(0) and R(0) respectively, by treating the field as a locally spherically wave.  

The angle of incidence is calculated from the local direction of the Poynting 

vector and the surface normal, and the orientation and complex amplitude of the 

transmitted and reflected fields are determined using the standard Fresnel 

relationships (Hecht, 1998).  At this point the transmitted field is propagated to 

the back surface where again it is decomposed in to transmitted, T(1), and 

reflected, L(1), components.   This process is repeated between the front and 

back surfaces until the power in the lens field is below a predefined threshold or 

a certain number of iterations is reached, both of which are defined within the 

code and at present are not accessible to the user.  The contributions from all the 

iterations are summed to give the total transmitted and reflected fields for the 

lens.  It is important that the sampling rate at the surface is sufficiently dense to 

ensure the convergence of the physical optics propagation steps between the two 

lens surfaces (Gradziel et al., 2008). 

 

 

 

Figure 2.25 Physical optics propagation through a dielectric lens modeled in MODAL.  I is the 

incident field, T(n) and R(n) are the transmitted and reflected components respectively and L(n) 

represents the wave propagating through the lens (Gradziel et al., 2008). 
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 Beams Having defined the optical system and its relevant propagators the beams 

propagating from one element to the next can be visualised.  This is achieved by 

specifying the element, the distance of propagation and the source propagator.  

The beam is then displayed where the width has been calculated using a simple 

ABCD matrix approach as discussed in section 2.4.5 (see Figure 2.24). 

 

 Dataset/Metric While propagators are used to calculate the fields at sources and 

elements within the system, to get access to this data the user must create a 

dataset.  A dataset is a structured set of user-defined columns containing 

numerical data.  Each column is inserted into the dataset manually with a range 

of options available, for example, a dataset may contain an x column, containing 

the x-coordinates of the field points from a certain propagator, a y column, 

containing the y-coordinates of the field points, and an Ex column, containing the 

magnitude of the x-component of the electric field.  Each column can represent 

1D or 2D matrices, as long as all columns do the same, and can be customised to 

suit the user‟s needs.  If we consider a column containing a vector field value, the 

user can define the following: 

 

o Propagator (the source of the field) 

o Wavelength (spectral component of the field) 

o Component of the field (electric field, magnetic field, Poynting vector 

etc.) 

o Cartesian component of interest (x or y, in a given frame of reference) 

o Complex number component (real, imaginary, magnitude or phase) 

o Units for values (must be consistent with selected component).  

 

Therefore the user could, for example, easily select the real value of the x-

component of the Poynting vector in a defined frame in W/m
2
.   

 

Another option that is available in MODAL allows the user to calculate a metric.  

Currently these include field power (calculates the total power in the field), field 

power fraction (calculates the fractional power given two fields), GBM mode-set 

parameters (provides the parameters of the mode-set used to describe the field), 
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scalar field coupling (calculates the coupling coefficient between a scalar field 

and a detector mode) and vector field coupling (calculates the coupling 

coefficient between a scalar field and a detector mode).  These can be obtained 

for any propagator within the system and therefore at any plane where an output 

has been defined.  In terms of coupling, a detector and incident propagator are 

defined by the user.  MODAL has been extended recently to allow a dataset or 

metric be calculated as a function of a changing property value (for example the 

coupling coefficient as a function of detector position).  

 

 

Figure 2.26 An example of xy and contour plots produced in MODAL for a double-slit 

interferometer.  Two different system are shown. 

 

 Dataset Exporter The datasets described above can be exported as a text file 

using a dataset exporter.  The user can specify the filename, a header and footer, 

the separator to be used within the structure of the file and whether or not to 

export column labels and units. 

 

 Graph As well as exporting data MODAL also allows the user to plot a variety 

of graphs (Figure 2.26) within the software, including xy graphs, contour graphs 
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and metric graphs.  The data for these plots is taken directly from the datasets or 

metrics the plots are highly customisable through the user interface.     

 

To enable the above components of MODAL to be implemented in a user-

friendly manner three modules are required, a physical units module, a geometry 

module and a properties module.  The physical units module knows about various 

physical quantities and handles the inputting and outputting of these with 

consistency.  MODAL knows about different quantities and their units and through a 

dimensional analysis provides a bridge between the user input and internal 

computational routines.  The user input can be done in the most convenient units 

while internally the same system of units (SI) is used consistently. 

 

The geometry module handles geometrical objects such as scalars, points, 

directions, surfaces, solids, frames and transformations.  The module allows the user 

to define objects in terms of other relevant objects, for example a vector can be 

expressed in terms of two points, or a frame can be defined in terms of another frame 

and some transformation.  Within MODAL the same hierarchical editor is used for 

all objects and each class of object has its own set of operations.  New object types 

and classes can therefore be added without significant changes to the code.   

 

The properties module allows all higher level objects to have structure, for 

example, each property has its own unique name in a project (e.g. 

Mirror1.geometry.frame) and these properties can refer to each other by absolute or 

relative name.  It allows objects to have dynamic dependencies, such as a graph 

depending on a particular dataset, and when the dataset changes the graph will be 

informed of this change.  This can be propagated down many levels to the most 

primitive of object (e.g. points) within the project.   

 

While the main components of MODAL have been described above the 

program is easily extendable due to its modular nature and layered structure (see 

Figure 2.27).  Sources can be added by writing the code for the new source and 

adding it to the central object factory, the existing field representation does not have 

to be rewritten.  In a similar way, new propagation techniques can be added to work 

with existing field representations.  While more difficult, new field representations 
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can also be included, however, low-level field objects, sources and propagators, data 

extractors (dataset columns) and possibly new sources and elements would need to 

be added to the existing code.  An example of this would be the inclusion of a dual 

polarisation scalar field.  On an even higher level would be additional functionality, 

such as the ability to carry out optimisations.      

 

 

 

Figure 2.27 Schematic diagram showing the layered structure of MODAL and its functionality levels. 

 

 

 

SCATTER  

 

The mode-matching scattering-matrix software package SCATTER was 

originally developed by Ruth Colgan (Colgan, 2001) of the Terahertz Optics Group 

at NUI Maynooth.  At the time, it was designed to fill the void in software 

availability for producing the electromagnetic beam patterns of corrugated horn 

antennas.  In 2004, the program was further developed and extended by Emily 

Gleeson (Gleeson, 2004) and several extensions to the original software were 

included.   
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Line 1 Frequency (GHz) Max. azimuthal order, n 
Number of horn 

sections, N 

Line 2 to Line N+1 
Horn segment 

lengths, l (mm) 
  

Line N+2 to Line 2N+1 
Radius of horn 

segments, r (mm) 

Number of real and 

evanescent modes 
 

Table 2.2 Layout of the SCATTER geometry file. 

 

 

The current version of the SCATTER software reads in a “geometry file” that 

describes the horn antenna in terms of the radius, r, and length, l, of each corrugation 

(see Figure 2.28) and the frequency of operation, as shown in Table 2.2.  The 

specification of the geometry file is achieved through a user interface, which also 

displays the aperture field pattern and the far field pattern for the given horn.  It is 

generally assumed that the horn is excited equally by all modes, but this can be 

easily modified.  Mode-matching is a very powerful technique and was extensively 

used as part of the overall analysis of complete optical systems in which horn 

antennas were used.  The SCATTER code was extended by the author to include 

rectangular-to-circular junctions as part of the analysis of the horn antennas in the 

MBI project, as described in Chapter 4.        

 

 

 

Figure 2.28 Corrugated horn antenna with grooves oriented perpendicular to the horn axis (left) and 

perpendicular to the horn surface (right). 
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ZEMAX 

 

ZEMAX
 
software (ZEMAX website) is a powerful ray tracing software 

package that can model, analyse and allow the design of optical systems to be 

optimised.  The interface has been designed to be simple to use and with a little 

practice it allows very rapid interactive design.   

 

There are six different Editor Windows, the Lens Data editor, the Merit 

Function editor, the Multi-Configuration editor, the Tolerance editor, the Extra Data 

editor and the Non-Sequential Components editor, each serving a different and 

useful purpose.  For a simple optical system in which the user simply wants to view 

the layout and rays, details about each surface between the object and the image 

plane, for example the thickness of a lens and its radius of curvature, can be entered 

into the Lens Data editor (see Figure 2.2).  For media other than air, the substance 

name, which can be obtained from the built-in glass catalogue, must also be entered.  

If the material needed does not appear in this catalogue, the user may define their 

own material refractive index as a function of wavelength.   

 

Apodisation of the entrance pupil of the system enables the user to illuminate 

this aperture either uniformly or non-uniformly.  The apodisation factor determines 

the rate of variation in amplitude (number of rays) across the pupil.  By default, the 

system will have uniform illumination, but Gaussian and tangential may also be 

chosen.  Gaussian apodisation imparts an amplitude variation over the pupil that is 

Gaussian in form, while tangential apodisation simulates the intensity fall off 

characteristic of a point source illuminating a flat plane.  Once the source is defined 

the user is in a position to ray trace through the optical system.  The wavelength of 

the radiation must be entered (in microns) and then a two-dimensional layout of the 

optical components may be viewed, complete with rays.  The number of rays traced 

through the system can be varied and vignetting may be switched on or off. 

 

ZEMAX also contains a tool called Physical Optics Propagation (POP) 

which uses diffraction calculations to propagate the beam through the optical system 

surface by surface.  When using POP the beam is modelled using an array of points 

containing the complex field amplitude.  ZEMAX then chooses between Fresnel 



 

  106 

diffraction propagation or angular spectrum propagation, depending on which 

provides the highest numerical accuracy.  The accuracy of the results from using 

POP are approximately equal to propagation using the Gaussian beam mode or 

Fresnel integral methods with ray tracing still being used for propagation through 

dielectrics.   

 

 

GRASP 

 

GRASP (TICRA‟s GRASP website) is a software package that provides the 

user with a set of tools for analysing general reflector antennas.  A pre-processor 

allows the user to define the geometry of the antenna or system being modelled and 

provides a means of visualising the system, while the post-processor contains several 

plotting facilities for calculated beam patterns.   

 

The software has been developed using Fortran 90 and makes extensive use 

of object-orientated programming techniques so that the reflector surfaces and 

antenna feeds within the system are described in terms of their particular class.  

Throughout the process of defining the system the user may visualise the system or 

generate a file containing geometrical information which can be imported into CAD 

packages.  In defining the system the user can select from a number of reflector 

surface, rim definitions, feed types and reflector materials before choosing analysis 

methods such as physical optics, geometrical optics and geometrical theory of 

diffraction.  With such capabilities GRASP has become the industry standard for 

modelling reflector antenna systems.   

 

 

CST 

 

 The CST Studio Suit 2009 is a commercially available software package, 

which makes use of finite integration techniques (FIT) to carry out electromagnetic 

simulations.  Unlike most numerical methods, FIT discretises the integral form of 

Maxwell's equations rather than the differential ones.  To solve these numerically 
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one must define a finite calculation domain. To that end a mesh system is 

implemented to split up the domain into many grid cells.      

 

 

Figure 2.29 An image of the CST mesh system (CST Documentation Centre). 

 

The primary mesh can be visualised in CST using Mesh View, however, 

internally a second or dual mesh is set up orthogonal to the first one (see Figure 

2.29). The spatial discretisation of Maxwell's equations is performed on these two 

orthogonal grid systems with  Maxwell's equations being formulated for each of the 

cell facets separately.   

 

A noteworthy point of the FIT technique is that the properties of the 

continuous gradient, curl and divergence operators are maintained in grid space. In 

addition to orthogonal hexahedral grids, FIT can also be applied to more general 

mesh types such as topologically irregular grids and tetrahedral grids. 

 

Although FIT simulations and CST Microwave Studio are proven and 

reliable it has the drawback of requiring significant computational power and lengthy 

simulation times when considering detailed structures in the mm-range.     

 

 

Other Software 

 

Along with the software mentioned above, the author has also made 

extensive use of both Mathematica
 
(Wolfram Mathematica website) and Matlab 



 

  108 

(MathWorks Matlab website) throughout this project.  These have been used to 

develop programs to act as verification tools, for example, in the Gaussian beam 

mode analysis of optical systems and also to develop many data handling and 

analysis programs.  

 

 

2.7 Conclusions 

 

In this section the techniques used in the quasi-optical analysis work in this 

thesis were presented.  The simplest approach examined was geometrical optics or 

ray tracing.  It treats the radiation as having a negligible wavelength and is very 

useful in the initial design stages of a system.  Focal points can be instantly 

recognised and it becomes obvious whether the beam intercepts the optical 

components or not.  However, rays effectively represent infinite plane waves and 

therefore fail to adequately deal with diffraction effects associated with coherent 

fields and components of scale sizes of 1 to 100.  The industry standard program 

ZEMAX was used in the work outlined in this thesis to perform a ray tracing 

geometrical optics analysis of the various optical systems considered.  

 

To account for diffraction effects the Fresnel Integral was considered.  

Fresnel diffraction refers to propagation over a finite distance and therefore is also 

sometimes referred to as near-field diffraction.  This method is quite efficient when 

applied to single elements within optical systems, however, it becomes inefficient 

when analysing a complete system due to the number of the integrals required.  

Fresnel integrals can be used to propagate radiation through free-space, taking into 

account apertures and stops.  This integral method is also powerful in analysing 

diffraction at mirrors, which appear in most optical systems.  The method assumes a 

paraxial beam and does not take into account the vector nature of the field.  In the 

work presented in this thesis Fresnel diffraction analysis is carried out using 

MODAL. 

 

In a Gaussian beam modes analysis, a more efficient alternative, a 

monochromatic spatially coherent beam is represented by a complex scalar field 
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considered to be made up of a linear sum of complex independently propagating 

modes.  These modes are solutions to the wave equation and maintain the same 

amplitude profile as they diffract.  The Gaussian beam mode method takes into 

account the changing width of the beam as it propagates, along with the evolution of 

its phase-front radius of curvature.  While this method is equivalent in accuracy to 

Fresnel integral method, the disadvantage of using the Fresnel approach directly is 

that the transformation (often involving computationally intensive integrals) has to 

be applied at each optical component in the system.  Gaussian beam mode analysis 

has the advantage that as long as the modes themselves are not scattered (by 

truncation or aberrational effects), the propagation through focussing systems is very 

simply taken care of by the evolution of a common phase curvature term.  Fresnel 

transformations are therefore only more efficient for the analysis of systems with 

significant truncation and aberrational effects.  In the absence of such effects, in 

which case only one set of integrals have to be performed at the input plane to 

determine the mode coefficients, Gaussian beam mode analysis can be very efficient 

as a quasi-optical technique.  Fresnel and Gaussian beam mode diffraction assume 

both paraxial propagation and that the field can be represented by a scalar function.   

 

The final, more accurate approach presented in this chapter and relevant to 

the work carried out in this thesis is physical optics.  Physical optics treats the 

radiation as an electromagnetic wave whose sources are currents that flow in the 

surfaces of reflectors (or other scattering elements) and in the bulk of dielectric 

materials.  MODAL is most widely used to analyse optical systems using physical 

optics as presented in this thesis.  

 

To summarise, four methods used for quasi-optical analysis in this research 

were presented: geometrical optics, Fresnel transformations, Gaussian beam mode 

analysis, and physical optics.  Each has its own advantages and disadvantages, 

depending on the application, but used together they form a powerful set of tools for 

analysing different properties of quasi-optical systems.  By applying them to the 

same system and comparing their predictions, a very powerful high-confidence 

approach to analysing quasi-optical systems can be developed.  Chapters 3 to 6 will 

show how these techniques of quasi-optical analysis were put to use in the design 

and analysis of the both the MBI and QUBIC instruments. 
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Chapter 3 

 

The Millimetre-Wave 

Bolometric Interferometer 
 

3.1 Introduction 

 

This chapter presents the work done on the optical design of the beam 

combiner for the Millimeter-Wave Bolometric Interferometer (MBI), a ground based 

instrument designed to measure the polarization anisotropies of the Cosmic 

Microwave Background (CMB) at a central frequency of 90GHz.  Interferometry has 

never before been used to carry out such measurements at this frequency, nor using 

incoherent bolometers as detectors.  MBI will therefore act as a prototype for this 

type of system and must be modelled in detail to ensure that its operation is fully 

understood. 

 

The telescope contains a number of quasi-optical components, including a 

complex back-to-back system of corrugated feed horn antennas.  Knowledge of the 

optical performance and beam patterns of such a system is critical for understanding 

systematic effects in the reliable extraction of feasible polarization signals.  To 

model the system accurately we have employed a variety of both commercial and in-

house software packages.  MODAL (section 2.6) (Gradziel et al., 2008), an optical 

design and analysis package developed at NUI Maynooth and targeting the 

millimetre and sub-millimetre region of the electromagnetic spectrum was used most 

widely.   This not only allows the initial design and preliminary analysis of the 

multi-element optical system to be carried out in a computationally efficient manner 

using quasi-optical techniques but also enables a complete electromagnetic 

characterisation using physical optics.  We describe the techniques used, their 

predictions and the performance of the telescope as calculated to-date. 

 

MBI is a Fizeau interferometer that combines the advantages of 

interferometry for control of systematic effects with the high sensitivity and 

frequency coverage possessed by bolometers (Korotkov et al., 2006).  It is the first 
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bolometric interferometer of its kind which results in a novel instrument with 

capabilities that would be difficult to achieve using more traditional techniques and 

will allow MBI and instruments based on its technology to explore a wide range of 

angular scales and wavelengths.  Unlike a single-dish imaging telescope, an 

interferometer instantaneously performs a differential measurement with the 

effective beam pattern of each individual baseline being a set of fringes that sample 

the sky with positive and negative weights.  This differencing removes the need for 

mechanical chopping or rapid scanning.  

 

The prototype MBI instrument has four interferometer apertures and uses 

nineteen cooled spider-web bolometers.  This prototype is called MBI-4 and also 

operates at a central frequency of 90GHz.  The configuration used in this system 

may be expanded to an N=8 instrument with eight apertures and it was proposed to 

ultimately design and build a 64-element interferometer or N=64 configuration 

(MBI-64), however, this might be superseded by the QUBIC instrument as discussed 

in Chapter 6.  MBI-64 will operate as either eight N=8 interferometers in parallel or 

as one N=64 system.  As a prelude to MBI-4, both a room temperature and a 

cryogenic interferometer called the MBI Test Bed (MTB) were demonstrated and 

successfully produced interference fringes as desired.  MBI-4 has also undergone 

demonstration and test observations at Pine Bluff Observatory, Cross Plains, 

Wisconsin before being used for full scale scientific observations and measurements. 

 

 

3.2 The Instrumentation of the MBI-4 System  

 

In this section we look at the components of the MBI-4 instrument (discussed 

in more detail by Hyland (Hyland, 2008)) and how they are used to measure the 

interference pattern created by the optical beam combiner.  We begin by looking at 

the structure of the telescope mount and how this is operated to allow the 

implementation of the desired observing strategy.  
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3.2.1 Observing Strategy and Telescope Mount 

 

MBI-4 will be deployed at Pine Bluff Observatory, Wisconsin, the same 

location as that used for test measurements outside the lab.  This site was chosen 

because of its proximity to the University of Wisconsin-Madison, the reasonable 

viewing it provides and the existing infrastructure, as well as the ease of finding 

calibration targets such as guide stars in the dark night skies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 MBI-4 at the Pine Bluff Observatory site.    

 

The observing strategy requires that MBI can observe any point on the sky 

and be able to rotate around the line of sight to allow the measurement of either the 

Q or U Stokes parameters.  This is accomplished with a standard altitude-azimuth 

design for pointing with an added rotation axis.  Due to the importance of levelling 

the system the base of the telescope mount is a tripod, with each corner containing a 

wheel for ease of movement and a jack-screw to allow alteration of the height.  

Sitting above the tripod base is a 1-inch thick aluminium driving disk with a 

diameter of 53 inches, surrounded by a stainless steel ring.  This one-eight inch thick 
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ring provides support to the disk and acts as a driving surface which turns the mount 

on it azimuth axis. 

 

The frame and the z-axis (rotation) bearing that sits on top of the base was 

recycled from the COMPASS experiment (Farese et al., 2004) with an extra plate 

added to the bottom surface to prevent buckling.  Elevation is achieved by means of 

an arm and pivot and allows the telescope to be positioned at angles between 0 and 

90 degrees.  In summary, the MBI pointing platform consists of a fully steerable 

altitude-azimuth mount on which the entire cryostat can be rotated around the optical 

(z) axis.  Tracking of the sky occurs under computer control using feedback from 17-

bit absolute optical encoders on each of the three axes: azimuth, elevation, and z.  

Absolute pointing is achieved using a bore-sighted optical telescope (Tucker et al., 

2008).   

 

 

3.2.2 Interference 

 

In a simple two-element interferometer, signals from two telescopes pointing 

at the same point in the sky are correlated so that the sky temperature is sampled 

with an interference pattern with a single spatial frequency.  The output of such an 

interferometer is the visibility, 
 xdexTxGuV xui ˆ)ˆ()ˆ()( 2
  , where x̂  is a unit 3-

vector in the direction of the point on the sky, )ˆ(xG  is the beam pattern of each 

antenna (assumed to be identical) and )ˆ(xT  is the map temperature fluctuations on 

the sky we are trying to measure.  The vector u


 has length /B , where B is the 

length of the baseline, and is orientated along the baseline.  To recover the full phase 

information complex correlators are used to simultaneously measure both the in-

phase and quadrature phase components of the visibility (Tucker and Timbie, 2009).  

This type of interferometer is called a multiplying interferometer.  

 

An alternative approach to interferometry is to use an adding interferometer, 

in which incoherent detectors are used, such as in MBI, and the electric fields from 

two telescopes are added and then squared at the detector (e.g. Rohlfs and Wilson, 
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1996).  The result is an interference term and a constant term proportional to the 

intensity (Figure 3.2), which is an offset that is removed by phase modulating one of 

the signals.  Synchronous detection at the modulation frequency recovers the 

interference term and reduces susceptibility to low frequency drifts ( f/1  noise) in 

the bolometer and readout electronics.  The adding interferometer recovers the same 

visibility as the multiplying interferometer.         

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Schematic diagram of an adding interferometer where  sin)/2( B  (Tucker et 

al., 2008). 

 

The polarisation of radiation is completely characterised by the Stokes 

parameters, I, Q, U, and V.  If the incoming wave is expressed as i
yx ejEiEE ˆˆ 


, 

then the linear polarisation Stokes parameters are cos2 yxEEU   and 

22

yx EEQ  , the circular polarisation parameter is sin2 yxEEV   and the 

intensity 22

yx EEI  , where the angle brackets denote the time average.  Stokes 

Q and U are related to each other by a rotation and therefore an instrument that 

measures U can be rotated by 45º to measure Q, and vice-versa. 
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As discussed by Tucker et al. (2008), an interferometer measures the Stokes 

parameters directly, without differencing the signal from separate detectors and 

correlates the components of the electric field captured by each antenna with the 

components from all the other antennas.  On the baseline formed by two of these 

antennas, say 1 and 2, the interferometer‟s correlators measure xx EE 21 , , 

yy EE 21 , , yx EE 21 ,  and xy EE 21 , , with the first two being used to measure I and 

the second two, U.  Rotating the instrument allows the measurement of Q.  The 

Stokes V parameter can be recovered in a similar manner but is expected to be zero 

for the CMB and will not be measured by MBI. 

 

 

3.2.3 Detectors and Signal Processing 

 

The detectors used in MBI are spiderweb bolometers that were designed for 

the ACBAR (Arcminute Cosmology Bolometer Array Receiver) experiment 

(Reichardt, 2009) and are not sensitive to polarisation.  They are voltage biased and 

arranged in a resistance bridge with other resistors.  If the bolometers resistance 

changes then the percentage of the overall resistance that it represents will change 

and therefore the voltage drop across it will vary.  The resistance of the bolometers 

increases as they are cooled and so to establish the voltage the temperature across 

them is measured.  The voltage bias is modulated in the form of a sine-wave with a 

frequency of 208Hz, which is expected to be faster than the rate of change of 

temperature in the bolometric detectors. 

 

A lock-in amplifier is used to measure the signal and the output is 

proportional to the amplitude or inversely proportional to the temperature of the 

bolometers.  This in turn is inversely proportional to the power received by the 

detectors.  The lock-in amplifier integrates out random thermal and electrical noise, 

therefore only slowly varying signals are considered. 

 

The signals to be detected from the CMB are extremely small and therefore 

signal processing is vitally important if fidelity between the final reading and the 
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signal is to be maintained.  The sinusoidal voltage bias board is a copy of the 

BLAST  (Balloon-borne Large-Aperture Submillimeter Telescope) (BLAST 

website) bias board and sits at the base of the telescope mount.  A single bias line is 

fed into the cryostat with all the bolometers being biased with the same signal at 

208Hz.  Twelve digital lines control the amplitude of the bias signal between 0 and 

16 volts peak to peak and the frequency is set using an external reference signal 

provided by one of two National Instruments Field Programmable Gate Array 

(FPGA) boards.  These boards are also used in the acquisition chain to lock-in to the 

bias signal, an arrangement that minimises spurious signals due to small differences 

in clocks. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 A spiderweb bolometer (ESA‟s Planck Satellite website). 

 

 

 

The voltage across the bolometers is amplified by a JFET module which is 

located on the 77K shield of the cryostat but generally operates at 120K to 130K, 

with the extra heat being provided through the wires connecting it to a 300K 

connector.  An optimal operating temperature of 120K will minimise the noise in the 

JFET module.  A shielded cable connects the module to a readout board which uses a 

band pass filter centred on 208Hz to filter out noise before amplifying the signal by a 

factor of 196.   The output passes to the analogue inputs of FPGA boards which 
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perform a lock-in detection, including phase information, before being recorded by a 

data acquisition program.  This is performed approximately three times per second 

and the program also records the states of the phase modulators. 

 

3.2.4 Cryogenics 

 

The MBI cryostat (Figure 3.4) consists of two cryogen tanks, an outer tank 

for liquid nitrogen and an inner tank for liquid helium, with the final cooling being 

done using a series of refrigerators.  The refrigeration unit is composed of a 
4
He and 

two 
3
He refrigerators operating at a cold head temperature of 260mK.  Such a system 

was chosen based on the cooling requirements of the detectors and the overall 

performance of the system. 

 

 

Figure 3.4 Schematic diagram of the MBI-4 cryostat. 

 

Sky-facing horn antenna  

Liquid nitrogen tank  

Liquid helium tank  

Secondary mirror  

3He Refrigerator  

Primary mirror  

Bolometer unit  
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The cold plate of the first 
3
He fridge is thermally linked to the bolometer 

readout wiring at a preliminary stage that is thermally isolated from the focal plane.  

This is done to intercept heat flowing down the wires from the hot stages before it 

makes it to the bolometers.  The first 
3
He stage is used because it has more cooling 

power and a higher temperature than the second or final 
3
He stage.  The bolometer 

focal plane is connected to the final 
3
He stage through a similar arrangement and the 

phase shifters are cooled separately to 4.2K due to the fact their large operational 

thermal load makes it impractical to cool them with the 
4
He and 

3
He refrigerators 

while they are in use. 

 

The cryostat for MBI was constructed by A. S. Scientific Ltd. and has a cold 

time of 96 hours without any thermal load.  It is cylindrical in shape with a length of 

1m and a diameter of 0.7m. 

 

 

 

3.2.5 The Optical System 

 

The sensitivity of a receiver to broadband signals increases as the square root 

of the bandwidth.  The bandwidth of MBI was chosen to make the instrument 

sensitive to polarisation B-modes of approximately 1º (l = 150 – 270).  This 

bandwidth placed constraints on the design of the optical system, since for 

interferometers bandwidth restricts the angular range,  , over which fringes are 

detected (Thompson et al., 1998; Boker and Allen, 1999).  If it is assumed that the 

path lengths (through both arms of an interferometer) for a source at the centre of the 

field of view (FOV) are equal, then the path length difference for a source at an 

angle   from the centre along the baseline axis is B , where B is the baseline 

distance.  If the path length difference is small compared to the coherence length of 

the radiation,  /2 , then the fringe contrast is not affected.  Therefore the FOV is 

determined by )/)(/( BFOV   , which indicates that for angles of the order of 

the product of the spectral resolution times the angular resolution, the fringe 

smearing is important.  This relation imposes restrictions on the ratio between the 
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maximum baseline achievable by the interferometer and the spectral bandwidth of 

the receiver.  For MBI-4 the bandwidth is 15%, which sets the maximum baseline to 

approximately six times the diameter of each antenna. 

 

A flow chart and schematic diagram of the MBI optical chain is shown in 

Figures 3.5 and 3.6 respectively, starting with the vacuum windows and filters for 

each of the four sky horn antennas.  These are circular corrugated horn antennas and 

are analysed in some detail in 4.3.2.  Radiation from the sky horns is propagated 

through the circular waveguide section at the back of the horn which is followed by a 

circular-to-rectangular waveguide transition, which selects a single polarisation 

direction.  Two of the horns are set to select an x-polarisation while the other two are 

orientated perpendicular to this to select polarisation in the y-direction.  Although the 

relative alignment of these directions is critical they are initially set by eye and then 

fine-tuned using micro screws.  By setting the polarisation directions in this way it 

enables interference between xE  and xE , yE  and yE , and xE  and yE , which allows 

for the recovery of the Stokes Q and U parameters.   

 

The ferrite phase modulators make use of the Faraday Effect, a magneto-

optical phenomenon, to rotate the linear polarisation that passes through them.  They 

are operated so that they shift the polarisation by either plus or minus 90º from its 

original orientation.  By controlling the direction of rotation, the phase of the 

radiation emitted is changed between two states which have a 180º phase difference.  

A 45º waveguide twist then forces the polarisation direction to be changed by either 

+45º or -45º, maintaining the 90º difference between each of the baseline horns 

before connecting to a rectangular-to-circular waveguide transition followed by the 

inward facing horn, which has exactly the same structure as the sky horn.   

 

The radiation emitted into the cryostat from the inward-facing horns is 

reflected off a parabolic primary mirror followed by a hyperbolic secondary mirror 

arranged in a Cassegrain configuration.  This is the beam combiner section of MBI.  

The position and curvature of the mirrors has been optimised by NUI Maynooth for 

the internal geometry of the cryostat, something which is explained in more detail in 

section 3.3. 
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Figure 3.5 Flow-chart describing the MBI optical chain. 
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Figure 3.6 Schematic diagram of the MBI optical chain showing the position of (1) vacuum window, 

(2) warm filter, (3) sky-facing corrugated horn antenna, (4) circular waveguide, (5) circular-to-

rectangular waveguide transition, (6) 45 degree waveguide twist, (7) phase modulator, (8) 

rectangular-to-circular waveguide transition, (9) circular waveguide, (10) inward-facing corrugated 

horn antenna, (11) phase-flattening lens, (12) secondary mirror, (13) primary mirror, (14) cold filter, 

(15) phase-flattening lens, (16) detector horn and (17) bolometer for a single baseline. 

. 

 

 

After reflection from the secondary mirror the radiation is focused into the 

focal plane which is covered with two layers of metal mesh filters at 400mK.  The 

focal plane is a solid block of copper which has had nineteen smooth-walled conical 

feed horns (see section 4.2) machined into it with the excess material removed to 

reduce the thermal load on the cryogenics (Figure 3.8).  A corrugated polyethylene 

lens is attached to the mouth of each horn to help flatten the phase of the incoming 

1 2 3 4 5 6 7 8 9 10 11 15 16 17 

13 12 14 
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radiation across the aperture.  The horns feed the radiation to an array of spiderweb 

bolometers as discussed in section 3.2.3.    

 

 

 

Figure 3.7 Back-to-back horn corrugated horn antenna with no circular waveguide extension between 

the horns. 

 

 

 

 

Figure 3.8 Detector horn antennas milled from a copper block. 

 

 

3.3 Design of the MBI-4 Optical Beam Combiner 

 

There are a number of ways in which beams can be combined to form an 

interference pattern, a Butler combiner (a guided-wave structure consisting of 

waveguides or microstrip transmission lines), for example, however for scalability 

reasons (scaling up to 64 horn antennas) an optical beam combiner was chosen for 

MBI.  The design of the optical beam combiner for MBI-4 was carried out at NUI 
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Maynooth using a combination of geometrical optics and a diffraction analysis.  The 

following sections outline the design process and provide details on the parameters 

calculated for different possible mirror configurations within the physical constraints 

of the cryostat and the type of detectors used.     

 

 

3.3.1 The Design of the Optical System 

 

The optical beam combiner was designed around a number of constraints that 

were already in place, including the physical size of the cryostat, the size and 

arrangement of the detector horn array, the size and position of the back to back horn 

system feeding the telescope (as described in section 4.3.2) and the focal plane 

sampling  required for the instrument.  With this in mind a Cassegrain configuration 

was chosen, a diagram of which is shown in Figure 3.9. 

 

A Cassegrain reflector (named after Laurent Cassegrain after a design for a 

reflecting telescope was published in the Journal des Sçavans on the 25
th

 April, 1972 

(Baranne, 1997)), is a combination of a concave primary mirror and a convex 

secondary mirror, which in a symmetrical system are aligned along the optical axis.  

In the classical Cassegrain configuration the primary mirror is parabolic while the 

secondary is hyperbolic, as is the case for MBI-4 (Figure 3.9). 

 

 

3.3.2 A First Approximation Using Geometrical Optics 

 

Consider the Cassegrain system shown in Figure 3.10.  In MBI-4 the values 

that were fixed before the optical system was considered were the aperture radius of 

the inward facing corrugated conical horn antennas (~25mm), the aperture radius of 

the smooth-walled conical detector horn antennas (~12.5mm) and the resolution 

required (~1º).  Since resolution ≈ D/ , the longest baseline, D, was also fixed at 

200mm. 
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It was necessary when designing the system to ensure that each fringe was 

sampled at least twice (Nyquist criterion), which, given the size of the detector 

horns, meant a fringe spacing of at least 50mm.  If we consider the equivalent system 

shown in Figure 3.11, for small angles /XDf   giving an equivalent focal length 

of 3000f mm and an f/15 ( 200/3000//#  Dff ) beam at the output plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Schematic diagram of a classical Cassegrain system.  Dp = diameter of primary mirror, Ds 

= diameter of secondary mirror, d = distance between mirrors, d´ = distance of image plane behind 

primary, fp = focal length of primary mirror.  
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2A = 50mm

D = 200mm

2a = 25mm

 

Figure 3.10 MBI-4 Cassegrain system showing one long baseline with fixed horn antenna radii.  A is 

the radius of the inward-facing horn antenna while a is the radius of the detector horn antenna. 

 

 

With regards to the mirrors in the system, the parabolic primary with focal 

length pf  and the hyperbolic secondary with focal length sf , separated by a distance 

d, must combine to give a focal length f as, 

 

spsp ff

d

fff


111

    

(3.1) 

 

As long as this condition was met we were free to choose pf , sf  and d.  It was also 

important to keep the diameter of the secondary mirror relatively small compared to 

that of the primary mirror to prevent as much blockage as possible.   

 

4a = 50mm
f

 

Figure 3.11 The Cassegrain system with the mirrors replaced by an equivalent bi-convex lens. 



 

  126 

As a initial step, the ratio of the diameter of the secondary mirror to that of 

the primary was set at 1/4 (i.e. 4/1/ ps DD ).  From Euclid‟s theorem on similar 

triangles this meant that the mirror separation pfd )4/3( .  As an example, a value 

of 500mm was chosen for d, giving a primary focal length 67.666pf mm and from 

Equation 3.1 a secondary focal length 3.214sf mm (following the sign 

convention that concave mirrors have a positive focal length while convex mirrors 

have a negative focal length).  In a classical Cassegrain system the near focal point 

of the hyperbolic secondary mirror (u) is coincident with the focus of the primary 

mirror, so again by means of similar triangles 4/pfu  .  The image distance 

750/# fDv s mm, meaning that focal plane is a distance of 250 dv mm 

behind the primary as shown in Figure 3.12. 

 

 

 

 

 

   

 

Figure 3.12 Cassegrain design concept with a mirror separation of 500mm. 

 

If d had been set to 750mm and the same criteria applied then 1000pf mm, 

375sf mm, 250u mm and 750v mm, meaning that the focal plane would lie 

at the same location as the primary mirror (Figure 3.13 (a)).  On the other hand, if d 

was set to 1500mm, then 2000pf mm, 1500sf mm, 500u mm and 

750v mm, placing the focal plane half way between the primary and secondary 

mirrors (Figure 3.13 (b)).  In this case sD  would almost need to be doubled in 

diameter to accommodate off-axis rays.  The particular system that was eventually 

chosen (see Table 3.8) depended on the physical restrictions imposed by the existing 

cryostat.  

System 1 
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  Figure 3.13 Cassegrain design concept with a mirror separation of (a) 750mm and (b) 1500mm.  In 

part (a) the focal plane coincides with the plane of the primary mirror while in part (b) it is located 

half way between both mirrors. 

 

 

If the restriction on the detector horn size was removed and they were 

replaced with bare waveguide for example, then a more typical f/3 beam at the 

output plane might be chosen.  This would allow a more compact system in which 

again we could choose 50)4/1(  ps DD mm so that pfd )4/3(  and pfu )4/1( .  

If 150pf mm, then 5.37u mm, and since the output beam is f/3 then 

1503  sDv mm and the mirror separation is 5.112d mm.  The image plane 

would be located 37.5 mm behind the primary mirror.  A schematic diagram of such 

a system is shown in Figure 3.14 and the details are summarised in Table 3.1.  

Again, due to the restriction on the detector horn antennas such a system would not 

be applicable to the current version of MBI-4 but may be implemented in future 

instruments.  To decide on the best option for the MBI-4 beam combiner a 

diffraction analysis was required.  

(a) 

(b) 

System 2 

System 3 
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Figure 3.14 Schematic diagram of a more compact optical system with an f/3 beam at the output 

plane. 

 

 

 

Parameters of Initial Designs Considered for the MBI-4 Optical System 

 System 1 System 2 System 3 System 4 

f/# at image  15 15 15 3 

Equivalent focal length, f (mm) 3000 3000 3000 300 

Ds/Dp ratio 0.25 0.25 0.25 0.25 

Mirror separation, d (mm) 500 750 1500 112.5 

Secondary Diameter, Ds (mm) 50 50 50 50 

Primary focal length, fp (mm) 666.67 1000 2000 150 

Secondary focal length, fs (mm) -214.29 -375 -1500 -75 

Object distance, u (mm) 166.67 250 500 37.5 

Image distance, v (mm) 750 750 750 150 

Primary to image, d′ (mm)  250 0 -750 37.5 

Table 3.1 Parameters of the Cassegrain optical designs considered for the MBI-4 optical beam 

combiner.  

System 4 
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3.3.3 Diffraction Analysis 

 

We will now consider the diffraction effects that occur in the beam combiner 

system and examine the beam width and radius of curvature at different planes.  The 

beam width at the output or focal plane is given by, 

 

in

out
w

f
fdw




 )(

         

 (3.2) 

 

where f is the focal length of the system and win is the input beam waist radius.  

