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Abstract

Voltage controlled oscillators (VCOs) are essential components of RF circuits used in

transmitters and receivers as sources of carrier waves with variable frequencies. This, to-

gether with a rapid development of microelectronic circuits, led to an extensive research

on integrated implementations of the oscillator circuits. One of the known approaches

to oscillator design employs resonators with active inductors � electronic circuits sim-

ulating the behavior of passive inductors using only transistors and capacitors. Such

resonators occupy only a fraction of the silicon area necessary for a passive inductor,

and thus allow to use chip area more e�ectively. The downsides of the active inductor

approach include: power consumption and noise introduced by transistors.

This thesis presents a new approach to active inductor oscillator design using self-

oscillating active inductor circuits. The instability necessary to start oscillations is

provided by the use of a passive RC network rather than a power consuming external

circuit employed in the standard oscillator approach. As a result, total power con-

sumption of the oscillator is improved. Although, some of the active inductors with

RC circuits has been reported in the literature, there has been no attempt to utilise

this technique in wideband voltage controlled oscillator design. For this reason, the

dissertation presents a thorough investigation of self-oscillating active inductor circuits,

providing a new set of design rules and related trade-o�s. This includes: a complete

small signal model of the oscillator, sensitivity analysis, large signal behavior of the cir-

cuit and phase noise model. The presented theory is con�rmed by extensive simulations

of wideband CMOS VCO circuit for various temperatures and process variations. The
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obtained results prove that active inductor oscillator performance is obtained without

the use of standard active compensation circuits. Finally, the concept of self-oscillating

active inductor has been employed to simple and fast OOK (On-O� Keying) transmitter

showing energy e�ciency comparable to the state of the art implementations reported

in the literature.
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Chapter 1

Introduction

1.1 Motivation

Communication between people is one of the foundations of civilisation. The modern

society we live in nowadays is communications hungry, demanding faster and more

reliable ways to provide an information �ow. Most of the communication today is

mobile - you can make a call from any given place on the globe (providing you can

a�ord a satellite phone call from South Pole for example). We want to download music,

videos, make a call on the move, in a car, train or an aeroplane. To be portable, these

mobile communication systems have to be relatively small, light and power e�cient.

Over the last century, a huge e�ort has been made to utilise radio waves to trans-

mit various communication signals over long distances. To allow the transmission, the

signal (a sound or digital bit stream, also known as baseband signal) has to be up-

converted in frequency. This process is known as frequency conversion or modulation.

This is achieved by multiplying it with a high frequency signal known as the carrier.

The result represents a radio frequency signal containing the information in a band

of frequencies around the carrier that, after some additional conditioning, is ready for

radio transmission. On the receiving end, this information can be extracted only if the

same carrier frequency is available. In most RF systems this is a sinusoidal signal and

to ensure a high-performance transmission, this signal has to be as close to the ideal

1
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VCO
Vtune

ω0 (Vtune)

ωsig ωconv

RF mixer

(a)

PLL
b(0 : n)

ω0 (Vtune)

ωsig ωconv

RF mixer

(b)

Figure 1.1: Frequency conversion using VCO: (a) directly (Vtune is a voltage controlling
oscillator), (b) using PLL (b(0 : n) is a binary signal controlling PLL).

as possible. Unlike DC currents and voltages, high frequency sinusoidal signals are not

readily available and have to be generated using special circuits known as harmonic

oscillators.

Figure 1.1 shows two methods of the frequency conversion. In the �rst case, the

oscillator (VCO) is connected directly to an RF mixer that multiplies the generated

carrier frequency, ω0(Vtune) with the incoming signal ωsig. The main advantage of this

direct approach is simplicity of the conversion circuit. The main disadvantage however

is an unwanted frequency drift due to frequency changes of the oscillator caused by

noise or temperature. In the second case, the oscillator is a part of a control system

known as a phase lock loop (PLL) that can, to a certain extent, track and compensate

frequency drifts.

Figure 1.2 presents a standard concept of a PLL. The reference oscillator is typically

a low frequency, high performance oscillator (e.g. crystal) whose frequency is compared

with the divided frequency of the RF oscillator on the output of the loop. If both signals

di�er in phase or frequency, the digital phase and frequency detector (PFD) generates

a train of electrical pulses. These pulses drive the charge pump that together with the

loop �lter produce a voltage proportional to the direction and magnitude of the required

phase or frequency change. The last stage is voltage controlled oscillator (VCO) which

frequency can be set proportionally to tuning voltage Vtune. By changing the division

2
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ratio (nowadays fractional divisions are often used), the VCO frequency can be adjusted

to the required value. Thus, a VCO is a critical component of radio-frequency circuits.

Over the past decade, integrated CMOS circuits have become the technology of

choice for RF circuits. Very large scale of integration allows one to build high frequency

circuits using lumped components rather than distributed structures. Due to the pop-

ularity of CMOS technology, there is a huge demand on miniaturisation of the circuits

for one simple, but fundamental reason - production cost. The cost of integrated system

decreases if on the same silicon area more circuits can be produced. Leaving reliability

problems aside, the main obstacle in the circuit integration is the problem of di�erent

scalability of various components on the same chip. In existing processes, the mini-

mum size of analog circuits is still larger than that of digital circuits. Currently, the

largest analog circuit component is a passive inductor, and for a proper operation of

a sinusoidal VCO, this component must not be omitted. For this reason, a harmonic

oscillator occupies signi�cant chip area.

The issue of silicon area required for the LC oscillator can be resolved by the use

of active inductors. These circuits simulate inductive impedance using transistors and

capacitors, signi�cantly reducing the chip area. This solution has problems: transistors

generate high levels of noise, are non-linear, consume DC power and are potentially

unstable due to parasitic components. The last issue raises following questions:
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Figure 1.2: Standard phase lock loop.
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1.2 Structure of thesis

� Can this inherent instability be utilised to obtain a harmonic oscillator?

� Can the oscillator architecture be simpli�ed only to a LC tank and save DC power?

� Can such an oscillator operate over wide bandwidth and what is its performance?

� How would one design such a VCO?

This thesis presents a thorough analysis and complete design procedure of self-oscillating

active resonator answering the above questions.

1.2 Structure of thesis

This dissertation is divided into the following parts:

� Chapter 2 presents the fundamentals of harmonic oscillators. Standard VCO

models and design methods are presented together with short characterisation of

each component of the integrated oscillator. Oscillator phase noise and the other

main VCO performance parameters are presented. A noise analysis of passive

resonators is presented, allowing comparison with active inductor solutions.

� Chapter 3 introduces the concept of gyrators and active inductors, focusing on

their application in oscillators. The noise and quality factor issues of active in-

ductor resonators are discussed. The phase noise of a standard active inductor

oscillator is also analysed. The last part describes the parasitic e�ects of non-ideal

gyrators and its proposed application in VCO design based on a new concept of

degenerated gyrator.

� Chapter 4 describes a new small signal model of the self-oscillating active inductor.

The sensitivity of the circuit is explored and mathematical formulae for oscillation

criteria, tuning range and resonant frequency are derived. In this chapter a new

noise model of the proposed circuit is also presented and compared to a standard

gyrator approach from Chapter 3.
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1.3 Main contributions

� Chapter 5 answers the question of what happens with the proposed degenerated

active inductor VCO under large signal operation. Using the Volterra kernel

technique, a new non-linear model of the proposed oscillator circuit is derived and

used to predict amplitudes and frequencies of the oscillator signal.

� Chapter 6 delivers a new linear time invariant model of phase noise of self-

oscillating active inductor, allowing the analysis of how the oscillator phase noise

depends on various circuit parameters.

� Chapter 7 presents the practical design and simulation of two experimental circuits

con�rming the theory presented in the previous chapters. The �rst circuit is a

434 MHz wideband oscillator whilst the second circuit is a novel, energy e�cient

OOK (On-O� Keying) transmitter for ISM (Industrial, Scienti�c and Medical)

applications.

� Chapter 8 concludes the dissertation and presents avenues for future work.

1.3 Main contributions

The general focus throughout this dissertation is on the complete analysis of a self-

oscillating active inductor, able to generate a wide range of RF frequencies with low

power consumption and minimising a silicon area. The initial discussion on parasitic

e�ects in practical active inductors evolves into the concept of the degenerated gyrator

oscillator. Prior to this thesis, no mathematical description of such circuits was found.

Without such an analysis, it is impossible to draw any conclusions on a practical design

of VCO using a self-oscillating gyrator. Therefore, it is essential to develop a new set

of circuit models able to analyse the behavior of the proposed oscillator. First, this

thesis focuses on a small signal model, allowing one to de�ne the oscillation criteria, the

sensitivity to various circuit parameters and noise performance of the non-ideal circuit.

Secondly, as the oscillator is a large signal device, the dissertation covers the important

topic of non-linear e�ects using a new large signal model of the degenerated gyrator.
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1.3 Main contributions

The mathematical description of the oscillator circuit is then concluded by a new phase

noise model. All of these theoretical insights are proven through design and simulation

of a practical CMOS circuit. The design procedure is presented in a clear, step by step

manner and the reader can use it as a reference to the design of any negative resistance

oscillator. Thanks to its simplicity, the proposed VCO circuit allows one to use it as

a new, fast fully integrated OOK transmitter, being an attractive alternative to the

existing solutions.
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Chapter 2

Voltage controlled oscillators

2.1 Introduction

Oscillators have been known long before electronic systems were discovered. The most

fundamental example can be a weight suspended from the spring as presented on Fig-

ure 2.1. When a weight is �rst pulled down and then released, an extended spring

attempts to move it back to the equilibrium point. Because a moving mass has a mo-

mentum, it easily passes through the equilibrium point, compressing the spring. At a

certain point, kinetic energy decreases to zero, spring expands again, moving the mass

in the opposite direction. If this system was lossless i.e. no drag nor friction were

present, once pulled, the weight would oscillate inde�nitely around the system equilib-

rium point. In reality, oscillations decay due to energy dissipation over time with the

speed depending on the amount of losses present in the system. If these losses were fully

compensated by injecting additional energy into the system, a sustained movement of

the weight would be achieved.

2.2 Electronic oscillator

The harmonic behavior of the mechanical pendulum can be translated into an electronic

system. Capacitors and inductors store energy using electric and magnetic �elds, re-
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2.2 Electronic oscillator

Fixed point

m

∆x

Figure 2.1: Mechanical harmonic oscillator.

spectively. Instead of a moving weight and spring, the energy moves electrons in the

system, resulting in periodic changes of currents and voltages. Following the mechanical

example presented earlier, energy stored in the inductor can represent a kinetic energy

of the moving weight. Similarly, energy stored in the electric �eld by the capacitor

can be considered as an analog to a mechanical energy stored by the spring. To allow

energy transfer between components this electronic equivalent of a pendulum has to be

a closed loop circuit, as illustrated on Figure 2.2

C −
V0

+

S

L

Figure 2.2: Ideal sinusoidal oscillator.

2.2.1 Ideal circuit

According to Kirchho�'s laws, for any time instant, a total voltage drop around a

closed loop has to be equal zero. Also, at any given time, currents �owing through an

inductor and capacitor have to be equal. Assume that C is initially charged to voltage

Vo. When switch S is closed, current starts to �ow from the capacitor because the

inductor has to produce voltage to satisfy the voltage condition around closed loop.
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2.2 Electronic oscillator

At a certain stage, the inductor becomes fully charged and its voltage drop reaches

zero. However the inductor current reaches its maximum now, and to ful�ll Kirchho�'s

second law, the same current has to �ow through the capacitor as well, charging it

again. Thus, the energy transfers forth and back between magnetic and electric �eld

and periodic changes of voltages and currents are observed. Solving Kirchho�'s laws in

the time domain reveals that these periodic variations have a sinusoidal character. If

the voltage around the loop is calculated, the oscillator is described by a second order,

ordinary di�erential equation related to instantaneous charge q(t) transported between

components. Since the initial conditions are: q(0) = V0 · C and q′(0) = 0, equation

L
δil(t)
δt2

+ vc (t) =
δ2q(t)
δt

+
q(t)
LC

= 0 (2.1)

has a particular solution of

q(t) = V0C cos
(

t√
LC

)
(2.2)

and capacitor voltage is equal to

vc(t) =
q(t)
C

= V0 cos (ω0t) (2.3)

where ω0 = 1/
√
LC is known as resonant frequency because circuit responds only for

that particular rate of change of current. For this reason, presented architecture is

known as resonator or resonant tank, after it's ability to store energy.

2.2.2 Non-ideal circuit

The circuit from Figure 2.2, although simple, is not practical. The energy stored in the

resonator can't be taken out without disturbing the stable operation of the oscillator.

Also, real reactive components are lossy and a portion of energy is dissipated as a heat

in each cycle. Thus, even if nothing else is connected to the tank, oscillations cease over

time, exactly as in the case of the mechanical spring pendulum suspended in air.

Figure 2.3 depicts a modi�ed circuit, where all of the resonator losses are represented

by a single resistor R. Therefore, (2.1) changes to

L
δil(t)
δt

+ vR(t) + vc (t) =
δ2q(t)
δt2

+
δq(t)
δt

R

L
+
q(t)
LC

= 0 (2.4)
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2.2 Electronic oscillator

C −
V0

+

S
R

L

Figure 2.3: Lossy resonator.

Assuming that R dissipates only a small fraction of energy in each cycle, and initial

conditions are the same as before, the capacitor voltage vc(t) is now given

vc(t) = V0 · e−
R
2L
t · cos

√ω2
0 −

(
R

2L

)2

· t

 (2.5)

which shows that the amplitude of the oscillations decays exponentially with time and

a speed proportional to R. The losses can't be removed physically from the circuit,

instead each time when energy is dissipated, the same amount must be supplied from

additional external circuitry. As a result, the oscillator reaches its energetic equilibrium

and behaves as if R = 0.

Depending on the type of the output signal sampled from the oscillator (either

current or voltage), series and parallel resonator con�gurations can be found, Figure 2.4.

Resistors Rs and Rp represent circuit losses and load e�ects caused by external circuits

connected to the resonators. At resonance, both reactances cancel each other, making

Zser(jω) and Ypar(jω) real valued functions. From circuit analysis perspective it is

C Rs L

(a)

Rp C L

(b)

Figure 2.4: LC resonators: (a) series and (b) parallel con�guration.

more convenient to describe series resonator using total impedance Zser(jω), whereas

equivalent admittance Ypar(jω) is more suitable for a parallel tank. Both functions are
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2.3 Oscillator design methodologies

given by

Zser(jω) = Rs + jω

(
L− 1

ω2C

)
(2.6)

Ypar(jω) =
1
Rp

+ jω

(
C − 1

ω2L

)
(2.7)

2.3 Oscillator design methodologies

To start and sustain oscillations, electrical energy has to be supplied to the resonator

from a DC source. From this perspective, DC power is transformed into an AC sig-

nal in a similar fashion as in ampli�ers. The main di�erence is that the oscillator is

autonomous, and apart of bias, does not require any additional excitation to produce

an output signal. The way that energy is supplied to the circuit is determined by the

resonator architecture. In general, integrated resonators can be considered either a two

port or one port network, leading to a corresponding methodologies of oscillator design:

feedback and negative resistance methods. In the feedback approach, the oscillator has a

form of a closed loop circuit consisting of two port networks. Therefore, feedback theory

can be used directly to analyse its behavior. On the other hand, the negative resistance

method employs the concept of a one port, energy restoring circuit that imposes one

port description of the resonator.

2.3.1 Feedback oscillator

Figure 2.5 presents a generic model of a feedback system consisting of a two port net-

works. The gain of the direct and feedback paths is given by A(jω) and β(jω) respec-

tively and the transfer function is given by

Yout(jω)
Xin(jω)

=
A(jω)

1− β(jω)A(jω)
(2.8)

When the input signal Xin(jω) is disconnected from the system, a non-zero output

Y (jω) is obtained only if 1− β(jω)A(jω) = 0 which corresponds to

|β(jω)A(jω)| = 1 (2.9)
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2.3 Oscillator design methodologies

+ A(jω)
Yout(jω)

β(jω)

Xin(jω)

Figure 2.5: Feedback oscillatory system.

that is the system has unity open loop gain (β(jω)A(jω)), and

6 β(jω) + 6 A(jω) = 2kπ for k = 0, 1, 2, . . . (2.10)

the total phase shift of open loop equals zero (or multiple of 2π). Conditions (2.9)

and (2.10) are known respectively as Barkhausen's amplitude and phase criteria. For a

given frequency, such de�ned feedback system may oscillate, however does not always

have to. The assumption that both criteria automatically specify boundary of stability

of the circuit is a common mistake and some additional requirements are necessary

to transform a potentially unstable system into an electronic oscillator [1]. Lesurf [2]

proves, that in the feedback system from Figure 2.5 oscillations can build up at a certain

frequency if:

� Phase condition is ful�lled. Signal at the input of A(jω) is in phase with the

output signal (ideal positive feedback).

� Amplitude condition is |β(jω)A(jω)| ≥ 1. For open loop gain larger than 1,

amplitude of oscillations increases exponentially with each cycle.

� Circuit is initially excited by a �uctuation at the same frequency.

This leads to a generic feedback oscillator architecture from Figure 2.6. First two re-

quirements described above are achieved using ampli�er, that controls an open loop

gain, and phase shift network to establish a positive feedback. Signal �uctuations origi-

nate either from a power supply transients or thermal noise sources of ampli�er. These

are a relatively short perturbations that occupy a wide frequency spectrum and provide
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2.3 Oscillator design methodologies

Aejφd

Vout(jω)

βejφf

VDD

Figure 2.6: Feedback oscillator using ampli�er and phase shifter.
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Figure 2.7: Signal build-up in feedback oscillator.

an initial energy at the wanted frequency. Figure 2.7 illustrates how a small �uctu-

ation, injected to the described system, grows over time. The dashed line represents

the moment when the amplitude stabilises i.e. when the open loop gain reaches unity.

This is possible because increasing signal amplitude, drives the ampli�er into satura-

tion region, reducing apparent gain. The oscillator reaches steady state when all losses

are compensated by a periodic energy injections from the active circuit. Note that the

Barkhausen criteria can't predict the amplitude of oscillations as they are derived under

linear, small signal conditions.

13



2.3 Oscillator design methodologies

Figure 2.8 illustrates a practical example of an integrated feedback oscillator, named

the Colpitts oscillator after its inventor E. H. Colpitts [3]. In the presented con�gura-

tion, an inverting NMOS transconductance ampli�er is used. A π-network LC resonator

provides the 180◦ phase shift necessary to complete a positive feedback loop.

C1C2

L

Figure 2.8: Colpitts oscillator (bias not shown).

2.3.2 Negative resistance oscillator

In some oscillators feedback loop can't be clearly identi�ed (for example resonators

made of distributed components). In this approach, an oscillator can be represented as

a circuit consisting only of one port components, rather than a feedback loop system

presented before. Figure 2.9 illustrates equivalent oscillator circuits designed using the

one port approach.

−Ract

Rs C

L

(a)

−Ract Rp C L

(b)

Figure 2.9: Negative resistance oscillator using: (a) series and (b) parallel LC resonator.

In both cases, lossy resonators are connected to an additional component charac-

terised by a negative resistance −Ract. The total resistance of each resonator is equal

to

RtotS = Rs −Ract =

∣∣∣∣∣
Ract≡Rs

= 0 (2.11)
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2.3 Oscillator design methodologies

−∆v V
DC +∆v

−∆i

I
DC

+∆i

Figure 2.10: I-V curve of component experiencing negative dynamic resistance.

RtotP =
−RpRact
Rp −Ract

=

∣∣∣∣∣
Ract≡Rp

=∞ (2.12)

Just enough magnitude of −Ract and the resonator starts to behave as an ideal circuit

from Figure 2.2.

There are no passive CMOS negative resistors available. In general, such component

violates Ohm's law because, to produce −Ract, a current changes have to be inversely

proportional to voltage variations. For this reason, it is not possible to construct this

device using passive resistors only. Also, the power dissipation Pact = −RactI2
act is neg-

ative, which implies that the negative resistor supplies energy to the resonator instead

of dissipating it. Figure 2.10 presents a generic I-V curve of such component. To un-

derstand how negative resistance is obtained in practice, it is important to understand

the di�erence between static and dynamic circuit parameters. If the device is biased

as shown, its static resistance is positive because Rstat = VDC/IDC ful�lls Ohm's law.

However, if AC voltage with the amplitude of ∆v is applied, it moves the bias point

forth and back along the curve, causing corresponding variations of the current. As the
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2.3 Oscillator design methodologies

slope around the static bias point is negative i.e.

∂i

∂v
< 0;

∂v

∂i
< 0 (2.13)

the changes of current are inversely proportional to the driving voltage. Thus, in the

presence of an AC signal the device behaves as a dynamic negative resistor, even though

its static resistance is always positive. Historically, the best known example of a com-

ponent showing negative dynamic resistance is a Gunn diode [4]. It consists of three

layers of N-type semiconductor, and when biased properly, the conductance through

the device drops with increasing voltage amplitude. Another example is the Eski diode

widely known as a tunnel diode that uses quantum e�ects of semiconductor materials

to transport low energy particles through high energy gaps. As a result, a dynamic neg-

ative resistance is observed. Both devices are extensively used in microwave oscillators

at high-GHz frequencies, and despite limited research on CMOS implementations [5, 6],

they are not available in a standard commercial processes as yet.

Negative resistance can also be obtained using ampli�ers and passive components.

To achieve it, a circuit has to introduce a 180◦ phase shift between voltage and current

of the same port. This requirement can be satis�ed if inductors and capacitors (each

introducing own phase shift of 90◦), are combined with at least one controlled voltage or

current source [7]. As an example, consider a generic circuit presented on Figure 2.11a.

Using KVL, the small signal input impedance of the circuit is equal to

Zin(jω) =
vout
iin

= gmZ1Z2e
j(φ1+φ2) + Z1e

jφ1 + Z2e
jφ2 (2.14)

vout

iin Z1e
jφ1

+ vx −
Z2e

jφ2 gmvx

(a)

C1

C2

(b)

Figure 2.11: One port negative resistor: (a) concept, (b) practical implementation.
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2.3 Oscillator design methodologies

The last two terms represent parasitics that have to be included in a resonator circuit.

If both impedances Z1 and Z2 are of the same type and imaginary, then the �rst term

from (2.14) becomes real with phase shift of φ1 + φ2 = ±180◦ because

gmZ1Z2e
j±π = gmZ1Z2 (cos±π + j sin±π) = −gmZ1Z2 (2.15)

Figure 2.11b depicts a single ended CMOS implementation of negative resistance, where

common drain ampli�er serves as a voltage controlled current source with capacitive Z1

and Z2.

vout

iin

gmv2 Y1

+
v1

−
gmv1Y2

+
v2

−

iin

(a) (b)

Figure 2.12: Di�erential negative resistor: (a) concept, (b) practical implementation.

Negative resistor can also be obtained without the use of dedicated reactive com-

ponents. Figure 2.12a presents a di�erential circuit composed of two voltage controlled

current sources. Admittances Y1 and Y2 produce the required control voltages and can

be resistive. If both admittances Y and sources are the same, input admittance is equal

to

Yin(jω) =
iin
vout

=
−gm

2
+
Y

2
(2.16)

In practice, this circuit is obtained using the well known MOS cross-coupled pair, de-

picted in Figure 2.12b. Admittances Y1 and Y2 equal to gds+jωCgs represent transistor

parasitics, and typically have capacitive character at RF frequencies.

Figure 2.13 illustrates a typical implementation of a di�erential NMOS oscillator

using a cross-coupled negative resistor and connected to an LC tank. The main ad-

vantages of this circuit include: a natural ability to generate output voltages shifted

by 180◦ at each output, ease of integration and good noise performance. For this rea-
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2.3 Oscillator design methodologies

C

L L

Figure 2.13: Di�erential NMOS integrated oscillator.

son, cross-coupled oscillators have been the focus of extensive research over the past

decade [8�20].

Even though a negative resistance oscillator is not described using Barkhausen crite-

ria directly, the circuit behavior has to be the same as in the case of feedback approach.

These criteria can be transformed into a negative resistance domain, analysing either a

total impedance Ztot or admittance Ytot of a complete oscillator circuit. A system starts

to oscillate when an open loop gain of feedback circuit is greater than one. This trans-

lates to the situation where magnitude of a negative resistance is larger than all losses of

the resonator. In this case, more power is supplied to the resonator than dissipated. Due

to the non-linearity of an ampli�er, increasing circuit amplitude reduces the amount of

negative resistance generated in the circuit. At a certain signal level −Ract ≡ Rloss and

oscillations reach stable amplitude. The resonant frequency of the circuit is a frequency

for which a total reactance of the resonator becomes zero. Therefore, the Barkhausen

criteria for negative resistance oscillators translate to

<{Ztot, Ytot} ≤ 0 : amplitude condition (2.17)

={Ztot, Ytot} = 0 : phase condition (2.18)

To start oscillations, an initial signal �uctuation at the resonant frequency is required,

as in the case of a feedback circuit.
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2.4 Voltage controlled oscillators

2.4 Voltage controlled oscillators

As shown previously, regardless which design methodology is used, the resonant fre-

quency of the oscillator is always controlled by the Barkhausen phase criterion. If

reactances of the oscillator can be varied, the frequency of oscillation will change ac-

cordingly. As a result, a single oscillator is now able to deliver signals at variable

frequencies in a controllable fashion.

Historically, to obtain frequency tuning, mechanical variable capacitors were used

but due to the size it is impossible to integrate them on a chip. The exemption from

this are MEMS (micro electro-mechanical systems) resonators, consisting of nano-scale,

three dimensional structures. MEMS resonators are tuned by a mechanical displacement

of one or more parts of the structure using electrical �eld. Integration of these devices in

standard CMOS requires additional post processing and their size is still typically larger

than those of passive inductors and capacitors. More details on MEMS applications in

oscillators, can be found in recent publications [21�24].

The most common method of tuning integrated oscillators employs varactors - semi-

conductor devices whose capacitance is voltage dependent. An example is a reverse-

biased P-N junction, where the width of the depletion region varies with reverse volt-

age [25]. The depletion region can be considered as an insulator controlling the e�ective

capacitance of the junction, and thus resonant frequency is tuned electronically. The

main advantage of varactors is good on-chip scale of integration. The downsides include

non-linear behavior limiting the dynamic range of resonators.

The use of voltage tuned reactances leads to a concept of voltage controlled oscillator

(VCO) architecture. In CMOS technology, two subtypes of VCOs are commonly used:

LC and ring oscillators.

2.4.1 LC oscillator

An LC VCO consists of ampli�er and resonator with varactors, inductors and capaci-

tors. A more detailed description of a resonator structure can be found in Section 2.5
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2.4 Voltage controlled oscillators

in this chapter. Examples of LC VCO include Colpitts architecture from Figure 2.8

and cross-coupled oscillator from Figure 2.13 presented previously. During the design

stage a LC resonator has to be characterised such that its parasitic components (stray

capacitances, conductor resistivity, inductance of wires etc.) are known. This ensures

that the Barkhausen criteria are de�ned correctly for a given resonant frequency.

In most cases, an LC VCO integrated in CMOS can be designed either by feedback

or negative resistance methods. For example, Razavi [26] shows that Colpitts oscillator

normally designed using feedback theory may be also successfully derived using the one

port approach, depending on convenience and resonator con�guration. The example of

this duality is illustrated on Figure 2.14. It can be seen that the negative resistor is

obtained through a capacitive feedback loop of MOS ampli�er.

C2

C1

L

Negative resistance

Out

L

C1

C2

Out

Ampli�er

Feedback network

Figure 2.14: One port and feedback representations of Colpitts oscillator.

LC voltage controlled oscillators are widely used in RF circuits due to a good noise

performance, low harmonic distortion and wide tuning ranges. These types of VCO are

also covered in this dissertation.

2.4.2 Ring oscillator

The feedback oscillator model does not explicitly require an LC network for proper

operation. Any two port network able to provide a positive feedback can satisfy the

Barkhausen conditions. Therefore, a combination of capacitive and resistive circuits
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2.4 Voltage controlled oscillators

can be used instead of an LC tank. As the phase relationship between input current

and output voltage of any RC circuit changes with frequency between 0 ≤ φRC ≤ π/2,

the required phase di�erence can be designed by proper choice of R and C. Due to a

lack of inductance, the circuits from this group are known as resonatorless oscillators.

The ring VCO is an example of a resonatorless oscillator. It consists of a cascade

of ampli�ers where the output signal is fed back to the �rst stage. Figure 2.15 depicts

an example of a ring oscillator using �ve inverters. Each stage shifts a signal from the

previous block by 180◦ and also delays it due to its own RC parasitics. The circuit

oscillates at a frequency for which the combined phase shift equals an integer multiple

of 2π. Ring oscillators operate in switching fashion generating square wave signals.

Figure 2.15: Five stage CMOS ring oscillator

The simplest form of ring VCO tuning is known as the current starving technique

where each ampli�er is biased through a separate current mirror [27]. When the am-

pli�er is on, its bias current charges parasitic capacitances of the stage. The larger the

current, the faster the charging and reduced propagation delay. This in turn changes

the phase shift of the stage and signal frequency changes. The reference current for the

mirrors is usually supplied through a transconductor, allowing voltage control over the

frequency.

Despite high signal distortion and noise, these oscillators are used in many high

speed digital circuits due to an ease of integration, small chip area, high oscillation

frequencies and wide tuning ranges.
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2.4 Voltage controlled oscillators

2.4.3 Parameters of voltage controlled oscillators

The performance of any voltage controlled oscillators is typically described by the fol-

lowing (set of) parameters.

2.4.3.1 Oscillation frequency and tuning range

Oscillation frequency and tuning range of VCO are determined by the assigned fre-

quency spectrum a circuit operates in. The most challenging VCO designs require high

frequencies and wide tuning ranges available from a single oscillator. To compare tuning

capabilities of various designs, fractional bandwidth (FBW ) can be used. It is expressed

as a percentage of tuning range to a frequency in the centre of the bandwidth. Typi-

cally, wideband oscillators have relative tuning ranges of at least 20% - 25% (whereas

narrowband structures have usually FBW of 5% or less), however there is no de�ned

limit between narrow and wideband VCOs.

2.4.3.2 Tuning constant

This parameter de�nes the tuning sensitivity of an oscillator and is commonly denoted

as KV CO. It represents a magnitude of oscillation frequency changes due to control

voltage. Typical values of KV CO for RF circuits are in the range of tens to hundreds of

MHz/V. The tuning constant is derived by calculating a slope of a tuning curves where

the negative value indicates an inverse proportionality between frequency and control

voltage. Small values of KV CO reduces AM-PM noise conversion because the oscillator

sensitivity to noise from the control path decreases. On the other hand, large tuning

constant allows one to obtain wide tuning ranges for a limited control voltage, valuable

in sub-micron technologies.

2.4.3.3 Output power

This represents amount of AC power that can be delivered to the load. Typically,

integrated circuits are low-voltage and hence available powers are in the range up to
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2.4 Voltage controlled oscillators

1 mW (0 dBm). In order to prevent excessive energy losses in the resonator, the oscillator

signal is transmitted to the load using bu�er ampli�ers with large input impedance. The

design of the bu�er becomes crucial in the case of wideband VCOs since the oscillator

signal power varies with frequency as a result of complex parasitic structure of the

circuit.

2.4.3.4 Harmonic distortion

The quality of the output signal is also important from a frequency conversion per-

spective. Although di�erential architectures typically minimise even harmonics, total

harmonic distortion of the output signal should be kept as small as possible. Typi-

cally harmonic suppression should be more than 15 dB for high performance harmonic

oscillators.

2.4.3.5 Supply pushing

This is a measure how much a resonant frequency changes due to variations of DC

supply. As parasitics of active devices depend also on bias conditions, changes in the

bias voltage may cause shifts of oscillation frequency. This is especially important if

the VCO is in close proximity to power stages that can feed energy through supply

connections [28].

2.4.3.6 Load pulling

Any reactive load at the oscillator output contributes to total impedance of a tank,

pulling resonant frequency down. The bu�er ampli�er primarily used to deliver the

oscillator signal to the load also minimises the described e�ect. Due to a high input

impedance (that has to be characterised during design of oscillator circuit), the bu�er

provides an e�ective isolation between the load and the resonator. Load pulling is also

observed in a presence of extracted layout parasitics.
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2.5 Passive resonators for LC voltage controlled oscillators

2.4.3.7 Power consumption

This is a crucial parameter for a low-power designs as battery operated devices, as

oscillators convert DC power into AC signal. The less power consumed for given per-

formance, the more e�cient the oscillator.

2.5 Passive resonators for LC voltage controlled

oscillators

This section describes the most common CMOS implementations of LC resonant tanks,

with special emphasis on a wideband operation.

2.5.1 MIS varactor

In modern CMOS processes MIS (metal-insulator-semiconductor) devices are used. Fig-

ure 2.16 presents a cross-section of a varactor, built in N-well in the same was as PMOS

transistor but without the drain and source implants. Capacitance is tuned by �xing

the voltage on one lead and varying the voltage on the other lead. The maximum

capacitance of the device depends on W to L ratio of the device and is increased by

increasing number of gates (e�ective size) and N+ implants.

N+N+

N-well

Gate Bulk

Figure 2.16: MIS varactor structure.

Figure 2.17 shows an example of the C-V curve for a MIS varactor in a 180 nm

process, together with a resonant frequency of tank utilising this device. Plots illustrate

a typical tuning performance of integrated varactor with a maximum to minimum ca-
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2.5 Passive resonators for LC voltage controlled oscillators

pacitance ratio in the range of 3. The typical value of capacitance per area of unbiased

MIS varactor in the presented 180 nm process is approximately 3 fF/µm2.

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5
C

ap
ac

ita
nc

e 
[p

F
]

Gate voltage [V]

V
bulk

= 1V

0 0.5 1 1.5 2
1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

R
es

on
an

t f
re

qu
en

cy
 [M

H
z]

Gate voltage [V]

L
tank

= 4.5nH

Figure 2.17: C-V curve of gate voltage tuned MIS varactor and resulting oscillator
tuning curve.

Using a single varactor to tune the oscillator introduces some negative e�ects. To

cover a wide band of frequencies, a single varactor requires a high Cmax/Cmin ratio.

This makes a circuit vulnerable to noise present in the tuning path, because KV CO is

high and noise translates into parasitic FM modulation. This phenomenon is known as

AM-PM noise conversion and can be minimised if the capacitance ratio of varactor is

left low. As the ratio can't be freely chosen, the most common solution is back-to-back

connection of two varactors that also improves the harmonic distortion over that of a

single device [29�31].

2.5.2 Switched capacitor array

The low capacitance ratio used to minimise AM-PM conversion of noise decreases the

tuning range. This trade-o� can be relaxed if a switched capacitance array (SCA) from
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2.5 Passive resonators for LC voltage controlled oscillators

Figure 2.18 is implemented. The array consists of a parallel connection of �xed capac-

itors and MOS transistors acting as switches. In each consecutive line the capacitance

and transistor width are doubled to keep constant time delay through the branch.

2nC

2nW/L

bn

4C

4W/L

b2

2C

2W/L

b1

C

W/L

b0

Figure 2.18: Binary switched capacitor array.

When the SCA is connected to the varactor, the total capacitance of the resonator is

now also controlled by array switching. As a result, low capacitance ratio varactors can

be used to tune small frequency variations (�ne tuning) around a frequency determined

by the array (coarse tuning) as illustrated on Figure 2.19. The tuning range is increased

with more linear response and improved noise conversion. The disadvantages are larger

chip area (due to a number of capacitors and switching transistors) and additional

digital circuitry to control the switching.

2.5.3 MIM capacitor

Metal-insulator-metal capacitors provide �xed capacitance to the resonator. These de-

vices are built using an additional conductive layer (known as MMC, metal-metal-

capacitor) between existing metal layers of a chip. The capacitance is proportional

to the area of the MMC, and may be increased by multiple connection of smaller de-

vices (multi rectangle capacitor). In modern sub-micron CMOS processes, a typical

capacitance per area values between 1 fF/µm2 and 2 fF/µm2 can be achieved.
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Figure 2.19: Tuning range improvement with SCA and low capacitance ratio varactor.
Symbol b represents a 3-bit word controlling SCA switches.

2.5.4 Inductors

Monolithic inductors are typically designed on the top metal layer in the form of a spiral.

Figures 2.20a and 2.20b show a top view of two most popular architectures, however

hexagonal, octagonal and square shapes are also widely used [32]. The inductance value

is proportional to the physical dimensions of the spiral i.e. conductor width, diameter

and number of turns. Typically, CMOS inductors occupy the largest chip area among

other passive components and extensive research has been conducted to �nd various

ways of miniaturisation [32�36]. As an example, consider the inductor available in

UMC 180 nm process with 5.5 turns and maximum inductance of 14 nH. The complete

inductor (including di�usion dummy around it) occupies an area of at least 400 µm per

400 µm. The problem of inductor size becomes more pronounced for lower resonant

frequencies where large capacitors have to be also used and therefore increasing total

area of a LC tank.

In addition, integrated inductors su�er from following parasitics [32]:
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2.5 Passive resonators for LC voltage controlled oscillators

� Series resistance: The conductor is relatively long and narrow, and therefore the �-

nite conductivity of metal contributes to the resistive losses. At higher frequencies,

the skin e�ect decreases e�ective cross-section experienced by a passing current,

increasing total resistance.

� Inductor to ground plane capacitance: A relatively small distance between the

inductor coil and the ground plane (approximately 10 µm for modern sub-micron

processes) results in parasitic capacitance which reduces the maximum operational

frequency of the inductor.

� There is at least one crossover through the lower metal layer providing connection

to one of the inputs, causing capacitive coupling and lowers e�ective inductance.

� As the inductor is suspended over a conductive ground plane, magnetic �elds

from the spiral induces eddy currents in this metal layer. According to Lenz's law

(a) (b)

(c)

Figure 2.20: Monolithic spiral inductors: (a) single ended and (b) di�erential. Il-
lustration (c) presents a patterned ground shield to minimise parasitic induction in
substrate [33]. The copper layer (light gray) is connected to ground (green) and is
grooved (black) to brake the �ow of induced eddy currents (dashed arrows).
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2.5 Passive resonators for LC voltage controlled oscillators

these currents create a magnetic �eld opposing one form the spiral, decreasing

e�ective inductance. This may be minimised if instead of solid, a patterned ground

shield (PGS) is used, e�ectively breaking induced current �ow, as presented on

Figure 2.20c [33].

The aforementioned negative e�ects of integrated inductors manifest itself in a form of

increased circuit losses. As a result, integrated oscillator performance is always inferior

to the one built of a discrete o�-chip components [28].

Another type of integrated inductor in a form of bondwires can be found [34�36].

This is a relatively long, low resistance wire, suspended in a large distance from con-

ductive planes and hence minimise parasitic coupling. Due to the large wire diameter,

conductivity is also improved resulting in small resistive losses. The cost however is low

reliability and a relatively poor process tolerance.

There is no direct way of tuning passive inductance value using electrical signals. Few

circuits attempting electronic control over passive inductors were published [10, 37, 38].

In these methods, spiral inductor is connected in series with a transistor controlling

amount of current passing through it. As a result, the tank experiences variable induc-

tance, however the transistor contributes signi�cantly to the resonator losses and injects

noise directly to the tank.

2.5.5 Quality factor of resonator

The performance of resonator can be characterised by quality factor Q, a unitless func-

tion indicating how much energy is dissipated in each cycle in relation to the amount

of energy stored in a resonator [39]. In general, quality factor can be described using

di�erent de�nitions. The common misconception is to consider all de�nitions the same,

but di�erent assumptions were made in each case thus these are not always compatible.

The simplest form of Q is given by

Q = 2π
Energy stored in resonator

Energy dissipated in one cycle
(2.19)
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Q gives an immediate information how lossy a system is and hence how much energy

has to be used to compensate it. If the circuit is not able to store the energy, the

quality factor is zero. Also, if energy dissipated in each cycle is much greater than the

stored one, Q is much less than 1. On the other hand if only small portion of energy is

dissipated, quality factor is relatively large (as a rule of thumb one can assume a good

value of Q at least in the range > 20). Finally, if there is no dissipation, Q becomes

in�nite for lossless circuits. This parameter can be applied any resonant structures

including non-ideal inductors and capacitors.

2.5.5.1 Peak energy de�nition

This is suitable to systems working at frequencies much less than the resonant frequency

and is de�ned as

Q =

∣∣={Zser(jω)}
∣∣

<{Zser(jω)}
=

∣∣={Ypar(jω)}
∣∣

<{Ypar(jω)}
(2.20)

In this formula, a di�erence between peak magnetic and electrical energies is consid-

ered [33]. For example, consider the case of a non-ideal inductor, where magnetic energy

is lost not only through a resistive dissipation but also due to a parasitic capacitive cou-

pling. Thus, e�ective energy stored in inductor decreases with frequency. Similarly, in

the case of capacitor, electrical energy is decreased due to parasitic inductances. For this

reason, (2.20) applies only to inductors or capacitors far from self-resonance frequency.

The same applies to LC resonator. At resonance, total impedance or admittance of a

resonator becomes zero, and according to (2.20), corresponding Q factor should be zero

as well. In this case no energy would be stored during resonance which is a wrong as-

sumption. During resonance, energy constantly changes between magnetic and electric

�elds, and its total amount in each consecutive oscillation cycle is a�ected by resistive

dissipation taking place in the circuit(providing reactive components are still far from

self-resonance).
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2.5.5.2 Average energy de�nition

Yue and Wong [33] show that at resonance quality factor of a tank depends on sum of

average magnetic and electric energy stored in the tank. Also, at certain instants of a

single oscillation cycle, one of the reactive components stores maximum energy. Thus

quality factor is given by

Q = 2π
Average magnetic energy + average electric energy

Energy dissipated in one cycle
=

= 2π
Peak magnetic energy

Energy dissipated in one cycle
=

= 2π
Peak electric energy

Energy dissipated in one cycle

(2.21)

For lossy series and parallel resonators from Figure 2.4 in Section 2.2.2 this corresponds

to

Qser =
ω0L

Rs
=

1
ω0CRs

=

√
L/C

Rs
: series RLC (2.22)

Qpar =
Rp
ω0L

= ω0CRp =
Rp√
L/C

: parallel RLC (2.23)

Thus, although at resonance the reactances of the tank cancel each other, the Q factor

is non-zero as long as energy is stored in the circuit. Also, if there are no losses i.e.

Rs = 0, RP = ∞ the quality factor becomes in�nite and resonator behaves as ideal

oscillator.

