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ABSTRACT

We derive an explicit expression for an associative ∗-product on the fuzzy complex pro-
jective space, CPN−1

F . This generalises previous results for the fuzzy 2-sphere and gives
a discrete non-commutative algebra of functions on CPN−1

F , represented by matrix mul-
tiplication. The matrices are restricted to ones whose dimension is that of the totally
symmetric representations of SU(N). In the limit of infinite dimensional matrices we re-
cover the commutative algebra of functions on CPN−1. Derivatives on CPN−1

F are also
expressed as matrix commutators.
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§1 Introduction

The concept of non-commutative geometry, [1,2], is emerging as one of the most
promising and interesting new tools in quantum field theory. It is also providing novel
insights into the possible space-time structure at the level of quantum gravity. In quantum
field theory it can provide a regularisation technique which is completely compatible with
the space-time symmetries of the theory, [3–17], while in quantum gravity it points the
way to radical approaches. It has also found several applications in string theory [18] . In
its matrix model or ‘fuzzy’ form† it promises a radical alternative to lattice field theory,
where problems such as chiral fermion doubling are readily avoided [13]. A major obstacle
to the development of this fuzzy alternative to lattice theories is the paucity of fuzzy spaces
with explicit descriptions.

An important ingredient in understanding the continuum limit of these fuzzy models
is the ∗-product. This is a non-commutative product for functions that, in the case of fuzzy
spaces, represents the matrix product. An explicit example of a ∗-product is known for
the fuzzy 2-sphere [4]. It is known that a ∗-product can be defined as a formal power series
on any manifold that admits a symplectic or Poisson structure [19,20], but few explicit
examples are known.

In this paper we present an explicit construction of a ∗-product on the fuzzy complex
projective space CPN−1

F . While a non-commutative ∗-product on the continuum CPN−1

is known, in an integral representation (see e.g Perelomov [21] ), to our knowledge this is
the first time an expression for a ∗-product on the fuzzy CPN−1

F has been given. The
construction presented here is a generalisation of the construction of the ∗-product on the
2-sphere given in [4].

The layout of the paper is as follows: in the next section we give a brief discussion of
harmonic expansions of functions on fuzzy spaces, by way of motivation for ∗-products and
their use in quantum field theory; in section 3 we give a general discussion of ∗-products
analysing when they can be expected to exist and, in particular, when the given construc-
tion, based on equivariant products, should exist; sections 4 and 5 give a description of
CPN−1 in terms of global co-ordinates; in section 6 the ∗-product on fuzzy CPN−1

F is con-
structed in terms of projectors and section 7 describes the relation between derivatives in
the continuum and their discrete representation on CPN−1

F ; finally section 8 summarises
the conclusions. Some technical results required for the main text are reserved for the
appendices.

§2 Fuzzy Functions

If one attempts to discretise field theory on a continuous manifold there are immediate
problems that have to be overcome. Not least is the fact that continuum symmetries are
lost and great care must be exercised in ensuring that they are recovered again when the
continuum limit is taken. Another problem, which occurs in Fourier space and is not
often remarked upon because the resolution appears to be so simple, is that the algebra of

† Fuzzy spaces are discrete matrix approximations to continuous manifolds.
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functions in truncated Fourier space does not close in general. For example if one Fourier
analyses functions on a circle,

f(θ) =
∞
∑

n=−∞
fne

inθ, (2.1)

and approximates them by cutting off the Fourier series at some maximum frequency, L,

fL(θ) =

L
∑

n=−L

fne
inθ (2.2)

then the product of two such functions will in general extend to frequencies up to 2L and so
the algebra of truncated functions does not close under multiplication. The same problem
manifests itself when functions are expanded on a sphere in terms of spherical harmonics
and then approximated simply by cutting off the expansion at some maximum angular
momentum. An obvious näıve remedy is to project after multiplying and just throw away
all the frequencies higher than L. While this brute force method may work, it is not
without its problems — for example such a process is non-associative in general. There
are sometimes situations where a more elegant method presents itself which at the same
time does less violence to the group representation theory and allows certain spaces to be
discretised while preserving their continuum symmetries. One approach is to identify the
coefficients in an harmonic expansion with elements of a matrix. If the multiplication of
two functions can be implemented by matrix multiplication then the matrix algebra will
close and no projection is necessary.

Consider for example a 2-dimensional sphere which can be written as the coset space
S2 ∼= SU(2)/U(1). A general function on SU(2) can be expanded in terms of D-matrices,

f =
∞
∑

l=0, 1
2
,1,...

l
∑

m,m′=−l

f l
m,m′Dl

m,m′ . (2.3)

To restrict this to a function on S2 the expansion must be restricted to entries of the
D-matrices (or linear combinations of them) which are invariant under the right action of
U(1). The only such entries have m′ = 0, and hence have integral l, since m′ is the U(1)
quantum number. The D-matrices can be constructed so that Dl

m,0 are independent of
the third Euler angle on SU(2), then they depend only on the polar and azimuthal angles
on S2 and they are essentially the spherical harmonics — in standard notation Dl

m,0 =
√

4π
2l+1

(−1)mY l
−m. Now the representation theory of SU(2) allows a re-arrangement of the

coefficients in a truncated expansion

fL(θ, φ) =
L

∑

l=0

l
∑

m=−l

f l
mD

l
m,0(θ, φ) (2.4)

into a square matrix. For any given value of l,
∑m=l

m=−l f
l
mD

l
m,0 is just one component of

the row vector obtained from the right action of an element of SU(2) on the row vector
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with components f l
m, m = −l, . . . , l. For a fixed l the row vectors with components f l

m

carry an irreducible representation of SU(2). The set of all coefficients in the expansion
(2.4) therefore constitute a reducible representation. For example if L=1 the number of
coefficients f l

m is 1 + 3 = 2 × 2, if L = 2 the number is 1 + 3 + 5 = 3 × 3 and so on. For
general L the number of terms in this expansion at each value of l is 2l + 1 giving a total
of

(L+ 1)2 = 1 + 3 + 5 + · · · + (2L+ 1) (2.5)

coefficients, which are in the reducible (L+1)×(L+1) representation of SU(2). Multiplica-
tion of two functions truncated at the same value of L can now be defined as multiplication
of their associated (L+1)× (L+1) matrices and group representation theory ensures that
the resulting product, being itself a (L + 1) × (L + 1) matrix, only entails angular mo-
mentum up to L. These matrices define the fuzzy sphere and this matrix multiplication
induces the ∗-product on the fuzzy sphere. It is a non-commutative associative product
and it will be shown later that it reduces to the familiar commutative product of functions
in the limit L→ ∞.

