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Abstract

A Bayesian multi-category kernel classification method is proposed. The hierar-
chical model is treated with a Bayesian inference procedure and the Gibbs sampler
is implemented to find the posterior distributions of the parameters. The practical
advantage of the full probabilistic model-based approach is that probability dis-
tributions of prediction can be obtained for new data points, which gives a more
complete picture of classification. Large computational savings and improved clas-
sification performance can be achieved by a projection of the data to a subset of
the principal axes of the feature space. The algorithm is aimed at high dimensional
data sets where the dimension of measurements exceeds the number of observa-
tions. The applications considered in this paper are microarray, image processing
and near-infrared spectroscopy data.

1 Introduction

Supervised learning for classification can be formalized as the problem of inferring a func-
tion f(x) from a set of n training samples xi ∈ RJ and their corresponding class labels yi.
The model developed in this paper is aimed at multi-category classification problems. Of
particular interest is classification of high dimensional data, where each sample is defined
by hundreds or thousands of measurements, usually concurrently obtained. Such data
arise in many application domains, for example, the genomic and proteomic technologies,
and their rapid emergence in the last decade has generated much interest in the statistical
community, as analysis of such data requires novel statistical techniques. The applica-
tions considered in this paper are microarray, image processing and near-infrared (NIR)
spectroscopy data where the dimension of the variables J exceeds ten to twenty - fold the
number of samples n.

In this paper we present the Bayesian Kernel Projection Classifier (BKPC), a multi-
category classification method based on the reproducing kernel Hilbert spaces (RKHS)
theory. The proposed classifier performs classification of high dimensional data without
any pre-processing steps to reduce the number of variables. RKHS methods allow for non-
linear generalization of linear classifiers by implicitly mapping the classification problem
into a high dimensional feature space where the data is thought to be linearly separable.
Due to the reproducing property of the RKHS, the classification is actually carried out
in the subspace of the feature space which is of dimension n << J . Kernel classifiers
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function through the kernel matrix K whose dimension is only dependent on the number
of observations n. If they work well, they condense the information in the large variable
space to this smaller dimension. Therefore, kernel methods are ideally suited for high
dimensional data, such as the data sets considered in this paper. The main difference
between the BKPC and other kernel classifiers is that BKPC is constructed so that it
performs the classification of the projections of the data to the principal axes of the fea-
ture space. Large computational savings and improved classification performance can be
achieved if the underlying structure of the feature space can be adequately summarized
by a small subset of the principal axes.

Kernel methods were first introduced into statistical learning by (1) and later re-
introduced by (2) who constructed the Support Vector Machine, a generalization of the
optimal hyperplane algorithm for binary classification. Bayesian treatments of this popu-
lar deterministic statistical learning method were motivated by the need to overcome the
problem of quantifying uncertainty of SVM predictions, as Bayesian framework allows for
probabilistic outputs to be obtained from the predictive distribution. Statistical learning
models usually have complex structure and contain parameters that need to be tuned,
which is often done via cross-validation. In can be argued, see for example (3), that the
Bayesian framework is a natural setting for statistical learning algorithms, as decisions on
the complexity of structure and parameter settings can be approached by specifying prior
distributions, which formalizes the prior beliefs about which inputs are relevant, what a
distribution of a parameter is or how smooth a function is.

Many Bayesian treatments of deterministic kernel methods have been developed, but
only a subset of most relevant approaches are discussed here. (4; 5; 6; 7; 8) use Gaussian
process priors to SVM classification models. For other basis function models that have
been fitted in Bayesian framework via Gaussian processes see (3; 9; 10; 11).

The Relevance Vector Machine (RVM) (12) is an alternative Bayesian formulation of
SVM, developed for both classification and regression with the aim of obtaining a sparse
solution. The sparseness is induced in the model through the prior structure; see (13) for
an in-depth discussion on the sparsity in RVM. Following the work of (14), (12) re-cast
the SVM as regularization problem where the aim is to minimize a loss function L subject
to a penalty term over a set of regression coefficients β:

min
β

[
L(y,Kβ) + τβTKβ

]
. (1)

The model function is a linear combination of the reproducing kernels and is in the
dual form. (12) use a binary logistic likelihood to model loss and assume a relatively
standard prior structure for regression coefficients. (15) proposed a similar model to the
RVM, but uses a probit likelihood for binary classification and places double exponential
priors on regression coefficients, which are known to promote sparseness (16; 17). Note
that the RVM model can be viewed as an implicit formulation of the Gaussian process,
where the prior is a Gaussian process over then model functions f expressed in the primal
form, i.e. as a (possibly infinite) linear combination of the feature space bases. For a
more detailed discussion see (11).

