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1. Introduction

In a previous paper [1] the flow of N = 2 SUSY pure SU(2) Yang-Mills, with no

matter fields, was analysed and a meromorphic β-function was constructed which

is finite at both weak and strong coupling. Up to a constant factor this β-function

reproduces the correct 1-loop Callan-Symanzik flow at both strong and weak coupling

and interpolates between them analytically, although there is no a priori reason

to interpret it as Callan-Symanzik β-function away from the region of the fixed

points. This analysis modified previous suggestions in the literature concerning the

β-functions for N = 2 SUSY [2, 3, 4, 5] and evades the criticisms in [6].

In the present paper the analysis is extended to include massless matter fields in

the fundamental representation of SU(2) with Nf = 1, 2, 3 flavours. The construction

uses the gauge invariant flow parameter u = tr < ϕ2 >, where ϕ is the Higgs field

whose VEV is a free parameter, and the fact that the β-functions are modular forms

of weight −2 of a sub-group of the full modular group, Γ(1) ≈ Sl(2,Z)/Z2, depending

on Nf . The significance of the parameter u was emphasised in [7] where is was shown

that u is the Legendre transform of the pre-potential.
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Following [8, 9] a convenient choice of modular parameter for Nf > 0 is

τ =
θ

π
+

8πi

g2
, (1.1)

where θ is the usual topological parameter labelling θ-vacua and g is the Yang-Mills

coupling constant. In terms of τ the relevant sub-groups of Sl(2,Z) for determining

the β-functions are: Γ0(2) for Nf = 0; Γ(1) for Nf = 1; Γ0(2) for Nf = 2; and Γ0(4)

for Nf = 3.1 For Nf = 0 and Nf = 2 these are larger than the monodromy group.

The Nf = 1 case realises the full modular group, so the self-dual point τ = i is a fixed

point of the element sending τ → − 1
τ

which is in the monodromy group. All the

β-functions discussed here do still have singularities somewhere in the fundamental

domain of the relevant sub-group of Γ(1), they must do since any modular form

of weight −2 must have at least one singularity within, or on the boundary of,

the fundamental domain, but these singularities are off the real axis and, with the

exception of Nf = 1, correspond to repulsive fixed points in both directions of the

flow. For the Nf = 1 β-functions there are two types of singularities off the real

axis: one at τ = i and its images under Γ(1) which is repulsive in both directions of

the flow; and one at τ = eiπ/3 and its images under Γ(1) which is attractive in the

direction of decreasing Higgs VEV.

The strategy is to use the technique of [2] where the Seiberg-Witten curves

describing the various theories [9] are written both in terms of the ‘bare’ τ = i∞
and the renormalised finite τ and the co-efficients compared to extract τ(u). An

important tool in the analysis is the modular symmetry derived in [8, 9] where it was

shown that N = 2 SUSY Yang-Mills has an infinite hierarchy of vacua with massless

BPS states and the modular group relates these vacua to each other. The value of τ

in one vacuum is related to that of another by

τ → γ(τ) =
aτ + b

cτ + d
(1.2)

where γ =

(

a b

c d

)

∈ Γ ⊂ Γ(1) with Γ a sub-group of the full modular group

Γ(1) ∼= PSl(2,Z). We therefore have, under a variation δτ of τ ,

δγ(τ) =
1

(cτ + d)2
δτ, (1.3)

since ad − bc = 1, so we expect that

β(γ(τ)) =
1

(cτ + d)2
β(τ). (1.4)

If β is meromorphic, it will be a modular form of weight -2 and this fact proves to

be a powerful analytical tool.

1The notation is that of [10] and is summarised in the appendix for ease of reference.

– 2 –



In §2 the β-function for Nf = 0 discussed in [1] is re-derived in terms of (1.1),

which differs from the normalisation in [1]. The cases Nf = 2, Nf = 3 and Nf = 1

are treated in sections 3, 4 and 5 respectively where meromorphic β-functions are

proposed which vanish at all the strong coupling fixed points and are constant at the

weak coupling fixed point.

In principle the β-functions for different values of Nf should be related by holo-

morphic decoupling but the inclusion of non-zero masses for the matter multiplets

makes analytic calculations much harder and cannot be pushed through using the

techniques of the present analysis. In section 6 a perturbative approach is presented,

using a strong coupling expansion and turning on a mass for one of the matter fields.

It is shown that the limits τD = −1/τ → i∞ and m → 0 do not commute, but never-

theless a β-function for the massive theory with acceptable behaviour near τD = i∞
can be constructed.

Section 7 contains our conclusions. Two appendices give a summary of the

conventions concerning Jacobi ϑ-functions and the technical aspects of the strong

coupling instanton expansion used for the analysis in section 6.

2. Nf = 0

This case was treated in [1] using the normalisation appropriate to the adjoint repre-

sentation of SU(2), τ̃ = θ
2π

+ 4πi
g2 , but when matter in the fundamental representation

of SU(2) is included it is better to define τ = θ
π
+ 8πi

g2 , [9]. In order to set the notation

and illustrate the method for Nf 6= 0 the derivation of the β-function in [1] is given

here using the original techniques of [2], adapted to the present notation.

First recall the monodromy of the Nf = 0 theory [9]. It is generated by

M0 =

(

1 0

−1 1

)

, M∞ =

(

−1 −4

0 −1

)

(2.1)

with

M∞M0 = M−1
2 where M2 =

(−1 4

−1 3

)

, (2.2)

[9] (M0 leaves τ = 0 invariant, M2 leaves τ = 2 invariant and M∞ leaves τ = i∞
invariant). The two matrices M∞ and M−1

0 ,

τ → τ + 4, τ → τ

τ + 1
, (2.3)

generate Γ0(4) and therefore β will be a modular form for Γ0(4) of weight -2. To

determine its explicit form we start by following the method of [2]. The massless

Nf = 4 curve can be written

y2 = x4 − 2ūF (τ)x2 + ū2, (2.4)
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where

F (τ) =
ϑ4

3(τ) + ϑ4
2(τ)

ϑ4
4(τ)

(2.5)

and the Nf = 0 curve of [8, 9] can be written as

y2 = x4 − 2ux2 + u2 − Λ4
0. (2.6)

Note that F (τ) is an invariant function under Γ(2).

Equation (2.4) is scale invariant in the sense that τ does not depend on ū.

Equating co-efficients and eliminating ū gives

F (τ) =
u

√

u2 − Λ4
0

(2.7)

hence

u
dτ

du
F ′(τ) = −F (F 2 − 1). (2.8)

where F ′ = dF
dτ

. Using (A.11) to evaluate F ′(τ) from (2.5) gives

F ′ = 2πi
ϑ4

3(τ)ϑ4
2(τ)

ϑ4
4(τ)

(2.9)

finally leading to

u
dτ

du
=

2i

π

ϑ4
3(τ) + ϑ4

2(τ)

ϑ8
4(τ)

(2.10)

which is the result of [2], after taking account of the difference of notation (the

variable τ here is 2τ in [2]). The asymptotic behaviour of (2.10) is

u
dτ

du
−→
τ→i∞

2i

π
(2.11)

which is the correct asymptotically free behaviour. However it was pointed out in

[6] that (2.10) has a pathology in that it is singular at strong coupling, in particular

at τ = 0 (u = Λ2
0) and τ = 2 (u = −Λ2

0).