The 2-sphere is rather special in that SU(2) has irreducible representations for every
integer and so matrices of any size can be used to approximate functions, but more general
coset spaces are more restrictive. Consider, for example, CP2 ∼= SU(3)/U(2). Again a
function on SU(3) can be expanded in terms of the representation matrices of SU(3),

f =
∑

l1,l2

∑

I,I3,Y ;I′,I′

3
,Y ′

f
(l1,l2)
I,I3,Y ;I′,I′

3
,Y ′
D

(l1,l2)
I,I3,Y ;I′,I′

3
,Y ′
, (2.6)

where the integers l1 and l2 label the irreducible representations of SU(3) (l1 and l2 are
respectively the number of symmetric 3’s and the number of symmetric 3̄’s in the Young
diagram of the representation) and I, I3 and Y are the isospin, third component of isospin
and hypercharge respectively of the little group U(2) (these can be used to label the weights
of any irreducible representation of SU(3) unambiguously). To describe a scalar function on
CP2 we must pick out the parts of the SU(3) representation matrices that are U(2) singlets
under right multiplication. This immediately eliminates all the complex representations of
SU(3): the 3, 3̄, 6, 6̄ etc. The remaining real representations require l1 = l2 = l and have
dimension (l+ 1)3. Again of these only one column of each representation matrix survives

— the one given by I ′ = I ′3 = Y ′ = 0. The column vectors Y(l,l)
I,I3,Y := D

(l,l)
I,I3,Y ;0,0,0 thus

constitute generalised spherical harmonics on CP2 and functions can be expanded as

f =
∑

l

∑

I,I3,Y

f
(l,l)
I,I3,Y Y(l,l)

I,I3,Y . (2.7)

Again the coefficients fall into representations of SU(3):

1 + 8 + 27 + 64 + · · · . (2.8)

Truncating at some maximum value, L, of l always allows the number of coefficients to be
arranged in a square matrix: thus L = 1 gives 3̄×3 = 1+8; L = 2 gives 6̄×6 = 1+8+27;
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L = 3 gives 10 × 10 = 1 + 8 + 27 + 64; and so on. Truncating at L results in square
matrices of size (L+ 2)(L+ 1)/2, which is the dimension of the symmetric tensor product
of L 3’s (or L 3̄’s), and

L
∑

l=0

(l + 1)3 = (L+ 2)2(L+ 1)
2
/4. (2.9)

Again the group representation theory ensures that matrix multiplication keeps within the
same representations and never goes above L.

This construction generalises to the higher dimensional complex projective spaces
CPN−1 where the matrices at the smallest non-trivial approximation begin with N×N =

1 + (N2 − 1), the next being N(N+1)
2

× N(N+1)
2

= 1 + (N2 − 1) + N
2(N2+2N−3)

4
etc.

Truncating at L gives a
[

(N−1+L)!
(N−1)!L!

]

×
[

(N−1+L)!
(N−1)!L!

]

matrix representation approximation of

CPN−1. A similar truncation works for unitary Grassmannian manifolds, [17]. However
it is not always the case that the representation theory allows the expansion of a function
on a coset space to be described in terms of square matrices like this. When it can be done
we can define a ∗-product on a fuzzy version of the space.

§3 On ∗-products

In this section we present a general discussion of ∗-products with emphasis on “equiv-
ariant” ∗-products.

Suppose we have an algebra Â of linear operators on a finite dimensional vector space.
We assume that, if F̂ ∈ Â then its Hermitian conjugate F̂ † ∈ Â, so that Â is a *-algebra.
Let a connected compact Lie group G = {g} act on Â by adjoint action of unitary matrices:

F̂ 7→ D̂(g) F̂ D̂−1(g), D̂†(g)D(g) = 1. (3.1)

We can assume, by Wedderburn’s theorem, [22] , that Â is the direct sum of full matrix
algebras, Matd, of d× d matrices: Â =

⊕

dMatd. As the D̂(g) action preserves Â, it also

decomposes as D̂(g) =
⊕

d D̂
(d)(g). Since Matd is simple, the two-sided ideals of Â are all

direct sums of some of the Matd or just {0}.
To get a ∗-product we need, in addition, a function ρ̂∗ on a manifold M with values

in Â∗, the dual of Â. Then, < ρ̂∗, F̂ >:= F is a function on M:

< ρ̂∗, F̂ > (ξ) ≡< ρ̂∗(ξ), F̂ >= F (ξ), (3.2)

where ξ ∈ M. This map Â → C∞
F (M) ⊂ C∞(M) (assuming appropriate continuity

requirements) induces an algebra structure on C∞
F (M) if its kernel, Ker, is a two-sided

ideal in Â, that is if Ker is a direct sum of some of the Matd or {0}. If that is the case,
C∞

F (M) ∼= Â/Ker, and its algebra product is defined by

(F ∗G)(ξ) =< ρ̂∗(ξ), F̂ Ĝ >, (3.3)

where F̂ , Ĝ ∈ Â.
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The action (3.1) on Â induces an action on its dual Â∗ which we denote by F̂ ∗ →
D̂∗(g)−1F̂ ∗D̂∗(g):

< F̂ ∗, D̂(g)F̂ D̂(g)−1 >=< D̂(g)∗−1F̂ ∗D̂(g)∗, F̂ > . (3.4)

Until now there is no requirement that ρ̂∗(ξ) is a state or has equivariance. The setting
is very general. Suppose we now ask that ρ̂(ξ) is a state:

< ρ̂∗(ξ), F̂ † >= < ρ̂∗(ξ), F̂ >, (3.5)

< ρ̂∗(ξ), F̂ †F̂ > ≥ 0, (3.6)

