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Summary 

Hepatitis B virus (HBV) infects over 300 million people worldwide and despite the 

availability of a vaccine, it remains the second biggest carcinogen in the world and a 

serious global health problem. The majority of adult infections are resolved while 90% 

of neonates fail to clear infection. Persistently-infected individuals harbour a risk of 

developing liver disease and hepatocellular carcinoma (HCC). Treatment of HBV is met 

with several problems including poor tolerance and antiviral resistance and therefore, 

novel well-tolerated and effective therapies are required.  

Innate lymphocytes include NK, NT, NKT and  T cells and comprise a group 

of MHC-unrestricted lymphocytes that can elicit potent cytokine production and 

cytotoxicity at a very early stage of virus infection. We proposed that a better 

understanding of the role of innate lymphocytes in the control of HBV infection might 

eventually facilitate the development of new cell-based immunotherapies. 

We have quantified the frequencies and cytokine profiles of natural killer (NK), 

natural T (NT), natural killer T (NKT) and  T cells in a group of HBV patients with 

relatively low viral load and little evidence of liver disease in order to ascertain the role 

of these cells in controlled HBV infection. We found expansions in the frequencies of 

circulating NK and NT cells and the V2 and V1 subsets of  T cells in these patients, 

compared to uninfected control subjects. Furthermore, expansions of interferon- (IFN-

)-producing NT, V2 T and conventional T cells were significantly higher in this group 

as were the frequencies of total IFN--producing lymphocytes. Higher levels of IFN- 

expression in HBV were confirmed using qRT-PCR and we, therefore, propose that 

such expansions are indicative of an active antiviral immune response and that IFN- 

plays an important role in the control of HBV replication. Higher frequencies of IL-10-

producing NK cells observed in the HBV patients may indicate a possible regulatory 

role of these cells in asymptomatic HBV infection. IL-17-producing NT and T cells 

exhibit enhanced responses to in vitro stimulation in HBV suggesting that IL-17 plays a 

supporting role in the control of HBV infection and that such Th17-biased cells can 

expand rapidly following sufficient stimulation. Since IL-10 and IL-17 can elicit 

inhibitory effects on IFN- production, we propose that the increased potential of IL-10 

and IL-17 production in these patients might represent a regulatory mechanism that 

limits the antiviral immune response to prevent liver injury. We have also found 

reduced expression of the cytotoxicity-associated receptor NKG2D by V2 T cells 
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which may be another mechanism by which immune-mediated damage is limited in 

these HBV patients. Furthermore, we have found that HBV proteins have negative 

effects on IFN--production by V2 T cells suggesting that HBV can inhibit the effector 

mechanisms of these cells. 

HCC is a serious endpoint of chronic HBV infection for which there are few 

curative options. We performed a preliminary study to survey the potential of 

HMBPP/IL-2 expanded  T cells as an immunotherapy against HCC by investigating 

the interactions between Vδ2 T cells and the HCC-derived Hep3B cells. We found that 

the expression of NKG2D by V2 T cells and its ligand MICA/B on Hep3B cells was 

downregulated following co-culture. We propose that the shedding of MICA/B by the 

carcinoma-derived cells might be the mechanism by which NKG2D is downregulated 

and the effector functions of V2 T cells are subverted. Quantification of cytokine 

expression in Hep3B cell / Vδ2 T cell co-culture supernatants revealed higher IL-10 

expression and reduced IFN- and TGF-β1 expression. From our analysis of these 

findings, we suggest that Hep3B cell-derived IL-10 might inhibit IFN- production by 

Vδ2 T cells as an immune evasion strategy while the Vδ2 T cells may suppress TGF-β1 

expression by the epithelial cells to avoid the immunosuppressive effects of the growth 

factor. 

 From this study, we propose that we have identified a new model of the non-

cytolytical control of HBV replication in which NT and V2 T cells minimise viral load 

without causing significant liver pathology via mechanisms that involve enhanced but 

regulated IFN- production. These results place HBV infection as a candidate disease 

that might benefit from cellular therapies involving innate T cells. 
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1.1 An Introduction to Hepatitis B Virus 

1.1.1 The discovery of Hepatitis B virus 

The discovery of hepatitis B virus (HBV) is owed to the work of Dr. Baruch Blumberg; 

a physician, clinical research scientist and ex-navy officer. In 1967, Blumberg and his 

colleagues were researching the genetics of disease susceptibility when an unusual 

finding arose. An antibody in a New York haemophiliac was specific to an antigen in an 

Australian aborigine (Blumberg et al. 1967). This antigen was called the „Australia 

antigen‟ and was later shown to be the Hepatitis B surface antigen (HBsAg) (Millmann 

et al. 1970). After discovering the virus, Blumberg and his colleagues at the Fox Chase 

Cancer Centre went on to develop sensitive tests to screen for hepatitis B in donated 

blood. They also, developed a vaccine based on inoculation with a viral subunit 

(Millman & Blumberg 1978). This was a novel form of vaccination at the time and 

HBsAg is now the viral subunit used to vaccinate against hepatitis B virus with over 

90% efficacy. Blumberg went on to win the Nobel Prize in 1976 for his contribution to 

human health. 

 

1.1.2 The prevalence and prognosis of HBV 

HBV along with Hepatitis C virus (HCV) is one of the major causes of liver disease 

worldwide (Lok & McMahon 2001; Lauer & Walker 2001). It is estimated that 2 billion 

people have been exposed to HBV and over 300 million of these are persistent carriers 

of HBsAg (Takano et al. 1995; Evans & Landon 1998; Christina & Page 2001; Kao & 

Chen 2002). Furthermore, over 1 million deaths per year are attributed to HBV infection 

(Pisani et al. 1990; Evans & Landon 1998; Christina & Page 2001). The majority of 

adult HBV infections are acquired horizontally (intravenous drug use, sexual 

transmission, blood transfusions, accidental needle stick injuries) and are resolved while, 

most neonates acquire infection vertically (perinatally) and an alarming 95% develop 

persistent infection (Chisari & Ferrari 1975; Stevens et al. 1975; Rehermann & 

Nascimbeni 2006).  

 Infection with HBV is followed by a 6-24 week incubation phase during which 

patients may experience a range of symptoms including nausea, vomiting, diarrhea, 

anorexia, fever, skin rash, headaches and jaundice (World Health Organisation (WHO) 

2008). This acute illness can be followed by clearance of infection or life-long infection. 

Persistent infection may be asymptomatic or can lead to the development of chronic 

hepatitis. Progression to liver cirrhosis occurs in 2-5% of HBV patients each year and 
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the rate of progression is augmented by co-infection with hepatitis C virus (HCV), 

hepatitis delta virus (HDV), human immunodeficiency virus (HIV) or a high hepatitis B 

viral titre (Poynard et al. 1997; Mathurin et al 1998; De Franchis et al. 2003; Iloeje et al. 

2006; Rehermann & Nascimbeni 2006). Cirrhosis is a serious disease which can lead to 

the development of hepatocellular carcinoma (HCC) and often leads to liver failure. 

HCC is a common endpoint of chronic HBV infection with a 100-fold increased risk in 

chronically infected persons compared to age-matched uninfected controls. 

Approximately 5% of chronically infected patients who develop liver cirrhosis are 

diagnosed with HCC while only 0.2% of asymptomatic carriers develop this 

malignancy (Beasley et al. 1981; Beasley 1988; Rehermann & Nascimbeni 2006). 

While the majority of infected adults recover from HBV infection and others develop 

lifelong infection, 0.5% of subjects succumb to fulminant hepatitis – an acute illness 

marked by liver inflammation which can lead to death (Stevens et al. 1975). Individuals 

aged below 11 or above 40 years have poor prognosis in fulminant hepatic failure and 

would often be considered for liver transplant (Grady et al. 1991).  

The highest prevalence of HBsAg carriers exists in developing countries with 

limited healthcare. Many infected individuals in Africa and Asia contract HBV in 

childhood and in some parts, HBsAg carrier rates can be 10-15%. Countries with the 

highest living standards have the lowest prevalence, for example, UK, USA and 

Scandinavia (World Health Organisation (WHO) 2008). 

Although a vaccine is available for HBV, new accessible and effective 

therapeutics are needed to treat the vast number of people already infected worldwide. 

Such therapies could limit the spread of infection, reduce the overall incidence of HBV 

and associated illnesses and contribute to a possible eradication of the virus. The 

prevalence of the disease among children in developing countries is of major concern 

and with limited curative options, such individuals are burdened with a life-long 

infection and a high risk of liver disease. A better understanding of the immune 

responses in HBV infection may facilitate the development of an effective 

immunotherapy for HBV. 
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1.1.3 The biology of HBV 

1.1.3.1 The structure of HBV 

HBV is a 42 nm enveloped non-cytopathic, hepatotropic DNA virus which belongs to 

the hepadnaviridae family of viruses (Tiollais et al. 1985; Seeger & Mason 2000; 

Rehermann & Nascimbeni 2006). The structure of the virion is shown in Figure 1.1. It 

consists of an outer envelope made up of 3 proteins; S, M and L. Each of these proteins 

contain the S domain called HBV surface antigen i.e. HBsAg which, by itself or 

together with other envelope proteins forms a filamentous and spherical antigen that is 

secreted from infected cells in 100-fold excess to complete virions (Kim & Tilles 1973; 

Stibbe & Gerlich 1983a; Stibbe & Gerlich 1983b; Heermann et al. 1984). The 

nucleocapsid (core protein HBcAg) lies within the viral envelope and contains the 

partially double stranded DNA viral genome. The genome consists of ~3200 nucleotides 

with a full-length negative strand and a shorter positive strand. The viral reverse 

transcriptase is covalently linked to the 5‟ end of the negative strand where as an 

oligoribonucleotide is linked to the 5‟ end of the positive strand. The nucleocapsid open 

reading frame contains two start codons therefore, encoding 2 proteins – the 

nucleocapsid (HBcAg) and a longer protein called pre-core. Pre-core is translocated to 

the endoplasmic reticulum where removal of its amino-terminal 29 amino acids and 

trimming of the carboxyl terminus gives a polypeptide that is secreted as HBeAg (Ou et 

al. 1986; Roossinck et al. 1986; Rehermann & Nascimbeni 2006).  

 

1.1.3.2 The life cycle of HBV 

HBV primarily infects hepatocytes but it has also been shown to infect peripheral blood 

mononuclear cells (PBMC), spleen, kidney, pancreas, skin and bone marrow cells 

(Chemin et al. 1994; Seeger & Mason 2000; Zoulim 2004; Ganem & Prince 2004). 

HBV interacts with a cellular receptor on the hepatocyte, fuses with the cell 

membrane and then releases its nucleocapsid into the cytoplasm. The nucleocapsid 

translocates to the nucleus where the viral DNA is transformed from a relaxed circular 

DNA molecule (rcDNA) into a covalently closed circular proviral DNA molecule 

(cccDNA) (Zoulim 2004; Rehermann & Nascimbeni 2006). The cccDNA is supercoiled 

in the host chromatin and has a long half-life. It is the template from which 4 viral 

RNAs are transcribed using the host polymerase. These RNAs are exported to the 

cytoplasm and translated to form the nuclecapsid, envelope, reverse transcriptase and 

polymerase proteins. The reverse transcriptase binds its own mRNA (the pregenome 
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RNA) and is subsequently packaged into the nucleocapsid where new partially double-

stranded viral genomes are reverse-transcribed from the pregenome RNA (Zoulim 2004; 

Rehermann & Nascimbeni 2006). 

The nucleocapsid matures via a dephosphorylation process that increases its 

affinity to bind DNA. It then becomes enveloped within the envelope proteins as it 

passes through the endoplasmic reticulum and/or Golgi apparatus to form a complete 

virion that can be released (Zoulim 2004; Rehermann & Nascimbeni 2006).  

Sometimes the mature nucleocapsid is not released. This occurs when the large 

L envelope protein accumulates in excess of the other two envelope proteins in the 

endoplasmic reticulum and disrupts trafficking through the Golgi and normal shedding 

of the viral particles. This can sometimes lead to oxidative stress and cytopathy so to 

overcome this, the DNA-containing nucleocapsid can be recycled back to the nucleus 

where its DNA is transformed into cccDNA. This is believed to maintain the cccDNA 

pool and as many as 30-50 copies of cccDNA can be found in the nucleus of an infected 

hepatocyte. It is believed to serve as a reservoir for viral replication and spread of 

infection. These reservoirs of cccDNA are important in the maintenance of chronic 

HBV infection and are believed to be a major hindrance in the durability of antiviral 

treatment (Zoulim 2004; Rehermann & Nascimbeni 2006).  The formation of cccDNA 

is not fully understood but it is believed that the removal of the RNA transcriptase from 

the relaxed circular DNA (rcDNA) is crucial (Gao & Hu 2007). Further investigation 

into the biology of HBV may have to be performed before the complete elimination of 

cccDNA and successful eradication of HBV can be achieved.  

Viral DNA can be integrated into the host genome but not as a means of viral 

replication. This together with the oxidative stress can lead to the development of HCC 

via genetic alterations that may result in uncontrolled hepatocyte proliferation (Zoulim 

2004; Farazi & DePinho 2006). The life cycle of HBV is illustrated in Figure 1.2. 
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FIGURE 1.1 
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FIGURE 1.2 
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1.1.3.3 Genetic variation of HBV 

It is estimated that 10
10

 incorrect nucleotides are incorporated into viral DNA everyday 

in a HBV-infected individual due to the absent proofreading capability of reverse 

transcriptase (Summers et al.1982). This leads to genetic variation and some variants 

may be selected based on their replication fitness, immune escape potential and 

susceptibility to antiviral medication. Such variants are known as quasispecies (Zoulim 

2004).  

HBV is divided into 8 groups based on its genetic heterogeneity i.e. genotypes A 

– H (Stuyver et al. 2000; Arauz-Ruiz et al. 2002; Fung & Lok 2004). Genotypes A and 

D are most prevalent in Europe and North America while genotypes B and C occur 

mostly in Asia.  Compared with genotype C, B is associated with spontaneous, less 

active liver disease, a slower rate of progression to cirrhosis and less frequent 

development of HCC (Kao et al. 2000; Chu et al. 2002; Sumi et al. 2003). Differences 

in responses to treatment have also been observed between different HBV genotypes, 

however, the findings are conflicting among different studies. Most reports show no 

differences in responses to antiviral therapy (Pichoud et al. 1999; Nafa et al. 2000; 

Seigneres et al. 2000; Westland et al. 2003). However, Kao et al. (2002) found that 

lamivudine treatment is more effective in patients with genotype B, compared to those 

with genotype C. In addition, patients with genotype A and B have higher responses to 

pegylated interferon treatment than those with genotype C and D (Wai et al. 2002; 

Erhardt et al. 2005). The reduced efficacy of treatment in patients with genotype C is 

not surprising, since this genotype is associated with higher HBV titers and alanine 

aminotransferase (ALT) levels (Gu et al. 2009). However the emergence of genetic 

variants during treatment is the most troublesome problem and this problem is discussed 

in section 1.1.5 below. 

 

1.1.4 The course of HBV infection 

The different stages of HBV infection can be distinguished by the presence or absence 

of particular HBV antigens and/or antibodies specific for them. A combination of 

biochemical, serological and virological tests, and histological features can be used to 

diagnose and classify HBV infection (de Franchis et al. 2002). Assays for serum 

aminotransferases, HBV antigens (HBsAg and HBeAg) and antibodies (anti-HBs, anti-

HBc [total and IgM] and anti-HBe), are widely available. It should be noted that 
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individuals that have received the HBV vaccine will also be positive for anti-HBs. 

Serum HBV DNA may be detected by DNA hybridisation, with or without signal 

amplification, while PCR-based assays for HBV RNA in serum are highly sensitive 

tools for the diagnosis of HBV infection.  The assessment of a liver biopsy is an integral 

part of the diagnosis and management of patients with HBV infection, and in grading 

the severity of inflammation and the stage of fibrosis.  

HBV infection is defined by the presence of HBsAg or HBV DNA in serum. 

Persistently undetectable or low serum HBV-DNA levels are associated with inactive 

disease, but high serum HBV-DNA levels may or may not be associated with active 

disease. Because of the fluctuating course of chronic HBV infection, serial 

determinations are necessary to ascertain HBV replication status of individual patients. 

Occult HBV infection is characterised by undetectable serum HBsAg but detectable 

HBV-DNA in serum or liver. 

Diagnosis of acute hepatitis B is based on the history, raised serum aminotransferase 

levels and the presence of serum HBsAg and anti-HBc IgM.  In chronic hepatitis B 

there is persistent hepatic inflammatory injury. In mild chronic hepatitis B 

aminotransferase levels are normal or minimally elevated and biopsy reveals minimal 

inflammation and absent fibrosis. In moderate to severe chronic hepatitis B 

aminotransferase levels are raised and there is moderate to severe inflammation and 

fibrosis.  The presence of HBeAg in serum indicates that viral replication is taking place 

and anti-HBe is undetectable. In HBeAg negative chronic hepatitis B infection, anti-

HBe is present and HBeAg is absent in serum.  In the inactive HBsAg carrier state, 

HBsAg and anti-HBe are present in serum, but serum aminotransferase levels are 

persistently normal and there is little or no necro-inflammatory activity on liver biopsy. 

Such patients have either low or undetectable levels of HBV-DNA in serum (de 

Franchis et al. 2002). Table 1.1 lists these serological markers and the clinical relevance 

of their presence or absence in HBV infection and therefore, provides a good overview 

of their importance in the understanding of the course of HBV infection. 

A quiescent 4-7 week phase follows HBV infection. Then, in acute HBV 

infection, the virus begins to replicate aggressively causing viral load to increase rapidly, 

reaching levels of 10
9 

copies /ml within 1-2 weeks and infecting most hepatocytes in the 

process (Jilbert et al. 1992; Kajino et al. 1994; Guidotti et al. 1999; Webster et al. 2000; 
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Thimme et al. 2003; Chang & Lewin 2007). This is followed by the generation of virus-

specific T cells and antibodies causing the viral load to decrease. The decrease in viral 

load marks the immunoactive phase which is usually characterized by an increase in the 

level of ALT. ALT is an enzyme which is released into the blood stream upon 

hepatocyte damage or death and it is widely used as an indicator of hepatocyte injury in 

hepatitis. However, in some cases no elevation of ALT levels is detected. 

Seroconversion to HBsAg and HBeAg both occur soon after the decline in HBV viral 

load and HBV-specific T-cell responses are also detected conferring protective 

immunity against HBV (Rehermann & Nascimbeni 2006; Chang & Lewin 2007, Figure 

1.3a).  

Spontaneous HBeAg seroconversion occurs in 8-15% of patients in western 

countries (de Franchis et al. 2002). HBeAg seroconversion is usually associated with 

improved long term outcome because the expression of the „e‟ antigen is associated 

with active viral replication (De Jongh et al. 1992; Bonino & Brunetto 2003). However, 

mutations (commonly G-A transition at position 1896 of the pre-core region) can give 

rise to hepatitis B variants with defective HBeAg production and this can lead to 

HBeAg, negative chronic hepatitis. HBeAg-negative HBV can manifest as a recurrent 

form with exacerbations and periods of remission (45%), an unremitting form (36%) or 

an unremitting form with acute exacerbations (20%) (Brunetto et al. 2002; Bonino & 

Brunetto 2003). Fulminant hepatitis due to HBV has been linked to mutations in the 

genes encoding HBeAg and often occurs in HBeAg-negative patients (Omata et al. 

1991). 

In chronic HBV infection, the virus can persist for many years during what is 

known as an immune tolerant phase during which HBsAg and HBeAg are present and 

HBV DNA levels are usually greater than 10
5
 copies/ml. At this time hepatic 

inflammation is mild and ALT levels are normal or mildly elevated.  After several years 

of chronic HBV infection, a spontaneous or therapy-induced switch from an immune 

tolerant to an immune active phase can occur. HBeAg seroconversion may occur during 

this phase and the HBV-infected individual enters a low replicative phase where there is 

both reduced HBV viral load as well as normal ALT. If infection is not cleared or a 

genetic variant of HBV emerges, HBV DNA and ALT can rise and fall again over the 

course of a life-long infection (Chang & Lewin 2007, Figure 1.3b).  
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Table 1.1 

The serological markers of HBV infection: 

The markers described below are routinely used to distinguish between the different 

stages of HBV infection. 

HBV antigen Antibody  

HBsAg (Hepatitis B surface antigen) 

The earliest indicator of acute infection. 

Indicates chronic infection if its 

presence persists for more than 6 

months 

 

Anti-HBs 

The specific antibody to hepatitis 

B surface antigen. Its appearance 

1-4 months after onset of symptoms 

indicates clinical recovery and 

subsequent immunity to HBV 

HBcAg (Hepatitis B core antigen) 

Not detectable in the bloodstream but 

HBcAg peptides can be expressed on 

the surface of hepatocytes. A marker of 

the infectious viral material and the 

most accurate index of viral replication.  

 

Anti-HBc 

The specific antibody to hepatitis 

B core antigen. Class IgM and IgG 

antibodies which do not neutralize 

the virus. IgM identifies an early 

acute infection. In the absence of 

HBsAg and anti-HBs, it shows 

recent infection. IgG with no IgM 

is present in chronic and resolved 

infections. Used to identify all 

previously infected persons, 

including HBV carriers, but does 

not differentiate carriers and non-

carriers. 

HBeAg (Hepatitis B e antigen) 

Appears during weeks 3 - 6 and 

indicates an acute active infection at its 

most infectious period. Its presence 

means that the patient is infectious. Its 

persistence beyond 10 weeks shows 

progression to chronic infection and 

infectiousness. Secreted into the serum. 

Mutant strains of HBV exist that 

replicate without producing HBeAg i.e. 

HBeAg-negative HBV.* 

 

Anti-HBe 

The specific antibody to hepatitis 

B e antigen. During the acute stage 

of infection the seroconversion 

from HBeAg to anti-HBe indicates 

resolution of infection. Its 

presence in the patients blood 

along with anti-HBc and in the 

absence of HBsAg, anti-HBs and 

core HBV mutants indicates low 

contagiousness. 

 

 

* HBV DNA is routinely used to test for HBV infection when mutant strains escape 

detection by other methods. The loss of HBV DNA usually indicates the loss of HBV‟s 

replication capabilities. Data obtained from WHO (2008). 
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FIGURE 1.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

1.1.5 Treatment of HBV infection and antiviral resistance 

The easiest way to control HBV and viral transmission is through vaccination with 

HBsAg (Purcell & Gerin 1975; Mahony 1999). Vaccination with HBV envelope 

antigens can also prevent liver disease when administered post-exposure to the virus. 

(Iwarson et al. 1988). Efficacy of the HBsAg vaccine is over 90% with 5-10% of 

infected vaccinees failing to mount an adequate immune response after immunization. 

This can be marked by the absence of detectable specific antibodies and such 

individuals remain at risk to HBV infection (Coates et al. 2001; Dienstag et al. 1984). 

HBsAg-specific B and T cells, NK and NT cells are involved in the immune responses 

to HBV vaccine and T cells from individuals who fail to respond to the vaccine (non-

responders) exhibit inadequate proliferation in response to HBsAg (Chang et al. 1984; 

Chedid et al. 1997; Albarran et al. 2005). However, immunomodulatory and antiviral 

therapies are also available.  

Interferon-α (IFN-α) is a naturally occurring cytokine with immunomodulatory 

antiviral properties and was licensed for treatment of HBV infection in the early 1990s 

(Haria & Benfield 1995). The addition of a polyethylene glycol (PEG) moiety to IFN 

gave rise to the pegylated form of interferon which has an extended half-life and 

therefore, a more sustained antiviral response (Craxi & Cooksley 2003). Pegylated IFN 

(PEG-IFN) leads to loss of HBeAg in 35% of treated patients and seroconversion to 

anti-HBe in 29-32% of patients (Cooksley et al. 2003; Chan et al. 2005; Lau et al. 

2005). In HBeAg negative patients, trials have shown that 36% of patients show a 

reduction of HBV DNA to levels below 10
4
 copies / ml and exhibit normal ALT at the 

end of the follow-up, while 10-20% of HBeAg
 
negative virological responders lose 

HBsAg and seroconvert to anti-HBsAg (Janssen et al. 1993; Marcellin et al. 2004; Lau 

et al. 2005). While effective in many subjects, the side effects of PEG-IFN can be quite 

harsh and include; headache, fatigue, nausea, anorexia, weight loss, influenza-like 

symptoms, alopecia, neuropsychiatric symptoms such as irritability, insomnia and 

depression, neurological symptoms and thyroid dysfunction (Janssen et al. 1990; van 

Zonneveld et al. 2005). Therefore, PEG-IFN is not always a preferential choice of 

treatment. 

Lamivudine triphosphate was the first nucleotide analogue licensed for the 

treatment of chronic HBV. It is a cytosine analogue and it competes with this nucleoside 

for incorporation into growing DNA chains thus causing termination of DNA chain 

elongation and therefore, inhibiting reverse transcriptase culminating in inhibition of 
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viral replication. Lamivudine has been shown to reduce progression to liver disease and 

HCC in patients with advanced fibrosis or cirrhosis (Liaw et al. 2004). After 1 year of 

therapy HBeAg seroconversion and a reduction of HBV DNA to levels below 10
5 

copies / ml occur in 16-22% of treated patients compared to 4-13% in untreated patients. 

After 2 years, HBeAg seroconversion increases to 29% and further increases of 40% 

and 47% are seen after 3 and 4 years of therapy, respectively. Decreases in HBV DNA 

occur in 98% of patients. Once HBV DNA is below a detectable level and HBeAg 

seroconversion has occurred, lamivudine treatment can be discontinued (Lai et al. 1998; 

Dienstag et al. 1999; Liaw et al. 2000; Schalm et al. 2000; Leung et al. 2001; Schiff et 

al. 2003; Chang et al. 2004). However, HBeAg seroconversion is less durable than that 

observed following PEG-IFN treatment and relapse rates are considerably high. 

Furthermore, response rates in HBeAg negative patients decline over a treatment period 

of 4 years. (Hadziyannis et al. 2000; Buti et al. 2001; Perrillo et al. 2002; van Nunen et 

al. 2003; Gaia et al. 2004). Therefore, other antivirals have become available over the 

years and are often administered to HBV patients who have not been treated previously 

for HBV or to those who have received lamivudine but have developed resistance. 

Adefovir dipivoxil, entecavir, emtricitabine, telbivudine and tenofovir disoproxil are all 

nucleot(s)ide analogues that are used with varying rates of responsiveness and 

resistance. The highest incidence of antiviral resistance is still associated with 

lamivudine treatment while resistance to adefovir and entecavir is less common (Buster 

& Janssen 2006; Zhang & Wang 2009). 