A remedy was proposed in [1], based on [4]. The idea is to tame the singularities

at strong coupling, without disturbing the asymptotic properties at u → ∞, by

defining

β(τ) = −(u − Λ2
0)

m(u + Λ2
0)

n

um+n
u

dτ

du
, (2.12)

where m and n are positive integers (the sign is chosen so the direction of flow is the

same as in [2]). The correct behaviour at strong coupling then forces m = n = 1.

The motivation behind (2.12) relies on a theorem that any modular form of

weight -2 for a sub-group Γ ⊂ Γ(1) can always be written as

β(τ) =
P (f)

Q(f)f ′ (2.13)
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where f(τ) is a particular invariant function for Γ (essentially one with the smallest

number of zeros plus number of poles, counting multiplicity) and P (f) and Q(f) are

polynomials in f (see e.g [11], page 111, the idea of applying this theorem to N = 2

SUSY was first proposed in [4]). Now u(τ) is just such an invariant function for Γ0(4)

— the explicit form of u(τ) follows from (2.5) and (2.7)

u

Λ2
0

=
ϑ4

3(τ) + ϑ4
2(τ)

2ϑ2
3(τ)ϑ2

2(τ)
, (2.14)

and it can be verified explicitly, using (A.5) and (A.6), that u is invariant under

Γ0(4). Choosing the zeros of P and Q so as to get the correct asymptotic behaviour

at τ = 0, 2 and i∞ without introducing unnecessary zeros or poles, one is led to (2.12)

and, using m = n = 1 in conjunction with (2.10) and (2.14), this leads uniquely to

β(τ) = −(u − Λ2
0)(u + Λ2

0)

u

dτ

du
=

2

πi

1

ϑ4
3(τ) + ϑ4

2(τ)
. (2.15)

The asymptotic behaviour is

β(τ) → 2

πi
as τ → i∞

β(τ) → − 1

πi
τ 2 as τ → 0 (2.16)

β(τ) → − 1

πi
(τ − 2)2 as τ → 2.

In particular the behaviour β ≈ i
π
τ 2 as τ → 0 implies that β(τD) ≈ i

π
as τD → i∞,

where τD = −1/τ is the dual coupling. Had any value of n been used in (2.12) other

than unity, the result near τ ≈ 0 would have been

β(τD) ∝
(

e2iπτD
)n−1 i

π
(2.17)

which is not the correct asymptotic behaviour. An exactly parallel argument applies

at τ = 2 with n replaced by m.

Near both the weak and the strong coupling fixed points this β-function can be

interpreted as a Callan-Symanzik β-function for Nf = 0 SUSY SU(2) Yang-Mills [1]

because u is a mass squared at weak coupling, where

β ≈ −u
dτ

du
, (2.18)

while at strong coupling near τ ≈ 0, where u − Λ2
0 ≈ Λ0aD with aD proportional to

the mass of the BPS monopole, we have

β ≈ −2(u − Λ2
0)

dτ

du
≈ −2aD

dτ

daD
. (2.19)
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The flow is shown in figure 1. As the Higgs VEV is lowered there are attractive

fixed points for all even integral τ and repulsive fixed points for all odd integral τ .

There are repulsive fixed points in both flow directions at τ = k+i for all odd k (β(τ)

diverges at these points because ϑ4
3(τ) = −ϑ4

2(τ) there). From the transformation

properties of the ϑ-functions in the appendix (A.5) and (A.6), the β-function in

(2.15) is a modular form of weight -2 for the group generated by

τ → τ + 2, τ → τ

τ + 1
, (2.20)

which is the group Γ0(2). Γ0(4) is a sub-group of Γ0(2) and the fact that the β-

function has a larger symmetry than that of the monodromy group is due to the

Z2 symmetry of β under u → −u, enforced by choosing m = n in (2.12). This Z2

is the anomaly-free residue of global R-symmetry [9] which is not a symmetry of

the effective action. Although u is not invariant under Γ0(2), it changes sign under

τ → τ + 2, u2 is invariant.

There are attractive fixed points at all the images of τ = 0 under Γ0(2) and

repulsive fixed points at all the images of τ = 1 under Γ0(2): at strong coupling all

rational values τ = q/m with q even are attractive fixed points and those with q odd

are repulsive (with q and m mutually prime) as the Higgs VEV is decreased.

The β-functions in [1], using τ̃ = τ/2 rather than τ , are the same as (2.15) above

as can be checked using (A.7) from which

β(τ̃) =
1

2
β(τ) =

2

πi

1

ϑ4
3(τ̃) + ϑ4

4(τ̃ )
. (2.21)

These are modular forms for Γ0(2) which is generated by

τ̃ → τ̃ + 1, τ̃ → τ̃

2τ̃ + 1
, (2.22)

equivalent to

τ → τ + 2, τ → τ

τ + 1
(2.23)

with τ = 2τ̃ . The details of the flow generated by (2.21) were analysed in [1].

3. Nf = 2

The results of the last section can be immediately be used to guess the form of the

β-function for Nf = 2, which can then be verified explicitly. The monodromy for the

Nf = 2 case is generated by [9]

M0 =

(

1 0

−2 1

)

, M∞ =

(−1 −2

0 −1

)

, (3.1)
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with

M∞M0 = M−1
1 where M1 =

(−1 2

−2 3

)

(3.2)

(M0 leaves τ = 0 invariant, M1 leaves τ = 1 invariant and M∞ leaves τ = i∞
invariant). The two matrices M∞ and M−1

0 ,

τ → τ + 2, τ → τ

2τ + 1
, (3.3)

generate Γ(2). If a β-function is constructed which is invariant under the anomaly-

free Z2 acting on the u-plane, u → −u, along the same lines as before then we expect

it will have a further symmetry under

τ → τ + 1, (3.4)

and so will be a modular form of Γ0(2) of weight -2. Demanding the correct behaviour

at τ = i∞, τ = 0 and τ = 1 leaves only one possibility and that is (2.21) with τ̃

replaced by τ , namely

β(τ) =
2

πi

1

ϑ4
3(τ) + ϑ4

4(τ)
, (3.5)

the normalisation being determined by the asymptotic condition

β(τ) −→
τ→i∞

1

πi
. (3.6)

We now verify (3.5) by explicit calculation using the same technique as in the

previous section. The analysis initially parallels that of [2]: the massless Nf = 2

curve is

y2 = x4 − 2(u + 3Λ2
2/8)x2 + (u − Λ2

2/8)2. (3.7)

Equating co-efficients with (2.4) gives

F (τ) =
u + 3Λ2

2/8

u − Λ2
2/8

(3.8)

or equivalently

u(τ) =
Λ2

2

8

ϑ4
3(τ)