< ρ̂∗(ξ), 1̂ >= 1, (3.7)

where bar denotes complex conjugation. Then ρ̂∗(ξ) can be identified with a density matrix
ρ̂(ξ) by setting

< ρ̂∗(ξ), F̂ >= Tr(ρ̂(ξ)F̂ ). (3.8)

For equivariance we assume that g acts transitively on M, ξ → gξ, such that

ρ̂∗(gξ) = D̂∗(g) ρ̂∗(ξ) D̂∗(g−1). (3.9)

Now each Matd and Â can be decomposed into irreducible tensor operators:

Matd = Span{T̂ (l)
M (d)},

D̂(d)(g) T̂
(l)
M (d) D̂(d)(g)−1 =

∑

M ′

T̂
(l)
M ′(d)D

(l)
M ′M (g), (3.10)

where g 7→ D(l)(g) is a unitary irreducible representation. Let {T̂ ∗(l)
M (d)} be the dual basis:

< T̂
∗(l′)
M ′ (d′), T̂

(l)
M (d) >= δll′δdd′δMM ′ . (3.11)

It transforms as

D̂∗(d)(g−1) T̂
∗(l)
M (d) D̂∗(d)(g) =

∑

M ′

T̂
∗(l)
M ′ (d) D

∗(l)
M ′M (g−1), (3.12)

where
D̂

∗(l)
M ′M (g) D̂

(l)
M ′N (g) = δMN . (3.13)

We can expand

ρ̂∗ =
∑

d,l,M

ρ
(l,d)
M T̂

∗(l)
M (d) :=

∑

l,d

ρ̂∗(l,d),

where
ρ
(l,d)
M : M → C and ρ̂∗(l,d) =

∑

M

ρ
(l,d)
M T̂

∗(l)
M (d). (3.14)
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Now Wedderburn’s theorem implies that for a ∗-product to exist, either all functions

ρ
(l,d)
M for a fixed d, or none, must be zero, because if ρ̂∗ has a kernel consistency requires

that it be a full matrix algebra. In fact, because of equivariance, we shall now show that
it is sufficient to check if ρ̂∗(l,d) is zero or not at one point, which we shall call the origin
and denote by ξo. We have

ρ̂∗(l,d)(gξo) = D̂∗(d)(g) ρ̂∗(l,d)(ξo) D̂
∗(d)(g−1), (3.15)

or
∑

M

ρ
(l,d)
M (gξo) T̂

∗(l)
M (d) =

∑

M,M ′

ρ
(l,d)
M (ξo) T̂

∗(l)
M ′ (d) D

(l)
M ′M (g)

⇒ ρ
(l,d)
M ′ (gξo) = D

(l)
M ′M (g)ρ

(l,d)
M (ξo). (3.16)

So, from equivariance,

ρ̂∗(l,d)(ξo) = 0 ⇒ ρ
(l,d)
M (ξo) = 0 and ρ̂∗(l,d) = 0. (3.17)

Thus, with equivariance, it is enough to check that ρ̂∗(l,d)(ξo) = 0, either for all l or no l,
for each fixed d, to verify if ∗ exists.

We remark that it is not necessary to assume (3.7) separately, as we can arrange to
have it with (3.5) and (3.6):

< ρ̂∗(gξo), 1̂ >=< ρ̂∗(ξo), D̂(g) 1̂ D̂(g−1) >=< ρ̂∗(ξo), 1̂ >=< ρ̂∗(ξo), 1̂
†1̂ > (3.18)

which, by (3.6), is a constant non-negative number, c. As the ideal containing 1̂ is Â, c
cannot be zero if there is a non-trivial ∗-product. So we can work with ρ̂∗/c instead so that
(3.7) is enforced. As for (3.5) and (3.6), they are natural. Eq. (3.5) gives real functions
for hermitian operators, and (3.6) gives F ∗ F (ξ) ≥ 0.

Note that if functions on M do not carry an IRR l with the correct multiplicity, it
can happen that Â admits no ∗-product. This problem occurs, for example, if Â is the
8 × 8 matrix algebra and ρ̂(ξo) is a1 + b[ad(Y )] (where ad(Y ) is the adjoint generator of
hypercharge) with a and b chosen so that (3.5) and (3.6) are satisfied. Then, ρ̂ gives a
map to functions on CP2. The latter has 8 only once, but Â has two 8’s, so there is no
∗-product (for a general discussion see [23] ). A ∗-product does however exist on CP2, for
suitable ρ̂, which we construct later.

It is useful to note the following. Quite generally, in the equivariant case, with tA an
orthonormal basis (in the trace norm) for the Lie algebra of G,

Tr(ρ̂(gξo)tA) = ξA(g) = (Adg)ABξB(1). (3.19)

Writing ρ̂(g) = (
∑

ηB(g)tB+ terms orthogonal to tB), only the first term survives the
tracing, so that ηA = ξA, with tA normalised appropriately. ξA maps G/H to an adjoint
orbit and provides coordinate functions on G/H.

7



To escape the limitation of only getting ∗-star products on adjoint orbits, we may
have to modify the requirement of equivariance.

In the subsequent construction of a ∗-product on CPN−1 we shall restrict our con-
siderations to the case where ρ̂ is a rank 1 projector and we shall use the notation P for ρ̂
(or PL = ρ̂ for its L-fold symmetric product, as explained later).

§4 Global Co-ordinates on CPN−1

We now turn to an explicit construction of the complex projective space CPN−1,
which can be defined as the space of vectors of unit norm in CN modulo the phase. Since
a unit vector |ψ > up to a phase defines a projection operator P := |ψ >< ψ|, an equivalent
definition for CPN−1 is as the space of all projection operators of rank one on CN , i.e.,

CPN−1 := {P ∈MatN ; P† = P,P2 = P,TrP = 1}. (4.1)

To construct a set of global coordinates for CPN−1, we choose a basis for N×N hermitian
matrices {tÂ}, Â = 0, · · · , N2 − 1, consisting of t0 = 1/

√
N and {tA}, A = 1, · · · , N2 − 1,

forming an orthogonal basis for the Lie algebra of SU(N). We will normalize them by
requiring

Tr(tÂtB̂) = δÂB̂ . (4.2)

This requirement implies that t0 = 1√
N

1 and tA’s are related to the Gell-Mann matrices

λA by tA = λA/
√

2. Thus,

tAtB =
1

N
δAB1 +

1√
2

(

dAB
C + ifAB

C
)

tC , (4.3)

where fAB
C and dAB

C are, respectively, the structure constants and the components of
the symmetric invariant tensor of SU(N) in the Gell-Mann basis. The d-tensor is traceless
on each pair of indices. For raising and lowering indices we will use the Kronecker δ.