  Long term off-treatment control has not been achieved in many patients. 

PEG-IFN-based therapies have the highest chance of sustained off treatment response. 

On the other hand, prolonged treatment with nucleoside analogues is feasible and even 

considered indefinitely. Therefore, in many cases PEG-IFN is the drug of choice due to 

the durable response associated with it and the removed risk of antiviral resistance. 

However, the harsh side effects of the therapy and a response rate of less than 50% 

means that a new immunomodulatory therapy with fewer side-effects and improved 

efficacy would be desirable for the treatment of HBV infection. For now, strategies are 

being employed to maximize the durability of antiviral treatment, for example, using 

more than one antiviral at a given time to reduce the risk of complete resistance to 

treatment. In addition, cloning of HBV genomes isolated from patients into vectors to 

design assays for detecting HBV drug sensitivity in vitro is taking place. This would 

facilitate prescription of existing antivirals or development of new antivirals to be used 
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against circulating strains (Durantel et al. 2004; Yang et al.2004). 

 

1.1.6 Other Hepatitis viruses 

The development of hepatitis is the dominant common trait of the hepatitis viruses A-E. 

The viruses belong to different virus families, have different modes of transmission and 

the associated symptoms vary along with their abilty to cause hepatitis. 

 Hepatitis A virus (HAV) is a non-enveloped RNA picornavirus that infects 

hepatocytes and usually causes an acute asymptomatic infection. However, in some 

cases a fulminant course of infection can occur and may result in morbidity; age over 40 

and a pre-existing liver disease (often HBV or HCV infection) can lead to this (Lemon 

2000). HAV is transmitted via the fecal-oral route and can be spread through 

contaminated food, with overcrowding and poor personal hygiene contributing to its 

transmission (Hutin et al. 1999). A vaccine against HAV exists and has contributed to 

the worldwide decline in the incidence of infection. 

 Hepatitis C virus (HCV) is a non-cytopathic RNA flavivirus that infects 

hepatocytes and has infected approximately 170 million people worldwide. Like HBV, 

it is a blood born pathogen acquired through intravenous drug use, sexual transmission, 

blood transfusions, accidental needle stick injuries and perinatally. The clinical 

endpoints of HCV are similar to HBV but the prognosis is less favourable with 70% of 

infected individuals developing persistent infection (Chisari 2005). Of these chronically 

infected HCV patients, 10-20% will develop cirrhosis and subsequent liver failure while, 

1-5% will develop HCC (WHO 2008). There is no vaccine for HCV and treatment is 

effective in only 55% of patients. Therefore, HCV is a major cause of death worldwide 

and the most common cause of liver failure in the United States (Chisari 2005). 

Impaired innate and adaptive immune responses have been associated with the 

persistence of HCV infection (Cooper et al. 1999; Lechner et al. 2000; Deignan et al. 

2002; Golden-Mason et al. 2008). Furthermore, its genetic heterogeneity and multiple 

immune evasion strategies pose serious problems for the clearance and treatment of 

HCV infection (Chisari 2005). The findings of the vast amount of HCV research led to 

many of our hypotheses in HBV infection and inspired numerous experiments in the 

current study. 

Hepatitis D virus or hepatitis delta agent can only form an infectious particle when 

the cell it has infected is co-infected with HBV. Its RNA genome encodes a single 

protein known as the delta antigen and HDV must acquire the HBsAg of HBV in order 



 31 

to enter / infect another cell. HDV infection of a chronically infected HBV carrier 

usually causes an acute and self-limiting infection but in 5% of co-infection cases, 

chronic HDV infection occurs (Hadziyannis 1997). Progression to liver cirrhosis occurs 

in 60-80% of individuals with chronic HDV while the incidence of HCC is the same as 

that in HBV infection. The mortality rate for HDV infections are 2-20%, which are 

significantly higher than for hepatitis B (Purcell & Gerin 1996; Hadziyannis 1997). At 

the present time, treatment of HDV is only effective via interferon-α treatment of HBV 

and prophylactic measures via HBV vaccination are probably the best option (WHO 

2008). 

Hepatitis E virus (HEV) is a non-enveloped RNA virus which was previously 

classified as a calcivirus but is unclassified at present. Like, HAV, HEV is transmitted 

via the fecal-oral and is prevalent in areas with poor sanitation. It usually manifests as 

an acute illness which is characterised by jaundice, nausea, fever, vomiting, anorexia 

and abdominal pains. No cases of chronic infection with HEV or a chronic carrier state 

have yet been reported. Fulminant hepatitis is perhaps, the most serious outcome with a 

mortality rate of 0.5-4% and highest risk of death in the third trimester of pregnancy. 

Furthermore, co-infection of young children with HEV and HAV can cause acute liver 

failure (Purcell & Ticehurst 1988; Purcell 1996; Mast et al. 1998; WHO 2008). 

 

1.1.7 Hepatocellular carcinoma 

1.1.7.1 Problem, disease and treatment 

As the third most frequent oncological cause of death in the world, HCC is a major 

global health problem and its incidence is increasing (Bruix & Llovet 2003; Stefaniuk et 

al. 2010). Viral hepatitis is a major cause of HCC and 80 – 90% of HCC patients have 

underlying cirrhosis (Fattovich et al. 2004; Paraskevi et al. 2006). The annual incidence 

of HCC is approximately 2% in European patients with cirrhosis, with a 5 year 

cumulative incidence of ~10%. This is increased to ~3% in Asian patients with cirrhosis, 

with a 5 year cumulative incidence of ~15% (Fattovich et al. 2004). Older age, male sex, 

active liver disease, high HBV DNA level, HBeAg positivity, co-infection with HCV or 

HIV, or alcohol abuse are all factors which increase the chances of HCC (Yang et al. 

2002; Fattovich et al. 2004; Iloeje et al. 2005; Chen et al. 2006).  

HCC often recurs after successful surgical or non-surgical treatment and 

progresses to an advanced stage, and its survival rate of only 5 years is mostly due to 

tumour invasion and metastasis (Sun et al. 1999; Jinushi et al. 2005; Toutirais et al. 
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2009). There are limited curative options for HCC and surgical resection is really only 

possible for small HCC malignancies (Jinushi et al. 2005; Stefaniuk et al. 2010). Liver 

transplantation is often the best option because it removes the tumour and in many cases, 

the underlying cirrhosis. Living donor liver transplantations account for over 96% of 

liver transplants in Asia where HCC is the leading cause of cancer death (De Villa & Lo 

2007). Due to the limitations of treatment for HCC, careful monitoring of high risk 

groups is performed so that the malignancy can be treated in time. Alpha-fetoprotein 

levels and radiographic examinations are used to monitor for HCC in high risk HBV 

patients but new biomarkers are warranted due to the low sensitivity of alpha-

fetoprotein (Lok & McMahon 2001; Stefaniuk et al. 2010). TGF-β1 has been implicated 

as a more sensitive indicator of small HCCs (Elliott & Blobe 2005). These data show 

that new immunotherapies are also required for the successful treatment of liver cancer. 

 

1.1.7.2 HBV association with HCC 

There is a strong association between the development of HCC and viral hepatitis with a 

reported 100-fold increased risk of HCC development in HBV-infected persons 

(Beasley et al. 1981). There are several mechanisms whereby HBV or HCV could 

contribute to HCC development and they are as follows; 

1) HBV or HCV infection may lead to an inflammatory response that in turn leads to 

hepatocyte necrosis. The resulting cycle of hepatocyte necrosis and regeneration 

increases the possibility of genetic alterations which may lead to the development of 

tumour cells and HCC. 

2) HBV- or HCV-infected hepatocytes may also be subjected to oxidative stress under 

which mutagens may activate cancer-relevant signalling pathways leading to genetic 

alterations and the development of HCC. 

3) HBV- or HCV-associated cirrhosis can cause micro-environmental changes that can 

favour tumour development 

4) HBV or HCV viral factors and/or host factors may inactivate the tumour suppressor 

gene p53 resulting in uncontrolled hepatocyte proliferation, genetic alterations and HCC 

(Farazi & DePinho 2006). 
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1.2 Immunology of HBV infection 

1.2.1 The antiviral immune response 

The antiviral immune response requires the recognition of the virus and activation of 

effector cells which can kill the virus-infected cells and inhibit viral replication via non-

cytolytic mechanisms. A brief overview of this response is described here and the 

process is also illustrated in Figure 1.4. 

In viral infection, a virus enters a cell, is uncoated and starts to synthesise viral 

RNA and proteins. The double-stranded RNA can trigger the production and the 

secretion of type 1 interferons i.e IFN-α/β, and the production of various IFN-stimulated 

gene-encoded proteins that can inhibit viral replication. While viral replication is 

controlled within the infected cell, the secreted IFN-α/β can signal to other cells to 

amplify the antiviral immune response (Sen 2001). For example, macrophages can be 

activated to produce cytokines that recruit natural killer (NK) cells to the site of 

infection. The IFN-α/β produced by the infected cells also activates the NK cells and 

once they home to the site of infection, they can directly recognise virus-infected cells 

and kill them through the induction of apoptosis. NK cells may also produce cytokines 

such as TNF-α and IFN- which can have direct antiviral effects, or IL-2 which 

enhances T cell proliferation (Guidotti & Chisari 2001).  

IFN-α/β also induces upregulation of MHC Class 1 molecules and increases 

antigen presentation capabilities thus making virus infected cells more visible to T cells 

and antigen presentation cells. Dendritic cells can recognise double stranded RNA and 

viral antigens presented on the surface of the infected cells and once activated, they can 

produce cytokines (IL-12, TNF-α, IFN-) and present antigen to T cells thus stimulating 

T cell differentiation and proliferation. The recruitment of cytotoxic T lymphocytes 

(CTLs) and helper T cells takes significantly longer than the activation and appearance 

of NK cells. The CTLs can then induce apoptosis of the target cells while the helper T 

cells produce cytokines (IL-2, IFN-) that serve to sustain and amplify the immune 

response as well as exerting direct antiviral effects (Guidotti & Chisari 2001; Barry & 

Bleackley 2002). 
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FIGURE 1.4 
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1.2.2 CD8
+
 T cells in HBV infection 

CD8
+
 T cells or cytotoxic T lymphocytes (CTL) are crucial to immune responses 

against intracellular pathogens, most notably viruses. CTLs are primed by professional 

antigen presentation cells (APC) in the lymphoid organs and require processed antigens 

that have been endogenously produced within or phagocytosed by the APC. When 

viruses, for instance, do not infect APCs, tissue-derived dendritic cells (DC) can 

internalise apoptotic virally-infected cells and debris and migrate to the regional lymph 

nodes to prime CTLs (Steinman et al. 1999; Sallusto & Lanzavecchia 1999). Upon 

recognition of their specific antigen, MHC-restricted T cells can induce apoptosis of 

virus-infected cells and can also elicit non-cytolytic effector functions via cytokine 

production. CD8
+
 T cells predominantly produce IFN- which can block viral 

replication and „purge‟ viruses from cells without inducing cell death (Guidotti & 

Chisari 1999). TNF-α and IL-2 are also produced by the CD8
+
 T cells which facilitates 

amplification of the antiviral response. Once a CD8
+
 T cell has encountered its specific 

antigen, a pool of memory CD8
+
 T cells specific to that antigen are generated and these 

long-lived cells confer immunity against subsequent challenge with that antigen 

(Weninger et al. 2002; Santana & Rosenstein 2003). The cytolytic effector functions of 

CD8
+
 T cells can be mediated through perforin and granzyme, Fas ligand or TNF-α. 

Perforin and granzyme are contained in specialised lysosomes known as cytotoxic 

granules which are released by CD8
+
 T cells following antigen priming. The perforin 

serves to deliver the granzyme into the cytoplasm of the infected cell where the 

granzyme can activate apoptosis via its protease capabilities (Smyth et al. 2001). Fas 

ligand and TNF-α bind to the receptors Fas (CD95) and TNFR-I, respectively, which 

are expressed on the surface of the target cells. Both receptors contain cytoplasmic 

death domains which initiate a signalling cascade upon ligand binding and ultimately 

recruit caspases that promote cell death (Aggarwal 2003). 

Resolution of HBV infection is associated with strong, polyclonal and multi-

specific CTL responses directed against epitopes within the polymerase, envelope and 

core and pre-core proteins of HBV (Bertoletti et al. 1991; Penna et al. 1991; Missale et 

al. 1992; Nayersina et al. 1993; Rehermann et al. 1995; Maini et al. 1999; Thimme et al. 

2003). CTLs usually appear in infected tissues 5-7 days after viral exposure where they 

elicit their cytolytic and non-cytolytic activity. CTLs often employ non-cytolytic 

mechanisms of viral clearance in large vital organs such as the liver (Harty et al. 2000). 
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This was shown in the HBV transgenic mice where HBV-specific CTLs secreted IFN-γ 

and tumour necrosis factor-α (TNF-α) which helped to evict the virus from cells non-

cytopathically, as well as carrying out some killing activity (Guidotti et al. 1994; et al. 

1996; Guidotti & Chisari 1999). This non-cytolytic mechanism of viral eradication was 

not surprising as inhibition of HBV gene expression in the liver of transgenic mice by 

TNF-α and IFN-α/β had already been observed (Gilles et al. 1992; Guidotti et al. 1994). 

Furthermore, HBV replication could be inhibited following transfer of HBV-specific 

CTLs from perforin-deficient & Fas ligand-deficient mice thus suggesting that both 

cytolytic pathways are needed for control of HBV (Guidotti et al. 1996; Nakamoto et al. 

1997). However, recent work by Yang et al. (2009) has revealed that Fas and TNFR1, 

but not perforin, are required for clearance of HBV DNA from liver in transgenic mice. 

The antiviral T cell responses are maintained for decades after spontaneous 

resolution of HBV infection. Trace amounts of HBV DNA and virus specific CTLs 

often persist in the blood suggesting that viral replication is minimized but the virus is 

never completely eradicated (Michalak et al. 1994; Penna et al. 1996). Further work has 

revealed that HBV-specific CD8
+
 T cells have memory T cell phenotypes suggesting 

that HBV-specific memory CD8
+
 T cells are vital in the clearance of HBV from patients 

with acute HBV infection (Sobao et al. 2002). 

HBV-specific CD8
+
 T cell numbers are significantly lower in those individuals 

who develop chronic HBV infection (Maini et al. 2000; Sobao et al. 2002, Yang et al. 

2009). Chronic HBV patients have lower numbers of virus specific CD8
+
 T cells as well 

as impaired IL-2 production and proliferation of CD8
+
 T cells (Chisari 1997, Maini et al. 

2000; Reignat et al. 2002; Das et al. 2008). However, one study found that the CD8
+
 T 

cells with impaired proliferative capacity and IL-2 production still produced IFN- and 

TNF-α in chronic HBV and the authors proposed that these cells contribute to liver 

inflammation but do not facilitate viral clearance (Das et al. 2008). This theory is 

supported by earlier work which found large numbers of non-antigen specific CD8
+
 T 

cells in the livers of patients with uncontrolled HBV infections (Bertoletti & Maini 2000; 

Reignat et al. 2002). 

CTLs are also involved in the immune responses that result from vaccination 

and therapy. CTLs specific for HBsAg are present post-vaccination (Hohn et al. 2002) 

while the strength of the CTL response differs between responders and non-responders 

to IFN-α treatment (Rehermann et al. 1996).  
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Viral parameters such as viral load and the genotype of the virus are believed to 

influence CTL responses. It was found that adequate stimulation of HBV-specific CD8
+
 

T cells can be achieved in chronic HBV carriers with low levels of serum HBV-DNA 

but not in those with high levels of serum HBV-DNA (Sobao et al. 2002). Also, lower 

HBV-specific CTL responses were observed in patients infected with genotypes C, 

compared to those infected with HBV genotype B (Gu et al. 2009). Most research, 

however, has focused on the influence of host parameters on CTL responses. Defective 

T cell priming by DC has been reported but this impairment could be restored using a 

cytokine cocktail of IL-1β, IL-6, TNF-α and prostaglandin E2 (PGE2) that induced DC 

maturation, thus suggesting that the cause of impaired T cell responses in chronic HBV 

may be due to defects in DC maturation. These data are conflicting with other reports 

which indicate that DC maturation and functions are in intact in HBV-infected 

individuals (Duan et al. 2006). Regulatory T (Treg) cells have also been implicated in 

the inadequate CD8
+
 T cell responses in HBV. An accumulation of Treg cells in HCC 

patients was concurrent with a significantly decreased infiltration of CD8
+
 T cells in 

tumour regions compared with non-tumour regions. Other studies have shown that Treg 

cells from HCC patients could inhibit anti-CD3/CD28 mAb-induced proliferation, 

activation, degranulation, and production of granzyme-B and perforin by CD8
+
 T cells. 

Increased frequencies of Treg cells were also associated with high mortality and 

reduced survival time of HCC patients. This suggests that Tregs may promote disease 

progression in HCC patients by inhibiting CD8
+
 T cell functions (Fu et al. 2007). HBV 

variants carrying mutations in cytotoxic T cell epitopes have also been detected in 

chronic HBV thus showing that the evolution of the virus faciliates immune evasion and 

contributes to its persistence (Bertoletti et al. 1994; Rehermann et al. 1995). 

There is significant evidence implicating the importance of CTLs in the 

resolution of HBV infection, however, there is no correlation between ALT, viral load 

and the frequencies of HBV-specific CD8
+
 T cells in chronic HBV infection thus 

suggesting that they are not the main determinant in immunity against HBV or the main 

cause of immunopathogenesis (Yang et al. 2009). 

 

1.2.3 CD4
+
 T cells in HBV infection 

Whereas CD8
+
 T lymphocytes are committed to becoming CTLs upon recognition of 

their specific antigen, CD4
+
 T cells can differentiate into a number of different effector 

T cells. Their differentiation is mostly determined by the signals provided by the APC at 
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the time of antigen presentation. These signals are transduced via co-stimulatory 

molecules expressed on the surface of the APC and via the secretion of cytokines and 

while, they promote the differentiation of one type of effector CD4
+
 T cell they can also 

inhibit the differentiation of another. Effector CD4
+
 T cells are classified into 4 main 

groups based on their cytokine profiles; T-helper 1, 2 and 17 (Th1, Th2, Th17) cells and 

the regulatory T (Treg) cells (Abbas et al. 1996; Glimcher & Murphy 2000; Ansel et al. 

2003).  

Th1 cells produce IL-2, TNF-α, IL-12 and IFN-γ and are involved in immune 

responses against intracellular pathogens such as Mycobacterium tuberculosis and 

viruses. Through the expression of cytokines and co-stimulatory signals, Th1 cells can 

promote activation of CD8
+
 T cells as part of the antiviral response and activation of 

macrophages as part of the anti-mycobacterial immune responses. They can also 

stimulate antibody production by B cells in immune responses against extracellular 

pathogens. Through cytokine production, Th1 cells can also promote further Th1 

differentiation while suppressing Th2 responses (Mosmann & Coffman 1989; Abbas et 

al. 1996). 

Th2 cells produce IL-4, IL-5, IL-10 and IL-13. They stimulate antibody 

production facilitating the elimination of extracellular pathogens and can suppress Th1 

immune responses and promote further generation of Th2 cells via cytokine production 

(Mosmann & Coffman 1989).  

Th17 cells have been identified more recently than the other T-helper cells. They 

are distinguished based on their production of the pro-inflammatory cytokine IL-17. 

These cells are involved in immune responses against bacterial, fungal, parasitic and 

viral infections and have also been implicated in the pathogenesis of several 

autoimmune diseases (Mills 2008; McGeachy & Cua 2008; McKinstry et al. 2009; 

Gutkowski & Hartleb 2009; Zhang et al. 2010).  

Treg cells produce the anti-inflammatory cytokine IL-10 and/or the 

immunomodulatory growth factor TGF-β and are said to be the modulators of cellular 

immune responses. These CD4
+
 T cells are often further characterized by the 

intracellular expression of the transcription factor FOXP3 and the surface marker CD25. 

Their abundance can determine the course of immune responses to infections and they 

are crucial in the prevention of immune-mediated damage (Sakaguchi 2005; Bi 2009). 

 CD4
+
 T cell-deficient mice have impaired HBV-specific CD8

+
 T cell numbers 

and elicit severely weakened antiviral responses thus suggesting that CD4
+
 T cells are a 
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crucial to the induction of the CD8
+
 T cell response in HBV infection (Yang et al. 2009). 

A direct, cytokine-dependent antiviral role of Th1 cells has also been shown in HBV 

transgenic mice (Franco et al. 1997). Furthermore, HBV appears to subvert Th1 

responses via the over-production of noninfectious subviral particles such as the 

nucleocapsid hepatitis B e antigen. This has been shown to induce a preferential Th2 

cytokine profile by deleting Th1 cells (Milich et al. 1997; 1998). Th17 cells are 

expanded in the blood and livers of chronic hepatitis B patients and furthermore, their 

frequencies correlate with viral load levels and the severity of liver damage thus, 

implicating them in the immune responses against HBV and the pathogenesis of disease 

(Zhang et al. 2010). The frequencies of CD4
+
CD25

+
 Tregs are similar in controls and 

asymptomatic HBsAg carriers but they are significantly higher in chronic hepatitis B 

patients. They are thought to modulate antiviral responses in HBV and therefore, aid 

viral persistence (Peng et al. 2007).  Fu et al (2007) showed that Treg cells can suppress 

CTL responses and that their expansions in HCC patients correlate with the reduced 

infiltration of CTLs in tumour regions and high mortality and reduced survival time of 

HCC patients.  

 

1.2.4 Antigen presentation cells in HBV infection 

“Professional” antigen presentation cells comprise the MHC-class II-expressing B cells, 

macrophages and dendritic cells (DC). It can be hypothesised that the deficient T cell 

responses associated with HBV infection may be linked with deficiencies in the APC 

and impaired T cell priming.  

DC are the most important APC and these cells take up and process antigen and 

then, migrate to the lymphoid organs where they present the antigen to the T cell 

(Steinman & Cohn 1973; Steinman 1991). DC are generated from precursor cells e.g. 

monocytes or macrophages, via signals involving cytokines such as IL-4 and 

granulocyte-macrophage-colony stimulating factor (GM-CSF). Upon their generation, 

DC are said to be immature and serve a phagocytic function until they receive the 

correct signal which stimulates their differentiation into a mature phenotype. For 

instance, in viral infection, the recognition of viral double stranded RNA can trigger the 

differentiation of DC. Once mature, DC upregulate numerous adhesion and antigen 

presentation molecules and then migrate to the lymph node where their primary 

function is antigen presentation. They also produce numerous cytokines to recruit other 

arms of the immune response (Banchereau et al. 2000). The findings concerning 
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dendritic cells (DC) in HBV are conflicting. Defective function and immature 

phenotype of DC has been observed in HBV infection (Wang et al. 2001). However, 

Tavkioli et al. (2004) studied monocyte derived DC (MDDC) and found that while 

there were a few minor phenotypical alterations and slightly reduced IL-12 production 

by MDDC in HBV, their T cell stimulatory capacity was unaffected. Another study 

found that the expression of co-stimulatory molecules on DC and their capacity to 

stimulate T cells was impaired in chronic HBV infection (CHB) but could be restored 

using a cytokine cocktail (Duan et al. 2006). In 2007, Tavakioli et al. published their 

research on myeloid DC and plasmacytoid DC in which they found no quantitative, 

phenotypic or functional defects in chronic HBV carriers, compared to uninfected 

control subjects. The role of DC has not yet been elucidated in the clearance or 

persistence of HBV infection, however, IFN-α treatment has been shown to increase 

frequencies of circulating DC and increase the expression of  HLA-DR, CD80 and 

CD54 (ICAM-1) by such cells (Yu et al. 2006). One interesting report found that 

plasmacytoid DC from patients chronically infected with HBV induced the generation 

of a higher proportion of CD4
+
CD25

+
 Treg cells compared to those from uninfected 

controls or HBV resolvers (Hong et al. 2009). 

Macrophages are a second type of “professional” APC. They are long-lived, 

phagocytic cells that circulate in blood as monocytes & reside in organs & tissues.  

These phagocytic cells engulf microorganisms, red cells, immune complexes and 

endotoxins and present the processed antigens to T cells (Laskin & Pendino 1995). 

Once activated by infected viruses or by NK, NKT or T cell derived cytokines, 

macrophages can produce cytokines that have direct (IFN α/β, TNF-α, nitric oxide) or 

indirect (IL-1, 6, 8, 10, 12, 08, GM-CSF ) antiviral effects (Laskin & Pendino 1995; 

Dinarello 1999). Macrophage-derived IFN α/β, TNF-α, IL-12 and nitric oxide can 

inhibit HBV gene expression and replication in HBV transgenic mice (Cavanaugh et al. 

1997; Guidotti et al. 2000; Pasquetto et al. 2000). 

 B cells are the third type of “professional” APC. They internalize specific 

antigen by receptor-mediated endocytosis and subsequently present the antigen to helper 

T cells which can then stimulate antibody production by the B cells. The central role of 

B cells is in the antibody response which is discussed below. B-cell mediated immune 

responses are crucial to the elimination of HBV (Klenerman et al. 2008). 
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1.2.5 Humoral response in HBV infection 

By coating viruses with antibodies (neutralizing and non-neutralizing) the physical 

interactions of many viruses with their receptors can be blocked and complement can be 

activated to destroy viruses (Cooper & Nemerow 1983; 1984). The Fc portion of virus-

bound antibodies can interact with the Fc receptors on the surface of macrophages and 

NK cells and accelerate the removal of virions from circulation (Cooper & Nemerow 

1983; 1984; Backmann & Zinkernagel 1997; Burton et al. 2000).  

In general, following primary infection, the IgM response occurs (usually within 

the first few days). Neutralizing IgM responses significantly reduce the blood titer of 

several viruses such as vesicular stomatitis virus (VSV), lymphocytic choriomeningitis 

virus (LCMV) and Friend virus (Brundler et al. 1996; Seiler et al. 1998; Super et al. 

1998). As IgM levels drop, a T-cell dependent isotype switch to IgG occurs (including 

neutralizing IgG). This can occur as soon as 1 week after infection in infections such as 

VSV but peaks at a later time in HBV infection (Chisari & Ferrari 1995; Bachmann & 

Zinkernagel 1997). The neutralizing IgG helps remove extracellular virus and is 

considered to be very important in controlling long term infections that are not 

completely cleared such as HBV infections (Michalak et al. 1994). HBV may never be 

completely cleared and small traces may persist indefinitely but the antibodies are 

believed to serve to inhibit re-emergence of the virus by blocking extracellular spread 

(Rehermann et al. 1996). 