ϑ4
2(τ)

. (3.9)

Using (2.5) and (2.9), now leads to

u
dτ

du
= −(F − 1)(F + 3)

4F ′ =
i

2π

ϑ4
3(τ) + ϑ4

4(τ)

ϑ4
3(τ)ϑ4

4(τ)
(3.10)

as in [2]. There are singularities at τ = 0 (where u = Λ2
2/8) and τ = 1 (where

u = −Λ2
2/8) which can be modified, along lines similar to §2, to give a β-function

with the correct strong coupling behaviour,

β(τ) = −

(

u2 − Λ4
2

64

)

u2
u

dτ

du
=

2

πi

1

ϑ4
3(τ) + ϑ4

4(τ)
, (3.11)

confirming (3.5). This flow is essentially the same as that of the Nf = 1 case treated

in §2, except that τ is rescaled by a factor of 1/2, and the flow shown in figure 2.
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4. Nf = 3

The monodromy for Nf = 3 is generated by

M0 =

(

1 0

−4 1

)

, M∞ =

(−1 −1

0 −1

)

(4.1)

with

M0M∞ = M−1
−1/2 where M−1/2 =

(

3 1

−4 −1

)

(4.2)

(M0 leaves τ = 0 invariant, M−1/2 leaves τ = −1/2 invariant and M∞ leaves τ = i∞
invariant), [9]. The two matrices M∞ and M−1

0 ,

τ → τ + 1, τ → τ

4τ + 1
, (4.3)

generate Γ0(4). But it is not obvious what the full symmetry of the β-functions

might be as Z2 does not play any role in the Nf = 3 theory [9]. We must therefore

perform the explicit calculation. Our starting point this time is the massless Nf = 4

curve in the original form of [9], namely

y2 = x3 − 1

4
g2(τ)ū2x − 1

4
g3(τ)ū3 (4.4)

with

g2(τ) =
2

3

(

ϑ8
2(τ) + ϑ8

3(τ) + ϑ8
4(τ)

)

(4.5)

and

g3(τ) =
4

27

(

ϑ4
3(τ) + ϑ4

4(τ)
)(

ϑ4
2(τ) + ϑ4

3(τ)
)(

ϑ4
4(τ) − ϑ4

2(τ)
)

, (4.6)

the combination
g3
2(τ)

g3
2(τ) − 27g2

3(τ)
=

(ϑ8
2 + ϑ8

3 + ϑ8
4)

3

54ϑ8
2ϑ

8
3ϑ

8
4

= J(τ) (4.7)

being Klein’s absolute invariant which is invariant under the action of Γ(1) on τ .

The massless Nf = 3 curve is

y2 =

(

x2 − Λ2
3

64
(x − u)

)

(x − u). (4.8)

Without loss of generality we can set2 Λ2
3 = 64 and then eliminate the quadratic

term in (4.8) by shifting x → x + (u + 1)/3 giving

y2 = x3 − 1

3
(u2 − 4u + 1)x − 1

27
(2u − 1)(u2 + 8u − 2). (4.9)

2This is equivalent to defining the dimensionless variable ũ = 64u/(Λ2

3
)) and then dropping the

tilde.
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There are singular points were the roots of this equation coincide, at u = 0, u = 1/4

and |u| = ∞, corresponding to τ = 0, τ = −1/2 and τ = i∞ respectively.

Equating co-efficients between (4.4) and (4.9) and eliminating ū yields

J(τ) =
4

27

(u2 − 4u + 1)3

u4(1 − 4u)
. (4.10)

To extract the β-function from this equation we will need an explicit expression

for u(τ). To this end define

Y (u) =
u2

1 − 4u
and X(τ) =

ϑ4
4(τ)

ϑ4
3(τ)

=
2

F (τ) + 1
(4.11)

in terms of which (4.10) reads

(1 + Y )3

Y 2
=

(1 − X + X2)3

(1 − X)2X2
(4.12)

with the three roots

Y1 = −X(1 − X), Y2 =
(1 − X)

X2
and Y3 =

X

(1 − X)2
. (4.13)

Comparing with the three asymptotic forms

τ → i∞, X → 1, |u| → ∞, Y → ∞,

τ → 0, X → 0, u → 0, Y → 0, (4.14)

τ → −1/2, X → 1, u → 1/4, Y → ∞,

only Y3 has the correct asymptotic behaviour at the three singular points and so we

must choose
u2

1 − 4u
=

X

(1 − X)2
=

ϑ4
3ϑ

4
4

ϑ8
2

, (4.15)

which is an invariant function for Γ0(2) [11]. Solving for u the asymptotic conditions

pick out the unique solution

u(τ) = − ϑ2
3ϑ

2
4

(ϑ2
3 − ϑ2

4)
2

(4.16)

which is, of course, an invariant function for Γ0(4).

Differentiating this equation with respect to τ , and employing (A.11), yields

u
dτ

du
=

2i

π

1

(ϑ2
3(τ) + ϑ2

4(τ))2 . (4.17)

This has the correct asymptotic form as τ → i∞,

u
dτ

du
−→
τ→i∞

i

2π
, (4.18)
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and is well behaved at τ = 0

u
dτ

du
−→
τ→0

−2i

π
τ 2, (4.19)

but diverges at τ = −1/2.

The method used in the previous sections for Nf = 0 and Nf = 2 is not im-

mediately applicable here since one of the fixed points is at u = 0: to eliminate the

singularity at u = 1/4 we would have to multiply by (u−1/4)m/um for some positive

m which would introduce another singularity at u = 0. One strategy is to use m = 1

to remove the singularity at u = 1/4 and shift the other fixed point away from the

origin by shifting u: thus let u′ = u − ǫ for some constant ǫ and define

β(τ) = −(u′ + ǫ − 1/4)(u′ + ǫ)

u′
dτ

du′ . (4.20)

This does not disturb the behaviour at |u| = ∞. Clearly this is equivalent to

β(τ) = −(u − 1/4)

(u − ǫ)
u

dτ

du
(4.21)

which preserves the good behaviour at τ = i∞ and τ = 0 and gives the correct

behaviour at τ = −1/2.

In terms of ϑ-functions

β(τ) =
1

2πi

1

ϑ2
3(τ)ϑ2

4(τ) + ǫ(ϑ2
3(τ) − ϑ2

4(τ))2 , (4.22)

and has the following asymptotic forms

β(τ) −→
τ→∞

1

2πi
,

β(τ) −→
τ→0

− 2

πi

τ 2

ǫ
, (4.23)

β(τ) −→
τ→−1/2

− 2

πi

(τ + 1/2)2

(1 − 4ǫ)
.

If ǫ is real and 0 < ǫ < 1/4, the β-function is finite at both τ = 0 and τ = −1/2

and flows in the right direction, i.e. in towards the fixed points as the Higgs VEV is

lowered.

In fact just such a constant shift of u was found to be necessary in instanton

calculations performed to check the validity of the Seiberg-Witten curve [12, 13].