Considering the MBI corrugated horn in Figure 3.15 with an aperture diameter of 

502 a mm and an axial length of 130mm, the waist radius of the beam is given by 

(Goldsmith, 1998),  

 

5.0
2)6435.0(

1

6435.0





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






R

a

a
wo





        

(3.3) 

 

where R is the slant length of the horn giving a value of w0 = 7.67 mm (the beam 

radius at the aperture is given by mm1.166435.0  awa ).     

 

 

 

 

 

 

Figure 3.15 Schematic diagram of a corrugated horn antenna showing the position of the waist behind 

the aperture of the horn. 

 

The distance from this waist position to the aperture of the horn is given by 

 



 

  130 


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(3.4) 

 

and therefore mm3.102z .  Remembering that the equivalent focal length of the 

system is 3000f mm, the beam width at the focal plane is given by Equation 3.2, 

resulting in a value of 414.6mm from an input beam width of 7.67mm.  The fringe 

pattern for this system is shown in Figure 3.16 with oversized mirrors (primary 

mirror diameter = 300mm, secondary mirror diameter = 100mm) used in ZEMAX, 

to prevent truncation.  The fringes were obtained using Zemax‟s physical optics 

option (see section 2.6) with a fundamental Gaussian source.     

 

 

 

 

    

 

 

 

 

 

Figure 3.16 Fringe pattern at the image plane taking into account the phase front radius of curvature 

of the beam at the aperture of the corrugated horn antenna.  These plots were obtained using Zemax‟s 

physical optics option (see section 2.6) with a fundamental Gaussian source. 

 

 

If we consider the layout of the system and assume for example that the 

phase centre of the horn is located 100mm in front of the secondary mirror, the 

distance x in Figure 3.17, then lengthwise the system of Figure 3.12 will fit inside 

the cryostat as shown in Figure 3.20.  The beam width at each component was 

calculated using ABCD matrices and the complex beam parameter, as in Equation 

2.36 ( )/()( DCqBAqq ininout  ).  Since the beam width at different planes was 

required the system was described in three different ways: one ABCD matrix 

Off-axis distance (mm) 

2
0
0
0

m
m
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containing everything up to and including the primary mirror, one ABCD matrix 

containing everything up to and including the secondary mirror and one ABCD 

matrix containing everything up to the image plane.  The complex beam parameters 

were computed and the beam width values were then calculated using, 

 

 

5.0

/1Im












q
w





        

(3.5) 

 

where w is the beam width at the output of the system described by the ABCD 

matrix.   

 

Table 3.2 shows the parameters of the system and the calculated beam width 

values.  These parameters are also shown as Configuration 1 in Figure 3.18.  

Considering the width of the beam at the secondary mirror, which would have to fit 

between the horn antennas and therefore have a diameter of 150mm or less, there 

would be significant truncation effects in the system.  Figure 3.19 shows the 

interference pattern on the image plane and also the field produced from a single 

source.  Figure 3.20 illustrates how the system could be fit into the MBI cryostat. 

 

 

 

 

 

 

 

 

 

Figure 3.17 Schematic diagram of the Cassegrain optical system showing the variable distance x from 

the secondary mirror to the beam waist position. 
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Figure 3.18 Beam width at different components in the optical system for three different 

configurations described in the text. 

 

 

 

Figure 3.19 Field produced on the image plane by a single source and the interference fringes on the 

image plane produced by two sources 200mm apart (same system as Figure 3.16 but with truncation 

effects taken into account). 

 

In order to reduce the size of the beam on the secondary mirror the distance 

between the primary and secondary mirrors could be shortened to 150mm for 
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example as shown in Figure 3.21, with the beam waist 150mm behind the secondary.  

This would require mirrors with a greater curvature and hence a shorter focal length 

but would indeed reduce the beam widths as the results in Table 3.3 indicate (see 

also Configuration 2 in Figure 3.18).  Figure 3.22 shows both the field from a single 

source and the interference pattern on the image plane.  While truncation is reduced, 

in order to use a system such as this one the cryostat length would have to be 

increased by approximately 250mm. 

 

To reduce the distance from the secondary mirror to the image plane in an 

attempt to fit the system into the cryostat, the angle between the primary and the 

secondary could be steepened, perhaps using a 8/1/ ps DD  model.  This would 

require mirrors with an even higher degree of curvature than those in the previous 

system and would also produce a beam at the image plane with a smaller phase front 

radius of curvature.  Figures 3.23 and 3.24 show a ray tracing diagram of such a 

system and the fields at the image plane, respectively, while the system parameters 

and beam widths are given in Table 3.4 and compared with the previous 

configurations in Figure 3.18 (Configuration 3).  As can be seen in Figure 3.25, this 

optical configuration does fit within the physical constraints of the cryostat (although 

it was not the final system chosen, as discussed later in this section). 

 

The narrow beam waist produced by the horn antenna causes the beam to 

diffract significantly (the angular divergence of a beam is given by 0/ w  ). 

Another approach was to consider moving the beam waist location to the aperture of 

the horn antenna (thereby increasing it to 0.6435a) by flattening the phase front 

radius of curvature using lenses.  If we consider System 1 described in the previous 

section (see Table 3.1) with the mirrors separated by a distance 500d mm and the 

distance from the beam waist to the secondary mirror 100x mm as shown in Figure 

3.26, then the fringe pattern in Figure 3.27 is obtained where the size of the mirrors 

was extended in ZEMAX to prevent truncation. 
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Figure 3.20 The optical system in the cryostat with the waist position of the horn antennas a distance 

of 100mm in front of the secondary mirror. 

 

 

 

102.3 mm 
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Optical System Parameters and Beam Widths 

System Parameters Beam Widths (w) 

Distance from wo to 

Primary (mm) 
400 Beam Waist, wo (mm) 7.7 

Distance from Prim. 

to Sec. (mm) 
500 w at Primary (mm) 56 

Distance from Sec. to 

Image (mm) 
750 w at Secondary (mm) 83 

fp (mm) 666.67 w at Image (mm) 415 

fs (mm) -214.29   

Table 3.2 Optical system parameters and beam widths at different components for a beam waist 

located 100mm in front of the secondary mirror and a mirror separation of 500mm. 

 

 

 

 

   

 

Figure 3.21 Ray tracing diagram with the primary and secondary mirrors separated by a distance of 

150mm with the initial beam waist position 150mm behind the secondary mirror. 
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Figure 3.22 The top image shows the field produced on the image plane by a single source located 

150mm behind the secondary mirror for a mirror separation of 150mm.  The bottom image shows the 

interference fringes produced by the system.  The beam waist radius at the image plane is 415mm. 
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Optical System Parameters and Beam Widths 

System Parameters Beam Widths (w) 

wo to Primary (mm) 300 Beam Waist, wo (mm) 7.7 

Prim. to Sec. (mm) 150 w at Primary (mm) 42 

Sec. to Image (mm) 750 w at Secondary (mm) 31 

fp (mm) 200 w at Image (mm) 415 

fs (mm) -53.57   

Table 3.3 Optical system parameters and beam widths at different components for a beam waist 

located 150mm behind the secondary mirror and a mirror separation of 150mm.  Ds/Dp=1/4. 

 

Optical System Parameters and Beam Widths 

System Parameters Beam Widths (w) 

wo to Primary (mm) 300 Beam Waist, wo (mm) 7.7 

Prim. to Sec. (mm) 150 w at Primary (mm) 42 

Sec. to Image (mm) 375 w at Secondary (mm) 26 

fp (mm) 171.43 w at Image (mm) 415 

fs (mm) -22.73   

Table 3.4 Optical system parameters and beam widths at different components for a beam waist 

located 150mm behind the secondary mirror in a compact system (Fig. 3.23).  Ds/Dp=1/8. 

 

  Since the best possible coupling between the telescope field and the detector 

horn antenna is achieved when the phases of the two fields are matched, in an ideal 

situation the image plane would coincide with a beam waist and therefore the field at 

this point would have a flat phase front radius of curvature (it was shown by Lavelle 

(2008) that having a flat phase telescope beam would increase the coupling by a 

factor of 1.4).  The actual curvature of the phase at the image plane was calculated 

for an aperture waist located at different distances from the primary mirror using 

ABCD matrices.  In this case the system is defined by five matrices, each one 

representing either a free space propagation or a thin lens (see Table 2.1) since again 

the optical system can be analysed in terms of lenses rather than mirrors for 

convenience.  The ABCD matrix representing the overall system is then obtained by 
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multiplying the individual matrices with the leftmost matrix representing the last 

element in the system encountered by the beam, that is, 
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where L1 is the distance from the source to the primary mirror ( dx  ), L2 is the 

distance from the primary mirror to the secondary mirror (= d), L3 is the distance 

from the secondary mirror to the image plane ( dd  ), fp is the focal distance of 

the primary mirror and fs is the focal distance of the secondary mirror. 

 

 

 

  

 

Figure 3.23 Ray tracing diagram of the system containing mirrors with a higher degree of curvature 

and a steep angle between the primary and secondary. 
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Figure 3.24 The image from a single source and the interference pattern at the image plane of a 

system with a mirror separation of 150mm and a secondary mirror to image plane distance of 375mm.   

 

 

From these matrices the complex beam parameters were obtained and the 

radius of curvature calculated using the equation (Goldsmith, 1998), 
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The results of this analysis can be seen in Table 3.5, where it is clear that to achieve 

a waist at the output plane, the input waist would have to be ~10,000mm from the 

primary mirror.  However, if the input waist is moved closer to the plane of the 

mirror the output radius of curvature is still large.  

 

Although the radius of curvature is an important factor it is also important to 

note that if the input beam waist position is located too far from the primary mirror 

the diameter of this mirror would have to be quite large to avoid significant 

truncation effects (diameter ≥ 4w).  With this in mind the beam width at different 

components in the system was calculated for an initial waist location at various 

distances from the secondary mirror, or varying values of x in Figure 3.26.  Similar 

to calculating the radius of curvature, the beam width was calculated as before using  

 



 

  140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25 The optical system in the cryostat with the waist position of the horn antennas a distance 

of 150mm behind the secondary mirror and a secondary mirror to image plane distance of 375mm. 

 



 

  141 

ABCD matrices and the complex beam parameter with 0z  corresponding to the 

initial beam waist position.  From the ABCD matrices three different corresponding 

complex beam parameters, qout , were obtained and for each one of these the beam 

width was calculated using Equation 3.5. 

 

 

 

Figure 3.26 Schematic diagram of a Cassegrain system with varying beam waist to secondary mirror 

distance, x.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Fringe pattern generated with the beam waist position located 100mm from the 

secondary mirror and a mirror separation of 500mm.  In this example a waist of 16.1mm was used.  
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Phase Curvature as a Function of  Beam Waist to Primary Mirror Distance 

Distance from Beam Waist to Primary 

Mirror (mm) 

Phase Front Radius of Curvature at 

the Focal Plane (mm) 

10,000 ∞ 

9,000 3100.9   

8,000 3105.4   

1,000 3100.1   

300 2103.9   

100 2101.9   

Table 3.5 Phase front radius of curvature of the beam at the image plane calculated with the beam 

waist at different distances from the primary mirror.   

 

 

Beam Width at Different Components in the Optical System 

Distance from 

Waist to 

Secondary (mm) 

Beam width at 

Primary Mirror 

(mm) 

Beam width at 

Secondary Mirror 

(mm) 

Beam width at 

Image Plane 

(mm) 

0 36.65 41.34 197.50 

100 42.66 42.98 197.50 

200 48.82 44.62 197.50 

300 55.08 46.26 197.50 

400 61.40 47.90 197.50 

500 67.78 49.54 197.50 

Table 3.6 Beam width at different components in the optical system with the beam waist (16.1mm) 

located at different distances from the secondary mirror. 

 

Table 3.6 shows the results of this analysis depicted in the graph in Figure 

3.28.  While the beam width at the image plane remains constant for all values of x, 

there is significant variation at the primary mirror and to a lesser extent at the 

secondary mirror, which is important when considering truncation of the beam. 
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Figure 3.28 Beam width at different components in the optical system with the beam waist (16.1mm) 

located at different distances from the secondary mirror. 

   

 

 

 

Optical System Parameters and Beam Widths 

System Parameters Beam Widths (w) 

wo to Primary (mm) 250 Beam Waist, wo (mm) 16.1 

Prim. to Sec. (mm) 200 w at Primary (mm) 23 

Sec. to Image (mm) 375 w at Secondary (mm) 15 

fp (mm) 228.57 w at Image (mm) 197.5 

fs (mm) -30.93   

Table 3.7 Optical system parameters and beam widths at different components for a beam waist 

located at the horn aperture located 50mm behind the secondary mirror. 
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Figure 3.29 The intensity of the field from a single source on the image plane, located 425 mm from 

the horn antenna aperture at which the beam waist is located.  Truncation is not accounted for in this 

analysis. 

 

 

Figure 3.30 The phase of the field from a single source on the image plane, located 425 mm from the 

horn antenna aperture at which the beam waist is located.  Truncation is not accounted for in this 

analysis. 

 

Taking into account the fact that the distance from the beam waist to the 

primary mirror affects the phase radius of curvature, and truncation is dependant on 

the distance from the waist to the secondary mirror we considered a system where 

the beam waist position (i.e. the horn aperture plane with lenses attached) was placed 

50mm behind the secondary mirror with a mirror separation of 200mm.  The beam 

widths at the different components in such a system are shown in Table 3.7.  Figures 

3.29 and 3.30 show the field intensity and phase on the image plane where the beam 

radius of curvature is found to be 406mm using ABCD matrices.  Figure 3.31 shows  
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Figure 3.31 The optical system inside the cryostat.  The field at the mouth of the horns has been 

flattened and is placed 50 mm from the secondary mirror. 
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Figure 3.32 The intensity and phase of the interference pattern on the image plane for the system 

outlined in Table 3.7.  Truncation is not accounted for in this analysis. 
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the system in the cryostat and Figure 3.32 shows the fringes on the image plane 

where the diameters of the mirrors in ZEMAX were such as to neglect truncation. 

 

In a Cassegrain system blockage of the primary mirror by the secondary is a 

serious issue (our original design examined the longer baseline but obscuration by 

the secondary is even more problematic for the shorter baseline) and the 100mm 

secondary mirror implemented in the last design was thought to be too large, given 

the separation of the inward facing horns.  Two other diameters for the mirror were 

examined, 64mm and 80mm.  This was carried out in ZEMAX by modelling the 

mirror as an obscuring disk as seen from the input beam since the effect it has is to 

obscure part of the beam as it propagates towards the primary mirror.  While the 

80mm diameter mirror (and the resulting beam pattern shown in Figure 3.33) would 

collect more power from the primary mirror, the 64mm diameter would be more 

desirable in terms of truncation effects. 

 

Figure 3.34 shows a schematic diagram of such a system where the beam hits 

the secondary 12.6mm from the centre of the mirror, or 1.26w, where w is the beam 

width at that plane, from one edge of the 64mm surface.  The power on the image 

plane from a single source is shown in Figure 3.35 as well as the fringe pattern.  A 

comparison between the fringes produced by the 64mm mirror and those produced 

by the 100mm mirror described earlier is shown in Figure 3.36, where both sets of 

fringes have been normalised independently. 

 

The one remaining issue was the aperture in the primary mirror, which given 

the layout of the inward facing horn antennas shown in Figure 3.37, was designed to 

be elliptical in shape with a major axis of 164mm and a minor axis of 96mm.  This 

can also be seen in Figure 3.37, which shows a top view (from the sky) of the optics 

and sky-facing horns. 

 

The initial design of the MBI beam combiner was carried out using a 

combination of both geometrical optics and diffraction analysis.  Having analysed a 

number of systems a trade-off between having a flat phase front radius of curvature 

at the image plane and also a low level of truncation by the primary mirror was 

required.  In the final system that was built the waist position (corresponding to the 
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horn aperture with lenses attached) was placed 50mm behind the hyperbolic 

secondary mirror (diameter=64mm), a distance large enough to give a relatively 

large radius of curvature on the focal plane but also small enough to allow for a 

parabolic primary mirror whose radius (150mm) would allow it to fit within the 

dimensions of the cryostat.  An elliptical hole was chosen for the primary mirror to 

prevent as much truncation as possible from the four optics-facing horn antennas.  

This is the system that was implemented in the MBI-4 instrument with the phase 

flattening lenses being designed at NUI Maynooth (Figure 4.7, (Lavelle, 2008)).  In 

the next Chapter we look in more detail at the different type horn antennas used in 

the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33 The intensity (linear and logarithmic scale) of a single beam at the image plane using an 

80 mm secondary mirror. 
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Figure 3.34 Ray tracing of the Cassegrain system with a 64mm secondary mirror. 

 

 

 

  

Figure 3.35 Top left: The intensity of a single beam using a 64mm secondary mirror.  Top right: The 

fringe pattern at the image plane from two sources 200mm apart.  Bottom left: A linear scale intensity 

cut through a single beam using a 64mm secondary mirror.  Bottom right: A dB scale intensity cut 

through a single beam using a 64mm secondary mirror. 
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Figure 3.36 A Comparison of the interference fringes produced at the image plane by the long 

baseline using a 64mm diameter (blue) and a 100mm diameter (red) secondary mirror. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37 Schematic diagram showing the four sky-facing horn antennas along with the primary 

mirror and elliptical aperture, and the secondary mirror in the centre.  This is a view from the sky. 
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Summary of the Design Parameters of the MBI-4 Optical System 

System Parameter Primary Secondary Image 

Distance from waist (mm) 250 50 425 

Diameter (mm) 300 64 n/a 

Radius of curvature (mm) 457.14 -61.86 n/a 

Conic constant (k) -1 -1.3571 n/a 

Focal length (mm) 228.57 -30.93 n/a 

Table 3.8 The parameters of the optical system implemented in the MBI-4 instrument.  The beam 

radius values for this system can be seen in Table 3.7. 
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Chapter 4 

 

Electromagnetic Modeling of 

Horn Antennas and Waveguides 
 

 

4.1 Introduction 

 

In this chapter we look at modelling horn antennas and waveguide structures.  

Both smooth-walled conical horn antennas and corrugated horn antennas are used in 

MBI-4 to feed the radiation from the sky to the optical system and also as feeds for 

the bolometric detectors in the focal plane array.  To generate a full and accurate 

model of the complete system for MBI-4, as is done in Chapter 5, it is necessary to 

have a good understanding of these structures and the aperture fields that they 

produce. 

 

In terms of corrugated horn antennas we look how a scattering matrix 

approach is used alongside mode-matching to calculate the intensity distributions for 

different structures and this method is used to produce the fields from the MBI-4 

corrugated horn antennas.  A singular value decomposition analysis is also carried 

out on a full back-to-back horn scattering matrix to find the number of independent 

modes that can propagate through the full system. 

 

Within the structure of the back-to-back horn antennas in MBI-4 there are 

rectangular-to-circular transitions.  While commercially-available transitions change 

from one geometry to the other in a gradual way to reduce any power loss that may 

occur, the effect of a sudden change in the waveguide shape is examined in this 

chapter (this is also applicable to the SAFARI instrument (a far infrared imaging 

spectrometer) on board SPICA (SPace Infrared telescope for Cosmology and 

Astrophysics) mission, for example, which may use a rectangular waveguide to feed 

a circular integrating cavity (Doherty, submitted to SPIE Photonics West Conference 

Proceedings 2011)). 
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Finally we look at the effects of beam distortion from horn antennas in 

closely packed arrays and what effect this will have on field distributions.  In CMB 

polarisation experiments the sensitivity required is such that a large number of 

detectors are needed and therefore the focal plane arrays are becoming more and 

more dense.           

 

 

4.2 Smooth-Walled and Corrugated Horn Antennas 

 

In this section we look at smooth-walled and corrugated conical horn 

antennas.  We look at the aperture field intensities and how the smooth-walled horn 

compares to the corrugated horn in terms of sidelobe structure.  The techniques for 

modelling horn antennas are applied to MBI and are described in detail.  These are 

then extended to model rectangular-to-circular waveguide junctions.  We begin now 

by looking at the smooth-walled horn antenna.      

 

 

4.2.1 Smooth-Walled Conical Horns 

 

The simplest type of horn is the smooth-walled conical horn which is 

composed of a circular waveguide, supporting the TE11 mode, which flares out into a 

cone shaped antenna.  It is relatively easy to fabricate and for this reason is a popular 

choice of feed at shorter wavelengths (<1mm) where manufacturing difficulties arise 

with corrugations.  Smooth-walled horns are used in MBI to feed the bolometers.  In 

comparison to the corrugated horn which will be discussed later, the radiation 

performance is noticeably poorer, lacking both the pattern symmetry and polarisation 

purity of the corrugated horn when coherently fed with the TE11 mode.   The field at 

the aperture of the horn is given by (see e.g. Murphy, 1988; Gleeson, 2004) 
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in mixed Cartesian/cylindrical coordinates where lp ,1
  represents the l

th
 zero of 

dzzdJ /)(1 , a is the aperture radius of the horn and L is the slant length, as shown in 

Figure 4.1.  The spherical wavefront of the beam is described by the complex 

exponential term which develops as the field propagates from the horn phase centre 

located behind the aperture.  The field described by Equation 4.1 is not cylindrically 

symmetric because of the dependence on the azimuthal angle  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Part (a) shows the transverse electric field line configuration of the TE11 mode in a circular 

waveguide.  The geometry of a smooth walled conical horn is shown in part (b) where L is the slant 

length and a is the aperture radius. 

 

The waveguide is assumed to be perfectly conducting and so the boundary 

conditions mean that the tangential component of E is zero and therefore that the 

field lines are perpendicular to the walls (Goldsmith, 1998).  The transverse electric 

field must also fall to zero in the H-plane (  90 ) and so is highly tapered in that 

plane.  In the E-plane (  0 ), the field is less tapered and so does not fall to zero at 

the horn walls but by a factor of 1.6 from the on-axis value (Colgan, 2001) resulting 

in quite a different aperture field than that produced in the H-plane as shown in 

Figure 4.2.  It is this relatively sharp edge to the distribution in the E-plane that 

accounts for higher side lobes compared with the radiation characteristics in the H-

plane.  The horn used in this example (following Olver et al., 1994) is a smooth 

Slant length, L

Aperture radius, a

Semi-flare angleWaveguide section

(TE11 mode)

(a)

(b)

x

y


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walled conical horn with a diameter of 4  and a semi-flare angle of 5  operating at 

150GHz. 

 

 

 

Figure 4.2 E-plane and H-plane intensity distributions at the aperture of a smooth walled conical horn 

antenna with a diameter of 4  and a semi-flare angle of 5  operating at 150GHz. 

 

To generate the far field pattern for a horn antenna a Fourier transform of the 

aperture field components is carried out using the equation (see e.g. Colgan, 2001), 
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An analytical integration can be performed by making use of the equation (Born and 

Wolf, 1999), 
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and rewriting the nsin  and ncos  terms associated with each Bessel function in 

the aperture field description (Equation 4.1) in terms of their corresponding 

exponential functions to yield for the field in the co-polar direction 
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(4.4) 

 

where arq /  and a is the aperture radius of the horn.  Setting 0  gives the E-

plane pattern and 90  for the H-plane pattern.  This integral over q is not 

possible analytically and therefore must be carried out numerically.  The cross-polar 

field can be obtained in a similar manner giving, 
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(4.5) 

 

Using this Fourier transform method the far field radiation patterns, both co-polar 

(for 0  and 90 ) and cross-polar ( 45 ), were calculated for the same 

horn antenna as used in the calculation of the aperture fields above (2a = 4λ, semi-

flare angle = 5 , f = 150GHz).  As shown on the graph below (Figure 4.3), the cross-

polar field peaks at approximately -18dB at an angle of 18 degrees off-axis as 

expected (Olver et. al., 1994). 
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Figure 4.3 Co-polar and crosspolar radiation patterns for a smooth walled conical horn. 

 

 

4.2.2 The Implementation of Smooth-Walled Horns in MODAL 

 

MODAL, before beginning this work, did not have the ability to model 

smooth-walled conical horns.  To allow for the analysis of the complete MBI system 

it was therefore necessary to have these structures implemented as an element in the 

MODAL code.   

 

The intensity distribution for smooth-walled horns, as outlined in the 

previous section, is given by Equation 4.1.  An equivalent form of writing this 

expression is given by Goldsmith (1998), where the aperture plane field distribution 

for y-polarised excitation is given by, 
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where u = 1.841, 1J  is a Bessel function or first order and 1J   is its derivative.  

Again, for a smooth-walled conical horn antenna of slant length, L , Equations 4.6 

and 4.7 would be multiplied by a spherical factor of  Lrj  /exp 2  to account for 

phase curvature at the aperture.  This is the format that was implemented in 

MODAL. 

 

The fields for two very different smooth-walled horn antennas were 

generated using the equations above, the first horn being the same as that used in the 

previous section and presented by Olver et al. (1994).  The operating frequency was 

150GHz with an aperture radius of 2  and a semi-flare angle of 5 .  The second 

horn antenna modelled was a detector horn from the bolometric array in MBI-4.  

This horn had an operating frequency of 90GHz, an aperture radius of 12.7mm and a 

slant length of 54.3mm.  Figure 4.4 shows the horn aperture field intensity for the 

Olver et al. (1994) and MBI horns using Equation  4.6 and 4.7 and also that 

produced by MODAL after the implementation of the smooth-walled conical horn 

code. 

 

As further verification the far field intensity distributions were calculated for 

both horns using Equation 4.4 and MODAL.  As can be seen from Figure 4.5 both 

methods produce results which are in excellent agreement, as expected.   

 

 

4.2.3 MBI-4 Phase Flattening Lenses 

 

In the previous section we calculated the aperture field distribution for the 

MBI-4 smooth-walled conical horn antennas that are used to feed the radiation onto 

the bolometric detectors.  However, in the instrument itself, lenses are attached to the 

front of the horns in order to flatten the phase radius of curvature in an attempt to 

achieve better coupling to the incoming beam from the optical system (as the radius 
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of curvature is very large).  Lenses were also considered to flatten the phase of the 

beam from the telescope but these were not implemented in the instrument.  A 

coupling analysis carried out by Lavelle (2008) has shown that if such lenses were 

present it would increase the coupling by a factor of 1.4.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Aperture instensity distributions for the Olver et al. (1994) horn and MBI-4 detector horn.  

Both horns are smooth-walled conical horn antennas whose aperture fields were calculated using 

Equations 4.6 and 4.7 as outlined in the text.  Also, the aperture fields generated after implementation 

into MODAL are shown.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 The far field intensity patterns of both the Olver et al. (1994) horn antenna and the MBI-4 

detector horn antenna as generated using Equation 4.4 described in the text and also using MODAL 

after the implementation of smooth-walled conical horns into the code. 
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Figure 4.6 A comparison of a hyperbolic surface with its spherical approximation. 

 

 

In order to match the phases of two fields, and therefore improve the 

coupling, a lens must have a focal length such that, 

 

                 
fRR inout

111
  (4.8) 

 

where Rin and Rout are the phase radii of curvature for the two fields.  In the case of 

MBI-4 Rout ≈ 1x10
3
m (telescope beam) and Rin, the phase radius of curvature of the 

field from the detector horn, is given by the slant length of the horn as 54.3mm.  The 

focal length of the lens must therefore also be 54.3mm.  

 

The (hyperbolic) surface of a plano-convex lens of refractive index n which 

has a focal length f is given by  
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where r is the off-axis distance and for ease of manufacturing a spherical 

approximation to the hyperbolic surface 
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was used in MBI-4.  This is a very close approximation to the hyperbolic surface as 

can be seen in the comparison plot in Figure 4.6.  A coupling analysis to investigate 

the effects of using a spherical lens rather than a hyperbolic lens was carried out by 

Lavelle (2008), where it was shown that the implications of this are relatively small.  

The refractive index of HDPE, from which the lens was to be constructed, is n = 1.52 

and since the radius of the lens is equal to the radius of the horn antenna (12.7mm), 

the centre thickness was found to be approximately 3mm using Equation 4.10.  Due 

to constraints within the cryostat the lenses were placed inside the horn antennas as 

shown in Figure 4.7.        

 

To calculate the field coupling coefficient between the incident telescope 

beam and the beam from the detector horn antenna the following equation, which 

normalises the power in each beam to be unity, can be used (Goldsmith, 1998), 
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where t  is the field from the telescope, h  is the field from the horn antenna and 

*  is the complex conjugate of the field.  The power coupling can then be 

calculated as 
2

thth cP  .  With regards to the area over which the integrals were 

carried out, the telescope beam is integrated over infinity while the horn beam is  
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Figure 4.7 Top: The spherical lens antenna sitting inside the smooth-walled corrugated horn antenna.  

Bottom left: The spherical lenses held by the holder for the detector horn array.  Bottom right: The 

detector horn array (Lavelle, 2008).    

 

 

Horn Antenna and Spherical Lens Configurations 

Parameter System 1 System 2 System 3 

Horn Aperture Radius, a (mm) 12.7 9.525 9.525 

Horn Field Radius, wh (=0.76a) (mm) 9.652 7.239 7.239 

Horn Field Phase Radius of 

Curvature, Rh (mm) 
∞ 49.3 ∞ 

Lens Shape Spherical Spherical Spherical 

Lens Radius (mm) 12.7 12.7 9.525 

Lens Thickness 3.02 3.02 2.54 

Lens Focal Length, f (mm) 54.3 54.3 36.8 

Telescope Field Beam Radius, wt (mm) 197.5 197.5 197.5 

Telescope Field Phase Radius of 

Curvature, Rt (mm) 
∞ ∞ ∞ 

Table 4.1 Parameters defining the three lens and horn configurations analysed. 
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integrated over the area of the horn aperture since the horn field does not exist 

outside of this.  Depending on the location of the detector horn antenna being 

analysed this may or may not be centred on the telescope beam. 

 

In this analysis three configurations of horn antenna and lens were considered 

and are summarised in Table 4.1.  Firstly, the horn and lens combination used in the 

current MBI-4 instrument where the horn has a radius of 12.7mm and a slant length 

of 54.3mm was examined.  The lens surface is spherical and its cross-sectional 

radius is the same as that of the horn, therefore producing a flat phase curvature.  It is 

made of HDPE (n = 1.52) and has a focal length of 54.3mm to match the phase 

curvature of the horn antenna field.  In order to estimate the coupling a best fit 

Gaussian beam given by,  

 

                    ]2/)(exp[]/)(exp[ 22222 Ryxjkwyx h   (4.12) 

 

was chosen for the detector with a beam radius of wh = 0.76a (Goldsmith, 1998) = 

9.652mm.  The telescope field was also assumed to have a Gaussian distribution 

with a radius of wt = 197.5 and an infinite phase front radius of curvature.  Both the 

telescope and the horn antenna beams are shown in Figure 4.8.  Applying Equation 

4.11 and assuming that the detector horn is in the centre of the array we can write, 
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where   is the off-axis distance and   is the angle.  From this the power coupling 

was calculated to be 0.66% (this number is so low because a single bolometer only 

couples to a small part of the full telescope field, see for example Figure 4.8).  An 

alternative approach would be to integrate the telescope field over the area of the 

horn aperture (as carried out in Chapter 5) since this is the absolute maximum power 
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that could be absorbed by the horn.  If this is done then a coupling value of 84% is 

obtained for the same on-axis detector horn antenna.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Left: The telescope and detector horn antenna beams with the horn antenna located at the 

centre of the array.  Right: The telescope and detector horn antenna beams with the horn antenna 

located 55.8mm from the centre representing a horn at the edge of the detector array.  

     

 

The second system examined here was one that was being considered for use 

in MBI-4 lab measurements.  The horn antenna was smaller and therefore would 

provide better sampling.  It had a radius of 9.525mm and a slant length of 36.8mm.  

It was essential to know the difference in power coupling between using the previous 

lens, which was designed for the larger horn, on this new antenna and using a lens 

specifically designed for the new horn antenna, that is, the third system outlined in 

Table 4.1.  To calculate the power coupling for the 9.525mm radius horn with the 

12.7mm lens (whose focal length was 54.3mm) both the surface for the f = 54.3mm 

and f = 36.8mm lenses were calculated using Equation 4.10 and the difference in 

curvature found.  This can be seen in Figure 4.9.  The difference in surface curvature 

is equivalent to the phase curvature remaining on the horn antenna beam, which is 

calculated as (Lavelle, 2008),  
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where )(rzt sc   is the surface height, n is the refractive index of the material and λ 

is the wavelength.  The best-fit spherical radius of this curvature was calculated to be 

Rh = 49.3mm.  For the horn antenna with a new lens designed to flatten the phase the 

radius of curvature of the horn field after propagating through the lens was assumed 

to be infinite.  Using Equation 4.13 the power coupling for systems 2 and 3 as 

outlined above was calculated to be 0.3% and 0.4% respectively (Table 4.2), 

indicating a loss of approximately 25% if the larger lens is used with the smaller 

horn antenna.   

 

Figure 4.9 A comparison of the surface of the f = 54.3mm lens and the f = 36.8mm lens.  Also shown 

is the difference in the surfaces and the phase that this imposes on the beam.  The best fit spherical 

section used to determine the radius of curvature of the phase can also be seen.  

 

The above analysis accounted for a horn antenna placed at the centre of the 

array which coincided with the centre of the Gaussian beam from the telescope.  The 

power coupling for each of the systems above was recalculated assuming a horn 

antenna located at the edge of the array with its centre positioned 55.88mm (2.2in) 

from the centre of the telescope beam (see Figure 4.8).  The results of this are given 

in Table 4.2 where it can be seen that the loss in coupled power between systems 2 
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and 3 is also approximately 20%.  This analysis assumed a flat telescope field, 

however calculations to include the real radius of curvature showed no difference in 

coupling for horn antennas at the edge of the array, where the effect of field 

curvature would be greatest.  

 

The low power coupling values can be explained by the fact that the 

telescope beam has a radius much greater than that of the detector horn antenna and 

therefore only a small portion of this beam is collected by the horn.  However, a loss 

of 20% in coupled power occurs when the larger lens is implemented with the 

smaller horn and therefore must be taken into account when deciding on the 

appropriate horns and lens combination to be used.  

 

 

Power Coupling Between Telescope and Detector Horn Antenna Beams 

Configuration On-axis Detector Horn Off-axis Detector Horn 

System 1 0.66% 0.57% 

System 2 0.30% 0.26% 

System 3 0.37% 0.32% 

Table 4.2 Parameters defining the three lens and horn configurations analysed. 

 

      

 

4.2.4 Corrugated Conical Horns 

 

The development of many types of alternative horn feeds took place in the 

1960‟s in response to the need for improved performance for large reflector antennas 

used in radio astronomy and satellite communications.  One such feed was the 

corrugated horn antenna.  It was discovered in 1966 (Simmons and Kay, 1966) that 

by having grooves or slots of an appropriate depth in the wall of the horn, the 

boundary conditions would appear the same for both the electric and magnetic fields.  

The grooves, or corrugations, ensure no axial current can be set up along the walls, 

since the current travelling down one side of a corrugation, which is usually a 

quarter-wavelength deep, would be 180  out of phase with the current at the 
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opposite side of the groove.  The effect of the field produced by this opposite current 

is to oppose the field that initially set up the current.  The overall result is that no 

current can exist at the horn wall and a short circuit at the bottom of the groove is 

transformed to an open circuit at the top and the fields taper to zero at the horn 

boundary (Olver et al., 1994).  The corrugated conical horn therefore has significant 

advantages over the smooth-walled conical horn.  Spillover efficiency and cross-

polarisation losses are reduced while at the same time the aperture efficiency (i.e. 

coupling to a point source in the far field of the antenna) for a telescope fed by such 

a horn is increased.  With the use of conventional (smooth walled conical / 

rectangular) horn feeds, efficiency levels of 50 – 60% were attainable, whereas with 

the use of corrugations, the efficiency level could be increased by as much as 15% to 

20% (Balanis, 1997).   

 

Corrugated or scalar horns usually have the form of a corrugated waveguide 

flared to make a conical section (Goldsmith, 1998) and are generally fed by a 

smooth-walled circular waveguide (Figure 4.10).  The geometry of the 

circumferential slots usually has one of the two orientations as illustrated in Figure 

4.11.  They can be perpendicular to either the axis of the horn and hence the 

direction of propagation, or they can be perpendicular to the horn surface, that is, the 

outer wall of the horn.  The first design is usually chosen as it is the easier of the two 

to machine.       

 

 

Figure 4.10 A cross-section of a corrugated conical horn antenna showing the circular waveguide 

feed and the corrugation geometry (ZAX Millemeter Wave Corporation website.)  
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Horn axis Horn axis 

 

 

 

 

 

 

 

 

Figure 4.11 Corrugated Horn antenna with grooves orientated perpendicular to (a) the horn axis and 

(b) the horn wall surface.  

 

For horns of aperture width greater than 2  the optimum annular groove 

depth is 4/  (Clarricoats & Olver, 1984).  This is the resonant depth for which the 

short circuit at the bottom of the groove is effectively transformed into an open 

circuit at the corrugation boundary, cutting off the axial current at the ridges.  Since 

the axial current is generated by the azimuthal magnetic field, H , this will also be 

zero.  In order to achieve an effective corrugated surface the corrugations are 

assumed to be infinitely thin, however in reality the theory holds for as few as three 

corrugations per wavelength (Colgan, 2001).  The fact that the azimuthal 

components of both the electric and magnetic fields vanish at the horn walls forces 

the field across the aperture to be almost linearly polarised.  This linearity implies 

that the fields are essentially scalar, hence giving rise to the term „scalar horn‟, and 

also that neither the pure TE or TM modes can be supported without scattering in the 

horn, since each of these exhibit significant levels of cross-polarisation.  In the case 

where the horn is fed by either a single-moded smooth-walled or corrugated circular 

waveguide, the dominant mode is the HE11 mode, or hybrid mode, which is a linear 

combination of the TE11 and TM11 modes and effectively means that it is neither 

pure transverse electric nor transverse magnetic (while waveguide modes are 

discussed later in this chapter, hybrid modes will not be examined in detail).    For 

symmetrical radiation patterns and low cross-polarisation levels, the horn is said to 

have achieved the „balanced hybrid‟ condition. 

 

If we consider a corrugated conical horn with its aperture in the x-y plane and 

its axis defining the z-direction as shown in Figure 4.12, and which is being fed with 

(a) (b) 
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a HE11 mode under the balanced hybrid condition as described above, then the field 

at the horn mouth is given  by (Wylde, 1984), 
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where oE  is a constant, a is the aperture radius and L is the slant length, which also 

equals the radius of curvature of the equiphase surface at the front of the horn.  The 

spherical phase factor is contained in the exponential function as was the case with 

the smooth-walled horn.  As an example of this, the aperture field of a corrugated 

horn antenna was calculated.  The horn in question (following Olver et al., 1994 as 

an example) had a diameter of 4λ, a semi-flare angle of 5
o
 and an operating 

frequency of 150GHz.  The results of this calculation are shown in Figure 4.13.  The 

far field pattern for the corrugated horn is obtained in much the same way as that for 

the smooth-walled conical horn, that is, by carrying out the   integration of the 

Fourier transform analytically to give (Olver et. al., 1994), 
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(4.16) 

 

where again arq / and the integral can be carried out numerically.  Using this 

integral and the same horn parameters as that described above in the generation of 

the aperture field, the far field patterns were calculated (Figure 4.13).                

