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Abstract. Results are presented from a numerical study of lattice QCD with gauge group SU(2) and two
flavors of Wilson fermion at non-zero quark chemical potential µ ≫ T . Studies of the equation of state,
the superfluid condensate, and the Polyakov line all suggest that in addition to the low density phase of
Bose-condensed diquark baryons, there is a deconfined phase at higher quark density in which quarks form
a degenerate system, whose Fermi surface is only mildly disrupted by Cooper pair condensation.

PACS. PACS-key 11.15.Ha – PACS-key 21.65.+f

1 Introduction

The phase structure of QCD at large baryon density is
one of the most fascinating areas of strong interaction
physics, and yet a systematic calculational approach to
this problem remains elusive. Lattice QCD simulation, the
usual non-perturbative approach of choice, fails dismally
because in Euclidean metric the quark action q̄M(µ)q,
where M = D/ [A] + µγ0 + m with µ the quark chemical
potential, results in a complex-valued path integral mea-
sure detM when µ 6= 0. Since µ > 0 promotes baryon
current flow in the positive t-direction, the fundamental
reason for this Sign Problem can be traced to the explicit
breaking of time reversal symmetry. Because the measure
no longer has an interpretation as a probability distribu-
tion, Monte-Carlo importance sampling, the mainstay of
lattice simulations, is completely ineffective in the ther-
modynamic limit.

It is instructive to ask what goes wrong when simula-
tions are performed with a measure detM †M which is pos-
itive definite by construction, as is the case for all practical
fermion algorithms. It turns out that while M describes a
color-triplet quark q ∈ 3, M † describes a conjugate quark
qc ∈ 3̄. The model’s spectrum thus contains gauge-singlet
qqc states, indistinguishable from mesons at µ = 0, but
carrying non-zero baryon number. As µ rises, baryonic
matter first appears in the ground state (i.e. nq > 0) at an
onset µo ∼ 1

2
mπ, i.e. with an energy per quark comparable

with the lightest baryon in the spectrum, which is degen-
erate with the pion, rather than the physically expected
µo ∼ 1

3
mnucleon. Only calculations performed with the

correct measure detNfM have cancellations among config-
urations, due to the fluctuating phase of the determinant,
which ensure that nq vanishes for 1

2
mπ < µ < 1

3
mnucleon.

For Two Color QCD (QC2D), ie. for gauge group SU(2),
this bug is actually a feature. Since q and q̄ live in equiva-
lent representations of the color group, hadron multiplets
contain both qq̄ mesons and qq baryons. It is correspond-
ingly straightforward to show that the quark determinant
is positive definite for even Nf [1]. QC2D is thus the sim-
plest model of dense strongly-interacting matter amenable
to study with orthodox lattice techniques. Additionally,
if there is a separation of scales mπ ≪ mρ in the spec-
trum, then at low densities attention may be focussed on
the Goldstone bosons of the system (both mesons and
baryons) using chiral perturbation theory (χPT) [2]. The
key result is that for µ ≥ µo = 1

2
mπ, a non-vanishing

quark density nq > 0 develops, along with a superfluid
diquark condensate 〈qq〉 6= 0. Just above onset, the sys-
tem is thus a textbook Bose Einstein Condensate (BEC)
formed from tightly bound scalar diquarks.

Using the χPT prediction for nq(µ) [2], it is simple
to develop the full equation of state, i.e. pressure p and
energy density εq, at T = 0 [3]:

nq = 8Nff
2
πµ

(

1 −
µ4

o

µ4

)

;

p =
∫ µ

µo
nqdµ = 4Nff

2
π

(

µ2 +
µ4

o

µ2
− 2µ2

o

)

; (1)

εq = −p+ µnq = 4Nff
2
π

(

µ2 − 3
µ4

o

µ2
+ 2µ2

o

)

;

〈qq〉 ∝

√

1 −
µ4

o

µ4
.