Expanding P in terms of the basis,

P = ξÂtÂ = ξ0t0 + ξAtA. (4.4)

The condition that P is a rank one projection operator leads to the following conditions

on the coordinates ξÂ,

ξ0 =
1√
N
, ξAξA =

N − 1

N
, dAB

CξAξB =

√
2(N − 2)

N
ξC . (4.5)

These form a set of quadratic constraints which describe CPN−1 embedded in the N2-
dimensional Euclidean space RN2

, or in RN2−1 since ξ0 is a fixed constant. For example,
for N = 2 we have A,B = 1, 2, 3 and the above equations reduce to that of a sphere, or
CP1, of radius 1/

√
2 embedded in R3 because the d-tensor vanishes for SU(2).
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The coordinates for CPN−1 can be constructed easily by noting that any P ∈ CPN−1

can be obtained from an arbitrarily chosen origin Po by rotating it with g ∈ U(N), P =
gPog

†. Of course there is no unique element g associated with P. In fact, any two
elements of U(N) that are related by g′ = gh where h ∈ U(1) × U(N − 1) give rise to
the same point of CPN−1, as can be seen by going to the basis of CN in which Po is
diagonal. (This leads to still another characterization of the complex projective space,

i.e., CPN−1 = U(N)/[U(1)× U(N − 1)].) Using this fact one can obtain coordinates, ξÂ,

corresponding to an arbitrary point of CPN−1, P = gPog
†, from the coordinates ξÂ

o of
the origin Po as follows:

ξÂ = Tr(PtÂ) = Tr(gPog
†tÂ) = ξB̂

o Tr(gtB̂g
†tÂ) = (Ad(g))Â

B̂ξ
B̂
o , (4.6)

so that ξÂ map CPN−1 to an adjoint orbit of U(N) fulfilling (3.19).
It is important for what follows that P fulfills the property (3.9):

g−1ξAtAg = (Ad(g))ABξBtA. (4.7)

Here g ∈ U(N) and g → Ad(g) defines its adjoint representation.

§5 The Geometry of CPN−1

The coordinates ξÂ, Â = 0, . . . , N2 − 1 constitute an over-complete, but globally
well-defined, coordinate system for CPN−1. It is therefore useful to use them to describe
geometrical structures on CPN−1 such as Fubini-Study metric and Kähler structure. To
this end let us regard CPN−1 as a manifold embedded in the space RN2

of all hermitian
N ×N matrices. At a given point P ∈ CPN−1 we can decompose RN2

into the subspace
TPCPN−1 consisting of vectors tangential to CPN−1 and its orthogonal complement.
Since the action of U(N) spans all directions tangential to CPN−1 at P, and P is rotated
by the adjoint action of U(N), any vector in TPCPN−1 must be of the form,

T = i Ad(Λ)P = i[Λ,P] (5.1)

for some hermitian matrix Λ. This immediately implies that T must satisfy

T † = T , {P, T } = T , TrT = 0. (5.2)

Note that if Λ is a generator of the stability subgroup U(1)×U(N−1), the RHS of (5.1)
vanishes so that vectors T span a vector space of dimension of N2−(N−1)2−1 = 2N−2,
which agrees with the dimension of CPN−1.

The vectors in the orthogonal complement of TPCPN−1, on the other hand, can be
represented by the generators N of the stability subgroup of U(N). They satisfy

[P,N ] = 0. (5.3)

One can see this by noting that all such vectors are orthogonal to T = i[Λ,P],

Tr(NT ) = iTr(N [Λ,P]) = iTr([P,N ]Λ) = 0. (5.4)
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These facts are now used to describe the Kähler structure on CPN−1. The Kähler
structure consists of the following three mutually compatible structures:

1) Complex structure: for any hermitian matrix M, regarded as a vector at P, define

J(M) := −i[P,M]. (5.5)

If M is normal to CPN−1, i.e., if M = N , then J(N ) = 0 trivially. If M is tangential,
i.e., M = T , then

J2(T ) = −[P, [P, T ]] = −P(PT −T P)+(PT −T P)P = −PT −T P+2PT P = −T , (5.6)

where in the last step we have used (5.2) and PT P = 0 which follows immediately from
that equation. Therefore, J is a complex structure on CPN−1. In view of with (5.3) and
(5.5), equation (5.6) shows that −J2 is a projector to the tangent space of CPN−1.

2) Metric: for two hermitian matrices M1 and M2 define

G(M1,M2) := Tr
(

− J2(M1)M2

)

= −Tr([P,M1][P,M2]). (5.7)

This vanishes if any one of the arguments is a normal vector and on tangent vectors it
agrees with the trace metric. It is the metric on CPN−1 induced from the trace metric for
hermitian matrices. One can show that G(J(M1), J(M2)) = G(M1,M2).

3) Symplectic structure: for two matrices M1 and M2, define an antisymmetric two-
form Ω by

Ω(M1,M2) := G(J(M1),M2) = −iTr(P[M1,M2]). (5.8)

It vanishes if any of the arguments is normal to CPN−1. Thus, it is a two-form on CPN−1.
It is in fact closed, as we shall show in section 7.