 

Equation 4.16 is valid for standard conical horns (>3 corrugations per 

wavelength operating under that balanced hybrid condition) but does not take 

account of the exact shape of the horn (for example if the horn is flared or the 

corrugation depths vary).  This is something that has been researched extensively at 

NUIM (Murphy, 2001; Gleeson, 2004) and for which dedicated software called 

SCATTER has been developed (Gleeson, 2004).  This program uses a mode-

matching scattering matrix method.  The scattering matrix method outlined is not 

only applicable to horn antennas but also to complete optical systems as discussed in 

more detail in Chapter 5.     
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Figure 4.12 Part (a) shows the hybrid electric field line configuration of the HE11 mode in a circular 

waveguide.  Part (b) shows a conical horn with its aperture in the x-y plane and the propagation axis 

along the z direction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Left: The aperture field from a corrugated horn with a diameter of 4λ and a semi-flare 

angle of 5
o
 operating at 150GHz.  Right: The far field pattern for the same corrugated horn antenna. 

 

 

4.3 Scatter Matrix Analysis of Quasi-Optical Systems 

 

 In this section the use of scatter matrices in the analysis of horn antennas is 

discussed.  The techniques presented here may also be applied to complete optical 

systems such as the optical beam combiner in MBI-4.  
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4.3.1 Scatter Matrix Methods 

 

This technique for modelling and analysing quasi-optical systems, in this 

case a horn antenna, divides the overall system into a sequential arrangement of 

subsystems.  The effect of each of these subsystems can be described in terms of 

transmission and reflection coefficients for the fields propagating both forwards and 

backwards within that section.  The characteristics of this section, that is, the 

redistribution of power between waveguide modes (or free space modes in the case 

of free space propagation) is described by a scattering matrix S, while a set of 

column matrices represent the mode coefficients of the forward and backward 

travelling fields of the complete system or subsystem.     

 

 

 

 

 

 

 

Figure 4.14 The scattering matrix S describes the characteristics of a modular section of a quasi-

optical system and relates the coefficients at the input to those at the output.   

 

If ][S  is the scatter matrix for the system/subsystem to be analysed, then the 

mode coefficients are related to one another through the equation 
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where column matrices  A  and  B  represent the incident and reflected mode 

coefficients of the wave respectively as viewed from the input side while  C  and 

 D  represent the incident and transmitted coefficients on the output side (Figure 

4.14).  The matrix  S  can be divided into sub-matrix components as in Equation 

[A] [D]

[B] [C]

Scattering Matrix [S]

representing  a modular

section
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4.18 which govern the scattering of forward and backward propagating modes at the 

input and output sides of the optical system, 
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In theory the dimension of all these matrices is infinite, however, for the sake of 

computational analysis this is reduced to a finite number that describe the system 

sufficiently accurately.  In general, the matrices  A  and  B , representing the input 

side, and  C  and  D , representing the output side, will be square matrices if the 

same number of mode coefficients are used to describe the field at the input and 

output planes.  We can write 
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or  

 

            ][][][][][],[][][][][ 22211211 CSASDCSASB  . (4.20) 

 

If there are the same number of modes on both sides of the system then there are n 

TE and n TM elements in the [S] matrix with nn 44   elements in the sub-matrices.  

Often it can be assumed that there is no reflection back into the system, for example 

at the horn aperture, and as a result the column matrix  C  is zero for that system and 

the reflection and transmission coefficients are given by  

 

         ASDASB 2111 ,          (4.21) 

 

where again  A  is the input matrix of coefficients. 

 

In the case of a circular waveguide propagating the fundamental mode 

(TE11), only other modes of azimuthal order 1 can be excited in a horn fed by the 
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guide.  In such a case the initial input forward propagating matrix of coefficients has 

one non-zero entry in the TE11 mode position (Equation 4.22).  The matrix has n2  

elements which represents the number of modes included at the output (n TE and n 

TM modes).    
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The overall transmission and reflection coefficients for a complete optical 

system are obtained by cascading the scattering matrices of each of the constituent 

subsystems, which are obtained by analysing each section separately.  Let ][ aS  and 

][ bS  be two matrices that describe consecutive sections of an optical system and are 

of the form 
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The cascaded matrix elements are then of the form 
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whose elements are defined as (Olver et al., 1994) 
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where  cS  represents the cascaded matrix,  I  is the identity matrix and   1
 

represents the inverse of a matrix.  By cascading the scattering matrices for 

successive sections or discontinuities with the complete scattering matrix describing 

all previous sections in an iterative process, the complete matrix describing 

propagation for the overall optical system can be obtained (see Figure 4.15).  

 

 

 

 

 

 

 

 

 

 

Figure 4.15 The iterative process of cascading adjacent matrices representing a modular section.  

Matrices representing sections 
1S  and 

2S  are cascaded together to form a matrix representing 
12S .  

This matrix is then cascaded with that from 
3S  to form a matrix which represents section 

123S  and 

so on.  

 

This scattering matrix approach can be applied to both quasi-optical 

propagation of free space wave modes and the electromagnetic propagation of 

waveguide modes in a horn antenna.  To analyse a horn using this technique the 

transmission and reflections coefficients at the discontinuities between the 

waveguide sections must be determined and propagation within the waveguide 

section must also be taken into account.  Figure 4.16 shows how smooth-walled and 

corrugated horns may be considered as a sequence of waveguide sections.  The 

output from one cylindrical (in this case) section becomes the input for the next.  In 

order to satisfy Maxwell‟s equations, the electric and magnetic fields across the 

interface at a particular junction between sections are required to be continuous.  As 
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before, the relationship between the input and output mode coefficients for the 

junction are expressed in terms of scatter matrices which are cascaded to produce an 

overall scatter matrix for the horn structure.  The field at the mouth of the horn is 

then represented by a matrix which acts as an operator on the coefficients describing 

the field at the waveguide input to the horn.   

 

 

 

 

 

 

Figure 4.16 The scatter matrix approach assumes that the horn antenna is made up of a series of 

cylindrical sections of increasing radius.   

 

This principle of cascading matrices representing different sections of a horn 

antenna, in conjunction with scattering at discontinuities which is discussed later, is 

used by the SCATTER program and has also been implemented in MODAL to 

produce the field distributions for corrugated horn antennas analysed in this thesis.     

 

 

4.3.2 MBI-4 Back-To-Back Horn Antennas 

 

The MBI-4 instrument contains four back-to-back corrugated horn antennas.  

Both horns in the back-to-back pair are the same with one viewing radiation from the 

sky while radiation from the other horn is fed to the optical beam combiner.  

Between the two corrugated structures is a combination of both circular and 

rectangular waveguides as well as phase shifters.      

 

Since the rectangular waveguide and phase shifters were involved only in the 

rotation and selection of a single polarisation direction these could be ignored to a 

first approximation in generating the aperture field intensity of a single horn from the 

back-to-back system, a diagram of which is shown in Figure 4.17, provided the 

Smooth walled 

conical horn

Corrugated 

conical horn
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output polarisation of the horn was known.  The details of the mode launcher given 

in Table 4.3.  For both SCATTER and MODAL a geometry file describing the 

structure of the corrugated horn must be created.  This was done for the MBI-4 horn 

using the information in Figure 4.17.  For convenience, the frequency of operation 

for the system is also stored in the geometry file.  Figure 4.18 shows the structure of 

the horn as produced by MODAL from the geometry file with the resulting aperture 

intensity distribution shown in Figure 4.19 where the horn has been excited by a 

single TE11 mode. 

 

It has been shown (Goldsmith, 1998) that the aperture field distribution of a 

corrugated conical horn antenna can be well approximated by, 
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where ŷ is the direction of polarisation.  The aperture field of the MBI-4 corrugated 

horn antenna was first estimated in this way and compared to that generated using 

the scattering matrix method described earlier to see if Equation 4.29 would provide 

a computationally efficient and accurate way of producing the required fields.  The 

results of this analysis can also be seen in Figure 4.19, where both the Bessel 

function and true aperture fields are in excellent agreement.    

 

As well as modelling a single horn antenna the complete back-to-back system 

was also examined in detail.  As a first approximation to this a geometry file was 

generated that described a back-to-back corrugated horn antenna constructed from 

two of the single horns described above, with one being a mirror image of the other.  

Again, the dimensions of the throat of the horns and the connecting waveguide were 

designed for a single-moded system with a single polarisation.  The phase shifters 

were accounted for by selecting the polarisation direction in the model.  The 

resulting horn antenna is shown in Figure 4.20. 
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Figure 4.17 Technical drawing of (a) a single horn from the back-to-back corrugated horn system as 

used in MBI-4 and (b) the detail of the mode launcher at the throat of the horn. 

 

 

 

 

Figure 4.18 A single horn from the back-to-back corrugated horn system used in MBI-4 as plotted by 

MODAL from the geometry file created.   

(a) 

(b) 
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Mode Launcher Details of the MBI-4 Corrugated Horn Antenna 

Slot Number gi (inches) ti (inches) ai (inches) di (inches) 

1 0.0049 0.0345 0.0628 0.0496 

2 0.0070 0.0324 0.0646 0.0478 

3 0.0092 0.0302 0.0664 0.0460 

4 0.0113 0.0281 0.0682 0.0442 

5 0.0135 0.0259 0.0700 0.0424 

6 0.0156 0.0238 0.0718 0.0406 

7 0.0177 0.0217 0.0736 0.0388 

8 0.0199 0.0195 0.0754 0.0370 

9 0.0220 0.0174 0.0772 0.0352 

10 0.0242 0.0152 0.0790 0.0334 

11 0.0263 0.0131 0.0808 0.0316 

Table 4.3 Mode launcher details of the MBI-4 corrugated horn antenna.  Note that di+ai=0.1124 

inches and gi+ti=0.0394 inches. 

 

Figure 4.19 The aperture field intensity distribution of a single horn from the back-to-back corrugated 

horn system used in MBI-4 and the equivalent intensity from a simulated horn of the same 

dimensions using a Bessel function as in Equation 4.29. 
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Figure 4.20 Back-to-back horn corrugated horn antenna with no circular waveguide extension 

between the horns. 

 

To calculate the field at the aperture of the back-to-back horn the input port 

(port 2) was illuminated by a plane wave at 90GHz.  The field was then propagated 

through the corrugated structure before being analysed at the output port (port 1).  

The results of the calculation can be seen in Figure 4.21 where the aperture field of 

the horn antenna is shown.  Also, the power at the input of the corrugated horn was 

calculated and compared to that at the output, resulting in approximately 65% of 

power being transmitted from port 2 to port 1.  It can be seen that the results are very 

similar to those produced by SCATTER for a single corrugated horn from the back-

to-back system. 

 

 

 

 

  

 

 

 

 

 

 

Figure 4.21 Back-to-back horn antenna aperture field on a linear (left) and dB (right) scale. 

 

 

 

Further investigation of the back-to-back system was carried out by changing 

the geometry to include a narrow cylindrical section between the corrugated 

structures (see Figure 4.22), the radius of which ensured that any higher order modes 

that might be present were filtered out.  This section of cylindrical waveguide had a 



 

  180 

radius of approximately 1.55mm and a length that varied from 5mm to 20mm.  In all 

cases the field distribution at the aperture of the output horn remained the same as 

did the transmitted power (~65%).  This provided further verification that the overall 

structure was single-moded when fed with a plane wave propagating in a direction 

along the axis of the horn.  The radius of the 20mm long cylindrical waveguide was 

also varied between 1.55mm and 2.15mm in steps of 0.1mm.  In the case of the 

largest radius, 2.15mm, the transmitted power was reduced to approximately 42% at 

an operating frequency of 90GHz.  After the cylindrical waveguide the next horn 

section has a radius of 2.85mm followed by one of 1.59mm (see Figure 4.23).  As 

the radius of the cylindrical waveguide section is increased it becomes wider than the 

1.59mm section of the horn and therefore some of the power is possibly lost due to 

reflection at this surface, accounting for the reduction in power transmitted from port 

2 to port 1.  This analysis was also carried out for frequencies of 95GHz and 

100GHz, the results of which are shown in Figure 4.24. 

 

 

Figure 4.22 Back-to-back horn corrugated horn antenna with a circular waveguide extension between 

the horns. 

 

 

 

Figure 4.23 Schematic diagram showing a close-up of the cylindrical waveguide section between the 

back-to-back horns with a radius r1, along with the next two sections of the horn antenna with radii r2 

and r3 respectively (not to scale). 

  

 

r1 r2 r3 

r1 = 2.15mm 

 

r2 = 2.89mm 

 

r3 = 1.59mm 
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Figure 4.24 The fraction of the power transmitted to the aperture of the horn antenna after 

propagation through the back-to-back system.  This is shown for three different frequencies. 

 

 

 

In the next section we consider the aperture field of the horn antenna as 

described above and how this is affected as it propagates through the windows of the 

cryostat.       

 

 

4.3.3 Truncation by MBI-4 Windows 

 

During a pre-opening season research trip to Pine Bluff Observatory at the 

University of Wisconsin-Madison in January 2009 the author investigated the effect 

of possible truncation of the beam by the cryostat window.  A circular aperture 

representing the cryostat window was placed in front of the sky-facing horn antenna 

model (Figure 4.25).  The horn model was generated using the technical drawings 

provided in the previous section and so a full SCATTER model of the horn was 
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used.  The window was defined to have a radius of 22.45mm, the same as that of the 

horn antenna, and was placed at various distances from the horn aperture and a 

physical optics analysis of the horn and aperture truncation was carried out. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25 A single sky-facing corrugated horn antenna from the MBI-4 back-to-back system with a 

circular window (aperture) between the horn and the sky. 

 

 

 

Figure 4.26 shows the beam patterns after truncation by the window aperture 

in both the x and y-directions obtained from the analysis where the window was 

placed a distance of 10mm to 30mm in steps of 5mm from the horn aperture.  The 

horn aperture field is also shown for comparison.  The details of the beam edge taper 

levels can be seen in Table 4.4.  A comparison of the far field patterns is shown in 

Figure 4.27.  

 

In conclusion, truncation of the horn antenna beams by the cryostat windows 

or filters could be significant, depending on the exact distance from the horn aperture 

to the truncating surface, particularly in the y-direction, and must be taken into 

account.  
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Figure 4.26 The power distribution of the sky-facing corrugated horn antenna after truncation by a 

window at different distances from the horn aperture.  The horn aperture field is also shown for 

comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 The far field beam patterns at 


0  (left) and 


90  (right) after truncation by a 

window at different distances from the horn aperture.  The horn far field is also shown for 

comparison. 
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Truncation of the Sky-Facing Horn Beam by the Cryostat Window 

Location x-Axis Truncation (dB) y-Axis Truncation (dB) 

Window at 10mm -29 -19 

Window at 15mm -23 -16 

Window at 20mm -20 -14 

Window at 25mm -17 -13 

Window at 30mm -16 -12 

Table 4.4 Truncation level of the sky-facing corrugated horn antenna beam by a window at various 

distances from the horn aperture. 

 

 

4.3.4 Singular Value Decomposition Analysis 

 

In 2008 the beam patterns on the image plane transmitted independently from 

back-to-back horn antennas S1 and S4 (see Figure 4.30) were measured by scanning 

the MBI-4 instrument across a local source (a 100GHz Gunn oscillator feeding a 

pyramidal horn antenna).  The results of these measurements as presented by Hyland 

(2008) are shown in Figure 4.28, where it can be seen that the beam patterns on the 

image plane are asymmetric, something that was unexpected from the single-moded 

back-to-back horn antennas.  To understand this, a similar experimental arrangement 

was modelled in MODAL. 

 

A number of frames were used to set up the model as shown in Figure 4.29 

(not to scale).  The Mount Frame (the local coordinate frame for the MBI telescope) 

was placed an arbitrary distance of 1m above the Global Frame with the option of 

rotating it around both the x- and y-axes of the Global Frame to give different 

elevation and azimuth angles respectively. A Horn Coordinate Frame was located at 

the plane of the telescope containing the back-to-back horn antennas (with the 

apertures of the horns facing the optics located at the z = 0 within this plane) and was 

used to position these antennas as shown in Figure 4.30.  The Horn Coordinate 

Frame was then positioned a distance of 0.15m along the –z-axis of the Mount 

Frame, which positioned the telescope such that the centre of the axis of rotation was 



 

  185 

roughly half way between the primary and secondary mirrors, as was the case in the 

real experiment.            

 

 

 

 

 

Figure 4.28 Beam pattern measurements taken in 2008 by MBI-4 as presented by Hyland (2008).  

The two figures represent measurements by two different back-to-back corrugated horn antennas. 
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O 

x 

y 

S1 (1.903, 1.589) 

S2 (-0.676, -2.386) 
S3 (2.875, -2.518) 

S4 (-2.820, 2.580) 

 

Figure 4.29 Frames used to define the experiment arrangement.  The grey lines and text describe the 

position of MBI-4 within the frames (not to scale).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.30 Schematic diagram showing the four inward-facing horn antennas and their coordinates 

as defined in the Horn Coordinate Frame,  The primary mirror and elliptical aperture are also shown 

along with the secondary mirror.  The view is from the detectors.   
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Figure 4.31 The DetectorReferenceFrame and grid system used to position and name the detector 

horn antennas.  The x-axis of the frame coincides with the major axis of the elliptical aperture in the 

primary mirror.  The highlighted horn antennas were used to measure the incoming beam. 

 

 

 

To set up the source, the Global Frame was translated along its –z-axis a 

distance of 12m to form the Antenna Base Frame.  In a similar manner to the Mount 

Frame, the Antenna Frame was a transformed Antenna Base Frame to position it 

12m above the ground and with rotation around the x- and y-axis of the Antenna 

Base Frame to allow different elevation and azimuth angles to be set.  Since the 

source used in the measurements was located in the telescope far field the source 

used in this simulation was a plane wave.  The back-to-back horn antenna models 

were generated as before with a 1.55mm radius mode-filtering cylindrical waveguide 

section between the two corrugated horn structures.  While the source was polarised 

the back-to-back structures allowed all incident polarisations to propagate.  

 

The detector array was aligned along the axis of the major axis of the 

elliptical aperture with the centre horn located at the optical centre of the overall 

system, that is, at the centre of the coordinate frame used to define the positions of 
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the back-to-back horn antennas above (Horn Coordinate Frame).  This was also the 

centre point of both the primary and secondary mirrors.  A selection of four horn 

antennas was used to detect the incoming signal as shown in Figure 4.31.   

 

The system was arranged so that the elevation angles of both the telescope 

and the plane wave source were 45 degrees, that is, the telescope was looking 

directly at the source at an azimuth angle of 0 degrees. While keeping the elevation 

constant the telescope was scanned azimuthally from -15 to 15 degrees in steps of 3 

degrees.  This analysis was carried out twice, once with S1 (see Figure 4.30) open 

and all other horns closed, and once with S4 (Figure 4.30) open, again with all 

remaining horns closed.  In each case the field from the plane wave source was 

passed through the back-to-back horn system by means of a mode matching 

technique described in section 4.4.7. The output field was then propagated through 

the beam combining system using physical optics before being coupled with each of 

4 selected detector horns antennas outlined above. 

 

The results of this analysis are shown in Figure 4.32 where the beam patterns 

obtained indicate that the cylindrical section between the back-to-back horns does 

filter out all higher order modes, as described in the previous section, showing none 

of the structure that was seen in the experimental measurements.  To investigate if 

the beam passing through the primary aperture before reflection at the secondary 

could be eliminating the symmetry in the beam patterns this portion of the field was 

included in the analysis and the same calculations carried out again.  However, the 

results were symmetric beam patterns as before with the instrument scanning across 

the external source.  These can be seen in Figure 4.33.   

 

In the previous section the effect of including the cylindrical waveguide 

section was investigated and it was found that for illumination by a plane wave 

propagating in a direction along the axis of the horn antenna the back-to-back 

structure with no cylindrical waveguide section appeared to be single-moded.  

However, as the instrument scanned across the source during the measurements the 

angle at which the plane wave illuminated these horns changed.  To establish if this 

could be the cause of the asymmetry the cylindrical waveguide was removed and the 

analysis was repeated.  As can be seen from Figure 4.34 this did produce asymmetric 
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beam patterns on the image plane, indicating that the back-to-back structures were 

no longer single-moded for illumination at off-axis angles.    

 

 

 

 

 

 

   

 

 

 

 

 

Figure 4.32 Power on the image plane from S1 (left) and S4 (right) with an extended circular 

waveguide section between the back-to-back horns. 

 

 

 

   

 

 

 

 

 

 

 

 

Figure 4.33 Power on the image plane from S1 (left) and S4 (right) with an extended circular 

waveguide section between the back-to-back horns.  In this case the beam that passes through the 

primary hole before reflection from the secondary is also taken into account. 
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Figure 4.34 Power on the image plane from S1 (left) and S4 (right) with no circular waveguide 

section between the back-to-back horns.  The beam that passes through the primary hole before 

reflection from the secondary is taken into account. 

 

The asymmetry in the beam is due to the different phase relationship between 

the hybrid modes that the beam is composed of at different scanning angles.  For 

example, the phase relationship between hybrid modes at -3 degrees is not the same 

as the phase relationship between the hybrid modes at +3 degrees.  This is because 

the angle is with respect to the centre of rotation of the telescope and not the centre 

of the horn aperture, and therefore there are asymmetries present due to the layout of 

the instrument.  From the analysis carried out the amplitude and phase of the hybrid 

modes was extracted and can be seen in Table 4.5.   

 

Amplitude and Phase  of the Hybrid Modes at Different Azimuth Angles 

Angle 

(deg) 
Field Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 

-6 
Amp 0.000471 0.000101 0.000903 0.000846 0.000159 

Phase -1.33976 0.191606 0.457431 -1.49784 -0.54169 

-3 
Amp 0.000367 9.4E-05 0.001264 0.000687 8.97E-05 

Phase -0.75293 0.556948 0.82101 -0.93484 0.023588 

0 
Amp 2.53E-13 5.47E-05 0.001472 2.59E-13 2.79E-14 

Phase 0.393511 0.271196 0.534644 -0.07401 -1.41061 

3 
Amp 0.000367 1.69E-07 0.001268 0.000692 1.3E-05 

Phase 1.17901 -0.30228 -0.38864 0.997089 -1.18294 

6 
Amp 0.000471 3.35E-05 0.000908 0.00086 3.2E-05 

Phase -0.59693 0.92945 1.200238 -0.75509 0.207667 

Table 4.5 The amplitude and phase of the back-to-back corrugated horn antenna hybrid modes at 

different azimuth angles. 
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Each hybrid mode is composed of a combination of TE and TM waveguide 

modes.  To find the exact composition of the field from each of the horns in terms of 

TE and TM waveguide modes, a Singular Value Decomposition (Björck, 1996) 

analysis was required.  Singular Value Decomposition, or  SVD, is based on a linear 

algebra theorem which states that an nm  matrix A can be written as the product of 

three matrices (Golub and Van Loan, 1996): 

 

                                                           TVWUA   (4.30) 

 

where U is an mm  orthogonal matrix, V is an nn  orthogonal matrix and W is an 

nm  rectangular matrix with real, non-negative diagonal elements  ....i  (where 

  is the minimum value of the matrix, that is all components except the first   

diagonal elements are zero) representing what are known as the singular values.  By 

convention the diagonal elements of W are arranged in decreasing order, that is, 

 

                                               0.....321   . (4.31) 

 

An important property of this SVD approach is that it explicitly constructs 

orthonormal bases for A.  

 

The application of SVD to the back-to-back horn antennas (or any other 

quasi-optical system) requires the scattering matrix S describing the system.  This is 

found by means of the mode-matching technique mentioned earlier.  The relationship 

between input and output (TE and TM) modes is then described by the equation, 

 

                                                              bSa    (4.32) 

 

where S is the scattering matrix, a is the matrix of input mode coefficients and b is 

the matrix of output mode coefficients.  If there are n waveguide modes being 

considered then S will be an nn  matrix, a will be a 1n  column matrix and 

therefore the resulting matrix b will also be a column matrix with n elements.  

Applying SVD to the S matrix produces three new matrices, U, W and V, such that, 
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                                                              TVWUS    (4.33) 

 

where again W is the matrix containing the singular values of S along its diagonal, in 

decreasing order, and the following relations holds: 

 

                                                              iii uSv    (4.34) 

 

In Equation 4.34, iv  is the basis set for the input hybrid modes, iu  is the basis set for 

the output hybrid modes and i  are the singular values.  The iv  and iu  vectors are 

the column vectors of v and u respectively corresponding to the non-zero singular 

values i  and are composed of a linear combination of TE and TM modes.  It is the 

input modes described by the vectors iv
 
that are transformed to give the output 

modes described by iu .  

 

If there is some arbitrary field   illuminating the back-to-back horn antenna 

then this must be coupled to each of the input modes, iv , giving a coupling value i .  

We can now rewrite Equation 4.34 as, 

 

                                                              iiiii uSv   . (4.35) 

 

Since i  and iu  are known from the singular value decomposition of S and i  can 

be obtained from the coupling calculation, the modes that appear at the output of the 

system can be found by iii u .  It is important to remember that each input mode iv  

and output mode iu  is made from a linear combination of TE and TM waveguide 

modes. 

 

To analyse the hybrid modes for the MBI-4 back-to-back horn antennas the 

scattering matrix S describing the system was extracted from MODAL.  Since we 

were interested in the modes that appeared at the output of the horn from 

illumination by a plane wave at the input it was the S12 matrix that was used, which 

describes the field obtained at port 1 from an input at port 2.  This is consistent with 
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the description of the back-to-back horn antennas given in section 4.3.2.  The SVD 

of this matrix was calculated producing U, W and V as described in Equation 4.33 

and it was clear that only the first five singular values ( 1 to 5 ), found from the 

diagonal matrix W, were significant with values of 1, 0.9993, 0.9993, 0.9942 and 

0.9942 in decreasing order, as is the convention.  The hybrid modes of the back-to-

back horn that appeared at the output and which would then propagate through the 

optical system could be found by taking the first five columns of the U matrix.  The 

elements of each column iu  provided information about the amplitude of each TE 

and TM mode present, the results of which can be seen in Table 4.6, where only the 

five remaining modes are shown.  The power contained in all other modes is 

approximately zero. 

 

Composition of the Hybridmodes at the Output of the MBI-4 Back-to-Back Horn 

Antenna 

Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 

Mode Power Mode Power Mode Power Mode Power Mode Power 

TM
c
01

 
0.0897 TE

s
11

 
0.1503 TE

c
11 0.1503 TE

s
21 0.1136 TE

c
21 0.1136 

TM
c
02

 
0.2240 TM

s
11 0.0696 TM

c
11 0.0696 TM

s
21 0.0675 TM

c
21 0.0675 

TM
c
03

 
0.0309 TE

s
12

 
0.0369 TE

c
12 0.0369 TE

s
22 0.0453 TE

c
22 0.0453 

TM
c
04

 
0.0016 TM

s
12 0.0073 TM

c
12 0.0073 TM

s
22 0.0098 TM

c
22 0.0098 

  TE
s
13

 
0.0017 TE

c
13 0.0017 TE

s
23 0.0025 TE

c
23 0.0025 

Table 4.6 The modal composition of the eigenmodes that propagate through the back-to-back 

corrugated horn antennas.  The superscripts s and c represent the orthogonal sine and cosine modes. 

 

In conclusion, the back-to-back horn structure produced a symmetric beam at 

the image plane when illuminated by a plane wave propagating parallel to the optical 

axis of the horn.  This was the case both with and without the single-moded 

cylindrical waveguide section included in the analysis (this section was included in 

the model, however in reality a more complex structure is present between the 

horns).  However, experimental measurements showed asymmetric beam patterns 

from each of the measured horn antennas.  The experimental arrangement was then 

modelled taking into account scanning in the azimuth direction.  Again, for the case 

with the cylindrical section included symmetric beams were obtained but without 

this section the asymmetry found in the experimental measurements was evident, 
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indicating that at off-axis angles the back-to-back horn antennas became multi-

moded.  These modes were analysed in terms of their amplitude and phase relative to 

the scanning angle and their composition in terms of TE and TM waveguide modes 

was examined by means of SVD.        

 

From the results obtained here it appears as though the real MBI-4 back-to-

back horn antennas are not single-moded and are therefore producing asymmetric 

beams on the image plane.  Higher order modes may be removed by including a 

cylindrical section of appropriate dimensions between the horn structures.           

  

 

4.4 Mode Scattering at Rectangular-Circular Junctions 

 

In this section the use of scatter matrices in the analysis of horn antennas and 

waveguide discontinuities is discussed.  Originally developed by Wexler (Wexler, 

1967) and followed on by Masterman and Clarricoats (Masterman and Clarricoats, 

1971), this method of analysis is based on the description of a propagating field 

within a waveguide taking discontinuities into account and therefore allows an 

extremely accurate analysis of the horn antenna to be performed. 

 

The original SCATTER mode-matching program generates a matrix which 

describes the modal scattering at circular to circular transitions and this was later 

extended to include rectangular waveguide sections.  As part of the work for this 

thesis the author examined the effect of scattering between modes at the junction 

created by a rectangular and a circular waveguide so in the future MODAL will also 

be able to do rectangular to rectangular scattering as well as rectangular to circular.  

It will then be possible to build modular structures containing various transitions and 

to model these structures accurately in terms of waveguide modes.  Such a tool 

would be useful in modelling systems such as the back-to-back horn antennas in 

MBI-4 where rectangular waveguides feed the inward-facing corrugated conical 

horns by means of a circular waveguide (the previous section illustrated the impact 

this component can have on overall beam patterns).  Also, the Safari instrument on 
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b x 

y 
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SPICA may also implement arrays of rectangular horns feeding spherical absorber-

filled cavities. 

 

In the following two sections we begin by looking at rectangular and then 

circular waveguide modes.  We then examine the details of modal scattering at 

rectangular to circular waveguide discontinuities.      

 

 

4.4.1 Rectangular Waveguide Modes 

 

Rectangular waveguides were one of the earliest types of transmission lines 

used to transport microwave signals and a large variety of components such as 

couplers, isolators and attenuators remain widely available.  While nowadays a lot of 

microwave circuitry is fabricated using planar transmission lines there is still a need 

for waveguides in many applications such as high-power and millimetre-wave 

systems.   

 

The hollow rectangular waveguide has walls made from a conducting 

material and modes propagate by means of reflection from the internal structure.  For 

this to occur the electric fields must be zero at the points of reflection, therefore 

giving an integer number of half-wavelengths between reflection points.  Each 

possible number corresponds to a mode that satisfies the boundary conditions of the 

waveguide.  A number of modes may propagate at once.   

 

 

 

 

 

 

 

 

Figure 4.35 Rectangular waveguide where a is the longest side and b is the shortest.  Propagation is 

along the z-direction. 
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The rectangular waveguide supports both Transverse Electric ( 0zE ) and 

Transverse Magnetic ( 0zH ) modes.  We consider now a waveguide structure of 

inner dimensions a and b as in Figure 4.35 with the longest side, a, along the x-axis 

and b along the y-axis (Marcuvitz, 1993).  We assume the guide is filled with a 

material of permittivity ε and permeability μ.  The direction of propagation of 

radiation is along the positive z-axis.  The TE modes are characterised by fields with 

0zE  , while zH  must satisfy the Cartesian form of the Helmholtz equation, 
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where )(),(),,( ztj

zz eyxhzyxH    and 222
 kkc  is the cut-off wavenumber.  

By using a separation of variables technique and applying the boundary conditions 

on the electric field components tangential to the waveguide walls, that is, 
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a solution for zH  is found to be (Pozar, 1998) 
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The transverse components are then given by, 
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where amkx /  and bnky / .  The format presented here differs from most 

texts in that the expressions )2/( axkx   and )2/( byky   within the cosine and sine 

functions assume that the guide is centred on the origin as opposed to the lower left 

corner of the guide being located there.  Similar, for the TM modes we find that  
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and that the transverse field components are given by, 
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Each expression for the TE and TM modes shows two possible orthogonal 

polarisations.  The propagation constant 
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At a given operating frequency f  only those modes having ffc   will propagate.  

Modes where ffc   will have an imaginary propagation constant  , meaning that 

all field components will decay exponentially away from the source of excitation.  

Such modes are referred to as evanescent modes (Pozar, 1998). The mnA  and mnB  

terms in the equations are arbitrary amplitude constants and m and n represent the 

number of sinusoids in the intensity of the field components yE  and xE  respectively 

over the cross section of the guide (Silver, 1997). 

 

The wave impedance for both TE and TM modes can be expressed as 
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where  /  is the intrinsic impedance of the material filling the waveguide.  

The value of Z  is real when   is real representing a propagating mode and 

imaginary when   is imaginary, representing an evanescent mode.  The intensity 

patterns of some of the lower order TE and TM rectangular modes are shown in 

Figure 4.36.     
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Figure 4.36 Intensity patterns of some lower order TE and TM rectangular waveguide modes.  The 

waveguide used here was 2.54mm in the a-direction and 1.26mm in the b-direction. 

 

 

In terms of normalisation of the propagating modes, it was convenient to set 

the total power over any transverse plane to be unity, that is,   
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where )(),( ztj

mn eyx   eE  and )(),( ztj

mn eyx   hH , xe is the x-component of 

),( yxe  and taking the waveguide to be centred on the origin )0,0(),( yx .  Using 

this normalisation convention, the following expressions for the TE mode amplitudes 

are found: 

 

                   
 2222

4

22

2 4

)(

1

namb

kab
Amn





    for m > 0 and n > 0 (4.52) 

 

                                  
 22

4

22

2

0

2

)(

1

na

kab
A n


          for m = 0 and n > 0 (4.53) 



 

  200 

 

                                  
 22

4

22

2

0

2

)(

1

mb

kab
Am


          for m > 0 and n = 0 (4.54) 

 

and similarly for the TM mode amplitudes, 
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where the amplitudes of all other modes are zero.  The fundamental mode in a 

waveguide of rectangular cross-section is the TE10 mode (m = 1, n = 0).  By 

increasing the frequency of the radiation other modes are excited and propagate 

within the waveguide, at which point the waveguide is said to be over-moded (Pozar, 

1998).  The order in which the modes begin to propagate depends on the waveguide 

dimensions.  For the usual case where ba 2  the order of the mode cut-on is shown 

in Table 4.7 (Gleeson, 2004).  In this case the TE01 and TE10 modes are degenerate as 

are other combinations of mode pairs listed.  Although certain modes contain the 

same energy their field distributions are different as is evident from Equations 4.40 

to 4.43 and 4.45 to 4.48 above.     

 

 

Order of Mode Excitation 

1 TE01, TE10 

2 TE20 

3 TE11, TM11 

4 TE21, TM21 

5 TE30 

6 TE31, TM31 

7 TE40 

8 TE41, TM41 

Table 4.7 Order of mode excitation with increasing frequency in a rectangular waveguide with a=2b. 
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4.4.2 Circular Waveguide Modes 

 

A circular waveguide is a hollow metal tube of circular cross-section and as 

with the rectangular guide it supports the propagation of two distinct orthogonal sets 

of modes, the TE and TM waveguide modes.  The number of real propagating modes 

depends on the inner diameter of the structure, 2a, and again as with its rectangular 

counterpart an infinite number of evanescent modes may exist.  The coordinate 

system for circular waveguides is typically defined such that the circular cross-

section lies in the xy-plane with radiation propagating in the positive z-direction as 

shown in Figure 4.37. 

 

 

Figure 4.37 Schematic diagram of circular waveguide here… 

 

The transverse field components are found from the longitudinal components 

as before.  In the case of the TE modes these are derived from the expression for the 

zH  field component while for the TM modes the zE  component is used.  Since a 

cylindrical geometry is involved , it is appropriate to employ cylindrical coordinates.  

 

Transverse Electric (TE) Modes 

 

Considering first the TE modes, the z-component of the H field is given by 

(Olver, et. al., 1994), 
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where nlA  is an arbitrary constant and nJ  is a Bessel function of the first kind and of 

order n.  As can be seen from the expression, there are two possible orthogonal 

polarisations for each value of n and l, arising from the z-component being either 
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proportional to ncos  or nsin  (Murphy et. al., 2001), hence the c and s notations 

seen in some texts.  In incoherent systems with no polarisation discrimination both 

of these degenerate mode sets can propagate.  From this expression for zH  the 

remaining transverse components are derived as (Pozar, 1998), 
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where cnlnl kAjC /  and dzzdJzJ nn /)()(   is the derivative of the Bessel 

function nJ  with respect to its argument.  The electric field along the surface of a 

perfect conductor must be zero and therefore 0 EEz  at ar  , where a is the 

radius of the waveguide, meaning that 0)(  akJ cn and hence the argument of the 

derivative of the Bessel function must be one of its roots.  That is, 
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where nlp  is the l
th

 root of the derivative of the n
th

 order Bessel function nJ , some 

values of which are given in Table 4.8.  The cut-off frequency for any TE circular 

waveguide mode can then be calculated using apk nlc / .  Also, the propagation 

constant is given by 
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and the wave impedance by 
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where dn  is the refractive index of the waveguide medium with   being the 

dielectric constant and   the relative permeability of the medium.  

 /1/0 Z  is the characteristic impedance of the waveguide medium.  

 

For consistency with the rectangular modes the circular waveguide modes 

were normalised so the total power over any transverse plane was unity, as with the 

rectangular modes, so that 
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where )(),( ztj

nl er   eE  and )(),( ztj

nl er   hH  and, as before, taking the 

waveguide as centred on the origin ( 0r ).  An expression for nlC  can be found by 

carrying out the integration in Equation 4.64, giving 
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The transverse components of the field given in Equations 4.57 to 4.60 excluding the 

exponential term can then be expressed as, 
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Using the following relationship between cylindrical and rectangular coordinates, 
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where the conversion matrix is orthogonal and therefore its inverse is simply its 

transpose, and the fact that the derivative of a Bessel function and the Bessel 

recursion relation are given by: 
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the x and y components of the electric and magnetic field are found as, 
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Values of the l
th

 Root of the Derivative of the n
th

 Order Bessel Function Jn 

p'nl n=0 n=1 n=2 n=3 n=4 n=5 

l=1 3.83171 1.84118 3.0542 4.20119 5.3175 6.41557 

l=2 7.01559 5.3314 6.7061 8.01524 9.2824 10.5198 

l=3 10.1735 8.5363 9.9695 11.3459 12.6810 13.9871 

l=4 13.3237 11.706 13.1704 14.5858 15.9641 17.3127 

l=5 16.4706 14.8636 16.3475 17.7887 19.1960 20.5755 

l=6 19.6159 18.0155 19.5129 20.9725 22.4010 23.8035 

l=7 22.7601 21.1644 22.6716 24.1449 25.5890 27.0102 

l=8 25.9037 24.3113 25.8260 27.3101 28.7670 30.2028 

l=9 29.0468 27.4571 28.9770 30.4703 31.9380 33.3854 

l=10 32.1897 30.6019 32.1273 33.6270 35.1030 36.5607 

Table 4.8 nlp  values where nlp
 
is the l

th
 root of the derivative of the n

th
 order Bessel function nJ . 