Here, fπ is a parameter of the model. Contrast this with
another paradigm for cold dense matter, namely a degen-
erate system of weakly-interacting massless quarks popu-
lating a Fermi sphere up to some maximum momentum



2 Simon Hands, Seyong Kim, Jon-Ivar Skullerud: Quark Matter in QC2D

1 1.5 2 2.5
µ/µ

o

0

0.5

1

1.5

2

nχPT
/n

SB

εχPT
/ε

SB

pχPT
/p

SB
µ

d
 /µ

o

Fig. 1. Model equation of state for f2

π = Nc/6π2

kF ≈ µ:

nq =
NfNc

3π2
µ3; εq = 3p =

NfNc

4π2
µ4. (2)

Superfluidity in this scenario arises from the condensation
of quark Cooper pairs within a layer of thickness∆ centred
on the Fermi surface, so that 〈qq〉 ∝ ∆µ2.

Fig. 1 plots nq, p and εq from (1), each divided by
the free field results (2), as functions of µ. On equat-
ing pressures, this naive model, which ignores all non-
Goldstone and gluonic degrees of freedom, predicts a first
order deconfining transition from BEC to “quark matter”
at µd ≈ 2.3µo with the choice fπ = Nc/6π

2.

2 Simulation

To test whether this prediction holds in a more systematic
calculation we have performed simulations of SU(2) lattice
gauge theory with Nf = 2 Wilson fermions with µ 6= 0 [3].
The Wilson formulation is not obviously a stupid choice:
Wilson fermions retain a conserved baryon charge; any
problems with chiral symmetry should dominate in the
low-k region of the quark dispersion curve, which lies at
the bottom of the Fermi Sea and is hence inert; moreover,
studies with free fermions show that saturation artifacts
due to the complete filling of the first Brillouin zone ac-
tually set in at higher values of µ than is the case for
staggered [4]. Most importantly, the eigenvalue spectrum
of the Wilson Dirac operator has the same symmetries as
that of continuum QC2D. As shown in [3], this fact per-
mits an exact ergodic hybrid Monte Carlo algorithm for
Nf = 2, with no requirement to take a fourth root, which
may be problematic for µ 6= 0 [5]. The only novelty of our
simulation is the inclusion of a diquark source term

jqq ≡ jκ(−ψ̄1(x)Cγ5τ2ψ̄
tr
2 (x) + ψtr

2 (x)Cγ5τ2ψ1(x)) (3)

in the dynamics, where subscripts label flavor and the
Pauli matrix acts on color. As well as making the algo-
rithm ergodic, setting j 6= 0 mitigates the effect of IR fluc-
tuations due to Goldstone modes in any superfluid phase,
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Fig. 2. Lattice equation of state for j = 0.04 (open symbols
give j → 0 extrapolation

and of course enables direct estimation of the 〈qq〉 con-
densate.

Our initial study has been performed on an 83 × 16
lattice using a standard Wilson gauge action, with param-
eters β = 1.7, κ = 0.178, and j = 0.04 (with a few points
taken at j = 0.02, 0.06). Studies of the static quark poten-
tial and the hadron spectrum at µ = 0 yield a = 0.220fm,
mπa = 0.79(1), and mπ/mρ = 0.80(1). 1 We thus expect
the onset of baryonic matter at µoa ≈ 0.4. Thermody-
namic observables are calculated as follows: quark density
is given by a local operator via

nq = −
∂ lnZ

∂µ
. (4)

As a component of a conserved current, it is immune from
quantum corrections, but may be affected by artifacts due
to a > 0, V <∞. We therefore prefer to quote our results
in terms of nq/n

latt
SB , where nlatt

SB (µ) is evaluated for free
massless quarks on the same lattice. The pressure follows
from an integral formula

p

pSB

=

∫ µ

µo

ncont
SB

nlatt
SB

nqdµ

/
∫ µ

µo

ncont
SB dµ. (5)

Note that although p is calculated purely in terms of quark
observables, it is in principle the pressure of the system
as a whole, although both continuum and thermodynamic
limits must eventually be taken. Finally, quark energy den-
sity is also estimated by a local operator

εq = κ
〈

ψ̄x(γ0−1)eµU0xψx+0̂
−ψ̄x(γ0+1)e−µU †

0x−0̂
ψx−0̂

〉

;

(6)
this requires both subtraction of the µ = 0 vacuum con-
tribution, and a µ-independent but as yet unknown mul-
tiplicative renormalisation. In what follows, therefore, the
shape of the curve is in principle correct, but the overall
scale still undetermined.