These instanton calculations give ǫ = 4/27 when Λ3/8 is set to one as we have done

here. The point is that, since Nf = 3 has no discrete symmetry acting on the u-

plane, there is no a priori way, using the techniques in [9], to determine where the

origin of the u-plane should lie and a constant finite shift of u does not affect the
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weak coupling physics. Seiberg and Witten chose u = 0 to correspond to τ = 0 but

the instanton calculations show that u′ = −4/27 is a more natural choice of origin.

The flow (4.22) with ǫ = 4/27 is plotted in figure 3. At first glance it looks very

like the flow for Nf = 0 and Nf = 2, with τ rescaled, but closer examination reveals

subtle differences. Figure 3 is not symmetric under τ → τ+1/2, it is slightly distorted

and the repulsive fixed point close to τ = (1 + i)/4 is not exactly at τ = (1 + i)/4,

it is displaced away from the top of the semi-circular arch by a small amount. The

flow looks like a distorted version of the Nf = 2 flow with τ rescaled by a factor of 2,

τNf =2 = 2τNf =3. This is because Γ0(4) acting on τ is equivalent to Γ(2) acting on 2τ :

the Nf = 3 β-functions for 2τ are therefore modular forms of Γ(2). Modular forms

of Γ(2) can be obtained by distorting modular forms of Γ0(2). Provided 0 < ǫ < 1/4

the unstable fixed point of the Nf = 3 flow lies on the semi-circle in the upper-half

τ -plane spanning the two points τ = 0 and τ = 1/2 on the real axis. The special case

ǫ = 1/8 has a higher symmetry than other values because this corresponds to the

unstable fixed point being at the top of the semi-circular arch at τ = (1 + i)/4 and

this gives Γ0(2) symmetry acting on 2τ . Other values of ǫ have the lower symmetry

of Γ(2), as in figure 3. Flow diagrams like figure 3 have been postulated for the

quantum Hall effect when the electron spins are poorly split [14].

5. Nf = 1

The Nf = 1 case has been left till last because it is more involved than the three

cases already considered, though paradoxically it has a higher symmetry — the

monodromy generates the full modular group Γ(1). The monodromy is calculated

in [9]: there are four singular points, at τ = 0, τ = 1, τ = 2 and τ = i∞, with

monodromies

M0 =

(

1 0

−1 1

)

, M1 =

(

0 1

−1 2

)

,

M2 =

(

−1 4

−1 3

)

, M∞ =

(

−1 −3

0 −1

)

(5.1)

respectively. Now

M2
0M1 =

(

0 1

−1 0

)

(5.2)

and

M0M1M−1
0 =

(

1 1

0 1

)

(5.3)

so the two operations

τ → −1/τ and τ → τ + 1 (5.4)

are in the group generated by (5.1), which is therefore the full modular group Γ(1).
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Again the discussion starts along the lines of [2]. We take the massless Nf = 4

curve

y2 = x3 − 1

4
g2(τ)ū2x − 1

4
g3(τ)ū3 (5.5)

with
g3
2(τ)

g3
2(τ) − 27g2

3(τ)
=

(ϑ8
2 + ϑ8

3 + ϑ8
4)

3

54ϑ8
2ϑ

8
3ϑ

8
4

= J(τ), (5.6)

and compare this with the massless Nf = 1 curve

y2 = x2(x − u) − Λ6
1/64. (5.7)

First eliminate the x2 term in the Nf = 1 curve by shifting x → x + u/3,

y2 = x3 − u2

3
x −

(

2

27
u3 +

Λ6
1

64

)

. (5.8)

Equating co-efficients with (5.5) and eliminating ū then produces

J(τ) = −1

4

u6

u3 + 1
, (5.9)

where the scale has been set by choosing 27Λ6
1/256 = 1. As τ → i∞, J → ∞ and

this corresponds to u → −∞. But J is invariant under Γ(1) and so J → ∞ at the

three points τ = 0, τ = 1 and τ = 2 as well and these correspond to the three roots

of u3 = −1. Differentiating equation (5.9) then leads to

u
dτ

du
= 3

(

u3 + 2

u3 + 1

)

J

J ′ (5.10)

and (A.11) gives
J

J ′ =
1

2πi

ϑ8
2 + ϑ8

3 + ϑ8
4

(ϑ4
3 + ϑ4

2)(ϑ
4
2 − ϑ4

4)(ϑ
4
3 + ϑ4

4)
. (5.11)

As τ → i∞,

J/J ′ → i

2π
and u

dτ

du
=

3i

2π
, (5.12)

which is the correct asymptotic behaviour. But J/J ′ has the same value at τ = 0, 1

and 2 as at τ = i∞ and u3 = −1 at these 3 points, so (5.10) diverges at strong

coupling. Following the same procedure as before the singularities in (5.10) can be

eliminated, without disturbing the behaviour at u ≈ −∞, by using

(

u3 + 1

u3

)

u
dτ

du
= 3

(

u3 + 2

u3

)

J

J ′ . (5.13)

This is not a modular form for Γ(1) however, since u is not invariant. Solving (5.9)

for u gives

u3 = −2
(

J ±
√

J(J − 1)
)

. (5.14)
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and both roots are necessary: the upper sign for u → −∞ and the lower sign for

u3 ≈ −1. Eliminating u3 from (5.13) then gives an ambiguity in the direction of flow

(

u3 + 1

u3

)

u
dτ

du
= ±3

√

J(J − 1)

J ′ =
±3

iπ
√

2(ϑ8
2 + ϑ8

3 + ϑ8
4)

. (5.15)

The resolution of this problem is that the true β-function, which should be

a modular form for Γ(1), must have poles or zeros that are not accounted for in

(5.13). This equation was derived by making the minimal modification of (5.10) that

would remove the infinities at u3 = −1 yet not disturb the asymptotic behaviour

at u = −∞. For Nf = 1, 2 and 3 this minimalist approach worked. For Nf = 1

it does not, there must be another pole or zero somewhere. In fact (5.15) already

has a singularity at τ = eiπ/3, where ϑ8
2 + ϑ8

3 + ϑ8
4 = 0 corresponding to u = 0, and

its images. This is a fixed point of Γ(1), meaning that there is at least one element

γ ∈ Γ(1) that leaves it invariant. 3 The point τ = i, where ϑ2
2 = ϑ2

4, is also a fixed

point of Γ(1) and, if the flow commutes with Γ(1), then τ = i should be a fixed point

of the flow also. The next simplest assumption that can be made is that the only

fixed points above the real axis are at τ = i and τ = eiπ/3 and their images under

Γ(1), and we shall therefore assume that these are the only places above the real axis

where a pole or a zero of the β-function is allowed. We shall further assume that

the total number of poles plus zeros (counting multiplicity) is the smallest number

compatible with these requirements, since this was our experience for Nf = 0, 1 and

3 and was an assumption in [8]. Jacobi’s invariant function takes the values J = 0 at

τ = eiπ/3 and J = 1 at τ = i. Therefore, with the above assumption, the β-function

must be of the form

β(τ) = −3
Jm(J − 1)n

J ′ (5.16)

with m and n integers. In order that the β-function has the correct asymptotic form

as τ → i∞ it must be the case that m + n = 1 and minimising the total number

of zeros and poles leaves only two possibilities m = 0, n = 1 or m = 1, n = 0.