 

Plots of the intensity (
22

eer  ) of some of the lower order TE circular 

waveguide modes are shown in Figure 4.38 for a single orthogonal polarisation.  If 

both polarisations are present within the waveguide then the polarisation components 

should be added in quadrature.     
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Figure 4.38 Plots of some lower order TE circular waveguide modes.  The radius of the waveguide 

used was 2.54mm. 

 

 

Transverse Magnetic (TM) Modes 

 

For the TM modes of the circular waveguide we need to solve the wave 

equation for zE , giving, 
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The transverse field components for both orthogonal polarisations can be derived 

from this and are given by (e.g. Gleeson, 2004), 
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where cnlnl kBjD / .  As before the electric field along the surface of the 

conductor must be zero and therefore the boundary condition 0 EEz  at ar   

holds, so that 0)( akJ cn and the argument of the Bessel function must be one of its 

roots.  That is, 
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where nlp  is the lth root of the nth order Bessel function nJ , some values of which 

are given in Table 4.9.  The cut-off frequency for any TM circular waveguide mode 

is then calculated in a similar way to the TE modes using apk nlc / .  Also, the 

propagation constant is given by 

 

                                               

2

222










a

p
kkk nl

c  (4.83) 



 

  208 

  

and the wave impedance by 
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where the variables have the same definitions as before. 

 

The TM modes were normalised in the same as the TE circular modes using 

Equation 4.64 giving an expression for nlD  as, 
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and therefore we can write expressions for the transverse components of the electric 

and magnetic fields as, 
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where )(),( ztj

nl er   eE  and )(),( ztj

nl er   hH .  Using Equation 4.70 and 

Equations 4.86 to 4.89 the x and y components of the electric and magnetic fields are 

found to be, 
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Values of the l
th

 Root of the n
th

 Order Bessel Function Jn 

pnl n=0 n=1 n=2 n=3 n=4 n=5 

l=1 2.40483 3.83171 5.13562 6.3801 7.5883 8.77148 

l=2 5.52008 7.01559 8.41725 9.76102 11.0647 12.3386 

l=3 8.65373 10.1735 11.6198 13.0152 14.3725 15.7002 

l=4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801 

l=5 14.9309 16.4706 17.9598 19.4094 20.8270 22.2178 

l=6 18.0711 19.6159 21.1170 22.5827 24.0190 25.4303 

l=7 21.2116 22.7601 24.2701 25.7482 27.1990 28.6266 

l=8 24.3525 25.9037 27.4206 28.9084 30.3710 31.8117 

l=9 27.4935 29.0468 30.5692 32.0640 33.5370 34.9887 

l=10 30.6346 32.1897 33.7165 35.2187 36.6990 38.1598 

Table 4.9 pnl values where pnl 
is the l

th
 root of the n

th
 order Bessel function nJ . 

 

 

Plots of the intensity (
22

eer  ) of some of the lower order TM circular 

waveguide modes are shown in Figure 4.39 for a single orthogonal polarisation. 
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Figure 4.39 Plots of some lower order TM circular waveguide modes.  The radius of the waveguide 

used was 2.54mm. 

 

Having considered both the transverse electric and transverse magnetic 

modes of the circular waveguide the values of both nlp  and nlp  can be examined and 

therefore the order of excitation of the modes as the operating frequency increases 

deduced.  The results of this can be seen in Table 4.10.  It is clear from the data that 

some modes are degenerate, however, as with the rectangular modes, the field 

distributions of these modes is quite different.  
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Mode Cut-On Values 

Mode kca 

TE11 1.8412 

TM01 2.4048 

TE21 3.0542 

TM11 3.8317 

TE01 3.8317 

TE31 4.2012 

TM21 5.1356 

TE41 5.3176 

TE12 5.3314 

TM02 5.5201 

Table 4.10 Circular waveguide mode cut-on values. 

 

 

4.4.3 Scattering at a Rectangular-Circular Discontinuity 

 

To calculate the field at a rectangular-circular (or any) discontinuity a mode-

matching technique is applied.  A comprehensive analysis of smooth-walled and 

corrugated horn antennas has been carried out at NUIM using this technique and has 

resulted in the SCATTER software being developed (Colgan, 2001; Gleeson, 2004) 

as described in Chapter 2.  While a complete description of the technique is provided 

by Colgan (2001) and Gleeson (2004), an outline of the theory is given here to 

understand the principles involved. 

 

To analyse any discontinuity within a waveguide or horn antenna structure 

(which can be considered as a series of cascaded uniform cylindrical waveguide 

sections) the transmission and reflection coefficients must be known for that 

discontinuity.  These arise from the fact that the power from the individual incident 

modes is scattered between reflected modes in the first waveguide section and 

transmitted modes in the second waveguide section.  In the mode-matching 

technique, the total transverse field in the two waveguides at the plane of the 

junction is matched so that the total complex power is conserved and Maxwell‟s 

equations are satisfied with the usual boundary conditions applying to the fields at 



 

  212 

the conducting walls (Gleeson, 2004).  This is assumed at each junction within the 

waveguide or horn antenna with the output field from one section becoming the 

input for the next.  The relationship between the input and output mode coefficients 

for the junctions between waveguide sections can be expressed in terms of scattering 

matrix elements, which are calculated by means of power coupling integrals.  Also, a 

diagonal matrix is used to describe mode propagation (since no power is scattered 

between modes) in the length of waveguide each side of a junction with the elements 

representing the phase evolution of the modes ( )exp( zj ).  In general, a different 

number of modes can be chosen to represent the field on both sides of the 

discontinuity.   

 

When the scattering matrix for each junction is calculated they are cascaded 

together as described in section 4.3.1 so that an overall scattering matrix for the 

waveguide discontinuity or horn antenna structure is obtained.  The scattering matrix 

operates on the modes at the input of the structure and provides mode amplitudes of 

the field at the output.  For power to be conserved and the fields to match at any 

particular junction then the following relationships must hold (Olver et al., 1994): 

 

           CDQBAP   (4.94) 

            CDPBAR
T

  (4.95) 

 

where A and B are the transmitted and reflected coefficients on the input side and C 

and D are the transmitted and reflected coefficients on the output side.  The matrices 

[P], [Q] and [R] represent coupling between modes at the junction.  If we consider 

the case of a field propagating from left to right through a waveguide or horn 

antenna discontinuity then the [P] matrix is a rectangular matrix whose elements are 

integrals representing mutual coupling between modes on the left and right side of 

the junction and are given by, 
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where n  is the mode on the left of the junction and n  is the mode on the right.  

Also, LS  represents the cross-section surface of the junction on the left-hand side (if 

this surface is the smaller of the two).  The [Q] and [R] matrices represent self-

coupling between modes on the right and left of the junction respectively and are 

given by, 
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and 

 

nn

S

RnRnnn

R

dR 



 












  She  (4.98) 

 

All three expressions for the coupled power involve an integral of the form, 
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for fields whose components are represented in Cartesian form.  he  is the 

Poynting vector which gives the direction and magnitude of the energy flow density 

at any point in the waveguide.  For both mutual and self-coupling all possible forms 

of scattering are considered, that is, TE to TE, TE to TM, TM to TE and TM to TM.  

In SCATTER, the overall form of the matrix describing scattering between modes 

has the form (Colgan, 2001), 
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The elements of a scattering matrix (as in Equation 4.18) for a discontinuity within a 

waveguide as derived from the power coupling matrices are given by (Olver et al., 

1994), 
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                   PQPRPQPRS
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 where    TPP 
  represents the complex conjugate transpose of the matrix P.  

 

In the case of scattering at the junction between a rectangular and circular 

waveguide it is convenient to use the Cartesian components of both the rectangular 

modes propagating in the left rectangular waveguide and the circular waveguide 

modes propagating within the circular waveguide on the right.  The equations for 

these components are given in sections 4.4.5 and 4.4.6 respectively and the elements 

of the [P], [Q] and [R] matrices are found using Equations 4.96 to 4.98.  In this case 

the mutual coupling between modes on the left of the junctions and those on the right 

involves coupling rectangular modes with circular modes, however, the same 

procedure as outlined above is followed.     

 

Transverse Electric (TE) Modes Considered at Discontinuity 

Rectangular Modes on Left of Discontinuity 

m, n 0, 0 1, 0 2, 0 0, 1 1, 1 2, 1 0, 2 1, 2 2, 2 

Circular Modes on Right of Discontinuity 

n, l 0, 0 1, 0 2, 0 0, 1 1, 1 2, 1 0, 2 1, 2 2, 2 

Transverse Magnetic (TM) Modes Considered at Discontinuity 

Rectangular Modes on Left of Discontinuity 

m, n 0, 0 1, 0 2, 0 0, 1 1, 1 2, 1 0, 2 1, 2 2, 2 

Circular Modes on Right of Discontinuity 

n, l 0, 0 1, 0 2, 0 0, 1 1, 1 2, 1 0, 2 1, 2 2, 2 

Table 4.11 circular waveguide mode cut-on values here……. 

 

As an example a 10mm long rectangular waveguide with a width a=2.54mm 

and a height b=1.26mm was placed in contact with a circular waveguide of the same 
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length with a radius of r=2.5mm.  It was assumed that both waveguides were centred 

on the origin.  The frequency of the radiation was 150GHz and 18 modes (9 TE and 

9 TM) were considered in each of the waveguides as shown in Table 4.11.  The 

power coupling calculations were carried out by means of the integrals above where 

the cross-sectional area over which the integration was carried out was that of the 

rectangular waveguide, since this was the smaller of the two and its field did not 

exist outside of this.  From the resulting matrices the elements of the overall 

scattering matrix for the system were calculated using Equations 4.101 to 4.104.  

Figure 4.40 shows a cut through the resulting aperture field calculated using the 

mode-matching technique described above and also that calculated using CST for the 

same system.  While the mode-matching technique shows the overall structure of the 

field it does not have the same width as the CST model.  This is most likely due to 

the number of modes being used in the mode-matching method, since the higher 

order modes will „fill in‟ the field at the edges.  (The calculations here are not natural 

ones for the commercial software packages – in CST, the volume containing the 

structure is divided into mesh cells and the electromagnetic simulation is carried 

using a finite integral technique, as outlined in Chapter 2).  An overlap integral 

showed a 93% power coupling between the beam patterns.  

 

Figure 4.40 Field amplitude at the circular waveguide aperture after propagation through the 

rectangular waveguide and rectangular-circular discontinuity. 
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4.5 Beam Distortion in Closely Packed Waveguide Arrays 

 

Most new CMB experiments have aspirations of measuring the polarisation 

(and in particular the B-modes) as well as the temperature anisotropies of the 

background radiation, something that requires an extremely high level of sensitivity.  

To achieve this sensitivity the instrument designers are implementing more and more 

detectors in compact arrays on the focal plane.  Depending on the requirements, 

these detectors vary in their construction.  In the following two sections we consider 

both cylindrical and rectangular waveguides, which may in theory be used to feed 

radiation onto bolometric detectors, arranged in a variety of ways.  In each case the 

affect of the presence of the neighbouring waveguides on the beam patterns is 

examined.  This analysis is a first approximation in which the waveguides are 

considered as open-ended hollow cylindrical and rectangular sections.  We start by 

looking at the cylindrical case. 

 

   

4.5.1 Circular Waveguide Arrays 

 

To begin this analysis circular waveguide sections were placed in five 

different array configurations using CST as shown in Figure 4.41.  There are two 

horizontal configurations and two vertical configurations, along with a single 

waveguide.  The purpose of this was to see if compact arrays of circular waveguides 

had any effect on individual beam patterns.  Each waveguide had an inside radius of 

0.8mm and a wall thickness of 0.1mm.  They were separated by 0.1mm.  The length 

of each waveguide was 10mm, and the operating frequency was set to 100GHz.  It 

was assumed that the material from which the waveguide wall was constructed was a 

perfect electrical conductor and that the volume inside the guide was a vacuum.      

 

For each array a single TE11 mode was excited at the back of just one circular 

waveguide, which can be seen as a red area behind that particular guide in Figure 

4.41.  The field at the aperture was then calculated, taking into account the other 

waveguide structures in the vicinity.  Figure 4.42 shows an x and y-cut of the 

resulting field magnitudes at the waveguide aperture for the horizontal 
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configurations.  The far field patterns are also shown.  In the case of the vertical 

configurations, the same results, aperture and far field patterns, are shown in Figure 

4.43.  As can be seen from the graphs the effect of having other waveguides in the 

vicinity is small, although visible in the far field pattern.  Also, the ringing in the 

beam is significantly higher in the far field at 90  due to the severe truncation of 

the beam in the y-direction by the wall of the waveguide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41 Circular waveguide array configurations analysed using CST. 
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Figure 4.42 (a) Aperture field x-cut, (b) Aperture field y-cut, (c) Far field 


0 , and (d) Far field 


90  for the circular waveguide horizontal configurations (Figure 4.41). 

 

 

 

To further investigate the effect of close-packed arrays, a reflection 

coefficient was calculated, again for each configuration with the same single 

waveguide excited as above.  The results of this are shown in Figure 4.44 where the 

magnitude of the S11 parameter, the scattering matrix that describes reflection back 

to port 1 having been reflected at the aperture of the guide due to impedance 

mismatch, is plotted for each case.  The fact that the S-parameters are so alike 

confirms the very small effect that was seen in the power at the aperture and far field 

patterns. 

(a) (b) 

(c) (d) 
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Figure 4.43 (a) Aperture field x-cut, (b) Aperture field y-cut, (c) Far field 


0 , and (d) Far field 


90  for the circular waveguide vertical configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.44 Magnitude of the S11 parameter for the different horizontal (left) and vertical (right) 

waveguide configurations. 

(a) (b) 

(c) (d) 
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Another interesting feature of the data lies in the fact that for the 2WG-H 

configuration the beam is skewed slightly to the left, with its peak being shifted to 

the right towards the adjacent waveguide.  With this in mind a new configuration 

was set up with the dormant waveguide to the left (rather than to the right as in the 

2WG-H case) of the excited one to establish whether or not this would skew the far 

field pattern in the opposite direction.  Both configurations are shown in Figure 4.45 

and as expected the far field calculations did show that the beam was skewed in the 

opposite direction as in Figure 4.46. 

 

 

 

 

 

 

Figure 4.45 Configurations with two waveguides side by side.  In the left image the waveguide on the 

left is excited while in the right image it is the waveguide on the right that is excited. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.46 Far fields from the waveguide configurations shown in Figure 4.45.  The far field of a 

single circular waveguide (1WG) is also shown. 

 

The reason for the shifting of the field is most likely due to the currents being 

induced on the surface of the adjacent waveguide.  Since these currents are caused 

by the same source as those in the excited waveguide the fields will be in phase and 

2WG-H 2WG-H-REV 
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therefore add coherently at the aperture plane.  The currents in the adjacent 

waveguide are small compared to those in the excited guide and therefore the overall 

effect is quite small and can be seen as a slight skewing of the beam.  Also, 

terminating the adjacent waveguides shows no change in these effects. While it 

appears this effect is not problematic for waveguides in the centre of an array since 

there are adjacent guides on both sides to counteract the skewing, it is an issue for 

the waveguides at the array boundary.  Also, if this beam distortion is caused by 

having other waveguides present then it would be expected that the effect should be 

removed by increasing the distance between the guides.  To test this, a model similar 

to the 2WG-H configuration was set up in which the separation distance was 

increased and it can be seen in Figure 4.47 that as the waveguides are separated the 

beam pattern becomes more like that of a single waveguide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.47 (a) Aperture field x-cut, (b) Aperture field y-cut, (c) Far field 


0 , and (d) Far field 


90  for the circular waveguide arranged in a horizontal configuration (2WG-H) separated by 

different distances. 

(a) (b) 

(c) (d) 
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Another problem than can exist in waveguide arrays is crosstalk, where the 

field from one waveguide is coupled to an adjacent waveguide.  To look at the effect 

of this two adjacent waveguides were modelled with each having a port at the back.  

In Figure 4.48, port 1 is that at the rear of the waveguide on the left while port 2 is at 

the rear of the one on the right.  To estimate the crosstalk the magnitude of the S21 

matrix was calculated and is shown in Figure 4.49.  The S21 matrix describes the 

power that appears at port 2 having originated at port 1 and it is shown that in this 

case the crosstalk is extremely small at approximately 8105.2   for an operating 

frequency of 100GHz.              

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.48 Waveguide and port arrangement used to measure cross-talk between the circular 

waveguides by means of the S21 parameter.  The waveguide on the left is excited at its port (port 1) 

while the waveguide port on the right (port 2) is not excited 

 

 

Having considered both beam distortion and crosstalk between circular 

waveguides in closely packed formations it is clear that the effects of both are quite 

small, however they should be considered when designing detector arrays.  It was 

shown that the waveguides which had adjacent guides on both side behaved almost 

as if they were just single elements, however when a waveguide had an adjacent 

guide on only one side the beam was pulled to one side.  This is the case for 

waveguides located at the edge of the array.  With regards to crosstalk, an extremely 

small percentage of the power from port 1 was transferred to port 2.  This power is 
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unwanted and although it is quite small the level of sensitivity required for CMB 

polarisation experiments is such that it may be significant and therefore must be 

accounted for.            

 

 

Figure 4.49 The magnitude of the S21 parameter for two adjacent waveguides with only one port 

(port 1) excited. 

 

 

 

4.5.2 Rectangular Waveguide Arrays 

 

A similar analysis to that carried out for circular waveguides in the previous 

section was also done for rectangular waveguides with a series of configurations 

modelled as shown in Figure 4.50 .  The waveguides used in the analysis had a width 

of 2.54mm and a height of 1.27mm (standard WR10 waveguide dimensions).  The 

wall thickness was 0.1mm with a separation of 0.1mm between adjacent waveguides.  

An operating frequency of 100GHz was used throughout the analysis and a single 

TE10 mode was excited at the input port (see Figure 4.50) as shown in Figure 4.51. 
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Figure 4.50 Rectangular waveguide array configurations analysed using CST.  The waveguide with 

the excited input port (marked with a red star) is shown in brackets. 

 

 

Firstly, to get an idea of the effect that the other waveguides had on the single 

element the aperture and far field amplitude was calculated for each configuration 

and can be seen in Figures 4.52 and 4.53 for both the horizontal and vertical 

arrangements respectively.  Considering the horizontal configurations first it can be 

seen that for the case of two waveguides placed side by side (2WG-H) the field in 

the x-direction is asymmetric.  This is more apparent in the 0  far field pattern.  

However, when another waveguide is added to the opposite side (3WG-H) the field 

becomes symmetric again, as was the case with the circular waveguide 

arrangements.  The y-cuts for the horizontal configurations are all symmetric but the 

1WG 
2WG-H (left) 

3WG-H (middle) 2WG-V (bottom) 

3WG-V (middle) 

* * 

* 
* 
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far field exhibit higher levels of ringing due to the more severe truncation of the 

aperture field.  To examine the asymmetry further the 2WG-H configuration was 

reversed so the excited waveguide was on the right hand side.  The results showed 

that the asymmetry at 0  was also reversed as expected which can be seen in 

Figure 4.54.  The field at 90  remained the same. 

 

 

 

 

 

 

Figure 4.51 The copolar and cross-polar fields of the TE10 mode excited at the input port of the 

rectangular waveguides.  The plots are taken from CST. 
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In the case of the vertical arrangements the x-cuts are symmetric while it is 

now the y-cut for the two waveguide configuration (2WG-V) that contains the 

asymmetry.  This can also be seen in the far field pattern at 90 .  Again a higher 

level if ringing in this direction is also visible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.52 (a) Aperture field x-cut, (b) Aperture field y-cut, (c) Far field 


0 , and (d) Far field 


90  for the rectangular waveguide horizontal configurations. 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 4.53 (a) Aperture field x-cut, (b) Aperture field y-cut, (c) Far field 


0 , and (d) Far field 


90  for the rectangular waveguide vertical configurations. 

 

 

 

Looking at both the beam patterns for both the horizontal and vertical 

arrangements it is the vertical ones that differ most from a single waveguide.  As a 

further analysis, the S11 matrix parameters were calculated, as in the case of the 

circular waveguide array, for each configuration and as can be seen from Figure 4.55 

the results are consistent with the beam pattern variation with the vertical 

arrangements varying the most from the single waveguide.  This is most likely due to 

(a) (b) 

(c) (d) 
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the fact that the field in the y-direction remains high (or is not tapered) as far as the 

waveguide wall itself and therefore any waveguides placed next to this have the most 

effect on this field due to induced currents in the wall of the adjacent guide.  As with 

the circular case, if the waveguides are moved further apart then the effect should be 

reduced and the fields should become more like those of a single rectangular 

waveguide.  To investigate this, the two-waveguide vertical configuration (2WG-V) 

was altered so that the distance between the waveguides was 2mm instead of 0.1mm 

and the aperture and far fields were calculated.  The results of this are shown in 

Figure 4.56.  Considering first of all the x- and y-cuts of the aperture field it can be 

seen that the field from the 2mm separation arrangement very closely matches the 

main beam from the single waveguide, something which is more evident in the far 

field patterns.  Also, the level of asymmetry in the y-direction has been reduced to be 

more like the single waveguide.  As a final check the S11 parameter was calculated 

and as can be seen in Figure 4.57 the 2mm separation is significantly different to the 

case where the waveguides were separated by 0.1mm, again indicating the as the 

waveguides are moved apart the field becomes more like that from a single 

waveguide.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.54 Far fields from the two-waveguide configuration 2WG-H and also a similar arrangement 

with the right waveguide excited (2WG-H-REV).  The far field of a single circular waveguide (1WG) 

is also shown for comparison. 
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Figure 4.55 Magnitude of the S11 parameter for the different horizontal and vertical waveguide 

configurations.  Note that at some frequencies reflection is found to be less the waveguide is within an 

array. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.56 (a) Aperture field x-cut, (b) Aperture field y-cut, (c) Far field 


0 , and (d) Far field 


90  for the rectangular waveguide arranged in a vertical configuration (2WG-V) separated by 

different distances. 

(a) (b) 

(c) (d) 
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Figure 4.57 Magnitude of the S11 parameter for the vertical rectangular waveguide configuration 

2WG-V with different separation distances. 

 

 

 

 

To calculate the crosstalk between adjacent rectangular waveguides the input 

and output ports were configured as before for the circular waveguides, that is, port 1 

was at the back of the excited waveguide while port 2 was located at the back of the 

non-excited waveguide, and the S21 parameter was calculated.  Both horizontal and 

vertical arrays were considered.  The results of this are shown in Figure 4.58 where 

for the waveguides arranged in a horizontal configuration (as in 2WG-H with the left 

waveguide excited) the S21 parameter has a magnitude of approximately -31.3dB at 

the 100GHz central frequency, while for those arranged vertically (as in 2WG-V 

with the bottom waveguide excited), a value of approximately -15.5dB is obtained 

for the same frequency.  This again provides some insight as to the greater variation 

in the fields generated by vertically arranged waveguides as opposed to those 

horizontally arranged when compared to a single waveguide.      
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Figure 4.58 The S21 parameter for two rectangular waveguides aligned both horizontally (left) and 

vertically (right). 

 

 

On examination of the far field patterns and the S parameters of the various 

configurations it appears that the vertical arrangements of rectangular waveguides 

have the most effect on the field from an individual waveguide.  In the case of the 

S11 (reflection) parameter, the horizontal arrangements are very similar to each other, 

as well as to the single waveguide.  The configurations containing vertical 

arrangements have similar (magnitude versus frequency) profiles to each other but 

quite different profiles to the single case.  Although at the central frequency of 

100GHz examined here the reflection is lower it rises significantly at approximately 

102GHz for the vertical arrangements.  The S21 parameter is also much greater for 

the rectangular waveguides arranged vertically, and these configurations also induce 

asymmetries into the beam patterns.        

 

In comparison to the circular waveguide arrays the rectangular waveguide 

configurations in general seem to produce beam patterns with a higher sidelobe 

level.  Also, while the crosstalk between circular waveguides in an array and the 

rectangular waveguides in a horizontal configuration is comparable it is much higher 

for vertical arrangements of rectangular waveguides.  Also, the reflection coefficient 

for rectangular arrays is significantly higher.  While the waveguide arrays presented 

here contained waveguides in close proximity to each other, the separation distance 

was also varied and it was shown that the beam patterns and S parameters became 
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more like those of the single waveguide, as expected if the adjacent waveguides in 

the array were causing the observed effects.  As mentioned previously this analysis 

was a first approximation in the effects of adjacent waveguides on individual beam 

patterns.  For a more detailed analysis the exact geometries of the horns used would 

be needed (computationally, on the PC‟s used here, CST could not model horns of 

the volume used in MBI). 

 

In this chapter I presented an overview of both smooth-walled and corrugated 

conical horn antennas and the techniques used in predicting their beam patterns.  The 

effect of using lenses on the MBI-4 smooth-walled detector horn antennas was 

analysed as too was changing the geometry of these horns without changing the 

dimensions of the lenses.  It was found that a loss of 20% in coupled power occurs if 

the original lens designed for a horn with an aperture radius of 12.7mm is used with 

a horn antenna whose aperture radius is only 9.525mm (the horn slant length was 

also different for each horn). 

 

The MBI-4 back-to-back conical corrugated horn antennas were also 

analysed in detail and the truncation effects by the cryostat windows was modelled.  

The mode-matching technique used to model corrugated horn antennas was 

discussed and extended to include scattering at rectangular-to-circular 

discontinuities.  Finally, the effect of closely packed waveguide arrays on individual 

waveguide beam patterns was examined and it was found that while there is an effect 

it is quite small.  It was also found that the effect depends on the arrangement of the 

array and the separation distance between the waveguides.            
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 Chapter 5 

 

Quasi-Optical 

Analysis of MBI-4 
 

 

5.1 Analysis of the Fizeau Optical System Using MODAL 

 

In this section we look at the optical design of the MBI-4 beam combiner in 

more detail, taking into account the four-inward facing horn antennas and producing 

interference patterns by modelling the exact system.  We also look at truncation 

effects in more detail as well as mechanical tolerances and the frequency dependence 

of the system.  Comparisons between experimental measurements and modelling are 

also given,  

 

 

5.1.1 Defining the System in MODAL 

 

The first step in analysing the MBI Fizeau beam combiner in MODAL was to 

define and create the system as a new project in the MODAL environment.  To begin 

with, a number of reference frames were defined in terms of the global frame to 

allow each of the components to be positioned and orientated appropriately and also 

to allow easy characterisation of the polarisation directions of the feed horn 

antennas.  The details of these frames are summarised in Figure 5.1 and Table 5.1. 

 

 

Figure 5.1 The frames used to define the optical system in MODAL. 
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New Frame Transformation Value Original Frame 

HornCoordinateFrame n/a n/a Global 

ReferenceFrame z-axis rotation 
-0.037181 

rad 
HornCoordinateFrame 

ApertureFrame z-axis rotation 
-0.730141 

rad 
HornCoordinateFrame 

DetectorReferenceFrame 

z-direction 

translation 
425 mm HornCoordinateFrame 

x-axis rotation  rad HornCoordinateFrame 

z-axis rotation 
-0.730141 

rad 
HornCoordinateFrame 

Table 5.1 The reference frames used in defining the MBI system in MODAL.  

 

 

The first frame created was the HornCoordinateFrame, which was defined as 

being the same as the global frame in MODAL.  This frame allowed the positioning 

of the inward facing corrugated horn antennas as shown in Figure 5.2, where the  

origin of the xy-plane in the diagram corresponds to the origin of the 

HornCoordinateFrame and the coordinates and measurements are given in inches, 

not millimetres.  The view in Figure 5.2 is from the detectors and not from the sky.   

 

It was also necessary to take into account the polarisation directions of the 

source horns, which is defined as being parallel to the shortest baseline, that formed 

by sources 2 and 3 in Figure 5.2.  Since this baseline forms an angle of 

approximately -0.037 radians with the horizontal, a ReferenceFrame was defined 

with its origin coinciding with that of the HornCoordiateFrame but with its axes 

being rotated around the z-axis of this frame by -0.037 radians (see Figure 5.1).  This 

meant that the x-axis of this new frame corresponded to one polarisation direction of 

the horn antennas, the co-polar, while the y-axis corresponded to the other 

polarisation direction, the cross-polar, and these polarisation directions were defined 

as û  and v̂  vectors respectively for future reference in the MODAL project.   
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O 

x 

y 

S1 (1.903, 1.589) 

S2 (-0.676, -2.386) 
S3 (2.875, -2.518) 

S4 (-2.820, 2.580) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Schematic diagram showing the four inward-facing horn antennas and their coordinates (in 

inches) as defined in the HornCoordinateFrame,  The primary mirror and elliptical aperture are also 

shown along with the secondary mirror.  The view is from the detectors looking towards the sky (this 

is Figure 4.30 reproduced here for convenience).    

 

 

Four source horn antenna frames were defined by translating the reference 

frame to the four horn origins shown in Figure 5.2.  Throughout the analysis of the 

optical combiner different types of source were used and each will be described in 

more detail in the appropriate section.  For now, the location and orientation of the 

frames is sufficient in describing the optical setup in MODAL. 

 

Looking at Figure 5.3, the next surface in the system is the secondary mirror.  

The hyperbolic shape was defined as an aspheric surface with a radius of curvature 

of -61.8557mm and a conic constant of -1.3571 and its frame was defined as the 

ReferenceFrame translated a distance of 50mm in the positive z-direction of the 

HornCoordinateFrame (the choice of using the ReferenceFrame rather than the 

HornCoordinateFrame came from the fact that when calculating the field at the 

mirror in later analysis it would be more useful to have the mirror orientated in the 

direction of the polarisation vectors).  The bounding volume for the secondary mirror 



 

  236 

was defined as being an infinite cylinder with its axis going through the origin of the 

secondary mirrors frame and its radius being the same as that of the mirror, that is, a 

radius of 32mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 The optical system as defined in MODAL.  The four inward facing horn antennas and 

nineteen detector horn antennas are shown as infinite cylinders because of the infinite phase front 

radius of curvature at the aperture of the horn. 

 

 

 

Again, moving towards the right in Figure 5.3, the next surface encountered 

is that of the primary mirror, the aperture (inner rim) of which is elliptical in shape 

with the major axis of the ellipse being aligned along the line connecting the centres 

of source 3 and source 4 in Figure 5.2.  To aid with the setup of this in MODAL a 

new frame called the ApertureFrame was defined as being a transformed 

HornCoordinateFrame with the transformation being a rotation around its z-axis by 

an angle of -0.730141rads.  Following this, the frame for the primary mirror was 

defined as being the ApertureFrame translated along the z-axis of the 

HornCoordinateFrame by 250mm, the distance from the horn apertures to the 

primary as described in section 3.3.3.  As with the secondary mirror an aspheric 
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surface was used with a radius of curvature of -457.143mm and a conic constant of -

1, i.e. a parabola.  The overall size of the mirror and the size and shape of the 

aperture were set using a bounding volume, which was defined as being the 

difference of two geometrical objects.  The first of these objects was an infinite 

cylinder with a diameter of 300mm centred on the frame origin.  The second object 

was also an infinite cylinder centred on the origin, but with a different diameter in 

orthogonal directions (164mm in the ApertureFrame x-direction and 96mm in the y-

direction) giving the elliptical shape required.  

 

Moving along the z-axis through the optical system we come to the detector 

plane.  In MBI-4 the detector array is aligned along the major axis of the elliptical 

aperture in the primary mirror with the centre detector horn located at the optical 

centre of the overall system, that is, in line with the origin of the 

HornCoordinateFrame defined earlier.  This is also the centre line of both the 

primary and secondary mirrors and lies slightly off the midpoint of sources 3 and 4 

to allow the detectors to be placed an equal distance from each of the horns in each 

baseline.  A DetectorReferenceFrame was created by carrying out three 

transformations on the HornCoordinateFrame.  Firstly the HornCoordinateFrame 

was rotated around its z-axis by an angle of -0.730141rads to align the x-axis of the 

new frame along the major axis of the aperture in the primary mirror, as with the 

ApertureFrame.  Secondly, the frame was rotated around the x-axis by π radians 

which effectively orientated the plane so it was facing back towards the system with 

the positive y-axis now facing downwards.  Finally, the frame was translated 425mm 

along the z-axis of the HornCoordinateFrame, placing it 175mm behind the primary 

mirror as desired.  Figure 5.4 shows the DetectorReferenceFrame containing the 

nineteen detector horns with the grid system being used as a means of positioning 

and naming the horn antennas.  The two vectors, n̂  directed along the x-axis of the 

frame and m̂  at -60º to this were given a magnitude of 1.1 inches, the separation 

distance between the centres of the detectors.  The origin of both of these vectors 

coincides with the optical centre and therefore the centre detector horn antenna, with 

the position of each of the other horns being calculated by the vector sum 

mmnn ˆˆ  , where n and m are the grid reference numbers.  The naming of each 

horn in the diagram can then simply refer to its position, which is (n, m).  At each 
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detector point in the array, both a detector polarised in the u-direction and one in the 

v-direction were defined, each being a smooth-walled conical horn antenna with a 

diameter of 1 inch.  The phase front radius of curvature at the aperture of each horn 

was set to infinity to simulate the phase flattening lenses described in section 4.2.3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 The DetectorReferenceFrame and grid system used to position and name the detector horn 

antennas.  The x-axis of the frame coincides with the major axis of the elliptical aperture in the 

primary mirror.  The view is from the detectors looking towards the optics. 

 

 

With the system defined a variety of sources could be inserted for different 

analysis.  Also, MODAL provides the user with a number of propagation techniques 

and in the next section we evaluate these and compare the results.       

 

 

5.1.2 Evaluation of Propagation Techniques 

 

MODAL allows the user to select one or more of three possible propagation 

techniques, namely Gaussian beam modes (GBM), scalar or Fresnel diffraction, and 

physical optics, each of which was described in detail in Chapter 2.  To evaluate 
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these techniques the MBI-4 optical system was defined as in the previous section 

with inward facing corrugated conical horn antennas used as the four sources.  The 

horns had a radius of 22.45mm and were polarised along the x-axis of the 

ReferenceFrame ( û ), that is, along the direction of the shortest baseline formed by 

sources 2 and 3 in Figure 5.2.  The initial phase of the field at the horn aperture was 

set to zero with a flat phase front and the power at the aperture of the horn antenna 

was 1W.  MODAL represents the field produced by such a source as a Bessel 

function ( )/405.1(0 arJ , (Figure 4.19 shows how accurate this representation is)) 

and propagates the fields by means of elements in the program called propagators.  

First the intensity of the field at the image plane was calculated for each method and 

the results compared.  To enable this calculation the field from each source was 

propagated from element to element using the propagators mentioned above. 

 

Number of Grid Points Used for Propagators 

Propagator GBM Scalar Physical Optics 

Source 41 x 41 81 x 81 81 x 81, 161 x 161 

Sec. Transmission 41 x 41 81 x 81 81 x 81, 161 x 161 

Prim. Reflect 41 x 41 81 x 81 81 x 81, 161 x 161 

Sec. Reflect 41 x 41 81 x 81 81 x 81, 161 x 161 

Prim. Transmission 41 x 41 81 x 81 81 x 81, 161 x 161 

Image Plane 41 x 41 81 x 81 81 x 81, 161 x 161 

Table 5.2 The number of grid points used for the propagators involved in propagating the field from 

each source to the image plane. 

 

 

In evaluating the propagation techniques we wanted to see if both the 

Gaussian beam mode and Fresnel diffraction methods could produce a field at the 

image plane that displayed the overall structure of the interference pattern shown by 

a physical optics analysis.  If this was the case, then although the fine detail 

achievable through physical optics may not be visible, both Gaussian beam modes 

and Fresnel integrals could be used as an initial design tool since they are less 

computationally intense.   
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In the case of a Gaussian beam mode analysis the horn antenna aperture field 

is decomposed using the appropriate mode set before it is propagated to the 

secondary mirror.  Although the first element we require the beam to strike is the 

primary mirror, it will be obscured by the secondary to some extent and therefore we 

must take this into account by calculating the transmitted portion of the field as it 

propagates past the secondary mirror.  This field is then propagated to the primary 

mirror for reflection, then to the secondary for reflection, then to the primary for 

transmission through the elliptical aperture and finally to the image plane.  Table 5.2 

shows the propagators involved in this process of transferring the field from the 

source to the image plane while taking all optical elements into account.  The 

number of grid points used for each propagator is also shown for each method (there 

is no relationships between the number of grid points used for the different methods, 

these values were selected to provide an image with reasonable resolution and 

computational time).   

 

For each method the power density of the interference pattern formed from a 

combination of both sources 2 and 3, and 3 and 4 (corresponding to the shortest and 

longest baselines respectively) were calculated.  In Figures 5.5 and 5.6 we see the 

results of using a Gaussian beam mode approach with a grid size of 41 x 41 points at 

each propagation stage.  The system was set up in MODAL so that the optimum 

mode set was chosen at each component using an SVD analysis.  The axes in the 

figure correspond to the axes of the ReferenceFrame, which defines the direction of 

polarisation as mentioned above.  The same calculations using Fresnel diffraction are 

shown in Figures 5.7 and 5.8 with a grid size of 81 x 81 points across all 

propagators.  While the GBM analysis did provide the overall shape of the 

interference pattern, it lacks the detail provided by the Fresnel approach.  Figures 5.9 

to 5.12 show the results of the physical optics analysis and since the coupling 

calculations (section 5.1.3) and mechanical tolerances (section 5.1.5) were to be 

calculated using physical optics grid sizes of 81 x 81 and 161 x 161 were 

investigated.  For the same number of grid points as in the scalar case we can see 

slightly more structure and even more so when the number of points is increased to 

161 x 161.  On inspection of the results it appears that 81 x 81 points is accurate to 

approximately a 1% to 2% level, however, in all further physical optics analyses the 

161 x 161 was used to ensure a higher resolution.  
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Figure 5.5 Power density of the field at the image plane calculated from a combination of Source 2 

and Source 3 using Gaussian beam modes and a grid size of 41x41 points.  The MODAL project was 

set to automatically choose the optimum numbers of orthogonal modes. 

 

 

 

 

 

 

 

Figure 5.6 Power density of the field at the image plane calculated from a combination of Source 3 

and Source 4 using Gaussian beam modes and a grid size of 41x41 points.  The MODAL project was 

set to automatically choose the optimum numbers of orthogonal modes. 

 

 

 

 

 

 

 

 

 

Figure 5.7 Power density of the field at the image plane calculated from a combination of Source 2 

and Source 3 using Fresnel diffraction and a grid size of 81x81 points. 



 

  242 

 

 

 

 

 

 

 

 

 

Figure 5.8 Power density of the field at the image plane calculated from a combination of Source 3 

and Source 4 using Fresnel diffraction and a grid size of 81x81 points. 

 

 

 

 

 

 

 

Figure 5.9 Power density of the field at the image plane calculated from a combination of Source 2 

and Source 3 using physical optics and a grid size of 81x81 points. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Power density of the field at the image plane calculated from a combination of Source 3 

and Source 4 using physical optics and a grid size of 81x81 points. 
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Figure 5.11 Power density of the field at the image plane calculated from a combination of Source 2 

and Source 3 using physical optics and a grid size of 161x161 points. 