Clearance of HBV is associated with production of anti-envelope antibodies and 

sera containing high levels of such antibodies can prevent chronic HBV infections 

(Alberti et al. 1978; Grady et al. 1978). Activation of the virus-specific cellular immune 

response is followed by the humoral response at least 10-12 weeks after HBV infection 

(Fong et al. 1994). In HBV infection, anti-HBc is the first antibody to appear. This is an 

antibody against the core antigen and its presence is used as a marker for HBV infection 

(past or present). IgM anti-HBc is present in high titer during acute infection and 

usually disappears within 6 months whereas IgG anti-HBc generally remains detectable 

for a lifetime. Anti-HBe antibody appears after anti-HBc antibody and its presence 

indicates a decrease in viral replication and therefore, in infectivity. Anti-HBe 

completely replaces HBeAg in the resolution of disease. Anti-HBs replaces HBsAg as 

the acute HBV infection is resolving and anti-HBs persists for a lifetime in over 80% of 

patients and indicates immunity (WHO 2008). However in 1 – 5% of HBeAg negative 

patients, biochemical and histological activity persists with high serum HBV DNA 
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levels. In such patients, HBeAg is undetectable because of the predominance of HBV 

strains that cannot express HBeAg. These patients constitute a group with HBeAg 

negative chronic hepatitis in which HBsAg and anti-HBe are present in serum (de 

Franchis et al. 2002). 

 

1.2.6  Innate lymphocytes in HBV infection 

Innate lymphocytes are early responding lymphocytes that are not MHC-restricted and 

unlike B and T lymphocytes, they are activated in the absence of prior priming with an 

antigen. This is due to the expression of invariant receptors that recognize conserved 

antigens or „danger‟-associated molecules on the surface of infected or tumour cells. 

Once activated, innate lymphocytes can carry out cytotoxic activity or can produce 

cytokines which can contribute to the elimination of the pathogen / tumour and 

modulate adaptive immune responses.  

 

1.2.6.1 Natural Killer cells in HBV infection 

Natural Killer (NK) cells display powerful cytotoxic activities and are potent producers 

of pro-inflammatory cytokines such as IFN-. They constitute 10-15% of peripheral 

blood lymphocytes and are characterized by the presence of the immunoglobulin 

superfamily molecule CD56 and the absence of CD3 (Robertson & Ritz 1990). The two 

main subsets of NK cells are distinguished based on the density of their CD56 

expression. CD56
BRIGHT

 NK cells make up ~10% of the NK cell population. They 

express high levels of CD56 and are the main producers of IFN- while the majority of 

NK cells are CD56
DIM

 and they are primarily responsible for natural cytotoxicity 

(Robertson & Ritz 1990; Cooper et al. 2001). NK cells also express a set of invariant 

stimulatory, co-stimulatory and inhibitory receptors (NKRs) and it is the combination of 

signals transmitted through these receptors that determines whether an NK cell is 

activated or not. Such receptors bind components of pathogens, host cells or cytokines. 

For example, virus-infected cells and activated resident macrophages produce 

chemoattractant factors which recruit NK cells to infected tissues (Biron et al. 1999). A 

variety of signals can then activate the NK cell to induce apoptosis of the virally-

infected cell via perforin release. Activated NK cells also produce antiviral cytokines 

such as IFN- and TNF-α which can have direct antiviral effects and influence 

subsequent adaptive immune responses. However, in the absence of infection or 
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malignancy, the inhibitory receptors will have more bound ligand than the activating 

receptors and therefore, the NK cell is not inappropriately activated (Kos & Engleman 

1995; 1996; Biron et al. 1999; Cooper et al. 2001; Guidotti & Chisari 2001; Picciolo et 

al. 2002; McQueen & Parham 2002; Lanier 2005). 

NK cells are involved in immune responses against a wide variety of viruses 

including; cytomegalovirus, herpes simplex virus, adenovirus, influenza virus, vaccinia 

virus and coxsackie virus (Quinnan et al. 1982; Bukowski et al. 1983; 1984; Sheil et al. 

1984; Stein-Streilein & Guffee 1986; Godeny & Gauntt 1987; Biron et al. 1989; Orange 

et al. 1995; Orange & Biron 1996; Durantel et al. 2004; Yang et al. 2004). Several 

studies have investigated NK cell responses in HBV infection but their role is still not 

fully understood. 

It is thought that NK cells may play an important role in the early defence 

against HBV (Guidotti & Chisari 2001). They have been implicated in the inhibition of 

HBV replication and resolution of acute infection (Echevarria et al. 1991; Pasquetto et 

al. 2000; Kakimi et al. 2000; Kimura et al. 2002). However, their involvement in the 

immunopathogensis of the disease is also well documented with evidence suggesting 

that they play a central role in liver injury in both chronic HBV infection and in 

fulminant hepatic failure (Kakimi et al. 2001; Sitia et al. 2002; Dunn et al. 2007; Zou et 

al. 2010). The role of NK cells in HBV immunity and immunopathogenesis is believed 

to be mediated by the activating receptor NKG2D and the cytokines IL-2, IFN- and 

TNF-α (Echevarria et al. 1991; Dunn et al. 2007; Zou et al. 2010). IFN-α levels in CHB 

patients with liver inflammation have been shown to be sufficiently high to induce 

cytotoxic activity of NK cells and such IFN-α is presumably secreted by the infected 

hepatocytes (Dunn et al. 2007). The importance of NK cells in immunity against HBV 

is further evident in their enhanced activation status and IFN- production in responders 

to HBsAg vaccination, when compared to non-responders (Albarran et al. 2005).  

From the evidence above, one may hypothesise that NK cells are important in 

early defense against HBV and that deficiencies in such cells may lead to the 

subsequent impairment of adaptive responses that are characteristic of chronic HBV 

infection. The findings of Zeng et al. (2009) support this hypothesis. They found that 

cytotoxicity and NKG2D expression by NK cells was reduced in HCC patients. It was 

also lower in HBV patients compared to controls. Our recent work in HCV infection 

also supports this hypothesis; it was found that frequencies of circulating NK cells are 
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reduced in individuals chronically infected with HCV, compared to those who resolve 

infection. Depletions and expansions of specific subsets of NK cells observed in the 

chronic HCV patients suggested that antibody-dependent cytotoxicity was impaired and 

inhibitory signals to the NK cells were amplified. From this, it was concluded that the 

alteration in NK cell frequencies may lead to further impairment in the overall cellular 

immune responses (Golden-Mason et al. 2008). Other studies have elucidated a 

mechanism by which HCV inhibits NK cell functions (Tseng et al. 2002; Crotta et al. 

2002). In this study, the importance of NK cells in the control of HBV infection was 

assessed. This was achieved by investigating the frequencies and cytokine profiles of 

NK cells in a group of asymptomatic HBsAg carriers who, as a model of immune 

control, would help to inform us of the role of NK cells in HBV immunity. 

 

1.2.6.2 Natural T cells in HBV infection 

A proportion of human T cells, known as CD56
+
 T cells or natural T (NT) cells, express 

the NK cell surface molecule CD56, and can be classified as innate T cells because their 

cytolytic activity is not MHC-restricted, meaning that they are much earlier responders 

than their CD56
-
 counterparts (Schmidt et al. 1986; Kelly-Rogers et al. 2006). Such 

cells usually constitute 5% of PBMC but can account for up to 50% of T cells in the 

liver, thus making them of particular interest in the study of liver disease (Norris et al. 

1999; Ishihara et al. 1999). Although NT cells are said to be innate lymphocytes and are 

classified as such in this study, at least some NT cells differentiate from classical CD8
+
 

T cells (Kelly-Rogers et al. 2006). Furthermore, their activation sometimes requires the 

ligation of both the stimulatory NKRs and the TCR. Therefore, it is important to 

distinguish between the true innate nature of NK cells and the dual capacity of NT cells 

to respond in both an innate and adaptive manner. NT cells can respond to a diverse 

array of cytokines including IFN-, IFN-α, IL-1, IL-2, IL-12, IL-15 and IL-18 and are 

potent producers of IFN-, TNF-α and IL-4 (Lu & Negrin 1994; Satoh et al. 1996; Jin et 

al. 1998; Zoll et al. 1998; Dunne et al. 2001; Loza et al. 2002; Kelly et al. 2004). The 

rapid production of cytokines and cytolytic activity by NT cells in response to infection 

and malignancy poises them as ideal therapeutic candidates. As well as their own 

antiviral activities, the cytokine profiles of NT cells enables their modulation of 

subsequent adaptive responses – a concept that is of particular interest in chronic HBV 

infection where adaptive responses are weakened. 
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NT cells have been implicated in the immune response to HBV infection and the 

liver pathology associated with it, while their depletion has been associated with the 

persistence of HCV infection and hepatic malignancies (Barnaba et al.1994, Deignan et 

al.2002; Albarran et al. 2005; Norris et al. 2003). It was hypothesized that NT cells play 

a role in immunity to HBV and therefore, studied a group of HBsAg carriers without or 

with mild liver disease and low viral load, to determine if such cells were involved in 

HBV immune control.  

 

1.2.6.3 Invariant Natural Killer T cells and CD1 in HBV infection 

Another subset of innate T lymphocytes that respond rapidly and elicit potent IFN- 

production and cytotoxic activity are the classical or invariant NKT (iNKT) cells. They 

express a restricted TCR repertoire consisting of a Vα14Jα18 α-chain in mice and a 

Vα24Jα18 α-chain in humans, paired with a limited number of β-chains (Bendelac et al. 

1997). Such cells also express a number of cell-surface markers typically expressed on 

NK cells, hence the name NKT cell, and recognize lipid antigen presented by the MHC-

like glycoprotein, CD1d (Bendelac et al. 1997; Exley et al. 1997; Brigl & Brenner 2004; 

Gumperz 2006). These cells are therefore, referred to as CD1d-restricted T cells.  

CD1d is one of 5 isoforms of CD1; CD1a-e. All CD1 proteins possess a 

sequence of hydrophobic amino acids in their antigen-binding groove which facilitate 

the binding and presentation of lipid antigens. They are expressed on a variety of 

specialized APC including monocytes, B cells and dendritic cells (Porcelli et al. 1998). 

Although several endogenous and bacterial lipid antigens have found to be 

presented by CD1, the most potent activator of iNKT cells isolated to date is the marine 

sponge-derived glycolipid α-galactosylceramide (α-galcer), which is presented by the 

CD1d molecule. Therapeutic activation of iNKT cells with α-galcer in mice results in 

potent anti-tumour cytotoxic activity and the rapid release of cytokines leading to the 

inhibition of tumour growth and the elimination of a wide variety of viruses (Kawano et 

al. 1997; Lynch et al. 2009). However, the glycolipid was much less effective in 

humans due to the difference in the numbers of iNKT cells between humans and the 

transgenic mouse models used in these studies. While, iNKT cells account for 5% of 

circulating and 30% of hepatic T cells in mice, they only constitute 0.02-0.8% of 

circulating T lymphocytes and less than 1% of liver T lymphocytes in humans (Kenna 

et al. 2004). The human omentum is the only organ reported to have a high proportion 
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of such cells with numbers in healthy subjects averaging 10% (Lynch et al. 2009). 

Therefore, although the studies in mice appear promising, the elucidation of new 

antigenic lipids and novel subsets of NKT cells may be the key to finding a lymphocyte 

subset with equivocal potency in humans. 

There is more evidence showing the role of iNKT cells in intracellular bacteria, 

parasitic infections and tumours than in viral infection but their potent cytotoxic activity, 

production of IFN-, rapid activation of NK cells and modulation of subsequent 

adaptive responses, suggests that they have an important role to play in antiviral 

immune responses (Sieling et al. 1995; Denkers et al. 1996; Cui et al. 1997; Bendelac et 

al. 1997; Schofield et al. 1999; Apostolou et al. 1999; Carnaud et al. 1999). 

Studies in mouse and chimpanzee models have shown that invariant NKT cells 

are important in the inhibition of HBV replication and viral clearance (Guidotti et al. 

1999; Kakimi et al. 2000). Baron et al. (2002), however, showed that non-invariant 

NKT cells which are still CD1d-restricted responded to hepatocytes expressing HBV 

antigens in a mouse model and led to liver injury in such animals. They hypothesized 

that such non-classical NKT cells are important early responders in HBV infection and 

may be responsible for the significant decline in HBV DNA that preceded the CTL 

influx in HBV infection (Guidotti et al. 1999; Baron et al. 2002). Baron et al. (2002) 

also concluded that NKT cells may modulate subsequent adaptive responses and/or play 

a role in the development of liver disease in HBV patients. However, the differences in 

cell frequencies cited above mean that the antiviral mechanism of such cells in humans 

may not be as effective as those in mice and further work is needed to evaluate the need 

and potential of such cells in HBV infection in humans.  

 From the findings documented above, one may hypothesise that NKT cells are 

important in the control of HBV infection and that deficiencies in such cells may lead to 

inadequate adaptive immune responses and unfavourable outcomes of HBV infection. 

Depleted numbers of iNKTs have already been reported in the livers of chronic HCV 

patients and in HIV type 1 infection and such deficiencies could pre-dispose HBV-

infected individuals to persistent infection (Deignan et al. 2002; van der Vliet 2002). 

Alternatively, HBV may interfere with iNKT functions to permit development of 

persistent infection. Such interference could be mediated through the CD1d molecule as 

in herpes simplex virus (HSV) and HIV infections (Yuan et al. 2006; Chen et al. 2006). 

Therefore, it was decided to investigate the frequencies of circulating iNKT cells and 
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CD1a, b, c and d
+
 cells in a group of chronic HBV patients with mild liver disease and 

low viral load. 

 

 

 

1.2.6.4 δ T cells in HBV infection 

Another group of unconventional early responding T cells are the  T cells which 

express a TCR consisting of a - and -chain, unlike the α- and β-chain of the classical 

T cell receptor. There are a multitude of differences between  and αβ T cells; αβ T 

cells take 4-96 hours to respond to antigen while  T cells can respond in under an hour, 

αβ T cells recognise peptide antigens complexed with MHC molecules while  T cells 

recognise non-peptide antigens in a MHC-unrestricted manner. Furthermore, while αβ T 

cells possess receptors for chemokines that promote their homing to the spleen and 

lymph nodes,  T cells are rarely found at these locations (Groh et al. 1998; Hayday 

2000). While  T cells are potent producers of pro-inflammatory cytokines and elicit a 

strong cytotoxic effector function, their functions appear to exceed the normal 

constraints of T cells with reports of antigen presentation and cellular repair functions 

(Brandes 2005; Jameson and Havran 2007; Brandes 2009). It must be noted that many 

studies performed on  T cells are done in murine models but one must note the 

differences that exist between  T cell repertoires in humans and mice. In humans,  T 

cells are divided into 3 main groups based on their  chain usage i.e. V1, V2 and V3 

T cells. V2 T cells being the most prevalent in circulation while V1 subsets are more 

abundant in the tissues and mucosal surfaces (e.g. intestine) and V3 subsets appearing 

to be confined to the liver (Kenna et al. 2004). 

One striking difference is the absence of V9V2 T cells in mice, which as the 

main circulating subset in humans and the centre of a number of therapeutic studies, is 

of great importance. Circulating  T cells in mice are predominantly V1V5/6 or 

V2V5 T cells. Therefore, it is advisable to take these differences on board when 

considering studies performed in murine models. 

The exact mechanisms of  T cell antigen recognition is not fully understood 

but their rapid reaction time has always indicated that the classical antigen presentation 

process whereby αβ T cells are activated is not true for  T cells. Furthermore, studies 
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have revealed the activation of  T cells in the absence of MHC Class I and II and CD1 

(Morita et al. 2001; Wei et al. 2008). This is due to the expression of several activating 

and inhibitory receptors called Natural Killer Receptors (NKRs) that facilitate the 

recognition of conserved antigens and danger-associated molecules (Constant et al. 

1994; Tanaka et al. 1995; Morita et al. 1995; Battistini et al. 1997; Jomaa et al. 1999; 

von Lilienfeld-Toal et al. 2006; Toutirais et al. 2009). The NKR NKG2D, for instance, 

facilitates the recognition of MICA and MICB and mediates activation of  T cell 

cytotoxicity while NKG2A binds to HLA-E and induces inhibitory signals that prevent 

unnecessary killing.  

Recognition of phosphoantigens such as the the pyrophosphate HMBPP ((E)-4-

hydroxy-3-methyl-but-2-enyl pyrophosphate) is believed to be mediated through the 

V9V2-TCR and it induces potent activation of the cells, so much so that several 

phosphoantigens are being evaluated for cell-based therapies against malignancy (Eberl 

et al. 2002; Allison et al. 2001; Bennouna et al. 2008). Aminobisphosphonates and 

alkylamines have also been shown to be effective stimulators of V9V2 T cells and are 

also in clinical trials for the treatment of cancer. They stimulate V9V2 T cells 

indirectly by causing the accumulation of pyrophosphates in antigen presentation cells 

(Kunzmann et al. 1999; Scotet et al. 2005; Thompson et al. 2006; Dieli et al. 2007; Abe 

et al. 2009). 

The importance of δ T cells in immune responses against a wide range of 

bacteria, fungi, parasites and viruses is well documented (Bukowski et al. 1998; Morita 

et al. 2007). Their role in antiviral immunity has been evident in various studies, with 

elevated frequencies observed in EBV, HIV and HSV infections (De Paolo et al. 1990; 

Maccario et al.1995; Poccia et al. 1999). However, of particular relevance to this study, 

is the role of δ T cells in hepatitis. Studies have revealed that δ T cells may actually 

play a role in the liver injury associated with HCV infection (Nikolopoulou et al. 1995; 

Tseng et al. 2001). There is also evidence that the frequencies of circulating Vδ2 T cells 

are depleted in chronic HBV infection, along with lower IFN- secretion and  T cell 

cytotoxicity (Chen et al. 2008). Moreover, increases in the frequencies of CD4
+ 

and 

CD8
+
 cells expressing the  TCR have been observed in HBV patients who 

seroconverted (Sing et al. 1998). Another study found no differences between controls 

and HBV patients when frequencies of V1
+
 T cells were investigated where as the 
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frequencies of such cells were said to be higher in the liver of HCV patients (Rossol et 

al. 1998; Agrati et al. 2001). 

 Since δ T cells can modulate adaptive immune responses via cytokine 

production and have even been implicated in an antigen presentation role, it was 

hypothesised that a depletion of such innate lymphocytes could lead to an impairment in 

subsequent adaptive immune responses in chronic HBV. Therefore, the frequencies of 

δ T cells were studied in a group of asymptomatic HBsAg carriers and a group of un-

infected control subjects to examine the role of such cells in a model of immune control. 

Furthermore, as the V9V2 T cell subset are already the centre of several clinical trials, 

their potential against HBV-associated HCC was investigated by assessing whether a 

human HCC cell line could modulate V9V2 T cell responses in vitro. 

  

1.2.6.5 Activation of innate lymphocytes - NKRs 

Innate lymphocytes express a set of invariant stimulatory, co-stimulatory and inhibitory 

receptors known as NKRs and it is the combination of signals transmitted through these 

receptors than can determine whether an innate lymphocyte cell elicits an effector 

function or not (Biron et al. 1999). 

NKG2D is an activating receptor found on the surface of NK, NKT, CD8
+
 and 

 T cells whose loss often has detrimental effects in cancer (Clayton et al. 2008). The 

receptor is a type II transmembrane glycoprotein that binds stress-inducible molecules 

such as MICA and MICB and ULBP1-5 and triggers cytotoxic effector functions by NK 

cells but acts as a costimulatory molecule on CD8+ T cells. The NKG2D ligands are 

over-expressed in tumor cells and virally-infected cells and their expression is induced 

by numerous cellular stresses (Gonzalez et al. 2008). Many studies have highlighted the 

importance of NKG2D in tumor recognition and its tumor-mediated suppression on NK 

cells is well documented. Furthermore, the frequencies of circulating NKG2D-

expressing NK cells are depleted in HCC, HBV and cervical cancer (Arreygue-Garcia et 

al. 2008; Zeng et al. 2009).  

NKG2A (CD94) is an inhibitory NKR often expressed by NK cells and  T 

cells and upon recognition and binding to its ligand, the non-classical MHC class I 

molecule human leucocyte antigen (HLA)-E, inhibits lysis of an un-infected, non-tumor 

cell (Mistry & O‟Callaghan 2007). The loss of HLA-E would abolish the inhibitory 

signal to the effector cells and according to the „missing self‟ hypothesis would allow 
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the dominance of the activating signal and thus induce lysis of the target cell (Mistry & 

O‟Callaghan 2007). NKG2A has even been implicated in 
+ 

T cell-mediated regulation 

of αβ
+
 T cells in the intestine (Bhagat et al. 2008). 

In this study, NKG2D expression by 
 
T cells was investigated in HBV-

infected patients as part of the elucidation of the role of 
 
T cells in the immune control 

of the virus. NKG2D and NKG2A surface expression by HMBPP-expanded V9V2 T 

cells after co-culture with HCC-derived cells was also investigated to determine if there 

were any changes that would indicate tumor cell-mediated immune suppression in 

HBV-associated HCC. 

 

1.2.7 Cytokines in HBV infection 

1.2.7.1 Type 1 Interferons in HBV infection 

Recognition of dsRNA by most cell types (a product of the replication process of RNA 

and DNA viruses) is a common trigger of type 1 IFNs (IFN-α/β) (Vilcek & Sen 1996). 

IFN α/β is usually produced within a few hours of viral infection  and can inhibit viral 

entry or inhibit transcription, translation, assembly and secretion of several DNA and 

RNA viruses (Vilcek & Sen 1996; Stark et al. 1998; Thomson 1998). IFN α/β can also 

inhibit cell division, stimulate effector functions of NK cells, CTLs and macrophages 

upregulate MHC class I and II expression and induce antibody synthesis in B cells 

(Thomson, 1998).  

It is suspected that HBV clearance is due to the direct antiviral mechanism of IFN 

α/β (Guidotti et al. 1995; Shimize et al. 1998). IFN-α/β has been shown to inhibit the 

formation of RNA-containing capsids in HBV infection thus abrogating HBV 

replication without affecting transcription, translation, capsid maturation or secretion 

(Wieland et al. 2000). Studies in HBV-transgenic mice have shown that IFN α/β is 

needed to control HBV infection. (Kamijo et al. 1994; McClary et al. 2000; Deonarain 

et al. 2000). IFN α/β can stimulate the proliferation of memory-phenotype T cells and 

those HBV-specific CTLs found in acute HBV infection are of an effector memory 

phenotype (Tough et al. 1999, Sobao et al. 2002).  

 

1.2.7.2 IFN- and TNF-α in HBV infection 

In animal models where infection is self-limited, an increase in viral replication is 

accompanied by IFN-γ and TNF-α production which leads to an adaptive immune 
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response sufficient to resolve infection (Guidotti et al. 1999; Thimme et al. 2003). IFN-

γ and TNF-α can recruit and activate macrophages, NK cells and T cells, polarise T cell 

responses to ensure that the antiviral response occurs and upregulate antigen processing, 

transport and MHC expression in infected cells (Guidotti & Chisari 2001). These 

cytokines can also exert direct antiviral activity by disrupting viral replication or by 

purging the virus from the infected cell, for example, 2‟5‟ oligoadenylate synthethase-

induced RNase L degrades viral RNA and double standard RNA activated protein 

RNase (PKR) inhibits viral protein synthesis (Guidotti & Chisari 2001).  

The relevance of these mechanisms in HBV were revealed when the intrahepatic 

induction of IFN- and TNF-α was shown to trigger the degradation of pre-formed HBV 

RNA in the nucleus of hepatocytes (Tsui et al. 1995). The importance of IFN- in 

immunity against HBV has been shown in the findings of several studies (Guidotti et al. 

1999, Guidotti & Chisari 1999; Albarran et al. 2005).  

 

1.2.7.3 Other cytokines in HBV infection 

IL-2 has been implicated in the clearance of acute HBV infection (Echevarria S 1991, 

Biron 1991, Das et al. 2008). More recently IL-10 and IL-12 have been implicated in 

spontaneous HBeAg seroconversion in HBeAg-positive patients and furthermore, 

polymorphisms in the genes encoding IL-10, IL-12, IL-2 and IFN- have been 

associated with spontaneous resolution or persistence of HBV infection (Wu et al. 2009; 

Gao et al. 2009). The early stage of acute HBV infection is marked by a transient 

inhibition of NK and T cell responses that coincide with an increase in IL-10 

accompanying HBV viremia. This suggests that HBV may induce IL-10 to evade 

antiviral immune responses (Dunn et al. 2009). Furthermore, CD4
+
 T cells from 

chronically infected patients were shown to produce higher levels of IL-10 in response 

to HBcAg compared to resolvers of HBV infection thus indicating that these cells may 

play a role in viral persistence (Barboza et al. 2009). This is not surprising as IL-10 has 

been manipulated by several viruses in order to evade antiviral immune responses 

(Taoufik et al. 1997; Stockl et al. 1999; Brady et al. 2003). This is in agreement with 

the findings above where Treg cells inhibit CD8
+
 T cell functions. TGF-β1 has been 

implicated in HBV-related liver fibrogenesis while IL-13 is thought to be involved in 

fibrosis in HCV infection (Weng et al. 2009). IL-17 is a pro-inflammatory cytokine 

whose role in antiviral immunity is still not fully understood. The induction of antigen-
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specific Th17 cells have been observed in influenza and HCV infection. Furthermore, it 

was found that HCV NS4 protein could induce IL-10 and TGF-β to subvert antiviral 

responses via inhibition of IL-17 (Rowan et al. 2008). More recently, it has been 

reported that IL-17 is involved in the liver damage associated with chronic HBV 

infection with increases in circulating and intrahepatic Th17 cells positively correlating 

with disease progression and negatively correlating with circulating Th1 cell 

frequencies (Zhang et al. 2010, Ge et al. 2010). IL-17 has also been implicated in HBV-

related liver fibrosis (Xu et al. 2009).  