Fig. 2 summarises our results. Both nq and p start
to rise from zero at µa ≈ 0.3, although a careful j → 0

1 this corrects the value erroneously given in [3]
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Fig. 3. Order parameters 〈qq〉 and L vs. µ

extrapolation will be needed to pinpoint the onset with
any precision. By µa ≈ 0.5 both quantities scale with
µ in general accordance with free-field predictions, but
with approximately twice the expected value. One expla-
nation of this mismatch is that the system has formed a

Fermi sphere with µ = EF < kF ∝ n
1

3

q , which could be
attributed to a negative binding contribution to E from
interactions. The quark energy density, by contrast, in-
creases more slowly than free-field expectations up to µa ≈
0.65, whereupon free-field scaling sets in rather abruptly.
Another intriguing result [3] is that for 0.4 ≤ µa < 1.0
the gluon energy density εg (identically zero in free-field
theory) scales to quite high precision as µ4, the only phys-
ically sensible possibility once µ/T ≫ 1. Note that εg > 0
entirely as a result of interactions with the background
quark density, since this is the only means by which µ-
dependence can arise.

To elucidate what’s happening, Fig. 3 plots both the
superfluid order parameter 〈qq〉 divided by µ2, and the
Polyakov line L. For µa ≥ 0.5 it is clear the system is
in a superfluid phase, but what is remarkable is that at
µa ≈ 0.6 there is a sudden transition to a regime where
〈qq〉 ∝ µ2, as expected for BCS pairing at a Fermi surface.
At roughly the same point L rises from zero; although for
theories with fundamental matter L is not strictly an or-
der parameter, this is suggestive that at µa ≈ 0.65 there
is a deconfining transition, beyond which the effective de-
grees of freedom are best thought of as quarks (or even
quasiquarks), and not the scalar diquarks of χPT.

3 Discussion

Our initial study of thermodynamic quantities, and of
the properties of the ground state, strongly suggests that
QC2D at low temperature has at least two transitions as
chemical potential µ is raised. The first is between the
vacuum and a phase of Bose-condensed tightly-bound di-
quarks; the second, a relativistic analogue of the BEC/BCS
crossover currently discussed in both strongly-correlated
electron and cold atom systems, is a deconfining transition
to a system of degenerate quarks, the Fermi surface being
mildly disrupted by a Cooper pair condensate. Although
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Fig. 4. Energy per quark εq/nq vs. µ

QC2D clearly models nuclear matter unrealistically, its
description of quark matter may well prove to have much
in common with that of QCD. We are currently extend-
ing our study to the hadron spectrum, and to finer lattice
spacings to check that this conclusion is not due to lattice
artifacts. Interesting results obtained from a study of the
gluon propagator on the current system will be discussed
elsewhere [6,3]

Meanwhile it is hard to resist the temptation to spec-
ulate on what a Two Color Star might look like. Fig. 3
plots the energy per quark εq/nq versus µ using the data
of Fig. 2. The most striking feature of this plot is the
pronounced minimum at µa ≈ 0.8, which is both robust
(since it occurs even if corrections for a > 0, V < ∞ are
left out), and unexpected (since it does not occur for the
model EoS of Fig. 1). We infer that any large object as-
sembled from a fixed number of QC2D quarks, such as a
star, will have the bulk of its interior in the neighbour-
hood of this minimum, which as Fig. 3 shows, means that
the object would in effect be a quark star formed from de-
confined matter. Somewhat speculatively, we have labelled
the different regions of the µ-axis with the corresponding
layers of the star, although a quantitative solution for the
radial profile must await correctly-normalised calculations
of the energy densities εq and εg.
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