The approach of (15) obtains MAP estimates for the model parameters via expecta-
tion maximization algorithm. The RVM (12) employs the empirical Bayes approach. (18)
adopt the same model construction and prior structure as the RVM, however, rather than
estimating the hyperparameters, they assign distributions to them and employ an MCMC
sampling algorithm. In addition to the binary logistic likelihood, (18) also consider a
stochastic version of the SVM likelihood. The practical advantage of the full probabilistic
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approach is that probability distributions of prediction can be obtained for new observa-
tions, which gives a more complete picture of classification. By assigning priors to the
hyperparameters, the binary classifier of (18) accounts for the uncertainty due to their
estimation. A practical disadvantage of such an approach is the relative slow convergence
rate caused by the block updating of regression parameters which requires computations
involving matrices of dimension n × n, where n is the number of training samples, at
each iteration of the MCMC algorithm. In addition, due to over-parameterization, the
algorithms exhibit poor mixing even though good classification rates are reported.

In this paper we extend the Bayesian classification model of (18) to a multi-category
kernel classifier. A related approach is the Bayesian Multi-category Support Vector Ma-
chines (MSVM) (19) who also follow the model construction and choice of prior architec-
ture of (18), however, they use a stochastic multi-class hinge loss function. The disadvan-
tage of this model is that the MSVM likelihood may involve some regression parameters
in the normalizing constant which requires a more complex parameterization than the
multinomial logistic regression model.

The central contribution of the paper is the proposal of the Bayesian kernel projec-
tion classifier, where, by reducing the number of principal axes from the analysis, the
dimensionality of the pseudo-design matrix is reduced, which makes BKPC a more effi-
cient algorithm than the above mentioned approaches. In addition, we observed that the
sparser set of uncorrelated principal axes contained sufficient class discrimination infor-
mation so that improved classification rates were obtained for the data sets considered.

The paper is organized as follows; Sect. 2 describes a Bayesian multi-category kernel
classifier (BMKC) which is a multi-category extension of the model of (18). The like-
lihood is modeled through the multinomial logistic regression model and the relatively
standard hierarchical prior structure for Bayesian generalized linear models is assumed.
The Gibbs sampler is implemented to find the posterior distributions of the parameters
and the practical aspects of this implementation are discussed. Bayesian Kernel Projec-
tion Classifier (BKPC) is presented in Sect. 3. The sparsity from the projection step
and the implementation advantages of this algorithm are outlined. Sect. 4 gives a brief
description of the data sets used. The classification results are presented in Sect. 5 and
the concluding remarks are given in Sect. 6.

2 Bayesian Multi-category Kernel Classifier (BMKC)

The training data are n samples (x1,y1),...,(xn,yn) where the predictors xi = (xi1, ..., xiJ)
are real valued J- dimensional vectors of feature values and yi = (yi1, ..., yiK) are K-
dimensional categorical response variables with yik = 1 if xi belongs to a class k and 0
otherwise. A standard approach to this classification problem is the multinomial logistic
regression model given by:

P(y|z) =
n∏
i=1

K∏
k=1

P(yik = 1|zik)yik , (2)

where P(yik = 1|zik) is defined as:

P(yk = 1|x) =
exp(zk)∑K
l=1 exp(zl)

, (3)

and zik are linear combinations of the kernel functions:
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zik(xi, βk, θ) =
n∑
l=1

βklK(xi,xl|θ) = Kiβk, (4)

for i = 1, ..., n where βk are regression parameters βk = [β1k, β2k, ..., βnk] corresponding
to class k, for k = 1, ..., K − 1. Ki is the ith row of matrix K. In this application only
Gaussian kernels are considered:

K(xi,xl|θ) = exp(−θ||xi − xl||2). (5)

This is essentially the multi-category extension of the binary kernel classifier presented
by (18).

2.1 Prior Specification

In a Bayesian inference approach, priors are assigned to the model parameters. The prior
model is specified as:

zik ∼ N(Kiβk, σ
2),

βk ∼ MVN(0, σ2T−1
k ),

σ2 ∼ IG(γ1, γ2),

τik ∼ G(γ3, γ4).

Tk is a matrix with diagonal entries τ1k, ..., τnk. G denotes a gamma prior, IG an
inverse gamma and MVN is a multivariate normal of dimension n.

Note that this is a relatively standard hierarchical prior structure for generalized linear
models and is used by (18) for binary classification. In order to improve the mixing and
convergence of the MCMC algorithm, the latent variables are given a normal prior with
means Kiβk and standard deviation σ2. This allows for direct block updating of regression
coefficients from the joint conditional density (18; 20; 21).

2.2 Inference

A Metropolis-within-Gibbs algorithm was used for sampling from the posterior. The
output from the MCMC is a set of samples (β(m), z(m), σ2 (m), τ (m)), for m = 1, ...,M iter-
ations, obtained from the joint posterior distribution after a period of ‘burn-in’ iterations.
The joint posterior distribution is given by:

P(β, z, τ, σ2|y) ∝ P(y|z, β, τ, σ2)P(z|β, σ2)

× P(β|τ, σ2)P(τ)P(σ2). (6)

The full conditional distributions that were sampled from for each parameter in the
model are given in Appendix A.