Examining these two possibilities the first gives

J − 1

J ′ =
2

πi

(ϑ4
3 + ϑ4

2)(ϑ
4
2 − ϑ4

4)(ϑ
4
3 + ϑ4

4)

(ϑ8
2 + ϑ8

3 + ϑ8
4)

2
(5.17)

which is singular when ϑ8
2 + ϑ8

3 + ϑ8
4 = 0, that is at τ = eiπ/3 and its images, and the

second gives
J

J ′ =
1

2πi

ϑ8
2 + ϑ8

3 + ϑ8
4

(ϑ4
3 + ϑ4

2)(ϑ
4
2 − ϑ4

4)(ϑ
4
3 + ϑ4

4)
(5.18)

which is singular when (ϑ4
3 + ϑ4

2)(ϑ
4
2 − ϑ4

4)(ϑ
4
3 + ϑ4

4) = 0, that is at τ = i and its

images.4 The latter has a milder singularity, and clearly has a smaller number of

3Actually there two such elements: γ =

(

1 −1

1 0

)

and γ =

(

0 −1

1 −1

)

.

4ϑ4

2
= ϑ4

4
at τ = i, ϑ4

3
= −ϑ4

4
at τ = (1 + i)/2 and ϑ4

3
= −ϑ4

2
at τ = 1 + i.
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poles plus zeros than the former, and so is the unique choice that fits the criteria.

So we conjecture that the analytic β-function for Nf = 1 is

β(τ) = −
(

u3 + 1

u3 + 2

)

u
dτ

du
= − 3

2πi

(ϑ8
2 + ϑ8

3 + ϑ8
4)

(ϑ4
3 + ϑ4

2)(ϑ
4
2 − ϑ4

4)(ϑ
4
3 + ϑ4

4)
, (5.19)

which differs from (5.13) only by using u3+2 in the denominator, rather than u3. This

flow is plotted in figure 4, the pole at τ = i, corresponding to u3 = −2, renders this a

repulsive fixed point in both flow directions while the zero at τ = eiπ/3, corresponding

to u = 0, is an attractive fixed point in the direction of decreasing Higgs VEV.

6. Massive Matter Multiplets

When the matter fields in the fundamental representation of SU(2) have non-zero

mass the analysis is much harder. For massive matter multiplets the Seiberg-Witten

curves determine τ(u, mi, ΛNf
) with i = 1, . . . , Nf and the Nf − 1 case can be deter-

mined from the Nf case by holomorphic decoupling [9]: set Λ
5−Nf

Nf−1 = mNf
Λ

4−Nf

Nf
and

send mNf
→ ∞ and ΛNf

→ 0 keeping ΛNf−1 finite. In principle therefore it ought

to be possible to distort figure 3 for example, by turning on one mass, and recover

figure 2 as the mass goes to infinity. This would correspond to a family of β-functions

obtained by differentiating τ(u, mi, ΛNf
) with respect to u and considering the mi to

parameterise different β-functions: near the fixed points this corresponds to defining

β-functions by varying the W±-boson, and therefore also the gluino, masses while

keeping the quark masses fixed.

In this section we address the question of quark masses using a strong coupling

expansion, taking the Nf = 3 case for illustrative purposes. The details of the

analysis are rather technical and so are relegated to appendix B, from which we

quote the relevant formulae here.

For Nf = 3 with three different masses m1, m2 and m3 the Seiberg-Witten curve

is uniquely determined by m1, m2, m3 and the Γ0(4) invariant parameter u. With

the term quadratic in x eliminated the curve is

y2 = x3 − 1

3

(

u2 − 4uΛ̃2
3 + Λ̃4

3 + 3(m2
1 + m2

2 + m2
3)Λ̃

2
3 − 6Λ̃3m1m2m3

)

x

− 1

27

{

(2u − Λ̃2
3)(u

2 + 8uΛ̃2
3 − 2Λ̃4

3 − 9(m2
1 + m2

2 + m2
3)Λ̃

2
3) (6.1)

− 18(u + Λ̃2
3)Λ̃3m1m2m3 + 27Λ̃2

3(m
2
1m

2
2 + m2

2m
2
3 + m2

3m
2
1)

}

,

where, in the notation of [9], Λ̃3 = Λ3/8. In principle this curve determines τ(u, mi)

and there are four different masses that could be varied to define β-functions. To

connect with the β-functions of §4 we shall keep mi fixed and vary only u.

In the massless case the strategy was to find an explicit expression for u(τ),

in terms of Jacobi ϑ-functions, and then use the properties of the ϑ-functions to
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determine du
dτ

. The problem in the massive case is to find u(τ, mi) and this is much

harder. We shall first simplify the problem and only consider one non-zero mass

m1 = m, m2 = m3 = 0. Even then one cannot hope for a closed form solution.

However it is shown in appendix B that, at strong coupling where τD = −1/τ → i∞,

it is appropriate to expand in q̃D := eiπτD/2. The details are somewhat technical and

left to the appendix but for one non-zero mass there are singularities at τ = 0 when

u = ±mΛ̃3. Near u = mΛ̃3 the expansion

u(τD) = mΛ̃3

(

1 + α(m)eiπτD + · · ·
)

(6.2)

is derived in appendix B where α(m) is an unknown function of m/Λ̃3 which cannot

be determined without further assumptions, but it diverges like ∼ 1/m2 as m → 0

and α(m) → 16 as m → ∞.

For u infinitesimally close to m the β-function will be of the form

β(τ) ∝ −(u − m)
∂τ

∂u
, (6.3)

assuming the BPS monopoles have mass ∝ u − m. Using

∂u

∂τD

≈ iπmΛ̃3α(m)eiπτD ≈ iπ(u − m), (6.4)

gives, for u near m,

β(τD) ∝ −(u − m)
∂τD

∂u
≈ i

π
, (6.5)

which is perfectly well behaved, even in the massless limit m → 0. Indeed

β(τ) ∝ iτ 2

π
(6.6)

which, up to a constant, is the same behaviour as equation (4.23) even though it is

clear from (6.2) that the limits τD → i∞ and m → 0 do not commute, since α(m)

behaves as 1/m2 as m → 0.

7. Conclusions

Explicit expressions have been proposed for the β-functions of N = 2 SUSY SU(2)

Yang-Mills with massless matter fields in the fundamental representation. Asymp-

totically close to the strong and weak coupling fixed points they co-incide with the

1-loop Callan-Symanzik β-functions, up to a constant factor.

The β-functions are modular forms of sub-groups of Γ(1) for each value of Nf :

Nf = 0 Γ0(2)

Nf = 1 Γ(1)
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Nf = 2 Γ0(2)

Nf = 3 Γ0(4), (7.1)

for Nf = 1 and Nf = 3 the group is the same as the monodromy group and for

Nf = 0 and Nf = 2 it is larger, due to the Z2 action on the u-plane.