Due to the lack of cytokine profiling of innate lymphocytes in HBV infection, 

the cytokine profiles of innate lymphocytes in HBV was investigated by examining 

their production of a Th1 (IFN-), Th2 (IL-13), Treg (IL-10) and a Th17 cytokine (IL-

17). It was hypothesized that any deficiencies / expansions in the specific cytokine 

producing populations of these early-responding cells could dictate the overall outcome 

of HBV infection. For example, a depletion of IFN-
+ 

NK cells may lead to 

uncontrollable infection whereas an expansion in the frequencies of such cells may lead 

to viral clearance, immune control or liver inflammation. Since a group of HBsAg 

patients with mild liver disease and low viral load were investigated in this study, it was 

expected that any differences observed between this group and uninfected controls 

would be an indication of the necessary measures for immune control without the 

occurrence of immune-mediated damage. 

 

1.3 Rationale of this study 

Since CD8
+
 T cell responses are deficient in chronic HBV infection and innate 

lymphocytes can modulate adaptive responses, it was hypothesised that deficiencies in 

innate lymphocytes can lead to an impaired adaptive response and the development of 

persistent infection. We, and others have previously shown such deficiencies existed in 

another persistent infection characterised by weakened CTL responses i.e. HCV 

infection (Deignan et al. 2002; Golden-Mason et al. 2008).  

The aims of our study were to examine circulating innate lymphocyte numbers, 

phenotypes and functions in patients with HBV infection and to compare them with 

those in healthy subjects. This involved the study of NK, NT, iNKT and  T cells in a 

cohort of individuals persistently infected with HBV. All patients in our study group 

had low viral load, mild liver disease, no comorbidities and were not receiving any 
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treatment for HBV infection. This group can therefore be considered as a model of 

persistent viral infection where the immune system nevertheless exerts effective control 

of viral replication while inflicting minimal pathology. The differences in the 

frequencies of innate lymphocytes, compared to those observed in uninfected control 

subjects, can inform us about the cells that control virus spread, that mediate pathology 

and liver disease and that are targeted by HBV. By comparing the cytokine profiles of 

innate lymphocytes in HBV-infected subjects to those in uninfected controls, it was 

aimed to determine what cytokines were involved in early responses against HBV. Our 

patient cohort was racially-diverse and since the demographics of our uninfected control 

subjects were mostly unknown, a group of ethnically-matched uninfected controls were 

also studied to confirm that any differences observed were due to HBV infection and 

not the demographics of our study group. 

 There were several limitations to our study, most notably, the use of circulating 

innate lymphocytes instead of hepatic innate lymphocytes. In the study of liver disease, 

it would be ideal to study intrahepatic cells but access to such liver samples is always a 

constraint. Peripheral blood samples were readily available which facilitated the study 

of significantly higher numbers of patients than a liver study would permit, particularly 

a study in which the patients have relatively little liver disease. Furthermore, obtaining 

healthy liver samples for our control group would be another significant challenge. 

 The findings of this study should serve to inform us of the early immune 

responses in HBV and of the responses required to achieve immune control. Alterations 

in the functions and frequencies of innate lymphocytes in HBV infection may indicate 

why the subsequent adaptive responses are impaired. This study should also act as a 

platform for subsequent similar research projects in which other groups of HBV-

infected subjects can be investigated, most notably those who clear the virus and those 

with both chronic HBV infection and severe liver disease. The investigation of innate 

lymphocytes in the livers of all patient groups would also be desirable. It is only 

through the study of these groups that the immune responses against HBV can be fully 

understood and an effective and durable immunotherapy with few side effects can be 

developed. Innate lymphocytes would be ideal candidates for immunotherapy since they 

are easily cultured and do not require any specific antigen stimulation to become 

activated and most importantly, they are already the focus of several clinical trials in 

cancer. The potential of innate T cells in the treatment of HBV-associated HCC was 
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also assessed here, in a preliminary study that investigated reciprocal interactions 

between V9V2 T cells and HCC cells in vitro. 

 The overall aim of this study was to gain information that would aid the 

development and/or improvement of cell-based therapies for HBV and associated 

disease. 

 

1.4 Aims of this study 

 

 To examine the frequencies and phenotypes of circulating NK cells, NK cell 

subsets, NT cells, γδ T cells and their subsets, iNKT cells and CD1-expressing 

cells in patients with HBV infection and to compare them with those in healthy 

subjects. 

 

 To investigate the cytokine profiles of circulating innate lymphocytes in patients 

with HBV infection and to compare them with those in healthy subjects by 

examining their production of a Th1 (IFN-), Th2 (IL-13), Treg (IL-10) and a 

Th17 cytokine (IL-17). 

 

 To investigate the differences in the frequencies, phenotypes and cytokine 

profiles of the above mentioned cell subsets based on gender, age, viral load and 

ALT levels. 

 

 To examine the natural and cytokine-induced cytotoxic capabilities of whole 

PBMC in patients with HBV infection and to compare them with those in 

healthy subjects. 

 

 To investigate reciprocal interactions between V9V2 T cells and HCC cells in 

vitro by examining phenotypic changes and cytokine secretion following co-

culture. 
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2.1 Materials and equipment 

General reagents used in this present study are shown in Table 2.1. Monoclonal 

antibodies (mAbs) used for flow cytometry and receptor cross-linking are shown in 

Tables 2.2 and 2.3, respectively. Mitogens and antigens used in cell culture are listed in 

Table 2.4. Table 2.5 comprises a list of reagents used in polymerase chain reaction. The 

reagents used in the cytometric bead array are listed in Table 2.6. Plastic-ware and 

equipment used during this study are listed in Table 2.7 and 2.8, respectively. Software 

applications used in the present study are listed in Table 2.9. Cell lines used are listed in 

Table 2.10. The cell lines GRM and HT29 were a gift from Dr. Stephen Todryk 

(Universifty of Northumbia, Newcastle). The cell line Hep3B was a gift from Dr. 

Steven Gray (IMM, Trinity College Dublin). 

 

Table 2.1 

General reagents: The General reagents used in this study and their commercial 

sources. 

 

Product Company 

Bovine Serum Albumin (BSA) Sigma-Aldrich, UK 

Brefeldin A (BFA) Sigma-Aldrich, UK 

Cell dissociation solution Sigma-Aldrich, UK 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, UK 

Dulbecco’s Modified Eagle Medium Gibco, NZ 

Ethidium Bromide (EtBr) Sigma-Aldrich, UK 

Foetal Calf Serum (FCS) Sigma-Aldrich, UK 

Foetal Calf Serum (FCS) Hyclone 

Fungizone  Gibco, NZ 

Hanks Balanced Salt Solution (HBSS) Gibco, NZ 

Hepes Gibco, NZ 
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Ionomycin  Sigma-Aldrich, UK 

Lymphoprep  Nycomed, Norway 

Non-essential amino acids Gibco, NZ 

Paraformaldehyde (PFA) Sigma-Aldrich, UK 

Penstreptmycin  Sigma-Aldrich, UK 

Phosphate Buffered Saline (PBS) Sigma-Aldrich, UK 

Polymyxin B  Sigma-Aldrich, UK 

Roswell Park Memorial Institute medium  

(RPMI) 

Gibco, NZ 

Saponin Sigma-Aldrich, UK 

Sodium azide Sigma-Aldrich, UK 

Sodium Pyruvate 100mM Gibco, NZ 
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Table 2.2 

Fluorescence-labelled monoclonal antibodies: The monoclonal antibodies used for 

flow cytometry, their commercial sources and clone names. 

 

Antibody Company Clone 

Allophycocyanin (APC) 

labelled CD27  

ImmunoTools GmbH LT27 

APC labelled CD19  BD Biosciences UK SJ25C1 

APC labelled CD3  BD Biosciences UK UCHT1 

APC labelled CD54  BD Biosciences UK HA58 

APC labelled IgG1  BD Biosciences UK MOPC-21 

APC labelled IgG1  ImmunoTools GmbH PPV-06 

APC labelled MICA/B Biolegend 6D4 

APC labelled NKG2A R&D Systems Europe 131411 

APC labelled NKG2D eBioscience 1D11 

Fluorescein isothiocyanate 

(FITC) labelled IgG1  

BD Biosciences UK X40 

FITC labelled CD1b  BD Biosciences UK HI149 

FITC labelled CD1c  Miltenyi Biotec GmbH AD5-8E7 

FITC labelled CD4  BD Biosciences UK SK3/RPA-T4 

FITC labelled CD45RA  ImmunoTools GmbH MEM-56 

FITC labelled CD56  BD Biosciences UK NCAM16.2 

FITC labelled HLA-DR  BD Biosciences UK G46-6(L243) 

FITC labelled IFN- BD Biosciences UK 25723.11 

FITC labelled IgG1  BD Biosciences UK MOPC-21 
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FITC labelled IgG2a  BD Biosciences UK X39 

FITC labelled V24  Immunotech France C15 

FITC labelled V9  BD Biosciences UK B3 

FITC labelledTCR  BD Biosciences UK 11F2 

FITC labelled Ber-EP4 DakoCytomation Denmark Ber-EP4 

Phycoerythrin (PE) labelled 

IgG1   

BD Biosciences UK X56 

PE labelled  V11  Immunotech France C21 

PE labelled 6B11  BD Biosciences UK 6B11 

PE labelled CD1a  BD Biosciences UK HI149 

PE labelled CD1d  BD Biosciences UK CD1d42 

PE labelled CD8  BD Biosciences UK HIT8a 

PE labelled HLA-E BD Biosciences UK 3D12HLA-E 

PE labelled IgG1  BD Biosciences UK MOPC-21 

PE labelled IL-10  BD Biosciences UK JES 3-9D7 

PE labelled IL-13  BD Biosciences UK JES 10-5A2 

PE labelled IL-17  R&D Systems Europe 41802 

PE-labelled anti-mouse IgG 

(secondary reagent) 

R&D Systems Europe LXP08 

PE labelled V2  BD Biosciences UK B6 

Phycoerythrin-Cyanine 5 

(PE-Cy5) labelled IgG1  

BD Biosciences UK MOPC-21 

PE-Cy5 labelled CD14  BD Biosciences UK TUK4 

PE-Cy5 labelled CD3  BD Biosciences UK UCHT1 
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PE-Cy5 labelled CD40  BD Biosciences UK 5C3 

PE-Cy5 labelled IgG1  BD Biosciences UK MOPC-21 

PE-Cy5 labelled IgG2a  BD Biosciences UK G155-178 

Peridinin-chlorophyll 

protein (PerCP) labelled 

CD3 

Biolegend S K7 

PerCP labelled NKG2C R&D Systems Europe 134591 

Unconjugated Vδ1 Becton Dickinson 11F2 

 

Table 2.3 

Stimulating monoclonal antibodies:  Monoclonal antibodies used for receptor cross-

linking and their commercial sources.  

 

Antibody Company 

Anti-human-CD3 BD Biosciences, UK

Anti-CD28 mAb Anti-human BD Biosciences, UK

 

Table 2.4 

Stimulants used in cell culture: Mitogens and antigens used in cell culture and their 

commercial source. 

 

Product Company 

(E)-4-hydroxy-3-methyl-but-2-enyl 

pyrophosphate (HMBPP) 

Dr. Hassan Jomaa,  

Universitatsklinikum Gieben und 

Marburg GmbH, Germany 

Isopentenyl pyrophosphate (IPP) Sigma-Aldrich, UK 

Phytohaemagglutinin (PHA) Sigma-Aldrich, UK 

Phorbol 12-myristate 13-acetate (PMA) Sigma-Aldrich, UK 
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Table 2.5 

RT-PCR: All buffers, primers, probes and reagents used in RT-PCR and their 

commercial sources. 

 

Product Company 

Lysis buffer Sigma 

-Mercapthoethanol Sigma 

RNase Zap Sigma 

RNeasy Mini-kit (RNA extraction kit) Qiagen 

RNase-free DNase set Qiagen 

First strand buffer Invitrogen 

DTT Invitrogen 

Dimethyl sulfoxide (DMSO) Sigma 

Deoxyribonucleotide triphosphates 

(dNTPs) 

Invitrogen 

RNasin Promega 

MMLV Reverse Transcriptase Invitrogen 

Random Hexamers Invitrogen 

dH2O Sigma 

-actin primers A gift from Genomic Research 

Laboratory, IMM 

IFN- primers A gift from Genomic Research 

Laboratory, IMM 

-actin probe A gift from Genomic Research 

Laboratory, IMM 
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IFN- probe A gift from Genomic Research 

Laboratory, IMM 

IL-10 pre-customised primers and 

probes 

ABI 

IL-17 pre-customised primers and 

probes 

ABI 

Taqman® Universal PCR mastermix ABI 

 

Table 2.6 

Cytometric Bead Array: The reagents used in the cytometric bead array and their 

commercial sources. 

 

Reagent Company 

Cytometric Bead Array Human Soluble 

Protein Master Buffer Kit 

BD Biosciences, UK 

Human TGF-1 Single Plex Flex kit BD Biosciences, UK 

Human IFN- Single Plex Flex kit BD Biosciences, UK 

Human IL-4 Single Plex Flex kit BD Biosciences, UK 

Human IL-6 Single Plex Flex kit BD Biosciences, UK 

Human IL-10 Single Plex Flex kit BD Biosciences, UK 

Human IL-12 Single Plex Flex kit BD Biosciences, UK 

Human IL-13 Single Plex Flex kit BD Biosciences, UK 
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Table 2.7 

Plastic-ware: Items of plastic-ware used in this study and their commercial sources. 

 

Product Company 

24-well tissue culture plate  Nunc, Denmark 

48-well tissue culture plate  Nunc, Denmark 

40µm Nylon mesh needle filter Falcon 2340, USA 

6-well tissue culture plate  Nunc, Denmark 

96-well u-bottomed tissue culture plate   Nunc, Denmark 

96-well flat bottomed microplate Nunc, Denmark 

5 ml polystyrene round bottom  Falcon tube BD Biosciences, UK 

50 ml Falcon Tubes  BD Biosciences, UK 

RNase-free eppendorfs Qiagen 

RNase-free collection tubes Qiagen 

PCR plate ABI 

 

Table 2.8 

Equipment: Pieces of equipment used in this study and their commercial sources. 

 

Equipment Company 

Centrifuge 5810  Eppendorf 

Centrifuge 5415D Eppendorf 

FACSCalibur system for flow cytometry  BD Biosciences, UK 

Haemocytometer  Neubauer 

MACS LS Column Miltenyi Biotec, GmbH 

MACS Separator Miltenyi Biotec, GmbH 
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Thermo Forma Incubator Thermo Scientific 

Waterbath Clifton 

Olympus CK40-SLP Light microscope Olympus, Japan 

Nikon Eclipse E200 UV Light microscope Nikon, Japan 

8 sample spectrophotometer ND-800 Nanodrop 

PTC-100 Programmable Thermo 

Controller 

MJ Research, Inc. 

7000 sequence detection system ABI Prism 

P100 Pipette Eppendorf 

P1000 Pipette  Eppendorf 

P200 Pipette Eppendorf 

P20 Pipette Eppendorf 

Pipette-aid Drummond 

Tecan Sunrise Microplate Reader Tecan 

Thermo IEC Micromax centrifuge Thermo Scientific 

 

Table 2.9 

Software: Software applications used in this study and their commercial sources. 

 

Software Company 

CellQuest Software  BD Biosciences, UK 

Summit Version 4.3 Dako Colorado, Inc., USA 

GraphPad Prism 5.0.0.288 GraphPad Software, Inc., USA 

FCAP Array Software BD Biosciences, UK 
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Table 2.10 

Epithelial cell lines: Epithelial cell lines used in this study, the organ from which  

they originated and the disease they cause. 

 

Cell line Source Disease 

HT29 Colon Colorectal 

adenocarcinoma 

Hep3B Liver Hepatocellular 

carcinoma 

GRM Skin Melonoma 
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2.2 Subjects 

2.2.1 HBV patients 

One hundred and two consecutive patients infected with Hepatitis B virus (HBV), 

attending the Hepatology Outpatient clinic at St. James Hospital, Dublin were studied. 

The numbers of patients studied in each analysis (n) are shown in each results chapter. 

Therefore, the frequencies or cytokine profiles of any cells of interest were not 

investigated for all 102 patients. The patient cohort was diverse in race and comprised 

42 Africans, 40 Caucasians and 20 Asians. ALT levels ranged from 8 to 143 with 75 

patients having ALT below 40 and 27 patients having abnormal ALT level above 40. 

Very few patients had very high ALT levels and thus most patients were regarded as 

having no or mild liver disease. No patient investigated was receiving treatment. The 

viral load was measured at or close to the time at which the sample was taken – this 

measurement varied from a minimum of less than 7 to 4.5x10
8
 but was less than 20,000 

copies/ml in the majority of patients. Viral load data in exact international units were 

not available but there are approximately 5 – 6 HBV copies in each international unit. 

All 102 patients were sAg positive while none were eAg positive. The patient group 

included 18 females aged between the 18 – 30 years and 33 females were aged between 

30 – 60 years. Eighteen males were aged between 18 and 30 years and 33 were aged 

between 30 and 60 years. All patients were free from HIV and HCV infection. The only 

co-morbidity recorded was Down‟s syndrome in two patients. Data on the infecting 

HBV genotypes were not available. Ethical approval for this study was obtained from 

the Research Ethics Committees of St James Hospital, Dublin and NUI Maynooth. 

 

2.2.2 Control subjects 

2.2.2.1 General control subjects 

Our control population consisted of 66 peripheral blood samples of which the majority 

were obtained from the Irish Blood Transfusion Board. The samples were in the form of 

buffy coat packs however, several fresh blood samples were used also. 

 

2.2.2.2 Demographically matched control subjects 

As discussed in section 2.2.1, our patient population was diverse in race. The 

demographics of our population of general control subjects were mostly unknown. 
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Therefore, to confirm that any differences observed between patients and controls were 

due to HBV infection and not demographics, some phenotypical analysis on a cohort of 

demographically-matched healthy donors was also carried out. Blood samples from 15 

Africans, 15 Irish and 10 Asian healthy control subjects were obtained from the GUIDE 

Clinic, St. James Hospital, Dublin. Ethical approval for this study was obtained from the 

Research Ethics Committees of St James Hospital and Adelaide and Meath Hospital 

incorporating the National Children‟s Hospital, Dublin. 

 

2.2.3 Collection of subject material 

Venous blood from patient and control subjects was taken into heparinised tubes and 

processed immediately. Peripheral blood mononuclear cells (PBMC) were prepared 

from these blood samples, and these cells formed the basis of analysis for this study. 

PBMC from 50 of the 60 control subjects were also prepared from buffy coat packs, 

obtained from the Irish Blood Transfusion Board, St. James Hospital, Dublin. Serum 

samples for both patient and control subjects were also obtained by taking blood into 

tubes containing no anti-coagulant.  

 

2.3 General tissue culture procedure 

The handling of human tissue which is a potential biohazard and the handling of cell 

cultures which require sterility was confined to class 2 biosafety cabinets, in an area of 

the laboratory called the tissue culture facility. Human tissues include all bloods, tissue 

specimens and primary cell cultures derived from these tissues. All human tissues are 

potentially virus-positive and should be handled as such.  

White coats and gloves were always worn while working in the tissue culture 

facility. The work surface of the laminar air flow hood was wiped with 70% alcohol 

before use. Gloved hands were sprayed with 70% alcohol before working in hoods or 

handling anything from the CO2 incubators. All bags of sterile plasticware were 

resealed with masking tape after use.  

Blood spillages were soaked with HBSS and then, absorbed and inactivated with 

Virkon disinfectant. The area was then swabbed with alcohol. Small sharp objects and 

glass were disposed in sharp boxes which were then closed, sealed and replaced with a 

new sharps box once full. Large pipettes and other implements that might puncture 

plastic disposal bags were disposed of in solid yellow disposal containers. All liquids, 

including blood, were discarded in a plastic jug containing Virkon at a concentration of 
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10g / litre water. The jug was kept inside the flow hood for at least 20 minutes after 

pouring the waste, before its contents could be discarded down the sink. All biohazard 

material was disposed of in autoclavable bags. All sterilins and containers were rinsed 

with Virkon and sealed before disposal in autoclavable bags. Non-hazardous waste was 

disposed of in a black bag, as general refuse. 

Two users were designated to clean and maintain the tissue culture facility 

fortnightly. This comprised a thorough cleaning of the incubator, laminar flow-hoods, 

water bath, centrifuge, bench areas and floor. A stock check of general reagents and 

plastic ware was also carried out and such items were replaced and/or reordered if 

necessary.  

 

2.3.1 Peripheral blood mononuclear cells (PBMC) isolation 

PBMC were isolated from heparinised blood by density gradient centrifugation. This 

method is based on exploiting the difference in density between lymphocytes / 

monocytes and erythrocytes / granulocytes.  

Heparinised blood was diluted 1:1 with HBSS containing 1% FBS which was 

pre-warmed and carefully layered onto 20 millilitres (ml) Lymphoprep in a 50 ml 

Falcon tube. Tubes were centrifuged at 400 x g for 25 minutes with the brake off at 

room temperature. Under these conditions, the denser cells (erythrocytes / granulocytes) 

aggregate at the bottom while lymphocytes / monocytes remain above the Lymphoprep. 

After the centrifugation, the buffy coat above the Lymphoprep layer was 

collected using a sterile Pasteur pipette and transferred to a clean, labelled 50 ml Falcon 

tube. The tube was topped up with HBSS to 50 ml and centrifuged at 800 x g for 5 

minutes. The supernatant was discarded and the cell pellet was re-suspended in 50 ml 

HBSS and centrifuged at 400 x g for 10 minutes. The cell pellet was finally re-

suspended in complete RPMI medium (cRPMI), i.e. Roswell Park Memorial Institute 

medium (RPMI) supplemented with 2% Hepes, 0.8% Fungizone, 0.8% Penstreptimycin 

and 10% foetal calf serum (FCS). When buffy coat packs were used, anticoagulant was 

added before dilution with HBSS. Five millilitres of 5% ethylene-diaminetetraacetate 

(EDTA) was added per 50 ml of blood to prevent coagulation. The blood was then 

diluted 1:7 with HBSS. After these two steps, the protocol was followed as above 

 

2.3.2 Enumeration of cells and viability testing 
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To evaluate cell viability and numbers, ethidium bromide (EB) and acridine orange (AO) 

was added to the cells. A working EB/AO solution was made up by mixing EB (0.8 ml 

of 4 mg/ml) and AO (2 ml of 1 mg/ml solution) stock solutions and adding 200 ml 

0.85% (w/v) sodium chloride. One hundred and ninety microlitres (µl) of EB/AO was 

added to 10 µl of cells in cRPMI, giving a 1/20 dilution. This solution was vortexed and 

10 µl was transferred to a haemocytometer for counting using a microscope with a 

ultraviolet (UV) light. Dead cells stain with EB and appear orange under UV light. 

Viable cells exclude EB but take up acridine orange and appear bright green under UV 

light. The numbers of cells in an area corresponding to 2x0.1mm
3
 were counted and the 

numbers of cells per ml were calculated taking into account the 1/20 dilution. Only 

samples with a cell viability of > 90% were used in the experiments.  

 

2.3.3 Cryopreservation and recovery of cells 

PBMC were centrifuged at 150 x g for 5 minutes. The supernatant was discarded and 

the pellet was re-suspended in a freezing medium which consisted of 90% FCS and 

10% DMSO (dimethyl sulfoxide). Cells were cryopreserved at a concentration of 5x10
6
 

cells per ml. 1 ml of cells in freezing medium was aliquoted to each cryovial. The 

aliquots were stored at -80°C for 24 hours and then transferred to liquid nitrogen. 

Before recovering cells from the liquid nitrogen, sterilins of cRPMI were pre-

heated for 10 minutes in a water bath at 37°C. The cryovials of cells were removed from 

the liquid nitrogen and once they were semi-thawed, a sterile pastette was used to drop 

some warmed cRPMI onto the semi-thawed cells. Then the cells were taken up slowly 

and released back into the cryovial using the pastette several times. Once fully thawed, 

all contents of the cryovial were transferred into a sterilin containing 10 ml of warmed 

cRPMI. The cells were centrifuged at 300 x g for 10 minutes and all of the liquid was 

discarded, removing all of the DMSO. The pellet was suspended in cRPMI. Cell counts 

were performed as detailed in section 2.6 to determine cell viability. 

 

2.3.4 Cell lines 

The GRM and HT29 cells were cultured in T75 tissue culture flasks in cRPMI. Hep3B 

cells were cultured in T75 tissue culture flasks in complete DMEM medium (cDMEM) 

i.e. Dulbecco‟s Modified Eagle Medium (DMEM) supplemented with 0.1 mM non-

essential amino acids (NEAA), and 1.0 mM sodium pyruvate and 10% FCS. An 

Olympus CK40-SLP light microscope was used to examine the cells‟ confluency each 
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day. Before the cells became confluent, 90% of the cells were discarded while 10% 

were re-cultured in a new T75 tissue culture flask. This was achieved by firstly, 

removing all medium from the flask and performing a single wash with fresh medium to 

remove all dead cell debris. Two millilitres of non-enzymatic cell dissociation solution 

was then added to the flask and the flask was gently rocked from side to side to ensure 

that the fluid reached every cell. After 3-4 minutes, the layer of cells had broken away 

from the flask and, was removed in the cell dissociation fluid. This was topped up to ~ 

20 ml with medium. The cells were centrifuged at 300 x g for 8 min. The supernatant 

was discarded and the pellet was re-suspended in 10 ml of medium. 1 ml of this was 

added to a fresh flask and this was topped up with warm medium. The medium was 

replenished every 5 days for all cell lines.  

 

2.4 Flow cytometry 

2.4.1 Principles of flow cytometry 

A flow cytometer facilitates simultaneous analysis of several properties of particles 

ranging in size from 0.2 to 150 μm (Figure 2.1). In cellular immunology, this technique 

is mainly use to analyse cells. Particles are acquired in a single suspension, 

hydrodynamically focussed to allow cells to pass, one by one, in front of a laser beam. 