The MCMC algorithm is implemented so that it iterates through block updates of the
parameters starting with z. Each zi = [zi1...zi(K−1)] is proposed to be updated condition-
ally on the rest of the parameters including the matrix z without the ith element. The
proposal density for zi is a random walk and is sampled using a Metropolis step within
the Gibbs algorithm. Subsequently, parameters β, σ2 and τ are block updated directly
from their conditionals via Gibbs steps.
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2.3 Practical Aspects of Implementation

The MCMC algorithm was implemented in the C programming language. The most time
consuming aspect involves inverting square matrices with dimension equal to the number
of observations. The fact that the matrices are symmetric can be exploited to make the
computation easier by using Cholesky decomposition, which runs in time proportional to
n3, see (22) or (23). The Cholesky decomposition of matrix Vk = LLT is used to compute
the determinant of Vk, which is the square of the product of the diagonal elements of
L and to generate vector valued samples from MVN(n)(mk, σ

2Vk). If ε is a vector of

components that are i.i.d. N(0, 1) then β
(m)
k = mk + σLε.

2.4 Prediction

A new observation x∗ is classified in class k∗ = arg maxk P(k|x∗,x,y). This is given by
the usual Monte Carlo integration approximations:

P(k|x∗,x,y) ≈ 1

M

M∑
m=1

exp(K∗β
(m)
k )

1 +
∑K−1

l=1 exp(K∗β
(m)
l )

, (7)

∀k = 1, ..., K − 1, where K∗ = [K(x∗,x1|θ), K(x∗,x2|θ), ..., K(x∗,xn|θ)] and β
(m)
K = 0.

2.5 Modeling the Latent Spatial Dependence

The response data has a latent spatial dependence, since neighbouring features are likely
to have the same class label. In the multinomial regression model used, the responses
are independent given the latent variables, see equation (2). However, this dependence is
implicitly modelled, as the latent variables are spatially dependent on each other and have
a spatial structure through the kernel. Intuitively, for a two-dimensional data set, one
can think of the linear combination of the kernel functions as a nonlinear generalization
of a plane. This two-dimensional spline surface is essentially the kernel density, weighted
by the regression coefficients βl. The regression coefficients βl place more weights on the
kernels of the corresponding sample points xl from the training data xl ∈ R2, ∀l = 1, ..., n.
The implied spatial dependence of the classification probability obtained for a two dimen-
sional, two class, Ripley’s synthetic data (24) can be seen in Figure 1. The classification
probability P(y = 1|x∗,x,y, β(m)) can be obtained for some parameter realizations β(m)

from the full posterior distribution and can be evaluated for a particular state x∗ ∈ R2.
The plot in Figure 1 shows the classification probability surface across the domain of the
training data.

2.6 Advantages of the Full Probabilistic Approach

In Ripley’s synthetic data (24) each class is set to be a mixture of two Gaussians with
the optimal error rate of 0.08. There are 200 training and 1,000 testing samples. The
proposed classifier allows for posterior distributions to be obtained through simulation,
as opposed to just MAP estimates, which gives a more complete picture of classification.
Thus, for each new observation x∗, the probability

P(k|x∗,x,y, β(m)) =
exp(K∗β

(m)
k )

1 +
∑K−1

l=1 exp(K∗β
(m)
l )

(8)
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Figure 1: The marginal probability of classification for the domain of the data for Ripley’s
two-dimensional synthetic data set.

is calculated for each class k = 1, ..., K − 1 for sets of samples β(m) from m = 1, ...,M
iterations of the parameters from the joint posterior taken after a ‘burn-in’ number of
iterations. The MAP estimate can be obtained from the Monte Carlo Integration. Figure
2 displays histograms of realizations from the posterior distributions P(y = 1|x∗,x,y, β(m))
of predictions for four test observations from Ripley’s synthetic data set. Note that this
information can be particularly useful for examining borderline observations.

The result of a classification of this two-dimensional data set can be graphically dis-
played. The multinomial regression model obtains a classification probability surface
across the domain of the training data. However, the full probabilistic approach results
in a set of realizations of the classification probability surfaces from the posterior density.
From these realizations, it is possible to estimate the MAP classification probability sur-
face and information about the certainty of this estimate is available. Whereas it is difficult
to plot a set of overlaid surfaces P(y = 1|x∗,x,y, β(m)), for some samples m ∈ {1, ...,M},
Figure 3 shows the classification boundary, i.e. P(y = 1|x∗,x,y, β(m)) = 0.5 obtained for
25 samples of β from the posterior and the mean boundary curve.