 

 

 

 

 

 

 

 

 

Figure 5.12 Power density of the field at the image plane calculated from a combination of Source 3 

and Source 4 using physical optics and a grid size of 161x161 points. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13 Fringes observed with the MBI-4 instrument in early 2009. 
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The results from Figures 5.11 and 5.12 can be compared with the fringes 

shown in Figure 5.13 as measured by MBI-4 during observations in early 2009.  The 

interference patterns from measurements and simulations are shown for both a long 

and short baselines.  It can be seen that the results are quite similar however for a 

fully detailed comparison the scanning strategy used during observations would also 

have to be taken into account in the model. 

 

  

5.1.3 Calculating the System Scattering Matrix 

 

Using MODAL we model the propagation of beams from the re-emitting 

(inward-facing) horn antennas onto the focal plane taking into account aberrations, 

diffraction, truncation and cross-polarisation effects in the beam combiner which, as 

illustrated by the previous figures, can be significant in systems such as MBI.  As 

mentioned in the previous section, we can use a variety of propagation techniques for 

this modelling, from full vector physical optics (the same technique as the industry 

standard GRASP) to more approximate (although still good) and faster techniques 

such as Gaussian beam mode analysis.  If the relative amplitude and phase for each 

of the four MBI re-emitting horn antennas is known, then by using these techniques 

the co-polar and cross-polar field amplitude and phase can be calculated at the focal 

plane, where they can be coupled to the detector horn antennas.   

 

It was decided to use a scattering matrix formalism, outlined below, so that 

once the scattering matrix for the four horn antennas and beam combiner had been 

calculated it could be used to generate the field amplitude and phase at the focal 

plane for any combination of the input horns without having to retrace beams 

through the system.  The coupling of the focal plane field to the detector horns in the 

MBI system is also included as this can be related directly to measurements.  Having 

the scattering matrix available means it is very quick to predict the output for any 

given baseline or combination of baselines, since such an approach involves directly 

relating the output state of the system to the input state. 
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In the analysis on the MBI optical system presented here, the scattering 

matrix takes into account diffraction effects and truncation by the different optical 

components within the system by means of a full physical optics approach.  By 

calculating the absolute amplitude and phase of the field at the detectors and relating 

this to the normalised input fields of the system the elements of the scattering matrix 

were generated. 

 

In calculating the scattering matrix each source, or inward facing horn 

antenna, is coupled to each detector and the absolute amplitude A and phase   of the 

field produced by the excited modes in the detector are obtained (we use the 

convention iAe ).  This can be done for both co-polar and cross-polar fields.  Having 

the amplitude and phase values, the scattering matrix takes the form 
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where aS  denotes Source a, ),(, mnUD  denotes the co-polar element of detector (n, m) 

and ),(, mnVD  denotes the cross-polar element of detector (n, m).  This scattering 

matrix is then multiplied by the input field matrix to give  
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where each of the source fields Fn is again described in the form iAe .  The overall 

power for each detector, taking into account both the co-polar and cross-polar 

coupling, can then be calculated by 
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2

),(,

2

),(,),(, mnVmnUmnTotal FFP  . (5.3) 

 

We can easily change the source field and calculate the output at each detector for 

this new input.  Also, by setting the input field for a particular horn antenna equal to 

zero we can turn on and off that source, allowing for easy field calculations resulting 

from different baselines.    

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Interference pattern obtained using the real inward-facing corrugated horn antenna (left) 

and a corrugated horn antenna simulated by a Bessel function (right).  The difference in power is 

because the real horn is set to 1W in the throat and not at the aperture as with the Bessel horn. 

 

Referring back to Figure 5.2 there are four back-to-back horn antennas that 

pass the beam from the sky into the optical system.  In our analysis we take only the 

inward facing horn antennas and treat them as equivalent corrugated conical horns 

whose field can be very well represented by a Bessel function, as demonstrated in 

Chapter 3.  The radius of each horn was defined as 22.45mm and the phase front 

radius of curvature at the aperture was set to infinity, since in the real system there 

are phase-flattening lenses attached to the front of each antenna.  The output field 

from the horns was propagated through the optical system described in section 5.1.1, 

taking into account any truncation that occurred at the primary and secondary 

surfaces before being coupled to the detector horn antenna array, of which the layout 

and numbering used in the scattering matrix calculations is shown in Figure 5.4.  

Figure 5.14 shows the interference pattern at the image plane produced by a model 

of the real inward-facing corrugated horn antenna (using the SCATTER code) used 

in MBI and that produced by a standard corrugated horn antenna whose aperture 
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field is represented by a Bessel function.  It can be seen that the two are in very good 

agreement although there is a difference in some of the fine structure.   

 

Within the detector array the nineteen detector horns were defined as smooth-

walled conical horn antennas with a radius of 12.7mm (0.5in) which produced a field 

with a phase front radius of curvature of 54.3mm.  However, lenses designed at NUI 

Maynooth (Lavelle, 2008) were attached to the apertures of each of the detector 

horns to flatten the phase and therefore in the modelling process the curvature of the 

field at the aperture of the detectors was set to infinity.  Having carried out a full 

physical optics analysis the calculated amplitudes and phases of the elements in the 

scattering matrix of Equation 5.1 can be seen in Appendix A.  Figures 5.15 and 5.18  

show the coupling efficiencies of the four inward-facing horn antennas to the 

detector horns, a measure of how well the field incident on the aperture of a single 

detector couples to the fundamental mode in that detector.  This is calculated using 

the equation, 
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where IN  is the incident field, D  is the detector field, S is the surface over which 

the coupling is calculated, MP  is the power common to both the incident and detector 

fields, INP  is the power in the incident field over the coupling surface and DP  is the 

power in the detector field.  In Figure 5.15 the polarisation direction of the field 

emitted from the four sources is parallel to the shortest baseline, that is the baseline 

formed by sources 2 and 3, while in Figure 5.18, the polarisation direction is 

perpendicular to this.  In each case, both the co-polar and cross-polar fields have 

been calculated. 

 

The amplitude and phase of the field coupled to the detector horns was 

calculated using the equations, 
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and since the field at the aperture of each of the inward-facing horn antennas was 

normalised with a power of 1W and a flat phase, that is 1A  and 0  using the 

iAe  convention, the field at the detector horns was simply equal to the amplitude 

and phase of the elements of the scattering matrix.  From these the total power 

coupled to the detectors was evaluated using Equation 5.3.  For each of the detectors, 

the total power coupled from each source is shown in Figures 5.19 and 5.20 for both 

polarisation directions. 

 

Table 5.3 shows the power coupled to each of the nineteen detector horn 

antennas as calculated using Equation 5.3, that is, the total from both the co- and 

cross-polar fields (as plotted).  If the power over all detectors is summed for each 

source and it is known that each source was normalised with an initial power of 1W, 

it can be seen that the coupled power is between 2% and 3% of that injected into the 

optical system from each source.  Also, if we look again at both the coupled power 

and the coupling efficiencies there is a significant difference for both polarisation 

directions examined.  This can be explained by the asymmetry in the field of the 

smooth-walled conical detector horn.  If, for example, we consider the simple case of 

a single source with a polarisation direction parallel to a line of detectors at the 

image plane, then the detectors will measure the equivalent of a cut along the Ex 

field, as in part (a) of Figure 5.16.  If however the polarisation direction of both the 

source and the detectors is rotated by 90º, measurements by the detectors will be the 

equivalent of a cut along the Ey field of the source, as in part (b) of Figure 5.16.   
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Figure 5.15 Coupling efficiencies of each inward-facing source with the detector horn antennas.  The 

polarisation direction of the sources is parallel to the shortest baseline of the system. 

 

 

    Figure 5.16 Schematic diagram showing a plane wave source polarised (a) parallel and (b) 

perpendicular to the line of detectors.  The solid line represents the polarisation direction and in both 

cases the detectors are polarised in the same direction as the source. 

Ex 

Ey 

Ey 

Ex 

Source with polarisation parallel to the detectors Source with polarisation perpendicular to the detectors 

(a) (b) 
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To test this hypothesis a simple model was set up whereby the source used 

was a plane wave and the detector was a smooth-walled conical horn antenna from 

the MBI-4 system.  The line of detectors was simulated by scanning the source along 

a single plane. A physical optics analysis was carried out and the power coupled to 

the detector was calculated at each point for the two orthogonal polarisation 

directions described above (both the source and the detectors were polarised in the 

same direction).  The results of this can be seen in Figure 5.17 where the asymmetry 

in the resulting field can be seen, giving rise to the differences in both coupling 

efficiency and total coupled power for difference polarisation directions in MBI-4 

(the plot mirrors orthogonal cuts through the conical horn beam pattern).  In reality 

the detector array does not lie along the direction of polarisation and therefore each 

detector measures a combination of both the Ex and Ey fields, depending on its 

location in the array.  

   

 

 

Figure 5.17 Power coupled to a smooth-walled conical horn detector for a plane wave source 

polarised parallel (red) and perpendicular (blue) to the line of detectors as in Figure 5.16.  In both 

cases the detector was polarised in the same direction as the source. 
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Figure 5.18 Coupling efficiencies of each inward-facing source with the detector horn antennas.  The 

polarisation direction of the sources is perpendicular to the shortest baseline of the system. 

 

In an ideal system the total power  from the inward-facing horn antennas 

would be collected by the detector array, however truncation of the beam at the 

optical components and inefficient coupling to the smooth-walled conical horns 

contribute to the loss in power and must be accounted for, which is the subject of the 

next section (section 5.1.4).  However, before looking at truncation effects it was 

interesting to investigate exactly what effect the detector horn phase-flattening lenses 

had on the overall performance of the system and hence the scattering matrix.  To do 

this the phasefront radius of curvature of each of the smooth-walled conical horns 

was set to 54.3mm, the curvature the field would have in the absence of a dielectric 

lens.  Figure 5.21 shows the coupling efficiencies of each of the four sources and the 

detector array with the polarisation direction of the inward-facing horns being 
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parallel to the shortest baseline.  In Figure 5.22  the polarisation direction is 

perpendicular to this.   

 

In Table 5.4 the total power from each source coupled to each of the 

detectors is shown for both polarisation directions.  As with the case with lenses 

present, both polarisation directions exhibit significant differences in terms of power 

coupling, again due to the asymmetry in the smooth-walled conical horn field.  From 

the table it can be seen that the total power coupled to the detector array from each of 

the inward-facing sources lies approximately between 1% and 2%, which is less than 

that obtained with detector lenses present.  Although the overall coupling is quite 

low in both cases, having the lenses in place represents approximately a 30% 

increase in power coupled to the detectors, a significant and important improvement 

for a bolometric interferometer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 The total coupled power at each detector from each of the four inward-facing horn 

antennas with a polarisation direction parallel to the shortest baseline. 
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Figure 5.20 The total coupled power at each detector from each of the four inward-facing horn 

antennas with a polarisation direction perpendicular to the shortest baseline. 

 

 

Total Power (mW) Coupled to the Detector Horn Antennas from Each of the Sources 

 Parallel Polarisation Perpendicular Polarisation 

Detector Source1 Source2 Source3 Source4 Source1 Source2 Source3 Source4 

1 1.7295 0.0683 0.3218 1.4695 0.8307 0.0068 0.0246 0.8211 

2 2.4827 0.1023 0.9031 0.5998 2.2446 0.0591 0.5003 0.7981 

3 1.0587 0.0259 0.9707 0.0339 1.8735 0.0996 1.3541 0.3129 

4 0.9788 0.3200 0.2914 2.3416 0.6925 0.0776 0.1107 1.5808 

5 3.4778 1.1414 1.6742 2.9794 3.0829 0.7290 1.0727 2.8605 

6 3.3135 0.9933 2.9468 1.0528 3.5893 1.1714 2.8962 1.6839 

7 0.7213 0.1781 1.5710 0.0708 1.2275 0.5803 2.3643 0.3302 

8 0.1717 0.1493 0.0691 1.1334 0.3338 0.1285 0.0948 1.2392 

9 1.6975 1.4389 0.8672 4.0372 2.0489 1.3134 0.9771 4.1034 

10 3.5024 2.9813 3.1459 3.1454 3.5209 2.9371 3.1680 3.1646 

11 2.2450 1.9206 4.0421 0.8695 2.0399 2.2123 4.0982 0.9728 
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12 0.3956 0.3005 1.1370 0.0697 0.3389 0.5141 1.2360 0.0941 

13 0.0916 0.4054 0.0668 1.5533 0.4798 0.7462 0.3262 2.3510 

14 1.0095 2.3791 1.0259 2.8766 1.3355 2.7019 1.6583 2.8230 

15 1.4296 3.2305 2.9080 1.6484 1.0124 2.9203 2.7931 1.0445 

16 0.5285 1.1826 2.3317 0.2880 0.1537 0.8335 1.5649 0.1055 

17 0.0185 0.5981 0.0299 0.9290 0.0752 1.2899 0.2973 1.3011 

18 0.0999 2.0125 0.5598 0.8479 0.0770 1.9976 0.7477 0.4626 

19 0.1012 1.8337 1.4163 0.3059 0.0097 0.9908 0.7829 0.0206 

Total 25.053 21.262 26.279 26.252 24.967 21.310 26.068 26.070 

Table 5.3 The power coupled to the detectors from each of the inward-facing horn antennas with 

polarisation parallel and perpendicular to the shortest baseline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Coupling efficiencies of each inward-facing source with the detector horn antennas.  The 

phase-flattening lenses have been removed and the polarisation direction of the sources is parallel to 

the shortest baseline of the system. 
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Figure 5.22 Coupling efficiencies of each inward-facing source with the detector horn antennas.  The 

phase-flattening lenses have been removed and the polarisation direction of the sources is 

perpendicular to the shortest baseline of the system. 

 

 

 

Total Power (mW) Coupled to the Detector Horn Antennas from Each of the Sources 

 Parallel Polarisation Perpendicular Polarisation 

Detector Source1 Source2 Source3 Source4 Source1 Source2 Source3 Source4 

1 1.2580 0.1233 0.3582 1.2108 0.9267 0.1968 0.4179 1.0404 

2 1.8653 0.1554 0.8394 0.7543 1.7689 0.1566 0.7461 0.8213 

3 1.0456 0.2311 1.0903 0.4091 1.3716 0.1915 1.1899 0.3658 

4 0.8477 0.2514 0.2778 1.6272 0.6564 0.2063 0.3061 1.2570 

5 2.3406 0.8214 1.0572 1.9122 2.1395 0.6123 0.8296 1.8381 

6 2.2764 0.7642 1.8916 0.8232 2.4178 0.8680 1.8583 1.0564 

7 0.6747 0.2953 1.2526 0.3098 0.9933 0.3853 1.6445 0.2779 

8 0.3599 0.2545 0.1541 0.9772 0.4082 0.2470 0.1494 1.0400 

9 1.1514 0.9714 0.7332 2.8170 1.3447 0.8951 0.7764 2.8538 
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10 2.3350 1.9934 2.0908 2.0914 2.3434 1.9654 2.1048 2.1013 

11 1.4670 1.2656 2.8200 0.7340 1.3505 1.4209 2.8507 0.7741 

12 0.4809 0.4305 0.9805 0.1543 0.4754 0.4973 1.0372 0.1491 

13 0.2696 0.4477 0.3052 1.2450 0.3498 0.6457 0.2714 1.6289 

14 0.8234 1.6618 0.8066 1.8463 0.9976 1.8114 1.0446 1.8108 

15 1.0500 2.1702 1.8661 1.0449 0.8418 2.0177 1.7946 0.8126 

16 0.3798 0.9311 1.6155 0.2709 0.2833 0.7198 1.2499 0.3013 

17 0.2215 0.7410 0.4050 1.0678 0.1574 0.9762 0.3559 1.1583 

18 0.1716 1.5630 0.7215 0.7980 0.1751 1.5683 0.7822 0.7128 

19 0.1724 1.3227 1.1792 0.3478 0.2549 0.9917 1.0202 0.4132 

Total 19.191 16.395 20.445 20.441 19.256 16.373 20.430 20.413 

Table 5.4 The power coupled to the detectors from each of the inward-facing horn antennas with 

polarisation parallel and perpendicular to the shortest baseline.  The phase-flattening lenses have been 

removed from the detectors in these calculations. 

 

 

5.1.4 The Effects of Truncation on the System 

 

For this truncation analysis the configuration of the MBI system model was 

the same as that described in the previous section with flat fields from the inward-

facing horn antennas being represented by Bessel functions and the phase-flattening 

lenses attached to the smooth-walled horn antennas within the detector array.  

Having previously calculated the power coupled to the detectors from each of the 

four sources it was apparent that the performance of the instrument is inhibited by 

truncation of the beam as it propagates through the optical system.  To analyse this 

truncation the relative power in the beam was calculated at different points along the 

path of propagation, the results of which are summarised in Table 5.5 for each 

polarisation direction considered.   

 

The first element that lies in the path of the beam as it propagates through the 

system is the secondary mirror, which as shown in Table 5.5 has almost no effect on 

the beam.  After reflection from the primary mirror (Prim_Ref in Table 5.5) the 

power from sources 1 and 2 drop below 90% of the original source power while for 

Sources 3 and 4 approximately 92% of the power remains.  This drop in power is 

predominantly due to truncation by the primary‟s elliptical aperture as shown in 
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Figure 5.23 for Source 1 (Appendix B shows the full range of beam plots for each of 

the four sources with parallel polarisation as they propagate through the optical 

system).  Most of the power is retained as the beams are reflected off the secondary 

mirror and propagate towards the primary.  However, a significant percent of power 

is not transmitted through the hole in the primary but is reflected by the primary 

mirror (the power profile for Source 1 with parallel polarisation at the elliptical 

aperture of the primary mirror is shown in Figure 5.24).  At this stage the power is as 

low as 24% of the original power emitted from the inward-facing horn antennas.  

With no more obstacles in the path of the beam as it propagates towards the image 

plane this power is retained as the fields arrive at the detector array.  

 

Relative Beam Power at Different Elements in the Optical System 

 Parallel Polarisation Perpendicular Polarisation 

 Source

1 

Source

2 

Source

3 

Source

4 

Source

1 

Source

2 

Source

3 

Source

4 

Source 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Sec_Tran 0.9998 0.9998 0.9999 0.9999 0.9998 0.9998 0.9999 0.9999 

Prim_Ref 0.8981 0.8408 0.9242 0.9240 0.8981 0.8408 0.9242 0.9240 

Sec_Ref 0.8741 0.8108 0.8944 0.8942 0.8741 0.8108 0.8944 0.8942 

Prim_Tran 0.2791 0.2386 0.2973 0.2972 0.2791 0.2386 0.2973 0.2972 

Image 0.2752 0.2353 0.2931 0.2930 0.2752 0.2353 0.2931 0.2930 

Table 5.5 Relative (to the source) power contained in the beam at various stages of propagation 

through the optical system.  Source is the power at the aperture of the inward-facing horn antenna, 

Sec_Tran represents transmission of the beam as it passes the secondary mirror, Prim_Ref and 

Sec_Ref refer the beam after reflection from the primary and secondary mirrors respectively, 

Prim_Tran is the portion of the beam that propagates through the aperture after reflection from the 

secondary mirror and Image represents the beam at the plane of the detector array. 

 

 

In the previous section we saw that between 2% and 3% of the power from 

each of the inward-facing corrugated horn antennas was being coupled to the 

detectors.  However, examination of the effects of truncation and the power retained 

through each propagation stage yields a value of approximately 24% to 28% of the 

original source power being transferred to the detector array.  From this it can be 

deduced that the remainder of the power is being lost due to the fact that the smooth-

walled conical detector horns are arranged in an array in which there are inevitably 
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spaces between these horns and therefore the power is not being collected.  Poor 

coupling to the detector horn fields also contributes to this power loss.  The power 

from each polarisation direction is also extremely similar at each element in the 

system, including the focal plane, which again confirms that the effects of different 

polarisation directions will only be evident in the coupling to the detectors.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 The power profile of the beam from the Source 1 inward-facing horn antenna after 

reflection from the primary mirror with polarisation parallel to the shortest baseline. 

 

 

  

 

 

    

 

 

 

 

 

 

Figure 5.24 The power profile of the beam from the Source 1 inward-facing horn antenna after 

transmission through the aperture of the primary mirror.  The frame used in the plots is that of the 

primary aperture. 
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Figure 5.25 The top two images show the interference patterns generated by sources 2 and 3 with (top 

right) and without (top left) the beam that passes through the primary after secondary transmission 

taken into account.  The bottom two images show the same for the longest baseline formed by sources 

3 and 4. 

 

It has been shown above that as the beam from each source is reflected from 

the primary mirror approximately 10% to 15% of the power is transmitted through 

the elliptical aperture (rather than being reflected) where it will continue to propagate 

to the detector array.  This portion of the field will interact with that transmitted after 

reflection from the secondary mirror and hence have an effect on the overall field 

that is incident on the detector horn antennas.  In Figure 5.25 we can see that the 

interference pattern obtained at the image plane is significantly different when this 

extra field is accounted for to that obtained when it is assumed that the only beam 

arriving at the detectors is that from the secondary mirror.  
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Total Power (mW) Coupled to the Detector Horn Antennas from Each of the Sources 

Polarisation Parallel to Shortest Baseline 

Detector Source 1 Source 2 Source 3 Source 4 

1 0.9778 0.0716 0.3271 1.4714 

2 1.5180 0.1088 0.9217 0.5953 

3 0.5179 0.0230 1.0780 0.0358 

4 1.1620 0.3193 0.2887 1.1817 

5 3.9958 1.0706 1.6622 2.8246 

6 13.2684 0.8933 2.8325 1.0084 

7 3.8296 0.1985 0.4571 0.0690 

8 0.1682 0.1440 0.0694 8.4032 

9 2.2641 1.5277 0.8641 4.4409 

10 5.6832 5.0082 3.1402 3.1339 

11 3.0760 0.8529 4.4489 0.8664 

12 0.2108 1.0256 8.2609 0.0699 

13 0.0901 0.2909 0.0652 0.4191 

14 0.9219 0.1171 0.9822 2.8199 

15 1.2078 24.4510 2.7894 1.6389 

16 0.5624 7.3214 1.1074 0.2854 

17 0.0212 0.9931 0.0319 1.0531 

18 0.1052 2.6315 0.5645 0.8682 

19 0.0986 6.2659 1.4466 0.3116 

Total 39.6790 53.3145 31.3380 31.4968 

Table 5.6 The power coupled to the detectors from each of the inward-facing horn antennas with 

polarisation parallel to the shortest baseline.  The phase-flattening lenses are accounted for and the 

portion of the beam that passes through the primary aperture after secondary transmission is included. 

     

Since the field at the image plane will change by taking into account the 

truncation effect by the primary mirror elliptical aperture, the overall scattering 

matrix for the system will change also.  To see to what extent this occurs the 

coupling calculations were carried out again and hence a new scattering matrix was 

calculated.  From this, and the fact that the inward-facing horn antennas were 

normalised to a known amplitude and phase, the total power coupled to each detector 

was again calculated.  The results of these calculations are summarised in Table 5.6.  

Polarisation perpendicular to the shortest baseline has not been considered in this 

analysis. 
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The difference in the total power coupled to the detectors is significant when 

the beam passing straight through the elliptical aperture after transmission from the 

secondary is taken into account, with an increase of approximately 102%, 157%, 

20% and 21% for each of sources 1, 2, 3 and 4 respectively compared to that 

obtained in the previous section.  However, although the level of power being 

collected by the detector array has increased, it is not necessarily a desirable signal.  

If we look at the portions of the beam that pass through the aperture of the primary 

mirror after transmission from the secondary, and propagate these fields onto the 

detector array, as shown in Figure 5.26, it can be seen that there is very little overlap 

between the fields from the four sources.  Phase sensitive detection could therefore 

be used to separate the signal that results from the interference between two sources, 

and that which comes directly from one.  Looking at the fields arising from sources 2 

and 3 we can see that the overlap is more significant than the overlap between 

sources 3 and 4.  This should indicate that the interference pattern generated by the 

short baseline of sources 2 and 3 will be more affected by this signal than the long 

baseline of sources 3 and 4.  Referring back to Figure 5.25 we can see that this is 

indeed the case.  The field from the short baseline contains very little of the original 

structure while that from the long baseline remains more similar.   

 

 

5.1.5 Mechanical Tolerances in MBI-4 

 

We have seen in the previous section that truncation effects in the MBI 

optical system are quite significant in terms of power coupled to the bolometric 

detectors.  In this section we examine the same parameter, coupled power, with 

regards to the mechanical tolerance of the components within the optical beam 

combiner.  In particular, positioning and rotation of the detector array unit is 

investigated, as too is the position of both the primary and secondary mirrors.   

 

We start by looking at the detector array which consists of a single block with 

nineteen conical horn antennas milled out of the surface.  This means that the 

positions of the detectors relative to each other are fixed and therefore are not subject 

to a change in coupling due to mechanical misalignment.  However, there is the 
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chance that the unit itself may not be positioned at the exact location required, 

mainly due to the fact that the bolometric array is suspended from the frame of the 

instrument using Kevlar wire (Figure 5.27) which is not rigid and therefore provides 

some level of flexibility in its movement.  Not only is lateral movement an issue but 

so too is movement towards and away from the aperture of the inward-facing horn 

antennas, as well as rotation of the detector unit around the optical axis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26 Beams at the image plane from the portions of each source that pass through the aperture 

of the primary mirror after transmission from the secondary. 

 

The system was set up in MODAL as described previously with smooth-

walled conical horn antennas with phase-flattening lenses as detectors.  It was 

assumed that the portion of the field that passes through the primary mirror before 

reflection from the secondary could be averaged out using phase sensitive detection 
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as described in the previous section and therefore this was not included in the 

coupling calculation.   

 

 

Figure 5.27 The MBI-4 instrument showing the detector array suspended from the frame by Kevlar 

wire. 

 

 

 

XY Motion of the Bolometer Array 

 

The first tolerance analysis carried out was on the effect of lateral movement 

in directions x and y of the detector array as shown in Figure 5.28, where the view is 

from the sky.  The Cartesian coordinate system used was not only aligned with the 

bolometer array but the axes also coincided with the major and minor axes of the 

elliptical aperture in the primary mirror.  This lateral tolerance calculation was done 

for a range from -2.5mm to +2.5mm in 25 steps in both the x and y directions with 

the coupled amplitude and phase for each detector being calculated at each point in 

the resulting 625 point grid.  Details of the coupled power for each detector are given 

in Appendix C and are summarised below.  
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S1 (-1.903, 1.589) 

S2 (0.676, -2.386) 
S3 (-2.875, -2.518) 

S4 (2.820, 2.580) 

x 

y 

 

 

 

 

 

 

 

 

 

Figure 5.28 The frame used to define the movement of the bolometer array during mechanical 

tolerance calculations.  The view shown is from the sky. 

 

 

If we examine the power coupled to each detector as a function of its offset position 

in the x and y direction we can see from Figure 5.29 that the effect that mechanical 

misalignments would have on this value depends significantly on which source the 

detector is looking at.  It should be noted that the positions of the detectors in these 

images are schematic and are not based on the scales of the x and y axes.  The axes 

describe the movement of the detector (± 2.5mm) in both directions and hence 

produce a surface plot representing the coupled power for each one.     

 

Examination of the coupled power in terms of the detector layout and the 

source to which the detector couples to shows the intensity distribution of the 

sources.  This is also evident by looking at which detectors obtained the maximum 

coupled power from each source.  Tables 5.7 and 5.8 show the detectors with 

maximum coupled power from Source 1 and Source 2 respectively, which lie 

approximately along the minor axis of the elliptical aperture in the primary mirror.   

 

To get a better idea of the range of each detector‟s coupled power value we 

can study the maximum and minimum values of coupled power as the bolometer 

array is shifted in the x and y directions.  We look at this in comparison to the centre 

position of the bolometer, that is, when the detectors are in the exact location they 

are supposed to be with no offset.  This information is depicted in Figure 5.30, where 

we examine the effect for each of the four sources.  As can be seen from the plots the 
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detectors with the greatest range of coupled power are 6, 14, 7 and 4 for sources 1 to 

4 respectively.  These detectors could be used to characterise the instrument, for 

example in locating the position of the detector array. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29 Power coupled to the detectors from sources 1 to 4 as the bolometer array moves in an 

xy-plane.  The scales on the x and y axes show the range of movement of the detector and not its 

position in the array. 
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Top Five Maximum Values of Coupled Power from Source 1 

Detector Power (W) Centre Power (W) Gain (% of Centre) 

5 0.003693 0.003478 6.18 

10 0.003653 0.003502 4.31 

6 0.003604 0.003313 8.78 

2 0.002550 0.002483 2.70 

11 0.002485 0.002245 10.69 

Table 5.7 The top 5 maximum values of coupled power to the detectors from Source 1.  This coupled 

power can also be seen as a percentage gain with respect to the power coupled when the detectors are 

in the centre position, that is, when no mechanical offset has been accounted for. 

 

 

 

Top Five Maximum Values of Coupled Power from Source 2 

Detector Power (W) Centre Power (W) Gain (% of Centre) 

15 0.003354 0.003231 3.81 

10 0.003107 0.002981 4.23 

14 0.002610 0.002379 9.71 

11 0.002197 0.001921 14.37 

18 0.002101 0.002013 4.37 

Table 5.8 The top 5 maximum values of coupled power to the detectors from Source 2.  This coupled 

power can also be seen as a percentage gain with respect to the power coupled when the detectors are 

in the centre position, that is, when no mechanical offset has been accounted for. 

 

 

In the analysis above we have looked at the detectors with maximum and minimum 

coupled power and ranges and while we can get an overall picture of what is 

occurring from this information it is perhaps insightful to get a more detailed 

description of a chosen sample of detectors.  Table 5.9 provides a summary of the 

coupling information for five detector horn antennas, which as the detector numbers 

show, represent a sample taken from a single quadrant of the bolometer array.  The 

most significant variation from this selection of detectors occurs with detector 10 

with Figure 5.31 showing the variation in coupled power for this detector looking at 

sources 1 to 4.  We can also see in Figure 5.32 cuts in both the x and y directions for 
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the same detector and source combinations.  This is an example of a detector that 

may be used for characterising the instrument. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30 Range of power coupled to the detectors from sources 1 to 4 as the bolometer array 

moves in an xy-plane.  The error bars represent the maximum and minimum values of coupled power. 

 

To see the effects that the shifting bolometer array has on the interference 

pattern measured at the image plane we can calculate the coupled power at each 

detector for the combined field produced from sources 2 and 3, the shortest baseline 

available with MBI-4.  This is shown in Figure 5.33 where the top left graph (a) 

represents the combined coupled power as the bolometer array is shifted in both the x 

and y-directions a distance of ±2.5mm, approximately 10% of the detector horn 

antenna radius.  In the top right graph (b) we can see the combined coupled power 

when the detector array is at the centre position while the two bottom graphs show 

the same parameter for a detector position of -2.5mm (c) and +2.5mm (d) in the x-

direction. 
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Total Power Coupled to a Selection of Detectors from Each Source 

Detector 

Number 

Max Position Min Position Range Avg. 

(mW) x y (mW) x y (mW) (mW) 

Source 1 

2 2.55 -2.50 -1.25 2.24 2.50 2.50 0.305 2.447 

3 1.30 -2.50 -2.50 0.76 2.50 2.50 0.533 1.045 

10 3.65 2.50 2.50 3.23 -2.50 -2.50 0.428 3.480 

11 2.49 -2.50 2.50 1.94 2.50 -2.50 0.541 2.230 

12 0.47 -2.50 -2.50 0.30 2.50 -2.50 0.177 0.389 

Source 2 

2 0.18 -2.50 -2.50 0.09 2.50 1.67 0.088 0.114 

3 0.04 -2.50 2.50 0.02 2.50 -1.25 0.023 0.029 

10 3.11 2.50 -2.50 2.78 -2.50 2.50 0.330 2.965 

11 2.20 -2.50 -2.50 1.59 2.50 2.50 0.605 1.908 

12 0.43 -2.50 -2.50 0.18 2.50 2.50 0.252 0.301 

Source 3 

2 1.02 2.50 2.50 0.75 -2.50 -2.50 0.279 0.895 

3 1.04 -2.50 0.42 0.84 2.50 2.50 0.194 0.954 

10 3.41 2.50 2.50 2.93 -2.50 -2.50 0.482 3.157 

11 4.14 -2.50 -2.50 3.83 2.50 2.50 0.309 4.023 

12 1.36 -2.50 -2.50 0.95 2.50 2.50 0.418 1.137 

Source 4 

2 0.75 -2.50 2.50 0.43 2.50 -2.50 0.316 0.595 

3 0.06 -2.50 2.50 0.01 2.50 -2.50 0.049 0.034 

10 3.40 -2.50 -2.50 2.94 2.50 2.29 0.456 3.157 

11 1.10 -2.50 -2.50 0.70 2.50 2.50 0.404 0.880 

12 0.09 -2.50 -2.08 0.05 2.50 2.50 0.038 0.068 

Table 5.9 Details of the coupled power for a sample of five detectors from a single quadrant of 

the bolometer array.  The coupled power is shown for all four sources and includes the range and 

average values. 

 

 

 

Z and θ Motion of the Bolometer Array 

 

The detector plane can also undergo unwanted movement in the z-direction, 

that is, along the optical axis.  Figure 5.34 shows the effect this has on the coupled 

power from each source at each of the nineteen detector horn antennas.  Details of 

the coupled power for each detector are given in Appendix C, however, as with the 

lateral movement, a summary of these is given below for the same selection of 
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detectors where a positive z-value indicates a movement away from the optical 

system.    

 

 

Figure 5.31 Power coupled to detector number 10 from sources 1 to 4 as the bolometer array moves 

in an xy-plane. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32 x and y cuts of power coupled to detector number 10 from sources 1 to 4 as the bolometer 

array moves in an xy-plane. 
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Figure 5.33 Power coupled to the detectors from a combination of sources 2 and 3.  Top left: Coupled 

power as the bolometer array moves ±2.5mm in the x and y direction.  Top right: Coupled power with 

the bolometer unit at the centre position (0, 0).  Bottom left: Coupled power with the bolometer unit at 

-2.5mm in the x-direction (-2.5, 0).  Bottom right: Coupled power with the bolometer unit at +2.5mm 

in the x-direction (+2.5, 0). 

 

 

On analysis of the data it becomes clear that the effect of motion of the 

bolometer array in the z-direction is much less than that of the lateral movement.  If 

the percentage gain is considered a change of %6  is seen in all cases.  These small 

changes are evident in Figure 5.35 where the error bars represent the maximum and 

minimum power coupling values.  Compared with Figure 5.30 it can be seen that 

movement in the xy-plane has a much greater effect. 

(a) (b) 

(c) (d) 
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Figure 5.34 Power coupled to the detectors from sources 1 to 4 as the bolometer array moves in the z-

direction.  The position of the detectors is schematic with the top left detector in the xy-plane 

representing detector number 1. 

 

 

The same analysis was carried out for rotation of the detector array around 

the optical (z) axis.  This was done from a range of angles from -5º to 5º (a positive 

angle representing an anticlockwise rotation as observed from behind the detectors) 

in 25 steps with the coupled power to each detector from each source calculated at 

each step.  In this type of analysis it would be expected that the greatest change in 

coupled power would occur at the detectors around the outside of the array since 

these undergo a greater range of motion during rotation.  This can be seen in Figure 

5.36, however, due to the position of the outer horn antennas in relation to the four 

sources, the coupling values are significantly lower than those at the centre 

regardless of their location, as seen before, and therefore the effect is only visible for 

certain combinations of source and detector.     
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Figure 5.35 Range of power coupled to the detectors from sources 1 to 4 as the bolometer array 

moves in the z-direction.  The error bars represent the maximum and minimum values of coupled 

power. 

 

 

Table 5.10 shows a summary of the coupling data for the same selection of 

horn antennas within a single quadrant of the bolometer array (full results are 

provided in Appendix C).  Looking at the overall data the power gained and lost as a 

percentage of the centre power is significantly higher with rotation of the bolometer 

array compared to the movement in the z-direction along the optical axis.  If we 

consider all detectors the maximum percentage gain is 50%, 77%, 153% and 141% 

for source 1, 2, 3 and 4 respectively.  These values are for detector 17 for sources 1 

and 3, and detector 3 for source 2 and 4, both of which lie at the edge of the array, as 

expected.  Although these percentage gains seem to be quite high the power coupled 

to these detectors before rotation was low and therefore a small level of power 

gained will appear as quite a high percentage.  The power loss values, again as a 
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percentage of the centre power, lie in the range from 20% to 80% with the same 

detector/source combinations that produce the highest gain producing the highest 

loss.  The exception to this is in the case of Source 1 where it is detector 7 that 

exhibits the highest percentage of power loss, again, a detector that lies on the outer 

edge of the unit.  Figure 5.37 shows the full range of coupled power for each 

detectors as they view each source. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.36 Power coupled to the detectors from sources 1 to 4 as the bolometer array rotates around 

the optical axis.  The position of the detectors is schematic with the top left detector in the xy-plane 

representing detector number 1. 
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Total Power Coupled to a Selection of Detectors from Each Source 

Detector 

Number 

Max Position Min Position Range Average 

(mW) Θ (deg) (mW) Θ (deg) (mW) (mW) 

Source 1 

2 2.546 5.00 2.388 -5.00 0.158 2.478 

3 1.178 5.00 0.894 -5.00 0.284 1.049 

10 3.502 -5.00 3.502 -5.00 0.000 3.502 

11 2.280 5.00 2.158 -5.00 0.122 2.235 

12 0.399 -5.00 0.374 5.00 0.025 0.392 

Source 2 

2 0.106 5.00 0.099 -5.00 0.007 0.102 

3 0.046 5.00 0.019 -5.00 0.027 0.028 

10 2.981 -5.00 2.981 -5.00 0.000 2.981 

11 2.024 -5.00 1.781 5.00 0.243 1.914 

12 0.386 -5.00 0.250 5.00 0.136 0.307 

Source 3 

2 0.984 -5.00 0.800 5.00 0.184 0.899 

3 1.057 5.00 0.839 -5.00 0.219 0.963 

10 3.146 -5.00 3.146 -5.00 0.000 3.146 

11 4.050 -4.17 3.999 5.00 0.050 4.035 

12 1.214 -5.00 0.973 5.00 0.240 1.119 

Source 4 

2 0.762 5.00 0.457 -5.00 0.305 0.604 

3 0.082 5.00 0.008 -5.00 0.075 0.038 

10 3.145 -5.00 3.145 -5.00 0.000 3.145 

11 0.928 -5.00 0.849 5.00 0.079 0.877 

12 0.071 -1.25 0.053 5.00 0.017 0.065 

Table 5.10 Details of the coupled power for a sample of five detectors from a single quadrant of 

the bolometer array.  The coupled power is shown for all four sources and includes the range and 

average values. 

