PHYSICAL REVIEW D 74, 014505 (2006)

Dynamical QCD simulations on anisotropic lattices
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The simulation of QCD on dynamical (N, = 2) anisotropic lattices is described. A method for
nonperturbative renormalisation of the parameters in the anisotropic gauge and quark actions is presented.
The precision with which this tuning can be carried out is determined in dynamical simulations on 8* X 48

and 83 X 80 lattices.

DOI: 10.1103/PhysRevD.74.014505

L. INTRODUCTION

The advantages of simulations with anisotropic lattices
are well understood and the method has been used for
precision determinations of an extensive range of quanti-
ties in the quenched approximation to QCD [1-6]. In
general a 3 + 1 anisotropy is employed where the lattice
spacing in the temporal direction, a,, is made fine while
keeping the spatial lattice spacing a, relatively coarse. The
advantages of this approach are two-fold. The improved
resolution in the temporal direction means that states
whose signal to noise ratio falls rapidly can be more
reliably determined. The high computational cost of this
improvement is offset by savings in the coarse spatial
directions.

The isotropic lattice (whose spacing in the four space-
time directions is a, = a, = a, = a, = a) regulates QCD
in a way that breaks the continuous Euclidean symmetry
down to the finite group of rotations of the hypercube.
Luckily the relevant operators that transform trivially
under these two groups are the same and so there is no
renormalisation of the speed of light on the isotropic
lattice. Once an explicitly anisotropic lattice action is in-
troduced with a, = a, = a, = a, and a, # a,, the rota-
tional symmetry of the theory is the cubic point group. For
the gluons, there are now two distinct operators not related
by rotations at dimension four: {TrE?, TrB?}; while for the
quarks the set of dimension four operators {/Py, miiy}
Srows to a set with three members:
{y: Dy, fryoDoih, mpip}. As a result, two new parame-
ters appear in the action, and for the continuum limit to
represent QCD these parameters must be determined such
that a physical probe of the vacuum at scales well below the
cut-off appears to have full Euclidean symmetry. The non-
perturbative determination of these extra action parameters
is the subject of the present paper.

In quenched QCD the anisotropy in the gauge sector, &,,
and the quark sector, £,, can be tuned independently and
post hoc using two separate criteria. The precision and
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mass dependence of the determination of £, was inves-
tigated for the action we use in Ref. [7]. It was found that
this parameter could be determined at the percent level
from the energy-momentum dispersion relation. The mass
dependence was found to be mild for quark masses in the
range m, = m, = m, when the tuning was carried out at
the strange quark mass, m;. In Refs. [8,9], a determination
of the gluonic parameter was made to similar precision.

We would like to use anisotropic lattices in simulations
with N, = 2 for realistic phenomenologically-relevant cal-
culations. In dynamical QCD the tuning procedure be-
comes more complicated because of the interplay
between the quark and gluon sectors and the parameters
must be simultaneously determined. There are several
issues to resolve. Firstly, can this simultaneous tuning be
accomplished; secondly, to what precision is the renormal-
ized anisotropy determined; and thirdly, what is the mass
dependence of the renormalized anisotropy. Here we will
focus on the first two issues, and leave the question of the
mass dependence to a later study.

The paper is organised as follows. Section II gives the
details of the gauge and quark actions used in this inves-
tigation. Section III describes the tuning methodology and
is followed in Sec. IV by the results for the values of the
tuned bare (input) parameters fg and 52. Section V con-
tains our conclusions and future plans.

II. THE ACTION AND PARAMETERS

We begin with a brief description of the anisotropic
action used in this study. The details of the tuning proce-
dure described in Sec. III do not depend on the specific
action used. Further description of the action can be found
in [7] where the tuning for the same action in the quenched
approximation was discussed.

The gauge action is a two-plaquette Symanzik-improved
action [10] previously developed for high-precision glue-
ball studies and given by
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where () and (), are spatial and temporal plaquettes. Q8
and QF are 2 X 1 rectangles in the (i, j) and (i, 7) planes,
respectively. Q% is constructed from two spatial plaquettes
separated by a single temporal link. u, and u, are the mean
spatial and temporal gauge link values, respectively. The
action has leading discretisation errors of O(a3, a,, a,a,).