Properties analysed include size, granularity and fluorescence (protein expression). As 

the cells pass by the laser beam, light scatter is used to determine the size and 

granularity of each cell.  Protein expression is determined using specific antibodies 

conjugated to fluorescent markers called fluorochromes. Fluorochromes become excited 

to a higher energy state when they encounter certain wavelengths of light. When this 

happens, the fluorochromes emit photons of light which are then measured by dedicated 

detector photodiodes. Different fluorochromes emit light at different wavelengths. For 

example, FITC, PE, PE-Cy5 and PerCP become excited at wavelengths of 518, 575, 

695 and 675 nm, respectively and can therefore be used on machines with a 488nm 

excitation laser. Fluorochromes such as APC and APC-Cy7 require a higher excitation 

wavelength i.e. 660 and 760nm, respectively and therefore they require a different 

excitation laser i.e. a 633nm excitation laser. The FACS Calibur used in this study 

(Figure 2.1) has both a blue 488nm and a red 633 nm excitation laser. Fluorochrome-

conjugated antibodies can be used to detect a wide range of proteins, from cell surface 

markers to intracellular components. As fluorochromes vary with respect to the signal 

intensity they generate, it is recommended that the fluorochromes with the highest 
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signal intensity are used for the least abundant target proteins.  PE and APC have two of 

the highest signal intensities. Therefore, PE-Cy5- or PerCP-labelled CD3 could be used 

to detect T cells while PE-labelled or APC-labelled V2 could be used to detect V2 

cells because they are the less abundant population. Various steps involving surface 

and/or intracellular surface staining with fluorochrome-conjugated antibodies is 

required prior to use of the flow cytometer. These steps shall be discussed in detail in 

the subsequent sections. 

 

 

 

 

 

 

 

Figure 2.1 Schematic diagram of FACs Calibur (BD): This schematic diagram shows 

internal components of the FACs Calibur Flow Cytometer. The „Blue DPSS Laser 

488nm‟ is a low-power (15mW) argon laser that emits blue light at 488nm. The „Red 

DPSS Laser 633nm‟is a low-power (30mW) helium-neon diode that emits red light at 

633 nm. The two „488/10‟ detectors for laser-light scatter are used to determine size 

(bottom) and granularity (top). The four detectors for fluorescence in the green, orange 
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and red/dark red regions of the colour spectrum are used to determine protein 

expression levels. Figure adopted from  www3.niaid.nih.gov  

 

 

2.4.2 Use of flow cytometry for the purpose of this study 

2.4.2.1 Direct cell surface staining of cells with fluorochrome-conjugated mAbs 

The required numbers of cells were centrifuged at 450 x g for 8 minutes. The cells were 

suspended in phosphate buffered saline (PBS) containing 0.33% bovine serum albumin 

(BSA) and 0.02% sodium azide (PBA buffer), at a density of 1x10
5
 cells per 50 µl PBA 

for each flow cytometry tube. The appropriate mAbs were added to each 50 µl aliquot 

of cells, therefore, labelling the cells for the surface markers listed in Table 2.12. 

Samples were incubated in the dark at 4C for 20 minutes and then washed with 2 ml 

PBA. Labelled cells were fixed in 0.5 ml 1% paraformaldehyde (PFA). 

 

2.4.2.2 Indirect cell surface staining of cells with unconjugated anti-Vδ1 mAb and 

determination of the optimal concentration to be used 

The unconjugated anti-Vδ1 mAb was added to the appropriate tube containing 50 µl 

aliquot of cells in PBA buffer, therefore, labelling the cells. Samples were incubated in 

the dark at 4C for 15 minutes, washed with 2 ml PBA and then 50 µl of PBA and 5 µl 

PE-labelled anti-mouse IgG was added to each tube. Samples were incubated for 15 

minutes in the dark and a subsequent wash with 2 ml PBA was performed. Fifty 

microlitres of mouse serum was then added to each tube at a concentration of 200 µg/ml. 

Another 15 minute incubation and wash with PBA was performed and finally, the cells 

could be fixed in 0.5 ml 1% PFA. 

Optimal concentration of the unconjugated anti-Vδ1 mAb was first determined 

by adding 0.5, 0.25, 0.1 and 0.05 μg to 1x10
5
 PBMC in 50 μl of PBA.  The optimisation 

experiment was performed on PBMC from two healthy donors and, a concentration of 

0.25 μg/ml was found to be the optimum concentration (Figure 2.2). 
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Figure 2.2 
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2.4.2.3 Phenotypic analysis of surface stained cells 

Cell surface staining was used to investigate PBMC phenotypes in HBV groups and 

controls. Appropriate fluorescence-labelled isotype-matched control antibodies were 

used to correct for any background staining. Single staining of cells with fluorescence 

labelled anti-CD4, anti-CD8, anti-CD3 and anti-CD19 were used as additional controls 

to compensate for the interference of individual fluorochromes with one another during 

flow cytometry. For the identification of T cells, PE-Cy5 or PerCP-labelled anti-CD3 

was used. This antibody was used in conjunction with other antibodies to identify 

specific types of T cells. For example, PE-Cy5- or PerCP-labelled anti-CD3 with both 

FITC-labelled anti-V24 and PE-labelled anti-V11, or with PE-labelled anti-6B11 

alone, was used for the identification of invariant NKT (iNKT) cells. PE-Cy5- or 

PerCP-labelled anti-CD3 and PE-labelled anti-CD56 was used to identify Natural T (NT) 

cells. Gamma delta T cells were identified using PE-Cy5- or PerCP-labelled anti-CD3 

with FITC-labelled anti--TCR. The antibodies used to identify  T cell 

subpopulations were FITC-labelled anti-V9, PE-labelled anti-V2 and PE-labelled 

anti-V1. The memory and effector T cell populations among these cells were identified 

using APC-labelled anti-CD27 and FITC-labelled anti-CD45RA.  For the identification 

of B cells, APC-labelled anti-CD19 was used. Then, FITC-labelled anti-CD1b and PE-

labelled anti-CD1a, or FITC-labelled anti-CD1c and PE-labelled CD1d were added to 

identify B cells expressing these CD1 isoforms. Likewise, for the identification of 

monocytes, PE-Cy5-labelled anti-CD14 was used. Then, FITC-labelled anti-CD1b and 

PE-labelled anti-CD1a or FITC-labelled anti-CD1c and PE-labelled CD1d were added 

to identify monocytes expressing these CD1 isoforms. 
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Table 2.12 

 

Phenotyping  lymphocyte and monocyte subpopulations by flow cytometry: The 

fluorescence-labelled mAbs used for cell surface staining of PBMC for phenotypic 

analysis by flow cytometry. 

 

 

Tube 

Number 

FITC PE PE-Cy5* APC 

1 IgG1 IgG1 IgG1 IgG1 

2 CD4 CD8 CD3 CD19 

3  CD56 CD3  

4 V24 V11 CD3  

5 CD56 6B11 CD3  

6   CD3  

7 V9 V2 CD3 NKG2D 

8  V1 CD3  

9 CD56 V2 CD3  

10 CD56 V1 CD3  

11 CD45RA V1 CD3 CD27 

12 CD45RA V2 CD3 CD27 

14 CD1b CD1a CD14 CD19 

15 CD1c CD1d CD14 CD19 

 

* PerCP was used instead of PE-Cy5 in some experiments. 
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2.4.3 Flow cytometry acquisition and analysis 

Acquisition and analysis of cell surface stained cells was carried out using the FACS 

Calibur flow cytometer and Cell Quest Software. Lymphocytes were gated using FSC 

(forward scatter, size) and SSC (side scatter, granularity) parameters (R1 in Figure 2.3). 

Monocytes were gated using FSC and SSC parameters, also (R2 in Figure 2.3), as 

where epithelial cell lines. Cells in tubes containing mAbs against both lymphocyte and 

monocyte surface markers were acquired twice, first with compensations and 

fluorescent detectors optimised for R1 and a second time with the acquisition 

parameters optimised for R2. 

For the identification of lymphocyte subpopulations, 30,000 cells were acquired 

for each sample, with the exception of samples containing cells stained for invariant 

natural killer T (iNKT) cell receptors. Up to 200,000 cells were acquired for such 

samples because these iNKT cells are present in very low numbers in peripheral blood 

(~ 0.01% of T lymphocytes) (Kenna et al. 2004). The cells were first gated on the 

lymphocytes (R1 in Figure 2.3) and then, the T cells were identified as those cells which 

stained positively with PE-Cy5-labelled anti-CD3 mAb within R1. Such cells were 

gated in the region called „T cells‟ (Figure 2.4). NT cells were identified as those cells 

within the region called „T cells‟ that were positive for FITC-labelled anti-CD56 

(Figure 2.4). NK cells were identified as all lymphocytes outside the „T cells‟ region 

which were positive for FITC-labelled anti-CD56 (Figure 2.4). Invariant NKT (iNKT) 

cells were defined as those T cells which stained positive for FITC-labelled anti-V24 

and PE-labelled anti-V11,
 
or PE-labelled anti-6B11. Similarly, gamma delta cells were 

identified as those T cells that stained positive for FITC-labelled anti--TCR, FITC-

labelled anti-V9, PE-labelled anti-V2 or PE-labelled anti-V1. FITC-labelled anti-

CD45RA and APC-labelled anti-CD27 were used to identify naïve, central memory, 

terminally differentiated and effector memory subsets of V2
+
, V1

+
 and CD8

+
 T cells 

populations. This will be explained in more detail in the results section. 

B cells were identified as APC-labelled anti-CD19 cells within R1 and were 

gated in a region called „B cells‟. CD1a
+
, CD1b

+
, CD1c

+
 or CD1d

+
 B cells were then 
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identified as those B cells that were positive for PE-labelled anti-CD1a, FITC-labelled 

anti-CD1b, FITC-labelled anti-CD1c or PE-labelled anti-CD1d, respectively. 

Using FSC and SSC properties, the cells were first gated on the larger and more 

granular PBMC population (R2 in Figure 2.3) and then, the monocytes were identified 

as those cells which stained positively with PE-Cy5-labelled anti-CD14 mAb within R2. 

CD1a
+
, CD1b

+
, CD1c

+
 or CD1d

+
 monocytes were then identified as those CD14

+
 cells 

in R2 that were positive for PE-labelled anti-CD1a, FITC-labelled anti-CD1b, FITC-

labelled anti-CD1c or PE-labelled anti-CD1d, respectively. 
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Figure 2.3 Light scattering properties of human PBMC: Measurements of cell size 

(FSC) are positioned on the X-axis, while measurements of cell granularity (SSC) are 

positioned on the Y-axis. Based on their size and granularity, all lymphocytes are gated 

within R1 and all monocytes are gated within R2. 

 

 

 

                                       

Figure 2.4 CD3 and CD56 expression by human lymphocytes: All cells represented 

here have been gated in R1 and are lymphocytes. Frequencies of CD3
+ 

lymphocytes are 

quantified in the right-hand and left-hand upper quadrants, while frequencies of CD56
+
 

lymphocytes are quantified by counting all cells in the right-hand-upper and right-hand 

lower quadrants. All CD3
+
 lymphocytes are gated in a region called „T cells‟. All 

CD56
+
CD3

+
 lymphocytes are gated in a region called „NT Cells‟. All CD56

+
CD3

-
 

lymphocytes are then gated in a region called „NK Cells‟.  

 

R1 

R2 

T cells NT  Cells 

NK  Cells 



 81 

2.5 Analysis of cytokine production 

2.5.1 Stimulation of PBMC in vitro 

PBMC were suspended in cRPMI at densities of 0.5x10
6
 cells per ml and 1 ml was 

placed in each well of a 24-well plate. Three different stimulations were performed. 

Some PBMC were incubated in medium alone. To induce cytokine production, 10 

ng/ml phorbol 12-myristate 13-acetate and 1 µg/ml ionomycin (PMA/I) were added to 

PBMC in certain wells. In other wells, 9 µg anti-CD3 mAb and 9 µg anti-CD28 mAb 

were added to 3 ml 0.1 M Na2HPO4 (disodium hydrogen phosphate) binding buffer, and 

1 ml was added to each well to give a final concentration of 3 µg anti-CD3 and anti-

CD28 per well. The mAbs were left to bind overnight in a Thermo Forma CO2 

Incubator at 37ºC. The following day each well was washed 3 times with 1 ml PBS. 

Then, PBMC were added to the plate bound mAbs in each well. Ten micrograms per 

millilitre of Brefeldin A (BFA) was added to PBMC in all wells to prevent cytokine 

release. It achieves this by blocking protein transport from the endoplasmic reticulum 

(ER) to the Golgi apparatus. The prevention of cytokine secretion in this assay allows 

them to become concentrated to detectable levels within cells. Cells were incubated in 

CO2 incubator at 37ºC for 4 hours before intracellular cytokine staining was carried out. 

 

2.5.2 Cytokine analysis by intracellular cytokine staining and flow cytometry 

Following stimulation of PBMC in vitro and a subsequent 4 hour incubation, 1.5x10
6
 

cells for each type of stimulation were transferred to four separate 5 ml polystyrene 

round-bottom Falcon tubes and centrifuged at 450 x g for 8 minutes. Cells were re-

suspended in PBA at a cell density of 1x10
5
 cells per 50 µl PBA and 50 µl was 

transferred to each flow cytometry tube. The appropriate mAbs were added to each 50 

µl aliquot of cells to label them for the FITC-, PE- and PE-Cy5- or PerCP-conjugated 

cell surface markers as listed in Table 2.13. Samples were incubated in the dark at 4C 

for 20 minutes and subsequently, washed with 2 ml PBA buffer. Cells were fixed in 0.5 

ml 4% PFA and incubated in the dark at room temperature for 10 minutes. Following 

incubation, cells were washed with 2 ml PBA. Cells were then permeabilised by adding 

1 ml 0.2% saponin and incubating in the dark at room temperature for 10 minutes. Cells 

were centrifuged at 450 x g for 8 minutes, the supernatants were removed and the cells 

were stained for the presence of intracellular cytokines by adding 0.2 µg PE-conjugated 

IL-10, IL-13 or IL-17 in 50 µl saponin or 0.2 µg FITC-conjugated IFN- in 50 µl 
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saponin to each tube. Corresponding control mAbs were added at this time, also. Cells 

were incubated in the dark at 4C for 20 minutes, washed with 2 ml PBA and 

centrifuged at 450 x g for 8 minutes. Labelled cells were then fixed in 0.5 ml 4% PFA 

and samples were refrigerated before acquisition on the flow cytometer. 

The lymphocyte subpopulations of interest were first identified as detailed in 

section 2.4.3. Cytokine producing cells within such populations were identified as those 

NK, NT or T cells which were also positive for FITC-labelled IFN- or PE-labelled 

anti-IL-10, IL-13 or IL-17. Figure 2.5 is a representative plot of IFN- production by T 

lymphocytes and non-T lymphocytes. Every cell gated in R5 is identified as an IFN- 

producing lymphocyte.  

 

Table 2.13 

 

Flow cytometric analysis of cytokine production by innate lymphocytes: 
The fluorescence-labelled mAbs used for intracellular cytokine staining of PBMC for 

subsequent analysis by flow cytometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* PerCP was used instead of PE-Cy5 in some experiments. 

 

Tube FITC PE PE-Cy5* 

1 IgG1 IgG1 IgG1 

2 CD4 CD8 CD3 

3 IFN- CD56 CD3 

4 CD56 IL-10 CD3 

5 CD56 IL-13 CD3 

6 CD56 IL-17 CD3 

7 IFN- V2 CD3 



 83 

                                   

Figure 2.5 IFN- production by PMA/I stimulated human lymphocytes All cells 

represented here have been gated in R1 (Figure 2.1). Frequencies of CD3
+ 

lymphocytes 

are quantified in the right-hand and left-hand upper quadrants, while frequencies of 

IFN-producing lymphocytes are quantified in the right-hand upper and right-hand 

lower quadrants. All IFN-producing lymphocytes are gated in a region called „IFN-
+
 

lymphocytes‟. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IFN- 
+
 

lymphocytes   
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2.5.3 Cytokine analysis by quantitative real-time polymerase chain reaction (RT-

PCR) 

Quantitative RT-PCR is widely used to measure cytokine mRNAs in many cells 

including PBMC (Blaschke et al. 2000, Hartel et al. 2001, Kruse et al. 2001, Stordeur et 

al. 2002). In this study, the technique was used to compare the cytokine profiles of 

whole PBMC in HBV patients and healthy control subjects. 

 

2.5.3.1 Cell lysis 

PBMC were isolated from the blood of HBV patients and controls as described in 

section 2.3.1. The PBMC were re-suspended in 200 µl of HBSS and then placed in an 

RNase-free 1.5 ml eppendorf tube. The cell suspension was micro-centrifuged in a 

Thermo IEC Micromax centrifuge for 10 min at 13,400 x g. The HBSS was removed 

from the pellet and 600 µl of lysis buffer (Sigma) was added to the tube. Full 

reconstitution in the lysis buffer was ensured by gently pipetting the solution until all 

particulate had been dissolved. Ten microlilitres of B-mercapthoethanol was added to 

the cell lysates and the mixture was vortexed for 10 seconds, before being placed in a -

80C freezer. 

 

2.5.3.2 RNA extraction 

It was first ensured that all work surfaces, gloved hands and pipettes were RNase free 

by swabbing with IMS and RNase Zap (Sigma). The cell lysates were thawed on ice 

and then, homogenised until all precipitate was dissolved. The RNeasy mini-kit (Qiagen) 

was used to extract the RNA. The contents of the eppendorf tubes were first transferred 

to QIA shredder tubes and micro-centrifuged at 13,400 x g for 2 min. The spin column 

containing the cell debris was discarded and the collection tube was retained. An equal 

amount of 70% ethanol was added to the tube to match the volume of the contents and 

this was mixed by pipetting gently. This mixture was transferred to an RNeasy mini 

column and then, micro-centrifuged at 13,400 x g for 15 seconds. The flow through was 

discarded and 350 µl RWI buffer was added to the RNeasy mini column and then, 

micro-centrifuged at 13,400 x g for 15 seconds. The flow through was dispensed. 

DNase was diluted 1:7 in RDD buffer and 80 µl of this working concentration was 

placed very carefully onto the RNase silica gel membrane of the RNeasy mini column. 

After 15 min at room temperature, 350 µl RWI buffer was added to the mini column 
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and this was followed by a 15 second centrifugation at 13,400 x g. The flow through 

was discarded and the mini column was transferred to a new RNase-free collection tube. 

Five hundred micro litres of RPE buffer was added to the column and another 15 second 

centrifugation at 13,400 x g followed. The flow through was discarded and another 500 

µl RPE buffer was added to the column followed by a 2 minute centrifugation at 13,400 

x g, to dry the RNeasy Silica gel membrane. The mini column was transferred to a new 

RNase-free collection tube and centrifuged for 1 min at 13,400 x g. Again, the mini 

column was transferred to a new RNase-free eppendorf and 40 µl of RNase free water 

was added onto the membrane. This was followed by another centrifugation for 1 min at 

13,400 x g. The same 40 µl of RNase free water was added onto the membrane and 

again, this was followed by centrifugation for 1 min at 13,400 x g. The flow through 

contained the RNA so the column was discarded and the eppendorf was retained and 

placed on ice.  

A sample of RNA was taken to measure the yield and purity of the RNA using 

an 8 sample spectrophotometer ND-800 (Nanodrop). Spectrophotometry was carried 

out in duplicate to achieve accurate results. Following RNA extraction from 30x10
6
 

PBMC, spectrophotometry revealed that the RNA yields from both control subjects and 

HBV patients were sufficient. RNA purity was also tested. Pure preparations of RNA 

have OD
260

/OD
280 

values of greater or equal to 2. If there was contamination with proteins 

such as nucleases, for instance, the ratio would be less than 2. RNase contamination was the 

primary concern but contamination with any proteins would prevent accurate quantification 

of RNA. Similarly, pure preparations of RNA have OD
260

/OD
230 

values of 2. If there was 

contamination with phenolate ions or other organic compounds then, this ratio would be 

less than 2, and as with protein contamination, accurate quantification of RNA would not be 

possible. The OD
260

/OD
280 

and OD
260

/OD
230 

values were greater than but close to 2 for all 

the RNA samples of interest. Once the yield had been determined, the appropriate 

amount of RNA could be reverse transcribed to give 1000 ng of cDNA. This was the 

amount of cDNA needed to perform qRT-PCR for IFN-, IL-10, IL-17A and the house-

keeping gene β-actin. 

 

2.5.3.3 Reverse Transcription 

Before PCR could be performed, the RNA samples required reverse transcription into 

DNA. The work area, pipettes and gloved hands were swabbed with RNAzap to ensure 
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the area was RNA-free. The RNA samples and reagents were then thawed on ice. A 

mastermix comprising 32% first strand buffer, 15.9% DTT (0.1M), 23.8% DMSO, 

7.9% deoxyribonucleotide triphosphates (dNTPs), 3.2% RNAsin (1/4 dilution), 6.6% 

MMLV reverse transcriptase and 10.6% random hexamers was made and 18.85 µl of 

this solution was aliquoted to each of the appropriate number of eppendorfs required.  

Each RNA sample was reconstituted with distilled water (dH2O) so that only 500 ng 

was added to 18.85 µl of mastermix. The eppendorfs were placed in the PTC-100 

thermocycler which was programmed at 42C for 1 hour. The cDNA was then removed 

from the PTC-100 and stored in a -20C freezer.  

 

2.5.3.4 PCR 

Once the cDNA was obtained, PCR could take place. Firstly, PCR reaction mixtures 

were made. PCR reaction mixtures comprise a forward and reverse primer, a probe, a 

Taqman® Universal PCR mastermix, dH2O and cDNA. β-actin and IFN- forward and 

reverse primers and probes were designed by Stordeur et al. (2002) and with permission, 

were made in-house by the Genomic Research Laboratory (IMM). The sequences are 

shown below in Figure 2.6. IL-10 and IL-17 forward and reverse primers and probes 

were purchased from ABI in a pre-customised form.  

The IL-10 and IL-17 cDNA standards were obtained from ABI while the β-actin 

and IFN-  cDNA standards were made in-house by the Genomic Research Laboratory 

(IMM). Serial dilutions of cDNA standards ranging from 10
3
 to 10

8
 were performed to 

create a standard curve for each cytokine and the hosue-keeping gene.  

A volume of 7.5 μl of PCR reaction was added to the assigned wells of a 96-well 

PCR plate for each target cytokine and housekeeping gene, for both standards and 

samples of interest. This was performed in duplicate. The PCR plate was placed into the 

ABI 7000 sequence detection system for 1 hour and 48 minutes and then the results 

were analysed.  
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IFN- 

F464: CTAATTATTCGGTAACTGACTTGA 

R538: ACAGTTCAGCCATCACTTGGA 

P491: 6Fam-TCCSSCGCAAAGCAATACATGAAC-Tamra-p 

 

β-actin 

F976: GGATGCAGAAGGAGATCACTG 

R1065: CGATCCACACGGAGTACTTG 

P997: 6Fam-CCCTGGCACCCAGCACAATG-Tamra-p 

 

Figure 2.6: Primer and probe sequences for IFN- and β-actin. F and R refer to the 

forward and reverse primer sequences with sequence position indicated by the adjoined 

number. P refers to the probe which is dually labelled with a reporter dye (FAM, 6-

carboxyfluorescein) covalently attached at the 5‟ end and a quencher dye (TAMRA, 6-

carboxytetramethylrhodamine) covalently attached at the 3‟ end. The nuclease activity 

of the Taqman DNA polymerase separates the quencher from the reporter and the 

increase in fluorescence emission of the reporter dye is quantitative for the initial 

amount of template. 

 

 

2.5.3.5 Controls used for RT-PCR 

Several experimental controls were used to ensure that the results of qRT-PCR were 

both accurate and true. The first experimental control was the housekeeping gene, β-

actin. It was used as a marker of cDNA quality i.e. if the cDNA was of poor quality then 

the cycle threshold (Ct) values for the housekeeping gene would be out of range i.e. 

significantly less than 15 or greater than 18. The second control was the standard curve 

which, was created for each target cytokine and housekeeping gene by carrying out 

serial dilutions of target cytokine or housekeeping gene standard cDNA ranging from 

10
3
 to 10

8
. The slope of the standard curve must be between -3.2 and -3.6 to facilitate 

successful extrapolation of copy numbers from the Ct values for the samples of interest. 

The standard curve also played a dual role as an indicator of primer and probe function. 

The third control was the non-template control (NTC). It contains the PCR reaction 

mixture for each cytokine, with RNase-free water substituting the cDNA. It is used to 

control for contamination and due to the intentional omission of cDNA, it should yield 

an undetermined Ct value unless, the PCR reaction mixture is contaminated. The final 
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control was the assignment of duplicate wells for all standards and samples of interest. 

This reduces the potential for experimental error and maximises accuracy by ensuring 

that the Ct values for each duplicate are within 1-2 cycles of each other. 

 

2.5.3.6 Analysis of PCR data 

The Ct values are the cycle at which fluorescence from a sample crosses the threshold of 

background. The quantity of DNA doubles every cycle during the exponential phase 

and relative amounts of DNA can be calculated. For example, a sample whose Ct value 

is 3 cycles earlier than that of another sample has 2
3
 times more template.  

After completion of PCR, the standard curve for each target cytokine and house-keeping 

gene was plotted with Ct values on the Y axis and the copy numbers (CN) on the X axis 

to determine if the slope of the line was between -3.2 and -3.6 (Figure 2.7a). The Ct 

values were then plotted on the X axis and the CN values on the y axis and, the CN of 

all samples could be extrapolated from the standard curve by using the equation of the 

line; y = mx + C where m and C were given, x is the Ct value of each sample and y is 

the CN (Figure 2.7b).  

The target cytokine CN of each sample was then corrected by normalisation 

against the transcripts of the housekeeping gene. Normalisation permits accurate 

comparison of expression of the gene of interest between different samples, provided 

that the expression of the housekeeping gene is very similar against all samples. Since 

β-actin is a protein constitute of the microfilaments of the cytoskeleton, it definitely 

fulfils this criterion. The corrected copy number (CCN) of the cytokine mRNA was 

calculated by dividing the cytokine mRNA CN of the sample by the β-actin mRNA CN 

of the sample; 

 

CCN =  (cytokine mRNA CN /  β-actin mRNA CN)* (β-actin mRNA CN at time zero) 
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Figure 2.7a Typical -actin standard curve: The scatter plot shows typical Ct values 

for the -actin standards on the Y axis and -actin mRNA copy numbers on the X-axis. 

A trendline was drawn through the points and the equation of this line is shown in the 

bottom right corner. The slope m of this line is between -3.2 and -3.6 thus, showing that 

this is an accurate standard curve. 
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Figure 2.7b Typical -actin standard curve with axes adjusted for extrapolating 

data: The scatter plot shows the -actin mRNA copy numbers on the Y axis and the Ct 

values for the -actin standards on the X axis. A trendline was drawn through the points 

and the equation of this line (shown in the bottom right corner) was used to extrapolate 

the sample data. The -actin mRNA copy number y was evaluated by substituting the Ct 

value of -actin standard for x. 
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2.5.4 Cytokine analysis using the BD
TM

 Cytometric Bead Array 

The BD
TM

 Cytometric Bead Array (CBA) is a flow cytometry application which 

involves the use of antibody-coated beads to capture and quantify analytes in solution. 