 

 

XY Motion of the Mirror System 

 

Having considered tolerance issues in terms of the position of the bolometer 

array the next most critical components with regards to mechanical tolerances are the 
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primary and secondary mirrors.  These mirrors are mounted on the same frame and 

are therefore considered as a single unit.  To begin with, the mirror unit was shifted 

in both the x and y-directions with regard to the horn coordinate frame (see Figure 

5.2) and as with the detector array the coupled power was calculated at each point in 

the grid resulting from a motion of ±0.5mm in each direction.  Figure 5.38 below 

shows the results of this analysis.  As with the bolometer scan, the positioning of the 

detectors in each diagram is schematic and the axes represent the range of movement 

of the mirror system that took place.  Since the tolerance value in this case was much 

smaller than that of detector unit it can be seen that the effect on the coupled power 

is not as dramatic, as expected.  

 

 

 

 

 

 

 

 

  

 

      

 

 

 

 

 

 

 

 

 

Figure 5.37 Range of power coupled to the detectors from sources 1 to 4 as the bolometer array 

rotates around the optical axis.  The error bars represent the maximum and minimum values of 

coupled power. 
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Figure 5.38 Power coupled to the detectors from sources 1 to 4 as the mirror system (primary and 

secondary) moves in an xy-plane.  The scales on the x and y axes show the range of movement of the 

detector and not its position in the array. 

 

 

On further examination of the data (Appendix C) we see that the detectors 

with the greatest range of coupled power are 10, 10, 7 and 13 for sources 1 to 4 

respectively, as is evident form the plots in Figure 5.39 where the error bars 

represent the maximum and minimum coupled power values and the point represents 

the centre value.  Again the detectors with the greatest range of coupled power could 

be used to locate the position of the mirrors within the instrument.  

 

As with the analysis of bolometer array movement a selection of five detector 

horn antennas from a single quadrant of the array was chosen for further analysis.  

Table 5.11 shows a summary of the data for these detector horns.  The effect of this 

movement is small for most of the detector array but as with the movement of the 



 

  277 

bolometer unit it is detector 10 that is most affected, the detector at the centre of the 

array.  Figure 5.40 shows the change in coupled power for detector 10 as the mirror 

system is moved laterally in the xy-plane.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.39 Range of power coupled to the detectors from sources 1 to 4 as the mirror system 

(primary and secondary) moves in an xy-plane.  The error bars represent the maximum and minimum 

values of coupled power. 

 

 

Z Motion of the Mirror System 

 

As well as lateral movement of the mirrors within the instrument there is also 

the possibility of movement in the z-direction along the optical axis, that is, to 

(negative z value) and from (positive z value) the inward facing horn antennas.  The 

mechanical tolerance in this direction is within ±2.5mm (Korotkov, 2010) and  
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Total Power Coupled to a Selection of Detectors from Each Source 

Detector 

Number 

Max Position Min Position Range Avg. 

(mW) x y (mW) x y (mW) (mW) 

Source 1 

2 2.57 0.06 -0.50 2.48 0.00 0.00 0.083 2.535 

3 1.22 0.50 -0.06 1.06 0.00 0.00 0.162 1.177 

10 3.66 -0.50 -0.50 3.34 0.50 0.50 0.321 3.499 

11 2.35 -0.39 -0.50 2.20 0.50 0.50 0.151 2.280 

12 0.40 0.00 0.00 0.36 -0.17 0.50 0.033 0.375 

Source 2 

2 0.13 0.50 0.50 0.01 -0.50 -0.50 0.031 0.108 

3 0.05 -0.28 -0.50 0.03 0.00 0.00 0.023 0.046 

10 3.14 0.50 0.50 2.82 -0.50 -0.50 0.319 2.980 

11 1.92 0.00 0.00 1.66 -0.50 -0.50 0.266 1.781 

12 0.30 0.00 0.00 0.23 -0.50 0.50 0.073 0.251 

Source 3 

2 0.90 0.00 0.00 0.75 0.50 0.28 0.150 0.806 

3 1.07 -0.06 0.39 0.97 0.00 0.00 0.097 1.058 

10 3.28 -0.50 0.50 3.02 0.50 -0.50 0.262 3.143 

11 4.07 -0.50 0.50 3.92 0.50 -0.50 0.144 3.997 

12 1.14 0.00 0.00 0.95 -0.50 -0.50 0.191 0.974 

Source 4 

2 0.82 -0.06 -0.50 0.60 0.00 0.00 0.224 0.764 

3 0.09 0.50 -0.50 0.03 0.00 0.00 0.059 0.082 

10 3.28 0.50 -0.50 3.01 -0.50 0.50 0.263 3.145 

11 0.91 0.50 -0.50 0.79 -0.50 0.50 0.125 0.849 

12 0.07 0.00 0.00 0.05 -0.50 0.39 0.020 0.054 

Table 5.11 Details of the coupled power for a sample of five detectors from a single quadrant of 

the bolometer array.  The coupled power is shown for all four sources and includes the range and 

average values. 

 

therefore both the primary and secondary mirrors were shifted by this amount as a 

single unit and the power coupled to the detectors calculated.  It can be seen from 

Figure 5.41 that the effect this movement has on individual detectors is minimal with 

very little variation in power occurring.  On analysis of the data (Appendix C) we 

can see that the maximum gain in power as a percentage of the centre power is 

approximately 7% which occurs with source 4 and detector 7, while the maximum 
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power loss, again as a percentage of the centre power, is just above 5% and occurs 

with source 1 and detector 13.  As with the movement of the detector array in the z-

direction the effect is much less than the lateral movement and this is again evident 

in Figure 5.42 which shows the range of coupled power for each source and each 

detector.   

 

 

 

 

 

 

 

 

 

 

Figure 5.40 x and y cuts of power coupled to detector number 10 from sources 1 to 4 as the mirror 

system (primary and secondary) moves in an xy-plane. 

 

 

While details of the coupled power for each detector are given in Appendix 

C, a summary for the selection of five detector horn antennas as used before is given 

in Table 5.12.  The table shows the maximum and minimum values of coupled 

power for each of the five detectors along with the offset position along the z-axis at 

which this power occurs.  The range and average power values are also shown. 

 

 

Thermal Contraction of the Mirror System 

 

The final mechanical tolerance considered was the thermal contraction of the 

primary and secondary mirror system within the cold cryostat.  Until now both 

mirrors have been moved as a single unit since they are both mounted on the same 

frame, however, it is possible for frame to contract therefore causing the mirrors to 

move with respect to each other.  In this analysis the secondary mirror was moved a 

distance of 0.5mm along the z-axis of the optical system, that is, 0.5mm towards the 
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detector array.  In a similar manner, the primary mirror was moved the same distance 

in the negative z-direction towards the inward-facing horn antennas.  Both 

movements resulted in a total mirror contraction of 1mm with the power coupled to 

each detector from each source being calculated (Appendix C) with this effect taken 

into account.  The results of this analysis can be seen in Figure 5.43. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.41 Power coupled to the detectors from sources 1 to 4 as the mirror system (primary and 

secondary) moves in the z-direction.  The position of the detectors is schematic with the top left 

detector in the xy-plane representing detector number 1. 

 

 

As seen from the scatter plots the results of this thermal contraction of the 

mirrors relative to each other is minimal and it does not cause any significant effect 

on the power coupled to the detectors. 
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Figure 5.42 Range of power coupled to the detectors from sources 1 to 4 as the mirror system 

(primary and secondary) moves in the z-direction.  The error bars represent the maximum and 

minimum values of coupled power. 

 

 

5.1.6 Frequency Dependence of the Instrument 

 

The MBI-4 optical band is defined by filters and it operates at a central 

frequency of 90GHz (Korotkov et al., 2006).  The analysis presented so far in this 

thesis has assumed this single frequency value, however, to fully understand the 

operation of the instrument it is essential to investigate and analyse the effect of 

wide-band operation on the overall performance.  To do this, a physical optics 

analysis was carried out whereby the power coupled to the detectors was calculated 

at a range of frequencies lying between 80GHz and 100GHz.  While the full results 

are available in Appendix D Figure 5.44 shows the variations in power coupled for 
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five frequencies between these limits, i.e. 80GHz, 85GHz, 90GHz, 95GHz and 

100GHz.  Table 5.13 also shows a summary of the results from the five detectors 

used in the previous analysis.     

 

 

Total Power Coupled to a Selection of Detectors from Each Source 

Detector 

Number 

Max Position Min Position Range Average 

(mW) z (mW) z (mW) (mW) 

Source 1 

2 2.566 2.50 2.525 -2.50 0.041 2.546 

3 1.186 -2.50 1.170 2.50 0.016 1.178 

10 3.533 2.50 3.471 -2.50 0.062 3.502 

11 2.294 2.50 2.267 -2.50 0.027 2.280 

12 0.381 -2.50 0.367 2.50 0.013 0.374 

Source 2 

2 0.111 -2.50 0.102 2.50 0.009 0.106 

3 0.046 2.50 0.045 -2.50 0.001 0.046 

10 3.007 2.50 2.956 -2.50 0.052 2.981 

11 1.790 2.50 1.772 -2.50 0.018 1.781 

12 0.256 -2.50 0.245 2.50 0.011 0.250 

Source 3 

2 0.808 2.50 0.792 -2.50 0.016 0.800 

3 1.058 1.46 1.056 -2.50 0.001 1.057 

10 3.186 2.50 3.109 -2.50 0.077 3.146 

11 4.044 2.50 3.955 -2.50 0.089 3.999 

12 0.980 -2.50 0.966 2.50 0.014 0.973 

Source 4 

2 0.769 2.50 0.755 -2.50 0.014 0.762 

3 0.085 -2.50 0.080 2.50 0.005 0.082 

10 3.186 2.50 3.108 -2.50 0.078 3.146 

11 0.856 -2.50 0.842 2.50 0.014 0.849 

12 0.055 -2.50 0.052 2.50 0.003 0.053 

Table 5.12 Details of the coupled power for a sample of five detectors from a single quadrant of 

the bolometer array.  The coupled power is shown for all four sources and includes the range and 

average values. 
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Figure 5.43 Power coupled to the detectors from sources 1 to 4 as the mirror system (primary and 

secondary) contracts by 1mm.  Also shown is the coupled power with no contraction taken into 

account. 

 

From the data it can be seen that the range of coupled power goes from a 

minimum of 0.041mW for source 1 detector 17 to a maximum of 1.282mW for 

source 1 detector 10 as the frequency varies from 80GHz to 100GHz.  In terms of 

power coupled to the detectors the maximum lies at approximately 4.4mW for 

source 3 detector 11 at 100GHz and the minimum at 0.008mW for both source 3 

detector 17 at 97GHz and source 4 detector 3, also at 97GHz.  

 

In summary, a number of simulations were carried out to determine the effect 

of mechanical tolerances within the MBI-4 instrument.  It was found that movement 

of the bolometer array in the xy-direction had the most significant effect on the 

power coupled from the telescope beam to the detector horn antennas.  While 

rotation and lateral movement of the detector unit did show some changes in coupled 
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power, the effect was quite small.  This was also the case for the mechanical 

tolerances of the mirror system.  The frequency dependence of the instrument was 

also examined where again it was shown that there are some changes in coupled 

power.        

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.44 Power coupled to the detectors from sources 1 to 4 as frequency varies between 80GHz 

and 100GHz in steps of 5GHz. 

 

 

5.1.7 Simulating Lab Measurements 

 

In August 2010 the beam patterns from individual sources were measured at 

Brown University.  This was done by sequentially removing the sky-facing 

corrugated horn antennas from the instrument and replacing each one with a Gunn 

oscillator directly at the input waveguide and before the phase shifters.  The beam 



 

  285 

then propagated through the optics of the beam combiner before being measured at 

the focal plane by a room temperature detector on an x-y stage scanned over an area 

covering seven inches square.  The results from these measurements are given in 

Figure 5.45 where the focal plane beam patterns for each of the four source horns are 

shown.   

 

Total Power Coupled to a Selection of Detectors from Each Source 

Detector 

Number 

Max Freq Min Freq Range Average 

(mW) (GHz) (mW) (GHz) (mW) (mW) 

Source 1 

2 2.553 83 2.329 100 2.555 2.473 

3 1.238 83 0.746 100 1.313 1.049 

10 3.875 97 2.891 80 4.170 3.485 

11 2.346 97 1.979 80 2.382 2.211 

12 0.455 81 0.208 100 0.456 0.365 

Source 2 

2 0.173 83 0.085 99 0.199 0.122 

3 0.063 83 0.022 93 0.091 0.041 

10 3.344 97 2.433 80 3.579 2.960 

11 2.016 97 1.711 80 2.033 1.899 

12 0.342 83 0.173 100 0.362 0.282 

Source 3 

2 1.194 83 0.550 100 1.314 0.910 

3 1.188 83 0.601 100 1.253 0.961 

10 3.731 97 2.828 80 3.968 3.269 

11 4.262 97 3.435 80 4.388 3.988 

12 1.181 87 0.973 90 1.189 1.096 

Source 4 

2 0.865 83 0.306 100 0.973 0.626 

3 0.109 83 0.008 97 0.152 0.054 

10 3.731 97 2.831 80 3.970 3.270 

11 0.953 86 0.800 100 0.970 0.895 

12 0.091 83 0.035 99 0.091 0.065 

Table 5.13 Details of the coupled power for a sample of five detectors from a single quadrant of the 

bolometer array.  The coupled power is shown for all four sources and includes the range and average 

values. 
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Figure 5.45 Measurements of beam patterns on the focal plane from individual sources of MBI-4.  (a) 

shows the beam obtained from source 1, (b) shows the beam obtained from source 2, (c) shows the 

beam obtained from source 3 and (d) shows the beam obtained from source 4.  

 

 

As a comparison the same system was setup in MODAL where each Gunn 

oscillator and optics-facing corrugated horn antenna was represented by a Bessel 

function with a single polarisation direction as in the previous analysis.  Each source 

was propagated through the beam combiner separately using physical optics and the 

field on the focal plane was calculated.  Figure 5.46 shows the results of this 

analysis, which were confirmed by simulations carried out in both GRASP and 

Zemax.  Looking at the results from the measurements and the simulations it can be 

seen that they are significantly different.  In the measurements the fields are heavily 

concentrated in individual quadrants (with the exception of source 1) depending on 

the position of the source used, while in the models the beam pattern is more 

(a) (b) 

(c) (d) 
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extended over the area of the truncating elliptical aperture in the primary mirror.  As 

a further investigation the portion of the beam that is truncated by this aperture after 

transmission by the secondary mirror was taken into account and the focal plane 

beam patterns calculated.  The results are shown in Figure 5.47.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.46 Modelling of beam patterns on the focal plane from individual sources of MBI-4.  (a) 

shows the beam obtained from source 1, (b) shows the beam obtained from source 2, (c) shows the 

beam obtained from source 3 and (d) shows the beam obtained from source 4. 

 

 

Taking this truncation into account does show beam patterns that a more similar to 

those obtained through the measurements, with most of the power focused in a single 

quadrant.  This can be explained by the truncation analysis carried out in section 

5.1.4 where it was shown that the power going through the elliptical aperture in the 

primary after transmission from the secondary was far greater than the power in the 

(a) (b) 

(c) (d) 
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beam passing through the same aperture after reflecting off the secondary mirror.  

Other factors that may explain some of the differences between the results from the 

measurements and those from the simulations are the number of sample points used 

over the focal plane (161 points over 200mm for the simulations and 89 points over 

approximately 180mm for the measurements) and the physical size of the detector.  

This is something than can be further analysed in the future.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.47 Modelling of beam patterns on the focal plane from individual sources of MBI-4.  The 

truncation of the beam by the elliptical primary aperture after transmission at the secondary mirror has 

been accounted for.  (a) shows the beam obtained from source 1, (b) shows the beam obtained from 

source 2, (c) shows the beam obtained from source 3 and (d) shows the beam obtained from source 4. 

 

(a) (b) 

(c) (d) 
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5.2 Conclusions 

 

The MBI-4 system was modelled in MODAL to allow a full physical optics 

analysis to be carried out.  In fact different propagation techniques were evaluated 

where it was shown that both a Gaussian beam mode and a Fresnel diffraction 

approach produced the general structure of the interference pattern on the image 

plane and therefore could be used as an initial design tool.  The physical optics 

method provided a much more detailed image showing the fine structure of the 

interference patterns.  These were compared to experimental measurements taken by 

MBI-4 in 2009 and there was quite a high level of agreement, however the scanning 

strategy of the observations was not taken into account in the model. 

 

A scatter matrix was calculated for the optical beam combiner by coupling 

the field from each of the four sources to each detector in the bolometer array.  This 

was done for two orthogonal polarisation directions and it was shown that due to the 

asymmetric aperture field of the smooth-walled conical detector horns the coupling 

efficiencies and therefore the coupled power depended on the direction of 

polarisation of the source.  The effect is significant, however, if the coupled power is 

summed over all detectors both polarisations are very similar.  The use of lenses on 

the detector horn antennas was also investigated where it was found that an increase 

of approximately 30% in coupled power is obtained if the lenses are present. 

 

The power coupled to the detectors from each of the sources was found to be 

very low so a truncation analysis was carried out.  It was shown that the elliptical 

aperture in the primary mirror after reflection from the secondary mirror was the 

plane at which most of the power in the beam was being lost.  Also taken into 

account was the portion of the beam that passes through this aperture after 

transmission at the secondary mirror and the effect this has on the interference 

pattern at the image plane.  While the power at the image plane from each of the 

sources was between 23% and 30% the power coupled to the detectors was much 

lower. 

 

Mechanical tolerances of both the detector array and the mirrors was also 

investigated and it was found that xy-motion of the detector array had the most effect 
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on coupled power.  However, by choosing an appropriate source and detector 

combination this could be used to characterise the instrument and determine the 

position of the detector array.  Movement and rotation of the detectors in the z and θ 

direction, as well as xy and z motion of the mirrors, and mirror contraction, was 

found to have only a small effect on the performance of the instrument.  An analysis 

of different bandwidth frequencies (as outlined in the systematic effects of 

interferometers in Table 1.4) was also carried out and the results are summarised.   

 

Finally, a simulation of lab measurements carried out at Brown University 

using MBI-4 was carried out.  The field from each of the four inward-facing horn 

antennas (generated using a Gunn oscillator) was propagated through the optical 

system to the focal plane where a single detector was placed on an xy-stage and 

scanned over a certain area.  The same arrangement was modelled in MODAL and 

the results were confirmed using calculations in both Zemax and GRASP.  While the 

measurements and modelling did not fully agree both showed that the field was 

focused on a single quadrant of the image plane, most likely due to the truncation of 

the beam by the elliptical aperture in the primary mirror.  Other factors that need to 

be accounted for in future work are the resolution of the scan and the physical size of 

the detector used. 

 

While MBI-4 has been used to prove the concept of bolometric 

interferometry it was designed around a number of constraints.  However, MBI has 

now merged with BRAIN to form a new instrument called QUBIC (Q U Bolometric 

Interferometer for Cosmology) where the constraints on the optical system are not as 

rigid.  The design and analysis of the optics used in this instrument are described in 

the Chapter 6.       
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Chapter 6 

 

Quasi-Optical Design 

and Analysis of QUBIC 
 

 

6.1 Introduction 

 

In this Chapter we look at a very brief analysis of the QUBIC instrument, a 

system that has evolved from the success of the bolometric interferometry carried out 

by MBI-4 and the work carried out by the BRAIN (Background RAdiation 

INterferometer) pathfinder, another bolometric interferometer, that was stationed in 

Antarctica (Piccirillo, 2003).  To reduce the impact of atmospheric emission 

(Hanany and Rosenkranz, 2003) the Concordia station in Dome-C was chosen as the 

best site for BRAIN observations.  This station is a French–Italian base placed on the 

Antarctic plateau at ~1100km from both Mario Zucchelli and Dumont D‟Urville 

stations where low humidity and absence of wind create the best conditions for 

astrophysical observations (Polenta et al., 2007).  A pathfinder for the instrument 

was built and brought to the observation site with the aim of testing the cryogenic 

system.  Short observations of atmospheric emission were made for a few elevations 

and the acquired data fit very well to the secant law as expected for atmospherical 

emission.  Measurements repeated at different azimuth and during different days 

would be needed to obtain a statistically significant estimation of the transparency of 

the atmosphere at the operating frequency of 145GHz.  The BRAIN pathfinder 

proved the concept of cryogenics needed for measurements of the CMB at Dome-C, 

much the same as the MBI-4 instrument was built as a prototype to test the concept 

of bolometric interferometry.   

 

In 2008 it was decided by both groups, the MBI team and the BRAIN team, 

to collaborate on a project, one that would use the findings of both MBI-4 and the 

BRAIN pathfinder to design and create one state-of-the-art bolometric interferometer 

known as the Q U Bolometric Interferometer for Cosmology (QUBIC).  In this 
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Chapter we look at the QUBIC instrument and in particular the design and analysis 

of the optical system.  

 

 

6.2 Science and Challenges with QUBIC  

 

The scientific objective of the QUBIC instrument is very similar to that of 

MBI and BRAIN, that is, to generate a complete polarisation map of the cosmic 

microwave background, and in particular to measure the B-type polarisation 

generated by gravitational wave perturbations.  Since linear perturbation theory tells 

us that a scalar field (such as a density perturbation) cannot couple to the 

pseudoscalar B-component of the CMB polarisation, the B-component is predicted to 

be an order of magnitude smaller than the E-component on all angular scales.  It was 

seen earlier that on large angular scales, the B-component of the CMB polarisation 

may be dominated by the stochastic background of gravitational waves produced 

during inflation, while on smaller angular scales a different source of B modes 

appears, the conversion of E-type perturbations into B modes by gravitational 

lensing.  Although detection of the lensing signal would not have the same 

revolutionary importance as detection of the tensor signal, it would provide powerful 

corroborative evidence of our understanding of the physics of CMB polarisation. 

 

Due to the extremely small amplitude of the B-mode signal its detection will 

pose formidable although not insurmountable challenges.  The sensitivity required 

should be achievable by observing for approximately one year with around 10
3
 

detectors, however, foregrounds and systematic effects will prove to be the most 

difficult challenges.  With regards to foregrounds, known sources of polarised 

foreground emission such as galactic dust and synchrotron radiation are expected to 

be larger than the cosmological signal.  However, the experience of past experiments 

such as WMAP suggest that it will be possible to characterise and remove these 

unwanted foreground signals from the data. 

 

Systematic errors are the other chief challenge and any experiment hoping to 

characterise the CMB B mode polarisation will require unprecedented control of 
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systematic effects.  In the past, interferometry has proved to be a powerful technique 

for reducing systematic errors in CMB experiments and the QUBIC team believe 

that the potential for improved control of the systematics in a bolometric 

interferometer is one of the main reasons for exploring this option for characterising 

the CMB B modes. 

 

With such sensitivity and characterisation of systematic effects required it is 

essential that the system as a whole is fully understood.  The author and the THz 

Optics group at NUI Maynooth are involved in the design and modelling of the 

optical system which plays a vital role in the successful operation of the instrument. 

 

6.3 The QUBIC Instrument  

 

QUBIC will be composed of six interferometer modules operating at three 

different frequencies, 97GHz, 150GHz and 220GHz, with a 25% bandwidth for 

optical sensitivity.  This will provide a good check against contamination from 

foregrounds.  Each of these modules will contain an array of 144 receiver horn 

antennas whose signals will be split into orthogonal polarisations and re-emitted by 

secondary horns before being combined using an optical beam combiner located 

inside each of the six cryostats.  The primary horn antennas will be single-moded 

corrugated horns which are well understood and have low cross-polarisation and low 

sidelobe levels, as shown in Chapter 3.  They are quite easy to manufacture at the 

QUBIC operating frequencies.  The interference fringes produced at the focal plane 

will be imaged using a 900-element array cooled down to 100mK.  This will allow 

the reconstruction of the four Stokes parameters described previously. 

 

They QUBIC cryogenic system will also be modular with each cryostat 

cooling a single array.  Pulse-tube (PT) refrigerators will be used as the main coolers 

due to the difficulty of providing liquid helium to Dome-C, where QUBIC will be 

located, during the winter.  For the lowest temperature stages 
3
He fridges or dilution 

fridges will be used.  Such a cryogenic system has been operated successfully during 

two summer campaigns with the BRAIN instrument.  The BRAIN experiment found 

that the disadvantages of the PT solution with respect to the standard operation with 
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liquid helium are the amount of power required (approximately 7KW) and low level 

vibrations of the 2K flange of the PT by the He pressure pulses.  However, both of 

these issues were overcome.  Other issues to be considered with regards to the 

cryogenics are the large physical size of the windows and filters, which have 

stringent requirements due to radiative heat loads, and the range of zenith angles that 

can be achieved since the PT must be kept as vertical as possible.  Both of these 

issues can be overcome but increase the level of complexity of the system (QUBIC 

White Paper, 2009).   

      

   

6.4 Design and Analysis of the Beam Combiner 

 

Like MBI, QUBIC will make use of a quasi-optical beam combiner and in 

this section we look at the possible configurations of the combiner to be 

implemented in QUBIC.  Systems containing both mirrors and lenses are considered.  

Mirrors can be characterised extremely well but introduce aberrations into the 

system and although lenses do not have this effect they are difficult to model 

accurately.  We begin by looking at the constraints placed on the design of the 

optical system.    

 

6.4.1 Optical System Design Contraints 

 

The combining of signals from the receiver horn antennas will be done by 

means of an optical beam combiner where the fields radiated from back-to-back horn 

antennas will be transferred to the image plane by a Fizeau system.  At present, the 

QUBIC optical system must satisfy the following requirements (QUBIC White 

Paper, 2009): 

 

 The combiner must be a focusing system so that rays launched at a given 

angle from the re-emitting horn array are focused to a single point on the 

focal plane.  In this way equivalent baselines will produce identical fringe 

patterns. 
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 The limit on the total number of bolometers that can be produced, together 

with the sampling requirement for at least two bolometers per fringe (Nyquist 

criteria) means that the equivalent focal length of the combiner must range 

from 200mm to 300mm.  Since the back-to-back horn array size is 

approximately 240mm by 240mm the combiner will be a very fast system 

(have a small F/#). 

 Mirrors or lenses can be used within the combiner with the choice being 

between an on-axis lens system and an off-axis mirror system that can avoid 

the shadowing of any baselines.  On-axis mirrors are not being considered 

due to the high levels of truncation they exhibit.  The benefit of using mirrors 

is that they can be extremely well characterised using physical optics, 

however off-axis systems will introduce aberrations. 

 The fringe pattern produced by equivalent baselines should be the same.  In 

order to prevent signal leakage from the unpolarised to polarised signal, the 

power coupled to any given detector should not vary by more than 1% 

between these baselines.  This is a significant challenge given the very small 

F/# and is a severe limitation on the aberrations that can be tolerated. 

 The beam from the re-emitting horns will have a FWHM of approximately 

14º.  The system must therefore not only have a short focal length but a wide 

field of view. 

 The system has to be compact enough to fit within a cryostat of about 1m
3
. 

 

Since this system is still evolving these constraints are relatively new and were not 

present during the initial optics design phase.  In the next section we consider the 

first mirror configuration which was initially proposed by Spinelli (2010) in the very 

early stages of the project.  A design by Bennett (2011) carried out at NUIM as part 

of the work for a Ph.D. (Bennett, 2011) is also examined. 

 

6.4.2 Physical Optics Analysis of the Mirror Configurations 

 

The first system described here was proposed by Spinelli (2010) and consists 

of an off-axis Gregorian system with a parabolic primary mirror and elliptical 
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secondary mirror.  The system was modelled using MODAL as shown in Figure 6.1 

using a series of reference points and frames similar to the MBI-4 model.  In this 

system, designed using ray tracing, the re-emitting horns were positioned 400mm 

from the point at which the on-axis ray strikes the primary mirror as shown.  In terms 

of beams rather than rays this source position corresponds to the location of the beam 

waist at which the radius of curvature is infinite.  In this initial design the horn 

antennas feeding the optics were 13.1mm in diameter and produced a beam with a 

FWHM opening angle of 21 degrees.  The FWHM was converted to a divergence 

angle at a radius of 1/e (the asymptotic beam growth angle, 0 ) using the equation, 

 

           018.1  fwhm   (6.1) 

 

where 0  is related to the beam waist radius by 
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where in this case the wavelength,  , was 3.12mm.  A corrugated horn antenna will 

produce a beam that has a beam radius of w=0.644a at the aperture of the horn where 

a is the horn radius (aperture = 13.1mm/2).  The distance the beam propagates from 

the waist position to the horn aperture was then calculated as 
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By knowing the propagation distance and the beam waist radius the radius of 

curvature at the aperture of the horn antenna was calculated using: 
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A summary of the results from these calculations is given in Table 6.1.  The horn 

aperture was placed z=8.54mm in front of the known beam waist location (400mm 

from the primary mirror). 

 

 

Horn Antenna Parameters 

Horn Antenna Diameter 13.1mm 

Full Width Half Maximum Angle 21 deg 

Beam Waist Radius 3.2mm 

Distance from Waist to Horn Aperture 8.54mm 

Radius of Curvature at Horn Aperture 21mm 

Table 6.1 Parameters of the horn antennas used in the off-axis Gregorian system. 

 

 

The frame of the primary mirror was positioned with its origin located at the 

point at which the centre ray from an on-axis source strikes the mirror (Figure 6.1).  

This was 400mm from the beam waist position or from the focus if thinking in terms 

of rays.  The centre of the mirror (aperture) was then positioned at the origin of this 

frame.  To create the surface shape of the mirror the focal point, the vertex direction 

(the direction from the focal point to the vertex) and the centre of the section of 

mirror that was being used, which is defined by the bounding volume, were defined.  

In this case the bounding volume was described in MODAL as an infinite cylinder 

with its axis of symmetry along direction of the primary ray with a diameter of 

400mm.  

 

The secondary mirror was set up in a similar way to the primary with its 

frame established by defining the origin and two vectors, the vectors being the z-axis 

and the x-axis, which had the same direction as those defining the source 1 (S1) in 

Figure 6.1.  As with the primary mirror, the secondary was positioned by placing the 

centre of the section at the origin of frame and defining the location of three points: 

the two foci and a point on the surface, which is the same as the centre.  Again, the 

bounding volume was an infinite cylinder, this time with a diameter of 380mm as per 

the initial design.  A frame for the image plane was defined by translating the 
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secondary frame a distance of 400mm along the z-axis.  The image plane was 

centred on the origin of this frame and consisted of a simple square surface with a 

side length of 200mm. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 QUBIC Gregorian optical system as modelled in MODAL.  In the image on the left a 

single beam from source 1 is propagated through the system while in the image on the right beams 

from sources 2 and 3 are propagated through the optical system. 

 

 

As a first analysis the beam from a single on-axis horn antenna was 

propagated through the optical system using a physical optics approach.  The power 

density at each element was calculated and the results of this are shown in Figure 6.2 

(a).  Two other horn antennas, separated by a baseline of 125mm, were placed along 

the same axis as the single horn (S2 and S3 in Figure 6.1).  The power density for 

each of these horns was calculated in the same way and is also shown in Figure 6.2.  

The interference pattern produced by sources 2 and 3 was calculated and is given in 

Figure 6.3 where it can be seen that the fringes are quite distorted, as is the phase for 

the same baseline (also shown in Figure 6.3).  Because of these distortions 

equivalent baselines will not produce identical fringe patterns.   

 

The above system was also analysed for four equivalent 40mm baselines as 

shown in Figure 6.4.  The first of these is centred on the origin and lies along the y-

S1 

S2 

S3 

400mm 

400mm 

Primary Mirror 
Secondary Mirror 

Image Plane 

135o 
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axis, the second represents a shift along the y-axis, the third a shift along the x-axis 

and finally the fourth baseline is horizontal and also shifted off-axis.  The resulting 

fringe patterns at the image plane can be seen in Figure 6.5.  Baselines 1 to 3 are 

equivalent and in a perfect imaging system would produce identical fringe patterns. 

 

Parameters of the Gregorian Optical System 

Distance from horn waist to primary mirror 400mm 

Beam bending angle 135 degrees 

Distance from primary mirror to secondary mirror 565.68mm 

Distance from secondary mirror to image plane 400mm 

Primary mirror shape Parabolic 

Primary mirror diameter 400mm 

Secondary mirror shape Elliptical 

Secondary mirror diameter 380mm 

Image plane width 200mm 

Table 6.2 Parameters of the off-axis Gregorian optical system. 

 

 

The results of this analysis show that within this system truncation of the 

beam is not really a problem, even for the 125mm baseline examined above, 

however beam distortion is quite significant.  The fringe pattern is curved due to 

amplitude distortion caused by the optical system.  When the beam spreads over the 

primary reflector, different regions of the field experience a different equivalent 

focal length causing an asymmetry in the beam.  In terms of Gaussian beam modes 

this is equivalent to scattering the power into higher order modes and shifting the 

peak of the beam off centre.  While the secondary mirror can be designed to 

compensate for this effect the overall asymmetry introduced in the system depends 

on the phase slippage between the modes.  The less variation in phase slippage as the 

field propagates between the mirrors the better the compensation will be.  However, 

in the above Gregorian system it can be seen that the beam passes through a waist 

position between the primary and secondary mirrors, meaning the phase slippage is 

varying significantly causing a high level of curvature in the fringe pattern.     
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Figure 6.2 The power density of source 1 at the primary mirror, secondary mirror and the image 

plane of the Gregorian system is shown in (a).  Parts (b) and (c) show the same plots for sources 2 and 

3 respectively.    

 

 

 

 

 

 

 

 

 

Figure 6.3 The interference fringe pattern produced by sources 2 and 3 of the off-axis Gregorian 

system using physical optics.  The image on the left shows the power density while the phase is 

shown in the image on the right 

(a) 

(b) 

(c) 
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Figure 6.4 Four equivalent baselines of 40mm that were analysed using physical optics.  Bm-Sn 

represents baseline m and source n. 

 

 

If the curvature of the fringes is known and is the same for all equivalent 

baselines it will average out when the baselines are added.  However, if the curvature 

varies between equivalent baselines it will cause unwanted smearing of the signal 

when all baselines are combined.  While on first inspection of Figure 6.5 equivalent 

baselines seem to produce the same fringe pattern, the x- and y-cuts shown in Figure 

6.6 for baselines 1 and 3 show that actually the fringe patterns are significantly 

different and that equivalent baselines within the Gregorian system so not produce 

the same fringe patterns. 

 

To eliminate the curvature seen in the interference pattern a new dual 

reflector system was proposed by Bennett (2011).  The optics were arranged in a 

general crossed Cassegrain (GCC) configuration with a parabolic primary mirror 

(diameter = 180mm) and a hyperbolic secondary mirror (diameter = 380mm), and 

were optimised using the Dragone condition to minimise astigmatism and cross 

polarisation levels.   
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Figure 6.5 Interference fringe patterns at the image plane of the Gregorian system from (a) baseline 1, 

(b) baseline 2, (c) baseline 3 and (d) baseline 4. 

 

      

 

 

 

 

 

 

 

 

 

Figure 6.6 An x-cut (left) and y-cut (right) across the fringe patterns produced at the image plane of 

the Gregorian system by baselines 1 and 3.   

(a) 

(c) 

(b) 

(d) 
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The primary mirror was defined by three parameters, the frame, the focal 

point and the direction from the focal point to the vertex.  Considering Figure 6.7, 

the vertical distance d1 from the vertex of the primary mirror to the point at which 

the on-axis beam struck the mirror was 638.575mm.  The distance d2 from the source 

waist position to the vertex was 400mm.  Using the equation for a parabola in terms 

of it focal length (y = x
2
/4f) the distance d3 was found and also the distance d4 from 

the waist to the point at which the beam hits the mirror.  The primary mirror frame 

mentioned above was therefore defined as being translated approximately 215.98mm 

from the waist position.  The coordinates of the focal point were defined as (x, y, z) = 

(0, 638.575, -153.975) and the vertex direction the z-axis of the global frame.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Design parameters of the general crossed Cassegrain system proposed for the QUBIC 

instrument.  The mirrors are oversized in this image to show the shape of the conic section and the 

axes of the mirrors.  The orientation of the global frame is also shown, however its origin is 10mm 

behind the on-axis source waist position.  

 

 

In the case of the secondary mirror, its radius of curvature (ROC) and conic 

constant (k) were known and therefore its eccentricity, e, could be calculated (since 
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2ek  ).  The focal point of the primary mirror coincided with one of the focal points 

of the hyperbolic secondary mirror allowing the distance d5 to be calculated 

( )1/( 2

5 eROCd  ), and therefore the distance from the point focal point (Fp) to the 

second focal point of the secondary mirror (Fs), since edd  56 .  The direction of 

the secondary optical axis was known to be at an angle of -72 degrees to the primary 

optical axis.  

 

The optical axis of the image plane was defined at an angle of 31 degrees to 

the secondary optical axis with its frame centre coinciding with the secondary focal 

point.  It had a width of 150mm in both directions.  The design parameters are 

summarised in Table 6.3.  A ray tracing diagram for a long baseline is given in 

Figure 6.8 (Bennett, 2011) while the system, as modelled in MODAL, is shown in 

Figure 6.9.  In Figure 6.9 it can be seen that the beams from the secondary mirror 

remain approximately collimated as they propagate to the image plane, ensuring a 

lower level of distortion compared with that seen in the Gregorian system analysed 

above.        

 

Design Parameters of the General Crossed Cassegrain System 

Distance from primary vertex to on-axis horn antenna (d1)  638.575mm 

Distance from on-axis source waist to primary vertex (d2) 400mm 

Distance from primary mirror surface to primary vertex (d3) 184.02mm 

Distance from on-axis source waist to primary mirror (d4) 215.98mm 

Distance from primary focal point to secondary vertex (d5) 560.9mm 

Distance from primary focal point to secondary focal point (d6) 775mm 

Primary mirror type Parabolic 

Secondary mirror type Hyperbolic 

Primary mirror focal length (fp) 553.975mm 

Secondary mirror focal length (fs) 387.5mm 

Primary mirror diameter 180mm 

Secondary mirror diameter 380mm 

Image plane width 150mm 

Table 6.3 Design parameters of the general crossed Cassegrain design as modelled in MODAL. 
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The corrugated conical horn antennas feeding the optics were 11.6mm in 

diameter and produced a beam with a FWHM opening angle of 14 degrees.  Similar 

calculations to those carried out for the Gregorian system feed horns using equations 

6.1 to 6.4 were done for this system and the results of these are summarised in Table 

6.4.  As shown in Figure 6.9 three horn feeds were considered, one on-axis (S1) and 

two off-axis horn antennas (S2 and S3), equivalent to baseline 1 described in Figure 

6.4.  Figure 6.10 shows the power in the beam from each of these as they pass 

through the optical system as calculated using physical optics while Figure 6.11 

shows the power and phase of the interference pattern resulting from the combining 

of sources 2 and 3 at the image plane.  A similar analysis was carried out using 

GRASP (Bennett, 2011) and the results were in good agreement with those 

calculated using MODAL.  As with the Gregorian system truncation by the optical 

system is not significant and in this case the amplitude distortion has been greatly 

reduced to produce straight fringes.  This is also evident from the phase pattern 

where it can be seen to be similar to a step function.  