For fermions an action specifically designed for large
anisotropies is used. The usual Wilson term removes dou-
blers in the temporal direction whereas spatial doublers are
removed by the addition of a Hamber-Wu term. The action
has been described in detail in Ref. [7] and has leading
classical discretisation errors of O(a,m,). In terms of con-
tinuum operators, it can be written

S =9+ mw — SLHDYY + salF Y DI, (2)

which highlights the different treatment of temporal and
spatial directions. r is the usual Wilson coefficient which is
applied in the temporal direction only in this action and is
set to unity. The analagous parameter in the spatial direc-
tions is s, which parametrizes a term that is irrelevant in the
continuum limit. A precise tuning of this parameter is not
necessary: in practice we choose s = 1/8, so that the
energy of a propagating quark at tree level increases
monotonically across the Brillouin zone. Stout-link smear-
ing [11] was used for the gauge fields in the fermion
matrix. Two stoutening iterations were used, with a pa-
rameter p = 0.22. This was fixed for all simulations, and
chosen to approximately maximize the expectation value
of the spatial plaquette on the stout links.

This study was carried out on 8 X 48 and 83 X 80
anisotropic lattices with a spatial lattice spacing a; =
0.2 fm and a target anisotropy & = 6. The bare sea quark
mass was set to a,m, = —0.057 in all runs. A set of gauge
configurations, distributed across ten independent Markov
chains, was generated for each set of input parameters
(&9, 52). Valence quark propagators were generated with
the same mass as the sea quarks.

To determine the statistical uncertainties, 1000 boot-
strapped sets of configurations were taken and analysis
was done on these bootstrapped sets. Both point and all-
to-all propagators were used. Some preliminary results
using point propagators on 8> X 48 lattices were presented
in Ref. [12].

III. METHODOLOGY

The bare parameters, fg and &9, are renormalized by
demanding that physical probes exhibit euclidean symme-

PHYSICAL REVIEW D 74, 014505 (2006)

try. In principle, any physical quantity can be used; how-
ever, it should be easily determined to high precision. In
this study we have used the sideways potential and the pion
energy-momentum dispersion relation for the gauge and
fermion sectors, respectively.

The gauge anisotropy £, is determined from the inter-
quark potential [8,9]. The static source propagation is
chosen to be along a coarse direction allowing the sources
to be separated along both course and fine axes. The
potential is determined at the same physical distance for
these two cases. The input anisotropy is constrained so that
the two calculations yield the same value of the potential,
Vi (x) = V,(t/ &) for a target anisotropy £. For a given input
anisotropy fg and target anisotropy ¢ we can determine the
mismatch parameter ¢, = V(x)/V,(t/€). If x is in the
régime where the potential is nearly linear, the mismatch
parameter is approximately related to the actual gauge
anisotropy, c, =~ &,/¢.

The quark anisotropy can be determined from the pseu-
doscalar dispersion relation. The anisotropy is inversely
proportional to the square root of the slope of the disper-
sion relation and demanding a relativistic energy-
momentum relation imposes a renormalisation condition
on the bare parameter 52. The ground state energy E, was
determined for a range of momenta, n’€E

{0,1,2,3,4,5, 6}, where p, = % and we average over

equivalent momentum values. The two-point correlator
data were modeled with single exponentials and a
x>-minimization was used to determine the best-fit ground
state. These values were used to generate an energy-
momentum dispersion relation.

In the quenched approximation this procedure is rela-
tively easy since &2 and &) can be determined indepen-
dently. For dynamical simulations it is no longer possible
to simply fix §g and then tune §2 to a consistent value,
since changing £ will affect the measurement of &,.
Explicitly, changing the value of .{52 necessitates a regen-
eration of the background fields with the new value of 52
which in turn will change the measured anisotropy £, of
the background fields. The solution to this problem is a
simultaneous two-dimensional tuning procedure [13].