2.5.5.3 Phase de�nition

Quality factor de�nition calculated from (2.22) and (2.23) assumes inductances and

capacitances remain constant over frequency. This is generally true for low frequencies

however is not necessarily valid at GHz frequencies. Close to the resonance quality

factor can be determined measuring total impedance or admittance of the tank (it

crosses through zero at resonance) and �nding a derivative of phase from [7]

Q =
ω0

2
∂φ

∂ω

∣∣∣∣∣
ω=ω0

(2.24)
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2.5.6 Unloaded and loaded Q

Quality factor derived for the resonator in relation to its internal losses is known as the

unloaded quality factor, Q0. In practice, energy is sampled from the oscillator through

bu�er ampli�er that is modelled as additional resistive loss. As a result, the apparent

Q of the resonator changes. A quality factor that includes load e�ects is known as

loaded quality factor, QL. If resonator is not compensated by a negative resistance, QL

is always smaller than the unloaded one. However, if all losses are compensated, the

resulting loaded Q becomes in�nite and a circuit oscillates. Note that even when a

resonator is fully compensated, its unloaded quality factor is still �nite.

2.5.7 Total Q of integrated resonator

Due to own parasitic reactances, varactors, capacitors and spiral inductors are self-

resonant structures. Thus, total unloaded Q factor of integrated resonator is limited

by quality factors of all components of the tank. To characterise the total unloaded

Q of resonator it is important to recognise that an LC tank never represents a simple

parallel or series circuit. Typically, a capacitor and inductor losses are modeled as re-

sistors connected in series. Parasitic inductances and capacitances due to metal paths

and substrate leakage are usually characterised as parallel components. These complex

structures can be signi�cantly simpli�ed using series to parallel transformations tech-

nique [32]. The transformation is narrow band in a sense that is only valid in close

vicinity to the resonant frequency of a tank.

For example, consider a simple parallel tank consisting of a lossy spiral inductor

and capacitor. Components Cp, Lp and Rp represent parallel equivalents at particular

resonant frequency and are given by

rlp = rls
(
Q2
l + 1

)
≈ rlsQ2

l

∣∣∣∣
Ql�1

rcp = rcs
(
Q2
c + 1

)
≈ rcsQ2

c

∣∣∣∣
Qc�1

Rp =
rlprcp
rlp + rcp

(2.25)
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Cs

rcs

Ls

rls

Rp Cp Lp

Figure 2.21: Concept of RLC transformation.

and

Lp = Ls

(
Q2
l + 1
Q2
l

)
≈ Ls

∣∣∣∣
Ql�1

Cp = Cs

(
Q2
c

Q2
c + 1

)
≈ Cs

∣∣∣∣
Qc�1

(2.26)

where Ql and Qc are quality factors of inductor and capacitor respectively.

Ql =
ω0Ls
rls

=
rlp
ω0Lp

Qc =
1

ω0Csrcs
= ω0Cprlp (2.27)

Thus, although a non-ideal inductor and capacitor are used, the circuit can be trans-

formed into a pure parallel tank to which (2.7) applies.

Using (2.25), (2.27) and (2.23), a total unloaded quality factor of the tank at resonant

frequency can be found

Q0tot =
Rp√
L/C

=

rplrpc

rpl + rpc√
L/C

=
QlQc
Ql +Qc

≈ Ql
∣∣∣∣
Ql�Qc

(2.28)

Lee [32] reports Q factors in the range of 10 for on-chip spiral inductors and 50 for

bondwires. The quality factors of MIS varactors and MIM capacitors are substantially

higher, typically more than 70. Thus, the quality factor of spiral inductor Ql limits

unloaded Q0tot of the resonator to Q0tot ≤ 10 for most applications. In the case of

discrete o�-chip inductors, the quality factor values are much higher. For example a

3.9 nH inductor from Coilcraft (symbol CT-3N9X_LU) achieves Q in the range of 90

at 1.7 GHz [40], the value far beyond that of an integrated spiral inductor.
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2.6 Oscillator phase noise

2.6 Oscillator phase noise

As oscillators use lossy resonators and active circuits, noise introduced by these circuits

has a direct in�uence on oscillator performance. To understand how noise a�ects the

oscillator assume that a output voltage of non-ideal oscillator is given by

vout(t) =
[
V0 + vn(t)

]
cos
[
ω0t+ φn(t)

]
≈ V0 cos

[
ω0t+ φn(t)

]
(2.29)

where vn(t) and φn(t) represent zero-mean noise �uctuations of amplitude and phase

of the signal. Typically, amplitude perturbations can be signi�cantly lowered because

oscillator has intrinsic mechanism of keeping constant amplitude. Unfortunately phase

�uctuations are not tracked by any means in free running oscillators, and hence accu-

mulate [41]. The output described by (2.29) represents, in fact a phase modulated (PM)

wave where the noise acts as a modulating signal. Perrot [42] shows that if the noise

RMS is much smaller than the signal amplitude, (2.29) can be approximated with

vout(t) ≈ V0 cos (ω0t)− V0 sin (ω0t)φn(t) (2.30)

where the �rst term corresponds to the ideal oscillator signal. The modulating noise

component is bandpass limited by LC resonator (however noise �oor of the system is

not a�ected) and the power spectrum density of the output signal (2.30) is given by

Sout(ω) = Sideal(ω) + Sideal(ω) ∗ Sφn(ω) (2.31)

where Sφn(ω) represents the power spectrum of phase modulating noise [42]. As an

ideal signal is sinusoidal, its Fourier transform is given by a Dirac delta function at ω0.

As the signal is also convolved with noise, its spectrum contains additional side skirts at

frequencies close to the carrier frequency. Thus, the output signal of a noisy oscillator

occupies a certain bandwidth instead of a single frequency. The measure of phase noise

is the power of side skirt within 1 Hz bandwidth around a single frequency ωm 6= ω0,

compared to the power of carrier signal at ω0. The phase noise is therefore a relative

quantity expressed in dBc/Hz.
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2.6 Oscillator phase noise

The main negative e�ects of a noisy oscillator are: spurious emission and reciprocal

mixing. The �rst e�ect is experienced in RF transmitter where a signal is upconverted

to the carrier frequency using noisy oscillator. As a result, some energy is radiated

to the frequency band occupied by a di�erent system. In extreme cases the spurious

emission can swamp a weak signal in an adjacent channels completely, as illustrated on

Figure 2.22

ω

Noisy interferer

ω1 ω2

Figure 2.22: Noisy high power interferer causing spurious emission [26].

The second negative e�ect a�ects a frequency conversion in a receiver. When two

signals are received, one being a large amplitude interferer close to the wanted signal,

both are translated by a mixer to new frequency band. After conversion, the large

interferer can superimpose upon the wanted signal and proper signal detection is no

longer impossible (Figure 2.23). Thus, from a wireless system perspective it is important

to keep phase noise as small as possible and to achieve this a phase noise modelling

becomes one of the main aspects of RF oscillator design.

2.6.1 Typical phase noise performance

Figure 2.24 presents range of phase noise performance for various types of oscillators

published by Gardner [41]. To allow fair comparison between circuits, phase noise

levels were normalised to the resonant frequency of each oscillator. Among presented

circuits, the lowest phase noise can be obtained using crystal resonators (XTAL) that

use mechanical resonance of piezoelectric materials to stabilise oscillation frequency.

Dielectric resonator oscillators (DRO) use ceramic materials also provide good noise

performance. These two approaches require devices that are not available in standard
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Figure 2.23: Reciprocal mixing in receiver during down-conversion [26].

CMOS process. LC oscillators generate substantially higher phase noise and are readily

available in CMOS at RF frequencies up to 10-20 GHz. The cost is a signi�cant chip

area occupied by a spiral inductor. Finally, ring oscillators that largely reduce silicon

area, generate highest phase noise due to the number of active devices.

Figure 2.24 also shows the apparent dependence of phase noise performance on the

quality factor of resonators. Piezoelectric and DRO tanks have typically very high Q0

in the range of 10000. The Q0 of integrated CMOS LC tanks in the range of 10 can be

found, whereas ring oscillators rely on RC phase shifters with even lower quality factor

(about 1).

2.6.1.1 Noise of integrated LC resonator

As phase noise depends mostly on noise generated in an oscillator, it is important to

show how noise is produced in the resonator and active circuit. Consider an example of
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Figure 2.24: Comparison of typical phase noise performance of various oscillators [41].

a lossy parallel resonator from Figure 2.21. If the tank is unloaded and high-Q capacitor

is used, the only noise source present in the circuit is a thermal noise originating from an

inductor because its resistive losses dominate. Thus, even if no external signal is applied

to the circuit, the resonator generates output voltage by itself. Thus, a single thermal

noise generator of an equivalent tank resistance Rp is su�cient enough to describe the

noise behavior of the parallel resonator. As noise of any resistor is represented by the

power spectrum density (PSD) function, in the case of Rp equal to

i2nRp

∆f
=

4kT
Rp
≈ 4kT
rslQ

2
0

(2.32)

where k is a Boltzmann's constant and T is a temperature in Kelvins [26]. Output noise

PSD is shaped in accordance to the resonator noise transfer function that is found from

the equivalent model depicted on Figure 2.25.

The noise transfer function is equal to

Zn (jω) =
jωLpRp

jωLp +Rp (1− ω2CpLp)
(2.33)
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i2nRp
Rp Cp Lpv2

ot

Figure 2.25: Noise model of passive parallel resonator.

and the output noise PSD can be found

v2
ot

∆f
=
i2nRp

∆f
|Zn(jω)|2 =

4kTRpω2L2
p

ω2L2
p +R2

p (1− ω2CpLp)
2 = 4kTRp

∣∣∣∣∣
ω=ω0

(2.34)

Equation (2.34) allows one to calculate a spot noise at any frequency of interest and

indicates that white noise injected into the parallel LC resonator is in fact band-pass

�ltered. To describe the resonator noise in more depth, it is also important to calculate

the total noise power over a given frequency band. The total noise power for any circuit

where noise sources are uncorrelated is found from

v2
ntot, i

2
ntot =

1
2π

N∑
k=1

(
v2
k

∆f
,
i2k

∆f

) ∞∫
0

|Tnk(jω)|2 dω (2.35)

where v2
ntot, i

2
ntot are either a voltage or current referred total output noise power; v2

k,

i2k are uncorrelated noise voltage or current generators, and Tnk(jω) is a noise transfer

function corresponding to each source.

In the case of passive resonator, the total output noise is equal to

i2nRp

∆ω
=

1
2π

i2nRp

∆f

v2
ot

=
i2nRp

∆ω

∞∫
0

|Zn(jω)|2 dω =
4kT
2πRp

π

2
Rp
Cp

=
kT

Cp
(2.36)

The results are illustrated on Figure 2.26 using an example of a 434 MHz integrated

resonator. The output noise voltage spectrum density of has been modeled for two

di�erent unloaded Q0 values, 100 and 30 respectively. Third curve represents the noise

of the resonator where capacitance has been doubled. It can be seen that for a �xed
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Figure 2.26: Noise spectral density of parallel passive resonator.

capacitance, the spot noise at resonance increases proportionally to Q0 and depends

only on Rp, as indicated by (2.33). In accordance with (2.36), the area under the �rst

two curves is independent of Q0 hence the total RMS output noise is constant with

changing Rp. In the third case (dash-dot curve), for a �xed quality factor, an increasing

Cp causes both the spot noise (due to adjusted Rp value to keep Q0 constant) and the

total RMS output noise to be reduced.

2.6.1.2 Noise of negative resistors

The noise delivered by the negative resistor is proportional to the amount of energy

necessary to compensate circuit losses, however its magnitude mostly depends on a

converter architecture. It has been proved that for certain con�gurations, a negative

resistor noise can be lower than of a passive resistor with the same absolute resistance

value [7].

Figure 2.27 depicts the equivalent noise model of a single MOS capacitively degen-

erated negative resistor from Section 2.3.2. To simplify the analysis it is assumed that
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+vx−

C2 i2d
gmvxi2nact

Figure 2.27: Equivalent noise model of capacitively degenerated negative resistor.

the single transistor is characterised by thermal noise only given by [43, 44]

i2d
∆f

= 4kTγgm (2.37)

where γ is a process dependent constant and its typical values reported in literature

vary between 2 to 5 for a short channel MOS transistors [44]. Thus the short circuit

current noise PSD of single ended negative resistor from Figure 2.27 is equal to

i2nact
∆f

=
i2d

∆f
ω2C2

1

ω2 (C1 + C2)2 + gm2
= 4kTγ

C1

C2

∣∣∣∣ 1
Ract

∣∣∣∣ (2.38)

where Ract is a parallel equivalent of negative resistor equal to

Ract = −gm
2 + ω2(C1 + C2)2

ω2C1C2gm
(2.39)

Equation (2.38) reveals that the noise current injected to the resonator may be reduced

if C2 > C1 [7, 32]. If the presented single MOS converter is used in oscillator, the actual

capacitance ratio used can't usually be made arbitrarily small. Typical ratios suggested

by Lee [32] vary between 3:1 and 4:1, yielding the least phase noise level as a result of the

optimal oscillation amplitude in proportion to a resonator noise level. These properties

makes a single MOS negative resistor a practical solution for a high frequency oscillators,

especially when Q0 factor of a resonator is high and thus a relatively small DC power

consumption of the circuit.

Noise PSD of a cross-coupled negative resistor from Section 2.3.2 is derived using

method presented by Hajimiri [45] (Figure 2.28).
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.

id1 rd

inact

rd id2 vd1 = rd1id1

rd inact rd

vd2 = rd2id2

Figure 2.28: Calculation of equivalent short circuit noise current in cross-coupled MOS
negative resistor.

Using KVL, an equivalent short circuit noise current is found

inact =
vd1 + vd2

2rd
=
id1 + id2

2

i2nact
∆f

=
i2d1
∆f + i2d2

∆f

4
= 2kTγgm = 4kTγ

∣∣∣∣ 1
Ractdiff

∣∣∣∣ (2.40)

Assuming that rd is much greater than the total di�erential resonator input resistance, it

can be neglected in further analysis. By shortening the di�erential input, any correlation

between transistors is cancelled and, as (2.40) indicates that a cross-coupled negative

resistor achieves noise properties comparable to its single ended counterpart.

2.6.1.3 Q requirements for low noise of passive LC resonators

The above derivations show, that for a low phase noise design, a high Q0 passive res-

onator is necessary. Firstly, a high quality factor minimises spot noise generated by

resonator, decreasing its relative power at frequencies ωm 6= ω0. Also, high Q cor-

responds to a small losses and hence less amount negative resistance is required for

resonator compensation. According to (2.38) and (2.40) this minimises noise originat-

ing from active circuits and can lead to improved phase noise performance.

2.7 Chapter summary

In this chapter the basic voltage controlled oscillator theory has been presented. It

is shown that LC resonators produce oscillations, however to sustain them an active
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2.7 Chapter summary

device is required to compensate for dissipated energy. The magnitude of dissipation

is controlled by resonator quality factor that also determines noise performance of the

oscillator. It was shown that to improve noise generated in LC oscillator, Q in integrated

resonators has to be maximised. Even if the low Q factor of spiral inductors can be

enough to deliver acceptable phase noise levels, the cost of silicon area consumed is

disproportionally large in comparison with other oscillator components. This problem

becomes more pronounced at lower RF frequencies where inductances in the range

of tens of nH can be required, forcing a circuit designer to choose o�-chip (discrete)

inductors.

Historically, the concept of active inductor became a possible alternative to passive

inductors. In this approach, an inductance is simulated using transistors and capacitors

only. Thus, LC resonator can be integrated on much smaller area than in the case of a

spiral inductors. The next chapter deals with fundamentals of VCO design using active

inductors with special emphasis on circuit noise, large signal behavior and tuning range.
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Chapter 3

Active inductor oscillators

3.1 Introduction

This chapter delivers a comprehensive review of published active inductor circuits and

its application to voltage controlled oscillators. First, a basic circuit description is

presented, providing useful design insights for further VCO design. The most important

parameters of active inductors then are considered to allow a fair comparison to the

passive LC tank approach from Chapter 2. To achieve this a corresponding linear

analysis of small signal models is conducted.

A step by step analysis of noise, reveals the main noise generation mechanisms in

active inductor oscillator. The study of noise con�rms why active inductor circuits can

not be assumed equivalents of their passive counterparts - a common misconception

propagated through the literature. The noise analysis presented in this chapter extends

previously published results of Abidi [46] and Kaunisto [7] by considering total noise

of active inductor resonator compensated with negative resistor. In addition, a phase

noise model of an active inductor VCO is presented [47], showing expected phase noise

performance of gyrator-based oscillators.

Finally, a parasitic e�ect taking place in active inductors at high frequencies is

discussed. The results of this study lead to the main concept of self-oscillating active

inductor resonator presented in this dissertation.
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3.2 Active inductors

3.2 Active inductors

When passive inductors are biased with a sinusoidal current, the resulting voltage phase

is shifted by 90◦. This behavior is conveyed by impedance and admittance functions,

that characterise electronic circuits in the frequency domain. If one is able to design

a circuit using non-inductive components connected such that the resulting impedance

preserves the described 90◦ phase shift, the circuit simulates the behavior of the induc-

tor. This section shows that transistors and capacitors are su�cient to design such a

circuit, allowing a signi�cant reduction of silicon area due to the compact size of these

devices.

3.2.1 Gyrator fundamentals

The phase relationship between the voltage and current of a capacitor is inverse of that

of an inductor. For this reason, the circuit simulating inductance by means of capacitors

has to invert a capacitive impedance to provide the required phase relationship. This

inversion is obtained using a two port network known as a gyrator, presented by Telle-

gen [48]. A gyrator consists of two voltage controlled current sources (VCCS) connected

as illustrated on Figure 3.1.

(a)

I1

g2V2 g1V1

I2

V2V1

(b)

Figure 3.1: Gyrator: (a) symbol, (b) schematic.

The �rst observation is that Tellegen's circuit violates the network reciprocity rule.

According to the theorem, when an electromagnetic force E is connected in one branch

of a reciprocal network it produces current I in another branch. If E is moved from the

�rst to the second branch, it will cause the same current in the original branch, where E

has been replaced by a short circuit [49]. If the circuit from Figure 3.1b was reciprocal
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3.2 Active inductors

the currents on both outputs would be the same, which corresponds to the impossible

requirement of g2 ≡ −g1 for non-zero g1 and g2.

The most convenient method of gyrator description has a form of an admittance

matrix given by

[I] = [Y ][V ]I1

I2

 =

y11 y12

y21 y22

 ·
V1

V2

 =

 0 g2

−g1 0

 ·
V1

V2

 (3.1)

where g1 and g2 are real and known as gyration conductances [50]. If one of the ports

is loaded by generic admittance Yload(jω) such that I2 = Yload(jω) · V2 then the input

admittance Yin(jω) and impedance Zin(jω) of the gyrator are equal to

Yin(jω) =
I1

V1
= y11 −

y12y21

Yload(jω) + y22
=

g1g2

Yload(jω)
(3.2)

and

Zin(jω) =
1

Yin(jω)
=
Yload(jω)
g1g2

(3.3)

Active inductors are in fact a particular case of a more general gyrator concept. If a

gyrator is loaded using a capacitor then the generic Yload(jω) becomes jωC and the

input impedance according to (3.3) is now equal to

Zin(jω) = jω
C

g1g2
≡ jωL (3.4)

Equation (3.4) proves mathematically that a gyrator can mimic an inductive impedance

using a single capacitor and two voltage controlled current sources. From a design per-

spective both VCCS are always implemented using transconductance ampli�ers and

require a DC bias to operate. Thus, in contrary to the passive approach from Chap-

ter 2, any resonator consisting of active inductance dissipates power.

3.2.2 Types of active inductors

In general, various types of active inductors can be distinguished:
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3.2 Active inductors

� Single ended or di�erential: Single ended circuits have only one port where induc-

tive impedance is experienced. These circuits have typically simple architectures.

Di�erential active inductors use di�erential transconductors for improved rejec-

tion of common mode signals, however require twice the number of components

as single ended implementations.

� Grounded or �oating: Grounded inductors have one lead connected either to

ground or V DD [51] i.e. simulate parallel inductance. Floating active inductors

have two ports with inductive impedance in series between them and are suitable

for applications requiring series inductance.

� Single or multistage transconductance ampli�ers: Single stage ampli�ers use one

transistor to provide gyration conductance. Multistage ampli�ers provide larger

gains and can minimise some of parasitic e�ects. The cost is larger power con-

sumption and required number of components.

In practice, combinations of the above are used. Typically, a single ended architec-

ture leads to a grounded inductor circuit, whereas the di�erential arrangement is more

suitable for a �oating gyrator. In all cases, multistage ampli�ers can be employed if

necessary. Figure 3.2 depicts some examples of grounded inductors that over the years

served as a base for further improvements reported in numerous papers [52�54]. In all

cases one of the ports is always loaded by capacitance (some authors use transistor par-

asitics only), whereas the opposite port produces inductive impedance. It is important

to indicate that practical circuits are seldom symmetrical and for this reason one of the

ports is usually preferred as an input. The grounded gyrators from Figure 3.2a and

3.2b represent the simplest architectures: single ended using single stage transconduc-

tors. The advantages are straightforward design and smallest number of devices used.

The cost of simplicity is relatively large circuit losses due to transistor parasitics. The

third gyrator from Figure 3.2c uses a two stage ampli�er to increase input impedance

of the active inductor. In comparison with the former architectures, an extra transistor

introduces additional noise and non-linearity to the circuit.
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3.2 Active inductors

1

2

(a)

VG

1

2

(b)

VG

1

2

(c)

Figure 3.2: Most common CMOS grounded gyrator implementations: (a) common
source - common drain [52], (b) common source - common gate [53], (c) common source
- two stage ampli�er [54].

3.2.3 Active inductor applications

Over the years various circuits using gyrators in place of passive inductors were designed.

The typical applications include: RF �lters, low noise ampli�ers, power splitters, phase

shifters and oscillators, to name a few. Table 3.1 presents some of the recently published

integrated circuits using CMOS active inductors.
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3.3 Basic operation, noise properties and dynamic range of active inductors

Table 3.1: State of the art of active inductor circuits [51].

Reference Year Node Application Frequency∗

Thanachayanont [55] 2000 0.8µm LC VCO 0.45-1.2 GHz

Lin [56] 2000 0.35µm LC VCO 1.1-2.1 GHz

Sackinger [57] 2000 0.25µm Limiting amp. 3 GHz

Wu et al. [53] 2001 0.35µm LC VCO 0.1-0.9 GHz

Grozing et al. [58] 2001 0.30µm LC VCO 0.4-4 GHz

Wu et al. [59, 60] 2001 0.35µm RF bandpass 0.4-1.1 GHz

Thanachayanont [61] 2002 0.35µm RF bandpass 2.4-2.6 GHz

Xiao [62] 2002 0.18µm RF lowpass 4.57 GHz

Xiao et al. [54] 2004 0.18µm RF bandpass 3.5-5.7 GHz

Lu et al. [63] 2005 0.18µm RF power divider 4.5 GHz

Liang et al. [64] 2005 0.18µm RF bandpass 3.45-3.6 GHz

Gao et al. [65�67] 2005 0.25µm RF bandpass 2.05-2.45 GHz

Chen et al. [68] 2005 0.35µm Limiting amp. 2.3 GHz

Lu et al. [69] 2005 0.18µm RF phase shifter 360◦

Mahmoudi [70] 2005 0.18µm QVCO 8 GHz

Jiang et al. [71] 2005 0.18µm Gbps Tx. 10 Gbps

Yuan [72, 72] 2006 0.18µm Ring VCO 1.7-2.7 GHz

Lu et al. [73] 2006 0.18µm LC VCO 0.5-3.0 GHz

Xiao et al. [74] 2007 0.18µm RF bandpass 3.34-5.72 GHz

Weng [75] 2007 0.18µm RF bandpass 2-2.9 GHz

Tang et al. [76] 2007 0.18µm RF modulators 1.6 GHz

Tang et al. [77] 2007 0.18µm VCOs 1.6 GHz

∗ - For bandpass �lters, the frequency range is the center frequency range,

for VCOs, the frequency range is the oscillation frequency range,

for limiting ampli�ers, the frequency is the bandwidth of the ampli�ers.

3.3 Basic operation, noise properties and dynamic range

of active inductors

As mentioned, in the simplest case, an active inductor is obtained using two single

stage transconductance ampli�ers connected back to back and loaded by a capacitor,

as illustrated on Figure 3.3a. A closer examination of (3.1) reveals that for proper

operation, one VCCS has always a form of an inverting ampli�er. At this stage it is

assumed that both transconductors are ideal i.e. have an in�nite input impedance and

ideal current sources at the output. In this case the value of the simulated inductance
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vin

iin −gm1
i1

Cg
+

vg
−

gm2

i2

(a)
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−gm1
i1

Go1 Co1 Cg

gm2

i2

(b)

vin

iin

Go2 Co2

Rs =
Go1

gm1gm2

Ls =
Cg + Co1

gm1gm2

(c)

Figure 3.3: Generic model of active inductor:(a) ideal circuit, (b) lossy circuit, (c)
equivalent model of lossy circuit

calculated from (3.4) is given by

Lsim =
Cg

gm1gm2
(3.5)

The chief advantage of an active inductance over a passive counterpart is its inherent

tuning ability through a bias dependent ampli�er transconductance gm. Therefore, by

varying the quiescent point of the transconductors, the resonant frequency of a resonator

can be changed and no varactors are required for oscillator tuning. Due to non-idealities

of the transconductance ampli�ers integrated gyrators are always lossy. First, ampli�ers
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3.3 Basic operation, noise properties and dynamic range of active inductors

have �nite input and output impedances, e�ectively changing a capacitive load into an

RC network. Secondly, transconductors contain complex parasitic networks, that cause

additional performance degradation at higher frequencies. These are described in more

detail at the end of this chapter.

To analyse in detail how circuit parasitics in�uence the behavior of gyrators, one can

consider a generic model of a lossy grounded active inductor circuit, illustrated in Fig-

ure 3.3b. Components Go1,o2 represent total conductances at given nodes and consists

of resistive losses of transconductors as well as real part of input/output admittances

depending on ampli�er con�gurations. Similarly, Co1,o2 represent the total node capac-

itances due to intrinsic transistor parasitics and architecture dependent reactances like

Miller capacitance, for example. As a result, the gyrator circuit no longer simulates

ideal inductance, but a more complex resonant structure. Note that transconductance

gm1,2 is considered real. The input admittance is now equal to

Yin(jω) = Go2 + jωCo2 +
gm1gm2

jω (Cg + Co2) +Go1
(3.6)

and the corresponding equivalent circuit is depicted in Figure 3.3c. As a result induc-

tance is now simulated with series resistor proportional to the losses on the gyrator

output which, together with Go2, deteriorate the quality factor of the circuit. In ad-

dition, input capacitance limits a maximum frequency at which active inductor can

operate before reaching self-resonance.

3.3.1 Quality factor of non-ideal active inductor

Using (2.20), the quality factor of lossy active inductor is found [51] as

Q =
ωLs
Rs
· Rpo2

Rpo2 +Rs

1 +
ω2L2

s

R2
s


·
(

1− R2
sCp
Ls

− ω2LsCp

)
(3.7)
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where

Rpo2 =
1
Go2

Cp = Co2

Rs =
Go1

gm1gm2

Ls =
Cg + Co1
gm1gm2

(3.8)

Far from the self-resonance frequency, the quality factor of the active inductor is primar-

ily controlled by Rs only. Thus, to minimise losses, Go1 should be as small as possible.

Typically, this conductance corresponds to the output conductances of the MOS tran-

sistors used in ampli�ers and its value can not be decoupled from the transconductance

without the use of multistage ampli�ers. This problem becomes important in sub-micron

devices where drain to source resistance is lower than for long channel transistors.

The quality factor from (3.7) can be used to transform the active inductor model

from Figure 3.3c into a parallel equivalent. Recalling the transformation technique

presented in Chapter 2 for spiral inductor tanks, and assuming a signal frequency much

less than self-resonance, this leads to the following model

Rpai =
1
Go2

+
Go1

gm1gm2

(
1 +Q2

)
≈ 1
Go2

+
Go1

gm1gm2

[
1 +

(
ω(Cg + Co1)

Go1

)2
]

(3.9)

Lpai =
Cg + Co1
gm1gm2

(
Q2 + 1
Q2

)
≈ Cg + Co1
gm1gm2

[
1 +

(
Go1

ω(Cg + Co1)

)2
]

(3.10)

Equations (3.7), (3.9) and (3.10) prove that for a successful resonator design, the active

inductor circuit requires more thorough modeling than a passive inductor. Transistors

have more complex parasitic networks that in general tend to be dispersive. In addition,

the presented formulas represent small signal approximations of non-linear ampli�er

parameters, hence they become less accurate with increasing signal amplitude. This is

an essential observation for oscillator design, commonly omitted in existing literature.
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3.3 Basic operation, noise properties and dynamic range of active inductors

3.3.2 Noise of active inductor resonators

As presented in the previous chapter, the noise properties of a resonator have direct

impact on oscillator performance. For this reason, a noise analysis of active inductors

is essential to establish a proper base for the solutions presented in this dissertation.

To simplify calculations, it is assumed that output conductance Go1 is negligible and

therefore has no in�uence on resonator noise. Even though the accuracy of such an

assumption is somehow lower (as in practice Go1 is not negligible and contributes to

noise transfer functions), it allows one to pin-point the main sources of gyrator noise.

The main misconception widely propagated in the literature is the assumption that

the parallel equivalent circuit of an active inductor represents the same behavior as

its passive counterpart. This is true from a small signal model point of view, however

as shown in this and in following chapters, this is never the case for noise and large

signal behavior. Thus all of the conclusions based on an analysis of passive resonators

do not apply to active inductors. Abidi [46] was the �rst who reported this behavior

and presented a closed form solution for total RMS noise voltage produced by an active

inductor resonator. This solution has been later con�rmed by Kaunisto [7] who delivers

the most thorough analysis published previously.

The noise analysis presented in this chapter consists of two parts. First, the noise

of an uncompensated active inductor is presented using the same methodology as Kau-

nisto [7], however for calculation convenience, the parallel conductance is substituted

by a resistance. The second part shows a noise analysis of an active inductor resonator

compensated using a negative resistor. This closed form solution, not found in previ-

ously published literature, represents a more practical noise model for an active inductor

resonator.

3.3.2.1 Uncompensated active inductor resonator

Figure 3.4 depicts the equivalent noise model of an active inductor resonator. The capac-

itor CT represents total tank capacitance and includes input parasitic capacitance from
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Rpai CT i2nai

v2
nai

Lpai

v2
oai

Figure 3.4: Noise model of active inductor resonator.

i2d2
gm2v2 gm1v1 i2d1 Cg

+
v2−

v1

Figure 3.5: Noise sources of active inductor.

transconductors. The noise performance of this resonator is calculated using the same

approach as presented in Chapter 2, Section 2.6.1.1. First, to compare performance of

active and passive resonators, a noise analysis of an uncompensated and unloaded tank

is performed. The circuit is characterised by an unloaded quality factor Q0. By using

a parallel tank transformation from Chapter 2, Section 2.5.7 an equivalent resistance

Rpai is introduced in place of Rp from the passive resonator from Figure 2.25. This par-

allel resistor can be considered noiseless because most of the noise originates from both

transconductance ampli�ers (node conductances of gyrator are not dissipating power

in general). As indicated in Section 3.3.1, Rpai depends on the circuit con�guration

and the transconductors used, with the e�ect that Q0 can not be freely adjusted to a

speci�ed value.

In contrast to the passive tank, there are now two noise sources present, each cor-

responding to a single ampli�er. In the most elementary case, single MOS ampli�ers

are used and, for a simplicity of calculations, only the thermal noise of a transistor is

considered [26]. Figure 3.5 depicts this resulting equivalent noise model of a gyrator. A

detailed analysis reveals that the corresponding noise sources are equal to [78]

i2nai
∆f

=
i2d2

∆f
= 4kTγgm2 (3.11)
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v2
nai

∆f
=

1
gm2

1

i2d1

∆f
=

4kTγ
gm1

(3.12)

The solution is valid only for single MOS ampli�ers. If multistage transconductors are

used, the noise generators have to be derived separately.

Equations (3.11) and (3.12) indicate that the noise of both transconductors can be

decreased if gm1 and gm2 values are maximised and minimized respectively. However for

a maximum input signal amplitude, both transconductors have the same gain. This is

especially crucial for a VCO design because phase noise level is inversely proportional to

the signal power delivered by an oscillator. For this reason, an active inductor resonator

noise can't be minimised by setting gm2 to be much less than gm1. A thorough circuit

analysis is necessary to indicate other means for controlling tank noise.

As in the case of the passive resonator, the transfer function of a noise current

generator i2nai is equal to the total impedance of the circuit and is calculated from

(2.33), substituting Lpai in place of Lp. Using the methodology from [7, 46], the transfer

function of the equivalent input noise voltage source v2
nai is found from Figure 3.4

Anai (jω) =
Rpai

jωLpai +Rpai (1− ω2CTLpai)
(3.13)

Using (2.33) and (3.11)-(3.13), the output noise PSD of a gyrator-based resonator is

derived as

voai2

∆f
=
i2nai
∆f
|Znai(jω)|2 +

v2
nai

∆f
|Anai(jω)|2 =

=
4kTγR2

pai

ω2L2
pai +R2

pai (1− ω2CTLpai)
2

(
ω2L2

pai gm2 +
1

gm1

)
=

= 8γQ2
0

kT

gm

∣∣∣∣∣ω=ω0
gm1=gm2=gm
CT =Cg

Q0=Rpai/ω0Lpai

(3.14)

and the total output noise power of the tank is now equal to

voai2 =
1

2π
i2nai
∆f

∞∫
0

|Znai(jω)|2 dω +
1

2π
v2
nai

∆f

∞∫
0

|Anai(jω)|2 dω =

=
kTγRpai
CT

(
gm2 +

1
gm1

CT
Lpai

)
=
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Figure 3.6: Noise voltage spectral density of active inductor resonator.

=
kTγ

CT
Rpaiω0CT

(
gm2

ω0CT
+
ω0CT
gm1

)
= 2γQ0

kT

CT

∣∣∣∣∣gm1=gm2=gm
CT =Cg

Q0=ω0CTRpai

(3.15)

Equation (3.15) indicates that not only is the total output noise power substantially

larger than that of the passive tank but it is also proportional to the unloaded quality

factor of the active inductor. As a result, the high Q0 values cause a serious limitation

of dynamic range and phase noise in �lters and oscillators, respectively. This fact

is commonly omitted in publications in this area, where active inductor resonators

with high quality factors are presented without any indication of its impact on the

total resonator noise. The spot noise at resonance calculated from (3.14) is inversely

proportional to the transconductance of both ampli�ers, proving that active inductor

noise can be minimised at the cost of increased power consumption.

As in Chapter 2, Section 2.6.1.1 the noise of an example resonant tank is simulated

using Matlab. Figure 3.6 depicts output voltage noise spectral density (SD) functions

of an uncompensated resonator designed for 434 MHz and three di�erent cases. The
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Figure 3.7: Noise model of active inductor resonator with negative resistance compen-
sation.

�rst two curves represent the resonator with a quality factor equal to 100 and 30,

respectively. The tank capacitance is again set to 4 pF and the gyrator is symmetrical

(i.e. gm1 = gm2), with a transconductance equal to 10.9 mA/V. In the third case the

capacitance value has been doubled and to keep the resonant frequency constant the

transconductance has been doubled as well. As shown by (3.15), in contrast to the

passive resonator, the area under each curve is now directly proportional to Q0.

3.3.2.2 Compensated active inductor resonator

As the quality factor of an uncompensated active inductor resonator can't usually be

freely adjusted, the typical approach employs a negative resistance circuit to compensate

tank losses in controllable fashion. Thus, apart of the noise sources of the transconduc-

tors, the resonant tank also su�ers from the noise introduced by the negative resistor.

For this reason, a noise analysis of a compensated gyrator-based resonator is necessary.

Figure 3.7 depicts the equivalent noise model of a gyrator-based resonator with

negative resistor. It is assumed that all of the gyrator parameters remain the same as

in the case of uncompensated active tank.

A negative resistor can, to a certain extent, produce any value of parallel resistance,

allowing total compensation of resonator losses, thus boosting its loaded quality factor

to in�nity. If the resonator is used in a �lter, to prevent instability, an additional

resistance Rload is connected, bounding e�ectively a value of QL. In the case of an

oscillator tank, Rload represents the real part of the input impedance of the following
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3.3 Basic operation, noise properties and dynamic range of active inductors

stage, usually a bu�er ampli�er. As the majority of noise in an active inductor resonator

comes from the transconductors and a negative resistor, it can be assumed that Rload

does not add a substantial amount of noise to the resonator. If the contribution of Rload

is important, the following analysis allows for its inclusion. In this case a noise current

generator representing the load resistor adds in parallel to the current noise generator

of the active inductor.

To characterize the resonator behaviour in a presence of Rload, the loaded quality

factor QL is used. If the same resonator is used in a sinusoidal oscillator, it is evident

that the negative resistor is designed to cancel all the circuit losses, including those

originating from subsequent stages, otherwise oscillations would be attenuated. This

implies QL is in�nite but for the purpose of this section, QL of the tank is assumed to

be �nite.

The noise transfer functions from Section 3.3.2.1 have to be modi�ed accordingly as

Rload and −Ract are now connected to the resonator. If RT is the total resistance of

the tank, then it is equal to

RT =
1

1

Rload
+

1

Rpai
−

1

Ract

= Rload

∣∣∣∣∣
Ract=Rpai

(3.16)

Hence, the modi�ed transfer functions are now

ZnaiQ(jω) =
jωLpaiRT

jωLpai +RT (1− ω2CTLpai)

AnaiQ(jω) =
RT

jωLpai +RT (1− ω2CTLpai)
(3.17)

The result of a noise analysis of a typical Q-enhancing circuit from Chapter 2 shows

that the impact of negative resistor noise can't be neglected. Yet by a proper design of

negative resistor, this e�ect can be usually minimised. Hence, by combining results from

Section 2.6.1.2 with (3.15), the proposed total output noise of a Q-enhanced resonator
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3.3 Basic operation, noise properties and dynamic range of active inductors

is equal to

v2
oaiQ =

1
2π

(
i2nai
∆f

+
i2nact
∆f

) ∞∫
0

|ZnaiQ(jω)|2 dω +
1

2π
v2
nai

∆f

∞∫
0

|AnaiQ(jω)|2 dω =

=
kTγRT
CT

(
gm2 +

Cex1

Cex2

∣∣∣∣ 1
Ract

∣∣∣∣+
1

gm1

CT
Lpai

)
=

=
kTγ

CT
QL

(
2 +

1
gm

Cex1

Cex2

∣∣∣∣ 1
Ract

∣∣∣∣
)∣∣∣∣∣gm1=gm2=gm

CT =Cg

QL=ω0CTRT

:single MOS (3.18)

=
kTγ

CTdiff

QLdiff

(
2 +

1
gm
∣∣Ractdiff

∣∣
)∣∣∣∣∣gm1=gm2=gm

CTdiff
=Cgdiff

QLdiff
=ω0CTdiff

Rtotdiff

:di�erential (3.19)

The total output noise is higher in relation to the uncompensated tank because the

negative resistor inevitably increases the total output noise power. Equations (3.18)

and (3.19) prove that in the case of active inductors with a low unloaded Q0, this con-

tribution can not be simply neglected (low Q0 requires more power for compensation

and therefore more noise can be injected to the resonator). Analysing (3.18) and (3.19)

one may also conclude that the term describing the noise contribution of the negative

resistor (i.e. containing Ract) is always inversely proportional to the gyrator transcon-

ductance gm and can be minimised this way. Usually however, resonator losses have

a certain proportionality to gm, increasing together with it. This, in turn, causes a

proportionally higher transconductance for the negative resistor required for compen-

sation. In the case of the low Q0 active inductor, we found the noise contribution from

an impedance converter is constant with changing gm.

The presented noise analysis suggests few possible solutions to improve noise per-

formance of gyrator-based resonators. The simplest method, e�cient for both passive

and active resonators is to increase the tank capacitance. However, for a constant res-

onance frequency, a gyrator transconductance has to increase as well, causing either a

larger static power consumption or larger transconductor dimensions Abidi [46]. An-

other method utilises a relatively low quality factor gyrator, restricting applications to

low selectivity resonators. A third method involves lowering the transconductor noise by

using either long MOS devices or, if a resonator is driven by a low source impedance (up
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3.4 Active inductor VCO

to few kΩ), bipolar transistors may be a more practical solution [43]. This results in a

trade-o� between power consumption, chip area, resonator quality factor and generated

noise.

3.3.3 Linearity and dynamic range

Active inductors are non-linear by de�nition. As a result, the input impedance of an

active resonator changes with signal amplitude. Thus, an active resonator holds its

designed function only until a critical signal magnitude is reached. On the other hand,

increased noise decreases input signal to noise ratio and e�ectively limits the dynamic

range of the active tank. Wang and Abidi [78] suggest that for gyrator based resonators,

the dynamic range is proportional to

DR ∝ V DD
√
CT
kT

1√
Q0

(3.20)

con�rming that for a high dynamic range, gyrators with low unloaded Q0 factor, large

tank capacitors CT and high V DD technology have to be used.

The linearity issue manifests itself in a form of harmonic distortion. As oscillators

operate in large signal regime using non-linear ampli�ers, the negative e�ects of har-

monics on the behavior of the active inductor resonator have to be thoroughly analysed.

This problem is addressed later in this thesis in Chapter 5. As a rule of thumb for both

passive and active resonators, total harmonic distortion can be minimised if the tank ca-

pacitance CT is large, e�ectively shorting the high frequencies to ground but providing

in�nite impedance at the resonant frequency [30].

3.4 Active inductor VCO

An active inductor oscillator can be designed using either feedback or negative resistance

approach from Chapter 2 using the same oscillation criteria. The latter approach is

more convenient if a one port equivalent circuit of the resonator is available and it

is especially suitable for grounded active inductors. Such a VCO consists of a tank
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3.4 Active inductor VCO

capacitor (or switched capacitance array) and electronically tunable inductance. The

resonant frequency of the oscillator is proportional to

ω0 ∝
√
gm1gm2 = gm |gm1=gm2=gm (3.21)

The unloaded quality factor of the resonator is determined by the Q0 of the active

inductor. Comparing (3.21) with (3.7), Q changes with tuned transconductance and

therefore with ω0. This results in a more complex dependence between noise, oscillation

amplitude and tuning range than in the case of passive resonators.

3.4.1 Oscillator tuning range

In general, the available tuning range using a single active inductor is larger than the

one provided by a single varactor because inductance is inversely proportional to the

product of gm1 and gm2. In theory, as long as power consumption is not a concern,

gm can be varied freely shifting the resonant frequency of an oscillator. However, due

to parasitics, the tuning range of real active resonators is always restricted.