 

 

 

 

Figure 6.8 Ray tracing diagram of the general crossed Cassegrain proposed for QUBIC (Bennett, 

2011).  
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Figure 6.9 The general crossed Cassegrain system as modelled in MODAL.  As can be seen the 

secondary mirror could be reduced in size without any significant truncation. 

 

 

 

Horn Antenna Parameters 

Horn Antenna Diameter 11.6mm 

Full Width Half Maximum Angle 14 deg 

Beam Waist Radius 3mm 

Distance from Waist to Horn Aperture 10mm 

Radius of Curvature at Horn Aperture 32mm 

Table 6.4 Horn antenna parameters as implanted in the general crossed Cassegrain design. 

 

 

 

The three other baselines described above (Figure 6.4) were also analysed 

and the resulting fringe patterns can be seen in Figure 6.12.  As expected, the 

equivalent baselines examined produced almost identical interference fringes 

patterns and the results were consistent with those produced by GRASP. 
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Figure 6.10 The power density of source 1 at the primary mirror, secondary mirror and the image 

plane of the general crossed Cassegrain system is shown in (a).  Parts (b) and (c) show the same plots 

for sources 2 and 3 respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 6.11 The interference fringe pattern produced by sources 2 and 3 of the general crossed 

Cassegrain system using physical optics.  The image on the left shows the power density while the 

phase is shown in the image on the right. 

(a) 

(b) 

(c) 
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Figure 6.12 Interference fringe patterns at the image plane of the general crossed Cassegrain system 

from (a) baseline 1 (as in Figure 6.11 but shown here for comparison), (b) baseline 2, (c) baseline 3 

and (d) baseline 4.  

 

 

6.4.3 The Implementation of Lenses 

 

The final system analysed in this chapter is one containing lenses.  While the 

two systems described so far both contained mirrors, elements whose properties are 

very well known and can be simulated very accurately using physical optics (with 

existing commercially available software such as GRASP), the system presented 

here contains lenses, which are more difficult to model.  While ray tracing is an 

extremely useful tool for modelling optical elements, as was seen in Chapter 3, such 

an approach is only useful in the limit of extremely short wavelengths and therefore 

(d) 

(a) (b) 

(c) 
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diffraction effects are neglected.  However, physical optics can be applied to lenses 

and MODAL has the ability to model these elements by means of a series of 

reflections from the lens surfaces.  The field undergoes a series of propagations and 

reflections within the lens until the total power being reflecting is extremely small, 

therefore assuring that the transmitted power is accurate.   

 

Cross systems such as the one just described may suffer from stray-light 

problems and so on-axis designs using lenses were also considered.  The details of 

the system presented here and designed by Bennett (2011) are given in Table 6.5 and 

an image of the system as implemented in MODAL is shown in Figure 6.13.  To 

define the system in MODAL the radius of curvature and conic constant of each lens 

surface is entered as well the lens location, centre thickness and refractive index.  

The sources were defined as corrugated horn antennas with a slant length of 50mm 

and an aperture radius of 4.767mm  giving a beam radius of 3.07mm (=0.644a) at 

the aperture of the horn.  An initial analysis was carried out by passing the field from 

each of the two horn antennas (S2 and S3 in Figure 6.13), placed 20mm each side of 

the optical axis (baseline 1), through the optical system and propagating them to the 

image plane.  The results from this are shown in Figure 6.14.   

 

The power at each element in the system as a fraction of the source power 

was calculated.  Having propagated through lens 1 both sources 2 and 3 contained 

92% of the original source power (1W).  After lens 2 the power, again in both 

sources, was 84% of the source power and at the image plane the power was 81% in 

both sources.  It was expected that sources 1 and 2 would not only have mirrored 

beam patterns as seen in Figure 6.13 but also the same power characteristics since 

the lenses are rotationally symmetric and the here we considered a baseline that was 

centred on the optical axis.    

 

The fringe pattern for this baseline and the three other baselines analysed in 

the mirror systems were also considered with the power density calculated using 

physical optics shown in Figure 6.15.  As with the general crossed Cassegrain 

reflector system the fringes produced by this system are straight and similar in power 

distribution for all equivalent baselines examined. 
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Lens System Design Parameters 

Distance from waist to surface 1 of lens 1 135.85mm 

Centre thickness of lens 1 100mm 

Diameter of lens 1 240mm 

Refractive index of lens 1 1.5 

Radius of curvature of lens 1 surface 1 596.82mm 

Conic constant of lens 1 surface 1 -1 

Radius of curvature of lens 1 surface 2 -389.44 

Conic constant of lens 1 surface 2 -1 

Distance from waist to surface 1 of lens 2 399.99mm 

Centre thickness of lens 2 100mm 

Diameter of lens 2 240mm 

Refractive index of lens 2 1.5 

Radius of curvature of lens 2 surface 1 389.44 

Conic constant of lens 2 surface 1 -1 

Radius of curvature of lens 2 surface 2 -596.82 

Conic constant of lens 2 surface 2 -1 

Table 6.5 Design parameters of a proposed lens system for the QUBIC beam combiner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13 The QUBIC lens system as modelled in MODAL.  The sources are labelled S2 and S3 to 

coincide with the convention used in the dual reflector systems. 
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6.5 Conclusions and Future Work 

 

In this section three optical systems were considered for the beam combiner 

of the QUBIC instrument.  Two of the systems described were composed of 

reflectors while the final system contained lenses to focus the beam on the image 

plane.  In the case of the dual reflector systems, it was shown that the off-axis 

Gregorian system introduced amplitude distortion into to beam and therefore the 

interference fringes at the image plane were found to be curved.  However, by 

implementing a general crossed Cassegrain configuration, the beams propagating to 

the image plane from the secondary mirror were approximately collimated, therefore 

eliminating the distortion found in the previous system.  A physical optics analysis 

was also carried out on the lens system and again it was seen that the fringes 

produced at the image plane were straight.  The analysis of each system was carried 

out for four equivalent 40mm baselines and showed that the interference patterns 

from these were in very good agreement.  The ability to model a lens system with 

full vector physical optics, an option not yet available with commercial software, 

will be very important in the design phases of QUBIC.    

 

One method that is being considered for calibration of QUBIC is the 

measurement and reconstruction of the scattering matrix describing the instrument.  

The scattering matrix approach, as discussed in detail in Chapter 4 (as applied to 

MBI), allows tracking of the response of each bolometer in the detector array to the 

field amplitudes of the sky-facing horn antennas and therefore the interference 

fringes on the sky.  The scattering matrix elements at a single operating frequency 

can be measured as the response of a calibrated bolometer to a linearly polarised 

monochromatic source of know amplitude.  It is noted in the QUBIC White Paper 

(2009) that the scattering matrix approach should rely on a detailed model of the 

system, which in turn, must be verified at different frequencies within the bandwidth.  

While not carried out for this thesis this detailed modelling is something that could 

be done in the future using a physical optics approach as was done for MBI-4 in 

Chapter 5.  
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Figure 6.14 The power density of sources 1 and 2 at lens 1 is shown in (a).  Parts (b) and (c) show the 

same plots for lens 2 and the image plane respectively. 
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Figure 6.15 Interference fringe patterns at the image plane of the lens system from (a) baseline 1, (b) 

baseline 2, (c) baseline 3 and (d) baseline 4. 
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Chapter 7 

 

Summary and 

Conclusions 
 
  

This subject area of this thesis was concerned with the design and analysis of 

bolometric interferometers for measuring the polarisation of the CMB, with a 

particular emphasis on both the MBI-4 and QUBIC instruments.  The difficulty and 

importance of measuring CMB modes was the motivation behind the accurate 

optical characterisation that forms the basis for much of the work carried out. 

   

Chapter 1 of this thesis gave an overview of the CMB and the science that 

can be carried out with accurate measurements of its temperature and polarisation 

signals.  The importance of these measurements is indicated by the number of 

experiments dedicated to this area of astronomy.  The MBI-4 and QUBIC 

instruments both take advantage of bolometric interferometry techniques to measure 

polarisation signals and therefore an outline of the theory of both interferometry and 

polarisation was given, as well as a discussion on the instruments themselves and the 

systematic effects they are subject to.       

 

 To carry out the detailed analysis required to characterise these instruments a 

number of techniques were applied.  In Chapter 2 these techniques were described in 

detail.  I began with a description of geometrical optics, a technique that neglects 

diffraction effects due to the nature of the rays used.  It was shown that while this 

technique is valuable for the initial design of an optical system, further methods are 

required for a more detailed analysis.  Two other techniques were outlined, Fresnel 

integration and GBM, both of which are scalar methods and make good predictions 

of diffraction effects within the optical system.  It was shown through examples that 

while both the Fresnel integral and GBM methods provide a powerful analysis tool, 

the GBM approach is much more efficient due to the nature of the integration 

required to model the electromagnetic field.  In the Fresnel case the integral must be 

carried out at each element while for GBM integration (neglecting effects such as 

truncation) of the field is only required on a single plane.   
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Finally in Chapter 2, the physical optics method was described.  This 

approach provides a full vector description of the field and provides a very accurate 

tool for modelling optical systems.  An example was given and compared to the 

Fresnel and GBM methods where it could be seen that while the overall structure of 

the predicted beam was similar, for a very accurate model physical optics must be 

used.  The techniques described in Chapter 2 were made possible through a 

combination of both in-house software and commercially available packages.  A 

description of these packages was provided with a focus on MODAL, the one used 

most extensively throughout this work.         

 

 Chapter 3 described in detail the MBI-4 instrument, including the observing 

strategy, detectors and signal processing, cryogenics and the optical system.  This 

was followed by a description of the design process for the MBI-4 optical beam 

combiner.  An initial design was carried out using geometrical optics which provided 

details about the required focal lengths of the mirrors to get the correct beam 

sampling at the image plane.  Before deciding on a final design for the optics a 

diffraction analysis was carried out, which indicated that the system would perform 

better if the beam waist was located at the aperture of the inward-facing back-to-

back horn antenna.  By doing this it was shown that the beam would not diffract as 

much and would remain more collimated as it propagated towards the optics.  The 

phase radius of curvature was calculated as a function of distance from the waist 

position to the primary mirror and the beam radii at different elements were 

calculated as a function of distance from the waist position to the secondary mirror.  

Both of these were carried out using a GBM approach.  With the calculated 

information a design was chosen that provided a beam with a relatively large phase 

radius of curvature at the image plane (to allow for good coupling to the detector 

array) and suitable beam widths at each of the mirrors to prevent excessive blockage 

and truncation as much as was possible.  It was also important that the final design 

would fit within the dimensions of the cryostat, which was already built.  The layout 

of the horn antennas feeding the system was such that an elliptical aperture was 

chosen for the hole in the primary mirror.     
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 Having considered the design of the optical beam combiner in Chapter 3, a 

more detailed look at the horn antennas within the system was carried out in Chapter 

4.  I began by describing the geometry and performance of smooth-walled conical 

horn antennas, the type used as detector feeds in MBI-4.  Examples of both aperture 

and far field beam patterns were given and the implications of the results discussed.  

The author was involved in the implemented of this type of antenna into the 

MODAL code and so a comparison of both fields generated by MODAL and those 

from in-house software are compared for verification.   

 

To obtain greater coupling between the telescope field and the detector horn 

antennas of MBI-4, the smooth-walled conical horn antennas are fitted with phase-

flattening lenses.  In lab measurements the use of smaller horn antennas was 

considered to improve sampling, but with the original lenses.  The effect of this was 

analysed by calculating the coupling efficiency for the new horn with the original 

phase-flattening lens and also for the new horn with a new lens design.  It was shown 

that a loss in power coupling of approximately 25% would occur if the original lens 

was used with the new smaller horn antenna.  This analysis was carried out for on- 

and off-axis detectors.   

 

The next element of Chapter 4 was a discussion on corrugated horn antennas, 

their geometry and their performance.  Examples of aperture and far fields, both co- 

and cross-polar, were given and the results discussed.  It was shown that the 

asymmetry in the field produced by the smooth-walled horn was greatly reduced and 

so too was the side-lobe level since the field was not truncated so severely.  A 

program called SCATTER was used to generate the fields from corrugated horns 

with a very specific geometry.  This code makes use of scattering matrices (as well 

as mode-matching) and this techniques is outlined in some detail, since it also 

applied to the MBI-4 optical system analysis carried out in Chapter 5.  The 

SCATTER code, which was implemented in MODAL was used to generate the field 

produced by the back-to-back corrugated horn antennas in MBI-4 and it was ensured 

that the structure was single-moded by changing the geometry of the horn to include 

a single-moded section of cylindrical waveguide between the two horns.  Truncation 

of the beam by the cryostat windows was also modelled where it was found that it 
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could be significant, depending on the exact distance from the horn to the truncating 

aperture, and should be taken into account. 

 

Measurements taken in 2008, with which the author was involved, by the 

MBI-4 instrument showed beam patterns from the back-to-back horn antennas as 

being asymmetric, something was unexpected from single-moded structures.  The 

system was modelled by the author which showed that while the beams were 

symmetric when the horn antennas were illuminated by a plane wave propagating 

parallel to the axis of the horn, when illumination at off-axis angles the asymmetry 

found in the experimental measurements was evident, indicating that at off-axis 

angles the back-to-back horn antennas became multi-moded.  These modes were 

analysed in terms of their amplitude and phase relative to the scanning angle and 

their composition in terms of TE and TM waveguide modes was examined by means 

of SVD.  Further investigation found that the higher order modes could be removed 

by means of a single-moded cylindrical waveguide section. 

 

The SCATTER code uses a mode match-matching technique to calculate 

power scattered between modes at discontinuities with a horn antenna structure.  

This code was initially written for conical horns but was extended at NUIM to model 

rectangular horn antennas.  In Chapter 4 the author describes how this code could be 

further extended to include rectangular-to-circular transitions so that a complete 

back-to-back structure in MBI-4 could be modelled.  The mode-matching technique 

is discussed and an example of a rectangular-to-circular junction is provided.  The 

same system is also modelled using commercially available software for comparison, 

however, since the techniques used are very different it is difficult to compare like 

with like.  The actual structures used are rather large for commercially available 

software.  Future work in this area should include expanding the number of modes 

used in the mode-matching method which should provide a more accurate 

representation of the field. 

 

Finally in Chapter 4 I presented work carried out on the analysis of closely-

packed waveguide array (as a model for the MBI-4 detector array).  The effect that 

the neighbouring waveguides have on the beam pattern of an individual waveguide is 

examined for both circular and rectangular waveguides in various configurations.  It 
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was shown that the effect is quite small and can be removed by separating the 

waveguides sufficiently.  Also, waveguides at the edges of arrays are more likely to 

suffer from beam distortion due to the asymmetry of the array, while the effect is 

removed for waveguides at the centre which are completely surrounded.                             

 

In Chapter 5 the optical beam combiner in MBI-4 was examined in detail.  

While different propagation techniques were compared at the beginning it was 

physical optics that was used in this analysis.  The power coupled from each of the 

back-to-back horn antennas to each detector was calculated, forming the elements of 

the scattering matrix describing the system.  This matrix linked the input field to the 

detector array in such a way that by changing the input field, the field at the detectors 

can be calculated relatively easily.  The system was analysed for two orthogonal 

polarisation directions which showed a significant difference in coupled power.  It 

was explained how this was due to the asymmetry in beam pattern of the smooth-

walled conical detector horn antenna.  The input polarisation direction of the horn 

antenna therefore needs to be accurately defined in any experimental tests.  The 

effect of flattening the phase radius of curvature at the front of the detector horns 

was also examined here and it was found that with lenses present the power coupled 

to the detectors was increased by approximately 30%. 

 

Truncation effects in the system were modelled and it was calculated that 

between 23% and 30% of the initial power from the inward-facing horn antennas 

was propagated to the image plane.  The most significant truncation occurred as the 

beam propagated through the elliptical aperture of the primary mirror after reflection 

from the secondary mirror.  It was also seen that between 8% and 15% of the power 

passes through the elliptical aperture as the beam is reflected from the primary 

mirror, which was shown to have a significant effect on the interference pattern, 

particularly for the short baselines.  Chapter 5 also examined mechanical tolerances 

and systematic effects within the system.  Axial, lateral and rotational movement 

were all analysed and it was found that the xy-movement of the detector array 

produced the greatest effect in terms of power coupled to the bolometers.  The last 

section discussed in Chapter 5 involved simulating lab measurements carried out 

with the MBI-4 instrument.  The field from each of the four back-to-back horns fed 

with a Gunn oscillator was measured at the image plane and the same system was 
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modelled in MODAL.  The beams from the measurements appeared to be focused in 

individual quadrant and this was evident in the simulations if the portion of the field 

that passed through the primary elliptical aperture on first pass was taken into 

account.  Factors that need to be accounted for in future work are the resolution of 

the scan and the physical size of the detector used in the measurements. 

 

The final chapter in this thesis dealt with the QUBIC instrument, and in 

particular the optical beam combiner.  Three optical system were modelled, two 

containing mirrors and one containing lenses.  For each of the three systems a 

physical optics analysis was carried out and the fringes at the image plane were 

produced.  It was shown that in the first mirror system the fringes were curved due to 

amplitude distortion introduced by the system.  In the second design, a general 

crossed Cassegrain system, the beams were approximately collimated as they 

propagated to the image plane and the distortion was removed, producing straight 

fringes.  In general, the curved fringes were not problematic as long as they could be 

characterised.  The problem with the Gregorian system that produced such fringes 

was that equivalent baselines did not produce the same fringes, meaning that when 

different equivalent baselines are combined the fringes pattern would be averaged 

out.  It was shown that the lens system also produced straight fringes by means of a 

physical optics analysis, something which at present cannot be done using 

commercially available software. 

 

 The main area of future work lies in the rectangular-to-circular mode-

matching code, which could be extended to include a higher number of modes and 

therefore produce a more accurate representation of the field.  This code could also 

be implemented into MODAL to allow the user build a structure using a combination 

of circular and rectangular segments and transitions between the two.  Also, further 

analysis on a final design for the QUBIC instrument is required to fully understand 

its performance, similar to the work carried out and presented in this thesis for MBI-

4.      
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Appendix A 

 

Scatter Matrix Elements  
 

Coupled Amplitude and Phase from Each Source to Each Detector 

Detector S1 A  S1   S2 A  S2   S3 A  S3   S4 A  S4   

Co-Polar Component 

1 0.0416 -1.7722 0.0080 0.2658 0.0179 0.8887 0.0379 -1.9420 

2 0.0496 0.0849 0.0088 2.8120 0.0297 -2.0172 0.0236 -2.0219 

3 0.0324 -1.4048 0.0026 1.1097 0.0307 -1.9462 0.0053 0.7811 

4 0.0308 -0.9572 0.0176 2.9146 0.0162 2.0285 0.0484 0.8591 

5 0.0590 2.7029 0.0338 0.6933 0.0409 0.9280 0.0545 2.5713 

6 0.0575 2.8758 0.0314 1.2308 0.0543 2.5748 0.0324 0.9301 

7 0.0267 -0.3657 0.0133 -1.8821 0.0396 0.9128 0.0077 2.1866 

8 0.0116 2.5506 0.0110 1.8591 0.0056 -0.1751 0.0333 -0.0809 

9 0.0411 1.6726 0.0378 1.3374 0.0290 0.1093 0.0635 -2.8396 

10 0.0592 -2.7068 0.0546 -2.6999 0.0561 -2.7423 0.0561 -2.7428 

11 0.0473 1.9624 0.0438 2.3038 0.0636 -2.8397 0.0291 0.1086 

12 0.0187 3.1291 0.0162 -2.4108 0.0334 -0.0826 0.0056 -0.1865 

13 0.0095 -2.7764 0.0199 -1.3834 0.0075 2.1573 0.0394 0.8751 

14 0.0316 0.8389 0.0488 2.4716 0.0320 0.9009 0.0536 2.5414 

15 0.0377 0.9574 0.0568 2.9548 0.0538 2.5379 0.0406 0.8957 

16 0.0228 -2.4823 0.0341 -0.0525 0.0483 0.8224 0.0161 1.9929 

17 0.0005 2.7298 0.0243 -2.1899 0.0049 0.6878 0.0300 -2.0247 

18 0.0082 2.7644 0.0445 -0.0657 0.0228 -2.0927 0.0288 -2.0863 

19 0.0096 0.8240 0.0428 -1.2769 0.0372 -2.0178 0.0175 0.8153 

Cross-Polar Component 
1 0.0002 2.4617 0.0021 -2.8374 0.0009 -0.0103 0.0057 1.1899 

2 0.0050 -3.0865 0.0051 -0.6140 0.0043 1.3934 0.0065 1.2220 

3 0.0035 1.5826 0.0044 -1.8545 0.0055 1.2562 0.0025 -2.0660 

4 0.0054 -1.2934 0.0031 2.7640 0.0053 1.8228 0.0009 0.2449 

5 0.0002 0.0231 0.0015 -2.3675 0.0018 0.9736 0.0029 -0.9251 

6 0.0016 -0.3456 0.0027 -1.9929 0.0017 -0.9879 0.0006 -2.7385 

7 0.0030 -0.8430 0.0007 -1.4376 0.0002 -0.2063 0.0034 1.8011 

8 0.0060 2.1315 0.0053 1.5377 0.0062 -0.8777 0.0046 -0.5854 

9 0.0027 1.6238 0.0029 1.2459 0.0049 -0.0984 0.0013 -3.0489 

10 0.0003 -0.7336 0.0002 -1.4092 0.0006 2.9140 0.0006 2.9153 

11 0.0022 1.9855 0.0018 2.3448 0.0013 -3.0456 0.0049 -0.0985 

12 0.0067 2.8000 0.0062 -2.7511 0.0046 -0.5873 0.0062 -0.8792 

13 0.0010 -3.0383 0.0032 -1.8501 0.0033 1.7623 0.0001 -0.2804 

14 0.0031 -2.3993 0.0011 -0.8577 0.0006 -2.7636 0.0017 -1.0210 

15 0.0025 -2.1831 0.0011 -0.2903 0.0029 -0.9631 0.0018 0.9336 

16 0.0025 -2.5139 0.0043 -0.4116 0.0008 0.2463 0.0053 1.7850 

17 0.0043 -2.6940 0.0027 0.8416 0.0025 -2.1407 0.0055 1.1910 

18 0.0057 -0.7582 0.0054 3.0503 0.0065 1.1529 0.0043 1.3186 

19 0.0031 -2.3983 0.0016 1.8731 0.0057 1.1193 0.0008 -0.1254 

Sn represents source n, A is the amplitude and   is the phase. 
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Appendix B 

 

Beam Power Profiles  
 

Below are the power profiles for each of the MBI-4 inward-facing horn 

antennas as the beam propagates through the optical beam combiner.  The 

calculations were carried out with each source having a polarization direction both 

parallel and perpendicular to the shortest baseline, however only the parallel case is 

shown here since the results are very similar.     

 

 

Source 1 Power Profiles 
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Source 2 Power Profiles 
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Source 3 Power Profiles 
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Source 4 Power Profiles 
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Appendix C 

 

Mechanical Tolerance Data  
 

 

 Max represents the maximum power coupled to that detector during the 

movement of the element indicated. 

 Min represents the minimum power coupled to that detector during the 

movement of the element indicated. 

 Cen. represents the power coupled to that detector when the element is 

centered. 

 Range represents the range of coupled power during the movement of the 

element indicated. 

 

Summary of the Power Coupled to the Detectors During XY-Movement of the 

Bolometer Array  

Detector Max x y Min x y Cen. Range 

 (mW) (mm) (mm) (mW) (mm) (mm) (mW) (mW) 

Source 1 

1 1.9450 2.5 -2.5 1.4000 -2.5 2.5 1.7290 0.5450 

2 2.5500 -2.5 -1.3 2.2440 2.5 2.5 2.4830 0.3050 

3 1.2960 -2.5 -2.5 0.7630 2.5 2.5 1.0590 0.5330 

4 1.2420 2.5 -2.5 0.7270 -2.5 2.5 0.9790 0.5140 

5 3.6930 2.5 -2.3 3.0590 -2.5 2.5 3.4780 0.6340 

6 3.6040 -2.5 -2.5 2.7710 2.5 2.5 3.3130 0.8340 

7 1.0930 -2.5 -2.5 0.3930 2.5 2.5 0.7210 0.7010 

8 0.2470 2.5 2.5 0.1230 -2.5 -2.5 0.1720 0.1240 

9 1.9990 2.5 2.5 1.3700 -2.5 -2.5 1.6980 0.6290 

10 3.6530 2.5 2.5 3.2250 -2.5 -2.5 3.5020 0.4280 

11 2.4850 -2.5 2.5 1.9440 2.5 -2.5 2.2450 0.5410 

12 0.4730 -2.5 -2.5 0.2960 2.5 -2.5 0.3960 0.1770 

13 0.1900 2.5 2.5 0.0570 -2.5 -2.1 0.0920 0.1340 

14 1.3550 2.5 2.5 0.7110 -2.5 -2.5 1.0090 0.6440 

15 1.7350 -2.5 2.5 1.1670 2.5 -2.5 1.4300 0.5680 

16 0.6910 -2.5 2.5 0.4430 2.5 -1.5 0.5280 0.2470 

17 0.0370 2.5 2.5 0.0170 -2.5 -0.6 0.0180 0.0200 
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18 0.1980 2.5 2.5 0.0780 -2.5 -1.9 0.1000 0.1210 

19 0.1460 -2.5 2.5 0.0940 2.5 0.4 0.1010 0.0520 

Source 2 

1 0.0960 2.5 -2.5 0.0620 -2.5 -0.4 0.0680 0.0340 

2 0.1770 -2.5 -2.5 0.0890 2.5 1.7 0.1020 0.0880 

3 0.0430 -2.5 2.5 0.0200 2.5 -1.3 0.0260 0.0230 

4 0.4320 2.5 -2.5 0.2520 -2.5 2.5 0.3200 0.1800 

5 1.3920 2.5 -2.5 0.9210 -2.5 2.5 1.1410 0.4700 

6 1.2940 -2.5 -2.5 0.7440 2.5 2.5 0.9930 0.5500 

7 0.2820 -2.5 -2.5 0.1370 2.5 0.4 0.1780 0.1450 

8 0.2060 2.5 2.5 0.1200 -2.5 -2.5 0.1490 0.0860 

9 1.6490 2.5 -2.3 1.2090 -2.5 2.5 1.4390 0.4400 

10 3.1070 2.5 -2.5 2.7760 -2.5 2.5 2.9810 0.3300 

11 2.1970 -2.5 -2.5 1.5920 2.5 2.5 1.9210 0.6050 

12 0.4280 -2.5 -2.5 0.1760 2.5 2.5 0.3000 0.2520 

13 0.6070 2.5 2.5 0.2150 -2.5 -2.5 0.4050 0.3920 

14 2.6100 2.5 2.1 1.9870 -2.5 -2.5 2.3790 0.6240 

15 3.3540 -2.5 1.7 2.8990 2.5 -2.5 3.2310 0.4550 

16 1.4930 -2.5 2.5 0.8710 2.5 -2.5 1.1830 0.6230 

17 0.7430 2.5 2.5 0.4200 -2.5 -2.5 0.5980 0.3230 

18 2.1010 2.5 0.8 1.7790 -2.5 -2.5 2.0130 0.3210 

19 2.0110 -2.5 2.3 1.5140 2.5 -2.5 1.8340 0.4970 

Source 3 

1 0.3920 2.5 2.5 0.2530 -2.5 -2.5 0.3220 0.1400 

2 1.0230 2.5 2.5 0.7450 -2.5 -2.5 0.9030 0.2790 

3 1.0370 -2.5 0.4 0.8430 2.5 2.5 0.9710 0.1940 

4 0.3730 2.5 -2.5 0.2220 -2.5 2.5 0.2910 0.1510 

5 1.8830 2.5 -2.5 1.4700 -2.5 2.5 1.6740 0.4130 

6 3.0350 2.5 -2.5 2.8210 -2.5 2.5 2.9470 0.2140 

7 1.9460 -2.5 -2.5 1.0430 2.5 2.5 1.5710 0.9030 

8 0.0850 2.5 1.9 0.0480 -2.5 -2.5 0.0690 0.0370 

9 1.1040 2.5 2.5 0.6920 -2.5 -2.5 0.8670 0.4120 

10 3.4120 2.5 2.5 2.9300 -2.5 -2.5 3.1460 0.4820 

11 4.1380 -2.5 -2.5 3.8290 2.5 2.5 4.0420 0.3090 

12 1.3640 -2.5 -2.5 0.9460 2.5 2.5 1.1370 0.4180 

13 0.0970 2.5 2.5 0.0490 -2.5 -2.5 0.0670 0.0470 

14 1.2560 2.5 2.5 0.8470 -2.5 -2.5 1.0260 0.4080 

15 3.0680 2.5 2.5 2.7370 -2.5 -2.5 2.9080 0.3310 
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16 2.6570 -2.5 2.5 1.7780 2.5 -2.5 2.3320 0.8790 

17 0.0570 2.5 -2.5 0.0110 -2.5 2.5 0.0300 0.0460 

18 0.7060 2.5 -2.5 0.4010 -2.5 2.5 0.5600 0.3050 

19 1.4230 2.1 0.2 1.3140 -2.5 2.5 1.4160 0.1080 

Source 4 

1 1.4730 -1.9 -0.4 1.3760 2.5 -2.5 1.4700 0.0970 

2 0.7480 -2.5 2.5 0.4320 2.5 -2.5 0.6000 0.3160 

3 0.0620 -2.5 2.5 0.0130 2.5 -2.5 0.0340 0.0490 

4 2.6840 2.5 -2.5 1.7730 -2.5 2.5 2.3420 0.9110 

5 3.1350 -2.5 -2.5 2.8010 2.5 2.5 2.9790 0.3340 

6 1.2780 -2.5 -2.5 0.8740 2.5 2.5 1.0530 0.4040 

7 0.1010 -2.5 -2.5 0.0520 2.5 2.5 0.0710 0.0500 

8 1.3610 2.5 2.5 0.9420 -2.5 -2.5 1.1330 0.4190 

9 4.1420 2.5 2.5 3.8200 -2.5 -2.5 4.0370 0.3220 

10 3.3970 -2.5 -2.5 2.9410 2.5 2.3 3.1450 0.4560 

11 1.1020 -2.5 -2.5 0.6980 2.5 2.5 0.8700 0.4040 

12 0.0860 -2.5 -2.1 0.0480 2.5 2.5 0.0700 0.0380 

13 1.9110 2.5 2.5 1.0410 -2.5 -2.5 1.5530 0.8700 

14 2.9690 -2.5 2.5 2.7570 2.5 -2.5 2.8770 0.2110 

15 1.8590 -2.5 2.5 1.4450 2.5 -2.5 1.6480 0.4140 

16 0.3700 -2.5 2.5 0.2200 2.5 -2.5 0.2880 0.1500 

17 0.9920 2.5 -0.8 0.8140 -2.5 -2.5 0.9290 0.1780 

18 0.9670 -2.5 -2.5 0.6980 2.5 2.5 0.8480 0.2690 

19 0.3750 -2.5 -2.5 0.2390 2.5 2.5 0.3060 0.1360 

 

 

Summary of the Power Coupled to the Detectors During Z-

Movement of the Bolometer Array  

Detector Max z Min z Cen. Range 

 (mW) (mm) (mW) (mm) (mW) (mW) 

Source 1 

1 1.734 2.5 1.725 -2.5 1.729 0.010 

2 2.494 -2.5 2.471 2.5 2.483 0.022 

3 1.067 2.5 1.050 -2.5 1.059 0.017 

4 0.985 2.5 0.972 -2.5 0.979 0.012 

5 3.506 -2.5 3.449 2.5 3.478 0.057 

6 3.340 -2.5 3.286 2.5 3.313 0.053 

7 0.728 2.5 0.715 -2.5 0.721 0.013 
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8 0.178 2.5 0.166 -2.5 0.172 0.012 

9 1.703 -2.5 1.691 2.5 1.698 0.012 

10 3.533 -2.5 3.470 2.5 3.502 0.063 

11 2.258 -2.5 2.231 2.5 2.245 0.026 

12 0.404 2.5 0.387 -2.5 0.396 0.017 

13 0.096 2.5 0.087 -2.5 0.092 0.009 

14 1.012 2.5 1.007 -2.5 1.009 0.004 

15 1.433 -2.5 1.427 2.5 1.430 0.006 

16 0.534 2.5 0.523 -2.5 0.528 0.011 

17 0.019 2.5 0.018 -0.2 0.018 0.000 

18 0.105 2.5 0.096 -2.5 0.100 0.009 

19 0.102 2.5 0.100 -2.5 0.101 0.002 

Source 2 

1 0.070 2.5 0.067 -2.5 0.068 0.003 

2 0.106 2.5 0.099 -2.5 0.102 0.007 

3 0.026 2.5 0.026 -1.5 0.026 0.000 

4 0.325 2.5 0.315 -2.5 0.320 0.010 

5 1.146 -2.5 1.137 2.5 1.141 0.008 

6 0.995 -2.5 0.992 2.5 0.993 0.003 

7 0.183 2.5 0.174 -2.5 0.178 0.009 

8 0.154 2.5 0.145 -2.5 0.149 0.008 

9 1.444 -2.5 1.433 2.5 1.439 0.011 

10 3.009 -2.5 2.954 2.5 2.981 0.055 

11 1.934 -2.5 1.906 2.5 1.921 0.028 

12 0.308 2.5 0.293 -2.5 0.300 0.016 

13 0.413 2.5 0.397 -2.5 0.405 0.016 

14 2.389 -2.5 2.369 2.5 2.379 0.020 

15 3.262 -2.5 3.200 2.5 3.231 0.062 

16 1.184 2.5 1.181 -2.5 1.183 0.003 

17 0.606 2.5 0.590 -2.5 0.598 0.017 

18 2.023 -2.5 2.001 2.5 2.013 0.022 

19 1.834 -0.8 1.833 2.5 1.834 0.001 

Source 3 

1 0.323 2.5 0.320 -2.5 0.322 0.003 

2 0.909 -2.5 0.897 2.5 0.903 0.012 

3 0.974 -2.5 0.968 2.5 0.971 0.006 

4 0.298 2.5 0.285 -2.5 0.291 0.012 

5 1.675 -2.5 1.672 2.5 1.674 0.003 
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6 2.961 -2.5 2.932 2.5 2.947 0.028 

7 1.579 2.5 1.563 -2.5 1.571 0.016 

8 0.072 2.5 0.067 -2.5 0.069 0.005 

9 0.874 2.5 0.861 -2.5 0.867 0.012 

10 3.183 -2.5 3.112 2.5 3.146 0.071 

11 4.072 -2.5 4.012 2.5 4.042 0.061 

12 1.148 2.5 1.126 -2.5 1.137 0.022 

13 0.070 2.5 0.064 -2.5 0.067 0.006 

14 1.033 2.5 1.017 -2.5 1.026 0.016 

15 2.921 -2.5 2.895 2.5 2.908 0.027 

16 2.332 -2.3 2.331 2.5 2.332 0.001 

17 0.031 2.5 0.029 -2.5 0.030 0.003 

18 0.562 -2.5 0.557 2.5 0.560 0.005 

19 1.425 -2.5 1.408 2.5 1.416 0.017 

Source 4 

1 1.478 -2.5 1.461 2.5 1.470 0.017 

2 0.603 -2.5 0.597 2.5 0.600 0.005 

3 0.035 2.5 0.033 -2.5 0.034 0.003 

4 2.342 -2.5 2.340 2.5 2.342 0.002 

5 2.993 -2.5 2.966 2.5 2.979 0.027 

6 1.061 2.5 1.043 -2.5 1.053 0.017 

7 0.074 2.5 0.068 -2.5 0.071 0.007 

8 1.144 2.5 1.122 -2.5 1.133 0.022 

9 4.067 -2.5 4.007 2.5 4.037 0.060 

10 3.183 -2.5 3.111 2.5 3.145 0.072 

11 0.876 2.5 0.864 -2.5 0.870 0.012 

12 0.072 2.5 0.067 -2.5 0.070 0.005 

13 1.562 2.5 1.545 -2.5 1.553 0.017 

14 2.890 -2.5 2.862 2.5 2.877 0.028 

15 1.649 -2.5 1.646 2.5 1.648 0.003 

16 0.294 2.5 0.282 -2.5 0.288 0.012 

17 0.932 -2.5 0.926 2.5 0.929 0.006 

18 0.853 -2.5 0.842 2.5 0.848 0.011 

19 0.307 2.5 0.305 -2.5 0.306 0.003 
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Summary of the Power Coupled to the Detectors During θ-

Movement of the Bolometer Array  

Detector Max θ Min θ Cen. Range 

 (mW) (deg) (mW) (deg) (mW) (mW) 

Source 1 

1 1.813 -5.0 1.550 5.0 1.729 0.262 

2 2.546 5.0 2.388 -5.0 2.483 0.158 

3 1.178 5.0 0.894 -5.0 1.059 0.284 

4 0.986 -2.5 0.906 5.0 0.979 0.080 

5 3.524 -5.0 3.368 5.0 3.478 0.156 

6 3.360 5.0 3.223 -5.0 3.313 0.137 

7 0.822 -5.0 0.580 5.0 0.721 0.242 

8 0.248 -5.0 0.140 5.0 0.172 0.108 

9 1.787 -5.0 1.567 5.0 1.698 0.220 

10 3.502 -5.0 3.502 -5.0 3.502 0.000 

11 2.280 5.0 2.158 -5.0 2.245 0.122 

12 0.399 -5.0 0.374 5.0 0.396 0.025 

13 0.132 -5.0 0.088 2.1 0.092 0.045 

14 1.038 -5.0 0.996 5.0 1.009 0.043 

15 1.531 5.0 1.348 -5.0 1.430 0.183 

16 0.553 -5.0 0.528 0.0 0.528 0.025 

17 0.027 5.0 0.018 -0.4 0.018 0.008 

18 0.115 5.0 0.090 -5.0 0.100 0.025 

19 0.117 -5.0 0.099 2.1 0.101 0.019 

Source 2 

1 0.086 -5.0 0.065 2.9 0.068 0.021 

2 0.106 5.0 0.099 -5.0 0.102 0.007 

3 0.046 5.0 0.019 -5.0 0.026 0.027 

4 0.342 5.0 0.319 -1.3 0.320 0.024 

5 1.178 5.0 1.103 -5.0 1.141 0.075 

6 1.041 -5.0 0.961 5.0 0.993 0.081 

7 0.205 5.0 0.177 -1.3 0.178 0.028 

8 0.180 -5.0 0.134 4.2 0.149 0.045 

9 1.466 5.0 1.377 -5.0 1.439 0.089 

10 2.981 -5.0 2.981 -5.0 2.981 0.000 

11 2.024 -5.0 1.781 5.0 1.921 0.243 

12 0.386 -5.0 0.250 5.0 0.300 0.136 

13 0.425 -3.3 0.326 5.0 0.405 0.099 
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14 2.481 5.0 2.257 -5.0 2.379 0.225 