The classification results of the BMKC are good, obtained was the error rate of 0.098
which is comparable to results reported by (12), and (16) who obtain 0.093 and 0.095
respectively.

3 Bayesian Kernel Projection Classifier (BKPC)

In this section, the Bayesian Kernel Projection Classifier (BKPC) is proposed. This is
a modification to BMKC, but instead of working with the data mapped to some feature
space via Φ(x), the classification is performed in the space spanned by the principal axes of
the feature space. The general hope of this approach is that the underlying structure of the
feature space can be adequately summarized by a small subset of the principal axes. The
mapping of the data and the eigen-decomposition of the covariance matrix Cov(Φ(x)) is
carried out implicitly via the kernel matrix. This is also the mechanism behind the Kernel
Principal Components Analysis (KPCA) of (25) and the data projections to the principal
axes are the kernel principal components.
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Figure 2: Histograms of realizations from the posterior distribution of predictions P(y =
1|x∗,x,y, β(m)) calculated at some m ∈ {1, ...,M} for four observations from Ripley’s test
data set. The range of values P(y = 1|x∗,x,y, β(m)) can take is between 0 and 1. The first
MAP estimate for the first observations will place it in class 1, the second observation
will be placed in class 2 etc.
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Figure 3: Twenty-five classification boundaries from the posterior distribution, including
the posterior mean boundary for the two-dimensional synthetic data set.
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Figure 4: A simulated dataset with the lines of constant principal component value for
the first three eigenvectors (given from left to right). A Gaussian kernel with bandwidth
θ = 5 was used.

KPCA maps the data xi ∈ RJ into a high dimensional feature space and then projects
the mapped data Φ(x) to a subspace of the feature space. In the KPCA literature, the
vector xi is often referred to as the pre-image of Φ(xi). Note that, typically, the KPCA
subspace will not have a pre-image in the input space. Techniques have been proposed
for finding approximate pre-images of data projected on a subset of the eigenvectors, see
for example (26; 27).

(25) and (28) note that the first few eigenvectors of the KPCA can be used for sep-
arating clusters in two dimensional data, see, for example, the simulated data in Figure
4. They suggest extracting nonlinear principal components and then training a support
vector machine, thus constructing a multi-layer SVM. The multi-layer formulation evades
pre-image reconstruction, but the evident disadvantage of this algorithm is loss of inter-
pretability as the data are mapped to a feature space twice.

The Bayesian Kernel Projection Classifier is a somewhat different approach to using
KPCA to aid classification. It follows the model construction of BMKC, however, the
kernel matrix K is replaced with the matrix of kernel principal components:

K = (nΛ)−1/2K̃U, (9)

where K̃ is a kernel matrix of the ‘centered’ mapping, given by:

K̃ = K−AK−KA + AKA (10)

where A is a n× n matrix with all entries equal to 1/n (25) and U and nΛ are matrices
of eigenvector and eigenvalues obtained from:

K̃ = UnΛUT . (11)

Thus, the latent variables zik become:

zik ∼ N(Kiβk, σ
2), i = 1, ..., n, (12)

where Ki is the ith row of matrix K.
Consider the two dimensional, two class ‘circle data’ from Figure 4. BMKC from

Sect. 2 fits a logistic regression model to the data mapped to a high dimensional feature
space. By application of the kernel trick, the algorithm is working in the small subspace
of the full feature space, which is spanned by the reproducing kernels {K(xi, ·|θ)}ni=1

and whose dimension is at most equal to the number of observations. The first nine
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Figure 5: The ‘circle’ data are mapped to the feature space spanned by reproducing
kernels. Only the first 9 reproducing kernels are plotted.

reproducing kernels of the ‘circle data’ are plotted in Figure 5. The graph shows that
the reproducing kernels are highly correlated and only a subset is needed for a good
classification model. The Bayesian Kernel Projection Classifier, however, fits the logistic
model to the projections of the data to the principal axes of the feature space. Figure 6
shows the first three bases of the KPCA subspace for the ‘circle data’.

Note that the proposed model does not require pre-image calculations as the classi-
fication is performed in the same feature space as the PCA. This is the main difference
between the BKPC and the multilayer formulations suggested by (25) and (28).

3.1 Sparsity from the Projection Step

A kernel classifier with a sparse solution depends only on the kernel function evaluated
at a subset of training points. An example is the Support Vector Machine where only a
set of support vectors is retained in order to make predictions for new inputs. For the
Bayesian kernel classifier described in Sect. 2, sparsity can be achieved by setting a subset
of the regression parameters to zero, i.e. setting βlk = 0 for l = n′, ..., n, k = 1, ..., K − 1.
Obvious advantages of a solution with a fewer number of basis functions are that it is
easier to interpret and will generalize better.