One can combine G and Ω to obtain a tensor K on CPN−1,

K :=
1

2
(G + iΩ), (5.9)

and it is a straightforward exercise to show that

K(M1,M2) = Tr(PM1M2) − Tr(PM1PM2) = Tr[PM1(1− P)M2]. (5.10)

The construction of the Kähler structure described here also holds for other spaces
of projection operators of a fixed rank, i.e. unitary Grassmannian manifolds. However,
the fact that CPN−1 consists of rank one projection operators further simplifies the above
equation to

K(M1,M2) := Tr(PM1M2) − Tr(PM1)Tr(PM2). (5.11)

This form of K will be used crucially in the construction of fuzzy CPN−1 in the following
section. In terms of the components with respect to the basis tA (t0 components all vanish)
one finds

KAB := K(tA, tB) =
1

N
δAB +

1√
2
(dAB

C + ifAB
C)ξC − ξAξB, (5.12)
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GAB = 2ReKAB, ΩAB = 2ImKAB, JA
B = δACΩCB. (5.13)

Because of our normalisation of the matrices tA, (4.2), the indices A,B, . . . are raised and
lowered with δAB and δAB respectively. It is shown in the appendix that PA

B := δACGCB

is a rank 2(N − 1) projector and in fact P = −J2. Alternatively, Eq. (5.7) will yield that
result directly by splitting and combining traces containing the one-dimensional projector
P as in (5.11). In future we shall not distinguish between G and P , nor between Ω and J ,
and shall write

K =
1

2
(P + iJ), (5.14)

with

PAB =
2

N
δAB +

√
2(dAB

CξC) − 2ξAξB (5.15)

and
JAB =

√
2fAB

CξC . (5.16)

In fact, as shown in the appendix, K itself is a rank N − 1 projector — it can be inter-
preted as a projector from the redundant, global coordinates ξA to local (anti-)holomorphic
coordinates on CPN−1. That K is a projector is obvious from (5.14), J2 = −P and
PJ = JP = J .

§6 Fuzzy Complex Projective Spaces

We now turn to the construction of functions on CPN−1 and their ∗-product, general-
izing the construction given for S2

F
∼= CP1

F in [4]. While a non-commutative ∗-product on
the continuum CPN−1 has been known for some time [21], we construct here a ∗-product
on the fuzzy CPN−1

F , with a finite number of degrees of freedom.
In order to describe the harmonic expansion of functions on CPN−1 one only requires

representations which are symmetric products of the fundamental representation of SU(N),
i.e. the N representation, (or the complex conjugate N̄ representation). So the construc-
tion starts with an N -dimensional Hilbert space, H1 := N = CN . To represent functions

at the level L, we use as our Hilbert space , HL, which is the dL = (N−1+L)!
(N−1)!L!

-dimensional

irreducible representation of SU(N) obtained from the L-fold symmetric tensor product
of H1. Associated with a point P in CPN−1 let us consider the L-fold tensor product of
P,

PL := P ⊗ · · · ⊗ P. (6.1)

Being an L-fold tensor product of the same operator, PL is a well-defined operator on HL.
Note that PL is again a projection operator of rank one. We will use this property of PL

later.
With each operator F̂ on HL, we construct the corresponding function FL(ξ) on

CPN−1 using the equivariant mapping prescription,

FL(ξ) := Tr(PL(ξ)F̂ ). (6.2)

In this way we define an injective mapping from operators F̂ on HL into functions FL on
CPN−1 (the injectivity is actually proved at the end of next section). The functions FL

11



are sufficient to reconstruct the operator F̂ . The target space of this mapping is derived
in section 7, it is what we denote by CPN−1

F and is isomorphic to the space of dL × dL

matrices.
A ∗-product on this space of functions is defined as

(FL ∗GL)(ξ) := Tr(PLF̂ Ĝ). (6.3)

Associativity of the ∗-product is guaranteed by construction and derives from the associa-
tivity of matrix multiplication. Our aim is to derive an explicit, closed expression for the
∗-product (6.3) (or (3.3)), solely in terms of the functions FL and GL, and show that it
reduces to the normal product of two functions in the limit L→ ∞.

At the level L = 1, the only functions allowed are functions linear in ξÂ. This is
because any hermitian operator acting on the fundamental representation H1 of SU(N),

can be expanded in terms of tÂ. For F̂ = F ÂtÂ, the corresponding function F1(ξ) become

F1(ξ) = F ÂξÂ. (6.4)

In particular, tÂ produces coordinate functions ξÂ,

ξÂ = Tr(PtÂ). (6.5)

The ∗-product between coordinate functions, ξÂ ∗ ξB̂ := Tr(PtÂtB̂) combined with (5.11)
yields the following important relation

ξÂ ∗ ξB̂ = ξÂξB̂ +KÂB̂, (6.6)

where KÂB̂ is the hermitian structure. Note that K0Â vanishes for all Â.
For any finite L, functions and their ∗-product are constructed using hermitian op-

erators on HL according to the prescriptions (6.2), (6.3). Given two operators F̂ and Ĝ
write them in the following form,

F̂ = FÂ1···ÂL
tÂ1 ⊗ · · · ⊗ tÂL ,

Ĝ = GÂ1···ÂL
tÂ1 ⊗ · · · ⊗ tÂL , (6.7)

where the coefficient tensors are totally symmetric. Of course, for a given operator on HL

there is no unique expression of the above form. In fact, a choice of symmetric tensor
corresponds to a particular extension of the operator to the whole tensor product space
H1 ⊗ H1 · · · ⊗ H1. This ambiguity will eventually disappear because the construction of
functions and their ∗-product depend only on operators acting on HL. The functions
corresponding to (6.7) are

FL(ξ) = FÂ1···ÂL
ξÂ1 · · · ξÂL ,

GL(ξ) = GÂ1···ÂL
ξÂ1 · · · ξÂL , (6.8)
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and their ∗-product becomes

(FL ∗GL)(ξ) = FÂ1···ÂL
GB̂1···B̂L

(ξÂ1 ∗ ξB̂1) · · · (ξÂL ∗ ξB̂L). (6.9)

Since ξ0 = 1√
N

is a constant, all functions can be considered as polynomials in just ξA of

degree ≤ L.
Now, in order to express this in the final form, we first substitute the relation (6.6)

into the above equation and expand it in powers of KÂB̂ to get

(FL ∗GL)(ξ) =FL(ξ)GL(ξ) +
L

∑

l=1

L!

(L− l)!l!
FÂ1···ÂlÂl+1···ÂL

ξÂl+1 · · · ξÂLGB̂1···B̂lB̂l+1···B̂L

ξB̂l+1 · · · ξB̂LKÂ1B̂1 · · ·KÂlB̂l . (6.10)

where the first term is the ordinary commutative product, and will be integrated into the
sum as the l = 0 term for convenience. Finally, using the relation

∂Â1
· · ·∂Âl

FL(ξ) =
L!