Recall the lossy inductor model from Figure 3.3b and 3.3c where the impedance of

series resistor Rs and simulated inductance Ls is equal to Zs = Rs + jωLs. At low

frequencies, Zs ≈ Rs because the active inductance becomes superimposed by gyrator

losses. Thus a lower limit of tuning range is found from

Rs = ωlowLs → ωlow =
Rs
Ls

=
Go1

Cg + Co1
(3.22)

At high frequencies Zs ≈ jωLs because inductive impedance is now much larger than

Rs. Due to the input capacitance of the gyrator, the circuit reaches its self-resonance

frequency given by

ωself =
√

1
LsCo2

=
√

gm1gm2

(Cg + Co1)Co2
(3.23)

Thus, an active inductor can be tuned between frequencies calculated from (3.22) and

(3.23) which con�rms results presented previously in [51]. Note, that the self-resonant

frequency depends on the transconductance and allows one to increase the tuning range
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3.4 Active inductor VCO

at the cost of power. This also corresponds to a higher tuning constant of the oscil-

lator that in general is not straight forward to minimise. Lu et al. [79] attempted to

use varactors for �ne tuning around the carrier frequency. The carrier frequency was

controlled through active inductance (adjusted using MOS devices in triode region).

In theory, this should result in a reduced sensitivity of active inductor inductance on

tuning voltage and reduced AM-PM noise conversion, however no further explanation

is given.

3.4.2 Maximising amplitude of oscillations

At a given frequency the amplitude of the signal generated by a gyrator-based oscillator

can be controlled through transconductance and capacitance values. The transconduc-

tances gm1 and gm2 can be tuned separately, keeping in mind that for a given resonant

frequency their product has to be held constant. Assuming that transconductance

losses are negligible in this case, the amplitude of the voltage at active inductor output

is approximately equal to

|vout| ≈
|gm1vin|
ωCg

(3.24)

Similarly, the input signal amplitude is approximated by

|vin| ≈
|gm2vout|
ωCT

(3.25)

where CT is a tank capacitance. If the maximum signal amplitude at the input of

the active inductor is reached, for example the maximum allowable voltage for a given

technology, it also can not be exceeded at the output of an active inductor. For this

reason ∣∣∣∣ vinMAX

voutMAX

∣∣∣∣ = 1 ≡ gm1

Cg
=
gm2

CT
(3.26)

From the noise perspective it would be bene�cial to decrease gm2 and increase gm1. In

this case however the required Cg has to be larger than the tank capacitance CT already

maximised for small noise. Therefore (3.26) represents an original mathematical proof
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3.4 Active inductor VCO

con�rming the observations done by Cranickx and Steyaert [47] that for a maximum

amplitude in standard active inductor resonators CT = Cg and gm1 = gm2 should be

used.

3.4.3 Phase noise

During preparation of this thesis no non-linear phase noise model of a gyrator based

oscillator has been found. Since active inductor structures can't e�ectively compete with

a phase noise performance of passive LC circuits, there is currently no real demand for

such models. As far as linear phase noise analysis go, there is only a limited number

of papers brie�y describing it [79, 80]. The most informative among available sources

is that of Craninckx and Steyaert [47], presenting a simple linear and time invariant

model for an active inductor tank and compensated with a generic ampli�er, illustrated

in Figure 3.8.

−

+
GM

Rp

C

Rc

L

Rl

v2
n

i2n

vout

L = C/gm2

Figure 3.8: Oscillator model with noisy active inductor [47].

Craninckx derives a simple expression for a noise PSD of an oscillator at frequency

o�sets ωm from the carrier assuming ωm � ω0. If the gyrator is symmetrical i.e. both

transconductances and port capacitances are the same, the noise PSD at o�set frequency

is equal to

Sout(ωm) = kTReff (1 +A+ 2Q)
ω2

0

ω2
m

(3.27)
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where Reff is an e�ective resonator resistance determining a quality factor of the res-

onator Q

Reff = Rl +Rc +
1

Rp (ω0C)2 (3.28)

Q0 =
1

Reffω0C
(3.29)

Parameter A represents the noise factor of a non-ideal ampli�er, C is a tank capacitance

and L is a gyrator inductance. Note that (3.27) yields total noise (i.e. both phase and

amplitude noise) at o�set frequency and not only phase �uctuations. In practical cir-

cuits, some of the noise is removed due to inherent amplitude stabilisation mechanisms

in oscillators [26, 41], however in a worst-case analysis it can be assumed that noise

calculated from (3.27) represents the phase �uctuations of the oscillator [47].

Formula (3.27) shows a proportionality between noise PSD at ωm to a quality factor

of a resonator. This behavior is expected because the total noise of any active inductor

resonator increases with quality factor as presented in Section 3.3.2. Therefore, to

decrease noise at o�set frequency from the carrier, a small Q0 gyrator has to be used,

proving that the noise analyses of passive LC tanks do not apply to active inductor

circuits. In turn, as Q0 factor has to be low, a substantial amount of power from the

ampli�er is required to compensate losses.

Once the noise PSD for a particular ωm is found from (3.27), phase noise is then

calculated using the formula for L, a normalised theoretical one-sided spectrum of os-

cillator signal [41]

L (ωm) =
Sout(ωm)
V 2
out/2

(3.30)

where Vout is an amplitude of oscillator signal. For the circuit discussed in this section

(3.30) translates into

L (ωm) =
kTReff (1 +A+ 2Q)

V 2/2
ω2

0

ω2
m

(3.31)

If Q0 is much larger than one, (3.31) can be simpli�ed to

L(ωm) ≈ 1
V 2

4kT
ω0C

ω2
0

ω2
m

(3.32)
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Craninckx and Steyaert [47] deduct that phase noise of an oscillator with a standard

active inductor resonator can be decreased if:

� Amplitude of the signal is large: Craninckx and Steyaert do not specify any

possible drawbacks of an excessive signal amplitudes driving active inductor. This

large signal problem is described in detail in Chapter 5. Due to the a non-linear

nature of active inductors, an increase of signal amplitude causes larger harmonic

distortion, that inevitably increases phase noise due to a frequency conversion of

noise sources around signal harmonics. Therefore, for excessive amplitudes phase

noise will be also large, however the linear phase noise model can't predict it.

� Tank capacitance C is increased: Craninckx and Steyaert explain that the power

consumption of the ampli�er increases to compensate for lower Q0. Their obser-

vations are true but not well clari�ed. To keep the oscillation frequency constant,

the inductance of the resonator has to decrease to keep the product of L ·C con-

stant. Assuming that both gyrator transconductances are the same, every time

the C increases an n times, the gm of each transconductor has to increase n times

as well. As gm ∝
√
ID this requires n2 increase of the bias current for each am-

pli�er. For the constant supply voltage this increases the DC power consumption

of a gyrator by n2 at least. Thus, the use of large tank capacitance C has to be

used carefully.

3.4.4 Reported LC oscillators using active inductors

Due to an inferior noise performance in comparison with passive LC tank oscillators,

only a limited number of publications on active inductor LC VCO can be found.

Yuan [51] provides references to some of the important works in the �eld, presented

in Table 3.2. The typical phase noise performance of harmonic VCO using gyrators

is close to that of ring oscillators from Figure 2.24. Note that the phase noise level is

proportional to the tuning range due to the relatively high KV CO of active inductor

based resonators.
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3.5 Negative resistance in active inductors

A common feature of all the presented oscillators from Table 3.2 is that they are

compensated using a negative resistor. As shown in this section for a low phase noise,

low unloaded Q0 factor inductors have to be employed. This imposes a large tank ca-

pacitance and dramatically increases power consumption of the oscillator due to gyrator

losses. The following section describes an useful parasitic e�ect found in gyrators that,

at least in theory, allows to minimise the described trade-o�.

Table 3.2: Reported active inductor oscillators [51]

Reference Year Node Type∗
f0 Phase noise

[GHz] [dBc/Hz]

Lin et al. [56] 2000 0.35µm VCO 2.5 -88 @0.6 MHz

Wu et al. [53] 2001 0.35µm VCO 0.1-0.9 -95 @0.5 MHz

Xiao et al. [81] 2002 0.20µm VCO 4.95 -81 @0.5 MHz

Lu et al. [73] 2006 0.18µm VCO 0.5-3.0 -101� -118 @1 MHz

Tang et al. [76] 2007 0.18µm TVCO-A 1.6 -108 @1 MHz

Tang et al.[77] 2007 0.18µm TVCO-AB 1.6 -125 @1 MHz

Tang et al. [82] 2007 0.18µm QVCO 1.6 -115 @1 MHz

∗ - TVCO is using active transformer; A, AB ampli�er class, QVCO - quadrature VCO

3.5 Negative resistance in active inductors

3.5.1 E�ects of non-ideal transconductors

In general, there are two mechanisms responsible for circuit losses in active inductors.

Apart from node conductances, reactive networks inside the transconductors can dete-

riorate a circuit performance. This problem had been addressed in the past by Mould-

ing [83, 84], who observed that at high frequencies, non-ideal transconductors introduce

a negative real admittance component into an active inductor resonator. Figure 3.9

illustrates such a gyrator-based tank, where an ampli�er parasitics manifest itself in a

form of arbitrary phase lag of φ/2 radians of each transconductor. This is a result of a

�nite resistive losses and parasitic capacitances of MOS devices and its biasing network.

It is assumed that the phase shift, although not negligible, is small enough to satisfy

the condition of sin (φ) ≈ φ.
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vin

iin

CT
−gm1 · e−jφ/2

i1

Go1

gm2 · e−jφ/2

i2

CgGo2

Figure 3.9: Active inductor resonator with non-ideal transconductors [84].

The input admittance is then approximately equal to

yin(jω) = Go2 + jωCT +
gm1gm2

Go1 + jωCg
e−jφ =

= Go2 + jωCT +
gm1gm2

Go1 + jωCg
(cosφ− j sinφ) ≈

≈ Go2 + jωCT +
gm1gm2

Go1 + jωCg
− φgm1gm2

ωCg

∣∣∣∣∣φ≤π/10
Go1�gm1,gm2

=

= Go2 + jωCT +
1

Rs + jωLs
− φ

ωLs
(3.33)

where

Rs =
Go1

gm1gm2

Ls =
Cg

gm1gm2
(3.34)

An additional parallel negative resistor of −φgm1gm2/ωCg is now present in the cir-

cuit. If not su�ciently suppressed, it causes resonator peaking at higher frequencies, in

extreme cases leading to instability [78, 83, 84].

By approaching the problem from a di�erent perspective, the e�ect of unwanted

phase shift inside transconductors causes partial or even total compensation of gyrator

losses, theoretically improving a selectivity of the tank or, in an extreme case, producing

oscillations without an extra power consumption. As transistor parasitics are generally
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hard to control, this compensation method can't fully rely on ampli�er non-idealities.

Instead, it is possible to generate the required phase shift by the means of RC com-

ponents whose behavior is much more predictable. Due to the additional components

used, the resonator represents a degenerated version of an ideal active inductor cir-

cuit. Hereinafter this term is used to describe the behavior of an active inductor with

intentionally added phase lag components.

3.5.2 Practical active inductor circuits with negative resistance

Over the years, only a few active inductors with negative resistance have been published.

In the most cases either GaAs-MESFET [85�87] or GaAs-HBT [88] devices are used,

usually due to a high frequency of operation. This section presents the state of the

art designs found in literature, showing that before this thesis, little has been done to

explore the fundamental properties of these circuits.

3.5.2.1 Hara-Hayashi MMIC active inductors

Figure 3.10 illustrates four widely known circuit architectures, presented in the series

of articles by Hara et al [85, 86] and later modi�ed by Hayashi et al [89] using MMIC

(Monolithic Microwave Integrated Circuits) technology. MMIC circuits use gallium ar-

senide (GaAs) instead of silicon which results in much higher frequency of operation

in the range of hundreds of GHz. However the manufacturing cost of such circuits is

substantially higher than using CMOS due to a smaller number of devices per wafer in

MMIC. All of the circuits utilise a non-inverting cascode transconductor stage and vari-

ous feedback ampli�er topologies. The resulting input admittance/impedance functions

are approximately equal to

yin(jω) ≈ gm3

(
1− Cgs2gm1

Cgs1gm2

)
+

1

jω
Cgs1

gm1gm2

:type A (3.35)

zin(jω) ≈ − 1
gm2

+ jω
Cgs1
gm1

(
1

gm2
+

1
gm3

)
:modi�ed type A (3.36)

yin(jω) ≈ 1
Rs
− gmCgs3,4

Cgs1,2
+

1

jω
Cgs1,2

gmgm3,4

:type B (3.37)
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Figure 3.10: MMIC negative resistance gyrators: (a) and (c) present original Hara et
al. gyrators [85, 86]; (b) and (d) depict Hayashi et al. respective modi�cations [89, 90].

zin(jω) ≈ Rs −
(

1
gm2

+
1

gm3

)
+ jω

Cgs1
gm1

(
1

gm3
+

1
gm4

)
:modi�ed type B (3.38)

In every case, all of the FET devices were described by simple small-signal models

consisting only of a transconductance gm and gate to source capacitance Cgs. Thus all

of the small-signal parameters are designed around a limited set of transistor parasitics.

Resistors Rs have been added to improve stability and input matching without any

further explanation.

The main advantages of the Hara-Hayashi circuits are wide operational bandwidth

and a relatively high output power of 0 dBm. Hara and Hayashi do not include any

noise or a non-linear analysis and no design rules are given. A relatively large DC power

consumption between 50 mW to 80 mW has also been reported.
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3.5.2.2 Wei passively compensated gyrator

Next circuit, depicted in Figure 3.11, was published in a brief letter by Wei et al. [91].

This active inductor is a further modi�cation of Hayashi gyrator from Figure 3.10b.

The active phase shifter is created by connecting an additional RC network between

gate of transistor T2 and AC ground. The authors report that the circuit generates a

constant negative resistance roughly over a decade bandwidth with a power consumption

of 30 mW, reaching quality factor values in the range of 1000. As previously, no noise

and non-linear analysis in the presence of RC shifter is included nor an explanation of

a chosen shifter con�guration.

Nair et al. [92], have used the same approach in a cascode feedback active inductor

for an ultra wide band (UWB) 180 nm CMOS LNA. For a small power consumption

of 7 mW and 1 V supply voltage, typical performance of a gyrator-based circuits is

reported, yet no further design insight into a complex RC network used has been given.

vin

iin R0

T3

T2

T1

C2
R2
C1R1

Phase lag network

Figure 3.11: Feedback network compensated active inductor [91].

3.5.2.3 Kaunisto circuits

Another signi�cant circuit, from Figure 3.12 was presented by Kaunisto [7, 88]. It

achieves a potentially better power consumption than Hara active feedback circuits and

its modi�cations. First, single transistor transconductors are used, possibly minimising
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Cg RQen
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iin

Figure 3.12: Kaunisto Q-enhanced active inductor [7].

DC power consumption. A phase lag network has been implemented using both lumped

components and transistor in the linear regime. No analytical formulas regarding input

admittance were enclosed, however several HBT [88] and Bi-CMOS [93] circuits based

on this concept were built and measured. DC power consumption in the range of

25 mW has been reported, achieving noise voltage spectrum density of 18 nV/
√
Hz at

the resonant frequency of 3 GHz [7]. In addition, Kaunisto presents signi�cant insights

into stability of integrated resonators in the presence of a negative resistance generated

by phase shifters as well as an in�uence of circuit parasitics on performance of active

inductors.

3.5.2.4 Known CMOS architectures

One of the few CMOS circuits utilising a self-generated negative resistance is a double

feedback active inductor by Yodoprasit and Ngarmnil [94]. In this approach the non-

inverting transconductor is achieved using a long-tail pair, where the inverting output

is fed back to the gyrator input node. This creates a positive feedback and negative

resistance of −2/gm is generated. The circuit was simulated in a 0.6 µm process and

achieved Q0 factor values of 12000, consuming 20 mW from a 3.3 V power supply. The

evident decrease of linear operation due to increased complexity is shown by the reduced

third order intercept point (IIP3) of only -25 dBm that was reported.
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3.6 Chapter summary

This chapter presented a comprehensive overview of active inductor circuits, its basic

parameters and performance limitations. It was shown that due to the use of active

circuits, noise and dynamic range is reduced in comparison with standard spiral inductor

resonators. However, the presented mathematical formulas prove that active inductors

provide straightforward and wide band tuning of a resonant frequency. When designing

a gyrator-based oscillator, the noise generated by the circuit should be as small as

possible. To achieve this, the proposed formula for noise of active resonator compensated

with negative resistor suggest a low-Q factor inductor and large tank capacitor have to be

used. The obvious cost is increased power consumption required for the compensation.

These novel results comply with more generic observations provided by Abidi [95] and

Kaunisto [7] for the uncompensated active inductors.

It was also shown that negative resistance can be generated using passive phase

shifters inside the gyrator leading to concept of degenerated gyrator. In theory, this

allows the reduction in the power necessary for compensation due to an absence of any

external negative resistance circuit. Although a very limited number of circuits in this

area has been published in the past, to the Author's knowledge there was no reported

attempt to employ it in integrated CMOS oscillator. This chapter revealed also that

to date many important questions regarding degenerated gyrator performance have not

yet been answered or even addressed. This include:

� The number of phase shifters necessary to provide negative resistance. The depen-

dence on a small signal behavior of a resonator in a presence of di�erent number

of phase shifters and their relative location in the circuit is not clear.

� There is no de�ned sensitivity of small signal parameters on phase shifter compo-

nents. This is important information, knowing that often integrated components

have worse tolerances than discrete ones.

� The resonant frequency, tuning range and Barkhausen criteria for self-oscillating
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active inductors remain unknown. This analysis is essential because circuit losses

determine a tuning range and amount of negative resistance required for oscilla-

tions.

� The amplitude limiting mechanism for these group of oscillators is not clear. Non-

linear e�ects of a large swing in the oscillator signal have to be studied in depth.

� An analysis of how a phase shifter in�uences the noise of a resonator. It is impor-

tant to evaluate phase noise performance of the oscillator as well.

This dissertation address and answers all of the above issues, providing a valuable

contribution to the �eld of self-oscillating CMOS active inductors. Chapter 4 presents

the proposed concept of an RF oscillator dealing with the most important small signal

parameters and related design trade-o�s.
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Chapter 4

Concept of degenerated gyrator

oscillator

4.1 Introduction

This chapter presents the novel concept of a CMOS oscillator utilising a self-oscillating

active inductor. The circuit behavior is thoroughly studied using a small signal model of

the oscillator. As a result important parameters such as resonant frequency or tuning

range are clearly de�ned and a design methodology o�ered. Mathematical analysis

employed in this chapter include:

� Immitance functions: For every considered circuit in this chapter an input impedance

or admittance function is studied. As a result, closed form expressions for negative

resistance and active inductance can be derived and used later for the design of a

practical circuit. Immitance functions also allow the observation of the resonator

response for AC signals at various frequencies and to calculate a Barkhausen cri-

teria for the new oscillator.

� Sensitivity functions: These functions show the dependence of small signal pa-

rameters of the circuit on changes in di�erent design variables. In general, this

topic is commonly omitted in the literature on any active inductor circuits, hence
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the sensitivity analysis conducted here represents a valuable contribution.

� Noise power spectral density functions. Using the methodology explained in Chap-

ters 2 and 3, a new model of noise degenerated active inductor is proposed.

The above represent a well established design methodology of oscillators, however the

results obtained by the use of these tools are novel. Prior to this thesis, there were no

reported attempts to de�ne a minimum number of phase shifters su�cient for oscilla-

tions. This problem is addressed in Section 4.2 explaining in detail the related design

trade-o�s.

Section 4.3 presents an ideal model of the proposed circuit that is used to study

sensitivity of a circuit. The results allow to calculate how resonant frequency, negative

resistance or inductance change when design parameters di�er from its nominal values.

The ideal circuit model from Section 4.3 is also used to deliver, for a �rst time, the

oscillation criteria for the proposed circuit. A formula for a resonant frequency is given

as well. Finally, the ideal model allows analysing a sensitivity of the proposed circuit

on �nite tolerances of the real components. The results of this analysis are presented

in Section 4.4.

Next, Section 4.5 describes how parasitic components of active circuit a�ect the os-

cillator, especially if integrated using sub-micron CMOS process. A negative resistance

and inductance in a presence of the losses are discussed and new corresponding formulas

are derived. Barkhausen criteria and resonant frequency for a non-ideal oscillator are

calculated. Limitations on the tuning range of the oscillator are also discussed.

Finally, Section 4.6 presents the analysis of noise in the proposed circuit. This

section explains how RC phase shifting circuit a�ects the noise properties of the circuit

with all related advantages and disadvantages. Novel expressions for power spectrum

density, spot noise and total RMS noise of the proposed resonator are derived and

compared to the standard active inductor tank from Chapter 3.
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4.2 Generic model of degenerated gyrator resonator

4.2 Generic model of degenerated gyrator resonator

4.2.1 Required number of phase shifters to generate negative

resistance

At the end of Chapter 3, Section 3.5.2 some active inductor circuits using RC phase

shifters to decrease resonator losses were presented. In these publications [85, 86, 89�

92, 94] no explanation on the chosen number of phase shifters and their con�guration

is given. Kaunisto [7] is the only author specifying that for a proper operation of his

�lters, two identical phase shifting circuits have to be used. This conclusion is important

for �lters because the amount of negative resistance eventually produced by RC circuit

must not lead to instability and for this reason have to be precisely controlled.

In the proposed degenerated gyrator the amount of negative resistance has to be

su�cient to start oscillations, but its value does not have to be as precise as in the case

of �lters. Thus, one can conclude that a single RC phase shifter can be adequate for the

oscillator application. However before this hypothesis can be con�rmed, it is important

to observe how the circuit behaves in the presence of multiple phase shifters �rst. This

way any possible advantages and disadvantages of this approach will not be overlooked.

4.2.1.1 Two RC phase lag networks

Figure 4.1 depicts the proposed model of active inductor degenerated using two RC

networks. This circuit is a transformed version of a generic model of the resonator

given by Moulding [83] and presented previously in Chapter 3, Section 3.5. The intrinsic

losses of the ampli�ers are now substituted by the phase shifters connected at the input

of each transconductor. It is assumed that the circuit operates at frequencies where

the transconductor parasitics do not contribute signi�cantly to the overall phase shift

experienced by the resonator. Load capacitance Cg is connected at the output port

as in the case of a standard gyrator, however this time its voltage does not drive the

feedback ampli�er directly. Instead, the output voltages of the phase shifters RinCin

and RoutCout are now controlling the corresponding transconductors.
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4.2 Generic model of degenerated gyrator resonator

At this stage, for simplicity of calculations, it is assumed there are no additional

resistive losses present at the input/output ports. These will be re-introduced later.

Also, it will be assumed that both ampli�ers are not drawing any current from the

phase shifters. This assumption usually holds for practical circuits because input stage

parasitics can be incorporated into corresponding phase lag networks.

vin

iin Rin

Cin
+
v1−

−gm1
i1

Cg

Rout

Cout
+

v2−

gm2

i2

Input phase shifter

Output phase shifter

Figure 4.1: Proposed generic model of degenerated active inductor to study e�ects of
two RC phase shifters.

As mentioned in the introduction to this chapter, immitance functions allow us to

study the circuit response for AC signals. As the gyrator model from Figure 4.1 can

be transformed to a parallel resonant structure, input admittance is a more convenient

function to describe it. When the circuit is driven by the test current iin, the resulting

voltage vin can be found by solving KVL equations for the input port. The input

admittance is then found from

yin(jω) =
iin
vin

=
1

z1(jω)
+

1
z2(jω) + z3(jω) + z4(jω)

(4.1)

where

z1(jω) = Rin +
1

jωCin

z2(jω) =
1
jω

1

gm1gm2

ω4CgCinCoutRinRout

=
1

jωCsim
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4.2 Generic model of degenerated gyrator resonator

z3(jω) = jω
Cg + Cout
gm1gm2

= jωLsim

z4(jω) = −ω2 (Cg + Cout)CinRin + CgCoutRout
gm1gm2

= −Rsim (4.2)

The input admittance consists of two reactive networks connected in parallel. The

�rst term, 1/z1(jω) is equal to the total admittance of the input phase shifter. The

second network is a series resonant circuit, consisting of three impedances: the parasitic

capacitor z2(jω), the simulated inductance z3(jω) and the negative resistance z4(jω).

Equation (4.1) di�ers from the generic model of Moulding [83] given by (3.33) because

both RC networks draw current due to their �nite admittances, nevertheless a negative

resistance is successfully generated.

A brief mathematical analysis of (4.1) reveals that the circuit su�ers from a low-

frequency parasitic self-resonance caused by a parasitic capacitor Csim described by

z2(jω). As Csim is inversely proportional to ω4, it can be much larger than any other

capacitance present in the circuit. Another shortcoming of this approach comes from

the fact that two RC circuits introduce two thermal noise generators that contribute to

the total noise of the resonator.

4.2.1.2 Single phase shifter

The circuit from Figure 4.1 can be modi�ed if one of the phase lag networks is re-

moved permanently. This results in two possible circuit arrangements. In the �rst case

(Figure 4.2a), RinCin is connected to the input of the inverting ampli�er, whereas the

second ampli�er is connected directly to Cg. In the second case (Figure 4.2b), RoutCout

phase shifter is switched on, and input of the inverting ampli�er is connected directly

to the input of the active inductor. When one of RC circuits is removed, one of the

noise sources is automatically eliminated. The parasitic capacitor Csim from (4.1) is

also suppressed as it is the result of two phase shifters being present in the circuit. As

a result, both circuits from Figure 4.2 can operate at higher frequencies.

To compare the behavior of the circuits with a single phase shifter, the corresponding
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4.2 Generic model of degenerated gyrator resonator

vin

iin Rin

Cin
+
v1−

−gm1
i1

Cg

gm2

i2

Input phase shifter

(a)

vin

iin −gm1
i1

Cg

Rout

Cout
+

v2−

gm2

i2

Output phase shifter

(b)

Figure 4.2: Degenerated active inductor with single phase shifter: (a) at the input, (b)
at the output.

input admittance functions are analysed. When the RinCin network is present, the input

admittance is equal to

yin(jω) =
1

Rin +
1

jωCin

+
1

jω
Cg

gm1gm2
− ω2

CgCinRin

gm1gm2

(4.3)

In this case, (4.3) represents a sum of two reactive networks. The admittance of the �rst

term is equal to the total admittance of the phase shifter. As a result, the circuit from

Figure 4.2a has an additional input capacitance, resulting in self-resonance. However,

in comparison to the circuit with two shifters, the self-resonance frequency is much

higher (as mentioned the capacitor Csim from 4.1 is no longer present). The second

term of (4.3) corresponds to a series connection of the inductance and the negative

resistor. Thus, even though only a single phase shifter is used, negative resistance

(−ω2CgCinRin/gm1gm2) is generated.

In the second case, the RoutCout phase shifter is used. The corresponding input

admittance becomes now

yin(jω) =
1

jω
(Cg + Cout)

gm1gm2
− ω2

CgCoutRout

gm1gm2

(4.4)
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4.2 Generic model of degenerated gyrator resonator

This time the total admittance represents a series combination of a simulated inductance

(Cg/gm1gm2 +Cout/gm1gm2) and negative resistance (−ω2CgCoutRout/gm1gm2). No

additional capacitance is present at the input and therefore there is no self-resonance.

This statement is valid only for the ideal circuit considered here. Function (4.4) also

proves that in this case a single RC phase shifter is su�cient to generate negative resis-

tance. In comparison with the circuit with input RC network, the simulated inductance

is larger by capacitance Cout whereas the negative resistance has the same character

and frequency dependence.

To compare the AC performance of both circuits, (4.3) and (4.4) were implemented

in Matlab and simulated over a decade bandwidth from 100 MHz to 1000 MHz. An

integrated resonator design for this particular bandwidth is interesting for few rea-

sons. First of all, integrated passive inductors available in typical commercial CMOS

process occupy a large chip area at these frequencies. Secondly, many di�erent radio-

communication systems are supported in these frequency ranges (TETRA, ISM, TV

broadcasting, to name a few). Finally, a decade bandwidth is large enough to experi-

ment with a various concepts of a wide-band resonators.

Table 4.1: Simulation parameters chosen to compare active inductors with single RC
shifter.

Value
Model parameters

gm Rin Rout Cin Cout Cg Frequency
mA/V kΩ pF MHz

low 5 0.15
0.4

100
high 25 1.5 1000

The proposed mathematical models were simulated using the set of parameters

given in Table 4.1. Terms low and high qualitatively describe the magnitude of each

corresponding parameter. It is assumed that both ampli�ers have the same transcon-

ductance gm which corresponds to the most common practical design choice in any

active inductor circuit [47]. It is also assumed that capacitance Cin is small enough

to avoid self-resonance of the gyrator with the input shifter within the considered fre-

quency range. For the purpose of fair comparison Cin = Cout = Cg which allows us
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4.2 Generic model of degenerated gyrator resonator

to observe the behavior of the circuits for the same RC network connected at di�erent

points. In addition, the phase shifter capacitance should have the same magnitude as

the gyration capacitance to have any e�ect on the active inductor. Finally, because

the input admittances (4.3) and (4.4) are complex, the real and imaginary parts were

analysed separately.

Figures 4.3 and 4.4 present plots of the input conductance and equivalent parallel

inductance functions for a low transconductance of ampli�ers equal to 5 mA/V. The �rst

diagram represents a situation where both Rin and Rout are also small, corresponding

to a calculated phase lag less than 0.1π rad at 1000 MHz. The circuit with the output

shifter from Figure 4.2b is less sensitive to frequency changes while at the same time

generating a substantially lower negative conductance. The main advantage however,

is the doubled inductance value which in turn requires a proportionally smaller on-chip

capacitor (less chip area) to design LC tank at given frequency.

If both Rin and Rout are increased to 1.5 kΩ, the corresponding phase lag also in-

creases, reaching 0.38π rad at the maximum signal frequency. In this case, illustrated

on Figure 4.4, the input conductance of the gyrator with the input shifter from Fig-

ure 4.2a decreases much faster, yet in both inductors the magnitude of the negative

component is larger than from Figure 4.3. The self-resonance of the circuit with the

RinCin network is lowered, which is manifested by a rapid inductance increase at higher

frequencies. Thus, the bandwidth over which inductance is available is inevitably lower

than in the case of the circuit with the output RC shifter. This behavior was expected,

because as (4.4) suggests, the latter does not have an additional capacitor at its input.

The same type of behavior is observed for a relatively high transconductance of both

ampli�ers, set to 25 mA/V and chosen for the purpose of theoretical discussion only.

Although the magnitude of the input admittance parameters has now changed, the

frequency behavior remains the same, as illustrated on Figures 4.5 and 4.6. Note, that

for the considered frequency band, the available inductance values are now impractically

small. To compensate, either a larger Rin, Rout and Cg can be used, however this

adjustment has to be carefully administrated since it may cause an unwanted change
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Figure 4.3: Input conductance and inductance of degenerated gyrator with a single RC
phase shifter and low gm, Rin and Rout.
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Figure 4.4: Input conductance and inductance of degenerated gyrator with a single RC
phase shifter and low gm for high Rin and Rout.
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Figure 4.5: Input conductance and inductance of degenerated gyrator with a single RC
phase shifter and high gm for low Rin and Rout.
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Figure 4.6: Input conductance and inductance of degenerated gyrator with a single RC
phase shifter and high gm, Rin and Rout.
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4.3 Ideal model of degenerated gyrator resonator

of the negative real admittance term and, as presented later in this dissertation, also

a�ects the noise and large signal behavior of the resonator.

Based on the Matlab simulation results illustrated in Figures 4.3-4.6 one can con-

clude that, in comparison to the other circuit, the gyrator with the output phase shifter

RoutCout achieves:

� Negative conductance that is less sensitive to frequency changes.

� Larger inductance, for a given resonant frequency, allowing the use of an integrated

tank capacitor with smaller dimensions.

� Simulated inductance occupying a broader frequency band due to a lack of input

capacitor Cin. As a result, the resonator can operate over a wider frequency range.

For these reasons, the output phase lag network has been chosen as a chief mecha-

nism of loss compensation method in a degenerated gyrator.

4.3 Ideal model of degenerated gyrator resonator

It was shown in Chapter 3 that for convenience of circuit analysis it is useful to transform

an active inductor circuit into its parallel equivalent. As this transformation is only valid

in a vicinity of a resonant frequency, any parallel equivalent is therefore a frequency

dependent circuit, even if an original parameters before transformation are not. In the

case of the degenerated gyrator, this e�ect is even more complex because the series

negative resistance generated by a phase lag network is already a function of a signal

frequency as indicated by (4.4).

Figure 4.7 depicts an ideal resonator based on the proposed degenerated gyrator

circuit analysed in the previous section. Components CT and RT represent the total

resonator capacitance and resistance, respectively. As before, to �nd a parallel equiva-

lent, �rst the quality factor has to be found. Because of negative resistance, the quality

factor is also negative, which means that power is added to the resonator instead of

being dissipated. Although uncommon, a negative Q still yields proper results because
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Figure 4.7: Ideal degenerated active inductor resonator: (a) circuit, (b) parallel equiv-
alent model.

it is squared during transformation. Its magnitude and not sign determines the values

of the parallel equivalents.

Using (4.4) a quality factor of the proposed degenerated gyrator circuit is found using

the standard de�nition from Chapter 2, Q(ω)
def
= ωLs/Rs. Introducing the auxiliary

variables

CS =
CgCout
Cg + Cout

CP = Cg + Cout (4.5)

and

ωz =
1

RoutCS
(4.6)

a quality factor necessary for a narrow band transformation is calculated

Qsdg(ω) =
ω (Cg + Cout)
−ω2CgCoutRout

=
1

−ωRout
1

CgCout

Cg + Cout

=
−ωz
ω

(4.7)

Thus using (4.5) and (4.6), the equivalent parallel resistance is equal to

Rpdg(ω) = −ω
2CgCoutRout
gm1gm2

(
Qsdg(ω)2 + 1

)
= −ω

2CgCoutRout
gm1gm2

(
ω2
z

ω2
+ 1
)

=

= − ωzCP
gm1gm2

(
1 +

ω2

ω2
z

)
(4.8)
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4.3 Ideal model of degenerated gyrator resonator

Using the same procedure, the equivalent parallel inductance is found

Lpdg(ω) =
Cg + Cout
gm1gm2

(
Qsdg(ω)2 + 1
Qsdg(ω)2

)
=

CP
gm1gm2

(
1 +

ω2

ω2
z

)
(4.9)

It can be seen that both negative resistance and inductance are directly proportional

to each other, similarly to Moulding generic model of lossy gyrator from Figure 3.9.

For an ideal degenerated gyrator with the output RC phase lag network, the following

relationship is true

Rpdg(ω) = −ωzLpdg(ω)←→ Lpdg(ω) =
|Rpdg (ω)|

ωz
(4.10)

Finally, the total input admittance of the resonator from Figure 4.7b is equal to

yin(jω) =
1
RT
− gm1gm2

ωzCP

1 +
ω2

ω2
z


+ j

ωCT −
gm1gm2

ωCP

(
1 +

ω2

ω2
z

)

 (4.11)

At resonant frequency both reactive admittances cancel each other. In order to �nd this

frequency, the imaginary part of (4.11) has to be equal to 0 i.e. =yin(jω) = 0. Recalling

(4.9), it can be seen that the parallel equivalent inductance is frequency dependent. This

imposes an additional level of complexity on the calculation, as the resonant frequency

is now given by

ω0 =
1√

Lpdg(ω0)CT
(4.12)

which is a 4th order equation with real parameters. The Symbolic Math Toolbox in

Matlab was employed to derive the result, yielding 4 possible solutions. The calcula-

tion process involves Maple kernel, a computer algebra system that allows to conduct

various mathematical calculations in a symbolic form as oppose to a numerical comput-

ing environment [96]. Among the obtained solutions there is the only one that is both

real and positive. Thus, the resonant frequency of the proposed degenerated gyrator

with output RC phase shifter is equal to

ω0dg =
√

2
2
ωz

√√
1 + 4

gm1gm2

ω2
zCPCT

− 1 (4.13)
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4.3 Ideal model of degenerated gyrator resonator

Note that if the phase shifter is removed, ωz becomes in�nite and (4.13) approaches

the limit equal to the resonant frequency of a standard gyrator-based resonator [51]

ω0ai =
√
gm1gm2/CgCT (4.14)

This con�rms that the solution given by (4.13) is consistent with the published models.

4.3.1 Barkhausen criteria for ideal degenerated gyrator oscillator

An analysis of the new degenerated active inductor suggests that the negative resistance

originating in the resonator can, at a given frequency, be equal to or larger than all the

circuit losses. Therefore a controlled oscillator in the form of a self oscillating gyrator

can be obtained. As indicated by (4.13), the resonant frequency of such an oscillator is

directly controlled by the transconductance ampli�ers (through gm), tank capacitance

and the phase shifter (through CP , ωz ↔ Rout, CS). To estimate possible performance

limitations of this oscillator, �rst conditions for a signal build-up across resonator have

to be derived.

Recalling the Barkhausen criteria for a generic feedback system from Chapter 2, any

oscillatory circuit has to meet both amplitude and phase condition at the same time for

all frequencies of interest. As a degenerated gyrator produces negative resistance, it is

more practical to translate the Barkhausen feedback theorem into its negative resistance

equivalent. As explained in Chapter 2, the amplitude condition (2.17) corresponds to

the situation when all of the tank losses are cancelled by the negative resistor. The phase

condition (2.18) imposes that both resonator reactances have to have equal magnitudes

and be out of phase, cancelling each other at a resonant frequency only. In the case of

an ideal degenerated active inductor, both conditions are derived directly from (4.11)

1
RT
− gm1gm2

ωzCP

1 +
ω2

ω2
z


= 0 :amplitude condition (4.15)
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ωCT −
gm1gm2

ωCP

1 +
ω2

ω2
z


= 0 :phase condition (4.16)

In the considered ideal case, the amplitude condition is met as long as resonator

losses are smaller than the contribution from the compensating negative resistor. In

practice RT from Figure 4.7b decreases with frequency because it represents a parallel

transformation of tank capacitance losses (QCt = 1/ωrlossCt). In CMOS integrated

circuits, typically tank capacitance consists of MIM (metal-insulator-metal) capacitors

together with an RF output bu�er ampli�er extracting the signal from an oscillator and

preventing load pulling of the resonance frequency. Typically, due to its high Q factor,

a MIM capacitor does not load the resonator signi�cantly. The input impedance of a

bu�er ampli�er, usually in the form of a common source follower stage, may be repre-

sented by gate resistance rg and gate to drain capacitance Cgd connected in series. For

signal frequencies much less than ft of the device (frequency at which MOS gate current

equals drain current), a quality factor of the input network of a bu�er also reaches high

values. Therefore, for typical values of gm in the range up to 20 mA/V, gyrator capac-

itances of few hundreds of fF and resistance Rout up to few kΩ, an ideal degenerated

gyrator produces su�cient levels of negative resistance to sustain oscillations over a

wide frequency band.

The phase condition determines the resonant frequency of the oscillator. In the

case of the ideal resonator considered here, the only factor limiting upper oscillation

frequency is the static power necessary to provide proportional magnitude of gm. The

lower limit of tuning is restricted by a physical size of an integrated capacitor used.

Thus as long as available power and silicon area are within predetermined values, the

ideal degenerated gyrator does not limit the bandwidth of the oscillator.

It should be stated that the above conclusions are valid only if there are no losses

present in the circuit and therefore are entirely theoretical. As all practical implemen-

tation of a CMOS resonator will su�er from various additional parasitic e�ects, the

Barkhausen criteria have to be reviewed in the presence of these imperfections. To fully
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4.4 Sensitivity of ideal degenerated gyrator resonator

describe an oscillator behavior, it is important to include all of the most signi�cant

circuit parasitics in the model. The issue of resonator losses is addressed later in this

chapter.

4.4 Sensitivity of ideal degenerated gyrator resonator

Before the non-ideal degenerated active inductor circuit is discussed, it is also worth

analysing how the circuit performance is a�ected by �nite parameter tolerances. A

standard analysis tool known as the classical sensitivity functions are usually su�cient

to indicate the relative changes of small signal parameters with varying component

values. Such functions are de�ned as [97]

Syx =
δy

δx

x

y
(4.17)

where y denotes analysed parameter and x represents the value of a single circuit

component. When x di�ers from its predetermined designed value (either as a result

of process tolerances or intentional change) it causes a respective change of y with a

magnitude and direction determined by (4.17). In fact, this is a linear approximation

of a parameter deviation around its static state exactly as a small signal approximation

applied to a nonlinear circuit at a given DC bias point. Although for a large perturbation

the relative error of this method increases, it still indicates the correct direction of a

parameter change. The result of sensitivity function calculation is interpreted as the

per-unit variation of y due to a given per-unit change of x [97]. For example, the

sensitivity function of a resonant frequency of any passive LC tank to the variations of

tank capacitance equals −0.5. Therefore for every 1% increase of the capacitance, the

resonant frequency will drop by 0.5%, providing the tank inductance remains constant.

The sensitivity of an active inductor resonator di�ers from that of its passive coun-

terpart. The active inductance depends on ampli�ers and requires power supply while

the passive one does not. Typically, the sensitivity of the inductance of a standard

gyrator to power supply variations is given by sensitivity functions of a transconduc-

tance of respective ampli�ers. Although parasitic capacitances of ampli�ers also change

88



4.4 Sensitivity of ideal degenerated gyrator resonator

with supply voltage (in�uencing total inductance), the main contribution to total de-

viation comes from the gm of the transistors. In this case, the sensitivity function is

approximately equal to [51]

SLVDD
=

δL

δV DD

VDD

L
≈ −

(
Sgm1

V DD + Sgm2

V DD

) ∣∣∣∣∣
L=

Cg
gm1gm2

(4.18)

where Sgm1

V DD and Sgm2

V DD are the transconductance sensitivity functions of ampli�ers on

V DD variations. In general, these functions vary between di�erent CMOS processes

and also depend on the architecture of a transconductor. Usually a numerical simulation

is su�cient to estimate it.

Since an active inductor tank is the main point of interest of this thesis, it is more

convenient to extend Yuan's formula (4.18) to show how the resonant frequency changes

with VDD. Using (4.17) this function is found to be

Sω0
V DD ≈

δω0

δV DD

VDD

ω0
=

1√
CT

−1

2
√
L3

δL

δV DD

VDD

ω0
= −1

2
SLV DD =

1
2
(
Sgm1

V DD + Sgm2

V DD

)
(4.19)

As expected, any active inductor resonator is prone to power supply variations and

therefore special care has to be taken to minimise this e�ect. The sensitivity function

(4.19) can be treated as a normalised form of a frequency pushing of the resonator,

that typically is expressed in Hz/V. In the case of the proposed degenerated gyrator

tank, (4.19) holds as long as no active devices are used in place of Rout because these

introduce additional degree of ω0 (V DD) dependence, not included in the analysis.