For highly correlated mapped data, the diagonalization of the kernel matrix will yield
many eigenvalues nλl equal to zero. In that case, the corresponding principal axes can be
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Figure 6: First three KPCs of circular simulated data are plotted. Note that the first
eigenvector separates the two classes of observations.

removed from the analysis For example, Figure 6 indicates that only the first principal
axis is needed in order to achieve linear discrimination in the mapped space for the ‘circle
data’. In the BKPC, setting parameters βl = 0 removes the lth KPCA basis from the
model.

The degree of ‘sparseness’ can be regulated through a threshold parameter t, that
is specified prior to running the algorithm. The largest n′ eigenvalues nλl and their
corresponding eigenvectors are included in the model, where n′ is chosen so that it is the
smallest number that satisfies the condition below:

n′∑
l=1

λl∑n
i=1 λi

≥ t, 0 < t ≤ 1. (13)

Thus the parameters included in the model are σ2, zik,τkI and βkI , ∀k = 1, ..., K − 1 and
I = {l = 1, ..., n′}.

3.2 Inference for Sparse Model

Consider a sparse model where some regression parameters βl are set equal to 0. Let
I = {l = 1, ..., n′|βl 6= 0} and Ī = {l = n′, ..., n|βl = 0}. The conditional distribution for
βI |βĪ = 0 is given by:

P(βI |βĪ = 0, z, τ, σ2) =
K−1∏
k=1

MVN(n′)(m̃k, σ
2Ṽk), (14)

where m̃k = mkI −Vk2V
−1
k4 mkĪ is of dimension n′ × 1, Ṽk = (Vk1 −Vk2V

−1
k4 Vk3), is

of dimension n′ × n. Note that mkI and mkĪ are block components of

mk =

(
mkI

mkĪ

)
with sizes

(
n′ × 1

(n− n′)× 1

)
and Vk1, Vk2, Vk3 and Vk4 are block components of

Vk =

(
Vk1 Vk2

Vk3 Vk4

)
with sizes

(
n′ × n′ n′ × (n− n′)

n′ × (n− n′) (n− n′)× (n− n′)

)
, where mk =

VkK
Tzk and Vk = (KTK + Tk)

−1

The conditional distributions of the other model parameters are given in Appendix B.
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3.3 Implementation Issues in Sparse Classifiers

Implementation of the BKPC algorithm involves spectral decomposition of K̃, the kernel
matrix of the ‘centered’ mapping, prior to the MCMC run. The parameter updates require
calculating mk = VkK

Tzk and Vk = (KTK + Tk)
−1, and subsequently decomposing

them to block components in order to get: m̃k = mkI −Vk2V
−1
k4 mkĪ and Ṽk = (Vk1 −

Vk2V
−1
k4 Vk3).

Let:

K =

(
K1 K2

K3 K4

)
and Tk =

(
TkI 0
0 TkĪ

)
both with sizes

(
n′ × n′ n′ × (n− n′)

n′ × (n− n′) (n− n′)× (n− n′)

)
.

It can be shown using Shur complement that:

(Vk1 −Vk2V
−1
k4 Vk3)−1 = KT

1 K1 + KT
3 K3 + TkI , (15)

and

mkI −Vk2V
−1
k4 mkĪ = (KT

1 K1 + KT
3 K3 + TkI)

−1

× KT
1 zkI + KT

3 zkĪ , (16)

where zk =

(
zkI
zkĪ

)
with sizes

(
n′ × 1

(n− n′)× 1

)
.

Thus it is possible to work with matrices K whose columns corresponding to Ī =
{l = n′, ..., n|βl = 0} are deleted. It follows that Cholesky decomposition and other
computationally demanding operations of the proposed algorithm BKPC are only applied
to matrices of dimension n′×n′, hence large computational gains can be achieved for very
sparse models.

3.4 Prediction

For test points x∗i ∈ RJ , where i = 1, ..., n∗, the n∗ × n inner product kernel matrix is
given by:

K∗il = K(x∗i ,xl|θ),∀i = 1, ..., n∗,∀l = 1, ..., n. (17)

Similar to (10), inner product matrix of the test observations centered in the feature
space can be expressed in terms of K∗:

K̃∗ = K∗ −A∗K−K∗A + A∗KA, (18)

where A∗ is a n∗×n matrix with all entries equal to 1/n. The new observation is projected
on the principal axes of the mapping Φ(x∗) by:

K∗l = (nλl)
−1/2K̃∗ul, (19)

where l = 1, ..., n′ and K∗l denotes the lth column of the n × n′ matrix K∗. The
observation x∗ is classified in class k∗ = arg maxk P(k|x∗,x,y) by employing the usual
Monte Carlo integration approximations:

P(k|x∗,x,y) ≈ 1

M

M∑
m=1

exp(K∗β
(m)
k )

1 +
∑K−1

l=1 exp(K∗β
(m)
l )

(20)

∀k = 1, ..., K − 1.
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Figure 7: Individual observations in the wine data are plotted and coloured by groups.
The graphs shows that there is a systematic difference between the three groups in different
parts of the feature space.