(L− l)!
FÂ1···ÂlÂl+1···ÂL

ξÂl+1 · · · ξÂL , (6.11)

and the fact that K0Â = 0, we get

(FL ∗GL)(ξ) =
L

∑

l=0

(L− l)!

L!l!
[∂A1

· · ·∂Al
FL(ξ)]KA1B1 · · ·KAlBl [∂B1

· · ·∂Bl
GL(ξ)]. (6.12)

Note again that in arriving at (6.12) we have extended functions and derivatives to outside
CPN−1 and finally evaluated the result on CPN−1. However, all this extension should be
regarded as a convenient way of calculation because the final expression involves functions
on CPN−1 and derivatives along CPN−1 only, as we will explicitly show below.

Equation (6.12) is one of the central results of this paper and generalises the result
for S2 derived in [4]. Only the l = 0 term survives in the limit L → ∞, which shows
that the ∗-product reduces to ordinary multiplication of functions in the continuum limit,
with corrections being of order 1/L. Note that the limit should be taken with all functions
fixed.

As mentioned earlier, and proven in the appendix, the matrix KAB is a projector. In
fact the derivatives in (6.12), which are flat in RN2−1 are being projected onto the holomor-
phic tangent space of CPN−1 and are actually covariant derivatives there. Note that, since
K is hermitian, it gives a holomorphic derivative when acting to the right, as inKAB(∂BF ),

but an anti-holomorphic derivative when acting to the left, as in (∂BF )KBA = K
AB

(∂BF ),
where the bar represents complex conjugation. Thus, if our algebra of functions permit-
ted us to construct holomorphic or anti-holomorphic functions, the ∗-product of a (anti-)
holomorphic function with another (anti-) holomorphic function would always reduce to
the ordinary product. More generally the ∗-product, FL ∗ GL, is an ordinary product if
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G is anti-holomorphic regardless of the form of F or, conversely, if F is holomorphic re-
gardless of the form of G. Another point to note is that the complex structure is reversed,
J → −J , if the original Hilbert space is identified with the complex conjugate fundamental
representation N̄ rather than the N.

The structure here is perhaps most clearly understood by looking at the simplest case,
N = 2. Then PAB = δAB − 2ξAξB and JAB =

√
2ǫABCξ

C . The constraints imply that
ξAξ

A = 1/2 and so define a unit vector in R3, nA =
√

2ξA, so that PAB = δAB − nAnB

and JAB = ǫABCn
C . Clearly P = −J2 and P is a projector from R3 onto the unit sphere

while J , when restricted to n.n = 1, represents the complex structure on CP1. In view
of the identity J3 = −J , the combination K = (P + iJ)/2 is a rank one projector onto
a complex holomorphic coordinate on CP1 (JK = −iK). This interpretation survives to
higher N also and gives a geometric interpretation of the ∗-product (6.12).

In a standard geometrical construction a covariant derivative on a curved space can
be obtained by embedding the space in a flat Euclidean space of higher dimension and
projecting the ordinary derivative in the Euclidean space onto the tangent space of the
curved manifold. When the Euclidean derivatives are restricted to act on tensors already
projected to the tangent space of the curved manifold, the projected flat derivative is
a covariant derivative. There is a simplification in the construction here, because the
projector KAB satisfies [17]

KABKCD∂BKDE = 0 (6.13)

which implies that

KABKCD∂B

(

KD
E∂EF

)

= KABKCD∂B∂DF (6.14)

since K2 = K, with an obvious generalisation to derivatives acting on higher rank tensors.
This identity can be proven using the last form ofKAB in (5.10),KAB = Tr[PtA(1−P)tB ],
and completeness of the matrices tA. An alternative, more detailed proof, is given in
appendix B.

So, defining ∇A := KA
B∂B and ∇A := KA

B
∂B and using (6.14) and its generalization

to convert the successive partial derivative to covariant derivatives in (6.12), the ∗-product
is

(FL ∗GL)(ξ) =

L
∑

l=0

(L− l)!

L!l!
[∇A1

· · ·∇Al
FL(ξ)]KA1B1 · · ·KAlBl [∇B1

· · ·∇Bl
GL(ξ)].

(5.15)
Converting from global coordinates, ξA with A = 1, ..., N2 − 1, to local holomorphic

coordinates, zi with i = 1, ..., N − 1 and zī := z̄i we have the correspondences

KAB → 1

2

(

Gij̄ + iΩij̄

)

= iΩij̄ , KAB → 1

2

(

G j̄i + iΩj̄i
)

= iΩj̄i, (5.16)

where Gij̄ is the Fubini-Study metric and Ωij̄ the Kähler 2-form, with Gij̄ = Gj̄i = iΩij̄ =

−iΩj̄i, and Ωj̄i = G j̄nGim̄Ωnm̄. Equation (6.15) in local coordinates takes the from

(FL ∗GL)(z, z̄) =

L
∑

l=0

(L− l)!

L!l!
[∇j̄1 · · ·∇j̄l

FL(z, z̄)](iΩj̄1i1) · · · (iΩj̄lil)[∇i1 · · ·∇il
GL(z, z̄)],

(5.17)
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where ∇i is the covariant derivative.

§7 Fuzzy Derivatives

The star product defined here can be used for more than just multiplying functions
on the fuzzy CPN−1

F , it can also be used to define derivatives on the discrete fuzzy spaces.
In the continuum the vector fields on CPN−1 generating SU(N) can be expressed as

LA = −ifAB
CξB∂C = i

1√
2
JA

C∂C . (7.1)

It is easily verified that
[LA,LB] = ifAB

CLC . (7.2)

The corresponding action of a generator LA on the Hilbert space HL is obtained from

exponentiating the generator, that is by considering DL(η) = eiηALA :

Tr[PL(ξ)DL(η−1)F̂DL(η)] = Tr[PL(ξo)DL(g−1η−1)F̂DL(ηg)]. (7.3)

Infinitesimally, with ηA small and D−1
L (η) ≈ 1 − iηALA,

Tr[PL(ξ)(1− iηALA)] =

{

Tr

[

P1(ξ)

(

1 − iηA

(

tA√
2

))]}L

≈ 1 − iL√
2
ηAξA, (7.4)

So Tr[PL(ξ)LA] = L√
2
ξA. (The generators (4.3) in the fundamental representation were

normalised so that [ tA√
2
, tB√

2
] = ifAB

C tC√
2
.)