The β-functions are determined by demanding that they have the correct asymp-

totic behaviour at both weak and strong coupling fixed points. The relevant flows, in

the direction of decreasing Higgs VEV, are shown in figures 1,4,2 and 3 respectively.

These functions differ from previous expressions in the literature in that they

have the correct behaviour at all the strong coupling fixed points. In all cases the

β-functions have a singularity in the interior, or on the boundary, of the fundamental

domain, corresponding to an unstable fixed point which is repulsive in both directions

of flow. This is a necessary consequence of their being modular forms of weight -2.

For the Nf = 1 case, for which the monodromy group is the full modular group this

repulsive fixed point is at the self-dual point τ = i and its images and in this case

there is also a fully attractive fixed point at τ = eiπ/3 and its images. The physical

significance, if any, of this attractive fixed point is not clear.

The case of finite masses is probably intractable using the methods developed

here, though it may well be possible to make progress with other gauge groups by

using the methods in [2]. Nevertheless it has been possible to show, in a strong

coupling expansion, that turning on one quark mass in the Nf = 3 case still allows

for a β-function with the correct asymptotic behaviour near τ = 0. Unfortunately it

is not possible to say anything about the β-function away from τ = 0 because of the

limitations of the technique.

It is a pleasure to thank the Perimeter Institute, Waterloo, where this work was

completed, for hospitality. This work was supported in part by Enterprise Ireland

Basic Research Grant no. SC/2003/415.

A. Appendix: properties of Jacobi ϑ-functions

We collect together some useful properties of ϑ-functions. The definitions are those

of [15] and most of the formulae here are proven in that reference. The three Jacobi

ϑ-functions used in the text are defined as

ϑ2(τ) = 2
∞

∑

n=0

q(n+ 1
2
)2 = 2q

1
4

∞
∏

n=1

(1 − q2n)(1 + q2n)2, (A.1)

ϑ3(τ) =
∞

∑

n=−∞
qn2

=
∞
∏

n=1

(1 − q2n)(1 + q2n−1)2, (A.2)

ϑ4(τ) =

∞
∑

n=−∞
(−1)nqn2

=

∞
∏

n=1

(1 − q2n)(1 − q2n−1)2, (A.3)
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where q := eiπτ .

These three ϑ-functions are not independent but are related by

ϑ4
3(τ) = ϑ4

2(τ) + ϑ4
4(τ). (A.4)

The following relations can be used to determine their properties under modular

transformations:

ϑ2(τ + 1) = eiπ/4ϑ2(τ), ϑ3(τ + 1) = ϑ4(τ), ϑ4(τ + 1) = ϑ3(τ), (A.5)

ϑ2(−1/τ) =
√
−iτ ϑ4(τ),

ϑ3(−1/τ) =
√
−iτ ϑ3(τ), (A.6)

ϑ4(−1/τ) =
√
−iτ ϑ2(τ).

The duplication formulae

ϑ2
2(2τ) =

1

2

(

(ϑ2
3(τ) − ϑ2

4(τ)
)

,

ϑ2
3(2τ) =

1

2

(

ϑ2
3(τ) + ϑ2

4(τ)
)

, (A.7)

ϑ2
4(2τ) = ϑ3(τ)ϑ4(τ),

and

ϑ3(4τ) =
1

2

(

ϑ3(τ) + ϑ4(τ)
)

, ϑ2(4τ) =
1

2

(

ϑ3(τ) − ϑ4(τ)
)

(A.8)

are also useful.

At the special points τ = eiπ/2 and τ = eiπ/3 the ϑ-functions have the values

ϑ2
3(e

iπ/2) =
√

2ϑ2
2(e

iπ/2) =
√

2ϑ2
4(e

iπ/2) =
2

π
K

(

sin
(π

4

))

, (A.9)

e−iπ/4ϑ2
2(e

iπ/3) = e−iπ/12ϑ2
3(e

iπ/3) = eiπ/12ϑ2
4(e

iπ/3) =
2

π
K

(

sin
( π

12

))

,

where K(k) is the complete elliptic of the second kind: K(sin(π/4)) = 1
4
√

π
(Γ(1/4))2,

with Γ(1/4) ≈ 3.6256 the Euler Γ-function evaluated at 1/4, and K(sin(π/12)) ≈
1.5981.

The ϑ-functions have the following asymptotic forms

τ → i∞ : ϑ2(τ) ≈ 2 e
iπτ
4 → 0, ϑ3(τ) → 1, ϑ4(τ) → 1; (A.10)

τ → 0 : ϑ2(τ) ≈
√

i

τ
, ϑ3(τ) ≈

√

i

τ
, ϑ4(τ) ≈ 2

√

i

τ
e−

iπ
4τ → 0.

In addition they satisfy the following differential equations (see [11], p.231, equation

(7.2.17)),

ϑ′
3

ϑ3
− ϑ′

4

ϑ4
=

iπ

4
ϑ4

2,

ϑ′
2

ϑ2
− ϑ′

3

ϑ3
=

iπ

4
ϑ4

4, (A.11)

ϑ′
2

ϑ2
− ϑ′

4

ϑ4
=

iπ

4
ϑ4

3.
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In the text Γ0(N) consists of matrices γ =

(

a b

c d

)

in Γ(1) ≈ PSl(2,Z) with

c ≡ 0 mod N , sometimes written

γ ≡
( ∗ ∗

0 ∗

)

mod N, (A.12)

Γ0(N) consists of matrices with b ≡ 0 mod N ,

γ ≡
( ∗ 0

∗ ∗

)

mod N (A.13)

and Γ(N) consists of matrices with

γ ≡
(

1 0

0 1

)

mod N. (A.14)

B. Appendix: Massive Matter Fields for Nf = 3

The starting point is the curve for four massive matter multiplets in the fundamental

representation [9],

y2 = (x2 − c2
2ū

2)(x − c1ū) − c2
2(x − c1ū)2Ā − c2

2(c
2
1 − c2

2)(x − c1ū)B̄

+ 2c2(c
2
1 − c2

2)(c1x − c2
2ū)C̄ − c2

2(c
2
1 − c2

2)
2D̄, (B.1)

with

c1(τ) =
1

2
(ϑ4

3(τ) + ϑ4
4(τ)), c2(τ) =

1

2
(ϑ4

3(τ) − ϑ4
4(τ)), (B.2)

and

Ā =

4
∑

i

m̄2
i , B̄ =

∑

i<j

m̄2
i m̄

2
j , C̄ = m̄1m̄2m̄3m̄4 D̄ =

∑

i<j<k

m̄2
i m̄

2
jm̄

2
k.