Other sensitivity functions can also be derived using the same approach. Table 4.2

consists of the most signi�cant ones for a standard and the proposed degenerated gy-

rator circuit. All variables used in expressions correspond to a small signal model from

Section 4.3. The �rst part includes an equivalent parallel inductance sensitivity, fol-

lowed by a resonant frequency and an equivalent parallel negative resistance functions,

respectively. Please note, as a standard active inductor lacks a phase shifter, no neg-

ative resistance is generated and some of the sensitivity functions do not apply. In

addition, the results for a degenerated active inductor are functions rather than �xed
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4.4 Sensitivity of ideal degenerated gyrator resonator

Table 4.2: Sensitivity comparison between active inductor resonators

Sensitivity
function
Syx

Active inductor resonator type

Standard Degenerated

Value Expression Value

S
Lp
gm1

-1 n/a -1

S
Lp
gm2

S
Lp

Cg
1

Cg

CP

1+ω2/ω2
z(1+2Cout/Cg)

1+ω2/ω2
z 0.5-1.5

S
Lp

Cout
n/a

Cout
CP

1+ω2/ω2
z(1+2Cg/Cout)

1+ω2/ω2
z

S
Lp

Rout

2ω2

ω2
z+ω2 0.5-2

Sω0
gm1

0.5
gm1gm2

ω2
zCPCT +4gm1gm2−

√
ω2

zCPCT

√
ω2

zCPCT +4gm1gm2
0.25-0.5

Sω0
gm2

Sω0
CT

-0.5

−Sω0
gm1,2

-0.3- -0.5Sω0
Cg

(
2− 3 Cg

CP

)
Sω0
gm1,2

− Cout
CP

Sω0
Cout

n/a

(
2− 3Cout

CP

)
Sω0
gm1,2

− Cg

CP

Sω0
Rout

−1 + 2Sω0
gm1,2

-0.5-0

S
Rpdg
gm1

n/a

n/a -1

S
Rpdg
gm2

S
Rpdg

Cg

ω2

ω2
z+ω2

(
1 + C2

g−C2
out

C2
P

)
0-1

S
Rpdg

Cout

ω2

ω2
z+ω2

(
1 + C2

out−C2
g

C2
P

)
S
Rpdg

Rout

ω2−ω2
z

ω2
z+ω2

-1-1
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4.4 Sensitivity of ideal degenerated gyrator resonator

values (excluding S
Lp
gm and S

Rpdg
gm ) and were evaluated for a set of parameters presented

in Table 4.3. The magnitudes of these parameters is estimated assuming sub-GHz

frequency of operation and reduced power consumption.

Table 4.3: Simulation parameters chosen to evaluate sensitivity of the proposed degen-
erated gyrator.

Value
Model parameters

gm1 gm2 Rout Cout Cg CT Frequency
mA/V kΩ pF MHz

minimum 5 0.5 0.5 1 100

maximum 15 5 1.5 3 1000

As the presented results show, a degenerated active inductor resonator is more

sensitive to component variations than a standard gyrator circuit. Although most of

the common parameters are approximately the same, a degenerated resonator has two

more components controlling its small signal parameters. Resistance Rout may be either

realised as an active circuit or a passive component. The �rst solution, potentially

allows us to set resistance to the wanted level, but in a presence of a large amplitudes,

it introduces new non-linearities and is power supply sensitive. On the other hand, a

passive resistor in a commercial sub-micron CMOS process typically has a tolerance of

up to ±30%. In the worst case, such a large variation causes almost ±60% variation

in inductance (Table 4.2, S
Lp

Rout
= 2). Therefore one may conclude that using a passive

phase shifter is rather impractical. However, as indicated by Table 4.2, the actual

resonant frequency deviation in the worst case is only ∓15%. Due to a proportionality

between the parallel equivalent inductance and the signal frequency from (4.9), when the

resonant frequency is shifted down it also decreases inductance, partially compensating

for any Rout variations. In addition, the transconductance of both ampli�ers can be

adjusted to tune the tank back to the nominal frequency. As gm is proportional to a

bias current of transistor, some additional power consumption should be expected and

therefore included early at a circuit design stage. Thus, passive resistors can be used

to implement Rout, improving both the sensitivity on power supply changes and the

linearity of the degenerated gyrator resonator.
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4.5 Non-ideal model of degenerated active inductor resonator

4.5 Non-ideal model of degenerated active inductor

resonator

In practice, all electronic circuits su�er from parasitics. From a gyrator-based resonator

perspective, three types of non-idealities become especially important:

� Intrinsic RC phase shifting networks of transconductors. These include capaci-

tances present at each node due to a geometry of MOSFET devices and resistance

of transistor gate. As a result, parasitic phase shift components are generated,

a�ecting the proposed negative resistance generation mechanism.

� Finite channel conductance of transistors: This is manifested as additional resis-

tive losses that have to be compensated in order to start and sustain oscillations.

As these losses depend on bias of active devices, their in�uence on a degenerated

gyrator circuit is complex and require a separate, thorough analysis.

� Finite input resistance of a resonator: These contribute to total resistive losses of

the resonator. Since an active inductor is in fact a feedback system, the resulting

impedance seen at the input of a complete circuit is di�erent than that of each

separate block [43, 97]. Thus, the input impedance of degenerated gyrator depends

not only on a limited conductance of MOS devices but also changes with a circuit

con�guration of transconductance ampli�ers.

To study how parasitics a�ect a performance of degenerated gyrator resonator, a

new circuit model is presented, illustrated in Figure 4.8. It depicts a resonant tank

with a non-ideal transconductors and the output RC phase shifter. The model is a

combination of the proposed ideal degenerated gyrator tank from Section 4.3 and a

lossy standard active inductor resonator from Chapter 3, Section 3.5.

Typically, the largest parasitic capacitances originate from the DC bias current mir-

rors, that for the purposes of noise and current matching, are designed with larger chan-

nel lengths than the minimum achievable by a technology. These capacitors together
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gm2 · e−jφ2

i2

Output phase shifter

Figure 4.8: Non-ideal degenerated active inductor resonator.

with a �nite output resistance of MOS transistors, introduce additional parasitic poles

to the circuit. In the simplest situation, it is assumed that single MOS transconductors

are employed and their phase lag is negligible due to proper device sizing and layout.

This corresponds to e−jφ1,2 ≈ 1 (Figure 4.8) and only the output phase shifter con-

tributes to the compensation mechanism. Using KVL, an equivalent input admittance

of degenerated gyrator is now

yin(jω) = jωCT +
1
RT

+Gi +
1

Rns−loss +Rns−neg + jωLnsdg
(4.20)

where

CT = Ct + Ci (4.21)

Rns−loss =
Go

gm1gm2
(4.22)

Rns−neg = −ω
2 (Cg + Co)CoutRout

gm1gm2
(4.23)

Lnsdg =
Cg + Co + Cout (1 +RoutGo)

gm1gm2
(4.24)

The �rst terms of (4.20) represent a total input capacitance and conductance. The third

term consists of positive and negative resistors connected in series with an inductance.

In contrast to a standard gyrator with losses, an inductance is now increased due to an

output conductance Go.
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4.5 Non-ideal model of degenerated active inductor resonator

As in the case of an ideal degenerated resonator, it is more convenient to explore the

parallel equivalent circuit. Note, that because there are now two resistors connected in

series with an inductor, the real component after transformation consists of two resistors

connected in series. To simplify the quality factor derivation, some auxiliary variables

are used

CG = Cg + Co + Cout(1 +RoutGo) (4.25)

and

ωz1 =
Go
CG

(4.26)

ωz2 =
CG

(Cg + Co)CoutRout
(4.27)

Substituting (4.25)-(4.27) into a standard de�nition of Q, the quality factor of a series

RL circuit is found

Qnsdg(ω) =
ωLnsdg

Rns−loss +Rns−neg
=

ωCG
Go − ω2 (Cg + Co)CoutRout

=
ωωz2

ωz1ωz2 − ω2
(4.28)

The parallel equivalent resistance of non-ideal degenerated gyrator consists of two

components in series and is equal to

Rnpdg(ω) =
Go − ω2 (Cg + Co)CoutRout

gm1gm2

(
1 +

ω2ω2
z2

(ωz1ωz2 − ω2)2

)
=

=
CG

gm1gm2

(
ωz1 −

ω2

ωz2

)(
1 +

ω2ω2
z2

(ωz1ωz2 − ω2)2

)
(4.29)

The narrow band inductance transformation yields

Lnpdg(ω) = Lnsdg

(
Q2
nsdg + 1

Q2
nsdg

)
=

CG
gm1gm2

(
1 +

(
ωz1ωz2 − ω2

)2
ω2ω2

z2

)
(4.30)

As in the case of the ideal circuit, there is also a direct proportionality between Rnpdg

and Lnpdg, however the relationship is more complex in comparison with (4.10)

Rnpdg(ω) =
ω2ωz2

ωz1ωz2 − ω2
Lnpdg(ω) (4.31)
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4.5 Non-ideal model of degenerated active inductor resonator

Finally, the input admittance of a resonator from (4.20) may be presented in a �nal

form

yin(jω) =
1
RT

+Gi +
gm1gm2

CG

(
ωz1 −

ω2

ωz2

)(
1 +

ω2ω2
z2

(ωz1ωz2 − ω2)2

) +

+ j

ωCT − gm1gm2

ωCG

(
1 +

(
ωz1ωz2 − ω2

)2
ω2ω2

z2

)
 (4.32)

As before, by equalising the reactances of the parallel model, a resonant frequency can

be found. Again, a 4th order equation has to be solved, and only one solution is real and

positive. Thus, the resonant frequency of a non-ideal degenerated resonator is equal to

ω0ndg =
√

2
2
ωz2

√√
1− 4

ωz1
ωz2

+ 4
gm1gm2

ω2
z2CGCT

+ 2
ωz1
ωz2
− 1 (4.33)

If there are no losses in the circuit (ωz1 = 0), the resonant frequency equals that

of the ideal degenerated gyrator from (4.13) (providing that all of the other compo-

nents are the same). Note, that the resonance is controlled not only by capacitors and

transconductance but also depends on Go through CG, ωz1 and ωz2.

The e�ective value of Rnpdg no longer monotonically changes with frequency as in the

case of ideal circuit. A �nite Go connected in series with the negative component mod-

i�es the total resistance experienced by the resonator. At low frequencies Go becomes

dominant and negative resistance is diminished. On the contrary, at high frequencies,

the negative term becomes larger. Thus, the range of frequencies for which a negative

resistance is available is inversely proportional to the circuit losses. To illustrate this

behavior, the inverse of (4.31) was simulated using Matlab and results are presented

on Figure 4.9. The inverse of Rnpdg is studied because at a certain frequency, given by

ω =
√
ωz1ωz2 (4.34)

Go cancels the negative term and the parallel resistance approaches in�nity. Thus, it is

more convenient to analyse and plot the total tank conductance instead.
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Figure 4.9: Total input conductance of lossy degenerated resonator as function of the
�nite output conductance.

Table 4.4: Simulation parameters chosen to evaluate in�uence of Go on generated
negative conductance.

Parameters

gm1 gm2 Rout Cout Cg Co Ci Ct RT Gi
mA/V kΩ pF kΩ mS

10 2 0.2 4 5 10

Table 4.4 contains a set of parameters used to simulate circuit behavior from 100 MHz

to 1000 MHz. The input losses of the gyrator, represented by Gi are characterised with

a relatively high value of 5 mS to simulate the behavior of low-Q active inductor. More

details behind this particular choice are given later in this section. The �rst curve

represents an ideal case with no losses i.e. Go = 0, whereas the last three represent

a situation where losses increase in relation to an ampli�er transconductance. Inter-

estingly, the behavior of all curves correspond to the results from [7], where Kaunisto

studied thoroughly an in�uence of input losses of a standard active inductor on a qual-

ity factor of the RF �lters he proposed. Thus, although the analysis presented in this
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4.5 Non-ideal model of degenerated active inductor resonator

thesis is original and di�ers from the one of Kaunisto, both share similar results, giving

con�dence that the behavior of the proposed circuit in the presence of resistive losses is

correct.

As explained before, an increased Go shifts the boundary of negative resistance

availability range into higher frequencies. In the worst of the presented cases, this

range has been decreased by 370 MHz in comparison to the ideal one, showing the

signi�cant impact of Go on the tuning range of a non-ideal resonator. For this reason

it is important to give more insight on the origin of parasitic components in CMOS

gyrators and possible ways of minimising their e�ect on circuit performance.

4.5.1 Intrinsic phase lag of transconductors

In general, transconductor parasitics depend on two factors. Available technology and

related device fabrication process are the �rst one. In the case of a standard commercial

CMOS process, UMC 18MM for example, all of the available transistor models are sup-

plied by the manufacturer. Together with appropriate circuit simulations, these process

libraries allow the extraction of the major parasitics. The second factor is related to

a transconductance ampli�er con�guration. Depending on the required gyrator per-

formance and power consumption, transconductance ampli�ers may be obtained using

either a single transistor or more elaborate, multistage circuits. For the purpose of

this section, only the former is analysed. This choice can be explained as follows. As

suggested in Chapter 3, Section 3.3.2, the noise of a gyrator resonator is proportional to

its quality factor. Therefore low Q active inductors architectures using single transistor

ampli�ers [52, 53, 60] can be considered as a possible solution for decreased noise.

When single transistor transconductors are used, the analysis of how their parasitics

in�uence the degenerated gyrator circuit is relatively simple. As an example, one can

consider the input parasitic phase lag networks of three single MOS transconductance

ampli�ers, illustrated in Figure 4.10. Among the presented con�gurations, a common

source circuit (CS) su�ers the largest phase lag due to the Miller e�ect, where a relatively

small gate-to-drain capacitance Cgs is multiplied by a device gain. Since the common
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Figure 4.10: Input parasitic phase lag networks of basic CMOS transconductors: (a)
common source with Miller capacitance, (b) common drain and (c) common gate.

drain (CD) and the common gate (CG), do not su�er from this e�ect, their respective

phase shifts never exceed that of a CS ampli�er. Practically, a CS transconductor is

always present in the degenerated gyrator, as it provides the negative gain necessary to

simulate inductance. Thus, care has to be taken to minimise intrinsic MOS phase lag

where possible.

The corresponding parasitic phase shifts for each of the described transconductors

are

φCS = − arctanω (Cgs + CM ) rg (4.35)

φCD = − arctanωCgdrg (4.36)

φCG = − arctan
ωCgsrg

1 + rggm
(4.37)

For all of the circuits form Figure 4.10, to ensure that the parasitic pole is negligibly

small, the gate resistance rg should be minimised. The common practice is either to

use contacts on both ends of the transistor gate, a transistor folding or both. These

techniques allow us to minimise rg by up to a factor 4 [26]. Once rg can be neglected,
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the remaining capacitors can be directly incorporated into the output phase shifter or,

in the case of a input transconductor, to the remaining components of the resonator.

To illustrate the importance of device characterisation and the corresponding magni-

tude of parasitics, typical submicron CMOS process parameters can be applied to (4.35)-

(4.37). Table 4.5 presents the parameters and the calculation results for each type of a

single transistor transconductance ampli�er considered here. Assuming the highest sig-

nal frequency of 1000 MHz, approximate phase shifts are respectively: φCS ≈ 0.023π rad

for CS, φCD, φCG ≈ 0.002π rad for CD and CG ampli�ers. Although these values can

be neglected for the frequencies up to 1000 MHz, the large input capacitance of the CS

ampli�er (Cin in the range of 0.2 pF-1 pF for 180 nm transistor) has to be included in

the resonator tank. One can therefore conclude that the smallest available transistor

size should be used, however this approach usually does not yield the optimal noise

performance or circuit linearity.

Table 4.5: Calculated parasitic phase shift for a single transistor transconductance
ampli�er at 1 GHz

Transistor parameters Ampli�er
Phase shift
rad deg

W
µm

72
CG

0.002π 0.36
L 0.25
Id mA 1.3

CD
gm mA/V 10

gds µS 300
CS 0.023π 4.14

Cgs fF
100

Cgd 30
rg Ω <10

4.5.2 Output resistance of MOS transistors

The main mechanism responsible for this parasitic component comes from the channel

length modulation (CML) e�ect. At the boundary of the saturation, a MOS conductive

channel is pinched-o� at the drain, and the drain to source voltage VDS ideally does not

change channel current any more. However in practice, further increases in VDS cause a
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4.5 Non-ideal model of degenerated active inductor resonator

depletion region being formed between an actual pinch-o� point and the drain contact.

As a result, the e�ective channel length is decreased from its drawn (physical layout)

dimension and transistor current increases proportionally to the di�erence between VDS

and saturation voltage. This behavior is represented as a �nite di�erential resistance

rds between drain and source. This becomes more signi�cant when the MOS transistor

drawn gate length becomes relatively small i.e. if minimum size devices are used. To

compare various devices in terms of their output resistance, the DC gain can be de�ned

ADC = gm · rds =
gm

gds
(4.38)

and for a sub-micron CMOS devices typical values in the range of 10-40 are observed.

Although simple, (4.38) shows the important relationship between the transconductance

and the output resistance of MOS devices. Large ADC values indicate that for a given

gm, the transistor introduces small output losses and its behavior is closer to that of

the ideal current source. On the other hand, when the DC gain is small, gds represents

a signi�cant parasitic load of the transconductor.

As shown at the end of Section 4.5, from a degenerated active inductor resonator

perspective, performance is bounded by the available DC gain of MOS transistors used.

Both Gi and Go increase positive losses, diminishing the e�ect of the negative resistance

generated by the phase shifter. Thus to minimise this, a proper sized device has to be

used to ensure su�cient levels of ADC . Figures 4.11 and 4.12 illustrate the dependence

of DC gain on di�erent channel lengths and on drain current values for NMOS devices

in UMC18MM process.

The negative impact of CML on MOS devices becomes more signi�cant for short

transistors, indicating an inevitable trade-o� between size and performance of a degen-

erated resonator. For a constant device size, an increasing drain current also reduces

gain. Thus, as gm is proportional to the drain current, the DC gain will be reduced

for the maximum transconductance value used in the design. Therefore, care has to

be taken to ensure that when the highest gm is set, the output resistance of the MOS

transistor is still high enough.
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Figure 4.11: Sub-micron MOS transistor DC gain as a function of drawn gate length
L for constant drain current.
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Figure 4.12: Sub-micron MOS transistor DC gain as a function of drain current for
constant L.
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A common trend in microelectronic design is to use the smallest devices available.

As in this case the DC gain of devices becomes smaller, from a degenerated gyrator

perspective this leads to increased Go. This reduces negative conductance generated

by the circuit. On the other hand, if the available chip area is severely limited and

minimum size devices have to be used, the performance of the active resonator may not

be optimal.

The problem of �nite output resistance may be partially solved by the help of cas-

coding, the method previously applied to a standard gyrator by various researchers [55,

64, 75, 98, 99]. A cascoding increases output resistance and boosts ADC , however it

may impair circuit linearity and reduces available voltage headroom [51]. Thus, this is

not a general solution for the problem of a �nite gds, especially when signal swings are

relatively large as in the case of an oscillator.

4.5.3 Input resistance of gyrator

This parasitic component is connected directly to the tank resistance RT . Typically, a

resonator is loaded by a bu�er and Gi is larger than 1/RT , therefore dominating the

total losses of the resonator. In general Gi consists of two terms. The �rst term, as

shown in Chapter 3, comes from the �nite drain-source resistance of MOS transistors.

For this reason larger DC gain values are always preferable. The second term is related

directly to a gyrator con�guration. As an active inductor is a feedback circuit, this

term is not equivalent to the resistance of the input transconductor but depends on the

transfer functions of both ampli�ers. In the case of a simple, two transistor architecture,

the gyrator consists of a CS ampli�er as an inverting stage and either a CD bu�er [52]

or a CG device [53] as the feedback non-inverting transconductor. Regardless of which

port is chosen, the resistive part of the input admittance or impedance equals gm or

1/gm of one of the ampli�ers, respectively. For high ADC , this term dominates the total

input resistance. As an example, to achieve resonant frequencies up to 1000 MHz using

a standard gyrator, a typical value of a MIM capacitor employed can be in the range

of 2 pF-4 pF. This corresponds to a transconductance values around 10 mA/V and a
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parallel resistance of 100 Ω. If not compensated, this resistance reduces the quality

factor of a resonator below any practical value.

To overcome this problem multistage ampli�ers can be used. Karsilayan et al. [100]

proposed a two stage non-inverting transconductor in CD-CG con�guration. Uyanik

et al. [101] presented a RF �lter with also a non-inverting ampli�er using a cascade of

PMOS and NMOS inverters. Thanachayanont et al. [55] used cascode and regulated

cascode in place of the inverting stage. For each of these methods, the input resistance

is increased roughly by the factor of ADC . The costs are an increased number of non-

linear devices and possibly higher harmonic content in the presence of a large signal

of the oscillator. On the other hand, if a simple transconductor are used, the obvious

drawback is a large input conductance and power necessary to compensate it by an

external circuit. If the proposed degeneration technique is used instead of an external

negative resistor, then the total power consumption of an oscillator can be minimised

because a passive RC phase shifter does not require any DC power to operate.

4.5.4 Barkhausen criteria for non-ideal degenerated gyrator

oscillator

As in the case of an ideal resonator, the Barkhausen criteria can be derived from the

expression for the input admittance (4.32). Both conditions are equal to

1
RT

+Gi +
gm1gm2

CG

(
ωz1 −

ω2

ωz2

)(
1 +

ω2ω2
z2

(ωz1ωz2 − ω2)2

) = 0 :amplitude condition (4.39)

ωCT −
gm1gm2

ωCG

(
1 +

(
ωz1ωz2 − ω2

)2
ω2ω2

z2

) = 0 :phase condition (4.40)

Solving the phase condition yields a resonant frequency from (4.33). The amplitude

condition can be simpli�ed, assuming that a bu�er ampli�er is used and hence the

resonator losses at the output are approximately Gi + 1/RT ≈ Gi. If both ampli�ers

have the same transconductance and the DC gain is large enough that Gi ≈ gm, the
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4.5 Non-ideal model of degenerated active inductor resonator

amplitude condition becomes

gm+ CG

(
ωz1 −

ω2

ωz2

)(
1 +

ω2ω2
z2

(ωz1ωz2 − ω2)2

)
= 0 (4.41)

This expression indicates the limits of the negative resistance range of a lossy degen-

erated resonator. Solving for ω yields two positive frequencies ωRnegL
and ωRnegH

for

which the amplitude condition is ful�lled

ωRnegL,H
=
√

ωz2
2CG

(
gm+ CG(2ωz1 − ωz2)∓

√
(gm− CGωz2)2 − 4CGωz1ωz2

)
(4.42)

There is a critical gm for which both frequencies are equal, however because CG, ωz1

and ωz2 depend on transconductance through Go, there is no simple formula to calculate

its value. Based on Matlab simulations of (4.42) this value is found to be more than

50 mA/V at frequencies up to 1000 MHz, far more than typical sub-micron devices can

reach without an excessive size and power consumption. Thus, as long as the resonant

frequency is set between the points calculated from (4.42), the Barkhausen requirements

for the oscillations build-up are ful�lled. Figure 4.13 depicts the total input negative

conductance and susceptance of a degenerated gyrator resonator with gm depended

losses. All of the circuit parameters are presented in Table 4.6.

Table 4.6: Parameters used to simulate total input admittance of degenerated gyrator
as a function of gm.

Parameters

Rout Cout Cg Co Ci CT ADC
kΩ pF �

3 0.3 0.2 0.1 0.25 4.25 30

By varying the transconductance of both ampli�ers simultaneously, the resonant

frequency is changed whereas all the circuit losses su�ciently compensated. For a

transconductance less than 5 mA/V, positive losses dominate and the circuit is stable.

The upper boundary of tuning range is restricted by the power consumption, however

the negative resistance is still generated for gm in the range of 25 mA/V.

Figure 4.14 shows a comparison of a tuning range between a standard active inductor

tank, described by (4.14) and the circuit from the previous simulation. Both resonators
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4.6 Noise analysis of degenerated gyrator resonator

are non-ideal and have the same parasitic components. Tank capacitance of the standard

circuit has been decreased to place both resonators around the same center frequency. It

can be seen that a fractional bandwidth of the degenerated tank is 30% less because the

phase shifter introduces an additional pole. This pole modi�es the relationship between

gm and ω0, e�ectively decreasing the tuning sensitivity. On the other hand, a standard

gyrator requires more power to compensate the higher losses as long as Gi is not reduced

by using multistage ampli�ers. Although the tuning range of the degenerated active

inductor is restricted, a theoretical tuning range of 70% still proves its capability for

wide band operation.

4.6 Noise analysis of degenerated gyrator resonator

As degenerated gyrator resonators do not utilise an external impedance converter but

instead use an additional RC circuit, a new noise analysis has to be carried out. The

expected noise behaviour should be similar to that of a standard active inductor res-

onator as both tanks share the same inductance simulation mechanism. Therefore, the

output noise should also be proportional to the loaded quality factor of the resonator.

Secondly, due to a resistor presence, the noise level will also be higher than that of an

uncompensated active inductor. Thus to study noise of a degenerated active inductor

resonator, the new noise model has to be derived �rst.

4.6.1 Proposed noise model

Figure 4.15 depicts the equivalent noise model of a degenerated gyrator resonator, sim-

ilar to the one from Figure 3.7, however this time the negative resistance is supplied by

the gyrator instead. In order to simplify analysis it is assumed that Lpdg and Rpdg do

not change much in a vicinity of the resonant frequency. As explained in Chapter 3,

Section 3.3.2.2, Rload is used to limit the loaded quality factor, preventing oscillations.

Both noise transfer functions from (3.17) are still the same, however due to the correla-

tion between v2
ndg and i

2
ndg, they can't be used to calculate output noise directly. The
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i2ndg
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Figure 4.15: The proposed noise model of degenerated active inductor resonator.
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Figure 4.16: Noise sources of degenerated active inductor.

noise analysis begins with the equivalent noise circuit model of a degenerated active

inductor illustrated on Figure 4.16. The equivalent input referred noise sources v2
ndg

and i2ndg are respectively equal to

i2ndg
∆f

=
i2d2

∆f
+
v2
nR

∆f
gm2

2

ω2C2
outR

2
out + 1

= 4kTγgm2 + 4kT
Routgm

2
2

ω2C2
outR

2
out + 1

(4.43)

and

v2
ndg

∆f
=

1
gm2

1

(
i2d1

∆f
+
v2
nR

∆f
ω2C2

out

ω2C2
outR

2
out + 1

)
=

4kTγ
gm1

+ 4kT
Rout
gm2

1

ω2C2
out

ω2C2
outR

2
out + 1

(4.44)

In the case of the equivalent current noise source i2ndg, the higher the frequency the less

noise contribution of Rout is. This is a result of the low-pass properties of the RoutCout

voltage transfer function. Figure 4.17 illustrates the noise PSD of an arbitrary RC cir-

cuit in reference to the noise of its resistor. The area under the dashed curve is inversely

proportional to the capacitance value as in the case of a passive resonator from Section

2.6.1.1. By contrast, the noise power density of an equivalent input voltage generator

v2
ndg is proportional to frequency, because the current of the RoutCout phase shifter, due

to the thermal noise of Rout, increases with frequency. In this case the resistor noise

is high-pass �ltered, yet by analysing (4.43) and (4.44), this transfer function has a
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Figure 4.17: Noise power spectral density of RC low-pass �lter.

substantially lower magnitude comparing to a low-pass part. Both generators are now

correlated through Rout and to calculate a total output noise power from (2.35), the

respective noise transfer function for the resistor has to be derived. Using KVL, these

noise transfer functions of degenerated gyrator from Figure 4.15 are found

ZndgQ(jω) =
jωLpdgRT

jωLpdg +RT (1− ω2CTLpdg)
(4.45)

AndgQ(jω) =
RT

jωLpdg +RT (1− ω2CTLpdg)
(4.46)

where RT is now equal to

RT =
1

1

Rload
+Gi −

1

Rpdg

= Rload

∣∣∣∣∣
1/Gi=Rpdg

(4.47)

Using (4.45) together with (4.43), and grouping terms, the output noise voltage vodg

across the resonator is equal to

vodgQ = indgZndgQ(jω) + vndgAndgQ(jω) =
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=
(
id2 + vnR

gm2

jωCoutRout + 1

)
jωLpdgRT

jωLpdg +RT (1− ω2CTLpdg)
+

+
1

gm1

(
id1 + vnR

jωCout
jωCoutRout + 1

)
RT

jωLpdg +RT (1− ω2CTLpdg)
=

=
(
id2jωLpdg +

id1

gm1

)
RT

jωLpdg +RT (1− ω2CTLpdg)
+

+
vnR
gm1

RT
jωCoutRout + 1

jω (Cout + gm1gm2Lpdg)
jωLpdg +RT (1− ω2CTLpdg)

(4.48)

The �rst two terms of (4.48) represent the noise behavior of a standard gyrator. The

last component corresponds to the noise transfer function of Rout, shown below

AnRQ(jω) =
1

gm1

1
jωCoutRout + 1︸ ︷︷ ︸

low−pass

RT jω (Cout + gm1gm2Lpdg)
jωLpdg +RT (1− ω2CTLpdg)︸ ︷︷ ︸

band−pass

(4.49)

This transfer function consists of a pass-band part associated with the resonator and

also incorporating a transmittance zero of RoutCout admittance. The second part is a

low-pass function related to a voltage gain of RoutCout described earlier.

As illustrated on Figure 4.17, this inherent low-pass property can be used to control

the amount of resistor noise injected to the resonator. If the cuto� frequency of the RC

shifter

ωRC = 1/CoutRout (4.50)

is set to be lower than the tank resonant frequency ω0 = 1/
√
CTLpdg then the noise

contribution from Rout is lowered. This leads to the conclusion that in when the ω0 is set

to 0 (or very close to it), the noise of the resistor can be fully attenuated. This is true,

however in this case, the e�ect of RC phase shifter on the gyrator circuit is cancelled

and the negative resistance will not be generated. Therefore, there is an important

design trade-o� between the amount of noise injected by Rout and the magnitude of the

negative resistance generated by the resonator.

As an example, Figure 4.18 presents how a low-pass operation of the RC phase

shifter a�ects the noise of a degenerated active inductor resonator. The plot shows

an output noise PSD of the resonant tank, caused by the Rout, calculated in Matlab

using the last term of (4.48). Table 4.7 presents the corresponding parameters. In each
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Figure 4.18: Output noise PSD of 434 MHz degenerated gyrator due to Rout and for a
di�erent RC pole frequencies.

Table 4.7: Simulation parameters used to analyse in�uence of RC shifter cuto� fre-
quency on output noise of degenerated gyrator resonator

Degenerated gyrator resonator tuned to f0 = 434 MHz

fRC gm1 gm2 Cout Rout RT Cg + Co CT
MHZ mA/V fF kΩ pF

120 8.8 331
4 5 0.3 4.2

600 4.45 66.3

case, Rout is constant and the cuto� frequency of the shifter is controlled through Cout

only. When this capacitor is varied, the simulated inductance also changes, a�ecting the

resonant frequency. Thus to keep f0 constant, gm value is tuned according to (4.13).

The curve with the circle marker represents the situation where the RoutCout bandwidth

spans over a resonant frequency of the tank. The second graph corresponds to the case

where a resonator noise has been decreased through a low-pass term from (4.49).
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4.6 Noise analysis of degenerated gyrator resonator

4.6.2 Total noise of degenerated gyrator resonator

Recalling (4.48) it can be seen that all of the noise sources are uncorrelated and the

total output noise PSD of the degenerated gyrator is therefore equal to

v2
odgQ

∆f
=
i2d2

∆f
|ZndgQ(jω)|2 +

i2d1

∆f
1

gm2
1

|AndgQ(jω)|2 +
v2
nR

∆f
|AnRQ(jω)|2 =

=

4kTγR2
T

ω2L2
pdg gm2 +

1

gm1
+

Rout

γgm2
1

ω2 (Cout + gm1gm2Lpdg)
2

ω2C2
outR

2
out + 1


ω2L2

pdg +R2
pdg (1− ω2CTLpdg)

2 (4.51)

Using (4.51), the spot noise of the degenerated gyrator at the resonant frequency is

approximately equal to

v2
odgQ

∆f
≈ 4γQ2

L

kT

gm

[
2 +

1
γgmRout

(
1 +

CT
Cout

)2
]∣∣∣∣∣ω=ω0
gm1=gm2=gm
CT /gm

2≡Lpdg

QL=RT /ω0Lpdg

ω2
0C

2
outR

2
out�1

(4.52)

Using (2.35) and the corresponding transfer functions, the total output noise power

of the resonator from Figure 4.15 can be calculated.

v2
odgQ =

1
2π

i2d2

∆f

∞∫
0

|ZndgQ(jω)|2 dω +
1

2π
i2d1

∆f
1

gm2
1

∞∫
0

|AndgQ(jω)|2 dω+

+
1

2π
v2
nR

∆f

∞∫
0

|AnRQ(jω)|2 dω (4.53)

Although the integrals related to the noise sources of the transconductors give the same

result as in (3.15), the third function related to Rout, does not have a simple explicit

solution. However, one can assume that the cuto� frequency of RoutCout is lower than

the tank bandwidth and the resonant frequency. In this case, the noise from Rout is

low-pass �ltered by the RC phase shifter, as discussed in Section 4.6.1. As a result, the

noise transfer function (4.49) becomes

AnRQ(jω) ≈ 1
gm1

1
jωCoutRout

RT jω (Cout + gm1gm2Lpdg)
jωLpdg +RT (1− ω2CTLpdg)

=

=
RT (Cout + gm1gm2Lpdg)

gm1CoutRout

1
jωLpdg +RT (1− ω2CTLpdg)

(4.54)
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simplifying integration. The total output noise power from (4.53) is found as

v2
odgQ ≈

kTγRT
CT

[
gm2 +

CT
gm1Lpdg

(
1 +

(Cout + gm1gm2Lpdg)2

γC2
outRout

)]
=

=
kTγ

CT
QL

[
2 +

1
γRoutgm

(
1 +

CT
Cout

)2
]∣∣∣∣∣ω=ω0
gm1=gm2=gm
CT /gm

2≡Lpdg

QL=RT /ω0Lpdg

(4.55)

The �rst conclusion is that the total output noise power of a degenerated gyrator res-

onator is similar to that of an active inductor tank with external negative resistance

(3.18). In both cases the noise is proportional to the loaded quality factor of the

resonator. In addition, (4.55) indicates that the intrinsic Q-enhancing mechanism con-

tributes to the output noise through Rout. In this case, the noise of the RC phase shifter

is directly related to the unloaded tank quality factor Q0. If the resonator losses are

mainly determined by the gyrator transconductance gm (which is the case when a single

MOS transconductance ampli�ers are used), the unloaded quality factor Q0 is very low.

To compensate for the high losses, larger values of Rout are necessary, which in turn

causes a stronger low-pass �ltration of the resistor noise around the resonant frequency.

This explains the 1/Rout term in (4.55). When the same low quality factor gyrator is

used together with an external negative resistor (instead of the RC phase shifter), then

according to (3.18), the amount of noise injected to the resonator will increase. This

is caused by gmex value approaching that of gm of the transconductors. Therefore, for

simple active inductors, the proposed passive compensation method delivers less noise

than the standard approach.

On the contrary, if a gyrator input losses are weakly dependent on gm, the resulting

unloaded quality factor is substantially higher and therefore a small transconductance

of an external negative resistor is su�cient for compensation. In the case of degenerated

gyrator however, smaller Rout shifts RoutCout pole into higher frequencies. Most of the

resistor noise is injected to the tank and even a relatively small Rout may still introduce

more noise than the external negative resistor. It has to be indicated that (4.55) does

not model noise behavior properly for extremely small resistances because if Rout → 0
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then the noise would be in�nite. In this case, total output noise would be

v2
odgQ ≈

kTγ

CT
QL

[
2 +

Routω
2
0 (CT + Cout)

2

γgm

]∣∣∣∣∣ω=ω0
gm1=gm2=gm
CT /gm

2≡Lpdg

QL=RT /ω0Lpdg

ω0<1/RoutCout

(4.56)

Due to the evident dependency between amount of noise produced by an active in-

ductor resonator and its unloaded quality factor Q0, it is worth illustrating the described

limitations of the proposed compensation technique in comparison with a standard ac-

tive inductor tank compensated with an external negative resistor.

As an example, Figure 4.19 shows RMS noise voltage of two active inductor res-

onators as a function of di�erent Q0 values, simulated for the signal frequency of

434 MHz. Both tanks are modelled using the same gm and CT values as well as loaded

quality factor QL of 30. The noise parameter γ = 2 is typical for short-channel MOS

transistors. Q0 is adjusted by changing a ratio between the input losses represented by

Gi and a gyrator transconductance. In practice, it can not be freely achieved as Gi is set

by the active inductor architecture, however for the sake of the presented analysis it is

assumed that any value of Q0 can be chosen. As all of the points from Figure 4.19 rep-

resent noise of a fully compensated gyrator-based tank (i.e. RT = Rload), the negative

resistance has to be adjusted accordingly every time Q0 is changed. It is accomplished

by �nding the corresponding gmex, Rout and Cout values for each resonator respectively,

using (2.15) from Chapter 2 and (4.8) from this chapter.

Figure 4.19 illustrates, that for a low Q0 resonator, the RMS noise voltage of a

degenerated gyrator is comparable to the one of a standard active inductor tank with

external negative resistor. When Q0 increases, the RMS noise voltage the degenerated

gyrator becomes larger than of the standard active inductor with the additional energy

restorer. Thus, from a noise perspective, a practical application of the degenerated

gyrator resonator is limited to the circuits with a relatively high input losses (directly

proportional to gm) and low Q0 (in the range of 1) [102].

In the case of low Q0, the active inductor resonator with external negative resistor

consumes more static power than the RC compensated gyrator, operating at the same
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Figure 4.19: Output RMS noise voltage of active inductor resonators as a function of
unloaded quality factor for f0 = 434 MHz.

frequency, as shown by Szczepkowski et al. [102]. The di�erence can be used to increase

the transconductance of the degenerated gyrator and therefore decrease the noise. In

this case, the power consumption of both (a standard and degenerated active inductor)

is equal.

4.7 Chapter summary

This chapter presented the novel concept of a degenerated gyrator using a single passive

RC phase shifter to obtain a wideband negative resistance oscillator. First, the problem

of the required number of phase shifters for proper operation was addressed and various

scenarios thoroughly analysed. For the �rst time, it is shown that a single RC phase

shifter is su�cient to provide negative resistance, even in the presence of relatively

high circuit losses. The next section covered the topic of circuit sensitivity. Using the

established technique of classic sensitivity functions, it was shown how various small
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signal parameters of the proposed circuit change when the design variables di�er from

their nominal values. It was indicated that although passive resistors in CMOS process

have low tolerances, the resulting change in the resonant frequency can be compensated

by proper tuning of the gm of the ampli�ers.

Next the issue of circuit parasitics and their in�uence on the operation of a degener-

ated gyrator was covered. The presented analysis indicated that lossy MOS devices are

the main cause of the tuning range reduction of the proposed oscillator. Section 4.5.2

showed that minimum length transistors in sub-micron CMOS process have poor gds

and therefore are not optimal for the proposed circuit. In addition, the problem of

intrinsic RC parasitic networks originating in transconductors was studied. Despite

the fact that these networks have limited in�uence on negative resistance generation

at sub-GHz frequencies, their presence in the circuit can't be neglected and have to be

characterised.

This chapter, for the �rst time, presented the Barkhausen criteria for oscillations

both for ideal and non-ideal degenerated gyrator oscillators. It was demonstrated that,

although a simple RC circuit is used to obtain a negative resistance, a relatively wide

tuning range of such oscillator can be achieved.

Finally, a thorough noise analysis of the proposed resonator circuit has been pre-

sented using the new circuit model. The three main sources of noise were considered,

including the one originating from RC phase shifter. Due to the low-pass character of

this RC network, when its cuto� frequency is lower than the resonant frequency, less

noise is injected to the resonator, decreasing the total RMS noise voltage. It was shown

that the proposed technique can improve the noise performance of low-Q inductors,

whereas a standard active inductor compensated by a negative resistor may be suitable

for resonators with smaller losses. The importance of the proposed noise model comes

from the fact that from the oscillator design perspective, phase noise is determined by

two factors: the amplitude of a generated signal and noise of the circuit. Thus, some of

the solutions presented here will be used later in Chapter 6 to estimate phase noise of

a degenerated active inductor oscillator.
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This chapter covered the most important aspects of small signal modelling of de-

generated gyrator. As any oscillator operate in a large signal regime, it is important

to understand the e�ects of non-linearities of transconductors on the behavior of the

circuit. Chapter 5 presents a thorough analysis of these e�ects with special emphasis on

harmonic distortion and available level of amplitudes generated by the proposed circuit.
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Chapter 5

Large signal behavior of

degenerated gyrator

5.1 Introduction

This section presents a simpli�ed non-linear, large signal analysis of the proposed de-

generated gyrator. The importance of this study comes from the following factors:

� In principle, any oscillator operates under large signal conditions. If only a small

signal model is considered, the circuit response will always scale proportionally

with a magnitude of excitation without any limits, because small signal models

are linear. In practice however, an oscillator circuit is built of active components

that are non-linear. The increasing amplitude of oscillations drives the circuit into

the region where a small signal model is no longer valid. As the proposed circuit

is a harmonic oscillator it is therefore essential to recognise large signal e�ects and

its in�uence on its performance.

� A practical degenerated gyrator, as such, is a non-linear circuit generating har-

monics. As they a�ect a negative resistance and simulated inductance, a thorough

study of how the proposed circuit behaves in the presence of harmonic signals is

crucial.
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� As shown in Chapter 2, Section 2.6, the phase noise of an oscillator depends on

the circuit noise and RF signal power. Thus, to calculate the phase noise, the

amplitude of the output signal has to be estimated. Linear models do not provide

any information about amplitude settling mechanisms in a degenerated active

inductor oscillator, making the presented large signal analysis important.

� Finally, the topic of the large signal behavior of an active inductor circuit is com-

monly omitted in the literature, being usually reduced to a vague report on a

dynamic range of presented resonators. Typically, there is no indication on how

the circuit behavior diverges from a small signal to a large signal regime and what

are the implications for resonant frequency and circuit losses. To date, the only

comprehensive large signal analysis of a standard active inductor was published

by Kaunisto [7]. Therefore, the non-linear analysis presented in this chapter be-

comes an important part of understanding how active inductor oscillators work in

practice.

Section 5.1 presents a short introduction to non-linear circuits with special emphasis

on its characterisation using Taylor polynomials. The main issues related to a large

signal excitation of a single transistor MOS transconductor are shown. In addition, the

strengths and weaknesses of a circuit description using polynomials.

Section 5.3 contains the fundamentals of Volterra kernels technique, a mathematical

tool used to describe a behavior of a non-linear circuit with memory (i.e. reactive

components). Step by step, the methodology of kernel analysis is presented together

with comments on its accuracy and limitations. Based on the previously published

results of Kaunisto [7], the application of this technique to characterise the large signal

operation of a standard active inductor resonator is discussed.

The main contribution of this chapter is presented in Sections 5.4-5.6. Using Volterra

kernels, the non-linear model of a degenerated gyrator resonant tank is derived for the

�rst time. It is then used to explain the mechanism behind amplitude limiting in the

proposed oscillator circuit. In addition, the important problem of harmonic distortion
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5.2 Non-linear circuits

in the proposed circuit is studied.