A linear dependence on the parameters fg, and fg was
assumed for a small region. Three initial sets of configu-
rations were generated and the renormalized anisotropy
was determined. Planes were defined for both output values
of £, and &, i.e. values , B, y were found to satisfy &, =
a, &Y + B,y + vy, for the renormalized anisotropy £,
a = g, g measured for each input (£9, £2). The intersection
of these planes with the required (target) output value
yields the tuned point. The statistical uncertainties were
determined using bootstrap resampling, with a common
bootstrap ensemble used for all measurements. When more
than three simulation points were available a plane was
defined using a constrained- y? fit.
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All observables were estimated using the Monte Carlo
method. An ensemble of 250 gauge field configurations
divided across 10 Markov chains was generated using the
Hybrid Monte Carlo (HMC) algorithm [14].
Approximately 5000 CPU hours were needed in order to
generate each set of configurations. The HMC algorithm
can be used for these simulations without modification.
One observation serves to improve performance, however.
HMC adds a set of momentum variables conjugate to the
gauge fields, but each conjugate momentum can be added
with a different gaussian variance without changing the
validity of the method. In isotropic simulations this is not a
useful property, and all momentum co-ordinates are chosen
to have unit variance. For the anisotropic lattice, the tem-
poral and spatial gauge fields have different interactions,
and different momenta become useful. If the HMC hamil-
tonian is

1 |
H = Z(z—ﬂ% TrP}(x) + ;5 TrP%(x)> +S[UL, 3
an extra tunable parameter, w, (the variance of the tempo-
ral link momenta), has been added to the algorithm which
can be used to optimize acceptance by the Metropolis test.
This is equivalent to using two distinct integration step-
sizes for the spatial and temporal degrees of freedom.
Some brief numerical experiments suggest that a temporal
leap-frog step-size smaller by a factor ¢ is close to optimal,
and this is borne out by considerations of free field theory.

IV. RESULTS

The input anisotropy parameters used are given in
Table 1. We started by choosing three points (Runs 1-3)
in the (&9, fg) plane, and generated configurations at two
further points as a result of the tuning procedure. The final
tuning was performed on 8° X 80 lattices, using data from
runs 1, 4 and 5 as these spanned the largest area of the
plane.

A. Interquark potential

The gluon anisotropy is determined from the static quark
potential at a selected distance R. In practice this is done by
determining the effective energy for the static quark-
antiquark configuration at separation R at some time 7. It
is then important to choose values for R and 7" where the

TABLE I. Input parameters for the five dynamical simulations
performed in this tuning procedure. The bare quark mass is
a;my = —0.057 for all runs.

Run 1 2 3 4 5

B 1.51 1.528 1.514 1.544 1.522
2 6.0 7.5 7.5 8.72 8.83
2, 8.0 7.0 8.0 6.65 7.44
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TABLE II.  The gluon anisotropy parameter c, for different
separations, R and times, 7. The final results were determined
from data at 7T = 2 and R = 3.

c, = Vi(x)/V,(t/ &) at different (T,R)
Run | (1,3) (1,4) 2,3) 2,4) 3,3) (3,4)
0.972(2) 0.959(3) 0.972(7) 0.965(13) 0.991(25) 1.13(8)

1
4 10951(2) 0.941(4) 0.945(8) 0.926(18) 0.942(34) 0.89(9)
5 10.994(2) 0.990(3) 0.991(7) 0.998(13) 0.965(25) 1.01(7)

potential is well determined and the value obtained for c, is
stable with respect to small variations in R and 7. The same
values for R and 7 must then be used for all runs in order to
have a consistent procedure.

Table II shows c, for different R and T, on the 83 X 80
lattices. We see that the values are generally quite consis-
tent for each run. Looking more closely at the effective
potential for each R as a function of T, we find that it has
not yet reached a plateau at 7 = 1, while the value for T =
3 is consistent within errors with that for 7 = 2. We choose
(T, R) = (2, 3) as our optimal parameters, since this yields
reasonably small statistical errors, while R is large enough
to be in the linear régime.

B. Dispersion relations

Pseudoscalar meson correlators were computed using
traditional point propagators as well as all-to-all propaga-
tors [15] with time and color dilution and no eigenvectors.

To determine optimal fit ranges for exponential fits to the
correlator data, sliding window (#,;,) plots were used: the
correlation function was fitted in a range from 7,,;, tO #.x
where #,,,,, was fixed to the largest value compatible with a
good fit, and t,,,;, was varied. An example of such a plot is
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FIG. 1 (color online). A typical f,;, plot, showing the energy
for momentum n? = 1 onrun 1, 8 X 80 lattices from fits to time
ranges ., = 40 for various f,;,. A stable ground state energy
determination, with a good 2, is achieved for 22 < t.,;, = 30.
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TABLE III. Fit ranges.
n2 Timin Timax
0 25 40
1 24 40
2 21 40
3 19 40

given in Fig. 1. The fit range was chosen so the fit would be
stable with respect to small variations in ,,;,. The same fit
ranges and smearing parameters were chosen for all simu-
lation points in order to obtain a consistent determination
of the dispersion relation. The final fit ranges are given in
Table III.