In the present study, this kit was adapted for measurement of the cytokines and growth 

factors; IL-4, IL-6, IL-10, IL-12, IL-13, IFN- and TGF-1. The kit consisted of the 

Cytometric Bead Array Human Soluble Protein Master Buffer Kit which comprised 

instrument set up reagents, wash buffer, assay diluent, detection reagent diluent, capture 

bead diluent and sets of single plex flex kits containing human cytokine capture beads 

(e.g. Human TGF-1 Capture bead), human cytokine PE detection reagent (e.g. Human 

TGF-1 PE detection reagent) and human cytokine standards (e.g. Human TGF-1 

Standard). The capture beads for each cytokine or growth factor have unique 

fluorescence intensities and this facilitates the use of several beads in a single tube. 

Using this application, 6 cytokines were analysed simultaneously in a sample of 50 μl of 

supernatant. 

 

2.5.4.1 Preparation of samples and standards for CBA 

The protocol was carried out as per the BD Cytometric Bead Array Human Soluble 

Protein Master Buffer Kit Instruction Manual. The BD CBA Human Soluble Protein 

Flex Set Standards were first prepared by pooling all lyophilized standards into one 

flow cytometry tube and then reconstituting them with 4 ml of Assay Diluent. This is 

known as the „Top Standard‟ tube and contains 2500 pg/ml of protein. Serial dilutions 

of 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128 and 1:256 were then performed using Assay 

Diluent and, the approximate corresponding protein concentrations in these tubes are 

shown in Table 2.14.  
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Table 2.14: 

Preparation for Standard Curve in CBA: The serial dilutions required to construct 

standard curve for calculation of cytokine levels. 

 

Serial 

Dilution 

Tube 

Top  1:2 1:4  1:8  1:16  1:32  1:64  1:128  1:256  Bottom 

Protein 

(pg/ml) 

2500 1250 625 312.5 156 80 40 20 10 0 

 

* Bottom refers to the tube containing only Assay Diluent. This contains the 0 

pg/ml of protein and is regarded as the negative control.  

 

Multiplex assays were carried out for IL-4, IL-6, IL-10, IL-12, IL-13 and IFN-, 

while a single bead assay was performed for TGF-1 because it required different 

sample preparation. 

The Capture Beads for each cytokine were diluted 1/50 with Capture Bead 

Diluent and pooled in a tube labelled „Mixed Capture Beads‟. Similarly, the total 

amount of PE Detection Reagent for each cytokine was diluted 1/50 with Detection 

Reagent Diluent and pooled in a tube labelled „Mixed PE Detection Reagents‟. Fifty 

micro litres of the „Mixed Capture Beads‟ were added to each of the sample and 

standard tubes, followed by 50 µl of sample or standard, respectively. Each tube was 

mixed gently and incubated for 1 hour at room temperature. Fifty micro litres of the 

„Mixed PE Detection Reagents‟ were then added to each tube. Each tube was mixed 

gently and incubated for 2 hours at room temperature. One millilitre of Wash Buffer 

was added to each assay tube and all tubes were centrifuged at 200 x g for 5 min. The 

supernatant was carefully aspirated and discarded and 300 µl of Wash Buffer was added 

to each tube. The tubes were vortexed to re-suspend the beads for subsequent 

acquisition on the FACS Calibur.  

The instrument set up was carried out as per the BD FACS Calibur Flow 

Cytometer BD CBA Flex Sets: Instrument Setup, Data Acquisition, and Analysis 

Instruction Manual. 
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2.5.4.2 Analysis of samples for CBA 

The FSC -v- SSC dot plot of each sample tube had a characteristic profile (Figure 2.8A). 

All debris and unbound proteins were excluded by drawing an electronic gate R1 

around the antibody-coated beads. A second dot plot with FL4 -v- FL3 was created and 

by gating appropriately, only the antibody coated beads in R1 were shown on this plot 

(Figure 2.8B). The characteristic profile of the second dot plot allowed the 

discrimination between different antibody-coated beads based on their fluorescence 

intensity in the FL3 and FL4 channels (Figure 2.8B). For example, the gate R6 was 

drawn around the IL-12-coated beads (Figure 2.8B). The region where each cluster of 

anti-cytokine-coated beads was positioned could be determined by using a control tube 

containing only those anti-cytokine-coated beads. Once, each population of anti-

cytokine-coated beads had been identified and gated in the second dot plot, a third dot 

plot with FL2 -v- FL3 was then created. By gating appropriately, only a single 

population of antibody-coated beads were shown at a time. For example, only IL-12-

coated beads are shown in Figures 2.8D-M because the plots are gated in R6. The mean 

fluorescence intensity (MFI) in the FL2 channel was used to measure the concentration 

of protein in the sample and therefore, the higher the MFI, the higher the protein 

concentration. Exact concentrations were calculated by mapping the MFIs from each 

standard tube to the known concentrations in each tube. For example, if the MFI of IL-

12 was 250 in the top standard tube, then an MFI of 125 would equate to an IL-12 

concentration of 1250 pg/ml in a sample tube. The dot plots representing the standards 

gated in R6 are shown in Figures 2.8D-M. They show the increase in IL-12 

concentration (represented by the MFI in FL2) increases from the bottom (Figure 2.8D) 

through to the top standard (Figure 2.8M). Once the standard curve for each cytokine 

had been constructed, the protein concentration in each tube could be calculated (Figure 

2.8C). Figures 2.9A-H show the gating method for each cytokine in a number of sample 

tubes. 
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Figure 2.8 
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Figure 2.9 
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2.6 Measurement of cell cytotoxicity  

2.6.1 Chromium release assay 

Assessment of the cytotoxic capabilities of PBMC was carried out by analysis of 

chromium (
51

Cr) release by labelled target cells. 
51

Cr is a radioactive label that emits β-

rays and is given to target cells in the form of non-toxic sodium chromate (Na2
51

CrO4). 

Chromium is readily taken up by cells and is only released in significant quantities upon 

cell lysis or disruption. Labelled target cells were co-incubated with effectors, at a range 

of effector / target (E/T) ratios, for 4 hours. Some target cells were treated with medium 

only or with a detergent (Triton X-100) which disrupts all cells, thus providing negative 

and positive controls, respectively. The cell supernatant was then harvested and the 

amount of 
51

Cr released was determined by scintillation counting. This involved the use 

of a scintillant, which emits light when exposed to ionising radiation. A scintillation 

counter was used to measure the level of radioactivity present in samples. The amount 

of 
51

Cr detected in the supernatant reflects the killing capacity of the effector cells.  

Target cells used in this assay were derived from the human cancer cell line 

K562, which is derived from a chronic myeloid erythroleukaemia. These cells are 

deficient in MHC molecule expression and are commonly used as target cells in NK cell 

cytotoxicity assays 

 

2.6.2 General procedures for use of radioisotopes 

All work involving radioactive material was carried out in a designated area of the 

radiation suite at the National University of Ireland, Maynooth. All users were fully 

trained and approved prior to commencing work in the radiation area. User attendance, 

background radiation levels and amount of isotope used were recorded in logbooks for 

each work session. All work involving 
51

Cr isotopes was performed behind a lead-

impregnated perspex screen, and lead coats were worn over lab coats throughout. Two 

pairs of disposable nitrile gloves were also worn. Cotton buds soaked in detergent (2% 

Decon 90) were used to swab various surfaces in the work area before and after 

radioisotope work. Swabs were then placed in scintillation fluid and background 

radiation levels were evaluated by β-counting. Swab counts were then signed by user, 

dated and added to a logbook. In the event of radiation counts that exceed background 

levels (50 counts per minute (CPM)), the entire workspace was thoroughly cleaned 
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using 2% Decon detergent and water and swabs were re-taken. A Geiger counter was 

used to monitor radiation levels throughout procedure. The chromium isotope has a 

half-life of 27.7 days. Liquid waste was stored in designated Winchester bottles, 

labelled with the date of last addition and stored until radiation levels were undetectable. 

Solid waste was sealed in bags, labelled with date and stored in lead containers until 

radiation was no longer detectable, as per Radiation Protection Institute of Ireland (RPII) 

guidelines. 

 

2.6.3 Cytotoxicity assay using PBMC from chronic HBV patients and healthy 

controls 

K562 cells were re-suspended at 2x10
6
 cells/ml in RPMI containing 10% human serum. 

The cells were then treated with 150 μCi 
51

Cr/0.5ml and were incubated at 37
o
C for 4 

hours in a lead box. Cells were then washed three times in 10ml warm cRPMI to 

remove excess 
51

Cr, centrifuging gently at 45 x g for 5 min each time with the brake off. 

Supernatants were carefully removed each time using a Pasteur pipette and cells were 

not re-suspended until after the last wash. Cells were handled gently in order to 

minimise damage, which would increase background 
51

Cr release. Labelled target cells 

were then counted and re-suspended at 4x10
4
 cells/ml. Cells were then added to wells of 

a 96-well round-bottomed microtitre plate at 50 μl (i.e. 2x10
3
 cells) per well.  

PBMC which had been previously incubated in medium alone or medium 

containing 100 U/ml of IL-2 or IFN-α, were re-suspended at 4x10
6
 cells/ml, but were 

plated in varying amounts, according to the desired E/T ratios. E/T ratios tested in this 

experiment were 50, 25, 5 and 1. Each well was then topped up to 100 μl with cRPMI 

where necessary. Medium only or Triton X-100 (0.1%) was added to reserved triplicates 

of labelled target cells for negative and positive controls, respectively. Plates were 

centrifuged at 150 x g for 1 min (brake off) to ensure interaction of effector and target 

cells. Plates were then incubated for 4 hrs at 37
o
C in a lead box. Plates were centrifuged 

again as before and 25 μl supernatant was taken from each well into a 96 well 

polyethylene sample plate containing 150 μl Optiphase® scintillation cocktail. The 

plates were gently shaken on a vortex for 5 min to ensure thorough mixing of 

supernatant with scintillant (turned cloudy). Scintillation counting was then performed 

on a Trilux 1450 Microbeta Liquid Scintillation Counter. Cytotoxic capability of 
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effector cells was then calculated and expressed as a percentage of maximum and 

background counts per minute (cpm) using the following formula: 

% specific lysis =  cpm of sample – cpm of spontaneous release  X 100 

                      cpm of maximum – cpm of spontaneous release 

 

2.7 Functional studies on  T cells 

2.7.1 Analysis of  T cell subsets 

The frequencies of circulating V2 and V1
 
T cells, and the memory phenotypes of 

these cells was investigated using flow cytometry, as described in section 2.4. 

 

2.7.2 Expansion of V9V2 T cells in response to the pyrophosphate antigen 

HMBPP  

Following PBMC preparation and cell counts, 0.6x10
6
 PBMC were removed for flow 

cytometric analysis as detailed below. The rest of the PBMC were placed in cRPMI at a 

density of 1x10
6
 cells/ml and 1 ml was transferred to separate wells of a 24-well tissue 

culture plate. Stimulation of the cells in each well was performed as listed in Table 2.17. 

Table 2.17 

Expansion of  T cells in vitro: An outline of the well numbers of the 24-well tissue 

culture plate and the stimulations designated to each well. 

 

No. Stimulation 

1 Medium alone 

2 100 nM HMBPP and 50 U/ml IL-2 

3 5 µg/ml PHA and 50 U/ml IL-2 

 

Row No. 1 represents the negative control which would induce no cell expansion and it 

was expected that the majority of PBMC would be dead after 14 days.  Row No. 2 

represents the stimulation which would facilitate the enrichment of V2 T cells and 

these cells were expected to be the predominant cell population on day 14. Row No. 3 

represents the stimulation which would induce all T cells to proliferate and αβ T cells 

were expected to be the predominant T cell population after 14 days. 
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Cells were incubated in a CO2 Incubator at 37ºC for 5 days. Following 5 days of 

incubation, the medium was replenished by removing 800 µl of medium from each well 

and replacing it with 1 ml cRPMI. The 1 ml cRPMI added to wells 2 and 3 contained 50 

U IL-2. The medium was replenished in this manner every 5 days.  

On days 1, 7 and 14, the number of cells in each well was counted as described 

in section 2.3.2. Then, 0.6x10
6
 PBMC from each well were surface stained with FITC-

labelled anti-V9, PE-labelled anti-V2 and PerCP- or PE-Cy5-labelled anti-CD3, as 

detailed in section 2.4. The percentages of lymphocytes that expressed  TCRs were 

quantified and the absolute numbers of  T cells per well could be calculated. 

The use of cell counting and flow cytometry ensured that any higher frequencies 

of  T cells among total PBMC in response to HMBPP and IL-2 was not only due to 

the death of other PBMC but, was also due to the selective expansion of 
 
T cells  

On day 1, the frequencies of V9V2 T cells among the PBMC used in these 

experiments, ranged from to 0.3% to 7.5%, as a percentage of T cells. 

On day 7, the purity of HMBPP and IL-2-expanded V9V2 T cells ranged from 

less than 1% to 29% of viable PBMC and, V9V2 T cell numbers per well ranged from 

3,000 to 800,000 cells.  

On day 14, percentages of HMBPP and IL-2-expanded V9V2 T cells ranged 

from less than 1% to 91.9% and cell numbers ranged from 7,000 to 1.9x10
6
 cells. On 

day 14, only V9V2 T cell populations with purities greater than 80% were used for 

subsequent experiments. The mean percentage of PHA and IL-2-expanded total CD3
+
 T 

cells was 91.9+/-9.2%. While the majority of PHA and IL-2-expanded cells were αβ T 

cells, a significant expansion of V9V2 T cells was observed also with an average of 

20.7+/-7.6% of total CD3
+
 T cells on day 14. PHA and IL-2-expanded αβ T cells were 

used to control for HMBPP and IL-2-expanded V9V2 T in the subsequent co-culture 

experiments with epithelial cells. 

 

2.7.3 Interactions between V9V2 T cells and epithelial cells 

All epithelial cells were suspended at a cell density of 1x10
6
 cells per ml of 

medium and 500 µL of this was added to the wells of a 24-well tissue culture plate and 

allowed to adhere for 24 hours. Following this 24 hour incubation, each well was 

supplemented with the appropriate medium and cells, as listed in Table 2.18. The co-

culture was then incubated for a further 24 hours. 
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Following 24 hours of co-culture, the plates were centrifuged at 45 x g for 3 

minutes. The supernatants were removed and stored at -20
o
C for subsequent analysis of 

cytokine release by ELISA. Two hundred micro litres of cell dissociation solution was 

added to all wells for 1 min and all cells were removed, centrifuged at 400 x g for 8 

minutes and, pellets were re-suspended in PBA. Surface staining for subsequent 

phenotypic flow cytometric analysis was then carried out as in section 2.4, using the 

fluorochrome-conjugated mAbs listed in Table 2.19.  

Table 2.19 

Analysis of interactions between epithelial cells and  T cells: The fluorescence-

labelled mAbs used for cell surface staining of  T cells and epithelial cell lines, for 

analysis of their reciprocal effects on each other. 

 

 

 

 

 

 

 

 

*CD3 and BerEP4 were the key surface markers used to distinguish between epithelial 

and T cell populations after co-culture. 

 

 

 

 

 

 

Tube FITC PE PerCP APC 

1 IgG1 IgG1 IgG1 IgG1 

2 BerEP4* HLA-E CD3* CD54 

3 BerEP4  CD3 MICA/B 

2 V9 CD69  NKG2D 

4 HLA-DR V2  NKG2A 
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2.8 Statistical calculations: 

2.8.1 The Mann-Whitney U test 

The Mann-Whitney U test was used to ascertain whether there were significant 

differences between the frequencies of cells in patients and control subjects. P-values 

lower than 0.05 were considered as significant, while those less than 0.005 and 0.0005 

were considered to be highly significant. While many studies would prefer the use of 

medians and inter-quartile ranges for non-parametric data, means and standard errors 

were calculated in the present study. 

  

2.8.2 The correlation function 

The correlation function was used to determine whether the frequencies of cells changed 

with clinical parameters such as ALT level, viral load, age or gender. The correlation 

coefficient ranges from +1, indicating a perfect positive linear relationship, to -1, 

indicating a perfectly negative linear relationship. However, this test does not reveal if 

there is a slight causation. In order to determine this, further statistical analysis would 

be required using regression. However, regression is only recommended when a strong 

correlation exists and such a relationship was not found between any of the cell 

frequencies and clinical parameters. 

 

2.8.3 Bonferroni correction method 

Many comparisons were made in the study and many observations were deemed 

statistically significant by the Mann-Whitney U test. However, the number of variables 

tested increases the likelihood of a false positive statistic and such statistics can be 

corrected using the Bonferroni correction method – a correction method derived from 

Boole‟s inequality by Carlo Emilio Bonferroni.  

 

p-value = α/n, pc-value = α 

 

It assumes that the occurrence of such false positive significant results increase with the 

number of tests. Therefore, the p-value (α/n) is multiplied by the number of tests (n) to 

give the corrected p-value or pc-value (α). If the pc-value is still within our chosen 

confidence interval i.e. below 0.05, then the finding is considered to be really 

statistically significant (Shaffer 1995). This method was used to distinguish between 

real significant statistics and to exclude the more spurious positives. 



 101 

 

 

 

 

Chapter 3 

 

Phenotypic analysis 

of innate 

lymphocytes in HBV 

infection 

 
 

 

 

 



 102 

3.1     Introduction 88 

3.2     Innate lymphocytes in HBV infection 93 

3.2.1  The frequencies of circulating NK cells and NT cells are higher in HBV- 

          infected subjects than in control subjects 

 

93 

3.2.2  The CD56
DIM

, but not the CD56
BRIGHT

, subset
 
of NK, NT and total  

          CD56
+ 

cells are found at higher frequencies in HBV infection 

 

95 

3.2.3  The frequencies of circulating  T cells are significantly higher in  

          subjects with HBV infection 

 

98 

3.2.4  There are no significant differences in the numbers of circulating  

           invariant NKT cells in HBV infection 

 

98 

3.2.5  The frequencies of B cells and monocytes expressing CD1a,
 
b, c and d  

          cells are similar in the peripheral blood of healthy control subjects and   

          HBV patients 

 

 

101 

  

3.3     NK, NT,  T, iNKT and CD1
+
 cells in HBV patient groups 103 

3.3.1  The frequencies of circulating NK cells are not significantly different  

          between HBV patient groups 

 

103 

3.3.2  The frequencies of circulating NT cells are not significantly different  

          between HBV patient groups 

 

104 

3.3.3  The frequencies of circulating  T cells are not significantly different  

          between HBV patient groups 

 

108 

3.3.4  The frequencies of circulating iNKT cells are not significantly different  

          between HBV patient groups 

 

110 

3.3.5  The frequencies of circulating CD1
+
 B cells or monocytes are not  

          significantly different between HBV patient groups 

 

110 

  

3.4  NK, NT and iNKT cell frequencies in demographically-matched  

          healthy controls 

 

118 

3.4.1  NK cell frequencies in demographically-matched healthy controls 118 

3.4.2  NT cell frequencies in demographically-matched healthy controls 119 

3.4.3  Total CD56
+
 cell frequencies in demographically-matched healthy     

          controls 

 

120 

3.4.4  Invariant NKT cells frequencies in demographically-matched healthy    



 103 

          controls 120 

  

3.5     Cytotoxicity of PBMC in HBV infection 126 

3.5.1  There are no significant changes in the natural cytotoxicity of PBMC in  

          HBV infection 

 

126 

3.5.2  Higherd IL-2-induced cytotoxicity of PBMC in HBV infection 127 

3.5.3  There are no significant differences in the IFN-α-induced cytotoxicity of  

          PBMC in HBV infection 

 

127 

  

3.6     Bonferroni correction method 131 

  

3.7     Discussion 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 104 

3.1 Introduction 

Innate lymphocytes comprise a group of MHC-unrestricted, early responding 

lymphocytes that are characterized by potent cytokine production and cytotoxic activity. 

They include NK, NT, iNKT and  T cells and are believed to be crucial in the early 

immune responses to viral infection (Biron et al. 1999; Fisicara et al. 2009; Ismaili et al. 

2002; Dieli et al. 2004; Devilder et al. 2006; Orange et al. 1996). Through cytokine 

production and direct contact with other cells, innate lymphocytes can also stimulate 

and modulate adaptive immune responses and are therefore, major players in 

determining the overall outcome of infection (Kakimi et al. 2000; Liu et al. 2000; 

Guidotti & Chisari 2001; Nishimura et al. 2000). In particular, innate lymphocytes can 

induce maturation of dendritic cells and B cells into antigen-presenting cells and 

therefore, deficiencies of such cells could lead to an impaired adaptive response which 

could result in an unfavorable outcome for the host (Vincent et al. 2002; Ismaili et al. 

2002; Dieli et al. 2004; Devilder et al. 2006; Ing & Stevenson 2009; Martino et al. 2002; 

Cooper et al. 2001; Dunne, unpublished data).  

It is believed that NK and NT cells play a crucial role in the early defence 

against HBV infection and these potent cytotoxic cells have also been implicated in the 

pathogenesis of disease (Kimura et al. 2002; Pasquetto et al. 2000; Kakimi et al. 2000; 

Echevarria et al. 1991.; Guidotti & Chisari 2001; Zou et al. 2010; Sitia et al. 2002; 

Albarran et al. 2005; Fisicaro et al. 2009).  Kimura et al. (2002) found that IL-12 

induced IFN- production by NK cells was important in the inhibition of HBV 

replication in transgenic mice while Kakimi et al. (2000) have shown that the NKT-

mediated recruitment of NK cells into the liver facilitates inhibition of HBV replication 

via the production of antiviral cytokines. Pasquetto et al. (2000) found that liver 

inflammation corresponded to the intrahepatic infiltration of NK cells among other cells 

in HBV transgenic mice while Zou et al. (2010) found that NK cells were involved in 

the development of hepatocyte necrosis in a mouse model of virus induced hepatitis and 

significantly contributed to fulminant hepatic failure and HBV-associated acute-on-

chronic liver failure in such mice via cytotoxicity and IFN- and TNF-α production. 

Enhanced NK cell cytotoxicity has also been observed in the early phase of acute HBV 

infection (Echevarria et al. 1991). Involvement of NK and NT cells in the immune 

responses against HBV is further evident in the findings of Albarran et al. (2005) who 

have found that the frequencies of NK and NT cells are Higher in responders to 
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vaccination with HBsAg, along with their IFN- expression. Furthermore, deficiencies 

of such cells could be important in HBV infection where persistence is associated with 

weakened adaptive immune responses whereas strong and multi-specific CTL responses 

are associated with resolution of infection (Penna et al. 1991; Missale et al; 1992; 

Bertoletti et al. 1991; Nayersina et al. 1993; Rehermann et al. 1995; Thimme et al. 2003; 

Maini et al. 1999). Deficiencies of circulating NK cells have previously been identified 

in subjects persistently infected with HCV while others have found depleted numbers of 

hepatic iNKT cells and NT cells in the livers of HCV-infected subjects (Golden-Mason 

et al. 2008; Deignan et al. 2002).  

The two main subsets of NK cells are distinguished based on the density of their 

CD56 expression. CD56
BRIGHT

 NK cells make up ~10% of the NK cell population. They 

express high levels of CD56 and are the main producers of IFN- while, the majority of 

NK cells are CD56
DIM

 and they are primarily responsible for natural cytotoxicity 

(Robertson & Ritz 1990; Cooper et al.2001). In our recent work, it was also found that 

the frequencies of circulating CD56
DIM

 NK cells were depleted in chronic HCV 

infection, while the frequencies of CD56
BRIGHT

 NK cells were expanded (Golden-

Mason et al. 2008). Such differences resulted in the overall lower numbers of NK cells 

and it was aimed to determine if such differences in NK subsets existed in HBV 

infection. The majority of NT cells express low levels of CD56 and so, they are 

classified as CD56
DIM

 but it was also found some NT cells expressing higher levels of 

CD56 and categorized these as CD56
BRIGHT

. Therefore, these divisions were included in 

our analysis of NT cells, also. 

Another interesting group of innate lymphocytes are the  T cells. They express 

a -TCR and unlike their αβ
+
 counterparts, they are not MHC-restricted and can 

respond to infection in under an hour (compared to 4 – 96 hours in αβ T cells) (Groh et 

al. 1998; Hayday 2000). They are therefore, crucial in the early responses to infection 

and their expansion has been observed in several viral infections (De Paolo et al.1990; 

Poccia et al.1999; Maccario et al.1995; Agrati et al. 2001). However, their role in HBV 

infection is not fully understood. Sing et al. (1998) have identified a putative role for δ 

T cells in the clearance of HBV infection since the frequencies of CD4
+
CD8

+
 T cells 

bearing the δ TCR are significantly Higher in patients who have seroconverted. Also, 

recent work by Chen et al. (2008) indicates an association between impaired 

frequencies and functions of circulating Vδ2 T cells and persistent HBV infection with 



 106 

the most significant depletions of such cells observed in the patients with the most 

severe liver disease. Another group who were predominantly interested in HIV found no 

differences between controls and HBV patients when frequencies of V1
+
 T cells were 

investigated (Rossol et al. 1998). Since the body of work on the role of  T cells in 

HBV is not definitive, it was decided to carry out a preliminary investigation of 
 
T 

cell frequencies in the peripheral blood of HBV patients and controls. The identification 

of a role for 
 
T cells in immune responses against HBV infection could contribute to 

the development of improved immunotherapy for HBV-infected patients. These innate 

T cells are already the centre of several immunotherapeutic studies for a variety of 

malignancies and could therefore, have great potential in the treatment of HBV (Dieli et 

al. 2007; Bennouna et al. 2008). 

The invariant NKT (iNKT) cells are a group of innate lymphocytes that elicit 

potent IFN- production and cytotoxic activity. They are not MHC-restricted but rather 

CD1d-restricted because of their recognition of lipid antigens presented by the CD1d 

glycoprotein. As their name suggests, iNKT cells express both NK and T cell receptors. 

In humans, they are characterized by the expression of a TCR consisting of a Vα24Jα18 

α-chain, paired with a limited number of β-chains (Bendelac et al. 1997). In this study, a 

fluorochrome-conjugated antibody specific for both the Vα24 chain and the Vβ11 chain 

was chosen to identify cells co-expressing both chains. It was also used an antibody 

called 6B11 to identify the Vα24Jα18-TCR. Much of the work on iNKT cells has been 

performed in murine models and has revealed the massive potential of these cells in 

anti-tumor, anti-microbial and antiviral immune responses (Kakimi et al. 2000). 