4 Application: High Dimensional Data

4.1 Wine Data

The data are the results of a chemical analysis aimed at classifying wines of three different
origins. The wines were grown in the same region but come from different cultivars. The
analysis determined the quantities of thirteen constituents found in each of the three
types of wines. 178 samples were tested. The data set is available from UCI repository
of machine learning databases (29). A plot of the data is given in Figure 7.

4.2 Microarray Data

(30) describe gene expression profile data consisting of eighty-three mRNA microarray
slides. Each microarray slide corresponds to an individual suffering from one of four
tumour types (EWS, BLC, NB and RMS). The total of 2308 genes profiles are reported
for each slide. This corresponds to a four category classification problem with a large
number of features (J = 2308) and small number of observations (n = 83). The aim of
the analysis is to classify the slides into one of four tumour types on the basis of the gene
profiles.

4.3 NIR Spectroscopy Data

The data come from a food authenticity study (31): analysis of spectra of raw homogenized
meat samples recorded over the visible and near infra-red wavelength range (400 − 2498
at intervals of 2 nm, so recorded are 1050 reflectance values) in order to classify samples
into five individual species (chicken, turkey, pork, beef and lamb). A four class problem
where chicken and turkey are grouped together into a ’poultry’ class is also considered
for the purposes of classification. Altogether, there are 1050 features and 231 samples in
the study A plot of the data is given in Figure 8. Each meat sample is plotted across
the feature space and coloured according to its classification group. The plot shows the
most apparent differences between the groups in the visible range of the spectra, which
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Figure 8: Individual observations in the NIR spectroscopy data are plotted and coloured
by groups: blue and black correspond to the red meat, green is pork and magenta and red
correspond to poultry. The visible range of the spectra corresponds to the range [0,150]
in this graph.

corresponds to the [0,150] section of the feature space. Note that these wavelengths
differentiate the colour of the samples so the segregation is between the red and white
meat groups.

4.4 Animal Categorization Data

Object recognition is a widely studied problem which has been tackled by a variety of
different models. The long term aim of such research is to achieve human levels of recogni-
tion accuracy across a large number of object classes in images varying in location, scale,
orientation, illumination and subject to occlusions. Animals in natural scenes constitute
a challenging problem due to large intra-class variability in terms of shape, texture, size,
pose, location in the scene, number of animals etc.

The data set is made up of images that are a subset of the Corel database, which
contains 59,795 images of a wide variety of scenes, 8,114 of which are of animals. Four
classes of animals were considered: tiger, elephant, goat and lion. 100 images from each
class were randomly selected.

The success of the classification depends on the quality of the features summarizing
the images. For this task local features which form the ‘bag of keypoints’ histogram
with order of 3013 features were considered. This set of features was obtained by first
detecting the areas of high interest in each image and then extracting the colour, texture
and structure information from each area. This information is combined into a histogram
of frequencies of the occurrence of certain structures in the image. The data was scaled
to have equal standard error across the features.

5 Results

The BKPC was used to fit the data sets described in Sect. 4. For all of the data sets,
ten random splits into training and testing data were used. In each case, the algorithm
was run for 100,000 iterations, of which the first 9,000 were discarded as ‘burn-in’.
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Table 1: Average misclassification error in the test set obtained from ten random splits
of the data sets. Standard deviations are given in brackets. The results are given for
runs of the BMKC algorithm proposed in Sect. 2 and the BKPC algorithm described
in Sect. 3. The corresponding threshold t setting and the number of largest projections
included in the analysis for the given threshold are given. The results are given for runs of
the proposed algorithm and multi-category SVM (mSVM) with one-against-one technique
and the Gaussian processes (GPs) for classification.

Data set J n Average n′ t BMKC BKPC mSVM GPs Better?

Images 3013 200 10.1 0.1 0.37 (0.06) 0.27 (0.03) 0.27 (0.05) 0.37 (0.06)
√

Microarray 2308 43 3.75 0.2 0.06 (0.04) 0.05 (0.04) 0.14 (0.05) 0.17 (0.08)
√

NIR (4 groups) 1050 117 7 0.99 0.1 (0.03) 0.05 (0.03) 0.11 (0.03) 0.11 (0.02)
√

NIR (5 groups) 1050 117 7 0.99 0.24 (0.04) 0.19 (0.04) 0.22 (0.04) 0.23 (0.04)
√

Wine 13 90 8.1 0.75 0.02 (0.01) 0.02 (0.02) 0.02 (0.01) 0.02 (0.01)
√

The algorithm requires that the threshold for the percent variance explained by the
included KPCs, i.e. t from (13), is set prior to running the algorithm. The optimal t for
classification will depend on the nature of the features of each data set and is therefore
difficult to preempt. The algorithm was run for t = 0.1,0.2,0.75, 0.9, 0.99 for each data
set and the threshold with the best average misclassification rate was reported. The
results, along with the threshold value and the corresponding average number of included
KPCs is given in Table 1. For comparison, the results of classification with BMKC are
also given. In addition, the results of the proposed method were compared with a multi-
category SVM with one-against-one technique that fits all the binary sub-classifications
and finds the correct class by a voting mechanism implemented in library(e1071) (32)
and the Gaussian processes for classification (10) implemented in library(kernlab) (33),
R package version 2.6.1 (34).