In our initial analysis data from a 83 X 48 lattice were
used. However, a reliable extraction of the ground state
energy proved difficult. In particular, it was observed that
the energy either did not reach a plateau until near the end
of the lattice or did not plateau at all. To resolve this
problem the simulation was repeated on a longer, 8% X
80 lattice. An immediate improvement in the quality of the
fits was observed. The ground state energy was determined
from fits over at least 15 timeslices and was stable with
respect to changes in 7,;,. The effect of the longer lattice is
illustrated in Fig. 2. This plot also compares simulations
using point and all-to-all propagators. The all-to-all propa-
gators lead to improved precision in the fitted energies. The
central values are in agreement with the energies deter-
mined using point propagators but the statistical error is
smaller.

T T T T

0.08— =
e 83x48 point
[ = 83x80 point 1
0.06 ¢ 8380 all-to-all
NA
=
< 0.04

0.02

FIG. 2 (color online). A comparison of the dispersion relations
determined from an 83 X 48 lattice and an 8% X 80 lattice. The
solid lines are the best fits and the dotted lines are the 68%
confidence levels. The figure also shows a comparison of all-to-
all propagators and point propagators on the same (longer)
lattice. The plot shows that the ground state energies have not
reached a plateau on the shorter lattice. On the longer lattice the
all-to-all and point data agree, while higher precision is achieved
with all-to-all propagators.
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FIG. 3 (color online).

Dispersion relations from runs 1, 4 and 5
on 8% X 80 lattices using all-to-all propagators. The solid line is
a fit to the four points and the dotted lines are the 68%
confidence levels. The quality of all three fits is very good
with x?/Ny; = 2.0/2, 1.9/2, 2.0/2 for runs 1,4 and 5, respec-
tively.

The final tuned parameters were determined using all-to-
all propagators on the 8 X 80 lattices. We find consis-
tently good fits for all runs for the first four momenta
considered (n> = 0, 1, 2 and 3). The renormalized quark
anisotropy is therefore determined from fits to these mo-
menta. Figure 3 shows the pseudoscalar dispersion rela-
tions for Runs 1, 4 and 5 which are used to determine the
tuned point.

C. Plane fits

Table IV shows the output anisotropies determined on
the 83 X 48 and 8 X 80 lattices for the five simulation
points. As a check on the stability of our tuning procedure,
we have repeated the calculation using different values of
R and T in the determination of the gluon anisotropy. The
results are shown in Fig. 4. The plot shows that the anisot-
ropies are insensitive to a change in R but that increasing
the value of T from two to three leads to large statistical
uncertainty, particularly in the gluon anistropy. For these
reasons we choose R = 3 and 7' = 2 for our analysis.

TABLE IV. Table of measured output anisotropies at each of
the run points. The errors are statistical only.

83 X 48 83 X 80
Run Cq &, Cq &,
1 0.991(3) 4.98(6) 0.972(7) 5.54(6)
2 0.986(3) 6.27(4)
3 1.001(3) 5.18(6)
4 0.985(5) 6.47(5) 0.945(8) 7.08(5)
5 0.995(3) 5.80(5) 0.991(7) 6.95(8)
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7 8

'R=3, T=3

‘R=3, T=2

FIG. 4. Tuned values of input parameters (£, £9) determined
from the plane fit procedure on the 83 X 80 lattice. The plots
show the results for different values of R and T used to determine
the gluon anisotropy. Each point corresponds to one bootstrap
sample.

D. Simulation with tuned parameters

Applying the plane fit procedure of Sec. IV C to a subset
of configurations of Runs 1, 4 and 5 we obtained prelimi-
nary, tuned parameters £% = 8.06%7, £) =7.52771. 250
configurations were generated with these parameters, and
¢, and &, determined using the same values for R, T and fit
ranges as in Sections IVA and IVB. We find ¢, =
0.983(6), £, = 6.21(9). We see that both quark and gluon
anisotropies are within 3% of the target value of 6.
Although the anisotropies are not equal within statistical
errors, we note that there are still systematic uncertainties

9 : :

x4 X5 | | ]

: x2

FIG. 5 (color online). As in Fig. 4. The figure shows the results
from a plane fit using parameters from runs 1, 4, 5 and 6 (marked
with an X). The big red (gray) cross at (£9, £9) = (8.42,7.43)
indicates the result of the best fit.
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T T T T T T T T T T T T

o coarse separation, T=2
o fine separation, T=2 %
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effective potential, a V(R)

source separation, R/as

FIG. 6 (color online). The potential between fundamental
static color sources for run 6, measured from static propagation
in a coarse direction. Lines show fits to the Cornell potential, and
are used in a crude determination of the lattice spacing.

at the percent level, in particular, for £,, as shown in
Table II. For example, if we choose R =3, T =3 we
find ¢, = 1.01(2).