However, while they account for 5% of circulating and 30% of hepatic T cells in mice, 

they only constitute 0.02-0.8% of circulating T lymphocytes and less than 1% of liver T 

lymphocytes in humans, therefore, making them a less powerful force in human disease 

(Kenna et al. 2004). So while, iNKT cells can inhibit HBV replication in a mouse 

model, their involvement in natural HBV infection has not yet been elucidated. Human 

studies in HCV and HIV-1 have associated deficiencies of iNKT cells with the failure to 

clear such viruses (Deignan et al.2002; van der Vliet 2002). It was hypothesised that 

such deficiencies in HBV infection could pre-dispose individuals to development of 

chronic liver disease and therefore, studied the frequencies of circulating iNKT cells in 

a cohort of HBV patients and a group of healthy control subjects. CD1 expression was 

also studied so that any observed differences might be associated with differences in 
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CD1 expression. The immunotherapeutic potential of iNKT cells is already under 

investigation in cancer and the elucidation of their role in natural HBV infection could 

lead to the development of improved therapeutics for this disease (Chang et al. 2005; 

Motohashi et al. 2009). 

CD1 is a MHC-like glycoprotein which is expressed on the surface of antigen 

presentation cells such as B cells and monocytes and facilitates the presentation of lipid 

antigens to NKT cells (Porcelli et al. 1998). It is believed to play an important antigen 

presentation role in several bacterial infections, most notably Mycobacterium 

tuberculosis infection (Park & Bendelac 2000; Skold & Behar 2005). However, the role 

of CD1 lipid antigen presentation in viral infection is less understood but its role in the 

inhibition of HBV replication in transgenic mice and its downregulation in HSV and 

HIV infection indicates that it is important in immune responses against viruses 

(Kakimi et al. 2000; Yuan et al. 2006; Chen et al. 2006). To our knowledge no studies 

have phenotyped CD1-expressing cells in HBV patients and so, the frequencies of CD1
+ 

monocytes and B cells was investigated in the peripheral blood of HBV patients and 

healthy controls. Any differences observed may indicate a role of CD1-mediated 

antigen presentation in HBV and could aid the development of a novel immunotherapy 

against the virus. The therapeutic potential of CD1-presented lipid antigens is being 

investigated along with that of iNKT cells and certain studies have involved 

administration of α-galactosylceramide-loaded CD1d-expressing DCs in an effort to 

activate iNKT cells in vivo in cancer patients (Chang et al. 2005). Therefore, the 

development of therapeutics involving the CD1-restricted iNKT cells may be more 

focused on manipulating CD1 antigen presentation in vitro to facilitate a boosted iNKT 

cell response in vivo. 

The identification of deficient numbers or impaired functions of innate 

lymphocytes in HBV could have potential in the development of therapies that could be 

used to strengthen immune responses in patients. Innate lymphocytes are ideal targets 

for immunotherapy as they are easily cultured, do not require specific antigen 

stimulation in order to carry out effector functions and are already the centre of several 

immunotherapeutic clinical trials (Chang et al. 2005; Motohashi et al. 2009; Dieli et al. 

2009; Bennouna et al. 2008; Shi et al. 2004).  These trials have shown that intravenous 

administration of various innate lymphocyte stimulatory ligands and adoptive transfer 

of ex vivo stimulated innate lymphocytes are well-tolerated and can stimulate adaptive 

immune responses in vivo. 
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 To test our hypothesis that innate lymphocytes are required for immune control 

of HBV, the frequencies of circulating NK, NT, iNKT and  T cells were examined in 

a group of HBV patients and compared them to those in a group of uninfected control 

subjects. Since these HBV patients have relatively low viral load and mild liver disease, 

they were considered as a model of immune control rather than a model of 

uncontrollable HBV replication and severe liver disease. Because of this, it was 

expected the frequencies of innate lymphocytes to inform us of the role of these cells in 

an immune response that controls HBV infection without causing liver damage. 

 Since it is likely that the frequencies and functions of iNKT cells are governed 

by the expression of CD1d (Lynch et al. 2009), CD1d expression on B cells and 

monocytes from patients and controls was also investigated. Therefore, any alterations 

observed in the frequencies of iNKT cells might correlate with alterations in CD1d 

expression. CD1d expression is downregulated by HIV and HSV and since iNKT cells 

were being examined in this study, its inclusion was an obvious choice (Yuan et al. 

2006; Chen et al. 2006). 

 This study, therefore, aims to examine the frequencies of all innate lymphocytes 

listed above and to evaluate their role in the control of HBV infection in the absence of 

associated liver injury. 
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3.2 Innate lymphocytes in HBV infection 

3.2.1 The frequencies of circulating NK cells and NT cells are higher in HBV-

infected subjects than in control subjects 

PBMC were prepared from 62 HBV-infected individuals and from 66 control subjects. 

Surface staining with PE-labelled anti-CD56 mAb and PE-Cy5-labelled anti-CD3 mAb 

was performed to identify NK cells and NT cells in the peripheral blood. Lymphocytes 

were identified based on size and granularity using forward and side scatter parameters 

and then NK cells were classified as those cells that stained positive for CD56 and 

negative for CD3 (Figure 3.1A,B), while NT cells were identified as those lymphocytes 

which stained positive for both CD56 and CD3. The frequencies of circulating 

CD56
+
CD3

-
 and CD56

+
CD3

+
 cells as a percentage of total lymphocytes were then 

quantified. Frequencies of NK cells ranged from a minimum of 2.1% to a maximum of 

24.3% in controls, and from 0.8% to 28.5% in HBV-infected individuals (HBV). The 

mean frequencies of circulating NK cells were 8.1% of lymphocytes with a standard 

error of 0.6% in controls and 10.6% +/- 0.83% in HBV. This higher frequency of 

circulating NK frequencies in HBV infection was significant (p=0.035, Figure 3.1C). 

Frequencies of circulating NT cells ranged from 0.5% to 19.1% in controls, and from 

0.3% to 38.6% in HBV. The mean frequencies were 3.3% of lymphocytes +/- 0.4% in 

controls and 5.6+/-0.78% in HBV patients. This higher frequency was also significant 

(p=0.0002, Figure 3.1D). Frequencies of circulating total CD56
+
 lymphocytes ranged 

from 3.9% to 27.7% in controls, and from 1.2% to 42.3% in HBV, with mean 

frequencies of 11.2+/-0.71% in controls and 16+/-1.1% in HBV. This higher frequency 

was significant (p=0.0005, Figure 3.1E).  

These data show that there are elevated numbers of circulating NK and NT cells, 

and indeed total CD56
+
 lymphocytes, in chronic HBV infection. 
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FIGURE 3.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 111 

3.2.2 The CD56
DIM

, but not the CD56
BRIGHT

, subset
 
of NK, NT and total CD56

+ 

cells are found at higher frequencies in HBV infection 

The frequencies of circulating CD56
DIM

 and CD56
BRIGHT

 NK cells, NT cells and total 

CD56
+
 cells were quantified as a percentage of lymphocytes and as a percentage of each 

CD56
+
 cell population. CD56

DIM
 and CD56

BRIGHT
 cells were identified as those 

lymphocytes which expressed low and high fluorescence levels of CD56 staining, 

respectively (Figure 3.2A).  

The mean frequencies of CD56
DIM 

NK cells as a percentage of total NK cells 

were 91.1+/-1.2% in controls and 92.6+/-1.6% in HBV patients. This higher frequency 

was significant (p=0.006, Figure 3.2B). As a percentage of total lymphocytes, the 

frequencies of CD56
DIM 

NK cells ranged from 1.9% to 24.2% in controls, and from 

0.24% to 28% in HBV, with mean frequencies of 7.3+/-0.54% and 9.9+/-0.8%, 

respectively. This higher frequency was also significant (p=0.035, Figure 3.2C). The 

mean frequencies of CD56
DIM 

NT cells as a percentage of total NT cells were 97.3+/-

0.5% in controls and 97.9+/-0.5% in HBV patients. This higher frequency was 

significant (p=0.009, Figure 3.2B). As a percentage of total lymphocytes, the 

frequencies of CD56
DIM 

NT cells ranged from 0.49% to 19.1% in controls, and from 

0.3% to 38.4% in HBV, with mean frequencies of 3.2+/-0.43% and 5.5+/-0.83%, 

respectively (p=0.003, Figure 3.2C). The mean frequencies of CD56
DIM 

cells as a 

percentage of total CD56
+
 cells were 89.9+/-1.9% in controls and 93.3+/-1.9% in HBV 

patients. This higher frequency was significant (p=0.0007, Figure 3.2B). As a 

percentage of lymphocytes, the frequencies of total CD56
DIM 

cells ranged from 2% to 

26.6% in controls, and from 0.56% to 40.4% in HBV, with mean frequencies of 9.6+/-

0.76% and 13.4+/-1.2%, respectively. This higher frequency in total CD56
DIM 

cells, as a 

percentage of lymphocytes, in HBV patients was also significant (p=0.02, Figure 3.2C).  

The mean frequencies of CD56
BRIGHT 

NK cells as a percentage of total NK cells 

were 8.9+/-1.2% in controls and 7.4+/-1.6% in HBV patients. These lower frequencies 

were found to be significant (p=0.006, Figure 3.2D). As a percentage of total 

lymphocytes, the frequencies of CD56
BRIGHT 

NK cells ranged from 0.1% to 3.1% in 

controls, and from 0.01% to 1.7% in HBV, with mean frequencies of 0.61+/-0.06% and 

0.49+/-0.05%, respectively. These numbers were not significantly different (p=0.3, 

Figure 3.2E). The mean frequencies of CD56
BRIGHT 

NT cells as a percentage of total NT 

cells were 2.7+/-0.5% in controls and 2.2+/-0.5% in HBV patients. These lower 

frequencies were found to be significant (p=0.009, Figure 3.2D). As a percentage of 



 112 

total lymphocytes, the frequencies of CD56
BRIGHT 

NT cells ranged from 0% to 0.8% in 

controls, and from 0% to 0.79% in HBV, with mean frequencies of 0.07+/-0.02% and 

0.07+/-0.02%, respectively (p=0.8, Figure 3.2E). The mean frequencies of CD56
BRIGHT

 

cells as a percentage of total CD56
+
 cells were 8.5+/-1.2% in controls and 5+/-1% in 

HBV patients. These lower frequencies were found to be significant (p=0.0007, Figure 

3.2D). As a percentage of lymphocytes, the total frequencies of CD56
BRIGHT 

cells ranged 

from 0.11% to 3.3% in controls, and from 0.03% to 1.9% in HBV, with means of 

0.57+/-0.07% and 0.48+/-0.06%, respectively (p=0.55, Figure 3.2E).  

These data show that the numbers of circulating CD56
DIM

, but not CD56
BRIGHT

 

cells, are higher in HBV patients than in control subjects and are therefore, the major 

contributing subset to the overall higher frequencies of NK and NT cells. In addition, 

these data indicate that the expansion of CD56
DIM

 cells in HBV occurs at the expense of 

the frequencies of CD56
BRIGHT

 cells, which appear to be lower in HBV. This lower 

frequency proved to be most significant when CD56
BRIGHT

 cells were calculated as a 

proportion of the total CD56
+ 

populations. 
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FIGURE 3.2 
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3.2.3 The frequencies of circulating  T cells are significantly higher in subjects 

with HBV infection 

PBMC were prepared from 20 HBV-infected subjects and from the buffy coat packs of 

23 control subjects. Surface staining with FITC-labelled anti--TCR mAb and PE-Cy5-

labelled anti-CD3 mAb was carried out to identify  T cells in the peripheral blood 

(Figure 3.3A). Frequencies of circulating  T cells ranged from 0.36% to 5.86% in 

controls, and from 0.35% to 30.67% in HBV, with mean frequencies of 2.8+/-0.27% 

and 6.8+/-1.5%, respectively (p=0.0009, Figure 3.3B).  

These data show that circulating  T cells are significantly expanded in HBV 

infection. 

 

3.2.4 There are no significant differences in the numbers of circulating invariant 

NKT cells in HBV infection. 

PBMC were prepared from 18 HBV–infected individuals and from the buffy coat packs 

of 22 control subjects. Surface staining with FITC-labelled anti-V24 mAb and PE-

labelled anti-V11 mAb, together with PE-Cy5-labelled anti-CD3 mAb, was performed 

to identify the T cells with the invariant V24V11 TCR (Figure 3.4A). PE-labelled 

anti-6B11 mAb was also used together with PE-Cy5-labelled anti-CD3 mAb as an 

alternative means of identifying such iNKTs (Figure 3.4C). Frequencies of circulating 

V

V


T cells ranged from 0.01% to 0.81% in controls, and from 0.01% to 

0.24% in HBV. The mean frequencies of circulating V

V


T cells were 0.11% 

of T cells +/- 0.04% in controls and 0.09 +/-0.02% in HBV. This difference was not 

significant (p=0.29, Figure 3.4B). Frequencies of circulating 6

T cells ranged from 

0.09% to 1.5% in controls, and from 0.04% to 3.5% in HBV with, mean frequencies of 

0.54+/-0.1% and 0.62 +/-0.19%, respectively. This difference was not significant 

(p=0.21, Figure 3.4D). The two methods used to label iNKT cells yielded slightly 

different numbers but overall, both sets of mAbs supported the finding that the 

frequencies of circulating iNKT cells are unchanged in HBV infection. 
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FIGURE 3.3 
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FIGURE 3.4 
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3.2.5 The frequencies of B cells and monocytes expressing CD1a,
 
b, c and d cells 

are similar in the peripheral blood of healthy control subjects and HBV patients. 

PBMC were prepared from the fresh blood of 18 HBV patients and from the buffy coat 

packs of 18 control subjects. Lymphocytes were identified based on size and granularity 

using forward and side scatter parameters and then surface staining with APC-labelled 

anti-CD19 mAb was performed to identify the B cells. Similarly, monocytes were 

identified based on size and granularity using forward and side scatter parameters and 

then PE-Cy5-labelled anti-CD14 mAb was used to identify the monocytes. FITC-

labelled anti-CD1c mAb or anti-CD1b mAb and PE-labelled anti-CD1d mAb or anti-

CD1a mAb were used to identify those B cells and monocytes expressing CD1a, b, c 

and d (Figure 3.5A and Figure 3.5C). The mean frequencies of B cells expressing CD1a, 

b, c and d were 0.99+/-0.31%, 10.9+/-3.6%, 27.3+/-4.6% and 65.1+/-4%, respectively, 

in controls and 0.61+/-0.12%, 3.2+/-0.4%, 22.6+/-1.9 and 53.1+/-4.2%, respectively, in 

HBV patients (Figure 3.5B). The mean frequencies of monocytes expressing CD1a, b, c 

and d were 7.5+/-3.9%, 12.7+/-4.3%, 7.6+/-2.9%, 47.3+/-10.8%, respectively, in 

controls and 7.6+/-1.9%, 10.9+/-2.3%, 4.2+/-1.14% and 52.3+/-8.9%, respectively, in 

HBV (Figure 3.5D). None of these differences were significant.  

These data show that the numbers of iNKT cells and CD1-expressing cells are 

similar in controls and HBV-infected individuals. 
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FIGURE 3.5 
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3.3 NK, NT,  T, iNKT and CD1
+
 cells in HBV patient groups 

It was not sufficient to compare the frequencies of innate lymphocytes in persistently 

infected HBV patients with those in uninfected control subjects. To gain a better 

understanding of the role of innate lymphocytes in HBV infection, the patient cohort 

needed to be carefully examined. Patient data were obtained from the hepatology clinic 

in St James‟s hospital and was used to divide the patients into groups based on age, 

gender, viral load and ALT. Viral load was a measure of HBV replication and control of 

infection whereas ALT was a measure of liver disease. Since the upper limit of normal 

(ULN) for ALT is between 25 and 40 international units (IU)/ml, 40 was chosen as our 

cut off to distinguish between patients with and without liver damage (Rehermann & 

Nascimbeni 2005). Even though the majority of the patients studies had a viral load 

below 20,000 copies/ml, 100,000 copies/ml was chosen as the cut-off to distinguish 

between higher and lower viral load. Since the oldest HBV patient was only 55 years 

old, a midpoint between youngest and oldest was chosen to distinguish between patients 

who were relatively younger or older. It was also sought to determine if there were any 

gender-specific differences between the cell frequencies in our patients. 

 

3.3.1 The frequencies of circulating NK cells are not significantly different between 

HBV patient groups 

To determine if there were differences in NK frequencies within the HBV patient cohort, 

frequencies were compared between HBV-infected subjects of different age, gender, 

serum ALT level and viral load. Figure 3.6A shows the frequencies of circulating 

CD56
+
CD3

-
 cells as a percentage of total lymphocytes for 41 HBV patients with a low 

viral load i.e. below 100,000 copies / ml and 8 HBV patients with a high viral load i.e. 

between 100,000 and 5x10
8
 copies / ml. The frequencies of circulating NK cells in 

patients with low viral load ranged from 0.83% to 28.47% of lymphocytes and the mean 

frequency (+/- SEM) was 9.6+/-0.9%. The frequency of circulating NK cells in patients 

with high viral load ranged from 6% to 17.3% of lymphocytes with, a mean frequency 

of 11.1+/-1.6%. This difference was not significant, according to the Mann-Whitney U-

test (p=0.2). Furthermore, a Spearman correlation test yielded a correlation coefficient 

of r = 0.135, suggesting that there is no linear correlation between the frequencies of 

NK cells and viral load. Figure 3.6B shows the mean frequencies of circulating 

CD56
+
CD3

-
 cells as a percentage of total lymphocytes for 39 HBV patients with an 
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ALT below 40 IU/ ml and 13 HBV patients with an ALT above 40 IU/ml. For those 

patients with ALT below 40 IU/ml, the frequencies of NK cells ranged from 0.8% to 

28.47% with an average of 9.8+/-0.9%. For those HBV patients with an ALT above 40 

IU/ml, the frequencies of NK cells in peripheral blood ranged from 3.7% to 22.11% 

with an average of 9.8+/-1.4%. This difference was not significant (p=0.9) and 

moreover, there was no linear correlation between the numbers of NK cell and ALT 

levels (r = 0.0642). Figure 3.6C shows the frequencies of circulating CD56
+
CD3

-
 cells 

as a percentage of total lymphocytes in 27 males and 28 females. The numbers ranged 

from 0.83% to 28.47% in males, with a mean of 10.2+/-0.2% and from 0.91% to 

28.27% in females with a mean of 10.4+/-0.2% (p=0.45). Figure 3.6D shows the 

frequencies of circulating CD56
+
CD3

-
 cells as a percentage of total lymphocytes in 28 

HBV patients aged between 19 and 35 years of age and 27 HBV patients aged between 

35 and 55 years of age. The frequency of circulating NK cells ranged from 3.14% to 

28.27% in the younger group of patients, with a mean of 10.5+/-1.2%. The frequency of 

circulating NK cells ranged from 0.83% to 28.47% in the older group of HBV patients 

with a mean of 10+/-1.2%. (p=0.9) and there was no linear correlation between the 

frequencies of circulating NK cells and the age of the HBV patients (r = 0.0846).  

These data suggest that although the frequencies of circulating NK cells are 

higher in HBV-infected subjects than in control subjects, their numbers do not correlate 

with viral load, disease severity, gender or age. 

 

3.3.2 The frequencies of circulating NT cells are not significantly different between 

HBV patient groups 

Frequencies were compared between HBV-infected subjects of different age, gender, 

serum ALT level and viral load to determine if there were differences in NT frequencies 

within the HBV patient cohort. Figure 3.7A shows the frequencies of circulating 

CD56
+
CD3

+
 cells as a percentage of total lymphocytes for 40 HBV patients with a low 

viral load i.e. below 100,000 copies / ml and 9 HBV patients with a high viral load i.e. 

between 100,000 and 5x10
8 

copies / ml. The frequencies of circulating NT cells in 

patients with low viral load ranged from 0.3% to 38.6% of lymphocytes with a mean of 

5.6+/-1.2%. The frequencies of circulating NT cells were similar in patients with high 

viral load ranging from 1.1% to 10.2% of lymphocytes and with a mean of 5.2+/-0.5% 

(p=0.42). Furthermore, a Spearman correlation test yielded a correlation coefficient of r 

= 0.039, suggesting that there is no linear correlation between the frequencies of NT 
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cells and viral load. Figure 3.7B shows the mean frequencies of circulating CD56
+
CD3

+
 

cells as a percentage of total lymphocytes for 38 HBV patients with an ALT below 40 

IU/ml and 13 HBV patients with an ALT above 40 IU/ml. For those patients with low 

ALT, the frequencies of NT cells ranged from 0.32% to 10.43% with a mean of 4.4+/-

0.5%. For those HBV patients with high ALT, the frequencies of NT cell ranged from 

0.6% to 38.6% with a mean of 8.7+/-3.3%. These differences were not significant 

(p=0.67) and there was no linear correlation between the numbers of NT cell and ALT 

levels (r = -0.0088). Figure 3.7C shows the frequencies of circulating CD56
+
CD3

+
 cells 

as a percentage of total lymphocytes in 26 males and 28 females. The numbers ranged 

from 0.32% to 7.1% in males (mean 6.9+/-0.3%) and from 1% to 10.4% in females 

(mean 4.2+/-0.1%). This difference was not significant (p=0.37). Figure 3.7D shows the 

frequencies of circulating CD56
+
CD3

+
 cells as a percentage of total lymphocytes in 33 

HBV patients aged between 19 and 35 years of age and 21 HBV patients aged between 

35 and 55 years of age. The frequencies ranged from 1% to 38.6% in the younger group 

of patients (mean 6.8+/-1.6%) and from 0.3% to 10% in the older group of HBV 

patients (mean 4+/-0.5%). This difference was not significant (p=0.26). There was no 

linear correlation between the frequencies of circulating NT cells and the age of the 

HBV patients (r = -0.16).  

These data suggest that although the frequencies of circulating NT cells are 

higher in HBV-infected subjects than in control subjects, their numbers do not correlate 

with viral load, disease severity, gender or age. 
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Figure 3.6 
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Figure 3.7 
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3.3.3 The frequencies of circulating  T cells are not significantly different 

between HBV patient groups 

The  T cell frequencies of the HBV patients within the study cohort were also 

compared based on clinical parameters. Figure 3.8A shows the frequencies of 

circulating -TCR
+
CD3

+
 cells as a percentage of total lymphocytes for 14 HBV 

patients with a low viral load i.e. below 100,000 copies / ml and 4 HBV patients with a 

high viral load i.e. between 100,000 and 5 x 10
8 

copies / ml. The frequencies of 

circulating  T cells in patients with low viral load ranged from 0.35% to 30.7% (mean 

6.2+/-1.9%) and in patients with high viral load, ranged from 1.4% to 15.8% (mean 

8.6+/-3.2%). There was no significant difference between these numbers (p=0.31). 

Furthermore, a Spearman correlation test yielded a correlation coefficient of r = 0.146, 

suggesting that there is no linear correlation between the frequencies of  T cells and 

viral load. Figure 3.8B shows the mean frequencies of circulating -TCR
+
CD3

+
 cells as 

a percentage of total lymphocytes for 11 HBV patients with a low ALT and 7 HBV 

patients with a high ALT. For those patients with low ALT, the frequencies of  T cells 

ranged from 0.35% to 10.5% (mean 5+/-0.95%) and for those with a high ALT, the 

frequencies ranged from 1.2% to 30.7% (mean 10.9+/-3.3%). There were no significant 

differences (p=0.28) and moreover, there was no linear correlation between the numbers 

of  T cell and ALT levels (r = 0.2). Figure 3.8C shows the frequencies of circulating 

-TCR
+
CD3

+
 cells as a percentage of total lymphocytes in 11 males and 9 females. 

The frequencies ranged from 0.35% to 30.7% in males (mean 7.8+/-2.5%) and from 

1.4% to 15.8% in females (5.5+/-1.4%). There was no significant difference (p=0.76). 

Figure 3.8D shows the frequencies of circulating -TCR
+
CD3

+
 cells as a percentage of 

total lymphocytes in 10 HBV-infected subjects aged between 19 and 35 years of age 

and 10 HBV-infected subjects aged between 35 and 55 years of age. The frequency of 

circulating  T cells ranged from 1.4% to 15.8% in the younger group of patients 

(mean 6.5+/-1.5%) and ranged from 0.35% to 30.7% in the older group of patients 

(mean 7+/-2.8%). There was no significant difference (p=0.74) and there was no linear 

correlation between the frequencies of circulating  T cells and the age of the HBV 

patients (r = -0.18).  

These data suggest that although the frequencies of circulating  T cells are 

higher in HBV-infected subjects than in control subjects, their numbers do not correlate 

with viral load, disease severity, gender or age. 
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Figure 3.8 
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3.3.4 The frequencies of circulating iNKT cells are not significantly different 

between HBV patient groups 

The iNKT cell frequencies of the HBV patients within the study cohort were also 

compared based on clinical parameters. Both the frequencies of circulating 

V24
+
V11

+
CD3

+
 and 6B11

+
CD3

+
 cells were quantified as a percentage of total 

lymphocytes within different patient groups. The minimum, maximum and mean 

frequencies for circulating V24
+
V11

+
CD3

+
 and 6B11

+
CD3

+
 cells are shown in Table 

3.1 and Table 3.2, respectively. The frequencies of V24
+
V11

+
CD3

+
 cells divided 

based on ALT, viral load, gender and age are shown in Figures 3.9A, C, E and G, 

respectively. The frequencies of 6B11
+
CD3

+
 cells divided based on ALT, viral load, 

gender and age are shown in Figures 3.9B, D, F and H, respectively. Statistical 

significance was tested using the Mann-Whitney U-test and the Spearman Correlation 

test. None of the differences observed in the occurrence of iNKT cells between different 

patient groups were deemed statistically significant. 

 

3.3.5 The frequencies of circulating CD1
+
 B cells or monocytes are not significantly 

different between HBV patient groups 

The frequencies of CD1
+
CD19

+
 cells were quantified as a percentage of lymphocytes 

and the numbers of CD1
+
CD14

+
 cells were quantified as a percentage of monocytes, 

within different HBV patient groups. The minimum, maximum and mean frequencies 

for circulating CD1
+
CD19

+
 and CD1

+
CD14

+
 cells are shown in Table 3.3 and Table 3.4, 

respectively. The frequencies of CD1
+
CD19

+
 lymphocytes divided based on ALT, viral 

load, gender and age are shown in Figures 3.10A, B, C and D, respectively. The 

frequencies of CD1
+
CD14

+
 cells divided based on ALT, viral load, gender and age are 

shown in Figures 3.10E, F, G and H, respectively. The performance of Mann-Whitney 

and Spearman Correlation tests revealed that there were no statistically significant 

differences in the frequencies of circulating CD1
+
 cells between HBV patient groups. 