5.2 Non-linear circuits

By de�nition a circuit is considered non-linear if it violates the principle of superposition,

resulting in

f(a1x1 + . . . akxk) 6= a1f(x1) + . . .+ akf(xk) (5.1)

In other words, the linear combination of input signals xk does not result in a linear

combination of output responses f(xk) and di�erent methods of circuit analysis have

to be used to predict the behavior of the circuit. As an example, consider a single

transistor transconductance ampli�er driven by an ideal sinusoidal voltage at a single

frequency. For a long channel MOS device in saturation, biased with an overdrive

voltage of VOV = VGS − Vth, a large signal dependence between total drain current iD

and driving voltage vGS is quadratic

iD(t) =
µ0Cox

2
W

L
vGS(t)2 =

µ0Cox
2

W

L
(VOV + vgs(t))

2 = ID + id(t) (5.2)

where

ID =
µ0Cox

2
W

L
V 2
OV (5.3)

id(t) =
µ0Cox

2
W

L

(
2VOV vgs(t) + vgs(t)2

)
= gmvgs(t) +

µ0Cox
2

W

L
vgs(t)2 (5.4)

Assuming vgs(t) = A sin (ω0t), the AC response of the transistor is explained as follows.

For small amplitude variations of vgs(t) the quadratic term in (5.4) can be considered

to be negligible, a linear approximation is su�cient to describe the response of the

ampli�er. The linear approximation typically yields 10% of error for signal amplitudes

in the range of 20% of VOV [43]. As a result, single frequency excitation results in

a single frequency response proportional to a device transconductance, well predicted

by the superposition principle. Now, consider the case where the amplitude of the in-

put signal increases. The contribution of the quadratic term of id(t) becomes larger.
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Figure 5.1: Evolution of an output current in a non-linear MOS transconductor with
increasing input amplitude.

Since A2 sin2(ω0t) = A2/2 − A2/2 cos(2ω0t), (5.4) has additional products at frequen-

cies of 0 and 2ω0, respectively. Therefore, the superposition condition is violated and

the transconductor acts as a non-linear device under a large signal drive. Figure 5.1

illustrates simulation results obtained by implementing (5.2) in Matlab.

In the case of active inductor resonators, problems related to a large signal swing

are inevitably more severe than in the case of a passive counterpart. Two factors are

dominant here. Firstly, both transconductance ampli�ers experience harmonic distor-

tion. As a gyrator is essentially a feedback system, the distorted output signal of �rst

transconductor drives a feedback ampli�er. This produces even more distortion due to

the intermodulation products emerging from a harmonic-rich signal. Secondly, since
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5.2 Non-linear circuits

the resonator impedance is controlled directly by a small signal parameters of gyrator,

the large excursions from a static bias point of both ampli�ers change the e�ective in-

ductance of the tank - depending on a signal amplitude. Therefore, even if a relatively

simple quadratic approximation is used to describe MOS non-linearities, the large signal

behavior is not straightforward to predict.

5.2.1 Power series representation of non-linear circuits

According to Taylor's theorem, any function f(x) that has an in�nite number of con-

tinuous derivatives at given point x0 of its domain, can be expressed in the form of a

power series of x and f(x) derivatives, within a certain range in close vicinity to x0. The

actual distance from x0 where this representation holds with given error is controlled

by the reminder function rn(x). If f(x) can be described as

f(x) = f(x0) +
(x− x0)

1!
∂f (x0)
∂x

+
(x− x0)2

2!
∂2f (x0)
∂x2

+
(x− x0)3

3!
∂3f (x0)
∂x3

+

+ . . .+
(x− x0)n

n!
∂nf (x0)
∂xn

+ rn (x0) (5.5)

the function is known as analytical. From a circuit analysis perspective, if only a non-

linear function of interest is analytical around a given bias point, then the corresponding

polynomial can be found from Taylor's theorem (5.5). Even if an explicit formula de-

scribing f(x) is not known but can only be measured, the results are then applied to

approximate the corresponding power series. Note that in actual electronic compo-

nents, non-linearities are usually multidimensional (through various parasitic e�ects)

that y = f(x1, x2, . . . , xn), which dramatically increases a complexity of polynomial

calculation [103]

As an example of a practical application of the described method, consider a trans-

fer curve ID = f (VGS) of a short-channel 180 nm NMOS transistor, presented on

Figure 5.2. In contrast to a long-channel device, the drain current no longer has a

quadratic dependence on input voltage but instead falls between a 2nd-order (for low
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Figure 5.2: Approximations of a short-channel NMOS transfer curve.

VOV ) and a linear function (for higher VOV ) [43]

ID ≈
µ0Cox

2
W

L
V 2
OV

1

1 +
VOV

ECL

(5.6)

where EC is the critical electric �eld for which electron drift velocity saturates. If a

linear approximation is used, the error becomes larger than 10% for variations of bias

point QB larger than ±50 mV. In the case of 2nd and 3rd-order polynomials, the bias

point is tracked from Vth to 870 mV and 1 V, respectively. Note that the approximations

do not give proper results for the transistor in cut-o�, demonstrating that indeed the

Taylor series only represents the function of interest for a certain range of variable

values.

5.2.2 Shortcomings of Taylor expansion

Figure 5.3 presents an attempted polynomial approximation of the transfer curve of a

transistor that saturates for higher voltages. Not only do all of the polynomials fail to
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Figure 5.3: Failed approximation of saturated function.

converge in the cut-o� region but also in the saturation range. This is due the afore-

mentioned locality of Taylor's theorem, it converges only within a �nite domain know

as a radius of convergence. For certain types of non-linearity this radius approaches

zero and a corresponding power series can't be found at all. One such example is a

transfer function of a perfect bipolar switch, that can't be expressed by any means in

terms of a polynomial. Thus, the power series approach is restricted to the functions

called soft or weak non-linearities. Wambacq et al. [103] de�ne this function as the one

that in a vicinity of a bias point is su�ciently described using 3rd-order series only. In

practice, as long as a bias point is set between cut-o� and saturation points, the weakly

non-linear behavior is observed and the power series expansion can be used. As long as

the input amplitude does not move the bias-point towards one of the divergence ends,

the power series description holds.

Another shortcoming of the Taylor series approach is a failure to describe non-

linearities with memory e�ect i.e. the analysed function has to be static [103]. If

capacitances or inductances are present in the circuit, the output signal at any given time

123



5.3 Volterra kernels method

will depend also on previous time instants because of energy stored in these components.

The solution of this problem is presented later in this chapter.

5.2.3 Polynomial description of oscillator

In the case of a standard oscillator, the signal amplitude is restricted by a non-linear

mechanism like saturation. Thus, the power series description is not the most accurate

method of predicting the amplitude. However, observing the polynomials from Fig-

ure 5.3 all functions start to diverge roughly for the same argument values hence indi-

cating the points where strong non-linearity occurs. Analysing the curve ID = f (VGS)

it can be seen that these points correspond to the cut-o� voltage of approximately

450 mV and the saturation voltage larger than 700 mV. Thus, although this approach

is not suitable to describe strong non-linear functions, the resulting polynomials can

approximate with some error the points where oscillation amplitude will start to settle,

a feature not available when using simple linear models.

A similar approach has been presented by Jardón-Aguilar et al. [104]. The authors

used the polynomial description to �nd the large signal gain of an ampli�er of feedback

oscillator and then observing how it decreases to unity with an increasing signal am-

plitude. Based on trivial mathematical formulas the calculated amplitude prediction

yielded results only 20% smaller than of these obtained using the Spice circuit simula-

tor. Thus, although underestimating, the polynomial method allows one to analyse a

circuit behavior through a set of closed form formulas �rst.

5.3 Volterra kernels method

In 1887, Italian mathematician and physicist Vito Volterra created a theory of functional

series [105] that later has been extended by Wiener [106] to describe the behavior of

non-linear electronic circuits. Wiener observed that if the system is weakly non-linear,

the input is mapped to the output through a functional series in a similar manner as a

real-valued power series describes the behavior of a linear circuit. This results in a well
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x(t)
H2{·}

y(t)

H1{·}

Hn{·}

+

Figure 5.4: Non-linear system representation using n-th order Volterra functional series,
known as Volterra-Wiener model [107].

known Volterra-Wiener model of a non-linear circuit depicted on Figure 5.4.

The coe�cients Hn{x(t)} are known as nth-order Volterra operators. Each block

represents a nth-degree functional [107], mapping x(t) to y(t), resulting in the following

formula [103]

y(t) = H1{x(t)}+H2{x(t)}+H3{x(t)}+ . . .+Hn−1{x(t)}+Hn{x(t)} (5.7)

where

Hn{x(t)} =

+∞∫
−∞

· · ·
+∞∫
−∞

kn (τ1, . . . , τn)x (t− τ1) · · ·x (t− τn) dτ1 · · · dτn (5.8)

The coe�cient kn (τ1, τ2, . . . , τn) is called nth-order Volterra kernel. Closer examination

of (5.8) reveals that it resembles the convolution integral known from a linear circuit

theory [108] and given by

y(t) =

+∞∫
−∞

h (τ)x (t− τ) dτ (5.9)

where h(τ) is known as the impulse response of a linear time invariant circuit. The im-

pulse response conveys unique information about the circuit, allowing to �nd the output

signal y(t) for any input excitation x(t). Thus once the impulse response is known, the

circuit is fully characterised and its behavior can be predicted. Now, because (5.8) rep-

resents a multidimensional convolution integral of a non-linear circuit, in this case y(t)

can also be predicted as long as the corresponding nth-order impulse response functions

(kernels) kn (τ1, . . . , τn) are known. Recalling the generic circuit from Figure 5.4 and

125



5.3 Volterra kernels method

comparing to (5.8), it can be seen that H1{·} represents the linear behavior of the sys-

tem. Therefore k1(τ1) should be interpreted as a standard impulse response as in the

case of any linear circuit. A second order operator multiplies an input signal by its time

shifted version and scales it using two-dimensional impulse response k2(τ1, τ2). Thus,

the last operator uses n time-shifted versions of the input signal with nth-dimensional

input response. Thanks to this approach, despite the non-linear character of the system,

the output response can be found using standard linear analysis tools.

A non-linear circuit described by (5.8) is de�ned in the time domain. In some

applications, where the Fourier transform of an input signal can be calculated, it is

more convenient to characterise the circuit in the frequency domain. Having de�ned

the impulse responses, the corresponding Fourier transforms can be found from

Kn (ω1, . . . , ωn) =

+∞∫
−∞

· · ·
+∞∫
−∞

kn (τ1, . . . , τn) e−j(ω1τ1+...+ωnτn) dτ1 · · · dτn (5.10)

As an example of the frequency domain representation of non-linear circuits, consider a

single sinusoid of x(t) = A0 cos (ω0t) applied to a basic 3th-order non-linearity described

with Volterra kernels, the output signal spectrum is found as [103]

y(t) = A0Re
{
K1(jω0)ejω0t

}
+

+
A2

0

2
Re {K2(jω0,−jω0)}+

A2
0

2
Re
{
K2(jω0, jω0)ej2ω0t

}
+

+ 3
A3

0

4
Re
{
K3(jω0, jω0,−jω0)ejω0t

}
+
A3

0

4
Re
{
K3(jω0, jω0, jω0)ej3ω0t

}
(5.11)

showing contributions of harmonics at DC, ω0, 2ω0 and 3ω0. All of these harmonic

products are explained in more detail in Table 5.1 [103].

The main advantage of the Volterra kernels method over a standard power series de-

scription from Section 5.2.1 is its ability to characterise non-linear circuits with memory.

This is due to the fact that an impulse response inherently conveys this information.

Thus the method combines the basic features of the impulse response functions with the

convenience of a power series description of non-linear circuits. However the method

has also some restrictions [109]:

126



5.3 Volterra kernels method

� The series is a sum that converges to a single value. If there are multiple possible

output values (as in the case of hysteresis function of Schmitt trigger), the solution

will converge only to one of the values.

� If higher order kernels dominate the non-linear behavior, the time to �nd them

increases because kernels of lower order have to be computed �rst.

� If the sum diverges there is no solution (as in the case of Taylor series).

Table 5.1: Volterra kernels of a 3rd-order non-linear circuit driven by a single sinu-
soid [103].

Harmonic Response
number frequency amplitude type

1 ω0 A0|K1(jω0)| linear

2
2ω0

1
2A

2
0|K2(jω0, jω0)| second harmonic

0 1
2A

2
0|K2(jω0,−jω0)| DC shift

3
2ω0 − ω0 = ω0 3

4A
3
0|K3(jω0, jω0,−jω0)|

compression
or expansion

3ω0
1
4A

3
0|K3(jω0, jω0, jω0)| third harmonic

5.3.1 Calculation of kernels

For relatively simple circuits, the kernels and the corresponding Fourier transforms can

be found from the Taylor series describing a non-linearity [110]. For more complex

systems, kernels can't be found analytically however they can be extracted from the

measurements, as described in detail by Boyd and Chua [111].

If a non-linear function is expressed in terms of a power series, kernels are found

using a recursive method known as the harmonic input method [107, 112, 113], brie�y

described in this section. As the 1st-order kernels represent a linear behavior of the

circuits these are found using standard methods, for example node analysis. In this
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case the circuit is represented by its small-signal parameters i.e. the non-linearity is

reduced to the �rst term of the describing polynomial.

For higher-order functions the input is shortened and the circuit is driven internally

by the non-linear nth-order current probing sources. Each source is connected in parallel

to the linearised version of the circuit used for the 1st-order kernel calculation. The

corresponding transfer functions (kernels) are then found by solving the circuit using

linear methods, although the excitations are now non-linear. Every time an nth-order

kernel is calculated, (n-1)th-order functions are used. Thus, the procedure is recursive.

More details are given in Section 5.4 where this methodology is employed to analyse a

large signal behavior of the proposed circuit.

The formulae to calculate a non-linear probing sources up to an order of three,

are presented in Table 5.2. Note that these expressions are only applicable to the

one dimensional non-linear transconductance and conductance. The expressions are

presented in a generic form and simplify in the case of a single signal excitation where

ω1 = ω2 = ω3 = ω0.

Table 5.2: Calculation of non-linear probing sources [103].

Transconductance: ioutk ≈ g1k
vink

+ g2k
v2
ink

+ g3k
v3
ink

Order of
Expression

probing source

2 g2k
K1k

(jω1)K1k
(jω2)

3
g3k

K1k
(jω1)K1k

(jω2)K1k
(jω3) + 2

3g2k

[
K1k

(jω1)K2k
(jω2, jω3) +

+K1k
(jω2)K2k

(jω3, jω1) +K1k
(jω3)K2k

(jω1, jω2)
]

5.3.2 Accuracy of kernels method

The complexity of a kernel description increases rapidly together with the complexity

of the analysed non-linear function. As models of practical components are usually

sophisticated, hand calculations based on these models are not possible. During design,
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comprehensive results can be obtained using any circuit simulator able to solve steady

state problems. Although accurate with the supplied models, simulators do not pro-

vide any analytical information about the in�uence of circuit parameters on non-linear

behavior. On the contrary, as Volterra kernels are directly related to these parameters,

this information is automatically conveyed with it. This leads to a trade-o� between

approximation error and the practical limits on description complexity. In this chap-

ter, simpli�ed models based on basic non-linear transconductances are used, assuming

transistor capacitances being linear. The obtained results should be therefore treated

as qualitative ones because more complex behavior is observed in practice due to the

multi-dimensional non-linearities of actual circuits.

5.3.3 Volterra analysis of standard active inductor

After a basic introduction to the Volterra kernel technique given previously, this section

presents the results of its application to a standard active inductor resonator. This

comprehensive non-linear analysis was presented by Kaunisto in his doctoral disserta-

tion [7]. To date, this work is the only complete source, documenting e�ects of large

signal amplitudes on the performance of active inductor resonators.

Kaunisto starts the analysis assuming that single transistor ampli�ers with a non-

linear transconductance are used. He also modi�es the Volterra kernels to �t the ob-

served behavior of the investigated active inductors. It was achieved by changing po-

larities of an inverting ampli�er and voltage controlling the feedback transconductor.

As a result, the odd harmonic products have an opposite direction which promotes

compression instead of expansion of a non-linear inductance. Due to the observed in-

ductance compression, the resonance frequency increases when a signal amplitude gets

larger. This causes the active inductor �lter to work at higher frequency than designed

by using a small signal approach. Thus, even if the transconductance ampli�ers are

still far from exceeding their maximum current and voltages or reaching saturation, the

�lter operates in the wrong bandwidth.

The outcome of the Volterra kernel method applied to the active inductor resonator
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5.4 Non-linear analysis of a lossy degenerated gyrator

is a set of harmonic responses of the circuit on an increasing amplitude of the input

signal, given in Table 5.3. All parameters correspond to a small signal model of the

gyrator from Chapter 2 and the polynomial from Table 5.2. Kaunisto proved for the

�rst time that the Volterra technique can be successfully employed to analyse the large

signal behavior of a standard active inductor resonator. The next section presents the

application of this methodology to the proposed resonator concept.

Table 5.3: Harmonic distortion components for the gyrator-based active inductor due
to non-linear transconductances [7].

Type of response Response iin

fundamental vin
gm1gm2

jωCg

second harmonic − 1
2v

2
in

(
g2,1gm2

2jω0Cg
+ g2,2gm2

1

ω2
0C

2
g

)
third harmonic 1

4v
3
in

(
g3,1gm2

3jω0Cg
− g3,2gm3

1

jω3
0C

3
g

+ g2,1g2,2gm1

ω2
0C

2
g

)
compression 3

4v
2
in

[
g3,1gm2

jω0Cg
+ g3,2gm3

1

jω3
0C

3
g
− 2g2,1g2,2gm1

3

(
1

2ω2
0C

2
g

+ 2
jωgCg

)]

5.4 Non-linear analysis of a lossy degenerated gyrator

This section contains the main contribution of this chapter � the large signal analysis

of the proposed resonator circuit. First, a generic model of the degenerated active

inductor is described and characterised using Volterra kernels and the harmonic input

method. The results are then used to show how the large signal swings a�ect the

negative resistance and the resonant frequency of the circuit. The calculated kernels

also allow the estimation of the harmonic distortion of the oscillator signal, as described

in Section 5.5.
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5.4.1 Circuit model

Figure 5.5 depicts a generic non-linear model of a lossy degenerated gyrator. Contrary

to the Kaunisto approach [7], the orientation of the transconductors does not have to

be modi�ed as the observed behavior of the degenerated active inductor reveals an ex-

pansion of inductance in the presence of increasing input signal. As with Kaunisto, it is

assumed that both transconductors are represented by a single transistor. This causes

the input conductance Gi of such a simple gyrator to be dominated by gm of one of

the ampli�ers. Assuming that the non-linearity of the transistors is weak, polynomi-

als describing active devices can be limited to the 3rd-order. Since the corresponding

transconductances are the derivatives of these polynomials [103] they are non-linear as

well (quadratic in this case). Thus, the input conductance Gi of the gyrator is approx-

imately equal to Gm, the large signal transconductance of one of the ampli�ers. This

important observation has not been included in [7] and it is introduced in this thesis for

the �rst time. In the following analysis Gi is represented by a non-linear conductance

Gm1 of the inverting ampli�er.

iin

Gm1 Gm2v2 Gm1vin

Rout

Cout
+

v2−

Go Co + Cgvin

Figure 5.5: Simpli�ed non-linear model of lossy degenerated gyrator.

5.4.2 Linear response

In the �rst step of the presented analysis the linear circuit response is calculated. In

this case, the input conductance together with both transconductors are described by

small signal parameters. This step yields exactly the same results as the small signal

analysis presented in Chapter 4, Section 4.5. At this stage it is crucial to determine

which quantities should be analysed in terms of Volterra kernels. For any gyrator
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circuit two kernels for each of the considered orders have to be included. As the main

function of interest is the large signal input admittance (the same as in linear case - this

function conveys an essential information on the negative resistance and the simulated

inductance), the input current has to be characterised as a function of the amplitude

of the driving voltage. As the feedback transconductor is driven by the voltage at the

output of the active inductor (either with the phase shifter or not), the kernel related

to this voltage is also necessary in order to include the non-linear e�ects of the �rst

ampli�er.

Figure 5.6 depicts a linear model of a degenerated active inductor. As in Chapter 4,

KVL and KCL equations are su�cient to analyse the circuit. The voltage v2 driving

the feedback transconductor is equal to

v2(jω1) =
−gm1vin(jω1)

jω1CG +Go − ω2
1CoCoutRout

(5.12)

The 1st-order kernel describing the dependence between the input and output of the

active inductor is in fact the voltage gain of the forward path with the RoutCout phase

shifter

K11(jω1) =
v2(jω1)
vin(jω1)

=
−gm1

jω1CG +Go − ω2
1CoCoutRout

(5.13)

The 1st order input kernel represents the input admittance of the degenerated gyrator,

and from Figure 5.6 this admittance is equal to

Kin1(jω1) = gm1 +
−gm2v2(jω1)
vin(jω1)

= gm1 +
gm1gm2

jω1CG +Go − ω2
1CoCoutRout

(5.14)

which corresponds with the results from Chapter 4 given by (4.20) for Gi ≈ gm1.

5.4.3 Second order kernels

The second harmonic response is found from the circuit presented on Figure 5.7. All

the considered 2nd order e�ects are represented as non-linear current sources connected

in parallel to the corresponding linear components. As indicated previously, the input

is shorted, in this case setting vin2 to zero. This in turn causes both the parasitic
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5.4 Non-linear analysis of a lossy degenerated gyrator

iin

gm1 gm2v2 gm1vin

Rout

Cout
+

v2−

Go Co + Cgvin

Figure 5.6: Linearised (1st-order) model of lossy degenerated gyrator.

iin2

iNL21 gm1 gm2v22 iNL22 gm1vin2 iNL21

Rout

Cout
+

v22−

Go Co + Cgvin2 = 0

Figure 5.7: 2nd-order model of lossy degenerated gyrator.

lossy resistor of 1/gm1 and the voltage controlled current source of gm1vin2 to be

disconnected from the circuit. Despite this, a non-linear source iNL21 representing

higher order distortion of �rst transconductor is left intact because shorting does not

a�ect the ideal independent current sources. In addition, as vin2 = 0, no voltage gain

nor input admittance can be de�ned for this circuit. It is important to recognise that the

second order and higher kernels represent the response of the circuit to the imaginary

stimuli rather than currents and voltages in a physical sense.

As before, the kernel of output voltage v2 is found by analysing the output voltages,

however for the reasons explained, the kernel no longer represents the voltage gain of the

circuit. Note that the 2nd-order kernel is de�ned for two frequencies of ω1 and ω2. As

suggested by (5.10), the Fourier transform of nth-dimensional impulse response results

is a function of ω1, . . . , ωn frequency variables.

K12(jω1, jω2) = v22(jω1, jω2) =
−iNL21

j(ω1 + jω2)CG +Go − (ω1 + ω2)2CoCoutRout
(5.15)

The 2nd-order kernel corresponding to a circuit response for the second harmonic is

equal to a second harmonic current iin2 at the shortened input. Figure 5.7 reveals that
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5.4 Non-linear analysis of a lossy degenerated gyrator

this function is equal to

Kin2(jω1, jω2) = iNL21 − gm2v22(jω1, jω2)− iNL22 =

= iNL21 +
gm2iNL21

j(ω1 + jω2)CG +Go − (ω1 + ω2)2CoCoutRout
− iNL22

(5.16)

The current sources iNL21 and iNL22 are found using the kernels from the previous step.

As the non-linearity of the inverting ampli�er depends only on the input voltage of the

active inductor, iNL21 depends only on the coe�cients of the polynomial describing

this transconductance. In the case of a feedback ampli�er, the non-linear response is

proportional not only to the expansion polynomial but also to the non-linear voltage

v22. Thus, the expression for iNL22 is found according to the Table 5.2. The probing

sources are therefore equal to

iNL21 = g21

iNL22 = g22K11(jω1)K11(jω2) =

=
g22gm

2
1(

jω1CG +Go − ω2
1CoCoutRout

) (
jω2CG +Go − ω2

2CoCoutRout
) (5.17)

Finally, the 2nd-order kernels from (5.15) and (5.16) are found to be

K21(jω1, jω2) =
−g21

j(ω1 + jω2)CG +Go − (ω1 + ω2)2CoCoutRout
(5.18)

and

Kin2(jω1, jω2) = g21 +
gm2g21

j(ω1 + jω2)CG +Go − (ω1 + ω2)2CoCoutRout
+

+
−g22gm

2
1(

jω1CG +Go − ω2
1CoCoutRout

) (
jω2CG +Go − ω2

2CoCoutRout
)
(5.19)

5.4.4 Third order kernels

The circuit necessary to calculate these kernels is similar to the one from the previous

section and is depicted on Figure 5.8. The non-linear sources iNL31 and iNL32 represent

a sources of third order distortion of the degenerated active inductor. As before, since
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5.4 Non-linear analysis of a lossy degenerated gyrator

iin3

iNL31 gm1 gm2v23 iNL32 gm1vin3 iNL31

Rout

Cout
+

v23−

Go Co + Cgvin3 = 0

Figure 5.8: 3rd-order model of lossy degenerated gyrator.

vin3 = 0, both the loss resistor 1/gm1 and the source gm1vin3 can be suppressed. The

3rd-order kernel of voltage v23 is derived as

K13(jω1, jω2, jω3) =
−iNL31

j(ω1 + jω2 + jω3)CG +Go − (ω1 + ω2 + jω3)2CoCoutRout

(5.20)

The input kernel is found by applying KCL

iin3 = iNL31 − gm2v23(jω1, jω2, jω3)− iNL32 =

= iNL31 +
gm2iNL31

j(ω1 + jω2 + jω3)CG +Go − (ω1 + ω2 + jω3)2CoCoutRout
− iNL32

(5.21)

As before the probing source iNL31 is equal to the third order coe�cient of the poly-

nomial approximating the non-linearity of the �rst transconductor. Similarly, iNL32 is

found using Table 5.2, giving

iNL31 = g31

iNL32 = g31K11(jω1)K11(jω2)K11(jω3)+

+
2
3
g21

[
K11(jω1)K21(jω2, jω3) +K11(jω2)K21(jω3, jω1) +

+K11(jω3)K21(jω1, jω2)
]

=

= A3 +B3 (5.22)

where

A3 =
−g31gm

3
1(

jω1CG +Go − ω2
1CoCoutRout

) (
jω2CG +Go − ω2

2CoCoutRout
)×

× 1(
jω3CG +Go − ω2

3CoCoutRout
) (5.23)
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and

B3 =
2g22gm1g21

3
(
jω1CG +Go − ω2

1CoCoutRout
)×

× 1
j(ω2 + ω3)CG +Go − (ω2 + ω3)2CoCoutRout

+

+
2g22gm1g21

3
(
jω2CG +Go − ω2

2CoCoutRout
)×

× 1
j(ω3 + ω1)CG +Go − (ω3 + ω1)2CoCoutRout

+

+
2g22gm1g21

3
(
jω3CG +Go − ω2

3CoCoutRout
)×

× 1
j(ω1 + ω2)CG +Go − (ω1 + ω2)2CoCoutRout

(5.24)

Substituting (5.23) and (5.24), the 3nd-order kernels described by (5.21) are equal to

K13(jω1, jω2, jω3) =
−g31

j(ω1 + jω2 + jω3)CG +Go − (ω1 + ω2 + jω3)2CoCoutRout

(5.25)

and

Kin3(jω1, jω2, jω3) =
gm2g31

j(ω1 + jω2 + jω3)CG +Go − (ω1 + ω2 + jω3)2CoCoutRout
+

+
g31gm

3
1

jω1CG +Go − ω2
1CoCoutRout

×

× 1
jω2CG +Go − ω2

2CoCoutRout
×

× 1
jω3CG +Go − ω2

3CoCoutRout
+ g31 +B3 (5.26)

5.5 Harmonic response of degenerated gyrator

The kernels describing the input current of the degenerated gyrator allow us to approx-

imately describe the behavior of this circuit in the presence of a large signal amplitude.

From Table 5.1, the corresponding higher order harmonic e�ects can be found. Second

and third order harmonics are obtained by substituting ω1, ω2, ω3 ≡ ω0 in (5.14), (5.19)

and (5.26) respectively. The admittance expansion/compression due to odd harmonics

can be also found if ω1, ω2 ≡ ω0 and ω3 = −ω0. The presence of non-zero Go is necessary
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5.5 Harmonic response of degenerated gyrator

for several reasons. Firstly, it is required to simulate correct response at lower resonant

frequencies, as presented in Chapter 4. Secondly, because in general the DC gain of

submicron CMOS transistors is �nite, omitting G0 usually yields overestimated large

signal performance of the circuit. Finally, as the symbolic mathematics tools available

today allow us to work and simplify otherwise cumbersome functions, there is not much

more workload required to derive and then process the complicated formulas as pre-

sented in this chapter. Expressions can be simpli�ed by dropping these terms that even

for large signal amplitudes (in the case of CMOS gyrator in the range of few hundred

mV) do not contribute much to overall behavior. However, this does not automatically

imply that Go can or should be omitted where possible.

Table 5.4 contains the calculated higher order responses of a degenerated gyrator

using the proposed nonlinear model from Figure 5.5 and related kernels. Based on this,

the subsequent sections present the main conclusions on the large signal performance

of a negative resistance active inductor derived from the new analysis presented in this

dissertation.

5.5.1 Large signal resonant frequency

The resonant frequency of an active inductor tank changes with signal amplitude through

the e�ect of the non-linear transconductances. Large signal swings cause frequency shifts

that usually are unacceptable when the resonator is used in a �lter. Ideally this �lter

has to have the same response for all of the signal amplitudes within the dynamic range

of the circuit. Thus the dynamic range of the active inductor circuit is always much

more restricted than that of a passive resonators [7, 46].

In the case of an oscillator this problem is not as severe as the circuit produces a

single, constant amplitude signal at a given resonant frequency. However, the instanta-

neous frequency still varies with the input signal, as in the case of a passive tank with a

varactor. Thus, when analysing the large signal behavior of a degenerated gyrator based

oscillator, this e�ect can't be neglected because, as shown in Chapter 4, Section 4.3, a

negative conductance is also a function of signal frequency.
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5.5 Harmonic response of degenerated gyrator

To �nd how a resonant frequency changes with increasing amplitude, the response of

the circuit at the fundamental frequency has to be �rst found. The resonant frequency

is the one for which the imaginary part of the resonator admittance reaches zero, for

given circuit parameters and a signal amplitude. Using Table 5.4 this frequency can be

found by solving the following

ω0LndgCT + =

{
iinLin(ω0Lndg)

vin
+
iinComp/Exp(ω0Lndg)

vin

}
= 0 (5.27)

where CT is a total tank capacitance, iinLin(ω0Lndg) and iinComp/Exp(ω0Lndg) are respec-

tively: the linear and compression/expansion circuit responses from Table 5.4. Equation

(5.27) yields an implicit function that can't be presented in a simple form like (4.13) for

the small signal model from Chapter 4. However, for given circuit parameters, the result

can be found numerically. The non-linear parameters are approximated from a circuit

simulator, by �rst �nding a I − V curve and quiescent points for a single transcon-

ductor with an active load. This approach allows us to �nd the saturation curves that

approximate the actual ampli�er behavior. The corresponding derivatives can then be

calculated using Matlab (function di�() that returns a vector of di�erences between

adjacent elements of the input vector I = f(V )) [96]. Table 5.5 presents the parameter

for the transistor with the drawn length L of 250 nm.

Table 5.5: Non-linear parameters of a single MOS transconductor with active load.

gmi g2i g3i

mA/V mA/V2 mA/V3

5 -17.7 -170

10 11.9 -130

15 -31.9 -82

Note, the calculation error increases for derivatives of higher order and can be min-

imised by larger number of calculation points of I − V curve. The presented values

should be treated as an example only since they depend strongly on ampli�er archi-

tecture and its bias circuit, and also on transistor dimensions. Using the small signal

parameters from Chapter 4 (Table 4.5), together with the coe�cients of Taylor expan-

sion given in Table 5.5, the resonant frequency as a function of signal amplitude was
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5.5 Harmonic response of degenerated gyrator

calculated. The corresponding curves are depicted on Figure 5.9. All curves were found
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Figure 5.9: Resonant frequency as a function of signal amplitude.

by increasing the driving signal amplitude until the calculated frequency becomes a

complex quantity. This is due to the dependence of the parallel equivalent inductance

on the negative resistance and at a certain point equation (5.27) does not have any real

and positive solution. From a practical point of view, the actual resonant frequency

is in fact an average of presented curves for any of the considered transconductance

values. This can be explained as follows. For each oscillation cycle, the signal swings

through three zero-crossing points and two points where its amplitude reaches a maxi-

mum absolute value. Close to the zero-crossings, the frequency of the signal equals the

value found from a small signal model. At maximum amplitude, frequency decreases

through a harmonic compression of the inductance. As a result, the frequency observed

through a single oscillation period lies between the small signal and the large signal

values. Thus a degenerated active inductor based oscillator, generates a signal at lower

frequency than the designed, not only due to the parasitic capacitances but also due

to a non-linearities of the gyrator ampli�ers. Looking at Figure 5.9, for the considered
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5.5 Harmonic response of degenerated gyrator

parameter values, the frequency averaged over one oscillation period is 10% less than

its small signal value. In practice the expected frequency drop is higher due to the

non-linear capacitance of transistors that, for simplicity, has not been included in this

analysis.

5.5.2 Large signal conductance

To observe how the generated negative resistance changes with signal amplitude, the

real part of the input admittance at the resonant frequency has to be found. As previ-

ously, higher order e�ects, in addition to the amplitude dependent resonance frequency,

are also considered here. The main point of interest is the signal level for which the

e�ective input conductance of a resonant tank approaches zero. For this amplitude,

circuit losses are equal to the compensating negative conductance and therefore the

oscillator signal amplitude settles. As indicated previously, because the polynomial ap-

proximation methods fail for strong non-linearities (i.e. when the ampli�er saturates),

the presented results should be treated as indicative rather than as providing exact

values. Using Tables 5.4, 5.5 and 4.6, together with the instantaneous frequencies cal-

culated from (5.27), the input admittance of a self oscillating active inductor can be

analysed. Figure 5.10 depicts the real part of this admittance for <{yin} ≤ 0.

Using Figure 5.10 as a reference, the behavior of a degenerated gyrator can be ex-

plained as follows. Under the linear conditions de�ned by Barkhausen criteria from

Chapter 4, the e�ective equivalent parallel conductance is negative and oscillations

start to build up. Depending on the chosen bias point i.e. transconductance and its

derivatives, the increasing signal amplitude decreases this negative conductance due to

a compression of admittance caused by the odd-order harmonics, limiting signal am-

plitude growth. Another contributor to the shape of the curves is the instantaneous

frequency which changes the negative term of Go − ω2CoCoutRout. This is more pro-

nounced for smaller gm values because, as shown on Figure 5.9, the frequency drop

due to an increasing signal amplitude is the steepest in that case. In the case where

transconductance is set to the maximum (15 mA/V), the e�ective input conductance
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5.5 Harmonic response of degenerated gyrator

decreases rapidly due to a reduced Go, as high bias currents decrease the DC gain of

the transistor (Figure 4.12). Secondly, the rate of change of gm with input signal is the

fastest for maximum transconductances in the ampli�er with the active load. To prove

this, consider Figure 5.11 which presents the normalised I − V curves of an ideal single

NMOS transistor with PMOS current source, together with its calculated gm for three

di�erent peak values. It can be seen that for the transconductance of 15 mA/V the slope

of curve is the steepest. Therefore, for both minimum and maximum gm, the generated

signal amplitude is smaller at both ends of the tuning range of the active inductor VCO.

As a result, reduced signal power and higher phase noise will be observed in these areas.

As the expected oscillation amplitude is in the range of 50 mV to 150 mV, a degener-

ated gyrator always has (as all gyrator based circuits) an inferior phase noise to any

comparable passive LC tank VCO, not only due to a generally higher noise but also

due to the non-linear character of the active resonator which limits available oscillation

amplitude.
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Figure 5.10: Large signal input conductance of a degenerated active inductor.
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Figure 5.11: Normalised I − V and gm curves of an ideal, single MOS transconductor
with active load.
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Figure 5.12: Harmonic distortion products of degenerated active inductor resonator
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5.5.3 Harmonic distortion

Harmonic distortion is a measure of the relative magnitude of higher frequency products

to the linear response of the circuit. Using kernels and the corresponding harmonic

components from Table 5.4, the signal distortion can be found from a standard de�nition

as [103]

HD2 =
1
2
vin

∣∣∣∣∣Kin2(jω0, jω0)
Kin1(jω0)

∣∣∣∣∣ : second order distortion (5.28)

HD3 =
1
4
v2
in

∣∣∣∣∣Kin3(jω0, jω0, jω0)
Kin1(jω0)

∣∣∣∣∣ : third order distortion (5.29)

Figure 5.12 depicts a calculated harmonic distortion of the degenerated gyrator as a

function of input voltage amplitude for the same parameter values as in previous sec-

tion. Referring to the Volterra kernel analysis results from Table 5.4, it can be seen that

all of the harmonic products are inversely proportional to the signal frequency. For this

reason, the harmonic distortion increases faster for a smaller gm as this transconduc-

tance sets the resonant frequency low. When the signal amplitude reaches values for

which the total negative conductance is zero (Figure 5.10), HD2 and HD3 products do

not exceed 15%. This proves that although the generated signal amplitudes are only a

fraction of the circuit supply voltage (V DD of 1.8 V for 180 nm CMOS process is used

throughout this thesis) the non-linear active resonator introduces considerable signal

distortion. Even if an active inductor is designed such that it has a wide voltage head-

room, the increasing harmonics inevitably will restrict large signal performance (due to

the signi�cant frequency shifts and distortion). Only few published works refer to this

issue. This thesis builds o� the work of Abidi [46] and Kaunisto [7] on standard gyrator

resonators to, the previously unexplored, area of self-oscillating active inductors.

The last type of distortion is a DC shift caused by even-order harmonics. For the

circuit parameters considered here, the average magnitude of this shift for each transcon-

ductance, resonant frequency and signal amplitude is in the range of 10%. This type of

signal distortion, together with other even-order products i.e. HD2, HD4, ...,HD2n can

be signi�cantly minimised if a di�erential resonator is used and the signal is then com-
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5.6 Validation of presented analysis

bined in a single ended bu�er ampli�er. The drawback is an increase in the odd-order

products and the single-ended output from the circuit that occupies a double chip area

in comparison with a single active inductor resonator.

5.6 Validation of presented analysis

As mentioned previously, the presented model of degenerated gyrator assumes that

transconductance ampli�ers are the only source of non-linearity. In practice, transistor

capacitances and conductances are also non-linear, however their inclusion in the model

would dramatically increase the complexity of the calculations. Also, most of the tran-

sistor parasitics are typically multidimensional i.e. their value depends on other circuit

parameters [103]. As a result, no analytical model can be found if complete component

models are required to be used.

Although only qualitative, the proposed model is validated in Chapter 7, Section 7.6,

where the practical CMOS degenerated gyrator circuit is designed and simulated. The

circuit consists of a single transistor transconductance ampli�er, biased using current

mirrors and is therefore well suited to compare with the simple non-linear model pre-

sented in this chapter. Figures 7.17 and 7.18 present the total input conductance and

the parallel equivalent inductance as a function of signal amplitude. It can be seen that

the negative conductance has the same character as predicted from a highly simpli�ed

model. As calculated, the smallest compression rate is obtained for medium values of

gm, as predicted in Figure 5.10. The parallel inductance from Figure 7.18 undergoes

the expected harmonic expansion and reduces the resonant frequency of the oscillator

(Figure 7.19).

The harmonic distortion of the practical circuit was also simulated (Table 7.5).

As predicted, when oscillation frequency increases, total harmonic distortion decreases

due to the reduced HD2 and HD3 products for larger gm. Thus, although only one-

dimensional non-linearities were used in the mathematical model derived in this thesis,

the results of comparison to a more sophisticated CMOS circuit give an indication of
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the validity of the presented large signal model.

5.7 Chapter summary

This chapter presented the non-linear analysis of a degenerated active inductor res-

onator. First, the basic theory of non-linear circuits was discussed, together with the

fundamentals of Volterra kernels technique. Using the results previously published by

Kaunisto [7], it was shown that the kernel method is suitable to describe the behavior

of a standard active inductor resonator. Finally, an extended non-linear analysis of the

proposed degenerated gyrator was presented, with special emphasis on the following:

� A new non-linear model of the active resonator. The crucial modi�cations over a

standard gyrator circuit include: adding RC phase shifter at the output node and

recognising an important problem of gm-dependent input losses of the resonator.

Thus, although much simpler than a practical integrated circuit, the proposed

model allows us to analyse circuit behavior under large signal excitation.

� A step by step Volterra kernel technique was presented. Though the method is

well documented in the literature [103] it is usually given in more generic form. To

explain how the results were obtained it was important to lead the reader through

each step separately. As a result, this chapter can be used as a reference if other

type of weakly non-linear circuits, not only gyrators, have to be analysed.

� The large signal response of degenerated gyrator resonator. It was shown the

negative resistance generated using the passive RC shifter is compressed due to

harmonic signals originating from non-linear ampli�ers of the gyrator. When the

oscillations build up, the increasing amplitude reduces negative resistance until

its value equals the circuit losses. This phenomenon is caused by the weak non-

linearity of transconductors rather than their saturation (which typically requires

larger amplitudes). The harmonic compression is also responsible for lower oscil-

lation frequency than predicted by the small signal model. For large amplitudes,
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the simulated inductance is larger, shifting the resonant frequency down. This

proves the importance of the large signal analysis presented in this thesis. These

conclusions were con�rmed by the simulation results of the practical circuit in

Chapter 7.

� Harmonic distortion of signals of the proposed oscillator. As presented in this

chapter, the kernels convey information on magnitude of harmonic products gen-

erated by the circuit. It was shown that when the signal amplitude increases, this

results in higher harmonic distortion. This e�ect becomes more pronounced for

low resonant frequencies and transconductance values. Note that the proposed

simpli�ed non-linear model was able to capture this behavior, comparable with

the simulation results from Chapter 7.

The chapter also enabled the investigation of the practical range of amplitudes of the

oscillator signal. Together with the study of noise from Chapter 4, the qualitative obser-

vations of the non-linear model lead to phase noise analysis of the proposed oscillator.

The next chapter is dedicated to this important aspect of oscillator performance.
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Chapter 6

Phase noise of degenerated gyrator

6.1 Introduction

As discussed in Chapter 2, the phase noise level of an oscillator is one of the most

important parameters determining the performance of a circuit. It was shown that

phase noise causes a reciprocal mixing in RF receivers and spurious emission in radio

transmitters. To create a complete description of the proposed self-oscillating active in-

ductor resonator it is therefore essential to create a phase noise model of the degenerated

gyrator. This chapter consists of three parts:

� Section 6.2 presents an overview of the most important of the existing phase

noise analysis methods. Both linear and non-linear phase noise models are dis-

cussed. The linear approach yields intuitive results, whereas the non-linear meth-

ods require large computational e�ort and do not provide any analytical formu-

las. The linear methods presented in this chapter include the famous Leeson's

equation [114, 115], a staple phase noise model of feedback oscillators for the

last �fty years. Also, a linear time variant approach of Hajimiri and Lee is dis-

cussed [45, 116�118]. Finally, a non-linear approach to phase noise modelling

based on a well established harmonic balance method is presented. Each of the

aforementioned methods is described focusing on its advantages, weaknesses and
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accuracy of phase noise estimation. This part contributes to the thesis through a

brief, yet informative, introduction to phase noise analysis of oscillators.