We repeated the plane fit procedure including the new
information from Run 6. Figure 5 shows the resulting
scatterplot determined on the 83 X 80 lattice from runs 1,
4, 5 and 6. The intersection points shift in a direction to
move ¢, and &, even closer to the target anisotropy. In
order to get a rough idea of the physical scales of these
lattices, we compute the pion mass, the rho mass and the
string tension. We find a,m, = 0.066(1) and a,m, =
0.120(5), which gives m/m, = 0.54, while a crude mea-
surement (shown in Fig. 6) of the string tension gives a;, =
0.18 fm. A more precise determination of the lattice spac-
ing will be obtained from the 1P-1S splitting in charmo-
nium [16].

V. CONCLUSIONS

We have performed a first simulation of 2-flavour QCD
with improved Wilson fermions on anisotropic lattices,
with both quark and gluon anisotropies tuned to ¢ = 6
[17]. The tuning was based on a linear Ansatz for the
dependence of renormalized anisotropies on bare anisot-
ropy parameters in a region of parameter space. The results
from the final run demonstrate that the tuning procedure,
described in Sec. III, works satisfactorily.

The final, tuned point was found to lie marginally out-
side the triangle used for the plane fit procedure, so the end
result was based on an extrapolation rather than an inter-
polation. This increases both the statistical and systematic
uncertainties of the determination. To avoid this problem, it
is important to choose a large enough triangle to start with,
so that successive parameter determinations are always
based on interpolations.
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We also found that the original (83 X 48) lattices used
were too short in the time direction to allow a reliable
determination of ground state energies, which were found
to be systematically high, in particular, for higher mo-
menta. This led in turn to systematically high values for
¢,- The adoption of lattices with longer time extent was a
crucial step in the procedure. As Table III shows, the
optimal fit ranges were generally found to be beyond the
range of the shorter lattice.

We were able to determine the tuned parameters ( g, fg)
with a statistical uncertainty of 1% and 3%, respectively,
from our ensembles of 250 configurations. In addition,
there are three main sources of systematic uncertainties:

(1) The R and T values used in the determination of the
sideways potential, and the fit ranges used in the
determination of the pseudoscalar dispersion rela-
tion. Since the fit ranges are chosen to give stable
ground state energies, we can safely assume that the
latter is a small effect. The effect of varying R is also
small, as shown in Fig. 4. There may be a systematic
error arising from the choice of T, but this is ob-
scured by the larger statistical uncertainties in the
T = 3 data, particularly in the £9 direction.

(2) Lattice sizes. The pion dispersion relation is un-
likely to be strongly affected by the finite lattice
volume, but the static quark potential may contain
finite volume errors which affect our results. We will
be performing simulations at the tuned point on
larger volumes, which will show whether this is a
significant issue.

(3) Nonlinearities in the dependence of (£, &,) on
(£, €)). Our final fit to four points shows no evi-

PHYSICAL REVIEW D 74, 014505 (2006)

dence of any significant nonlinearity. If this were
found to be a serious issue in any future simulation,
a two-step procedure may be adopted where a
smaller triangle centered on the preliminary tuned
point is used in the second step.
We have yet to verify that we get the same quark anisotropy
from other hadronic probes, for example, the vector meson.
Differences in the anisotropies can arise from lattice arte-
facts and can thus be considered part of the finite lattice
spacing errors.

These lattices will in the future be employed for a wide
range of physics investigations, including charm physics
and heavy exotics [16], spectral functions at high tempera-
ture [19], static-light mesons and baryons [20], strong
decays and flavour singlets including glueballs. These
studies will be carried out on larger lattice volumes.
Simulations on finer lattices will necessitate a new non-
perturbative tuning process like the one performed here;
this will be desirable in the longer term.
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