Now the derivative of a function in the continuum, LAF (ξ), can be taken over to the
fuzzy case as

(LAFL)(ξ) := Tr{PL(ξ)[LA, F̂ ]} =
L√
2
(ξA ∗ FL − FL ∗ ξA). (7.5)

Using the ∗-product (6.12) this is

(LAFL)(ξ) =
1√
2

(

KAB∂BFL − (∂BFL)KBA
)

=
i√
2
JAB∂BFL, (7.6)

and this shows that the definition (7.5) is consistent with (7.1). The main point here is
that derivatives on functions in the continuum restrict to derivatives at finite L which can
be represented as commutators in the matrix algebra,

(LAFL)(ξ)) = Tr{PL(ξ)[LA, F̂ ]}. (7.7)

This formula can now be used to prove that the symplectic form, Ω, defined in (5.8) is
closed. Let LieX denote the Lie derivative along the vector field X . Then, in the formula
for the exterior derivative of a 2-form acting on three tangent vectors, X,Y and Z,

dΩ(X,Y,Z) =LieXΩ(Y,Z) + LieYΩ(Z,X) + LieZΩ(X,Y)

− Ω([X,Y],Z)− Ω([Y,Z],X)− Ω([Z,X],Y),
(7.8)
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we represent all tangent vector fields by matrices as in (7.7) (any tangent vector can be
written as a linear combination of the LA at each ξ) and conclude that dΩ = 0 by the
Jacobi identity.

At this point, it is possible to derive simply the target space of the mapping (6.2) from
operators F̂ on HL to functions FL(ξ) on CPN−1. Since the derivations [·, LA] in HL are
sent exactly to the derivations LA in CPN−1 by the mapping, the second order Casimir
in the adjoint action in HL is mapped to the Laplacian in CPN−1, and the commuta-
tor actions of the Cartan sub-algebra operators are sent to their equivalent derivations
in CPN−1. This means that the normalised simultaneous eigenvectors of all these Car-
tan operators in HL are mapped to simultaneous eigenfunctions of all the corresponding
derivation operators in CPN−1 with the same eigenvalues. Denoting the irreducible tensor
operators which are eigenvectors of the Cartan operators by T̂J

M
, with J a multiple index

labelling the representation and M a multi-index labelling the weights, we find that T̂J

M

are mapped to cJ(L)Y J

M
, Y J

M
being spherical harmonics, the analogues of Y l

M for SU(2).
The constants cJ(L) can easily be calculated and are all non-zero, which implies the in-
jectivity of the mapping FL assumed in (6.2). Thus, the target of the mapping is just
the space generated by the eigenfunctions Y J

M
of the Laplacian which are images of the

T̂J

M
, with J running over all SU(N) irreducible representations in the dL × dL reducible

representation that contain U(N) singlets. For example CP1 ∼= S2 ∼= SU(2)/U(1) requires
L-fold symmetric representations with dL = (L + 1) and the (L + 1) × (L + 1) reducible
representation decomposes into irreducible representations as 1+3+ · · ·+(2L + 1). There
is only one Casimir for SU(2), so J is just the integer l of the associated irreducible repre-
sentation and M is the magnetic quantum number. The T̂ l

M , l = 0, . . . , L, are a basis for
all (L+ 1) × (L+ 1) matrices and Y l

M are the usual spherical harmonics.

§8 Conclusions

The central result of this paper is equation (6.12), which gives the explicit construction
of an associative ∗-product on the fuzzy CPN−1

F between two functions FL = Tr{PLF̂}
and GL = Tr{PLĜ},

(FL∗GL)(ξ) = FL(ξ)GL(ξ)

+

L
∑

l=1

(L− l)!

L!l!
[∂A1

· · ·∂Al
FL(ξ)]KA1B1 · · ·KAlBl [∂B1

· · ·∂Bl
GL(ξ)],

This expression is written in terms of an over-complete set of coordinates ξA in RN2−1,
with constraints (4.5). The projector K = (P + iJ)/2 in equation (5.14) is defined by

PAB =
2

N
δAB +

√
2(dAB

CξC) − 2ξAξB

and
JAB =

√
2fAB

CξC .

P = −J2 is itself a projector mapping RN2−1 onto the tangent plane of CPN−1 at ξA.
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P and J are essentially the components of the usual hermitian structure on CPN−1

obtained by embedding it in the space of hermitian matrices RN2

. The latter is encapsu-
lated in the three equations (5.5), (5.7) and (5.8):

J(M) := i[P,M],

G(M1,M2) := Tr(−J2(M1),M2)

and
Ω(M1,M2) := Tr(M1J(M2)) = −iTr(P[M1,M2]),

describing the complex structure, the Fubini-Study metric and the symplectic structure
on CPN−1 respectively. In our normalisation convention P = G. Expressed in local
holomorphic coordinates zi, i = 1, . . . , N − 1, rather than the global coordinates, ξA, this
∗-product is (5.17),

(FL∗GL)(z, z̄) = FL(z, z̄)GL(z, z̄)

+

L
∑

l=1

(L− l)!

L!l!
[∇j̄1 · · ·∇j̄l

FL(z, z̄)](iΩj̄1i1) · · · (iΩj̄lil)[∇i1 · · ·∇il
GL(z, z̄)].