� In Section 6.3 a new linear time invariant phase noise model of the proposed circuit

is derived. Using the methodology of Razavi [26] together with the proposed noise

model for active inductor resonators from Chapter 4, a closed form analytical

phase noise model of the degenerated gyrator resonator is obtained. This is the

main contribution of this chapter as no similar models have been published yet.

Calculations using the new LTI model are compared to the simulation results

for the practical circuit from Chapter 7. This comparison shows only a few dB

di�erence to a more complex numerical and non-linear phase noise model used by

Eldo RF simulator, proving usability of the proposed LTI phase noise model of

the degenerated active inductor resonator.

� In Section 6.4 the model derived in the previous section is discussed. Although

highly simpli�ed, the proposed analytical phase noise model provides valuable

design insights into the basic dependencies between phase noise levels and active

resonator components. As a result, the presented analysis clearly indicates the

main sources of the inferior phase noise performance of the active inductor res-

onator in comparison to a standard integrated LC oscillators using passive spiral

inductors.

The methodology used throughout this chapter requires some clari�cation. The term

�phase noise level� corresponds to a standard de�nition i.e. it represents a relative

power spectral density given in dBc (dB related to the power of the carrier signal) in a

bandwidth of 1 Hz at some o�set frequency ωm from the carrier to the total power of this

carrier signal [28]. Although phase �uctuations do not transmit any power, the noise

current and voltages causing these �uctuations do. As a result, phase uncertainties

can be described in the frequency domain through power spectral density functions

related to the corresponding noise sources. If not otherwise indicated, noise sources are

described using power, as in the case of the analyses from Chapters 2, 3 and 4.
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6.2 Overview of phase noise models

6.2.1 Linear models

6.2.1.1 Time invariant approach (LTI) � Leeson's model

This approach known as Leeson's model after it's author D. B. Leeson, who published

in a landmark paper presenting a simple model of LC feedback oscillator phase noise in

1966 [114]. The model consists of a linear ampli�er described with noise �gure F , and

a simple LC resonator with a �nite quality factor Q0, illustrated in Figure 6.1. Leeson

showed that in the case of an LC oscillator, the unloaded quality factor of the resonator

is a critical parameter determining phase noise performance. In the Leeson model, two

main noise sources are considered: white noise and �icker noise. Both noise sources

modulate the oscillator phase and therefore the instantaneous frequency of the signal

(as the frequency is a derivative of phase). Thus, the oscillator undergoes a AM-PM

noise conversion. The phase of the signal is modulated with rates (ωm) proportional

to the frequency components of each of the noise sources. If that rate is small, �icker

noise becomes the main phase modulating source whereas white noise source becomes

+

Ampli�er

RLC resonator

Additive
white
noise

Flicker (1/f)
phase

modulation

φoutφin

Figure 6.1: Leeson's phase noise model of feedback oscillator [41].
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dominant at higher ωm. Leeson expressed the combination of these two noise sources

in terms of a double side band relative power spectral density expressed as

S∆φ(ωm) =
2FkT
Ps

(
1 +

ω3

ωm

)
(6.1)

where F is a noise factor of the ampli�er, k is Boltzmann's constant, T is the tempera-

ture in Kelvins, Ps is a carrier signal power and ω3 is the frequency for which the level

of a �icker noise is equal to the white noise (called corner frequency). Noise factor of

the ampli�er is de�ned as a ratio of signal to noise ration on the output of the ampli�er

to the signal to noise ration at its input. Leeson proposed that (6.1) can be considered

as a single noise source representing a power spectral density of phase uncertainty ∆φ

of the LC oscillator [114]. The factor of 2 in (6.1) comes from the fact that amplitude

changes due to noise are not included in the model. This assumption is valid because

oscillators have an inherent mechanism of stabilising amplitude as explained previously

in detail in Chapter 2, Section 2.3.1. The value of 2 is an estimate derived from the

equipartition theorem [32] which states that a noise in�uence on the oscillator signal can

be equally divided between phase and amplitude perturbations.

As the LC tank is a bandpass �lter, it attenuates signals that are o�set from the

resonant frequency, acting like a low pass �lter for frequency variations caused by the

noise source (6.1). The attenuation of this low pass �lter is proportional to the half

bandwidth of the LC resonator

βhalf =
ω0

2Q0
(6.2)

Leeson recognised that for values of ωm within the half bandwidth of the tank, the PSD

of φout phase �uctuations on the output of the ampli�er can be found from

Sφout(ωm) =
β2
half

ω2
m

S∆φ(ωm)

∣∣∣∣∣ωm<βhalf
ωm�ω0

(6.3)

In the case of ωm larger than the resonator βhalf , frequency variations are substantially

attenuated and do not propagate around the feedback loop [41]. However, they are still

present at the ampli�er output (i.e. the point between the ampli�er and the resonator).
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In this case the PSD of these phase variations is equal to (6.1) [114, 115]

Sφout(ωm) = S∆φ(ωm)

∣∣∣∣∣
ωm>βhalf

(6.4)

Combining (6.1) with (6.4) the total phase noise spectrum of φout is described by

Sφout(ωm) =
2FkT
Ps

(
1 +

ω3

ωm

)(
1 +

1
4Q0

ω2
0

ω2
m

)
=

=
2FkT
Ps

(
1
ω3
m

ω2
0ω3

4Q0
+

1
ω2
m

ω2
0

4Q0
+
ω3

ωm
+ 1

)
(6.5)

Additionally, the PSD of φin variations for any value of ωm can be found [115]

Sφin
(ωm) =

2FkT
Ps

(
1 +

ω3

ωm

)
1

4Q0

ω2
0

ω2
m

(6.6)

Leeson's model from (6.5) can be considered as a combination of four di�erent noise

sources [28]. The �rst source represents an up-converted �icker noise of the ampli�er

and is proportional to ω−3
m . The second term represents thermal FM noise and decreases

with ω−2
m . The third source is the �icker phase noise whereas the last term represents

the thermal noise �oor of the oscillator. These four sources combined represent a generic

solution and therefore require some practical assumptions about ω3 and Q0 values to

emulate the actual behavior of an oscillator.

If the LC resonator has low Q0 or low ω3, the half-bandwidth of the tank is larger

than the �icker noise corner. In this case, the output phase noise spectrum consists

of three components depicted in Figure 6.2. All the parameters used for calculation

of noise from (6.5) are included in the plot. Note that the angular frequency ωm is

transformed to a frequency fm for convenience, however it does not a�ect any aspect

of the Leeson model analysis. For the considered case, the phase noise spectrum is a

combination of all components indicated by (6.5). Thus, the curve f−3
m represents the

up-converted �icker noise component, f−2
m illustrates the thermal FM noise contribution

as described previously. Figure 6.2 depicts the typical shape of phase noise spectrum for

a typical LC oscillator built using integrated resonant tanks with either spiral inductors

or gyrators.
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Figure 6.2: Phase noise model for low Q0 or low fm LC feedback oscillator.
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Figure 6.3: Phase noise model for high Q0 or high fm LC feedback oscillator.
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When the resonant tank has either high Q0 or high ω3 (fm), the phase noise spec-

trum is similar to that presented in Figure 6.3. The spectrum also consists of three

components, however now the thermal FM noise of f−2
m is superimposed by the remain-

ing sources from (6.5). Note that a Q0 of 5 · 106 can't be obtained by any means in any

practical integrated circuit and is used only to simulate the behavior of an oscillator

with the extremely high quality factor.

6.2.1.2 Strengths and limitations of Leeson model

The presented linear time invariant method represents a fundamental model of phase

noise in oscillators. A closer look at (6.5) reveals ways to minimise phase noise of an

LC oscillator [41]:

� White noise spectral density has to be small. This requirement ensures a small FM

modulation of the output signal due to thermal noise generated in the resonator.

This also minimises the noise �oor of the system because at large frequency o�-

sets ωm minimising e�ects of reciprocal mixing. As the majority of noise in the

oscillator originates from the ampli�er, it is crucial to use active circuits with the

lowest noise �gure possible.

� Oscillator signal power Ps should be large. If the oscillation amplitude is large

then the signal to noise ratio of the oscillator improves. As a result, phase noise

is smaller because it represents a relative measure of noise power to the power

of the generated signal. In practice, the signal to noise ratio does not improve

inde�nitely with increasing signal amplitude. At a certain point the circuit can't

exceed the maximum signal level (due to breakdown voltage of transistors or the

maximum current speci�cation). The attempts to further increase it usually boost

noise levels which in turn reduces the phase noise performance of the oscillator.

� Resonator Q0 should be large. Large quality factor decreases half-bandwidth of

the resonator, improving attenuation of noise at small frequency o�sets ωm from

the carrier. However as shown in Chapters 2 and 3 this requirement is valid only
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for the tanks using passive inductors. When gyrators are employed phase noise

becomes proportional to Q0 [47] and for this reason the Leeson model can't be

directly employed to predict the behavior of these circuits.

� Flicker corner frequency ω3 should be small. This is an indication that the circuit

should contain a relatively low �icker noise component. Smaller �icker noise fre-

quency reduces noise from ω−3
m and ω−1

m regions of (6.5). As a result, phase noise

close to the carrier is reduced, that improving signi�cantly the spectral purity of

the oscillator signal.

� If phase noise at large ωm is important, the oscillator output should be taken

from the output of the resonator (φin from Figure 6.1) to take advantage of the

extra �ltering in the resonator as suggested by (6.6). However, post-oscillator

circuits (e.g. bu�er ampli�ers, frequency multipliers, frequency dividers or phase-

noise analysers) can contribute �icker or white noise levels su�cient to mask this

behavior, thus further circuit simulations have to be conducted to con�rm the

proper choice of oscillator output node.

Some shortcomings of the Leeson phase noise model have been reported. Firstly, the

signal power Ps, corner frequency ω3 and noise factor F parameters have to be known

prior to the calculations. As suggested in the original paper [114], they are found

empirically such that the calculated model �ts measured data for the given oscillator.

Thus the model can't predict the phase noise levels of an unknown oscillator circuit

directly and should be treated as a qualitative analysis. Secondly, Leeson presents a

model based on a linear ampli�er which is not true in general. For example, harmonic

e�ects are not included and hence noise e�ects related to harmonics are not included.

Finally, as the model deals only with the LC feedback oscillator circuit it can't explain

the phase noise behavior of ring oscillators [41, 119].
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6.2.1.3 Time variant approach (LTV) � Hajimiri-Lee model

The basic shortcoming of Leeson's approach is an assumption of stationary behavior

for oscillators. With this assumption, an ampli�er introduces the same amount of noise

equally over the period of oscillations. In general this is not true, since in each cycle a

standard LC resonator receives energy from the ampli�er in the form of short pulses.

The noise is injected to the tank during this short period of time also. Therefore, the

phase modulation of the oscillator signal due to noise depends also on time instant

when the noise has been introduced to the circuit. As a result, oscillator behavior in

the presence of noise is time variant as opposed to the Leeson approach.

This problem was recognized and described by Hajimiri and Lee [45, 116�118]. In

general, if a pulse perturbation (or any signal including noise) is injected into oscil-

lating resonator, it causes variations of both amplitude and phase, as illustrated on

Figure 6.4. If the perturbation occurs when an oscillation reaches the peak magnitude,
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Figure 6.4: Response of oscillating resonator to injected current disturbance [116].
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the amplitude of the signal is changed, however the phase is not a�ected. On contrary,

if the same perturbation is injected during the zero crossing, phase changes instantly

but the amplitude is not. Thus, it can be seen that the phase noise of the oscillator

depends on the time instant when the noise is introduced in the resonator. Hajimiri and

Lee proposed the impulse sensitivity function (ISF for short or Γ(x)), to represent the

described behavior of phase �uctuations. It is a dimensionless, amplitude independent

and periodic function with period of 2π. It is measured as a relative phase change to a

signal period for di�erent injection instants of the single test pulse of known amount of

electrical charge. The ISF reaches the maximum when the pulse is introduced during

zero crossings and equals zero when the perturbation is applied at the peak of oscilla-

tions. Once the ISF is derived, it is expanded in terms of a Fourier series with real

coe�cients. These coe�cients are then used to express the phase noise equation in a

logarithmic scale as [116]

Sφout(ωm) = 10 log

(
c2

0 · i2n/∆ω
4q2
max

·
ω1/f

ω3
m

+
Γ2
RMS

2q2
max

· i
2
n/∆ω
ω2
m

)
(6.7)

where c0 is the �rst coe�cient of Fourier expansion of ISF , qmax is a maximum charge

stored in a tank capacitor, i2n/∆ω is a noise PSD of a single source, ωm is an o�set

frequency from the carrier, ω1/f represents a �icker corner frequency of an ampli�er

and ΓRMS is a RMS value of a periodic function Γ(x).

The use of electrical charge qmax as a quantity controlling the phase noise is not

coincidental. Hajimiri and Lee observed that although oscillators are non-linear in a

sense of current and voltage transfer functions, phase �uctuations are proportional to

the amount of charge injected by the noise sources to the resonator. This relationship

remains linear and therefore standard impulse response functions known from the linear

circuit analysis can be used to derive (6.7).

6.2.1.4 Strengths and limitations of Hajimiri-Lee model

The main strength of the discussed approach lies in its ability to capture non-linear

e�ects taking place in practical oscillators. A harmonic distortion of a generated signal
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produces also corresponding harmonics of the ISF function. As (6.7) is derived using

Fourier coe�cients of the impulse sensitivity function, the resulting phase noise includes

e�ects of non-linear distortion caused in the oscillator. This qualitative conclusion can't

be obtained using the simple Leeson model.

The main disadvantage of this method is a tedious calculation of ISF , valid only to

the particular circuit under test [28]. In addition, as indicated [116], an exact analytical

derivation of Γ(x) can't be found for any but the simplest oscillators and hence have to

be usually solved numerically. Also, the amplitude of the testing impulse is not speci�ed

explicitly and additional testing is needed to ensure linearity between charge and phase

�uctuations.

The Hajimiri-Lee model delivers a following set of qualitative oscillator rules:

� Active circuit providing energy restoration to the resonator should be on only dur-

ing a zero crossings of ISF . These pulses should be relatively short in comparison

to the oscillation period.

� If possible the ISF should be symmetrical to reduce its DC component and

hence any �icker noise up-conversion caused by it. This is especially important

for technologies with poor 1/f performance.

� The main conclusions of the time-invariant model are still valid. Q0 and signal

amplitude should be maximised, as in the case of the Leeson model.

Although extensively cited, the linear time-variant method brie�y presented here is

not widely used in practical oscillator design. Firstly, most of the observations published

by Hajimiri and Lee are su�cient to establish a set of qualitative design rules for both

LC and ring oscillators. As ISF is not usually given in a form of analytical formula

consisting of various circuit parameters, it is impossible to predict how Γ(x) changes with

these parameters. Thus, if one of these parameters is modi�ed usually ISF have to be

derived again together with its Fourier series coe�cients. For this reasons, commercially
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available circuit simulators use a more complex, non-linear approach presented in the

following section.

6.2.2 Nonlinear phase noise model � harmonic balance method

The non-linear phase noise model requires substantial computational power and does

not yield closed form solutions, however results in more accurate phase noise estimation

than the linear methods described previously. The calculation can be either conducted

in the time or frequency domain. The latter approach is more common, since typical

large signal circuits can be successfully solved using Fourier series.

The phase noise calculation method using the non-linear circuit model is based on

a solution of Kirchho�'s equations in the presence of a perturbing signal. In, fact this

is a modi�ed version of the standard harmonic balance technique, or HB, used to solve

large signal problems in the frequency domain. The main di�erence between analysis

of oscillators and ampli�ers or mixers is that the former is an autonomous circuit, and

therefore there are no excitation signals. The oscillation frequency is therefore not

known and must be estimated prior to further calculations, either by a random guess

or by more elaborate iterative continuation methods [110].

The HB method can be brie�y explained as follows. First, linear and non-linear

components of an oscillator circuit are found and grouped respectively into linear and

non-linear sub-networks. These sub-networks are then connected together through a

�nite number of ports [110]. At this stage, the circuit is considered noiseless. A linear

subcircuit is represented by a Norton equivalent network, described by an admittance

matrix, and can be directly solved in the frequency domain. The non-linear components

are represented in the time domain where the responses corresponding to each of the

ports are calculated and then transferred into the frequency domain. The total response

of the circuit is found when for each interconnecting port and harmonic frequency the

current of the linear network equals the current from the non-linear block.

Once frequency and amplitude of the fundamental and harmonic components are

found, noise sources are connected to the circuit in the form of current and voltage
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generators placed between linear and non-linear sub-networks. The presence of noise

disturbs an ideal solution, and therefore it has to be modi�ed to satisfy Kirchho�'s laws.

Noise sources close to the carrier modulate the signal frequency producing sidebands

around the carrier [28]. At higher o�sets, the oscillator acts as a mixer converting low

frequency noise sources around the harmonics of the oscillating signal [110].

The main advantage of this phase noise calculation method is its ability to capture

noise e�ects in non-linear autonomous circuit, providing that noise models are well char-

acterised and available for the circuit designer. For this reason the technique is widely

used in commercial circuit simulators. The disadvantage is a lack of any analytical in-

sight into phase noise generation mechanisms and therefore the circuit parameters have

to be optimised through a number of numerical simulations.

6.2.3 Comparison of presented methods

Table 6.1 presents a short summary of the presented phase noise modelling methods.

Each approach is characterised by its complexity, accuracy and ability to provide a

closed form solution. Although the time invariant method proposed by Leeson is the

least accurate, it allows us to establish performance limitations through noise analysis

of a linear circuit. The main purpose of this chapter is the derivation of a closed

form phase noise model to capture fundamental relationships between phase noise and

circuit parameters. For this reason, the existing LTI approach is su�cient, however the

accuracy of phase noise calculation is low and should be treated as qualitative.

Table 6.1: Comparison of existing oscillator phase noise models.

Name Type Complexity Closed form solution Accuracy

Leeson linear/invariant low yes poor

Hajimiri-Lee linear/variant medium very limited fair

Harmonic
non-linear/variant high no very good

balance
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oscillator

6.3 Proposed LTI phase noise model of degenerated

active inductor oscillator

This section presents the main contribution of this chapter, the proposed LTI model of

the degenerated active inductor oscillator. First, the methodology of model derivation is

presented, focusing on the linear methods of noise analysis. This leads to the derivation

of the phase noise model with special emphasis on the contribution of all considered

noise sources. Finally, the model is discussed and compared to a non-linear numeric

algorithm implemented in Eldo RF [120].

6.3.1 Methodology description

To clarify the way the model is obtained it is important to investigate existing LTI

models published in the literature. As the Leeson's model describes only a phase noise

of the standard LC feedback oscillator, Razavi [121] derived the linear time invariant

models of inductorless architectures as ring or relaxation oscillators. This methodology

was used by Craninckx [47] to describe the phase noise of the oscillator with a standard

active inductor, detailed in Chapter 3, Section 3.4.3. The proposed LTI model will be

derived using the same approach.

The method uses noise transfer functions, previously described in Chapters 3 and 4

to study noise properties of active inductor and degenerated gyrator resonators. Recall-

ing (3.30) from Chapter 3 to calculate phase noise at a given frequency o�set ωm the

noise power at this frequency has to be found and then compared to the signal power

at the resonant frequency ω0. The calculation of noise in resonators at ωm using a noise

transfer function is not trivial. In oscillating circuits, where all of the losses are com-

pensated, these functions become in�nite, as indicated in Chapter 3, Section 3.3.2.2.

This behavior is expected as in a fully compensated resonator the signal would increase

inde�nitely if it was not limited by the ampli�er non-linearity. To circumvent this,

Razavi proposed linearisation of transfer functions around the resonant frequency using

the �rst two terms of the Taylor series. If the o�set frequency ωm is much less than
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oscillation frequency ω0, then the noise transfer function is estimated by a tangent line

approximation from

Hn(ωm)
∣∣∣∣
ωm�ω0

≈ Hn(ω0) + ωm
∂Hn (ω)
∂ω

∣∣∣∣
ω=ω0

(6.8)

where Hn(·) is the noise transfer function. Thus although Hn(ω0) is still in�nite at

resonant frequency, the second term is not. Note that without additional analysis (6.8)

can't be calculated as the �rst term is in�nite. Craninckx [47] suggested that since

in�nite impedance corresponds to zero admittance, it is possible to use admittance noise

transfer functions instead, however without giving any proof that such an assumption

is valid. An original proof is derived in this dissertation to validate this statement.

The relationship between impedance and admittance of any linear circuit is given

by

Z (ωm) ≡ 1
Y (ωm)

(6.9)

then, according to (6.8) it can be rewritten as

Zn(ω0) + ωm
∂Zn (ω)
∂ω

∣∣∣∣
ω=ω0

=
1

Yn(ω0) + ωm
∂Yn (ω)

∂ω

∣∣∣∣
ω=ω0

(6.10)

Grouping the functions on the left hand side this yields the following

Zn(ω0)Yn(ω0) + Yn(ω0)ωm
∂Zn (ω)
∂ω

+ Zn(ω0)ωm
∂Yn (ω)
∂ω

+ ω2
m

∂Zn (ω)
∂ω

∂Yn (ω)
∂ω

= 1

(6.11)

Substituting impedance with conductance (Z = 1/Y ), (6.11) transforms to

1 + Yn(ω0)ωm
∂

( 1

Yn (ω)

)
∂ω

+
ωm

Yn (ω0)
∂Yn (ω)
∂ω

+ ω2
m

∂

( 1

Yn (ω)

)
∂ω

∂Yn (ω)
∂ω

= 1 (6.12)

Using a reciprocal rule

−Y 2
n (ω)

∂

( 1

Yn (ω)

)
∂ω

=
∂Yn (ω)
∂ω

(6.13)
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expression (6.12) simpli�es to

1− ω2
m

Y 2
n (ω0)

∂Yn (ω)
∂ω

∂Yn (ω)
∂ω

= 1 (6.14)

Equation (6.14) is true only if ωm → 0. In practice, for non-zero o�set frequencies in

the range up to a few MHz from RF carrier, the reminder on the left-hand side of (6.14)

is negligible and both sides of (6.14) are still approximately equal. As a result, the noise

transfer function can now be represented by a linearised version of its reciprocal from

(6.9)

Zn(ωm)
∣∣∣∣
ωm�ω0

≈ 1

Yn (ω0) + ωm
∂Yn (ω)

∂ω

≈ 1

ωm
∂Yn (ω)

∂ω

∣∣∣∣∣
Yn(ω0)=0

(6.15)

The proposed proof completes the discussed methodology used previously by Razavi [121]

and Craninckx [47]. To calculate the phase noise of degenerated gyrator, the noise trans-

fer functions corresponding to each of the noise sources of the gyrator circuit have to

be found �rst. As presented in Chapters 3 and 4, these functions have typically an

impedance character. Assuming ωm << ω0, (6.15) can be used to �nd noise transfer

functions at the o�set frequency, despite the fact that the impedance of a fully com-

pensated resonator is in�nite. After the functions are characterised, the noise power

due to noise sources can be calculated for the frequency of ωm. This power compared

to the power of the oscillator signal (that can be estimated from the large signal model

presented in Chapter 5) results in the phase noise at given o�set frequency.

6.3.2 Noise model of fully compensated resonator circuit

Although the noise calculation methodology presented in this chapter is widely known,

the following LTI model for a degenerated active inductor derived using this approach

is novel. To �nd the noise transfer functions of a fully compensated resonant tank,

consider the degenerated gyrator resonator model illustrated on Figure 6.5. In fact, this

is the modi�ed version of a generic noise model from Figure 4.15 described in Chapter 4,

Section 4.6.1. During oscillations, all circuit losses, including load, are compensated by
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CT i2ndg

v2
ndg

Lpdg

v2
out

Figure 6.5: Fully compensated noisy degenerated gyrator resonant tank.

a negative resistance generation mechanism and full compensation occurs. As a result,

the circuit can be simpli�ed into a parallel connection of single capacitor and inductor.

Note that all of the noise sources are still present as these are not a�ected by the

negative resistance compensation mechanism.

Applying KVL to the circuit from Figure 6.5, the output voltage produced by noise

sources is found as

voutFC = indgZndgFC (jω) + vndgAndgFC (jω) (6.16)

where

ZndgFC (jω) =
jωLpdg

1− ω2LpdgCT
=

1

j

(
ωCT −

1

ωLpdg

) (6.17)

AndgFC (jω) =
1

1− ω2LpdgCT
=
ZndgFC (jω)
jωLpdg

(6.18)

Note that (6.17) and (6.18) are equal to the transfer functions (4.45) and (4.46) from

Chapter 4 when RT →∞ i.e. when the tank is fully compensated. As indg and vndg are

correlated through the resistor Rout from the phase shifter, it is important to expand

these sources to independent uncorrelated terms.

Recalling (4.43) from Chapter 4, substituting it into (6.16) and grouping terms, the

output voltage voutFC consists of

voutFC =
(
id2 + vnR

gm2

jωCoutRout + 1

)
ZndgFC (jω)+

+
1

gm1

(
id1 + vnR

jωCout

jωCoutRout + 1

)
AndgFC (jω) ≈
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≈ id2ZndgFC (jω) +
id1

gm1
AndgFC (jω) +

+ vnR

(
Cout + gm1gm2Lpgd

gm1CoutRout

)
AndgFC (jω)

∣∣∣∣
ω�1/CoutRout

(6.19)

and the contribution of each of these noise sources can now be analysed separately: id2,

id1 and vnR of the phase shifter resistor. Note that the noise transfer function from

Rout is derived assuming low-pass noise shaping in the phase shifter, also described in

detail in Chapter 4, Section 4.6.

6.3.3 Noise from transconductance ampli�ers

Here the methodology described in Section 6.3.1 is applied in practice. First, the noise

transfer function of id2 source originating from the feedback transconductor is analysed.

The reciprocal of the noise transfer function (6.17) is equal to

YndgFC (jω) =
1

ZndgFC (jω)
=

1− ω2LpdgCT
jωLpdg

= j

(
ωCT −

1

ωLpdg

)
(6.20)

As shown by (4.9) in Chapter 4, Lpdg is a function of frequency. This dependency be-

comes important because even for a relatively small change of inductance, its derivative

is non-zero. When omitted, the phase noise level can be underestimated by a few dB,

decreasing the accuracy of the already simpli�ed LTI model.

According to (6.15), to �nd the noise transfer function at ωm, the derivative of the

conductance has to be found �rst

∂YndgFC (ω)
∂ω

= j

(
CT +

1
ω2Lpdg

+
1

ωL2
pdg

∂Lpdg
∂ω

)
(6.21)

As the inductance is a function of frequency, its derivative is found using the auxiliary

parameters of a parallel degenerated resonator model from Section 4.5. Using (4.25),

(4.26) and (4.27) this is calculated as

∂Lpdg
∂ω

=
2CG

gm1gm2

(
ω

ω2
z2

− ω2
z1

ω3

)
≈ 2CG
gm1gm2

ω

ω2
z2

(6.22)
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The conductance YndgFC at ωm can be found by substituting (6.21) and (6.22) to (6.8)

YndgFC (ωm) ≈ YndgFC (ω0) + ωm
∂YndgFC (ω)

∂ω
= 2jω0CT

(
1 +

CTCG

gm1gm2
·
ω4

0

ω2
z2

)
· ωm
ω0

(6.23)

Finally, using the mathematical proof (6.15), the impedance noise function ZndgFC (ωm)

necessary to calculate the contribution of id2 is derived as

ZndgFC (ωm) ≈ 1
2jω0CT

· 1

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2

· ω0

ωm
(6.24)

The noise contribution from the direct path transconductor is derived in a simi-

lar fashion. The reciprocal of the corresponding noise transfer function (6.18) is �rst

calculated

KndgFC (jω) =
1

AndgFC (jω)
= 1− ω2LpdgCT (6.25)

and approaches zero at resonant frequency. In the next step of the analysis described

in Section 6.3.1, the derivative of KndgFC (jω) is found

∂KndgFC (ω)
∂ω

= −2ωLpdgCT − ω2CT
∂Lpdg
∂ω

= −2
(
ωLpdgCT +

ω2CTCG
gm1gm2

ω

ω2
z2

)
(6.26)

Note that again (6.22) was used. As a result KndgFC at ωm is therefore equal to

KndgFC (ωm) ≈ −2
(
ω2

0LpdgCT +
ω2

0CTCG
gm1gm2

ω2
0

ω2
z2

)
· ωm
ω0

=

= −2
(

1 +
CTCG
gm1gm2

· ω
4
0

ω2
z2

)
· ωm
ω0

(6.27)

Finally, at o�set frequency ωm, the noise transfer function of the id1 generator is given

by

AndgFC (ωm) ≈ 1
KndgFC (ωm)

= −1
2
· 1

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2

· ω0

ωm
(6.28)

Note that in both (6.24) and (6.28) noise transfer functions are derived in terms of ω0/ωm

by the use of factorisation. Therefore the presented results follow the conventional phase

noise representation found throughout the literature.
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The noise transfer function (6.24), corresponding to the noise source id2 of the feed-

back transconductor, is inversely proportional to the total tank capacitance CT . This is

expected behavior since, as presented in Chapter 4, the noise power spectral density of

a degenerated active inductor has kT/CT characteristics. Both transfer functions (6.24)

and (6.28) have the common term that seems to be strongly and inversely proportional

to the carrier frequency and possibly can be minimised for large ω0. In practice however,

this is not the case and it can be explained as follows. As the parallel inductance of a

degenerated active inductor is

Lpdg ∝
CG

gm1gm2
(6.29)

and

ω2
0 ∝

1
LpdgCT

=
gm1gm2

CGCT
(6.30)

then the described term can be roughly approximated by

1

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2

≈ 1

1 +
ω2

0

ω2
z2

(6.31)

At sub-GHz frequencies, the parameter values in the range described in Chapter 4 by

Tables 4.4 and 4.6) result in the ratio of ω2
0/ω

2
z2 between 0.5 and 1.5. This is due to the

dependence of the resonant frequency on ωz2 given by (4.13). Thus, the dependency

between (6.31) and the resonant frequency is not strong.

6.3.4 Noise from phase shifter

The last noise contribution comes from the phase shifter used for negative resistance

generation. Assuming higher resonance frequency than of a 3 dB corner of CoutRout,

the reciprocal of the noise transfer function of source vnR from (6.19) is

NndgFC (jω) =
gm1CoutRout

(Cout + gm1gm2Lpgd)AndgFC (jω)
=
gm1CoutRout

(
1− ω2LpdgCT

)
Cout + gm1gm2Lpgd

(6.32)
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Using the quotient rule and reduction the derivative of (6.32) is equal to

∂NndgFC (ω)
∂ω

=

gm1CoutRout

−2ωLpdgCT − ω2CT
∂Lpdg

∂ω


Cout + gm1gm2Lpgd

+

+
gm1CoutRout

(
1− ω2LpdgCT

)
gm1gm2

∂Lpdg

∂ω
(Cout + gm1gm2Lpgd)

2 (6.33)

At resonant frequency second term of (6.33) equals zero, and by substituting (6.22) and

factorising for ωm/ω0, NndgFC is given by

NndgFC (ωm) ≈

−2gm1ω
2
0CTCoutRout

ω2
0LpdgCT +

ω2
0CTCG

gm1gm2
·
ω2

0

ω2
z2


ω2

0CTCout + gm1gm2
· ωm
ω0

=

=

−2gm1ω
2
0CTCoutRout

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2


ω2

0CTCout + gm1gm2
· ωm
ω0

(6.34)

and the noise transfer function of voltage source vnR from phase shifter at o�set fre-

quency is obtained

AnRFC (ωm) ≈ 1
NndgFC (ωm)

= − ω2
0CTCout + gm1gm2

2gm1ω2
0CTCoutRout

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2


· ω0

ωm
=

= −
1 +

gm1gm2

ω2
0CTCout

2gm1Rout
· 1

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2

· ω0

ωm
(6.35)

As in (6.24) and (6.28), the noise transfer function (6.35) contains the term described

by (6.31) that is not strongly dependent on the resonant frequency. The remaining

term is controlled directly by the phase shifter parameters Rout and Cout. The �rst

conclusion is that noise level at ωm can be decreased for larger values of Rout. This

behavior follows the assumption that the 3 dB corner frequency of the phase shifter
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is lower than the resonant frequency of the oscillator. As described in Chapter 4, in

this case less noise is injected into the resonator due to the low pass characteristics

of the RC circuit. This feature can't be exploited for large values of Rout. If Rout is

excessive, the cut-o� frequency of the phase shifter is too low and there is no signal

fed back to the gyrator input. As a result, negative conductance generated at higher

resonant frequencies may not be su�cient to compensate the circuit. This behavior

has been discussed in Chapter 4, Section 4.5, where the bandwidth over which the

negative resistance is available was analysed. As (6.35) shows, the noise level at ωm is

inversely proportional to Cout as well. This dependence has the same character as in the

case of Rout with all the consequences described previously i.e. excessive capacitance

values decrease noise but at the same time reduce the amount of negative conductance

generated at resonant frequency.

The noise contribution of the phase shifter is also inversely proportional to gm1 and

the total tank capacitance CT . Thus to reduce the noise both gm1 and CT have to be

increased. As presented previously in Chapters 3 and 4 this requirement causes large

power consumption at a given resonant frequency. One may also conclude that the noise

contribution of the RC circuit can also be controlled by the gm1gm2 product, as shown

by (6.35). However, as ω2
0 ∝ gm1gm2, change in the two transconductances causes a

proportional change of the resonant frequency ω0, thus not a�ecting the noise transfer

function.

6.3.5 Total noise at o�set frequency ωm

After the respective noise transfer functions have been calculated, the total output

noise PSD at o�set frequency ωm of the degenerated gyrator can be found. As the noise

sources of the transconductors and the phase shifter are uncorrelated the total noise is

found from

v2
ndgFC (ωm)

∆f
=
i2d2

∆f

∣∣ZndgFC (ωm)
∣∣2 +

i2d1

∆f
1

gm2
1

∣∣AndgFC (ωm)
∣∣2+

+
v2
nR

∆f

∣∣AnRFC (ωm)
∣∣2 (6.36)
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and substituting (6.24), (6.28) and (6.35), equation (6.36) is transformed into

v2
ndgFC (ωm)

∆f
≈
i2d2

∆f
1

4ω2
0C

2
T

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2


2 ·

ω2
0

ω2
m

+

+
i2d1

∆f
1

4gm2
1

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2


2 ·

ω2
0

ω2
m

+

+
v2
nR

∆f

1 +
gm1gm2

ω2
0CTCout


2

4gm2
1R

2
out

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2


2 ·

ω2
0

ω2
m

(6.37)

All the noise sources are characterised by the corresponding thermal noise PSD

i2d1

∆f
= 4kTγgm1

i2d2

∆f
= 4kTγgm2

v2
nR

∆f
= 4kTRout (6.38)

When common terms are found, (6.37) becomes

v2
ndgFC (ωm)

∆f
≈
kTγ

[
gm2

ω2
0C

2
T

+
1

gm1
+

1

gm2
1Routγ

(
1 +

gm1gm2

ω2
0CTCout

)2
]

1 +
CTCG

gm1gm2
·
ω4

0

ω2
z2


2 · ω

2
0

ω2
m

(6.39)

and phase noise can be calculated from this formula for a single sided phase noise

PSD given by (3.30) i.e. L (ωm) = Sout(ωm)/V 2
out/2. Note that (6.39) contains both

phase and amplitude noise contributors. To estimate only the phase noise contribution,

the equipartition theorem can be used (described previously in Section 6.2.1.1) which

reduces the value calculated from (6.39) by the factor of 2.
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6.4 Model veri�cation and design insights

This section presents a comparison of the proposed noise model given by (6.39) to the

simulation results of the practical circuit presented in Chapter 7. The model parameters

presented in Table 6.2a have been extracted from the circuit schematics using Eldo RF

DCOP (DC Operating Point) analysis. All the details on circuit design and simulations

are thoroughly discussed in the next chapter.

The circuit has been simulated using UMC 180nm 1P6M process libraries under the

large signal steady state conditions including the noise generated in all components. The

results of the simulation include the signal amplitude and the corresponding phase noise

at the resonant frequency. As the generated gyrator can be tuned via the bias current

of the transconductance ampli�ers, the aforementioned simulation has been conducted

for three di�erent operational points.

To calculate the phase noise using (6.39), the signal amplitude has to be known.

At the design stage, the non-linear model of the degenerated active inductor resonator

derived in Chapter 5 can be used. In this example, however the signal amplitude

obtained from Eldo RF simulations is used to calculate this amplitude. The goal is to

compare the proposed noise model to the complex non-linear phase noise calculation

algorithm of the circuit simulator assuming that in both cases the signal amplitude is

the same. Once the phase noise power is found using (6.39) it is compared to the square

of the oscillation amplitude according to (3.30) discussed previously. The results are

presented in Table 6.2b where the phase noise levels are calculated and simulated for

a 1 MHz o�set frequency from the corresponding carrier. Figure 6.6 depicts the phase

noise plots obtained in Eldo RF for the circuit in Chapter 7, Section 7.7.4 andMatlab

for the proposed LTI model. It can be seen that in comparison to the much more

complicated phase noise model from the circuit simulator, the proposed phase noise

LTI achieves good accuracy. In the case of the lowest resonant frequency of 300 MHz

the calculated phase noise level is underestimated by 7 dB. This is due to an increased

harmonic distortion of the signal at this frequency that in turn increases phase noise
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Table 6.2: Comparison of phase noise levels simulated in Eldo RF for the oscillator
circuit from Chapter 7 and calculated using the proposed LTI model.

(a) Model parameters

Parameters

Rout Cout Cg Co Ci Ct ADC
kΩ pF �

3.52 0.2∗ 0.2 0.25 4 34

*��xed 150 fF and 50 fF of NMOS parasitics

(b) Results showing phase noise at 1 MHz o�set from oscillation frequency

IB gm1 gm2 f0 Amplitude Simulated PN Calculated PN

µA mA/V MHz mV dBc/Hz

300 5.5 226 80 -92.5 -99.3

900 12 430 106 -99.5 -101

1400 15.5 580 76 -98.4 -99
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Figure 6.6: Graphical comparison of phase noise levels simulated in Eldo RF for the
oscillator circuit from Chapter 7 and calculated using the proposed LTI model.
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due to mixing e�ects in practical oscillators [121]. As the LTI model assumes a linear

operation of the oscillator these e�ects are not captured, resulting in the lower phase

noise level.

The accuracy improves for the bias current IB of 900 µA because, as presented in

Chapter 7 in Table 7.5, the harmonic distortion of the circuit is reduced approximately

by half for this bias condition. In this case, the di�erence between the simulation

results and LTI model calculations is 1.5 dB. The same behavior can be seen at the

highest considered oscillation frequency of 580 MHz, where the di�erence between the

proposed model and the simulation is only 0.6 dB. Although the proposed model tends

to underestimate phase noise levels by a few dB, it is useful as it allows us to observe the

in�uence of various circuit parameters on the phase noise of the degenerated oscillator

before the actual circuit is designed at transistor level.

6.4.1 Design insights

Using the proposed phase noise model, some design recommendations can be formulated.

The following tables present phase noise calculations for various parameter values of an

example VCO for the sub-GHz frequency band. In all discussed cases, Barkhausen

criteria are met, based on (4.39) and (4.40) from Chapter 4. An oscillation amplitude

has been approximated also, assuming single transistor transconductors with �nite losses

and each biased with active load. Phase noise at 1 MHz is calculated for each resonant

frequency of VCO.

In the �rst case, Table 6.3a, the chosen parameters represent a trade-o� between the

power consumption and chip area. Resulting phase noise averages around -103 dBc/Hz

(calculated as dB value of arithmetic average of the phase noise levels in the linear

scale). As suggested in this chapter and Chapter 4, the total noise of a degenerated

active inductor resonator can be improved if the total tank capacitance CT is increased.

The same applies to noise at o�set frequencies. Table 6.3b shows the situation where

CT was doubled (from 4.2 pF to 8.4 pF) in comparison with the previous case. On

average, 5 dB phase noise improvement for each of considered resonant frequencies is
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observed. The cost are both increased circuit size and power consumption. Finally,

Table 6.3c represents an attempt to decrease a tank capacitance using larger phase

shifter capacitor (Cout of 500 fF) and for constant power consumption. In this case

phase noise deteriorates by 1 dB from the one of large CT .

For all considered parameter values, calculated phase noise levels do not meet re-

quirements for a high-performance wireless communication system like GSM 1800 for

example. The reason for it is mostly a very limited oscillation amplitude caused by

non-linear e�ects of CMOS transistors. In general, the performance of integrated de-

generated active inductor VCOs do not exceed that of ring oscillators. As ring VCOs

are switching circuits, voltage swing is practically limited to power supply at the cost

of a high THD in the output signal. To achieve the phase noise levels comparable to a

passive LC-oscillator, a degenerated gyrator has to use relatively very large capacitors

or transconductors with high linearity. Assuming a target of -120 dBc/Hz at 1 MHz

from carrier frequencies considered in this chapter, the tank capacitance Ct approaches

70 pF and its silicon area would match the one of spiral inductor. In addition, the

transconductance values have to be increased to the range of 30-85 mA/V. In the avail-

able 180 nm process, typically NMOS transistors in strong inversion require power of

at least 0.33-0.5 mW per 1 mA/V of transconductance. To set gm for a low phase noise

operation, power consumption of 25-40 mW per single transistor is necessary, a value

far beyond any practical implementation of an integrated oscillator. Similar conclusions

have been drawn by Craninckx [47] who analysed the power consumption requirements

for low phase noise of a standard active inductor oscillator. As the proposed circuit

is a derivative of a gyrator, it shares the same performance limitations, proved by the

thorough analysis of the phase noise model derived in this dissertation.

The second possible solution is a maximising output signal level. For the parameters

considered here, an amplitude in the range of 500 mV allows improvement in phase noise

to the required values without an excessive increase in power consumption or circuit size.

However, this also implies large dynamic range of the gyrator, that can't be obtained in

sub-micron architectures. For these reasons the presented large signal and phase noise
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Table 6.3: Phase noise simulations using the proposed LTI model in function of circuit
parameter.