(B.3)

First eliminate the quadratic term in x by shifting x → x+(c1ū+ c2
2Ā)/3, giving

y2 = x3 − 1

3
P (τ, ū, m̄i)x − 1

27
Q(τ, ū, m̄i), (B.4)

where

P (τ, ū, m̄i) = (c2
1 + 3c2

2)ū
2 − 4c1c

2
2Āū + 3c2(c

2
1 − c2

2)(c2B̄ − 2c1C̄) + c4
2Ā

2, (B.5)

is quadratic in ū and

Q(τ, ū, mi) = 2c1(c
2
1 − 9c2

2)ū
3 + 3c2

2(5c
2
1 + 3c2

2)Āū2 (B.6)

− 2
(

6c1c
4
2Ā

2 + 9c1c
2
2(c

2
1 − c2

2)B̄ + 9c2(c
2
1 − c2

2)(c
2
1 − 3c2

2)C̄
)

ū

+ 2c6
2Ā

3 + 27c2
2(c

2
1 − c2

2)
2D̄ + 9c3

2(c
2
1 − c2

2)(c2B̄ − 2c1C̄)Ā
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is cubic in ū.

Next this curve can be reduced to the Nf = 3 curve using the holomorphic

decoupling of [9]: send m̄4 → ∞ and take the ‘bare’ coupling τ → i∞, so c2 → 0

and c1 → 1, keeping c2m̄4 = Λ3/8 := Λ̃3 finite. Taking this limit, and dropping the

bars on u, m1, m2 and m3, gives the massive Nf = 3 curve,

y2 = x3 − 1

3
(u2 − 4uΛ̃2

3 + Λ̃4
3 + 3BΛ̃2

3 − 6CΛ̃3)x (B.7)

− 1

27
(2u − Λ̃2

3)(u
2 + 8uΛ̃2

3 − 2Λ̃4
3 − 9BΛ̃2

3) +
2

3
(u + Λ̃2

3)CΛ̃3 − D,

with

B = m2
1 + m2

2 + m2
3, C = m1m2m3, D = m2

1m
2
2 + m2

2m
2
3 + m2

3m
2
1. (B.8)

This reduces to equation (4.9) when the three masses are set to zero and Λ̃3 = 1.

Following [2] this curve is now compared to (B.4) with m̄4 = 0, ū independent of τ ,

that is equation (B.4)-(B.6) with C̄ = 0 and

Ā = m̄2
1 + m̄2

2 + m̄2
3, B̄ = m̄2

1m̄
2
2 + m̄2

2m̄
2
3 + m̄2

3m̄
2
1, D̄ = m̄2

1m̄
2
2m̄

2
3. (B.9)

Equating co-efficients leads to

(c2
1+3c2

2)ū
2−4c1c

2
2Āū+3c2

2(c
2
1−c2

2)B̄+c4
2Ā

2 = u2−4uΛ̃2
3+Λ̃4

3+3BΛ̃2
3−6CΛ̃3 (B.10)

2c1(c
2
1 − 9c2

2)ū
3 + 3c2

2(5c
2
1 + 3c2

2)Āū2 − 2
(

6c1c
4
2Ā

2 + 9c1c
2
2(c

2
1 − c2

2)B̄
)

ū

+2c6
2Ā

3 + 27c2
2(c

2
1 − c2

2)
2D̄ + 9c4

2(c
2
1 − c2

2)B̄Ā (B.11)

= (2u − Λ̃2
3)(u

2 + 8uΛ̃2
3 − 2Λ̃4

3 − 9BΛ̃2
3) − 18(u + Λ̃2

3)CΛ̃3 + 27D.

In the massless case we can eliminate ū from these two equations and determine u(τ),

but now we want to determine u(τ, mi) with ū, Ā, B̄ and D̄ all unknown functions

so there is not enough information to solve the problem completely. Nevertheless

we can still get information from these equations. The symmetry group for Nf = 3

is Γ0(4) and u, mi and Λ̃3 should be invariants of Γ0(4) so the right hand sides of

(B.10) and (B.11) are also invariants. Using the transformation properties of the

ϑ-functions, (A.5) and (A.7), this implies that ū, Ā, B̄, and D̄ are modular forms of

weights -2, -4, -8 and -12 respectively, so m̄i have weight -2.

For simplicity we shall focus on the case of a single mass, m1 = m, m2 = m3 = 0

so

Ā = m̄2, B̄ = 0, D̄ = 0 (B.12)

B = m2, D = 0, C = 0 (B.13)

and the equations simplify to

(c2
1 + 3c2

2)ū
2 − 4c1c

2
2m̄

2ū + c4
2m̄

4 = u2 − 4uΛ̃2
3 + Λ̃4

3 + 3m2Λ̃2
3 (B.14)
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2c1(c
2
1 − 9c2

2)ū
3 + 3c2

2(5c
2
1 + 3c2

2)m̄
2ū2 − 12c1c

4
2m̄

4ū + 2c6
2m̄

6

= (2u − Λ̃2
3)(u

2 + 8uΛ̃2
3 − 2Λ̃4

3 − 9m2Λ̃2
3). (B.15)

We now want to eliminate ū and m̄ to get u(τ, m) but there is still not enough

information. However, knowing that ū and m̄2 are modular forms of weight -2 and

-4 respectively, we can say something about their functional form at strong coupling.

To see how this works let us first look at the case m̄ = 0, where the explicit solution

is given in §4. Using the details there one finds

ū(τ) = − Λ̃2
3

(ϑ2
3(τ) − ϑ2

4(τ))2 (B.16)

which is indeed a modular form for Γ0(4) of weight -2 and it vanishes at strong

coupling, τ → 0. Now τ → −1/τ = τD is not in Γ0(4), so ū is not a modular form

under this transformation, rather

ū(τD) =
1

τ 2
D

Λ̃2
3

(ϑ2
3(τD) − ϑ2

2(τD))2 . (B.17)

Writing q̃D = eiπτD/2 we have the strong coupling expansions

ū(τD) =
Λ̃2

3

τ 2
D

(

1 + 8q̃D + 40q̃2
D + 160q̃3

D + · · ·
)

. (B.18)

and, from (4.16),

u(τD) = − ϑ2
3(τD)ϑ2

2(τD)

(ϑ2
3(τD) − ϑ2

2(τD))2 = −4Λ̃2
3q̃D

(

1 + 8q̃D + 44q̃2
D + 192q̃3

D + · · ·
)

. (B.19)

For non-zero m it is consistent with all we know to assume a similar form

ū(τD) =
Λ̃2

3

τ 2
D

(

ū0 + ū1q̃D + ū2q̃
2
D + ū3q̃

3
D + · · ·

)

. (B.20)

and similarly for m̄2

m̄2(τD) =
Λ̃2

3

τ 4
D

(

ā0 + ā1q̃D + ā2q̃
2
D + ā3q̃

3
D + · · ·

)

, (B.21)

where ūk and āk are functions of m/Λ̃3, with āk vanishing for m = 0. A similar

strong coupling expansion for u has no prefactor of 1/τ 2
D because u has weight zero

not -2,
u

Λ̃2
3

= u0 + u1q̃D + u2q̃
2
D + u3q̃

3
D + · · · . (B.22)

Using these expansions in (B.14) and (B.15), together with

c1(τ) = c1(−1/τD) = −τ 2
D

2

(

ϑ3(τD)4 + ϑ2(τD)4
)

,

c2(τ) = c2(−1/τD) = −τ 2
D

2
ϑ4(τD)4, (B.23)
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we can equate powers of q̃D to obtain recurrence relations between the uk and the āk.