The ∗-star product reduces to the ordinary commutative product on the continuous CPN−1

in the L→ ∞ limit for fixed FL and GL [20].
Note also the important expression for the derivative of a function on the fuzzy CPN−1

F

as a commutator (7.7), which appears naturally in this construction

LAFL = Tr{PL[LA, F̂ ]}.
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Appendix A

In this appendix we derive some essential properties of the matrix K = (KAB) used
in the definition of the ∗-product (6.12). First we show that K is a projector, with rank
N − 1. To this end break K into real and imaginary parts as in the text, K = 1

2
(P + iJ)

with

PAB :=
2

N
δAB − 2ξAξB +

√
2SAB (A.1)
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and
JAB :=

√
2AAB, (A.2)

with symmetric matrix SAB := dAB
CξC and the anti-symmetric matrix AAB := fAB

CξC
(all indices are raised and lowered here using δAB). It is shown in the text that J corre-
sponds to the complex structure on CPN−1, and we show here that −J2 is a projector of
rank 2(N − 1), with PJ = JP = J and finally J2 = −P , which implies in particular that
P itself is also a projector.
i) K is a projector with rank N − 1. To see this observe that

Tr(tAtBtCtD) =
1

N
δABδCD +

1

2

(

dAB
E + ifAB

E
)(

dECD + ifECD

)

. (A.3)

Now contracting this with ξCξD and using cyclic symmetry of the trace and the constraints
(4.5) yields the two identities:

S2
AB −A2

AB =
2(N − 1)

N2
δAB − 2

N
ξAξB +

√
2(N − 2)

N
SAB (A.4)

and

(SA + AS)AB =

√
2(N − 2)

N
AAB. (A.5)

From these it follows easily that K2 = K. Since the constraints also dictate that tr(K) =
N − 1 (tr here means trace over the adjoint representation of SU(N), so δA

A = N2 − 1),

K is a projector onto an N − 1 dimensional subspace of RN2−1.

ii) J2 is a projector and J3 = −J . In the text the complex structure was denoted by
J , and we can identify that with the symplectic structure when the normalisation is such
that indices are raised and lowered with δAB . For completeness we give here an alternative
derivation. First we show that J3 = −J and tr(−J2) = 2(N − 1). By definition JAB :=√

2AAB =
√

2fABCξ
C , so JABt

B = i[tA, ξ] where ξ = ξAtA. The constraints (4.5) imply

ξ2 =

(

N − 1

N2

)

1 +

(

N − 2

N

)

ξ. (A.6)

Using the commutation relations for tA gives

[[[tA, ξ], ξ], ξ] = i(J3)ABt
B , (A.7)

while expanding the commutators on the left hand side explicitly, and using (A.6), gives

[[[tA, ξ], ξ], ξ] = −iJABt
B, (A.8)

from which we conclude that J3 = −J . This means that −J2 is a projector since (−J2)2 =
(−J2) and the definition of J , (A.2), together with the constraints (4.5) and the standard
normalisation fACDfBCD = NδAB, show that tr(−J2) = 2(N − 1) = dimCPN−1.
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iii) J commutes with P and PJ = J . Since dABC is an invariant tensor we have

fAB
HdHCD + fAC

HdBHD + fAD
HdBCH = 0

and contracting this with ξAξB shows that S commutes with A, since fABC is totally
antisymmetric. The latter also means that J annihilates ξ, so that J commutes with P .
Since K2 = K we have J = (PJ + JP )/2, and hence PJ = J .

iv) P = −J2. The real part of K2 = K implies that P 2−J2 = 2P . Since P commutes with
J they are simultaneously diagonalisable and because −J2 is a projector, its eigenvalues
are all 0 or 1. So the eigenvalues of P are 1 when the eigenvalue of −J2 is 1, and either 0
or 2 when the eigenvalue of −J2 is 0. Calling p the number of eigenvalues 2 in P ,we have

tr(P ) = tr(−J2) + 2p, (A.9)

while, directly from the definition of P (A.1) and the constraint equations (4.5), one finds

tr(P ) = 2(N − 1) = tr(−J2) (A.10)

which implies that p = 0. Thus we have P = −J2, with P a projector of rank 2(N − 1).
Note that this implies that K annihilates the coordinates KABξ

B = 0, since J does, which
is easily checked using (A.2).

Appendix B

In this appendix we give an alternative, more detailed, proof of the identity (6.13),

KABKCD∂BKDE = 0. (6.13)

Denoting the generators of SU(N) in the adjoint representation by (θA)BC = −ifABC ,
with commutation relations [θA, θB] = ifABCθC , we have J = i

√
2θAξ

A and

JAB∂BJ =
√

2i[θA, J ], JABθB = [θA, J ]. (B.1)

Using these commutators it is straightforward to show that

KAB∂BK =
1√
2
(1 + iJ)AB [K, θB] =

1√
2

([K, [θA, iJ ]] + [K, θA]) . (B.2)

Now, since K2 = K we have K(dK) + (dK)K = dK from which

K(dK) = dK(1 −K). (B.3)

The eigenvalues of iJ are ±1 (each with multiplicity (N − 1)) and 0 (with multiplicity
(N − 1)2). We can thus choose a basis where

iJ =





1(N−1)

0(N−1)2

−1(N−1)



 (B.4)
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and

K =





1(N−1)

0(N−1)2

0(N−1)



 =

(

1(N−1)

0N(N−1)

)

(B.5)

where, for example, 1(N−1) is the (N − 1) × (N − 1) identity matrix and 0(N−1) the
(N−1)×(N−1) square matrix with all entries zeros. In terms of the 2×2 block structure

of the second form of K above, we write dK =

(

A B
C D

)

. Equation (B.3) then shows

that

KdK =

(

0 B
0 0

)

,

so we only need examine < 1|KdK|0 > and < 1|KdK| − 1 > where iJ |n >= n|n >. Now
from (B.2)

KKAB∂BK =
1√
2
K ([[iJ, θA], K] + [K, θA]) , (B.6)

and, since K|1 >= |1 >, K|0 >= K| − 1 >= 0, we deduce that

< 1|KKAB∂BK|0 >=
1√
2
< 1|[θA, iJ ] + θA|0 >= 0 (B.7)

< 1|KKAB∂BK| − 1 >=
1√
2
< 1|([θA, iJ ] + θA)| − 1 >= − 1√

2
< 1|θA| − 1 > . (B.8)

The last expression vanishes, because θA does not connect |1 > and | − 1 >, and (6.13)
follows.
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[8] H. Grosse, C. Klimč́ık, and P. Prešnajder, in Les Houches Summer School on Theo-
retical Physics, 1995, hep-th/9603071.
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