(a) Phase noise for nominal parameter values

gm1, gm2
Resonant Signal Phase noise
frequency amplitude at 1 MHz o�set

mA/V MHz mV dBc/Hz

5 363 50 -100

10 580 140 -108.4

15 756 90 -104

CT = 4.2 pF, Cout = 300 fF, Rout = 3 kΩ
Cg = 200 fF, Co = 100 fF, ADC ≈ 30, γ = 2.5

(b) Phase noise for doubled tank capacitance Ct

gm1, gm2
Resonant Signal Phase noise
frequency amplitude at 1 MHz o�set

mA/V MHz mV dBc/Hz

7.2 369 75 -105.7

14 582 190 -113.2

20.8 750 150 -110.5

CT = 8.4 pF, Cout = 300 fF, Rout = 3 kΩ
Cg = 200 fF, Co = 100 fF, ADC ≈ 30, γ = 2.5

(c) Phase noise for increased phase shifter capacitance Cout

gm1, gm2
Resonant Signal Phase noise
frequency amplitude at 1 MHz o�set

mA/V MHz mV dBc/Hz

7.2 364 70 -105.6

14 569 170 -111.8

20.8 730 120 -107.7

CT = 5.2 pF, Cout = 500 fF, Rout = 3 kΩ
Cg = 200 fF, Co = 100 fF, ADC ≈ 30, γ = 2.5
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analyses prove that a degenerated active inductor can't easily obtain low phase noise

operation, at least in an available nanometer CMOS technology.

6.5 Chapter summary

This chapter presented the phase noise model of the degenerated gyrator oscillator. As

the concept of a self-oscillating active inductor has not been researched in the existing

literature, there is a need to analyse the proposed oscillator in terms of phase noise.

First, the most important phase noise analysis methods have been described, with

special emphasis on the accuracy, complexity and practicality. It was shown that al-

though not highly accurate, the linear time invariant approach can be used to deliver

the analytical phase noise model of the oscillator. As the main goal of this chapter was

to analyse how each of the circuit parameters contributes to the phase noise of the pro-

posed oscillator, the LTI approach has been chosen over the more complex Hajimiri-Lee

or harmonic balance methods, described in Sections 6.2.1.3 and 6.2.2.

The next part of the chapter focused on the methodology used to derive a LTI model.

Based on previous work of Razavi [121] and Craninckx [47], the described methodology

has been presented in a clear, step by step manner with rigorous proofs. It was shown

that the noise analysis of fully compensated resonators requires a di�erent approach

than the calculation of noise in a lossy circuit from Chapters 3 and 4. For the �rst

time, it was proved mathematically that, for the convenience of circuit analysis, phase

noise can be approximated using admittance and impedance noise transfer functions

interchangeably, as long as the o�set frequency ωm is much smaller than the carrier

frequency ω0.

Based on the described methodology, a new LTI phase noise model of the degener-

ated active inductor oscillator has been derived. First, all of the main noise sources of

the gyrator circuit have been indicated, leading to the calculation of the corresponding

noise transfer functions. Based on this, the total noise at a frequency o�set from the

carrier has been derived in a closed form given by (6.39).
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Finally, the proposed phase noise model has been validated, using the simulation

results of a practical circuit design presented in Chapter 7, Section 7.7.4. It was shown

that accuracy of the derived LTI model, decreases with increasing harmonic distortion

of the oscillator signal. This behavior is expected since linear models fail to capture non-

linear e�ects in oscillators. The bene�t however is a closed form phase noise equation,

not available in circuit simulators, clearly showing the dependence of phase noise on

various circuit parameters.

The proposed phase noise model has also been used to formulate some design rec-

ommendations for degenerated active inductor oscillators. It was shown that for a low

phase noise operation, the circuit realised in CMOS requires excessive power consump-

tion and for this reason it is not possible to obtain an oscillator meeting a stringent

requirements of modern digital communications systems, such as GSM 1800 for exam-

ple. This is however due to the nature of gyrator circuits in general since the proposed

circuit follows the same trade-o� between the power and phase noise as standard active

inductor circuits.

This chapter concludes a theoretical discussions presented also in Chapters 4 and

5. The next chapter of this dissertation leads to the practical design of the oscillator

following the similar methodology: �rst the circuit is designed using the small signal

model, then simulated under large signal conditions and noise of all components.
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Chapter 7

Degenerated active inductor

oscillator design

7.1 Introduction

This chapter presents a complete design procedure for experimental CMOS circuits

based on the proposed degenerated gyrator concept. The �rst circuit, a 434 MHz

wideband oscillator is designed and simulated in Mentor Graphics IC Studio software

suite using UMC 1P6M 180 nm process libraries. The second circuit, a 434 MHz OOK

transmitter, is designed using UMC 1P9M 90 nm RF process that became recently

available. The choice of 434 MHz bandwidth is not coincidental. This unlicensed band

is intended for the use of a low power ISM (industrial, scienti�c and medical) systems

and therefore one does not require any government permit to utilise this frequency

spectrum. As indicated in Chapter 2, the use of the modern CMOS nanoscale processes

to realise integrated VCO operating at sub-GHz frequencies can be challenging due to

the following:

� Capacitors and inductors are optimised for much higher frequencies at the cost

of the performance reduction at frequencies less than 1 GHz. For example, in

the described 180 nm process, inductors reach their maximum Q of 11 at 5 GHz,
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7.1 Introduction

whereas at 500 MHz the quality factor drops by 80%. This in turn translates to

more static power necessary to compensate the resonant tank.

� As the oscillation frequency is small, the required values of LC components are

relatively high. The largest inductor available in the presented 180 nm process has

the inductance of 14 nH and occupies the area of 250 µm by 250 µm. To design

the oscillator operating under 500 MHz, the required tank capacitance value is

larger than 7 pF, which corresponds to the physical size of 85 µm by 85 µm. As

a result, the integrated LC tank requires nearly 70000 µm2 of the silicon area.

Thus it is bene�cial to explore the possibilities of a sinusoidal oscillator integration using

the self-oscillating gyrator circuit presented in this thesis.

The chapter describes in detail all of the necessary design steps, including:

� DC and small signal analysis. Here, the problems of the circuit bias in the pres-

ence of a relatively low supply voltage are addressed. Various active inductor

con�gurations are discussed focusing primarily on the ease of implementation and

the practical use in the proposed oscillator circuit. The small signal analysis is

then used to �ne tune the parameter values calculated previously in Chapter 4

from the proposed theoretical model of the degenerated gyrator.

� Large signal behavior of the proposed circuit is simulated in both the frequency

and time domain. This part con�rms the proposed Volterra kernel model from

Chapter 5, Section 5.5 and LTI phase noise model from Chapter 6, Section 6.3.

Both signal amplitude and phase noise levels are discussed based on a steady state

analysis of autonomous circuits available in Eldo RF circuit simulator.

� The designed circuit presented in this chapter consists of an oscillator core and

an output bu�er ampli�er required to drive a load. This allows the analysis

of the power of RF signal generated in the circuit and the harmonic distortion

experienced by the load.
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7.2 Gyrator architecture

� The performance of the oscillator due to temperature and process variation is

presented and thoroughly discussed. In each case, the circuit is simulated in terms

of frequency range, phase noise and output signal power. Although this type of

analysis is commonly omitted in the literature on active inductor circuits, it is

presented here to complete the thorough discussion on strengths and weaknesses

of the proposed oscillator circuit.

The described methodology presented in this chapter represents a standard way for

negative resistance oscillator design and therefore can be applied to any, not only active

inductor, VCO circuit. For this reason, one can use this chapter as an oscillator design

guide which increases an overall value of this doctoral dissertation.

The active inductor circuit used to con�rm the proposed theory of passive RC com-

pensation is a modi�ed version of the circuit presented by Hsiao et al. [99]. In the

paper the authors employed a single resistor to improve the quality factor of the induc-

tor, relying only on highly-nonlinear transistor capacitances. No noise and large signal

design insights were given. In following years, Wu et al. [122] and Mukhopadhyay et

al. [80, 123] designed a standard CMOS VCO based on Hsiao circuit. Although this

time the authors attempted to analyse circuit noise, the large signal properties were not

disclosed. The performance of both VCOs are compared with the degenerated gyrator

oscillator presented in this chapter.

7.2 Gyrator architecture

As shown previously in Chapter 3, Section 3.2.1, for proper operation, any gyrator re-

quires one non-inverting and one inverting transconductor. Therefore, using NMOS and

PMOS transistors, there are eight possible architectures of two transistor gyrators avail-

able, depicted on Figure 7.1. In all cases the inverting transconductor is a CS ampli�er,

whereas the non-inverting stage is either a CD or CG ampli�er. To choose the proper

con�guration for the oscillator design, the following criteria have to be considered:
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7.2 Gyrator architecture

� Voltages for given CMOS process: Due to miniaturisation, all maximum transis-

tor voltages are scaled down as well, however the magnitude of these changes is

di�erent for every process. For example, for a long channel 1 µm process, typical

values of drain and threshold voltages were 5 V and 800 mV respectively [27]. The

same voltages in 180 nm are equal to 1.8 V and 500 mV. As a result, the avail-

able headroom to keep transistors in the saturation region is reduced. A smaller

headroom also limits the number of devices that can be stacked together which

becomes especially important if the circuit operates in a large signal regime.

� Bias con�guration: Since transconductors are connected in a feedback loop, de-

pending on con�guration used, each stage can provide DC bias for other ampli�ers

at the same time. Proper choice of the quiescent point not only allows to control

a transconductance value but also ensures su�cient headroom for a large signal

swing. If each stage has to be powered separately through dedicated bias networks

and DC blocking capacitors, the circuit size inevitably increases.

Due to the low voltage power supply in our chosen submicron processes, the CS-CG cir-

cuits from Figures 7.1e and 7.1f can su�er from a reduced voltage headroom. Although

oscillators using these circuits were reported previously, they used either a large supply

voltage [53] or excessive power consumption [82] to achieve lower phase noise at the

cost of a severely distorted output signal. In addition, stacked devices reduce available

transconductance values due to reduced drain to source voltage on each of devices. The

main advantage of the circuits from Figures 7.1e and 7.1f is current reuse. This allows

the use of a single source to bias both transconductors.

Not all of the presented circuits are suitable for the mutual bias scheme. For example,

the gyrator from Figure 7.1c requires the following bias conditions

VGS2 = VSD1 (7.1)

VSG1 = VGS2 − VDS2 > 0 (7.2)
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Figure 7.1: Possible con�gurations of two transistor CMOS gyrators.
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7.3 Gyrator bias

As a result transistor M2 is biased close to the boundary between linear and saturation

regimes that may then result in small oscillation amplitudes and increased harmonic

distortion. The same rules apply to the circuit from Figure 7.1d. The same analysis

can be applied to CS-CG circuits from Figures 7.1e and 7.1f. It can be seen that for

these NMOS-only or PMOS-only con�gurations, the common source ampli�er has to

be biased with gate voltage of VGS = VDS1 + VDS2 which can shift transistor M1 close

to the triode region boundary.

Among the presented circuits, the NMOS and PMOS con�gurations from Fig-

ures 7.1a and 7.1b are convenient for mutual bias together with an adequate headroom

for oscillation purposes. For the reminder of the discussion, the circuit from Figure 7.1a

will be described as a NMOS gyrator whilst the term PMOS gyrator will apply to the

circuit from Figure 7.1b. The choice between transistor type depends on two factors:

parasitics and noise. For the same transconductance, overdrive voltage and drain cur-

rent, the width of a PMOS transistor is typically at least two times larger than that of an

NMOS counterpart. This in turn increases Cgs and Cgd and a�ects both the maximum

frequency of operation and the negative resistance generation mechanism when used in

a degenerated gyrator circuit. If the dimensions of the N and P devices are the same,

PMOS ampli�ers produce smaller gm, leading to increased inductance value for the ac-

tive inductor. To keep the resonant frequency constant, the tank capacitance has to be

made smaller than in the case of an NMOS gyrator. Thus, although PMOS transistors

produce smaller thermal noise than NMOS devices (due to reduced gm), this does not

automatically translate to a lower phase noise of degenerated gyrator oscillator.

7.3 Gyrator bias

To provide a su�cient voltage headroom for both ampli�ers using the mutual bias

described previously, the bias voltages of an NMOS gyrator are chosen as shown on

Figure 7.2. This scheme supplies equal voltages to both transconductors. Note that

the voltages on the current sink and source are also equal. The proposed biasing ar-
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7.4 DC analysis

rangement can be �ne-tuned to compensate for the body e�ect of the non-inverting

transconductor. As the bulk of the NMOS transistor of a CD ampli�er has a di�erent

potential than the source node, the threshold voltage of the device is larger than of the

second transistor. As a result, for the same gate voltage the non-inverting ampli�er

conducts less current than the common source transconductor. To compensate, either

a wider CD device can be used keeping a bias constant or a larger overdrive has to be

supplied at the cost of a reduced voltage headroom on one of the current sources. Typ-

ically a change of gate potential up or down within 15% of an original voltage division

ratio from Figure 7.2 is su�cient for the described bias �ne-tuning. The actual bias

voltages are presented later in this chapter.

I1

I2

MN1

MN2

VDD/3

VDD/3

VDD/3

2/3 VDD

2/3 VDD

VDD

VDD

Figure 7.2: Bias scheme of CS-CD active inductor

7.4 DC analysis

The design methodology for the degenerated active inductor oscillator starts from an

analysis of a standard gyrator �rst i.e. without the RC phase shifter. This is possible

if one assumes that the RC circuit does not a�ect DC bias conditions of the complete

circuit. The dimensions of transistors are determined by transconductance values re-

quired for the simulated inductance values in the range of a few tens of nH. As described

previously in Chapters 4 and 6, the choice of gm values is also governed by the trade-o�

between circuit parasitics, power consumption and noise: a small gm allows the use of
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7.4 DC analysis

smaller transistors and less power, however it increases the noise of the resonator. On

the contrary, a large gm imposes proportionally larger transistors and power consump-

tion but can improve the noise of the tank. For the sub-GHz frequency band considered

in this chapter, a maximum gm value in the range of 15 mA/V was chosen as a practical

trade-o� between power, circuit size and noise.

For the 180 nm process used in the thesis, the threshold voltage Vth of NMOS

devices without the body e�ect is approximately 470 mV and a maximum drain to

source voltage VDSmax is 1.8 V. Assuming the voltage division from Figure 7.2, both

transconductors are biased such that their gate to source voltage VGS is 600 mV and

the drain to source voltage VDS is 1.2 V. Thus, it is possible to set the overdrive voltage

in the range of 130 mV for each NMOS device and still provide su�cient headroom for

both bias current sources. Although the standard formulas for long channel transistors

do not describe well the behavior of sub-micron devices, they can be still used as a

�rst order calculation. The obtained values can then be further optimised in a circuit

simulator for a given performance.

7.4.1 Transconductors

The drain current of the CS ampli�er, necessary to provide conductance of 15 mA/V

for the overdrive voltage of 130 mV is found from

ID =
gm · VOV−CS

2
=

15 mA/V · 130 mV
2

= 975 µA (7.3)

The process transconductance parameter, k′ = µoCox [97] for NMOS device in the de-

scribed process is approximately equal to 300 µA/V2. As discussed previously in Sec-

tion 4.5.2, to increase the DC gain of the transconductor the drawn length of the device

L is increased to 250 nm from the minimum of 180 nm given by the technology. The

value of 250 nm allows us to obtain a DC gain in the range of 30 while keeping a rel-

atively small area of NMOS devices. For the drain current calculated from (7.3), the
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estimated transistor width W is equal to

ID =
k′

2
W

L
V 2
OV−CS =⇒W = L

2ID
k′V 2

OV−CS
≈ 96 µm (7.4)

To improve gate resistance and to use silicon area more e�ectively through drain-source

sharing, the high aspect ratio transistor is split into a number of smaller devices with

multiple gate �ngers [26, 124]. In this case, the width of 96 µm has been divided

into 4 parallel transistors with 6 �ngers of 4 µm gate width each. Using the DCOP

(DC Operating Point) simulation in Eldo RF, the results presented in Table 7.1a were

obtained. It can be seen that though the required drain current is 30% larger than

initially assumed, the transistor delivers the chosen gm value.

The size of the common drain (CD) device can be found through a DCOP simulation

using (7.4) to estimate a proper size of the transistor. Due to the body e�ect described

previously, the gate potential of the transistor has to be larger than in the case of

CS transconductor to keep VOV−CD constant. As depicted on Figure 7.2, VGS−CD =

VDS−CS −VGS−CS and hence drain to source voltage of CS ampli�er has to increase by

approximately 100 mV to provide proper gate potential. Simulated results are presented

in Table 7.1.

Figure 7.3 presents the circuit schematics used for a DCOP analysis whereas the

test bench circuit is depicted on Figure 7.4.

Table 7.1: Simulated small signal parameters of ampli�ers.

(a) Inverting transconductor.

Parameter Value Unit

VGS−CS 600 mV

VDS−CS 1.2 V

Vth−CS 485.3 mV

VOV−CS 114.7 mV

ID−CS 1.3 mA

gmCS 15.2 mA/V

(b) Non-inverting transconductor.

Parameter Value Unit

VGS−CD 700 mV

VDS−CD 1.2 V

Vth−CD 581.5 mV

VOV−CD 118.5 mV

ID−CD 1.36 mA

gmCD 15.49 mA/V
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Figure 7.3: Gyrator circuit con�gured to DC simulation.

Figure 7.4: DC test bench circuit using ideal current sources.
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7.4.2 Current source and sink

In practical gyrators, ideal current sources are approximated by the use of current

mirrors. Within speci�ed voltage range, the current mirror is able to keep the DC

current (supplied to the transconductors) constant for the varying voltage on its output.

Hence, the current mirror mimics the operation of an ideal current source.

Initially the dimensions of each of the transistors used as a current source or sink

can be made equal to one of the corresponding transconductors. However, as shown

on Figure 7.2 the available VDS for these transistor is smaller than the drain to source

voltage reserved for the ampli�ers. Thus the total width of these devices require further

corrections. In general, the performance of the bias circuit is a trade-o� between noise,

parasitics and the available voltage range. Wider transistors better suit reduced voltage

headroom because, for a given current, they require a smaller overdrive. As a result

they are biased further away from a triode region. Flicker noise is also smaller due

to its inverse proportionality to W · L product [26, 44]. On the other hand, narrow

transistors require larger overdrive and hence have smaller gm, generating less thermal

noise current.

In the circuit of Figure 7.2, the CS ampli�er is biased through the PMOS current

source with available source to drain voltage VSD−P of 520 mV and a drain current

of 1.3 mA. In the case of the CD ampli�er a NMOS sink is used. A drain to source

voltage VDS−N of 600 mV and a current of 1.36 mA are required. The width of the

NMOS sink could be reduced by half in comparison with the transconductor due to a

su�cient voltage headroom from a minimum saturation voltage, VSAT−N . The results

of the DCOP analysis are presented in Table 7.2 and the complete gyrator circuit is

depicted in Figure 7.5

7.4.3 Transconductance tuning

The transconductance of both ampli�ers is controlled by feeding a reference current

IB to both mirrors. In the presented con�gurations, the mirrors are referenced to
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Table 7.2: Parameters of PMOS source and NMOS sink.

PMOS NMOS

Parameter Value Unit Parameter Value Unit

VSG−P 830 mV VGS−N 695 mV

VSD−P 520 mV VDS−N 598 mV

VSAT−P 309.7 mV VSAT−N 195.2 mV

Vth−P 536.8 mV Vth−N 500 mV

VOV−P 293.2 mV VOV−N 195 mV

ID−P 1.3 mA ID−N 1.36 mA

gmP 7.2 mA/V gmN 10.72 mA/V

WP 96 µm WN 48 µm

di�erent supply potentials (the NMOS sink to the ground and the PMOS source to

V DD). In practice IB is delivered from a circuit able to sink and source the reference

current concurrently as a band gap circuit. Assuming that IB can be supplied to both

ampli�ers, the transconductance is controlled simultaneously, as shown on Figure 7.6. It

can be seen that the gm of the CD and CS transconductors can be tuned with mismatch

less than 3%. The shape of the curve follows a typical pattern for sub-micron devices,

deviating from the quadratic behavior of long channel transistors. For V DD=1.8 V, the

static power required to deliver transconductance of 15 mA/V is in the range of 3 mW.

For the currents smaller than 250 µA, the ampli�ers move to a subtreshold regime that

is not suitable for large signal operation of the considered circuit.

This simulation concludes the DC analysis of the gyrator circuit. As indicated

previously, from a bias perspective there is no di�erence between the standard and

degenerated gyrator as the RC phase shifter does not a�ect DC operation of the circuit.

7.5 Small signal AC analysis

Before the RC shifter will be connected, the standard gyrator is analysed for AC signal to

ensure that the circuit operates below its self resonant frequency. As the self resonance

depends on parasitic capacitances it is hard to control due to process variations. After

this, a complete degenerated active inductor resonator is designed and simulated in
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Figure 7.5: Complete gyrator circuit con�gured for DC simulation.
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order to verify the Barkhausen criteria for oscillation. All of the results have been

obtained in Eldo RF using an AC small signal simulator.

7.5.1 Gyrator without RC phase shifter

The circuit is analysed for three IB values: 300 µA, 750 µA and 1500 µA, respectively.

This allows us to observe the behavior of the circuit for di�erent gm values. Figure 7.7

presents the active inductor circuit where the gate of the non-inverting transconductor

has been disconnected from the output of CS ampli�er. If a short circuit is connected

between CD_G to gyr_out nodes, the gyrator operates as a standard active inductor.

In the case of the degenerated gyrator, the short circuit is substituted by an RC shifter.

The small signal simulation has been set as follows. An AC test signal generator

has been connected to the inverting ampli�er input. A frequency sweep has been set

from 100 MHz to 1000 MHz. The result of this simulation allows the analysis of the

input admittance (or impedance), assuming linear behavior around the DC quiescent
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Figure 7.6: Transconductance of gyrator ampli�ers as functions of reference current
IB.
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point found in the previous design step. The circuit simulator calculates the real and

imaginary parts of a complex immitance of the tested circuit separately. Figure 7.8

depicts the test bench circuit of a gyrator from Figure 7.7. Capacitor Cg represents

the gyrated capacitance connected to the output of the active inductor. Rout and Cout

allow control of the negative resistance generation mechanism.

First, the circuit has been simulated for Rout of 0 Ω, Cout of 0.15 pF and Cg of 0.2 pF.

In this case a standard gyrator is obtained with the total load capacitance provided by

MOS parasitics, Cg and Cout. If the capacitors are too small, then the circuit parasitics

dominate which in turn increases circuit sensitivity for process variations. When Cg

and Cout are large, the simulated inductance increases, typically also decreasing the self

resonant frequency of the circuit. The analysis presented in Chapter 4, Section 4.5,

shows that for operation in sub-GHz frequencies both capacitors are in the range from

0.2 pF to 0.5 pF. More details about a choice of Cout values are discussed later in this

section.

Figure 7.9 illustrates real and imaginary parts of input admittance, together with

the calculated inductance as a function of signal frequency. To explain the behavior

of the circuit, one has to consider di�erent frequency ranges. At low frequencies, the

circuit losses increase dramatically due to a relatively small simulated inductance that

in turn causes low unloaded Q. This is most severe for high transconductances because

inductance is inversely proportional to the square root of gm. This issue can be improved

using a larger gyration capacitance that shifts the peak of resistive losses into lower

frequencies at the cost of reduced tuning range at high frequencies. At high frequencies

the input conductance reaches its limit of 1/gm due to the architecture of the gyrator,

as discussed in Chapter 4.

7.5.2 Complete degenerated gyrator circuit

In this section the RC phase shifter is connected to the circuit. As a result, the de-

generated gyrator is obtained and a negative resistance is generated. To fully analyse

the circuit behavior the input conductance and susceptance are simulated separately
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Figure 7.7: Gyrator circuit for AC simulation.

Figure 7.8: Test bench circuit.
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Figure 7.9: Simulated input admittance of active inductor without RC phase shifter.
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for di�erent values of the RC phase shifter components. Finally, the tank capacitance

necessary for oscillations is found using a new and relatively simple graphical method,

described in detail later in this section.

7.5.2.1 Input conductance

First, the real part of the input admittance as a function of frequency and the shifter

resistance Rout is analysed. As previously, three bias current values are considered.

Figure 7.10 presents the evolution of negative conductance over an increasing resistance

of the phase shifter. For Rout of 1 kΩ, negative conductance is generated only for two of

the considered bias currents. Also, circuit losses are cancelled only for the frequencies

over 500 MHz. When Rout increases, the phase shift between the output voltage of

the CS ampli�er and input voltage of CD stage increases. As a result, more negative

conductance is produced.

The frequency bandwidth over which a negative conductance is generated is inversely

proportional to Rout. This behavior can be explained by (4.42), the equation de�ning

the described frequency range in terms of ωRnegL and ωRnegH , the frequencies de�ning

the low and the high limits of the described frequency range. The ratio of the two

frequencies has the form of

ωRnegH
ωRnegL

=
f (Rout) + g (Rout)
f (Rout)− g (Rout)

(7.5)

and closer analysis reveals that when all the other parameters are constant, f (Rout),

g (Rout) are inversely proportional to the resistance of Rout. As a result both ωRnegL

and ωRnegH decrease as well as their ratio, reducing the bandwidth of the negative

conductance.

For the parameter values chosen for the design presented in this thesis, a value of

Rout in the range of 3.5 kΩ represents the best trade-o� between the bandwidth and

amount of negative conductance required for compensation of the resonator.

The input conductance is also controlled by Cout. For the chosen Rout, the circuit

has been simulated for three capacitance values: 0.15 pF, 0.26 pF and 0.4 pF as depicted
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on Figure 7.11. Increasing the value of Cout shifts the negative conductance bandwidth

into lower frequencies, reducing its width. The magnitude of the negative conductance

also becomes smaller.
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Figure 7.10: Total input conductance as a function of frequency and Rout for three
di�erent bias currents.
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Figure 7.11: Total input conductance as a function of Cout.

197



7.5 Small signal AC analysis

7.5.2.2 Susceptance

As indicated previously, the AC analysis allows us to analyse the circuit susceptance

separately from the conductance. As a result it is possible to observe how the inductive

impedance changes with frequency and the circuit parameters. Figure 7.12 illustrates

a simulated susceptance as a function of frequency. It can be seen that the circuit

generates an inductive susceptance within the considered frequency band. As in the case

of the standard gyrator described previously, the susceptance is proportional to IB and

therefore gm of the transconductors. Thus, the proposed degeneration technique allows

us to retain a tunable inductive admittance whilst introducing negative resistance, as

predicted in Chapter 4. The increase of Rout causes a decrease of the susceptance and

the simulated inductance becomes larger than that of a standard gyrator, reducing

the resonance frequency of the circuit. In this case, Rout of 3.5 kΩ prevents excessive

inductance values (Figure 7.14), especially for small gm values. This in turn, allows

the use of tank capacitances in the range of pF at sub-GHz frequencies and therefore

improve the noise produced by the resonator (Chapter 4). The in�uence of Cout on the

circuit susceptance has been also analysed, as depicted on Figure 7.13. The observed

behavior is the same as in the case of a changing Rout, shifting the self-resonance

frequency of the circuit down for an increasing value of the phase shifter capacitance.

In the presented design, a value of 0.15 pF has been chosen to avoid excessive inductance

at the frequencies of interest for all the bias currents used.

7.5.2.3 AC behavior veri�cation

The input conductance plots depicted in Figures 7.10 and 7.11 are compared to Fig-

ure 4.13. In the case of Rout equal to 3.5 kΩ and Cout of 150 fF, the shape of the

curves and the magnitude of the negative conductance produced by the practical cir-

cuit correspond to these obtained from the mathematical model from Chapter 4. In the

actual circuit, the frequency range where the resonator is fully compensated is reduced

by about 20% due to the parasitic capacitances of the transistors and current mirrors.
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Figure 7.12: Input susceptance of the circuit for three di�erent bias currents and Rout
values .
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Figure 7.13: Input susceptance as a function of Cout.
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Figure 7.14: Simulated parallel inductance.
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Note that the simulated lower limit of this frequency band, is approximately equal to

200 MHz, as calculated previously in Chapter 4. This proves that the gyrator losses

represented by Go are the main cause for the reduction of the negative conductance at

low frequencies, as predicted by the mathematical model and shown in Figure 4.9.

In the case of the equivalent parallel inductance depicted in Figure 7.14, the CMOS

gyrator follows the behavior of a generic theoretical model from Section 4.2.1.2, Fig-

ures 4.4 and 4.6. It can be seen, that the proposed theoretical model predicts correctly

the behavior of the practical circuit in terms of the magnitude of the simulated in-

ductance (refer to the case for Rout of 1 kΩ) its increase with frequency and inverse

proportionality to gm.

Note that in the practical oscillator, the value of the phase shifter Cout has been

halved in comparison to the mathematical model from Chapter 4, Table 4.6. This

is due to the parasitic capacitances of the CD ampli�er and the current mirror that

are represented by single capacitors in the mathematical model. More details on the

in�uence of the parasitics on a degenerated gyrator circuit are presented by Szczepkowski

et al. [125]. Although, the considered circuit is far from ideal and does have more

complex parasitic structure than initially assumed, the overall AC behavior follows the

one predicted mathematically from the proposed circuit model.

7.5.3 Resonant frequency of the oscillator and choice of a tank

capacitor value

To create the conditions for instability, the circuit has to be in resonance while neg-

ative conductance fully compensates the resonator losses. Proper calculation of the

resonant frequency therefore requires a thorough simulation of the most important cir-

cuit parasitics. To simplify the process, a new, simple and intuitive graphical method

is proposed. The method can be described as follows. First, plots of the real and

imaginary parts of input admittance from Figure 7.10 and 7.12 can be displayed on a

single sheet. Figure 7.15 presents both characteristics for Rout and Cout of 3.5 kΩ and
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Figure 7.15: Finding tank capacitance and resonant frequency using graphical method.

Table 7.3: Resonant frequency and total negative conductance for degenerated gyrator
with tank capacitance Ct of 4 pF.

IB f0 Gpdg
µA MHz mA/V

300 330 -1.95

750 480 -3.8

1400 640 -4.7
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7.6 Large signal analysis

0.15 pF, respectively. As the circuit simulates a parallel resonator, the tank capaci-

tance can be described by the susceptance jBC = jωCt that adds directly to the input

susceptance of the gyrator. When the sum is zero in total, the tank is at resonance

as both susceptances have the same magnitudes. Thus, to graphically determine the

resonant frequency, BC can be projected on Figure 7.15 as a −BC , represented here as

a dashed line. The points where this line intersects the gyrator susceptance curves for

di�erent IB, indicates the resonant frequency. If at the same time, negative resistance is

generated, the circuit will become unstable. Note that the described graphical method

can be used for any other negative resistance oscillator circuit where the similar sets of

plots are available.

Setting BC to di�erent values, changes the slope of the line, making it steeper

for larger tank capacitor values. In Figure 7.15, Ct = 4 pF has been used. For the

considered parameters, the calculated resonant frequency and negative resistance values

are presented in Table 7.3. The available total tuning range of 310 MHz around the

centre frequency of 480 MHz results in a relatively wide fractional bandwidth of about

64%, a result beyond the capabilities of an oscillator using a single passive LC tank.

7.6 Large signal analysis

This section presents a large signal analysis of the oscillating circuit. As an oscillator

is non-linear and operates with a periodic signal, harmonic balance methods are used

to �nd a steady state solution. One of the best known harmonic balance approaches

implemented in circuit simulators like Eldo RF is the probe method [126].

The circuit simulator introduces a harmonic source (series voltage or parallel current)

between nodes for which oscillatory behavior is suspected. The probe is de�ned by

amplitude and frequency, where the latter can be set as an initial guess, close to the

expected, theoretical value. During simulation, the probe parameters are varied until

their values allow us to reach a converging solution within a speci�ed error. The steady-

state conditions of the analysed circuit are therefore given by the probe amplitude and
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7.6 Large signal analysis

frequency. The SST (steady state) simulator in Eldo RF allows one to �nd the large

signal voltages and currents, the oscillation frequency and phase noise of the circuit.

Figure 7.16 illustrates the test bench circuit used for this simulation. The tank capacitor

and phase shifter are designed using MIM capacitors. The resistor Rout employs a high

resistance device optimised for RF frequencies with a non-salicide polysilicon conductive

path. The related design parameters are displayed in Table 7.4. Once the simulation is

set, the probe is placed automatically between the nodes gyr_in and V SS, that is at

the gyrator input.

7.6.1 Large signal input admittance

As described in Chapter 5, the small signal AC model of a degenerated gyrator is

not su�cient to describe its behavior in the presence of oscillations. It was shown

that increasing signal amplitude causes a compression of the negative conductance and

changes the resonant frequency due to expansion of the inductance. To con�rm this

behavior, the input admittance of the circuit has been simulated as a function of the

amplitude of the input signal applied between the nodes gyr_in and V SS. The results,

in a form of the total input conductance and parallel inductance are illustrated on

Figures 7.17 and 7.18, respectively. At this stage the circuit is analysed as being driven

by an external signal source, de�ned by frequency and amplitude. Thus, for the purpose

of this particular simulation it is assumed that the degenerated gyrator is not considered

an autonomous circuit.

When the signal amplitude is relatively small, less than 1 mV, the values correspond

to the ones found using the AC signal analysis in Section 7.5, Table 7.3. When the signal

amplitude increases, the circuit behaves as predicted by the proposed Volterra kernel

model from Chapter 5, Table 5.4. Note, that although the proposed non-linear model is

much simpli�ed, the observed curves correspond to the mathematical results depicted

previously on Figure 5.10. The negative conductance starts to decrease until its value

reaches zero. At this point oscillations should settle however the presented amplitude

values should be treated only as qualitative. Due to the nature of simulation setup in
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Figure 7.16: Test bench circuit for SST and time domain simulations.

Table 7.4: Design parameters of passive components

Component Model Value Unit W L Unit

Rout RNHR_RF 3.523 kΩ 8.5 2.5

µm
Cout

MIM
0.15

pF
12 12

Cg 0.2 14 14
Ct 4 60 48
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Figure 7.17: Large signal input conductance of degenerated active inductor resonator
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Figure 7.18: Large signal inductance of degenerated active inductor resonator
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Eldo RF it was assumed that the resonant frequency was constant for each curve and

equal to the small signal value from Table 7.3. In general, as explained in detail in

Sections 5.5.1 and 5.5.2, such an assumption is false, as due to the expansion of the

inductance (proved by Figure 7.18), the resonant frequency decreases with increasing

amplitude. However, the simulation of each point at the presented plots, would require

a separate calculation of the resonant frequency and recursive simulation in Eldo RF.

The proper values of oscillation amplitudes are found using the probe method described

previously, however in this case one can't obtain the plots depicted in Figures 7.17 and

7.18. Thus, these plots should be treated only as illustrative. It will be showed later

that the numerical results obtained from the SST simulation are much closer to the

calculated values from Chapter 5.

7.6.2 Tuning range

Figure 7.19 depicts the tuning curve of the oscillator. Each point represents the oscil-

lation frequency for IB between 300 µA and 1400 µA with a 100 µA step. It can be

seen that SST simulator was able to �nd instability leading to oscillations for all of the

considered bias conditions. Thus, the degenerated gyrator generates a signal without

any external compensation circuit, as predicted in small signal analysis.

The dashed line represents the resonant frequency approximated using the graphical

method and the small signal simulation results. One observation made is that the signal

frequency found in a large signal regime is lower than expected for small signal behavior.

This is caused by two factors. First, as predicted in Chapter 5, Table 5.4 and shown on

Figure 7.18, due to harmonic distortion of an increasing signal amplitude, the simulated

inductance value becomes expanded. As a result, the average value for the inductance

over one oscillation cycle is somewhat larger than the small signal value determined

from the AC model. Secondly, all of the transistor parasitic capacitances are voltage

dependent and vary with oscillation signal.

The tuning range of the oscillator found using the SST analysis is equal to 354 MHz,

spanning from 226 MHz to 580 MHz. Assuming the centre frequency of the oscillator
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Figure 7.19: Tuning curve of the oscillator.

at 434 MHz for IB of 900 µA, this value results in a relatively wide, fractional tuning

range of 81.5%. No switched capacitors and varactors are used. It is also worth noting

that the tuning curve is less distorted than in the case of circuits tuned by varactor

diodes.

As the proposed oscillator is controlled by the bias current, the tuning constant is

expressed in Hz/A. The average value of the tuning constant for the circuit is equal to

320 kHz/µA.

7.6.3 Spectral and transient simulation of output signal

This section presents the spectral properties of the oscillator output signal as a function

of bias current. The result has been extracted from SST simulation for �ve di�erent IB

values and �ve harmonic frequencies. In general, the oscillator signal can be extracted

from either the gyr_in or the gyr_out nodes (refer to Figure 7.16). The practical

choice of the output is dictated by the type of load, required output signal power and

the bu�er ampli�er architecture. More details will be given in subsequent sections.
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Table 7.5: Output signal spectrum for �ve di�erent reference currents.

(a) IB =300 µA.

f0 =226 MHz

Output gyr_in gyr_out

Component
Amplitude

mV

DC 490 891

f0 80 447

2f0 28 130

3f0 9 48

4f0 2.2 19

5f0 0.8 7

THD (%) 37 31

(b) IB =750 µA.

f0 =380 MHz

Output gyr_in gyr_out

Component
Amplitude

mV

DC 532 1037

f0 109 683

2f0 29 135

3f0 4 39

4f0 0.68 17

5f0 0.48 6

THD (%) 27 21

(c) IB =900 µA.

f0 =434 MHz

Output gyr_in gyr_out

Component
Amplitude

mV

DC 544 1100

f0 106 653

2f0 21 95

3f0 1.2 32

4f0 0.9 12

5f0 0.14 1.7

THD (%) 20 16

(d) IB =1200 µA.

f0 =530 MHz

Output gyr_in gyr_out

Component
Amplitude

mV

DC 568 1200

f0 92 558

2f0 9 46

3f0 0.8 22

4f0 0.26 4

5f0 0.03 2

THD (%) 10 9

(e) IB =1400 µA.

f0 =580 MHz

Output gyr_in gyr_out

Component
Amplitude

mV

DC 584 1250

f0 76 477

2f0 4 32

3f0 0.62 15

4f0 0.09 2.8

5f0 0.02 1.8

THD (%) 5.3 7.3
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Table 7.5 presents the simulated results of SST simulation in the frequency domain.

Each sub-table contains the signal amplitudes at the carrier frequency and the cor-

responding harmonics, simulated for each of the two possible oscillator outputs, the

gyr_in and the gyr_out nodes. The available amplitudes on the gyr_in node corre-

spond to the results of theoretical derivations presented in Chapter 5, in Figure 5.10,

proving that the Volterra kernels method applied for a simpli�ed model of the degener-

ated gyrator can predict correct large signal behavior. Note that the output amplitudes

from gyr_out were not analysed by the theoretical model. Their levels are signi�cantly

larger due to the imbalance introduced by the phase shifter and di�erent voltage gains

of the CS and CD ampli�ers. In addition, note that the oscillator signal becomes less

distorted for the increasing bias current (i.e. increasing gm). This behavior has been

predicted by the proposed large signal model (indicated by Figure 5.12) and also thor-

oughly explained in Chapter 5. Large THD for the low transconductance values can

be improved if the oscillator signal can be �ltered by the use of tuned bu�er ampli�er.

This approach is discussed in detail later in the chapter.

The time domain behavior has also been analysed. The simulation time was set

to 300 ns (which corresponds to 130 periods of 434 MHz sinusoid) with approximately

90 points per period for accuracy and simulation speed. Figures 7.20 and 7.21 show a

434 MHz signal at gyr_in and gyr_out nodes, respectively. Each �gure presents three

plots where the center one represents a simulated output voltage for a total speci�ed

time. The top plot depicts the transient behavior of the oscillator signal. Note that the

oscillator start-up time is not representative due to the use of an always-on ideal DC

source as the power supply voltage V DD. As a result, the circuit simulator requires

more iterations before reaching stable solution. In practice, oscillators are triggered by

the relatively abrupt switch on of a power supply which in turn causes faster oscillation

buildup. For the basic setup of SST simulation in Eldo RF, the use of a pulsed DC

sources to simulate this state is not allowed by the program. Figures 7.20 and 7.21

also depict a magni�ed version of the simulated signal once the oscillator operates in

the steady state. It can be seen that amplitudes predicted during SST simulation
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Figure 7.20: Generated 434 MHz signal at gyr_in node.
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Figure 7.21: Generated 434 MHz signal at gyr_out node.
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for IB = 900 µm presented in Table 7.5 are equal to those found from time domain

simulations. The frequency of a steady state voltage is equal to 434.783 MHz.

7.6.4 Oscillator phase noise

The phase noise has been simulated for frequency o�sets spanning over two decades,

between 30 kHz to 3 MHz. The Eldo RF algorithm computes phase noise according

to [120]

SphiEldoRF
=
Sω0+∆ωm + Sω0−∆ωm − 2<{Scorre2jφSS}

V 2
SS

(7.6)

Sω0+∆ωm and Sω0−∆ωm represent the PSD of noise at +ωm and −ωm o�sets from the

carrier, respectively. Scorr is a correlation between the noise components at ω0 + ωm

and ω0−ωm , whereas φSS and VSS are signal phase and amplitude extracted from the

steady state large signal simulation [120]. The circuit simulator inserts a phase noise

probe between two nodes of the circuit. In the considered case, the phase noise has

been extracted between gyr_in and the ground nodes �rst and then compared to the

phase noise simulated between gyr_out and the ground. As indicated previously, an

oscillator load can be connected to gyr_in or gyr_out and therefore it is important

to analyse the phase noise levels at both these nodes. During SST simulation it was

observed that at the described nodes phase noise magnitudes were equal and, from a

noise perspective, one point is not preferred over the other to provide the output signal.

Figure 7.22 presents a single sideband phase noise spectrum for the �ve considered IB

values extracted from the gyr_out node. The lowest phase noise level approximately

of -100 dBc/Hz has been obtained for 750 µA and 900 µA bias currents. At larger

currents, phase noise deteriorates due to increased signal frequency and reduced signal

amplitude. At 300 µA, signal amplitude is the smallest in connection with a high

harmonic distortion. This results in the highest phase noise level. The phenomenon of

phase noise increase due to harmonics has been studied by Razavi [119], and Hajimiri
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Figure 7.22: Simulated single sideband phase noise spectrum as a function of IB.

and Lee [116] where it is shown that high order distortion components fold (alias) noise

components from higher frequencies into the bandwidth close to the carrier.

It can be seen that simulated phase noise level is on average a few dB higher in

comparison with the proposed theoretical model from Chapter 6. The results of com-

parison are summarised in Section 6.4, in Table 6.2 and Figure 6.6. The di�erence comes

from the fact that the phase noise model does not account for a non-linear folding phe-

nomenon described above. The proposed phase noise model does not account for noise

injected by non-ideal current sources and time variance of the oscillator. Nevertheless,

the simple linear model developed in Chapter 6 is su�cient to predict correct orders of

phase noise magnitudes for degenerated gyrator oscillators.