In the proposed method the empirical estimate (10/max(K)) is used as a starting
value for θ. The same estimate is used for the Gaussian kernel bandwidth of the mSVM
and the GPs.

The BMKC algorithm proposed in Sect. 2 suffers from over - parameterization, as
all of the reproducing kernel basis functions are utilized by the model. By projecting
the data onto the principal axes of the feature space, one is hoping that the underlying
structure of the feature space can be summarized by a much smaller subset of the principal
axes, i.e. so that n′ << n. After introducing the projection step and reducing a number
of components large classification improvements were achieved for the high dimensional
NIR spectroscopy and animal image categorization data sets. This makes intuitive sense,
as both of these data sets contain many features which are highly correlated. Another
advantage is improved data visualization; since BMKC performs the classification in the
feature space spanned by reproducing kernels, the number of bases n is usually too large
for a matrix plot. However, is possible to visualize a small number of principal component
bases of the feature space that the BKPC works in. Figure 9 shows the KPCs, i.e. the
ordered columns of matrix K, with the largest eigenvalues for the NIR spectroscopy data.
The first seven KPCs account for 99% of the variation in the data and were used for the
classification for both four and five class problem. The graphs shows that the differences
within the white meat classes are still difficult to distinguish. The image of the matrix K
can be seen in Figure 10.

A ‘sparser’ model of uncorrelated principal components is likely to achieve better
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Figure 9: The first nine KPCs for the NIR spectroscopy data. The colours correspond
to the meat type (red=chicken, cyan=turkey, blue=pork, black=beef and green=lamb).
Only the first seven KPCs were used for the classification.
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Figure 10: The image of the matrix of projections K is plotted. Only the first seven KPCs
were included in the analysis. The sections of the matrix correspond to: 1− 55 chicken,
55− 110 turkey, 110− 165 pork, 166− 197 beef and 198− 231 lamb.
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Table 2: Average misclassification error for different starting values of β obtained from
running the chain ten times on the same random split of the data set. Standard deviations
are given in brackets.

Data set Misclassific. rate

Images 0.28 (0.0)
Microarray 0.038 (0.052)
NIR (4 groups) 0.04 (0.016)
NIR (5 groups) 0.17 (0.02)
Wine 0.011 (0.0)

mixing and faster convergence. The number of regression coefficients in this model is
7× (K − 1) = 28, as opposed to 468 in the full model.

The computational speed gain depends on the data set, as the most computationally
demanding operations run in time proportional to n′3, which, even for the same setting of
the threshold t, varies from data to data. However, for illustration purposes, consider the
NIR spectroscopy data, where n = 117 and only the first 7 principal axes were needed
to obtain an improved misclassification rate. The 100,000 iterations of MCMC took 1.92
minutes for n′ = 7 as opposed to 110 minutes for the full algorithm with n′ = 117.

Multiple chains for different initial values of parameters were run and the classification
algorithm was shown to yield similar misclassification error rates. To examine the impact
of Monte Carlo error on correct classification rates, ten chains with different initial values
for the regression coefficients were run for the single split of the five data sets into a
training and testing data. The regression coefficients were initially either set equal to 1,
or were randomly drawn from normal and uniform distributions. Average misclassification
rate for the ten runs is given in Table 2. The results are comparable to those obtained by
multiple runs of the chain with the same initial values, but with different random splits
seen in Table 1. This shows relative insensitivity of the algorithm to the starting values of
these parameters and indicates that ‘convergence’ to a good classification algorithm has
been reached.

6 Discussion

A multicategory RHKS-based classification method was proposed. The classifier per-
formed well with high dimensional data sets without any pre-processing steps to reduce
the number of variables. The proposed classifier obtains probability distributions of pre-
diction for new data points rather than just MAP estimates as is the case with the
approaches of (12) and (15).

The training times of the Bayesian methods are relatively long compared to the de-
terministic classification methods such as SVMs, however, this is offset by the avoidance
of cross validation runs to choose the model complexity parameters.

The proposed classifier is a genuine multi-category extension of the Bayesian binary
kernel classifier, which is a more efficient and more principled approach to multi-class
classification then the pairwise methods often used in the support vector machines.