Without making further assumptions there is not enough information to determine

u(τ, m) but we can still extract useful information about the strong coupling β-

function. At zeroth order in q̃D (B.14) and (B.15) (with Λ̃3 = 1 for simplicity) yield

three possibilities:

u0 = ±m, ū0 = 1 ∓ 2m − ā0

4
; and u0 = m2 +

1

4
, ū0 = m2 − ā0 + 1

4
. (B.24)

Only the first two are relevant for the strong coupling fixed point, τ = 0 at u = 0, of

the massless Nf = 3 theory (in the massless case u = 1/4 is associated with τ = −1/2

where τD = 2). Choosing the root u = m, at order q̃D we find a pair of equations

linear in u1 and ū1 which are degenerate. Solving for ū1 gives

ū1 := −(m − 2)u1

(2m − 1)
− ā1

4
. (B.25)

At order q̃2
D the pair of linear equations for for u2 and ū2 are parallel in the u2 − ū2

plane and have no solution unless they co-incide, which only happens if

u1m

2m − 1
= 0. (B.26)

For m = 0 this is automatic, but for m 6= 0 it forces u1 = 0. Setting u1 = 0 then

gives one linear equation relating ū2 to u2,

ū2 = −2(m − 2)u2 + ā0(3ā0 + 8m − 4)

2(2m − 1)
− ā2

4
(B.27)

At order q̃3
D the two linear equations for u3 and ū3 are again degenerate giving only

one constraint which can be used to solve for ū3

ū3 = −(m − 2)u3 + ā1(3ā0 + 4m − 2)

(2m − 1)
− ā3

4
. (B.28)

At order q̃4
D one again obtains two parallel lines in the u4 − ū4 plane which do not

intersect unless

u2 = ±(ā0 + 8m − 4)2

2m
(B.29)

in which case ū4 can be obtained as a function of u4, ā0, ā2 and m.

One can continue but for the present purposes we have gone as far as necessary.

We are only really interested in u and we have

u(τD) = m ± (ā0 + 8m − 4)2

2m
q̃2
D + · · · (B.30)

with ā0 and undetermined function of m, but independent of τD. To get the dimen-

sions correct we should re-instate Λ̃3 and write

u(τD) = mΛ̃3

(

1 + α(m)eiπτD + · · ·
)

(B.31)
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where

α(m) := ±(ā0Λ̃
2
3 + 8mΛ̃3 − 4Λ̃2

3)
2

2m2Λ̃2
3

. (B.32)

Note that, in order to pin down the co-efficient u2 one has to go to order q̃4
D and

examine u4. At every value of k in the expansion one gets a pair of linear equations

in uk and ūk in terms of m and the āk′ with k′ ≤ k. For k = 1 these equations are

degenerate and u1 is not determined; for k = 2 the equations have no solution unless

u1 = 0 in which case they are again degenerate and u2 is undetermined; for k = 3 the

equations are again degenerate and u3 is undetermined and for k = 4 the equations

have no solution unless u2 has one of the two possible values shown in (B.31).

The explicit from of α(m) is not needed in the analysis, but we can fix its

asymptotic form as m → ∞ using holomorphic decoupling [9]. For Nf = 2 equation

(3.9) gives

u(τD) =
Λ2

2

8

ϑ4
3(τD)

ϑ4
4(τD)

≈ Λ2
2

8

(

1 + 16eiπτD + · · ·
)

, (B.33)

and this should agree with (B.31) as m → ∞, Λ3 → 0 with Λ2
2 = mΛ3 = 8mΛ̃3 fixed.

Hence α(m) → 16 as m → ∞.

The other singularity of the Nf = 2 theory, at u = −Λ2
2

8
, is obtained by holo-

morphic decoupling in the weak coupling limit of the Nf = 3 theory by expanding

around u = −m.

Notice that the m = 0 expansion for u in equation (B.19) contains a term linear

in q̃D while (B.31) does not. This is because, when m 6= 0, (B.26) forces us to set

u1 = 0. Since ā0 → 0 as m → 0, α(m) diverges like 8Λ̃2
3/m

2 as m → 0 and the limits

τD → i∞ and m → 0 do not commute.

We can perform a similar expansion around τ = −1/2, using u0 = m2 + 1/4,

where τD = 2 + iε with ε small. The analysis is simpler than the u0 = ±m case in

that at each order, at least up to order 5 in q̃D which is as far as we have gone, one

simply finds a pair of linear equations in uk and ūk which can be solved in terms of

āk′ with k′ < k. The details are omitted but one finds

u1 = u2 = u3 = 0, u4 = −4
(ā0 − 4m2 + 1)4

(4m2 − 1)2
, u5 = −16

ā1(ā0 − 4m2 + 1)3

(4m2 − 1)2
,

(B.34)

and so, for τD = 2 + iε with ε small,

u(τD) = m2+
1

4
−4

(ā0 − 4m2 + 1)4

(4m2 − 1)2
e−2πε+16

ā1(ā0 − 4m2 + 1)3

(4m2 − 1)2
e−5πε/2+· · · . (B.35)

Re-instating Λ̃3 now gives

u(τD) = m2 +
Λ̃2

3

4
+ Λ̃2

3α̃(m)e−2πε · · · . (B.36)
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where

α̃(m) = −4
(ā0Λ̃

2
3 − 4m2 + Λ̃2

3)
4

(4m2 − Λ̃2
3)

2Λ̃4
3

. (B.37)

As m → ∞ this point in the u-plane goes out to infinity in the Nf = 2 theory.

Equations (B.31) and (B.36) were the aim of this appendix and are used in §6 in

the discussion of the β-functions for the massive Nf = 3 theory at strong coupling.
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Fig. 1: Flow of effective coupling of N = 2 SUSY Yang-Mills with Nf = 0. The

arrows indicate the direction of the flow as as the Higgs VEV is reduced. The β-

functions are modular forms of Γ0(2) and the pattern repeats under τ → τ + 2.

Fig. 2: Flow of effective coupling of N = 2 SUSY Yang-Mills with Nf = 2. The

arrows indicate the direction of the flow as as the Higgs VEV is reduced. The β-

functions are modular forms of Γ0(2) and the pattern repeats under τ → τ + 1.
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Fig. 3: Flow of effective coupling of N = 2 SUSY Yang-Mills with Nf = 3 and

ǫ = 4/27. The arrows indicate the direction of the flow as as the Higgs VEV is

reduced. The β-functions are modular forms of Γ0(4) and the pattern repeats under

τ → τ + 1.

Fig. 4: Flow of effective coupling of N = 2 SUSY Yang-Mills with Nf = 1. The

arrows indicate the direction of the flow as as the Higgs VEV is reduced. The β-

functions are modular forms of Γ(1) and the pattern repeats under τ → τ + 1.
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