7.7 Output signal of loaded oscillator

As indicated before, a signal can be extracted from the oscillator from two nodes:

gyr_in or gyr_out. In practice, an oscillator is used to drive a mixer and therefore the

215



7.7 Output signal of loaded oscillator

load is typically capacitive. In other applications, for example continuous wave (CW)

transmitters, the load can be resistive (antenna and matching circuits). Typically, the

output power of RF ampli�er is determined using a 50 Ω termination. This load can't

be connected directly to the degenerated gyrator for two reasons. First, the in�uence of

the load has to be minimised to avoid excessive frequency pulling. Secondly, resistance

in the range 50 Ω represents signi�cant losses that would require much more power to

compensate. Thus an output bu�er has to be used.

7.7.1 Choosing oscillator output and bu�er ampli�er

In general, the bu�er ampli�er can have any known con�guration as long as its in�uence

on the oscillator circuit is well characterised. If the oscillator signal is too small it can be

boosted through a CS ampli�er. If a simple one transistor ampli�er is employed, a Miller

capacitance will introduce signi�cant capacitive load. This e�ect can be minimised

by using a two transistor cascode. Observing oscillator signals depicted previously in

Figures 7.20 and 7.21, it can be seen that gyr_in node delivers 5 to 6 times smaller

amplitude than the gyr_out port. This asymmetry comes from the fact that both

transconductors have the same gm however the capacitances at gyrator ports are not

equal. As shown in Chapter 4, the RC shifter contributes to the magnitude of the

simulated inductance, resulting in the gyration capacitance Cg being smaller than the

total tank capacitance CT . Thus, the voltage produced at the gyr_out port is larger

than that of the gyr_in node.

If the oscillator is loaded from the gyr_in port, the main advantage of this approach

is that any parasitic capacitance of the bu�er input is connected in parallel to the total

tank capacitance CT . As a result, the bu�er parasitics do not contribute to the negative

resistance generation mechanism of the degenerated gyrator. The downside is that the

signal from the gyr_in node has much smaller amplitude and requires additional gain.

On the contrary, if the output signal is extracted from the gyr_out port, then a

signi�cantly larger signal amplitude is available and further gain may not be required

at all. The parasitic input capacitance of the bu�er is now in parallel to the gyration
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7.7 Output signal of loaded oscillator

capacitor Cg and therefore contributes to the loss compensation mechanisms as well as

simulated inductance. These observations lead to a source follower (CD) con�guration

for the output bu�er as this circuit has a high input impedance (i.e. a relatively small

input capacitance) and is suitable to directly drive high loads in the range of 50 Ω with

0 dB voltage gain. Care has to be taken in the presence of capacitive loads, because

they can form a positive feedback network together with the transistor gate to source

capacitance [32]. In extreme cases this can result in unintended negative resistance

being generated as in the case of single transistor compensation circuit described in

Chapter 2.

In addition to the described requirements, the gain-bandwidth product of the ampli-

�er should also be considered. As the oscillator bandwidth is centered around 434 MHz

and spans from 226 MHz to 580 MHz it is not necessary to provide substantial bu�er

gain beyond this frequency range. Thus, an output bu�er can be realised using a tuned

ampli�er i.e. loaded with a resonant tank tuned to the center frequency of the con-

sidered bandwidth. The drawback of this approach is the use of a second resonator

however due to the use of a inductor in the load, MOS transistor can be biased with

VDS = VDD, the maximum available headroom.

The use of an additional passive LC tank potentially destroys the bene�t of the

proposed oscillator, the reduction of chip area. This conclusion is not true. To obtain a

high performance output bu�er (crucial at RF frequencies) operating with low supply

voltage the use of inductors is fundamental, regardless of the architecture of the LC

oscillator one intends to use. Thus, even if not much can be done to avoid a relatively

large passive LC tank in the bu�er, the oscillator area can be still reduced by the use

of the degenerated active inductor.

At the same time, the question arises if instead of a spiral inductor, a gyrator can

be used in the bu�er. Unfortunately, this can't be done without a serious compromise

of the ampli�er performance. The main advantage of a spiral inductor is its zero DC

voltage drop that in turn spares the voltage headroom left for the bu�er transistor. As

shown in this thesis, an active inductor requires DC power to operate and would reduce
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7.7 Output signal of loaded oscillator

Figure 7.23: Tuned bu�er ampli�er circuit with integrated resonator.

dramatically the available voltage range for the ampli�er. Also, such a circuit would be

highly non-linear under large signal operation, in comparison to the approach using a

passive LC tank described in this section. Thus, the use of a gyrator in place of a spiral

inductor is not practical for the bu�er application.

Figure 7.23 illustrates a tuned source follower employing an integrated resonator

with spiral inductor and MIM capacitors. The size of the transistor is set such for

the considered bias point of Vgs =1.1 V and Vds =1.8 V, device transconductance is

equal to 20 mA/V. As the output resistance of the source follower is equal to 1/gm,

this allows us to match the ampli�er to the 50 Ω load. The cost however is increased

power consumption of approximately 16 mW because the ampli�er operates as a class-A

circuit (i.e. low e�ciency but high linearity). The ampli�er is biased separately from

the oscillator through a large resistor to prevent excessive loading of the core. Also, a

1 pF blocking capacitor is used to separate both circuits at low frequencies. As before,

to exploit the larger DC gain of the transistor, the drawn length L of the NMOS device

has been set to 250 nm. The total width of the transistor equals 48 µm using 3 parallel

devices with 4 �ngers and 4 µm width per single �nger. The diameter of the inductor

is equal to 500 µm with 5.5 turns of 20 µm metal conductor and inductance of 14 nH.

218



7.7 Output signal of loaded oscillator

Figure 7.24: Complete oscillator circuit with output bu�er.

The resonator capacitance is composed of two 5 pF capacitors in parallel, each being a

70 µm per 70 µm square. Loaded Q of this resonator is approximately equal to 1 which

ensures a wide band operation around the carrier frequency.

Figure 7.25 presents how the tuning range of the oscillator changes as a result of 50 Ω

load. As before, a SST simulation has been carried out for di�erent values of bias current

IB. It can be seen that connecting the bu�er at the gyr_out node a�ects the lower

boundary of the tuning range. This is due to additional RC components introduced by

the ampli�er. To increase the tuning range at high frequencies, the maximum IB has

been increased from 1400 µA to 1600 µA. As a result, the tuning constant is smaller

than in the unloaded case, approximately 250 kHz/µA.

The next plot (Figure 7.26) depicts a transient simulation results of 434 MHz output

signal for IB = 920 µA. The DC component of 10 mV is a result of resistive losses of a

spiral inductor from the bu�er and even order harmonics of the oscillator signal.
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Figure 7.25: Tuning curve of loaded oscillator.

A spectral analysis of the output signal has been carried out. As for the unloaded

oscillator, the results are summarized in Table 7.6. It can be seen that in comparison to

the results from Table 7.5, the tuned bu�er reduces THD of the output signal by 50 %

despite the relatively poor Q factor of the passive inductor used. Also, the amplitude

is reduced in comparison with unloaded gyr_out output. The attenuation comes from

the ampli�er output resistance of 50 Ω and therefore only half of the input voltage is

available for the load resistor.

7.7.2 Output power

Finally, the signal amplitudes at f0 are used to calculate the output RF power of the

oscillator using the following formula for a real power of a sinusoidal signal

PAC =
V 2
RMS

R
=
V 2
MAX

2R

PACdBm = 10 · log
(
PAC

1mW

)
(7.7)

At 50 Ω load resistance, (7.7) yields the results presented in Table 7.7.
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Figure 7.26: Generated 434 MHz output signal at 50 Ω load.
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Table 7.6: Output signal spectrum of loaded oscillator for �ve di�erent reference current
values.

(a) IB =400 µA.

f0 =300 MHz

Component
Amplitude

mV

DC 10.3

f0 120.4

2f0 24.6

3f0 4.2

4f0 0.7

5f0 0.12

THD (%) 20

(b) IB =750 µA.

f0 =375 MHz

Component
Amplitude

mV

DC 10.3

f0 230.4

2f0 35

3f0 5.8

4f0 1.3

5f0 0.324

THD (%) 15

(c) IB =900 µA.

f0 =430 MHz

Component
Amplitude

mV

DC 10.3

f0 230.5

2f0 23

3f0 3.3

4f0 1

5f0 0.27

THD (%) 10

(d) IB =1200 µA.

f0 =514 MHz

Component
Amplitude

mV

DC 10.3

f0 197

2f0 7.3

3f0 2

4f0 0.6

5f0 0.05

THD (%) 4

(e) IB =1600 µA.

f0 =600 MHz

Component
Amplitude

mV

DC 10.1

f0 131

2f0 2.4

3f0 0.93

4f0 0.2

5f0 0.05

THD (%) 2
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7.7 Output signal of loaded oscillator

Table 7.7: RF power at 50 Ω load resistor

IB f0 PRF
µA MHz mW dBm

400 300 0.145 -8.4

750 375 0.53 -2.75

900 430 0.53 -2.75

1200 514 0.4 -4

1600 600 0.17 -7.65

7.7.3 Power consumption

The power consumption depends on two factors: DC current necessary to bias the

degenerated gyrator and the energy required for proper operation of the output bu�er.

When the circuit is tuned, the power consumption of the oscillator core changes as it

depends on the bias current IB supplied to both transconductance ampli�ers through

the current mirrors. In the case of the bu�er ampli�er, its power consumption remains

constant and independent from the core due to the use of a decoupling capacitor.

To tune the oscillator to 600 MHz, a bias current of 1600 µA is required. For the

supply voltage VDD of 1.8 V this results in the total power consumption of 26.72 mW for

the complete oscillator circuit. This includes 5.76 mW for the oscillator core, 5.76 mW

for bias mirrors and 15.2 mW dissipated by the bu�er. At 434 MHz, the total power

reduces to 21.7 mW as IB is decreased. Note that at this frequency the output ampli�er

consumes 70% of the total power due to its required low output impedance of 50 Ω.

Finally, the minimum power required for the operation of the complete oscillator circuit

is equal to 18.1 mW.

The presented power consumption performance is compared to other oscillator cir-

cuits later in this chapter.

7.7.4 Phase noise of loaded oscillator

Simulations of the bu�ered circuit do not reveal any signi�cant changes of phase noise

in comparison to the unloaded case presented in Figure 7.22. On average, for considered

IB values between 400 µA and 1600 µA, the phase noise level does not increase more
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than 0.5 dB. However, for IB = 300 µA phase noise has increased by 4 dB, mostly due

to smaller amplitude generated from the core. The phase noise extraction probe has

been connected between the ground and Vout nodes (Figure 7.24).

7.8 Process and temperature variations

The last section of circuit analysis shows how the loaded oscillator behaves when design

parameters di�er from their nominal values. Three typical scenarios are considered:

temperature, transistor and passive component variations.

7.8.1 Temperature variations

Industry standard temperatures for consumer products are: -40◦C, 27◦C (room temper-

ature) and 85◦C. First a tuning range has been simulated as illustrated on Figure 7.27.

The tuning range of the oscillator is inversely proportional to the temperature. This

200 400 600 800 1000 1200 1400 1600 1800
200

250

300

350

400

450

500

550

600

650

700

I
B
 [uA]

O
sc

ill
at

io
n 

fr
eq

ue
nc

y 
[M

H
z]

 

 

−40°C

+27°C

+85°C

Figure 7.27: Simulated tuning range as a function of temperature.
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Table 7.8: Phase noise at 1 MHz o�set and output power as functions of temperature.

IB
-40◦ 27◦ 85◦

PN PRF PN PRF PN PRF
µA dBc/Hz dBm dBc/Hz dBm dBc/Hz dBm

400 -94 -6.1 -92.5 -8.4 -90 -11

900 -99 -2.76 -99.5 -2.75 -99.4 -3.23

1600 -97.4 -8.4 -98.4 -7.65 -99 -7.63

f0

-99 -2.42 -99.6 -2.79 -99.7 -3.38MHz
434

is a result of the inverse proportionality between the transistor threshold voltage Vth

and temperature. The bias mirrors force constant current to the oscillator core. When

the temperature increases, Vth decreases faster than gate to source voltages set by the

mutual bias scheme of the gyrator. Thus the overdrive voltage of both transconductors

decreases. As a result, gm becomes larger for the �xed value of bias current. Since

resonant frequency is inversely proportional to gm, the tuning range must decrease.

The practical implications of temperature variations can be shown by considering

circuit sensitivity around the nominal frequency of 434 MHz. For IB = 920 µA, the

temperature change from room temperature to -40◦C increases the oscillation frequency

by 45 MHz. This results in a negative temperature coe�cient of 672 kHz/◦C. Assum-

ing the tuning sensitivity of the oscillator at 320 kHz/µA, IB has to be decreased by

approximately 140 µA to change the oscillation frequency back to 434 MHz.

Table 7.8 presents how phase noise and signal power change with temperature.

Three bias currents are considered, for both ends of the tuning range and the center

frequency. Phase noise is measured at 1 MHz o�set and RF power is given in dBm.

The performance of the oscillator at 434 MHz is presented separately.

It can be seen that phase noise dependence on temperature is complex. For the

lower end of the tuning range, phase noise increases with temperature. This is due to a

relatively small signal power and harmonic distortion. For IB = 900 µA phase noise and

output power do not change signi�cantly. At low temperatures, oscillation frequency

increases which, in theory, should result in higher phase noise. At the same time how-
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ever, the circuit produces less noise as phase noise is proportional to the temperature.

At the high end of the tuning range, the frequency drop due to the temperature changes

is the highest however at the same time the output signal has the smallest distortion.

In this case, no signi�cant changes of the phase noise levels were observed. Similarly,

at the frequency of 434 MHz, phase and noise power are not strongly a�ected by the

temperature.

7.8.2 Resistance and capacitance variations

Finite mask tolerances, doping and oxide thickness variations cause passive components

to have di�erent parameter values when manufactured than when designed. For the

UMC 180 nm process described here, resistance can vary within ±24.5% around nom-

inal values, whereas all MIM capacitances change within ±14.5%. The most probable

scenario assumes R and C change in the same direction i.e. both values are equal to

maximum or minimum at the same time.

Figure 7.28 depicts tuning curves of the oscillator with considered RC variations.

The behavior of the oscillator corresponds to the small signal AC analysis presented in

Section 7.5.2. As resistance Rout decreases, the simulated inductance becomes smaller,

shifting the resonant frequency upwards. At the same time, the negative conductance

decreases, and in extreme situations can become smaller than circuit losses. In the

presented case, oscillations do not build up for currents less then 500 µA. When RC

components are at a maximum, the tuning curve moves down and the negative con-

ductance becomes larger. Despite this, the circuit still oscillates for all considered bias

current values. As previously, it is important to analyse how these process variations

a�ect the oscillator performance. The results of phase noise and output power simula-

tions are presented in Table 7.9. Note, that the lowest bias current (IB of 500 µA) has

been chosen in respect of the lower end of tuning range when RC is minimum as in that

case the circuit does not oscillate for smaller currents.

The minimum RC circuit bounds oscillator performance, both in terms of output

power and phase noise. Reduced RF signal amplitude is a result of small negative
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Figure 7.28: Simulated tuning range as a function of RC variations.

Table 7.9: Phase noise at 1 MHz o�set and output power as functions of RC variations.

IB
Minimum RC Nominal Maximum RC
PN PRF PN PRF PN PRF

µA dBc/Hz dBm dBc/Hz dBm dBc/Hz dBm

500 -91.2 -8.6 -94.9 -5.65 -97.6 -4.43

900 -97.3 -3.73 -99.5 -2.75 -100.8 -2.51

1600 -97.7 -7.54 -98.4 -7.65 -98.6 -8.28

f0

-92.3 -6.27 -99.5 -2.75 -100.8 -3.48MHz
434

conductance generated by the circuit. High phase noise level indicates that the 3 dB

frequency of the RC phase shifter moved into higher frequencies and therefore is in-

jecting more thermal noise into the resonator. The opposite applies when RC is large.

This behavior can be seen more clearly when the oscillator is tuned to 434 MHz. The

maximum RC variation yields smaller signal amplitude than the nominal case, how-

ever because the 3 dB corner frequency of the shifter is now moved down, less noise is

injected, as predicted in Chapter 4.
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Figure 7.29: Simulated tuning range as a function of process corners.

7.8.3 CMOS process variations

Process corners describe possible deviations of transistor parameters. Four cases are pos-

sible: fast-fast (FF), slow-slow (SS), fast-N-slow-P (FNSP) and slow-N-fast-P (SNFP).

Fast transistors are characterised by decreased gate oxide thickness and threshold volt-

age. On the other hand, slow transistors have thicker oxide and larger Vth. As NMOS

and PMOS transistors are used, this results in the four possible variations.

Figure 7.29 presents tuning curves of the oscillator. Symbol TT represents a typical-

typical scenario which sets transistor parameters at its nominal values. The circuit

responds relatively well for the di�erent process corners, considering that the oscillator

operation depends on active circuits and partially on their parasitic elements. As the

circuit has been designed to work around the center frequency of 434 MHz, the simulated

process corners do not a�ect tuning range signi�cantly. Note that at both ends of

frequency band, the di�erence between FF and SS corners averages at 23 MHz which

is less than that due to temperature and passive component variations. As before, the
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Table 7.10: Phase noise at 1 MHz o�set and output power as functions process corners.

IB
SS FF FNSP SNFP

PN PRF PN PRF PN PRF PN PRF
µA dBc/Hz dBm dBc/Hz dBm dBc/Hz dBm dBc/Hz dBm

400 -93.3 -9.17 -92.3 -7.79 -92.4 -8.2 -92.8 -8.64

900 -99.3 -5.29 -99.9 -1.25 -99.5 -2.04 -99.5 -3.72

1600 -91.6 -17.6 -99.8 -4.18 -99.1 -5.99 -97.1 -10.22

phase noise and output signal power have been analysed. Due to the negligible frequency

change around 434 MHz, the data extracted for IB = 900µA are su�cient to describe

circuit behavior around the nominal frequency. The results are presented in Table 7.10.

Slow transistors cause serious deterioration of output power with increasing bias current,

in the extreme case reducing it by 10 dB at high frequencies. The main source of this

behavior comes from slow NMOS devices as these are used as transconductors and for

the current mirror. It is observed that for the SS corner, the output conductance of each

transistor increases by a factor of 1.5 over typical values. This increases resistive losses

at both ports of the gyrator, e�ectively reducing negative conductance and the range of

frequencies for which the circuit is compensated. As a result, generated amplitudes are

limited. On the other hand, an FF corner improves output power due to the reduced

conductance. As long as fast NMOS are considered, slow PMOS transistors do not

decrease output power as they are employed in the current mirror only. At the center

frequency, phase noise is not a�ected signi�cantly by the process corners.

7.9 Oscillator performance benchmark

To compare the performance of the proposed oscillator to the existing circuits a nor-

malized �gure of merit with tuning range ( FOMT ) is used. This function allows fair

benchmark of phase noise of oscillators working at di�erent frequencies and includes ad-

ditional quantities such as DC power consumption of the core and fractional bandwidth.

One generally accepted FOMT has the following form [127, 128]

FOMT = L(ωm)− 20log
(
ω0

ωm

FBW

10

)
+ 10log (PmWcore) (7.8)
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where L(ωm) is phase noise at frequency o�set of ωm, ω0 is resonant frequency, FBW

is a fractional bandwidth and PmWcore is maximum DC power consumption of the core.

The main issue related to (7.8) is that it promotes low power consumption oscillators

only without taking into account the power e�ciency of the overall circuit. In other

words, FOMT in the presented form does not convey any information on how much

DC energy of the oscillator core is supplied to the load. It is shown that although many

authors claim superior phase noise performance and wide tuning ranges the reported

output power levels at bu�ered loads are too small to drive any other circuit. To include

RF signal power, the new �gure of merit can be given by the following equation

FOMTP = L(ωm)− 20log
(
ω0

ωm

FBW

10

)
+ 10log (PmWcore)− PRFdBm (7.9)

where PRFdBm is RF output power value at resonance frequency given in dBm. Func-

tion (7.9) corresponds to the previously published FOM equations [128, 129] however,

for unknown reasons, the authors did not include the fractional tuning range.

Both (7.8) and (7.9) yield negative values, expressed in dBc/Hz. The smaller the

value the better the oscillator circuit i.e. state of the art architectures reach low phase

noise, wide tuning ranges with small power consumption and high e�ciency. Note that

the FOMT functions use phase noise level from the range where it falls by 20 dB/decade

or 6 dB/octave (see Chapter 6 for more details). Thus, as authors cite phase noise levels

at di�erent o�set frequencies, these can be easily recalculated to 1 MHz to normalise the

results. Table 7.11 presents a comparison of active inductor oscillators published over

the last decade. Phase noise levels are given for the center frequency of each circuit.

Note that during thesis preparation, no other active inductor oscillator operating at

434 MHz was found in the available literature. The oscillators chosen for performance

comparison are however similar in terms of FOMT due to the fact that the increased

power consumption term is compensated by higher frequency of operations and in many

cases wide tuning range. In comparison with most of the circuits from Table 7.11, the

FOMT of the proposed circuit places it in the bottom of the benchmark list. This is

caused by a relatively high phase noise and low frequency of operation. Most oscillators
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7.10 434 MHz 90 nm NMOS OOK transmitter

however have much larger tuning ranges which translate to better (i.e. smaller) FOMT .

In the case of FOMTP , the degenerated gyrator achieves much better e�ciency

than two thirds of the listed circuits. This is due to the relatively large RF power

which was extracted with a 3 dB loss in the output bu�er. Note, that none of the

cited papers revealed information on bu�er structures or gains therefore in some cases

the actual output power may be obtained by the use of power hungry gain stages. In

addition, the authors do not provide any information about temperature and process

variations and therefore one can't be sure about the behavior of these circuits under

normal manufacturing conditions. Thus, the performance of the proposed circuit may

be better since, as shown in this chapter, the process corners and temperature variations

are not a�ecting phase noise, power and tuning range signi�cantly.

7.10 434 MHz 90 nm NMOS OOK transmitter

The e�ect of negative resistance generation discussed in this thesis is independent of

the given CMOS process. At the time of preparation of the thesis, the UMC 90 nm

process libraries became available. This allowed us to con�rm if the presented circuit can

operate for a low supply voltage of 1 V and increased resistive losses of the transistors.

This section presents a complete OOK (On-O� Keying) transmitter architecture able

to achieve fast switching speeds. The OOK is historically the oldest type of electronic

modulation, dating back to the nineteenth century and wire telegraphy. Although

simple, OOK allows transmission of digital signals with relative ease thus it has become

a popular choice for many applications where reliability and simplicity are required, for

example biomedical applications [137�139]. The use of a degenerated active inductor

oscillator as the fast OOK transmitter is possible because the parasitic capacitances

of transistors are relatively small. As a result, the time necessary to charge these

capacitors is relatively short. Thus, if the power supply is switched on the circuit

reaches its steady state relatively fast. This in turn allows us to signi�cantly increase

the modulation speeds.
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7.10 434 MHz 90 nm NMOS OOK transmitter

CW

SW

D

Figure 7.30: Generic architecture of OOK transmitter.

Figure 7.30 presents a generic model of such a transmitter, where the continuous

wave from a signal generator is connected to the antenna through a digitally controlled

switch. The information is encoded in a form of pulsed version of the oscillator signal at

the carrier frequency. To minimise power dissipation, the OOK transmitter should not

consume any energy during the o� state, which in turn, requires fast transition times

to support modulation with high data rates.

7.10.1 Transmitter architecture

Figure 7.31 depicts the proposed concept of the OOK transmitter designed using UMC

90 nm process libraries and the NMOS degenerated gyrator circuit. The circuit consists

of three main components: bias network with switches; oscillator core; and a bu�er

ampli�er with 50 Ω load. As previously, most of the transistors used are not minimum

size devices due to the relatively poor ADC of 90 nm devices.

7.10.1.1 Switched bias network

The switched bias network allows us to turn on and o� the oscillator core and the output

bu�er. The transmitter is modulated using a binary signal and its inverted version

through the inputs D and D, respectively. A standard 1:1 current mirror topology

provides a constant bias current to the oscillator core. Transistors M8, M9, M11 and

M12 are used as transmission gates that deliver DC voltage for M3 and M6 current

sources, respectively. M7 and M10 eliminate charge stored in parasitic capacitances
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7.10 434 MHz 90 nm NMOS OOK transmitter

Figure 7.31: Complete schematics of OOK transmitter.
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7.10 434 MHz 90 nm NMOS OOK transmitter

during the o� period. Switches M14 and M15 act as active loads for the ampli�ers,

whereas M18 and M19 form a switchable biasing network.

7.10.1.2 Output bu�er

Due to the reduced power supply voltage available, amplitudes are much smaller than in

the case of the 180 nm circuit described previously. The oscillator signal therefore has

to be ampli�ed. The bu�er consists of three, class-A stages for improved linearity. DC

blocking capacitors of 1 pF were chosen to minimise time constants during switching,

allowing for faster transitions at the cost of a reduced output amplitude. As before, the

input ampli�er is a common drain voltage follower, providing high impedance load to

the oscillator core. Switch M14 acts as a linear resistor during the On state, while the

second stage compensates for losses in the non-ideal source followers. This is a common

source ampli�er with a switched PMOS linear resistor as a load. Finally, the output

stage is a tuned voltage follower with passive LC tank to maximise voltage swing on a

load resistor of 50 Ω. To avoid power dissipation due to a lossy inductor, its Q factor

should be as large as possible, however its value is not as crucial from the RF signal

perspective. The particular values of the LC tank components represent an optimised

trade-o� between peaking due to a rapid switching, signal distortion and response time.

The total voltage gain of the ampli�er in this example is set to 0 dB to avoid excessive

distortion due to large signal operation of the oscillator.

7.10.2 Simulation results

As previously, the circuit has been simulated in Eldo RF using transient and frequency

steady state simulations with noise. The oscillator core has been analysed in terms

of typical parameters: carrier frequency, tuning range and phase noise. For the bias

currents of 700 µA delivered to each of the transconductors, the core produces sinusoidal

oscillations at 433.7 MHz with an amplitude of 200 mV, and an average start-up time of

3 ns. If necessary, the oscillator can be tuned from 382 MHz to 495 MHz. In comparison
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7.10 434 MHz 90 nm NMOS OOK transmitter
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Figure 7.32: Simulated output voltage for 20 Mbps and 100 Mbps modulation speeds.

to the 180 nm circuit, the tuning range is smaller due to the larger mirrors, switching

circuitry and the reduced ADC of 90 nm transistors.

The phase noise at 1 MHz o�set from 434 MHz signal reaches -96 dBc/Hz. The

output ampli�er allows delivery of -4 dBm of RF power to a 50 Ω load. Figure 7.32

presents the circuit response for square wave modulation signal with 50% duty cycle.

Two modulation speeds were analysed: 20 Mbps and 100 Mbps. Power consumption of

the transmitter can be broken down into the following: 7.96 mW for the output, class

A ampli�er, 1.4 mW for the bias network and 1.4 mW for the oscillator core from a 1 V

power supply. Note that power consumption of the core is only 13% of the total DC

power necessary to operate the whole transmitter.

7.10.3 Performance comparison

At the time of the thesis preparation no active inductor based OOK transmitter has

been found in the available literature. Thus, the circuit performance is compared to the
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7.10 434 MHz 90 nm NMOS OOK transmitter

transmitters using passive LC resonators and operating at relatively low RF frequencies.

To achieve that, the �gure of merit function is used, however now focusing on an average

energy per transmitted bit rather than tuning range or phase noise of the oscillator used.

This function is given by [140]

FOMOOK =
PDC

Drate · PRF
(7.10)

where PDC is the DC power dissipation, Drate is the data rate and PRF is the output

power of RF signal from the transmitter. For PDC and PRF expressed in mW, and

Drate is given in Mbps, (7.10) has units of nJ/bit/mW. Some authors also present the

energy e�ciency of the OOK transmitter in pJ/bit without a contribution of the signal

power. Table 7.12 presents a comparative study of CMOS OOK transmitters found in

recent publications.

It can be seen that, although the presented transmitter circuit consumes more

power than the architectures using passive resonators, the obtained energy e�ciency

of 108 pJ/bit is in the same range. When the signal power is taken into account, the

resulting �gure of merit of 0.27 nJ/bit/mW makes the presented circuit an attractive

alternative to large size area passive implementations.

As an example, consider the two previously published OOK transmitters operating

at 434 MHz. The �rst circuit of Raja et al. [140] utilises an on-chip SAW-based LC

tank oscillator and integrated bu�er with o�-chip resonant network. The authors report

active area (without RF pads and routing) of 157.5·10−3 mm2 (525 µm by 300 µm). The

second circuit of Ryu et al. [138] employs an o�-chip 40 nH inductor. The reported chip

are includes pads and routing; however the provided high quality photography allows

us to estimate the active area of the chip as 160·10−3 mm2 (400 µm by 400 µm). In the

case of the proposed degenerated gyrator transmitter, the active area can be estimated

from Figure 7.31. To allow us a fair comparison, it is assumed that the wiring between

components increases total active area by 50%. A passive LC tank used by the bu�er is

considered o�-chip, as in the aforementioned publications. Thus, the estimated active

size of the proposed OOK transmitter is equal to 11.5·10−3 mm2 (107 µm by 107 µm).
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7.11 Chapter summary

It can be seen, that the degenerated gyrator with integrated bu�er occupies less than

7.5% of the active area of the alternative transmitters operating at the same frequency,

and using passive LC resonators. The additional advantage of the degenerated active

inductor OOK transmitter is the fractional tuning bandwidth of 26%, typically larger

than that of the most circuits from Table 7.12.

7.11 Chapter summary

This chapter presented a complete design of wideband CMOS degenerated gyrator os-

cillator. The results allow us to conclude that the proposed circuit architecture behaves

as predicted mathematically in Chapters 4- 6. The main contributions of the chapter

in relation with the practical oscillator design as follows:

� The complete design methodology of negative resistance oscillator. The design

method is presented in a clear, step by step manner and can be applied to any

oscillator circuit, not only one utilising an active inductor resonator. The process

starts from a small signal characterisation of a resonator. In the case of the

degenerated gyrator, the �rst step is the decision on the DC bias circuit. The

proposed oscillator architecture is based on a well known CS-CD gyrator circuit

which allows us to utilise a mutual bias of the devices using a feedback loop

and current mirrors. After DC simulations, the methodology follows the circuit

analysis under small and large signal conditions together with the process and

temperature variations.

� The small signal (AC) analysis has been carried out to characterise the active

inductor circuit. As predicted in Chapter 4, the use of a single RC phase shifter

is su�cient to generate negative resistance high enough to start oscillations. Al-

though the considered circuit had a more complex parasitic structure than initially

assumed, the shape of the obtained plots con�rms the main mechanisms were cap-

tured by the mathematical models. In this section a simple and intuitive method
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7.11 Chapter summary

of determining the resonant frequency of the tank was proposed and applied in

practice.

� The large signal (SST) analysis has been used to con�rm the non-linear behavior of

the circuit. It was shown that harmonic distortion due to a signal build up, limits

the oscillation amplitude through the compression of negative conductance. Due

to these e�ects, the simulated inductance is expanded which causes the drop of the

resonant frequency from its small signal value. Both e�ects have been predicted

applying the Volterra kernels technique to the simple non-linear mathematical

model of the degenerated gyrator from Chapter 5.

� The noise simulation conducted during the SST analysis illustrates that the LTI

model proposed in Chapter 6 predicts a correct order of magnitude of phase noise

in the degenerated gyrator. Although the linear time invariant approach to phase

noise in oscillator circuit has a relatively low accuracy, it allows one to obtain a

closed form solution indicating crucial parameters of the circuit and their contri-

bution to the total phase noise of the oscillator.

� The chapter presents an analysis of the in�uence of process and temperature

variations on the performance the proposed oscillator circuit. It was shown that

most typical scenarios can be compensated through the bias current �owing to the

oscillator core. The proposed circuit responds well to transistor process corners

but can be prone to temperature and passive component variations. In the worst

case, where RC components have smaller values than the nominal, the circuit

can stop oscillating for smaller bias currents. This shows how important the

process variations become in relation to the design process and should always be

considered. Unfortunately this type of analysis is rarely presented in the literature

on active inductor circuits, however this dissertation covers it thoroughly.

� At �rst, the presented circuit theory was con�rmed using 180 nm process libraries.

The obtained oscillator achieves a typical phase noise and tuning range perfor-
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7.11 Chapter summary

mance of active inductor VCO which was con�rmed by the analysis of �gure of

merit functions for various state of the art, gyrator-based architectures.

� It was shown that the negative resistance can be generated in the same gyrator

circuit designed using 90 nm CMOS process as well. As the presented circuit

has small parasitic capacitances, the oscillator signal settles relatively fast after

the power supply is switched on. As a result, it was shown that the degenerated

oscillator is suitable to operate as an OOK transmitter with a high data rate

modulation signal. In comparison to the state of the art CMOS OOK transmitters

the proposed circuit is as e�cient however consumes 3 to 10 times more DC power.

The advantage however is its compact size (more than 90% reduction of active

area) in comparison to the oscillators using SAW and FBAR resonators.
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Chapter 8

Conclusion and future work

8.0.1 Conclusions

The invention of voltage controlled oscillators made radio transmission possible. Due

to the rapid developments of various systems operating at di�erent frequencies, it is

important that a single oscillator is able to tune to a wide range of carrier frequencies.

At the same time the oscillator has to have low phase noise, small power consumption

and allow full on-chip integration, using the minimum area possible. Some of these

requirements inherently contradict each other and for this reason it is important to

study various solutions leading to the robust and versatile design of harmonic oscillators.

One such technique involves the use of active inductors that although have limited

performance in comparison to passive LC based VCOs, allow for a high degree of circuit

integration.

This thesis presented a new design methodology for a self-oscillating active inductor,

that reduces the oscillator circuit to the single resonant tank and does not require any

external circuitry to compensate the circuit losses. This was achieved by the use of a

simple passive RC network that when connected to the standard gyrator circuit, allows

us to generate negative resistance. Although over the years, some active inductors with

internally generated negative resistance have been published, little has been done to

explore the fundamental properties of these circuits. Before this thesis there were no
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known attempts to utilise this technique to obtain a wideband integrated VCO. We also

provide the reader with a thorough explanation of the small signal behavior and noise,

non-linear properties and phase noise of the circuit. This dissertation addresses these

issues as follows:

1. The minimum number of phase shifters required for oscillations in an

active inductor. It was shown that a single RC phase shifter is su�cient to

produce negative resistance, large enough to compensate the circuit losses. It was

proven that connecting this network at the input of the feedback transconductor

allows us to obtain wide frequency range of operation whilst keeping the self-

resonant frequency high.

2. The sensitivity of the proposed circuit was studied. In general, this topic

is commonly omitted in the literature on any active inductor circuits, hence the

conducted sensitivity analysis is a valuable contribution. It was shown that the

�nite tolerances of integrated RC networks cause the oscillator to operate at a

di�erent frequency than designed for however this can be compensated by �ne-

tuning of transconductances of the gyrator ampli�ers.

3. The e�ect of transistor losses was discussed. It was illustrated how the �nite

output conductances of MOS devices reduce the tuning range of the proposed

oscillator. For this reason it is important to use transconductance ampli�ers with

high gm to gout ratio (DC gain). In the case of single MOS transconductors,

devices with the minimum length allowed by the technology have poor DC gain

values, resulting in increased losses and therefore are not optimal to use in the

proposed oscillator circuit.

4. The proposed linear model of the oscillator allows us to con�rm the oscil-

lation criteria using a set of simple formulae. The expressions for the negative

conductance and the resonant frequency have been found and analysed, showing
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that the proposed oscillator can achieve very wide fractional bandwidth in the

range of 70%.

5. The noise of an active inductor with a RC shifter has been analysed.

A new set of formulae describing the noise behavior of the circuit con�rmed that

its noise is inversely proportional to the loaded quality factor of the gyrator based

resonator. The presented analysis shows that low-pass characteristics of the RC

circuit allows us to decrease the amount of noise it injects into the resonator.

6. Thesis presented a new non-linear model of the proposed circuit, derived

using the known method of Volterra kernels. It was shown that due to the non-

linear character of the transconductance ampli�ers, the resulting harmonics are

responsible for compression of negative conductance for large signal amplitudes.

This conductance compression is the main mechanism of amplitude stabilisation

observed in the proposed circuit. The same harmonic products are also responsible

for the expansion of the simulated inductance and cause the oscillator to operate

at a lower amplitude than expected from the small signal model.

7. A new linear, time invariant phase noise model of the proposed circuit

was derived. Although simple, the model allows us to obtain a closed form

solution, and to study possible ways to improve the phase noise of a practical

circuit.

8. The practical CMOS self-oscillating active inductor was designed and

simulated for di�erent process and temperature variations. All of the theoretical

�ndings presented in this dissertation were con�rmed, proving their validity.

9. A new fully integrated 434 MHz OOK transmitter circuit using the

proposed oscillator was designed. The circuit supports digital modulation

speeds up to 100 Mbps with energy e�ciency comparable to that of a standard

passive LC oscillator circuit, but occupying only a fraction (7.5%) of its passive

area, at the expense of a 3-5 more power consumption.
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8.0.2 Future work

The future development of the presented technique requires an operating prototype

that allows us to obtain empirical measurements. Recently, Medjahdi and Calmon [146]

presented a 0.25 µm CMOS development of the self-oscillating circuit of Szczepkowski

et al. [125], showing post-layout simulation results, matching the theory presented in

this thesis. Authors reported the fractional tuning range of 60%, with core power

consumption of 13 mW and phase noise level of -93 dBc/Hz at 1 MHz o�set from the

carrier. Silicon prototypes are expected for characterisation from this work.

The performance of the proposed oscillator circuit could be further improved if less

noise was introduced by the transistors. This in turn implies the use of bipolar transis-

tors. In recent publication of Rohde and Poddar [147] presented an implementation of

a 5 GHz standard, two transistor active inductor oscillator using discrete BJT devices.

The measured phase noise is better than 105 dBc/Hz at 100 kHz o�set from the carrier

frequency form from 3 V power supply, thus matching that of fully integrated oscilla-

tors with spiral active inductors. This would suggest a pro�table avenue for further

development for our circuit architecture.
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Appendix

88-108 MHz integrated VCO

A.1 Introduction

To show that PMOS transistors can be also employed, a VCO for a 88 MHz-108 MHz

radio broadcast system is presented. At these frequencies, a sinusoidal oscillator with

passive LC tank is not practical due to its size. Assuming a center frequency of 98 MHz

and tank capacitance in the range of 10 pF, inductance in the range of 270 nH is

required. This is 20 times more than the largest spiral inductor in 180 nm process can

provide. To save space, a passive LC oscillator can be designed at high frequency where

LC values can be integrated. The frequency is then decreased using a cascade of power

hungry frequency dividers. Designing oscillator at 1 GHz, a division ratio of 10 would

be required. The drawback is a signi�cant power dissipation.

The degenerated gyrator presented in this thesis combines a compact size with a

relatively small power consumption and its suitable for low voltage design. Figure A.1

depicts complete oscillator circuit that consists of the oscillator core, voltage tuned bias

mirrors, output ampli�er and integrated tank capacitance. Each block is described in

more detail in following subsections. The circuit is another version of the basic oscillator

depicted on Figure 7.24. The following modi�cations were made:

� All transistors were changed to their complementary devices. The same voltage

bias scheme (Figure 7.2) is used.
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A.2 Oscillator core

� The reference current IB is generated by NMOS voltage tuned resistors.

� The oscillator output bu�er is now the CS ampli�er, providing signal gain to the

capacitive load. The bu�er is connected to the gyr_in node.

A.2 Oscillator core

The core consists of four devices, where M7 and M8 are CS and CD transconductors,

respectively. TransistorsM9 andM10 provide constant bias current. As the bias scheme

is the same as from Section 7.3, gate voltages of each device are in the range of 600 mV

to 700 mV. As inductance is inversely proportional to gm2, a the transconductance in

the range of 6 mA/V is required. Thus, PMOS transistors are more than two times

larger than their NMOS counterparts. Both transconductors consists of 6 devices of 6

�ngers each with 6 µm per �nger for CS ampli�er and 7 µm per �nger for CD device.

The phase shifter consists of 6.5 kΩ RF resistor and two 0.34 pF MIM capacitors.

A.3 Voltage tuned bias mirrors

To construct the VCO, a tuning voltage has to be converted to a current driving both

mirrors. If a single transistor is used, its transconductance is too high for the given

overdrive and reference current. As a result, only a fraction of possible tuning voltage

range can be utilised, resulting in very large tuning constant.

This problem can be resolved using current bypass devices. Transistors M3 and

M5 act as resistors sinking current IC from the mirrors. Transistors M4 and M5 act

as voltage to current converters, carrying current Itune < IC . As a result, total bias

current IB = IC +Itune, and since IC is constant, mirrors are tuned only with a fraction

of total reference current. The tuning voltage spans now from Vth to VDD.
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A.4 Output ampli�er and tank capacitance

A.4 Output ampli�er and tank capacitance

Oscillator is designed to drive a mixer and load is capacitive. As described previously,

common source inverting bu�er is more suitable to drive such loads, however due to

larger input capacitance it has to be connected to the output of CD transconductor.

This port produces relatively low amplitude and the output bu�er provides gain to

boost the signal. The power consumption of bu�er is less than 14 mW from 1.8 V

supply.

Figure A.2 depicts the circuit. To minimise Miller capacitance, a tuned RF cascode

is used where the top transistor acts as common gate ampli�er. The top resistor sets

the quality factor of the tank. Ls is an o�-chip inductor in the range of 1 µH to 10 µH.

The exact value depends on the load capacitance and hence, input impedance of mixer

has to be characterised a priori. Bu�er voltage gain is equal to 5. The capacitance of

10 pF is realised of two 70 µm by 70 µm MIM capacitors connected in parallel.

A.5 Simulation results

Figure A.3 shows the tuning curve of the oscillator as a function of tuning voltage VTune.

The tuning range spans between 84 MHz and 116 MHz for VTune of 0.5 V and 1.8 V,

respectively. Non-linear behavior at small tuning voltages is caused by the voltage to

current converters (M4, M5) reaching their cut-o� point. For the centre frequency of

98 MHz, fractional bandwidth of 33% is obtained. Phase noise at 1 MHz o�set from

the center frequency is equal to 104.8 dBc/Hz and the maximum power consumption of

the core is only 1.37 mW. FOMT of -153.6 dBc/Hz is caused by relatively high phase

noise level at this low RF frequency. FOMTP can not be calculated as reactive loads do

not receive real power. Despite the high phase noise, the circuit produces amplitudes

exceeding 620 mV at 1 pF load (Figure A.4) which are su�cient to drive mixer in a

large signal regime.
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A.5 Simulation results

Figure A.1: Complete PMOS oscillator circuit.
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A.5 Simulation results

Figure A.2: NMOS tuned cascode output bu�er.
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A.5 Simulation results
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Figure A.3: Simulated tuning curve of PMOS oscillator.
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