15 3.236 -3.3 3.204 5.0 3.231 0.032 

16 1.200 2.9 1.104 -5.0 1.183 0.096 

17 0.722 5.0 0.461 -5.0 0.598 0.261 

18 2.141 5.0 1.838 -5.0 2.013 0.303 

19 1.855 -3.8 1.730 5.0 1.834 0.126 

Source 3 

1 0.431 -5.0 0.229 5.0 0.322 0.202 

2 0.984 -5.0 0.800 5.0 0.903 0.184 

3 1.057 5.0 0.839 -5.0 0.971 0.219 

4 0.327 -5.0 0.266 5.0 0.291 0.061 

5 1.764 -5.0 1.577 5.0 1.674 0.187 

6 3.000 -5.0 2.878 5.0 2.947 0.123 

7 1.648 -5.0 1.373 5.0 1.571 0.275 

8 0.070 -0.8 0.053 5.0 0.069 0.016 

9 0.929 -5.0 0.842 5.0 0.867 0.087 

10 3.146 -5.0 3.146 -5.0 3.146 0.000 

11 4.050 -4.2 3.999 5.0 4.042 0.050 

12 1.214 -5.0 0.973 5.0 1.137 0.240 

13 0.084 5.0 0.059 -3.8 0.067 0.026 

14 1.133 5.0 0.933 -5.0 1.026 0.200 

15 3.032 5.0 2.778 -5.0 2.908 0.254 

16 2.379 3.8 2.087 -5.0 2.332 0.292 

17 0.076 5.0 0.006 -5.0 0.030 0.069 

18 0.713 5.0 0.426 -5.0 0.560 0.288 

19 1.418 0.8 1.365 -5.0 1.416 0.053 

Source 4 

1 1.471 0.8 1.416 -5.0 1.470 0.055 

2 0.762 5.0 0.457 -5.0 0.600 0.305 

3 0.082 5.0 0.008 -5.0 0.034 0.075 

4 2.395 3.8 2.090 -5.0 2.342 0.306 

5 3.103 5.0 2.848 -5.0 2.979 0.255 

6 1.163 5.0 0.956 -5.0 1.053 0.207 

7 0.087 5.0 0.062 -4.2 0.071 0.026 

8 1.212 -5.0 0.969 5.0 1.133 0.243 

9 4.049 -5.0 3.989 5.0 4.037 0.060 

10 3.145 -5.0 3.145 -5.0 3.145 0.000 

11 0.928 -5.0 0.849 5.0 0.870 0.079 
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12 0.071 -1.3 0.053 5.0 0.070 0.017 

13 1.622 -5.0 1.366 5.0 1.553 0.256 

14 2.930 -5.0 2.810 5.0 2.877 0.120 

15 1.735 -5.0 1.554 5.0 1.648 0.182 

16 0.324 -5.0 0.263 5.0 0.288 0.061 

17 1.015 5.0 0.801 -5.0 0.929 0.214 

18 0.923 -5.0 0.752 5.0 0.848 0.172 

19 0.411 -5.0 0.216 5.0 0.306 0.195 

 

 

 

Summary of the Power Coupled to the Detectors During XY-Movement of the 

Mirror System (Primary and Secondary Combined)  

Detector Max x y Min x y Cen. Range 

 (mW) (mm) (mm) (mW) (mm) (mm) (mW) (mW) 

Source 1 

1 1.7290 0.0 0.0 1.5080 0.5 0.4 1.7290 0.2210 

2 2.5660 0.1 -0.5 2.4830 0.0 0.0 2.4830 0.0830 

3 1.2210 0.5 -0.1 1.0590 0.0 0.0 1.0590 0.1620 

4 0.9790 0.0 0.0 0.8680 0.5 -0.1 0.9790 0.1110 

5 3.4780 0.0 0.0 3.2680 0.5 0.5 3.4780 0.2100 

6 3.3980 0.5 -0.5 3.3130 0.0 0.0 3.3130 0.0850 

7 0.7210 0.0 0.0 0.5300 -0.5 -0.3 0.7210 0.1910 

8 0.1720 0.0 0.0 0.1330 0.5 0.5 0.1720 0.0390 

9 1.6980 0.0 0.0 1.4690 0.5 0.5 1.6980 0.2290 

10 3.6570 -0.5 -0.5 3.3360 0.5 0.5 3.5020 0.3210 

11 2.3530 -0.4 -0.5 2.2020 0.5 0.5 2.2450 0.1510 

12 0.3960 0.0 0.0 0.3630 -0.2 0.5 0.3960 0.0330 

13 0.1030 -0.5 0.5 0.0900 0.5 -0.5 0.0920 0.0130 

14 1.0950 -0.5 -0.5 0.9040 0.5 0.5 1.0090 0.1910 

15 1.6510 -0.5 -0.5 1.4150 0.5 0.5 1.4300 0.2360 

16 0.5920 -0.4 -0.5 0.5130 0.5 0.5 0.5280 0.0790 

17 0.0290 0.3 0.5 0.0180 0.0 0.0 0.0180 0.0110 

18 0.1380 -0.5 -0.5 0.1000 0.0 0.0 0.1000 0.0380 

19 0.1230 -0.5 -0.5 0.0910 0.5 0.5 0.1010 0.0320 

Source 2 

1 0.0790 0.5 0.5 0.0580 -0.5 -0.5 0.0680 0.0210 
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2 0.1260 0.5 0.5 0.0950 -0.5 -0.5 0.1020 0.0310 

3 0.0490 -0.3 -0.5 0.0260 0.0 0.0 0.0260 0.0230 

4 0.3680 0.5 0.5 0.3160 -0.1 -0.5 0.3200 0.0520 

5 1.2760 0.5 0.5 1.0860 -0.5 -0.5 1.1410 0.1900 

6 1.0570 0.5 0.5 0.8750 -0.5 -0.5 0.9930 0.1820 

7 0.2140 0.2 0.5 0.1780 0.0 0.0 0.1780 0.0360 

8 0.1500 -0.5 0.5 0.1270 0.3 -0.5 0.1490 0.0230 

9 1.5240 -0.2 0.5 1.4060 0.5 -0.5 1.4390 0.1180 

10 3.1390 0.5 0.5 2.8200 -0.5 -0.5 2.9810 0.3190 

11 1.9210 0.0 0.0 1.6550 -0.5 -0.5 1.9210 0.2660 

12 0.3000 0.0 0.0 0.2270 -0.5 0.5 0.3000 0.0730 

13 0.4050 0.0 0.0 0.2990 0.5 0.3 0.4050 0.1060 

14 2.5490 -0.2 0.5 2.3790 0.0 0.0 2.3790 0.1700 

15 3.3030 0.5 0.5 3.0910 -0.5 -0.5 3.2310 0.2120 

16 1.2280 0.5 -0.5 1.1450 -0.5 0.5 1.1830 0.0830 

17 0.7570 -0.5 0.4 0.5980 0.0 0.0 0.5980 0.1590 

18 2.1850 -0.1 0.5 2.0130 0.0 0.0 2.0130 0.1720 

19 1.8340 0.0 0.0 1.6720 -0.5 -0.4 1.8340 0.1620 

Source 3 

1 0.3220 0.0 0.0 0.2100 0.5 -0.5 0.3220 0.1120 

2 0.9030 0.0 0.0 0.7530 0.5 0.3 0.9030 0.1500 

3 1.0680 -0.1 0.4 0.9710 0.0 0.0 0.9710 0.0970 

4 0.2910 0.0 0.0 0.2430 0.5 -0.5 0.2910 0.0480 

5 1.6740 0.0 0.0 1.5020 0.5 -0.5 1.6740 0.1720 

6 2.9870 -0.5 0.5 2.7720 0.5 -0.5 2.9470 0.2150 

7 1.5710 0.0 0.0 1.2620 -0.5 -0.5 1.5710 0.3090 

8 0.0690 0.0 0.0 0.0500 0.5 -0.4 0.0690 0.0190 

9 0.9060 -0.5 0.5 0.7800 0.5 -0.5 0.8670 0.1260 

10 3.2780 -0.5 0.5 3.0160 0.5 -0.5 3.1460 0.2620 

11 4.0660 -0.5 0.5 3.9220 0.5 -0.5 4.0420 0.1440 

12 1.1370 0.0 0.0 0.9460 -0.5 -0.5 1.1370 0.1910 

13 0.0960 -0.5 0.5 0.0670 0.0 0.0 0.0670 0.0290 

14 1.1940 -0.5 0.5 1.0260 0.0 0.0 1.0260 0.1680 

15 3.1550 -0.5 0.5 2.8970 0.5 -0.5 2.9080 0.2580 

16 2.3850 0.5 -0.2 2.3180 -0.5 0.5 2.3320 0.0670 

17 0.0850 -0.5 0.5 0.0300 0.0 0.0 0.0300 0.0550 

18 0.7730 0.1 0.5 0.5600 0.0 0.0 0.5600 0.2130 

19 1.4260 0.3 0.5 1.3420 -0.3 -0.5 1.4160 0.0840 
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Source 4 

1 1.4810 -0.3 -0.5 1.3990 0.3 0.5 1.4700 0.0820 

2 0.8240 -0.1 -0.5 0.6000 0.0 0.0 0.6000 0.2240 

3 0.0930 0.5 -0.5 0.0340 0.0 0.0 0.0340 0.0590 

4 2.4070 -0.5 0.2 2.3340 0.5 -0.5 2.3420 0.0730 

5 3.2270 0.5 -0.5 2.9660 -0.5 0.5 2.9790 0.2610 

6 1.2250 0.5 -0.5 1.0530 0.0 0.0 1.0530 0.1720 

7 0.0990 0.5 -0.5 0.0710 0.0 0.0 0.0710 0.0280 

8 1.1330 0.0 0.0 0.9410 0.5 0.5 1.1330 0.1920 

9 4.0570 0.5 -0.5 3.9110 -0.5 0.5 4.0370 0.1460 

10 3.2770 0.5 -0.5 3.0140 -0.5 0.5 3.1450 0.2630 

11 0.9120 0.5 -0.5 0.7870 -0.5 0.5 0.8700 0.1250 

12 0.0700 0.0 0.0 0.0500 -0.5 0.4 0.0700 0.0200 

13 1.5530 0.0 0.0 1.2560 0.5 0.5 1.5530 0.2970 

14 2.9170 0.5 -0.5 2.7050 -0.5 0.5 2.8770 0.2120 

15 1.6480 0.0 0.0 1.4790 -0.5 0.5 1.6480 0.1690 

16 0.2880 0.0 0.0 0.2400 -0.5 0.5 0.2880 0.0480 

17 1.0260 0.5 -0.4 0.9290 0.0 0.0 0.9290 0.0970 

18 0.8480 0.0 0.0 0.7080 -0.5 -0.5 0.8480 0.1400 

19 0.3060 0.0 0.0 0.1990 -0.5 0.5 0.3060 0.1070 

 

 

 

Summary of the Power Coupled to the Detectors During Z-

Movement of the Mirror System (Primary and Secondary 

Combined)  

Detector Max z Min z Cen. Range 

 (mW) (mm) (mW) (mm) (mW) (mW) 

Source 1 

1 1.5540 2.5 1.5460 -2.5 1.5500 0.0070 

2 2.5660 2.5 2.5250 -2.5 2.5460 0.0410 

3 1.1860 -2.5 1.1700 2.5 1.1780 0.0160 

4 0.9130 -2.5 0.8990 2.5 0.9060 0.0140 

5 3.4010 2.5 3.3350 -2.5 3.3680 0.0670 

6 3.3910 2.5 3.3280 -2.5 3.3600 0.0630 

7 0.5860 -2.5 0.5730 2.5 0.5800 0.0130 

8 0.1430 -2.5 0.1360 2.5 0.1400 0.0070 
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9 1.5680 2.5 1.5660 -2.5 1.5670 0.0020 

10 3.5330 2.5 3.4710 -2.5 3.5020 0.0620 

11 2.2940 2.5 2.2670 -2.5 2.2800 0.0270 

12 0.3810 -2.5 0.3670 2.5 0.3740 0.0130 

13 0.1020 -2.5 0.0920 2.5 0.0970 0.0100 

14 0.9970 -2.5 0.9950 2.5 0.9960 0.0020 

15 1.5320 -2.5 1.5290 2.5 1.5310 0.0020 

16 0.5560 -2.5 0.5460 2.5 0.5510 0.0110 

17 0.0280 2.5 0.0260 -2.5 0.0270 0.0010 

18 0.1200 -2.5 0.1100 2.5 0.1150 0.0100 

19 0.1120 -2.5 0.1010 2.5 0.1060 0.0110 

Source 2 

1 0.0700 -2.5 0.0640 2.5 0.0670 0.0060 

2 0.1110 -2.5 0.1020 2.5 0.1060 0.0090 

3 0.0460 2.5 0.0450 -2.5 0.0460 0.0010 

4 0.3490 -2.5 0.3360 2.5 0.3420 0.0130 

5 1.1800 -2.5 1.1780 2.5 1.1780 0.0020 

6 0.9620 2.5 0.9610 -0.8 0.9610 0.0010 

7 0.2120 -2.5 0.1980 2.5 0.2050 0.0130 

8 0.1380 -2.5 0.1320 2.5 0.1350 0.0060 

9 1.4700 2.5 1.4620 -2.5 1.4660 0.0080 

10 3.0070 2.5 2.9560 -2.5 2.9810 0.0520 

11 1.7900 2.5 1.7720 -2.5 1.7810 0.0180 

12 0.2560 -2.5 0.2450 2.5 0.2500 0.0110 

13 0.3310 -2.5 0.3200 2.5 0.3260 0.0110 

14 2.4990 2.5 2.4630 -2.5 2.4810 0.0360 

15 3.2330 2.5 3.1760 -2.5 3.2040 0.0560 

16 1.1970 -2.5 1.1850 2.5 1.1910 0.0130 

17 0.7280 -2.5 0.7150 2.5 0.7220 0.0140 

18 2.1580 2.5 2.1240 -2.5 2.1410 0.0350 

19 1.7360 2.5 1.7240 -2.5 1.7300 0.0130 

Source 3 

1 0.2300 -2.5 0.2270 2.5 0.2290 0.0040 

2 0.8080 2.5 0.7920 -2.5 0.8000 0.0160 

3 1.0580 1.5 1.0560 -2.5 1.0570 0.0010 

4 0.2730 -2.5 0.2600 2.5 0.2660 0.0130 

5 1.5800 2.5 1.5750 -2.5 1.5770 0.0050 

6 2.8980 2.5 2.8560 -2.5 2.8780 0.0420 
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7 1.3790 -2.5 1.3670 2.5 1.3730 0.0120 

8 0.0550 -2.5 0.0520 2.5 0.0530 0.0030 

9 0.8500 -2.5 0.8360 2.5 0.8420 0.0140 

10 3.1860 2.5 3.1090 -2.5 3.1460 0.0770 

11 4.0440 2.5 3.9550 -2.5 3.9990 0.0890 

12 0.9800 -2.5 0.9660 2.5 0.9730 0.0140 

13 0.0890 -2.5 0.0800 2.5 0.0840 0.0100 

14 1.1410 -2.5 1.1250 2.5 1.1330 0.0160 

15 3.0570 2.5 3.0070 -2.5 3.0320 0.0500 

16 2.3770 -2.5 2.3670 2.5 2.3720 0.0100 

17 0.0780 -2.5 0.0730 2.5 0.0760 0.0050 

18 0.7200 2.5 0.7060 -2.5 0.7130 0.0140 

19 1.3980 2.5 1.3750 -2.5 1.3870 0.0230 

Source 4 

1 1.4530 2.5 1.4300 -2.5 1.4410 0.0230 

2 0.7690 2.5 0.7550 -2.5 0.7620 0.0140 

3 0.0850 -2.5 0.0800 2.5 0.0820 0.0050 

4 2.3960 -2.5 2.3860 2.5 2.3910 0.0100 

5 3.1280 2.5 3.0780 -2.5 3.1030 0.0510 

6 1.1710 -2.5 1.1550 2.5 1.1630 0.0160 

7 0.0930 -2.5 0.0830 2.5 0.0870 0.0100 

8 0.9760 -2.5 0.9620 2.5 0.9690 0.0140 

9 4.0330 2.5 3.9460 -2.5 3.9890 0.0870 

10 3.1860 2.5 3.1080 -2.5 3.1450 0.0780 

11 0.8560 -2.5 0.8420 2.5 0.8490 0.0140 

12 0.0550 -2.5 0.0520 2.5 0.0530 0.0030 

13 1.3720 -2.5 1.3590 2.5 1.3660 0.0120 

14 2.8300 2.5 2.7890 -2.5 2.8100 0.0410 

15 1.5560 2.5 1.5510 -2.5 1.5540 0.0050 

16 0.2700 -2.5 0.2570 2.5 0.2630 0.0130 

17 1.0160 2.5 1.0130 -2.5 1.0150 0.0020 

18 0.7590 2.5 0.7440 -2.5 0.7520 0.0150 

19 0.2180 -2.5 0.2140 2.5 0.2160 0.0040 
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Summary of the Power Coupled to the Detectors For a 1mm Mirror Contraction 

Detector S1 Co S1 X S2 Co S2 X S3 Co S3 X S4 Co S4 X 

1 1.5203 0.0017 0.0624 0.0019 0.2134 0.0017 1.3900 0.0201 

2 2.4840 0.0211 0.0811 0.0215 0.7467 0.0135 0.6841 0.0448 

3 1.1454 0.0193 0.0187 0.0230 1.0010 0.0351 0.0651 0.0115 

4 0.8576 0.0294 0.3193 0.0111 0.2209 0.0332 2.3669 0.0031 

5 3.3100 0.0001 1.1423 0.0014 1.5173 0.0061 3.0278 0.0062 

6 3.3084 0.0032 0.9243 0.0081 2.8037 0.0034 1.1175 0.0015 

7 0.5674 0.0043 0.1937 0.0003 1.3724 0.0009 0.0758 0.0072 

8 0.1041 0.0292 0.1005 0.0295 0.0197 0.0309 0.9286 0.0257 

9 1.5209 0.0054 1.4167 0.0078 0.7910 0.0221 3.9401 0.0014 

10 3.4177 0.0001 2.8987 0.0000 3.0506 0.0004 3.0501 0.0004 

11 2.2216 0.0043 1.7365 0.0024 3.9505 0.0014 0.7976 0.0222 

12 0.3226 0.0404 0.2214 0.0243 0.9319 0.0265 0.0199 0.0308 

13 0.0905 0.0000 0.3128 0.0055 0.0730 0.0069 1.3643 0.0010 

14 0.9561 0.0110 2.4304 0.0021 1.0882 0.0015 2.7362 0.0035 

15 1.4853 0.0049 3.1507 0.0006 2.9576 0.0062 1.4953 0.0060 

16 0.5274 0.0090 1.1538 0.0174 2.3481 0.0030 0.2189 0.0328 

17 0.0024 0.0226 0.6937 0.0136 0.0586 0.0115 0.9580 0.0353 

18 0.0824 0.0295 2.0722 0.0271 0.6367 0.0444 0.6996 0.0138 

19 0.0974 0.0055 1.6983 0.0002 1.3362 0.0205 0.2019 0.0016 

Sn Co represents source n co-polar component. 

Sn X represents source n cross-polar component. 
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Appendix D 

 

Frequency Dependence Data   
 

 

 Range represents the range of coupled power over all frequencies. 

 Avg. represents the average of coupled power over all frequencies. 

 

 

Summary of the Power Coupled (mW) to the Detectors at Varying Operating 

Frequencies from Each Source 

Source 1 

Detector 80GHz 81GHz 82GHz 83GHz 84GHz 85GHz 86GHz 87GHz 

1 1.858 1.845 1.832 1.819 1.808 1.798 1.789 1.778 

2 2.556 2.557 2.557 2.553 2.547 2.539 2.530 2.521 

3 1.313 1.290 1.265 1.238 1.212 1.186 1.162 1.137 

4 0.959 0.967 0.973 0.977 0.978 0.978 0.978 0.979 

5 2.641 2.735 2.829 2.920 3.008 3.091 3.171 3.250 

6 2.514 2.605 2.696 2.782 2.864 2.941 3.016 3.090 

7 0.672 0.683 0.691 0.698 0.703 0.708 0.711 0.714 

8 0.310 0.300 0.288 0.275 0.262 0.248 0.234 0.219 

9 1.560 1.580 1.594 1.604 1.610 1.617 1.627 1.642 

10 2.891 2.966 3.028 3.077 3.122 3.169 3.225 3.290 

11 1.979 1.998 2.018 2.040 2.066 2.096 2.130 2.164 

12 0.455 0.455 0.456 0.456 0.455 0.453 0.447 0.439 

13 0.223 0.203 0.187 0.173 0.161 0.149 0.138 0.126 

14 0.920 0.903 0.895 0.899 0.914 0.937 0.962 0.985 

15 1.214 1.221 1.240 1.268 1.303 1.338 1.370 1.395 

16 0.685 0.662 0.644 0.626 0.610 0.594 0.580 0.566 

17 0.052 0.045 0.040 0.035 0.031 0.027 0.024 0.021 

18 0.188 0.179 0.172 0.164 0.156 0.146 0.136 0.125 

19 0.240 0.227 0.213 0.197 0.181 0.164 0.148 0.134 

Detector 88GHz 89GHz 90GHz 91GHz 92GHz 93GHz 94GHz 95GHz 

1 1.764 1.748 1.550 1.710 1.690 1.670 1.648 1.626 

2 2.509 2.497 2.546 2.468 2.453 2.439 2.426 2.412 

3 1.113 1.087 1.178 1.027 0.995 0.962 0.931 0.900 

4 0.980 0.980 0.906 0.976 0.972 0.965 0.957 0.946 
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5 3.328 3.404 3.368 3.546 3.607 3.658 3.701 3.735 

6 3.165 3.241 3.360 3.380 3.437 3.485 3.525 3.558 

7 0.716 0.719 0.580 0.723 0.724 0.722 0.718 0.712 

8 0.203 0.188 0.140 0.156 0.142 0.128 0.117 0.107 

9 1.660 1.680 1.567 1.709 1.713 1.710 1.704 1.698 

10 3.363 3.435 3.502 3.560 3.607 3.648 3.689 3.738 

11 2.196 2.223 2.280 2.262 2.277 2.291 2.304 2.318 

12 0.427 0.413 0.374 0.376 0.355 0.333 0.310 0.289 

13 0.114 0.103 0.097 0.081 0.073 0.066 0.061 0.058 

14 1.001 1.009 0.996 1.006 1.003 1.005 1.013 1.026 

15 1.411 1.421 1.531 1.440 1.457 1.481 1.511 1.544 

16 0.553 0.540 0.551 0.517 0.506 0.496 0.485 0.475 

17 0.019 0.018 0.027 0.020 0.022 0.026 0.029 0.034 

18 0.115 0.106 0.115 0.096 0.096 0.098 0.101 0.103 

19 0.121 0.111 0.106 0.093 0.084 0.076 0.069 0.062 

Detector 96GHz 97GHz 98GHz 99GHz 100GHz Range Avg.  

1 1.603 1.578 1.553 1.526 1.500 0.359 1.700  

2 2.398 2.383 2.367 2.349 2.329 0.228 2.473  

3 0.870 0.840 0.809 0.778 0.746 0.567 1.049  

4 0.935 0.923 0.911 0.898 0.884 0.096 0.953  

5 3.765 3.791 3.817 3.843 3.870 1.230 3.385  

6 3.586 3.611 3.632 3.650 3.666 1.152 3.229  

7 0.702 0.690 0.677 0.663 0.649 0.144 0.694  

8 0.100 0.095 0.091 0.089 0.088 0.222 0.180  

9 1.693 1.691 1.693 1.696 1.701 0.152 1.655  

10 3.799 3.875 3.966 4.067 4.173 1.282 3.485  

11 2.332 2.346 2.360 2.373 2.384 0.405 2.211  

12 0.269 0.250 0.234 0.220 0.208 0.249 0.365  

13 0.056 0.054 0.054 0.052 0.051 0.172 0.109  

14 1.043 1.059 1.071 1.076 1.074 0.181 0.990  

15 1.578 1.607 1.629 1.642 1.646 0.432 1.440  

16 0.464 0.452 0.441 0.430 0.419 0.266 0.538  

17 0.038 0.043 0.048 0.053 0.059 0.041 0.034  

18 0.105 0.105 0.104 0.103 0.102 0.092 0.124  

19 0.055 0.049 0.045 0.041 0.039 0.201 0.117  

Source 2 

Detector 80GHz 81GHz 82GHz 83GHz 84GHz 85GHz 86GHz 87GHz 

1 0.159 0.147 0.138 0.130 0.124 0.118 0.110 0.101 

2 0.199 0.192 0.184 0.173 0.161 0.148 0.135 0.123 
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3 0.091 0.080 0.071 0.063 0.055 0.048 0.042 0.037 

4 0.450 0.434 0.414 0.394 0.376 0.362 0.351 0.342 

5 0.983 0.982 0.987 1.002 1.024 1.052 1.080 1.106 

6 0.904 0.905 0.912 0.922 0.933 0.943 0.951 0.958 

7 0.397 0.372 0.346 0.319 0.293 0.269 0.248 0.228 

8 0.260 0.256 0.249 0.241 0.231 0.218 0.205 0.190 

9 1.297 1.323 1.344 1.358 1.368 1.375 1.382 1.391 

10 2.433 2.472 2.506 2.542 2.585 2.638 2.701 2.772 

11 1.711 1.731 1.754 1.780 1.808 1.836 1.860 1.880 

12 0.362 0.354 0.348 0.342 0.337 0.332 0.327 0.322 

13 0.437 0.433 0.429 0.426 0.424 0.423 0.421 0.419 

14 1.988 2.041 2.094 2.144 2.189 2.228 2.262 2.293 

15 2.498 2.600 2.693 2.775 2.847 2.910 2.971 3.032 

16 0.973 1.001 1.028 1.055 1.080 1.103 1.124 1.142 

17 0.808 0.791 0.774 0.756 0.736 0.714 0.691 0.668 

18 2.041 2.048 2.053 2.056 2.055 2.050 2.044 2.038 

19 1.888 1.891 1.891 1.886 1.878 1.869 1.861 1.855 

Detector 88GHz 89GHz 90GHz 91GHz 92GHz 93GHz 94GHz 95GHz 

1 0.090 0.079 0.067 0.059 0.051 0.045 0.041 0.038 

2 0.114 0.107 0.106 0.100 0.098 0.096 0.094 0.092 

3 0.033 0.029 0.046 0.024 0.022 0.022 0.022 0.023 

4 0.335 0.328 0.342 0.310 0.299 0.286 0.274 0.262 

5 1.125 1.137 1.178 1.142 1.141 1.143 1.151 1.166 

6 0.967 0.978 0.961 1.012 1.034 1.056 1.077 1.096 

7 0.210 0.193 0.205 0.164 0.151 0.138 0.127 0.116 

8 0.176 0.162 0.135 0.138 0.128 0.120 0.114 0.109 

9 1.403 1.420 1.466 1.457 1.472 1.480 1.482 1.479 

10 2.845 2.917 2.981 3.037 3.085 3.127 3.170 3.219 

11 1.896 1.909 1.781 1.933 1.948 1.963 1.978 1.993 

12 0.316 0.309 0.250 0.291 0.279 0.267 0.254 0.240 

13 0.416 0.412 0.326 0.397 0.387 0.375 0.364 0.351 

14 2.322 2.350 2.481 2.408 2.436 2.462 2.483 2.497 

15 3.097 3.163 3.204 3.296 3.357 3.413 3.465 3.513 

16 1.158 1.172 1.191 1.191 1.197 1.200 1.201 1.200 

17 0.645 0.622 0.722 0.574 0.549 0.524 0.499 0.473 

18 2.031 2.024 2.141 1.996 1.975 1.950 1.924 1.899 

19 1.849 1.843 1.730 1.823 1.810 1.797 1.784 1.770 

Detector 96GHz 97GHz 98GHz 99GHz 100GHz Range Avg.  

1 0.036 0.034 0.032 0.030 0.027 0.131 0.079  
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2 0.090 0.087 0.086 0.085 0.085 0.114 0.122  

3 0.025 0.028 0.031 0.034 0.038 0.069 0.041  

4 0.252 0.244 0.238 0.234 0.230 0.220 0.322  

5 1.188 1.214 1.238 1.257 1.266 0.284 1.122  

6 1.112 1.123 1.130 1.132 1.131 0.228 1.011  

7 0.107 0.098 0.091 0.086 0.081 0.316 0.202  

8 0.106 0.104 0.103 0.102 0.101 0.158 0.164  

9 1.474 1.469 1.467 1.469 1.475 0.185 1.422  

10 3.276 3.344 3.421 3.501 3.581 1.148 2.960  

11 2.005 2.016 2.024 2.030 2.034 0.323 1.899  

12 0.226 0.211 0.198 0.185 0.173 0.189 0.282  

13 0.339 0.327 0.316 0.304 0.292 0.145 0.382  

14 2.504 2.504 2.500 2.494 2.488 0.516 2.341  

15 3.559 3.603 3.646 3.691 3.735 1.236 3.194  

16 1.197 1.193 1.188 1.183 1.177 0.229 1.141  

17 0.448 0.425 0.402 0.379 0.356 0.452 0.598  

18 1.876 1.855 1.834 1.810 1.784 0.357 1.975  

19 1.753 1.733 1.708 1.680 1.650 0.241 1.807  

Source 3 

Detector 80GHz 81GHz 82GHz 83GHz 84GHz 85GHz 86GHz 87GHz 

1 0.509 0.493 0.477 0.460 0.442 0.423 0.402 0.381 

2 1.314 1.275 1.235 1.194 1.152 1.110 1.067 1.026 

3 1.253 1.236 1.214 1.188 1.161 1.132 1.102 1.070 

4 0.406 0.392 0.378 0.366 0.357 0.350 0.343 0.333 

5 1.620 1.620 1.615 1.607 1.602 1.604 1.616 1.634 

6 2.920 2.944 2.958 2.964 2.964 2.960 2.957 2.955 

7 1.434 1.461 1.484 1.506 1.524 1.538 1.548 1.555 

8 0.090 0.090 0.090 0.089 0.087 0.084 0.080 0.077 

9 0.930 0.935 0.948 0.961 0.969 0.966 0.951 0.927 

10 2.828 2.834 2.853 2.886 2.928 2.972 3.010 3.041 

11 3.435 3.513 3.590 3.669 3.747 3.820 3.883 3.935 

12 1.111 1.140 1.163 1.179 1.188 1.190 1.188 1.181 

13 0.180 0.164 0.149 0.134 0.122 0.113 0.104 0.095 

14 1.194 1.176 1.153 1.126 1.100 1.079 1.066 1.058 

15 2.909 2.939 2.958 2.965 2.961 2.952 2.941 2.932 

16 1.986 2.040 2.087 2.130 2.167 2.200 2.229 2.257 

17 0.143 0.128 0.114 0.101 0.089 0.077 0.066 0.055 

18 0.926 0.888 0.852 0.817 0.781 0.745 0.707 0.668 

19 1.650 1.645 1.635 1.620 1.599 1.574 1.545 1.514 
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Detector 88GHz 89GHz 90GHz 91GHz 92GHz 93GHz 94GHz 95GHz 

1 0.360 0.340 0.229 0.304 0.287 0.268 0.250 0.231 

2 0.985 0.944 0.800 0.863 0.824 0.787 0.751 0.716 

3 1.038 1.005 1.057 0.936 0.901 0.866 0.830 0.793 

4 0.321 0.307 0.266 0.276 0.261 0.248 0.238 0.229 

5 1.653 1.668 1.577 1.672 1.665 1.658 1.655 1.659 

6 2.954 2.952 2.878 2.938 2.928 2.918 2.910 2.904 

7 1.561 1.567 1.373 1.574 1.575 1.573 1.566 1.554 

8 0.074 0.071 0.053 0.066 0.063 0.058 0.052 0.046 

9 0.901 0.879 0.842 0.866 0.872 0.879 0.883 0.878 

10 3.067 3.100 3.146 3.211 3.294 3.388 3.483 3.573 

11 3.977 4.011 3.999 4.071 4.100 4.129 4.160 4.192 

12 1.170 1.155 0.973 1.117 1.096 1.075 1.055 1.037 

13 0.086 0.076 0.084 0.058 0.050 0.044 0.039 0.035 

14 1.052 1.042 1.133 1.002 0.974 0.946 0.923 0.908 

15 2.925 2.918 3.032 2.895 2.879 2.863 2.850 2.841 

16 2.285 2.310 2.372 2.350 2.364 2.373 2.378 2.379 

17 0.045 0.037 0.076 0.024 0.019 0.015 0.012 0.010 

18 0.630 0.594 0.713 0.528 0.498 0.469 0.440 0.411 

19 1.482 1.449 1.387 1.382 1.347 1.310 1.273 1.234 

Detector 96GHz 97GHz 98GHz 99GHz 100GHz Range Avg.  

1 0.212 0.195 0.179 0.164 0.149 0.360 0.322  

2 0.682 0.647 0.613 0.581 0.550 0.765 0.910  

3 0.756 0.717 0.678 0.639 0.601 0.653 0.961  

4 0.221 0.214 0.206 0.196 0.186 0.220 0.290  

5 1.669 1.683 1.695 1.703 1.704 0.126 1.647  

6 2.900 2.896 2.893 2.892 2.894 0.087 2.928  

7 1.537 1.518 1.494 1.467 1.437 0.202 1.516  

8 0.041 0.037 0.035 0.035 0.036 0.055 0.065  

9 0.865 0.846 0.826 0.808 0.796 0.173 0.892  

10 3.655 3.731 3.805 3.884 3.970 1.143 3.269  

11 4.226 4.262 4.300 4.344 4.391 0.957 3.988  

12 1.022 1.009 0.997 0.986 0.976 0.217 1.096  

13 0.032 0.030 0.027 0.024 0.023 0.158 0.080  

14 0.899 0.895 0.890 0.881 0.868 0.326 1.017  

15 2.836 2.834 2.832 2.831 2.831 0.201 2.901  

16 2.376 2.371 2.363 2.352 2.340 0.393 2.272  

17 0.008 0.008 0.009 0.010 0.012 0.135 0.050  

18 0.381 0.353 0.327 0.303 0.280 0.645 0.586  
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19 1.195 1.156 1.116 1.075 1.034 0.616 1.392  

Source 4 

Detector 80GHz 81GHz 82GHz 83GHz 84GHz 85GHz 86GHz 87GHz 

1 1.688 1.685 1.676 1.661 1.642 1.619 1.592 1.562 

2 0.973 0.936 0.900 0.865 0.829 0.791 0.751 0.711 

3 0.152 0.137 0.123 0.109 0.096 0.084 0.072 0.061 

4 1.980 2.034 2.082 2.126 2.164 2.198 2.229 2.260 

5 2.952 2.986 3.008 3.017 3.017 3.010 3.003 2.998 

6 1.223 1.205 1.180 1.153 1.128 1.108 1.096 1.088 

7 0.184 0.168 0.152 0.139 0.127 0.118 0.109 0.100 

8 1.105 1.134 1.157 1.173 1.182 1.185 1.183 1.176 

9 3.432 3.511 3.588 3.666 3.744 3.816 3.880 3.931 

10 2.831 2.837 2.855 2.887 2.929 2.973 3.011 3.041 

11 0.932 0.937 0.950 0.963 0.971 0.968 0.953 0.929 

12 0.091 0.091 0.091 0.091 0.088 0.085 0.081 0.077 

13 1.435 1.461 1.484 1.504 1.521 1.533 1.541 1.546 

14 2.874 2.894 2.906 2.910 2.907 2.900 2.894 2.889 

15 1.593 1.595 1.590 1.583 1.577 1.579 1.589 1.607 

16 0.405 0.390 0.376 0.363 0.353 0.345 0.337 0.328 

17 1.223 1.205 1.182 1.155 1.127 1.096 1.065 1.031 

18 1.254 1.214 1.174 1.133 1.091 1.049 1.007 0.967 

19 0.488 0.472 0.457 0.441 0.424 0.405 0.385 0.365 

Detector 88GHz 89GHz 90GHz 91GHz 92GHz 93GHz 94GHz 95GHz 

1 1.532 1.501 1.441 1.437 1.403 1.367 1.331 1.293 

2 0.672 0.635 0.762 0.567 0.536 0.505 0.474 0.443 

3 0.050 0.042 0.082 0.027 0.022 0.017 0.013 0.011 

4 2.289 2.317 2.391 2.362 2.379 2.391 2.399 2.402 

5 2.993 2.988 3.103 2.966 2.950 2.934 2.921 2.912 

6 1.082 1.071 1.163 1.027 0.998 0.969 0.947 0.932 

7 0.091 0.081 0.087 0.061 0.053 0.047 0.042 0.038 

8 1.166 1.151 0.969 1.113 1.093 1.072 1.052 1.034 

9 3.972 4.007 3.989 4.066 4.094 4.123 4.154 4.185 

10 3.067 3.099 3.145 3.211 3.294 3.387 3.483 3.574 

11 0.903 0.881 0.849 0.868 0.875 0.883 0.886 0.882 

12 0.074 0.072 0.053 0.067 0.063 0.058 0.052 0.047 

13 1.549 1.552 1.366 1.554 1.552 1.548 1.538 1.524 

14 2.886 2.883 2.810 2.868 2.857 2.847 2.839 2.834 

15 1.625 1.641 1.554 1.648 1.641 1.634 1.629 1.632 

16 0.317 0.303 0.263 0.273 0.258 0.245 0.234 0.225 
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17 0.998 0.964 1.015 0.894 0.858 0.823 0.787 0.750 

18 0.927 0.887 0.752 0.809 0.772 0.736 0.702 0.669 

19 0.344 0.324 0.216 0.288 0.271 0.253 0.235 0.217 

Detector 96GHz 97GHz 98GHz 99GHz 100GHz Range Avg.  

1 1.255 1.216 1.176 1.135 1.093 0.595 1.443  

2 0.413 0.383 0.355 0.330 0.306 0.667 0.626  

3 0.009 0.008 0.008 0.009 0.011 0.144 0.054  

4 2.402 2.400 2.395 2.388 2.378 0.422 2.284  

5 2.908 2.904 2.902 2.899 2.897 0.206 2.965  

6 0.925 0.920 0.915 0.905 0.891 0.333 1.044  

7 0.035 0.031 0.028 0.026 0.023 0.160 0.083  

8 1.019 1.005 0.993 0.982 0.972 0.216 1.091  

9 4.219 4.254 4.293 4.335 4.383 0.951 3.983  

10 3.656 3.731 3.806 3.885 3.973 1.141 3.270  

11 0.869 0.850 0.829 0.812 0.800 0.171 0.895  

12 0.041 0.038 0.035 0.035 0.036 0.056 0.065  

13 1.506 1.484 1.459 1.430 1.399 0.188 1.499  

14 2.830 2.826 2.824 2.823 2.826 0.100 2.863  

15 1.640 1.652 1.664 1.671 1.673 0.119 1.620  

16 0.218 0.210 0.202 0.193 0.183 0.222 0.287  

17 0.713 0.675 0.636 0.598 0.561 0.662 0.922  

18 0.636 0.603 0.570 0.539 0.510 0.744 0.857  

19 0.199 0.182 0.166 0.151 0.137 0.351 0.306  

 

 

 