We show that the proposed projection step can be used for dimension reduction of the
pseudo-design matrix in the Bayesian kernel classifier which was able to achieve large com-
putational time savings at no cost for the prediction accuracy. Furthermore, for the high
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dimensional data sets considered, the sparser set of uncorrelated principal axes adequately
summarized the underlying structure of the feature space and improved classification rates
were observed. The drawback of the approach is that some of the interpretability of the
regression coefficients is lost. In the original model, βl can be thought of as a weight
placed on the similarity to observation xl. Thus, setting βl = 0 is equivalent to removing
observation xl from the training data set for the purposes of class prediction of future data
points x∗. In the proposed algorithm, βl is a weight of a projection of the mapped data to
lth principal axis. Hence, setting βl = 0 removes a linear combination from the training
data, however, all of the observations are retained for the purposes of class prediction.

An important consideration to keep in mind is that the data projections with the
largest variance are not necessarily the most useful for class discrimination. More appro-
priate methods for choosing a sparse subset of β then the selection criteria in (13) could
be considered for future research. In the Bayesian setting, sparsity is often approached
by choosing appropriate priors for the parameters. In the context of BKPC, one could
consider exponential priors for hyperparameters τi, as this hierarchical prior construction
is equivalent to placing Laplacian priors on the regression coefficients βi, which is anal-
ogous to the Bayesian formulation of the lasso (35). Another possible option is Jeffrey’s
independence prior P(τi) ∝ τ−1

i as it was noted in (16) that it has the effect of shrinking
some coefficients to zero, however, (18) found that this prior performed worse in terms of
misclassification error for their applications.

Future work could also involve exploring other prior structures, for example, in the
current construction, both the mean and variance of the latent variables depend on σ2.
Whereas, this is a standard assumption for a normal-gamma model which is widely used
for tractability in the posterior model, it would be worth exploring the relaxation of this
dependence. Furthermore, the inverse-gamma (γ1, γ2) distribution is the most common
prior distribution used for variance parameters, but it is well recognized that the inverse-
gamma priors can be problematic (36; 37). Instead of the standard (38; 39) uninformative
prior σ2 ∼ IG(γ1 = 0.001, γ2 = 0.001) on the variance parameter, it is possible to use a
truncated prior, or as (37) suggests a proper uniform prior.

Efficient computation of eigen-decomposition was not considered in this section as
it is only performed once, while Cholesky decomposition and other matrix calculations
are computed at each iteration of the MCMC algorithm, hence make more impact on the
overall computation time. Furthermore, eigen-decomposition of a n×n matrix K̃ requires
that the data sets be relatively small; for large n approximations are needed.

Note that the idea of performing the classification on the projection of the data to the
subset of the principal axes in the feature space is can be generalized to other formulations
of the kernel classifier.

A Conditional Distributions for Parameters of BMKC

The conditional distributions for the parameters are given by:

P(τ |β) =
n∏
i=1

K−1∏
k=1

G(γ3 +
1

2
, γ4 +

β2
ik

2σ2
), (21)

P(β|z, θ, τ, σ2) =
K−1∏
k=1

MVN(n)(mk, σ
2Vk), (22)
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P(σ2|β, z, θ, τ) = IG(γ1 + n(K − 1), γ̃2), (23)

where mk = VkK
Tzk,Vk = (KTK+Tk)

−1 and γ̃2 = γ2 + 1
2

∑K−1
k=1 (zTk zk−mT

kV−1
k mk),

P(zi|z−i,y, β, θ, τ, σ2) ∝ exp

[
K−1∑
k=1

yikzik−

− log
K∑
k=1

exp(zik)−
K−1∑
k=1

1

2σ2
(zik −Kiβk)

2

]
. (24)

B Conditional Distributions for Parameters of BKPC

The conditional distributions for the parameters are given by:

P(βI |βĪ = 0, z, θ, τ, σ2) =
K−1∏
k=1

MVN(n′)(m̃
(m)
k , σ2(m)Ṽ

(m)

k ), (25)

P(zi|z−i,y, β, θ, τ, σ2) ∝ exp

[
K−1∑
k=1

yikzik − log
K∑
k=1

exp(zik)−
K−1∑
k=1

1

2σ2
(zik −KiβkI)

2

]
,

(26)

P(σ2|β, z, θ, τ) = IG(γ1 + n′(K − 1), γ2 +
1

2

K−1∑
k=1

(zTk zk − m̃T
k Ṽ
−1

k m̃k)), (27)

P(τI |β, τĪ = 0) =
n′∏
l=1

K−1∏
k=1

∑
G

(γ3 +
1

2
, γ4 +

(βkl)
2

2σ2
), (28)

where I = {l = 1, ..., n′} , Ṽ
(m)

k = (KTK + T
(m−1)
kI )−1 and m̃

(m)
k = Ṽ

(m)

k KTz
(m)
k .
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