 These data suggest that the frequencies of iNKT cells and CD1-expressing cells 

within our HBV patient population do not significantly change with age, gender, viral 

load or ALT levels. 
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Table 3.1 

The frequencies of circulating iNKT cells in HBV: The frequencies of 

V24
+
V11

+
CD3

+
 lymphocytes within divisions of the HBV patient study cohort, 

based on varying ALT, viral load, age and gender. 

 

 ALT 

< 40 

 

ALT >40 Low 

Viral 

Load 

High 

Viral 

Load 

Age 

< 35 

Age 

35-50 

M* F* 

Min % 0.01 0.03 0.01 0.16 0.01 0.03 0.03 0.01 

Max % 0.18 0.24 0.18 0.24 0.24 0.18 0.24 0.18 

Mean % 0.09 0.09 0.07% 0.2 0.11 0.07 0.08 0.1 

SEM % 0.02 0.05 0.02% 0.04 0.03 0.02 0.03 0.02 

N* 12 5 15 2 7 10 9 8 

p*  0.79  0.07  0.4  0.36 

r*  -0.01  0.184  -0.183  - 

 

* Low viral load is below 10,000 copies / ml, high viral load ranges from 100,000 to 

1x10
8
 copies / ml. N* is the number of subjects. The p-value p* is a product of the 

Mann-Whitney U-test and indicates statistical significance when it falls below 0.05. The 

correlation coefficient r* is a product of the Spearman Correlation test and a value close 

to 1 or -1 indicates a linear correlation between two arrays of numbers. The column with 

header M* comprises the male subjects and F* comprises the female subjects. 
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Table 3.2 

The frequencies of circulating iNKT cells in HBV: The frequencies of 6B11
+
CD3

+
 

lymphocytes within divisions of the HBV patient study cohort, based on varying ALT, 

viral load, age and gender. 

 

 ALT 

< 40 

 

ALT >40 Low 

Viral 

Load 

High 

Viral 

Load 

Age 

< 35 

Age 

35-50 

M* F* 

Min % 0.14 0.04 0.04 0.25 0.25 0.04 0.04 0.14 

Max % 3.5 1.3 3.5 1.26 1.26 3.5 3.5 1.26 

Mean % 0.67 0.58 0.59 0.78 0.53 0.69 0.83 0.41 

SEM % 0.27 0.22 0.22 0.36 0.12 0.33 0.36 0.11 

N* 12 6 15 3 8 10 9 9 

p*  0.96  0.41  0.49  0.46 

r*  0.094  -0.14  -0.18   

 

* Low viral load is below 10,000 copies / ml, high viral load ranges from 100,000 to 

1x10
8
 copies / ml. N* is the number of subjects. The p-value p* is a product of the 

Mann-Whitney U-test and indicates statistical significance when it falls below 0.05. The 

correlation coefficient r* is a product of the Spearman Correlation test and a value close 

to 1 or -1 indicates a linear correlation between two arrays of numbers. The column with 

header M* comprises the male subjects and F* comprises the female subjects. 
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Table 3.3 

The frequencies of circulating CD1
+
 B lymphocytes in HBV: The frequencies of 

CD1
+
CD19

+
 lymphocytes within divisions of the HBV patient study cohort, based on 

varying ALT, viral load, age and gender. 

 

 CD1 

isoform 

ALT  

<40 

 

ALT >40 Low 

Viral 

Load 

High 

Viral 

Load 

Age 

< 35 

Age 

35-

50 

M* F* 

Min % CD1a 0.05 0.3 0.05 0.27 0.05 0.22 0.22 0.05 

 CD1b 1 1 1 2.1 1.7 1 1 1.7 

 CD1c 11.1 18.6 11.1 18.6 11.1 11.9 11.9 11.1 

 CD1d 22.6 20.7 20.7 22.6 20.7 34.1 20.7 22.6 

Max % CD1a 1.6 1.3 1.6 0.4 1.6 1.5 1.6 1.4 

 CD1b 7.2 6.7 7.2 6.7 6.7 7.2 7.2 6.7 

 CD1c 31.8 44 44 23.5 44 31.8 31.8 44 

 CD1d 74.3 91.9 91.9 60.8 91.9 74.3 64.5 91.9 

Mean % CD1a 0.6 0.7 0.7 0.3 0.6 0.4 0.7 0.5 

 CD1b 3.1 3.3 3 3.7 3.1 2.6 2.7 3.6 

 CD1c 21.6 24.5 24.3 21.4 22.9 21.2 21.4 24 

 CD1d 53.6 52.2 57.2 45.5 50.7 52.8 50 56.5 

SEM % CD1a 0.2 0.2 0.1 0.03 0.2 0.2 0.2 0.15 

 CD1b 0.5 0.9 0.4 1.5 0.6 0.6 0.6 0.5 

 CD1c 2.1 4 2.6 1.5 3.1 2.1 1.9 3.5 

 CD1d 4.1 10 5 11.7 7.2 4.1 4.8 7.1 

N* CD1a 12 6 15 3 8 10 9 9 

 CD1b 12 6 15 3 8 10 9 9 

 CD1c 11 6 15 3 8 9 9 8 

 CD1d 11 6 15 3 8 9 9 8 

p* CD1a  0.3  0.5  0.9  0.6 

 CD1b  0.9  0.9  0.6  0.1 

 CD1c  0.8  0.9  0.8  0.7 

 CD1d  0.6  0.6  0.7  0.7 

r* CD1a  0.2  -0.2  -0.02  - 

 CD1b  0.004  0.1  0.1  - 

 CD1c  0.2  -0.2  0.1  - 

 CD1d  -0.2  -0.2  0.1  - 

 

 

* Low viral load is below 10,000 copies / ml, high viral load ranges from 100,000 to 

1x10
8
 copies / ml. N* is the number of subjects. The p-value p* is a product of the 

Mann-Whitney U-test and indicates statistical significance when it falls below 0.05. The 

correlation coefficient r* is a product of the Spearman Correlation test and a value close 

to 1 or -1 indicates a linear correlation between two arrays of numbers. The column with 

header M* comprises the male subjects and F* comprises the female subjects. 
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Table 3.4 

The frequencies of circulating CD1
+
 monocytes in HBV: The frequencies of 

CD1
+
CD14

+
 monocytes within divisions of the HBV patient study cohort, based on 

varying ALT, viral load, age and gender. 

 

 CD1 

isoform 

ALT  

<40 

 

ALT >40 Low 

Viral 

Load 

High 

Viral 

Load 

Age 

< 35 

Age 

35-

50 

M* F* 

Min % CD1a 1.9 0.6 0.62 1.5 0.62 2.4 0.62 1.2 

 CD1b 2.6 2.2 2.3 2.2 2.2 2.6 2.2 2.6 

 CD1c 0.3 0.9 0.3 1.3 0.5 0.3 0.27 0.5 

 CD1d 11.5 4.5 4.5 10.6 4.5 11.5 4.5 10.6 

Max % CD1a 25.3 17.8 25.3 2.7 25.3 17.8 17.9 25.3 

 CD1b 35.2 18.6 35.2 14.2 35.2 29.8 35.2 22.7 

 CD1c 12.9 13.7 13.7 5.9 12.9 13.7 13.7 5.9 

 CD1d 98.6 91.2 98.6 60.5 98.3 57 98.6 98.3 

Mean % CD1a 10.5 4.6 8.7 2 6.7 8.3 8.1 7 

 CD1b 12.1 8.3 11.7 6.9 11.3 10.5 12.5 9.3 

 CD1c 4.8 4.5 4.3 3.6 4 4.4 5.1 3.1 

 CD1d 65.1 36.3 54.6 35.5 46.2 57 54.9 48.8 

SEM % CD1a 2.6 2.7 2.1 0.4 3.3 2 2.4 2.9 

 CD1b 3.2 2.7 2.7 3.7 4.2 2.6 4.1 2.2 

 CD1c 1.5 2 1.2 1.9 1.6 1.6 1.9 0.8 

 CD1d 10.2 13.8 9.5 20.4 13.2 11.4 11 13.9 

N* CD1a 12 6 15 3 8 10 9 9 

 CD1b 12 6 15 3 8 10 9 9 

 CD1c 11 6 15 3 8 9 9 8 

 CD1d 11 6 15 2 8 9 9 8 

p* CD1a  0.1  0.1  0.1  .6 

 CD1b  0.5  0.4  0.7  0.9 

 CD1c  0.9  0.9  0.9  0.9 

 CD1d  0.1  $  0.2  0.7 

r* CD1a  -0.4  -0.3  0.5 - - 

 CD1b  -0.09  -0.3  0.2 - - 

 CD1c  0.1  -0.09  0.06 - - 

 CD1d  -0.5  -0.1  0.1 - - 

 

* Low viral load is below 10,000 copies / ml, high viral load ranges from 100,000 to 

1x10
8
 copies / ml. N* is the number of subjects. The p-value p* is a product of the 

Mann-Whitney U-test and indicates statistical significance when it falls below 0.05. The 

correlation coefficient r* is a product of the Spearman Correlation test and a value close 

to 1 or -1 indicates a linear correlation between two arrays of numbers. The column with 

header M* comprises the male subjects and F* comprises the female subjects. 
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Figure 3.9 plots 
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Figures 3.9 legend 
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Figure 3.10 
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3.4 NK, NT and iNKT cell frequencies in demographically-matched healthy 

controls 

As mentioned in Chapter 2, our patient cohort was one of mixed race; 38% of the 

patients were African, while 45% were Caucasian and 17% were Asian. The control 

group, however, comprised buffy coat packs obtained form the IBTS. Since the 

knowledge of our healthy controls was limited, some demographically-matched samples 

were obtained as a control measure. This would minimise the risk of false-positive 

results based on race and not HBV infection. The demographically-matched control 

blood samples were taken from 15 African, 15 Caucasian and 10 Asian healthy donors. 

PBMC preparation and surface staining was performed in the same manner as for all 

other subjects and the frequencies of NK, NT, iNKT and  T cells were then quantified. 

 

3.4.1 NK cell frequencies in demographically-matched healthy controls 

The mean frequencies of NK cells, as a percentage of lymphocytes, were 5.6+/-0.9% in 

the African controls, 4.7+/-0.7% in the Caucasian controls and 6.4+/-1.6% in the Asian 

controls. These frequencies were not significantly different with no p-values falling 

below 0.05 (Figure 3.11A). 

The mean frequencies of the CD56
DIM

 and CD56
BRIGHT

 subsets of NK cells were 

calculated as a percentage of NK cells and as a percentage of lymphocytes. The mean 

frequencies of CD56
DIM

 NK cells, as a proportion of NK cells, were 94.1+/-1.2%, 

89.5+/-1.7% and 93.6+/-1.7% in Africans, Caucasians and Asians, while the frequencies 

of CD56
BRIGHT

 NK cells were 5.9+/-1.2%, 10.5+/-1.7% and 6.5+/-1.7% (Figure 3.11B, 

D). When calculated as a percentage of lymphocytes, the mean frequencies of CD56
DIM

 

NK cells were 4.9+/-0.8%, 4+/-0.6% and 5.9+/-1.6% in Africans, Caucasians and 

Asians, respectively, while the frequencies of CD56
BRIGHT

 NK cells were 0.5+/-0.1%, 

0.3+/-0.1% and 0.4+/-0.1% (Figure 3.11C, E). Although the observations suggest that 

there may be expansions of CD56
DIM

 NK cells in the African and Asian populations, 

compared to the Caucasians, our statistical analysis revealed that such differences are 

not statistically different with all p-values falling outside our confidence interval of 0.05. 

These data suggest that there are no significant differences in NK cell 

frequencies between African, Caucasian and Asian control populations and that the 

differences observed between HBV patients and controls are not significantly 

influenced by the race of the patients. 
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3.4.2 NT cell frequencies in demographically-matched healthy controls 

The mean frequencies of NT cells, as a percentage of lymphocytes, were 2.1+/-0.3% in 

the African controls, 0.8+/-0.1% in the Caucasian controls and 1.6+/-0.3% in the Asian 

controls (Figure 3.12A). Performance of the Mann-Whitney U-test on these data sets 

revealed that the frequencies of circulating NT cells in healthy donors of African race 

were significantly higher than those of their Caucasian counterparts (p=0.02). Due to 

this striking result, it was decided to compare the NT cell frequencies within our patient 

cohort and found that no significant differences existed in our HBV group (Figure 

3.12B). Therefore, although these data suggest the NT cells are expanded in the 

peripheral blood of African persons compared to Caucasians, our subsequent analysis 

revealed that this does not represent our patient group. Since the mean frequency of 

circulating NT cells was 3.1% in our initial patient group, it can be hypothesised that the 

NT cell numbers observed in our demographically-matched caucasian population may 

be lower than the normal average. 

 The mean frequencies of the CD56
DIM

 and CD56
BRIGHT

 subsets of NT cells 

were calculated as a percentage of NT cells and as a percentage of lymphocytes. The 

mean frequencies of CD56
DIM

 NT cells, as a proportion of NT cells, were 98.7+/-0.4%, 

99+/-0.5% and 99.6+/-0.3% in Africans, Caucasians and Asians, while the frequencies 

of CD56
BRIGHT

 NT cells were 1.3+/-0.4%, 0.9+/-0.5% and 0.4+/-0.3% (Figure 3.12 B, 

D). When calculated as a percentage of lymphocytes, the mean frequencies of CD56
DIM

 

NT cells were 2.1+/-0.4%, 0.7+/-0.1% and 1.6+/-0.3% in Africans, Caucasians and 

Asians, respectively, while the frequencies of CD56
BRIGHT

 NT cells were 0.03+/-0.01%, 

0.01+/-0.004% and 0.005+/-0.003% (Figure 3.12C, E). These data show that the 

differences in the frequencies of NT cells between African and Caucasian populations 

are due to differences in the CD56
DIM

 subset (p=0.008).  

These data suggest that NT cell frequencies may differ between African and 

Caucasian populations, although careful examination of our patient cohort revealed that 

such a hypothesis is not indicative of our HBV patients. Therefore, it is likely that the 

expansions observed in HBV patients were not skewed by the demographics of the 

patients. 

 

3.4.3 Total CD56
+
 cell frequencies in demographically-matched healthy controls 
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The mean frequencies of total CD56
+
 cells, as a percentage of lymphocytes, were 7.3+/-

1% in the African controls, 5.5+/-0.8% in the Caucasian controls and 7.9+/-1.8% in the 

Asian controls (Figure 3.13A). These frequencies were not significantly different with 

no p-values falling below 0.05. 

The mean frequencies of the CD56
DIM

 and CD56
BRIGHT

 subsets of total CD56
+
 

cells were calculated as a percentage of NK cells and as a percentage of lymphocytes. 

The mean frequencies of CD56
DIM

 CD56
+
 cells, as a proportion of total CD56

+
 cells, 

were 88.6+/-1.7%, 92.8+/-1.3% and 93.1+/-1.6% in Africans, Caucasians and Asians, 

while the frequencies of total CD56
BRIGHT

 cells were 7.2+/-1.3%, 11.4+/-1.7% and 

6.9+/-1.6% (Figure 3.13 B, D). When calculated as a percentage of lymphocytes, the 

mean frequencies of CD56
DIM

 cells were 6.1+/-1.1%, 4.8+/-0.7% and 7.5+/-1.7% in 

Africans, Caucasians and Asians, respectively, while the frequencies of CD56
BRIGHT 

cells were 0.2+/-0.1%, 0.5+/-0.1% and 0.4+/-0.1% (Figure 3.13C, E). Although the 

observations suggest that there may be a trend towards higher levels of CD56
DIM

 NK 

cells in the African and Asian populations, compared to the Caucasians, our statistical 

analysis revealed that such differences are not statistically different with all p-values 

falling outside our confidence interval of 0.05. 

These data suggest that there are no significant differences in total CD56
+
 cell 

frequencies between African, Caucasian and Asian populations, despite the apparent 

expansions of circulating NT cells in Africans, and that the significant higher 

frequencies of total CD56
+
 cells observed in HBV patients are not significantly 

influenced by the race of the patients. 

 

3.4.4 Invariant NKT cells frequencies in demographically-matched healthy 

controls 

The mean frequencies of 6B11
+ 

cells, as a percentage of total T cells, were 0.5+/-0.2% 

in the African controls, 0.4+/-0.1% in the Caucasian controls and 0.3+/-0.1% in the 

Asian controls (Figure 3.14). These frequencies were not significantly different with no 

p-values falling below 0.05. 

 These data suggest that there are no differences in the frequencies of circulating 

iNKT cell frequencies between individuals of different race. 

 

Overall, these data show that, although there may be some differences in the proportions 

of circulating innate lymphocytes between persons of different race, there is no 
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significant evidence to suggest that such differences have influenced the alterations 

observed in HBV patients. 
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Figure 3.11 
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Figure 3.12 
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Figure 3.13 
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Figure 3.14 
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3.5 Cytotoxicity of PBMC in HBV infection 

A preliminary study examining the cytotoxic capabilities of PBMC from HBV patients 

and uninfected controls was performed by Ross McNicholas for several reasons. Firstly, 

since HBV is a non-cytopathic virus, the liver damage associated with chronic infection 

is believed to be immune-mediated. Secondly, the control and elimination of HBV may 

be dependent on the killing activity of innate lymphocytes which may reduce viral load 

to a manageable level before adaptive responses come into play. Therefore, if the 

cytotoxic capabilities of PBMC were enhanced in the individuals persistently-infected 

with HBV then, this may indicate a mechanism of immune control by innate 

lymphocytes in HBV. Such findings would have to be followed by cytotoxic assays 

using enriched populations of innate lymphocytes to confirm which cells were the most 

potent killers.  

Assessment of the cytotoxic capabilities of PBMC in 7–55 healthy control 

subjects and 15 HBV patients was carried out by analysis of chromium (
51

Cr) release by 

the labelled myeloid erythroleukaemia-derived K562 cells. The cytotoxic capabilities 

were evaluated at E:T ratios of 1, 5, 25 and 50. Natural cytotoxicity of PBMC was 

examined while treatment with IFN-α or IL-2 induced the cytotoxic activity of NK cells 

and T cells. 

 

3.5.1 There are no significant changes in the natural cytotoxicity of PBMC in HBV 

infection 

At E:T ratios of 5:1, the specific lysis ranged from 0-1% in healthy control subjects and 

from 0-10.2% in HBV patients (Figure 3.14A and Figure 3.14B), with means of 0.13+/-

0.13% and 1.6+/-1.1% (Figure 3.14G). This difference was not significant (p=0.15). At 

E:T ratios of 25:1, the specific lysis ranged from 0-4.25% in healthy control subjects 

and from 0-21.44% in HBV patients (Figure 3.14A and Figure 3.14B), with mean 

specific lyses of 1.6+/-0.5% and 4.6+/-2.7%, respectively (Figure 3.14H). This 

difference was not significant (p=0.80). At E:T ratios of 50:1, the specific lysis ranged 

from 0-39.9% in healthy control subjects and from 0-28.7% in HBV patients (Figure 

3.14A and Figure 3.14B), with means of 1.4+/-1.1% and 7.1+/-2.3% (Figure 3.14I, 

p=0.18; not significant). 
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Although, natural cytotoxicity of PBMC in HBV patients appears to be higher at 

all E:T ratios, these data do not show any statistically significant differences between 

HBV patients and healthy controls. 

3.5.2 Higher IL-2-induced cytotoxicity of PBMC in HBV infection 

At E:T ratios of 5:1, the specific lysis ranged from 0-2.9% in healthy control subjects 

and from 0-18.3% in HBV patients (Figure 3.14C and Figure 3.14D), with means of 

1.1+/-0.3% and 4.4+/-1.3%, respectively (Figure 3.14G). This higher frequency was 

significant (p=0.04). At E:T ratios of 25:1, the specific lysis ranged from 0.6-20.3% in 

healthy control subjects and from 0-44.4% in HBV patients (Figure 3.14C and Figure 

3.14D), with means of 12.4+/-1.8% and 15.7+/-3.3%, respectively (Figure 3.14H, 

p=0.79; not significant). At E:T ratios of 50:1, the specific lysis ranged from 1-53.6% in 

healthy control subjects and from 1.7-47.4% in HBV patients (Figure 3.14C and Figure 

3.14D). The mean specific lyses were 15.9+/-1.5% and 19.4+/-3.4%, respectively 

(Figure 3.14I) with no statistically significant difference between subject groups 

(p=0.39). 

These data show that IL-2-induced cytotoxicity of PBMC is significantly Higher 

in HBV patients, compared with control subjects, at an E:T ratio of 5:1. 

 

3.5.3 There are no significant differences in the IFN-α-induced cytotoxicity of 

PBMC in HBV infection 

At E:T ratios of 5:1, the specific lysis was 0% for all healthy control subjects and 

ranged from 0-2.6% in HBV patients (Figure 3.14E and Figure 3.14F), with means of 

0% and 0.64+/-0.25% (Figure 3.14G). No statistical comparison between HBV patients 

and control subjects was carried out due to the lack of response to IFN-α in control 

subjects, at this E:T ratio. At E:T ratios of 25:1, the specific lysis ranged from 0-6.4% in 

healthy control subjects and from 0-22.1% in HBV patients (Figure 3.14E and Figure 

3.14F), with means of 2.2+/-0.55% and 5+/-1.6% (Figure 3.14H, p=0.40; not 

significant). At E:T ratios of 50:1, the specific lysis ranged from 0-10.5% in healthy 

control subjects and from 0-26.6% in HBV patients (Figure 3.14E and Figure 3.14F). 

The mean specific lyses were 3.9+/-1.4% and 6.9+/-1.9%, respectively (Figure 3.14I, 

p=0.57; not significant). 

Although, PBMC isolated from HBV patients appear to be more responsive to 

IFN-α treatment, these data do not show any statistically significant differences between 

HBV patients and healthy controls. 
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Figure 3.15 
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Figure 3.15 
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Figure 3.15 
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3.6 Bonferroni correction method 

Since the present study involved the analysis of the frequencies of multiple cell 

populations in patient and control subject groups, it is possible that statistically-

significant differences in the two subject groups will be identified by chance alone.  The 

Bonferroni correction method was used to attempt to distinguish between real and false-

positive results. The method assumes that spurious positives will arise when a large 

number of tests are performed. Therefore, the p-value is multiplied by the number of 

tests and if the corrected p-value (pc) is still within our chosen confidence interval i.e. 

below 0.05, then the finding is considered to be statistically significant (Shaffer 1995).  

For the phenotypical study of innate lymphocytes, 26 tests were performed and 

13 of these yielded significant p-values, as shown in Table 3.5. By applying the 

Bonferroni correction method to the p-values obtained from the Mann-Whitney U tests, 

the most substantial differences could be filtered out. Both the p and pc values for all 

tests are listed in Table 3.5. Following this correction, the differences in the frequencies 

of NT cells and  T cells, only, were shown to be statistically sound with pc-values of 

0.005 and 0.02, respectively (Table 3.5).  

These data provide strong evidence that the frequencies of circulating NT and  

T cells are Higher in HBV infection. 
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Table 3.5 

Statistical analysis of the significant phenotypical differences observed in innate 

lymphocyte populations in HBV infection: The p-values and corrected p-values for 13 

of 26 statistical tests performed in the phenotypical study of innate lymphocytes in HBV 

infection. 

 

 

 

*Change in HBV indicates whether the frequencies of cells are higher or lower in 

HBV-infected subjects, compared to control subjects. 

CD56
BRIGHT

 cells are those cells that express high levels of CD56 while CD56
DIM

 cells 

are those that express lower levels of CD56. Vα24
+
Vβ11

+ 
T cells are those iNKT cells 

that co-express both the Vα24 α-chain and the Vβ11
+ 

β-chain of the αβ-TCR. 6B11
+ 

T 

cells are those iNKT cells which express the Vα24 α-chain. 

Significant results after Bonferroni correction (pc values) are highlighted in italics. 

 

 

 

 

 

 

 

 

 

 

 

 

TEST 

*Change 

in HBV 

p  

value 

pc 

value 

 

NK cells Higher  0.04 1.04 

CD56
DIM

   NK cells (% NK cells) Higher  0.006 0.2 

CD56
DIM

  NK cells (% lymphocytes) Higher  0.04 1.04 

CD56
BRIGHT

 NK cells (% NK cells) Lower  0.006 0.2 

NT cells Higher  0.0002 0.005 

CD56
DIM

 NT cells (% NT cells) Higher  0.009 0.2 

CD56
DIM

 NT cells (% lymphocytes) Higher  0.003 0.08 

CD56
BRIGHT

 NT cells (% NT cells) Lower  0.009 0.2 

Total CD56
+
 cells Higher  0.005 0.1 

CD56
DIM

 cells (% total CD56
+
 cells) Higher  0.007 0.2 

CD56
DIM

 cells (% lymphocytes) Higher  0.02 0.5 

CD56
BRIGHT

 cells (% total CD56
+ 

cells) Lower  0.007 0.2 

 T cells Higher  0.0009 0.02 
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3.7 Discussion 

This study investigated the frequencies of circulating innate lymphocytes in HBV 

infection in an effort to elucidate the early immune response to the virus. Since the 

majority of the patients had a low viral load and an ALT below 40, the group of patients 

were considered to have minimal or no liver disease and a low viral burden. Therefore, 

despite the presence of HBsAg, the group represented an effective antiviral immune 

response and the frequencies of innate lymphocytes found in such subjects were 

considered to reflect the responses needed to control HBV infection. The frequencies of 

circulating NK, NT and total CD56
+
 cells were quantified in this study along with the 

frequencies of CD56
DIM 

and CD56
BRIGHT

 populations of these cells. The CD56
DIM

 and 

CD56
BRIGHT

 subsets were quantified as a percentage of NK, NT and total CD56 cells 

and as a percentage of lymphocytes. These subsets were identified based on the cell 

surface density (mean fluorescence intensity) of CD56 and since isotype controls could 

not be used to distinguish them, it must be acknowledged that their identification was 

influenced by the operator of the flow cytometer. The frequencies of  T cells, 

Vα24
+
Vβ11

+
 T cells and 6B11

+
 T cells were also quantified along with the frequencies 

of B cells expressing CD1a, b, c and d and monocytes expressing CD1a, b, c and d. 

To date, several studies have revealed a requirement for innate lymphocytes in 

the clearance of HBV infection. NK cytotoxicity and IL-2 production is Higher in acute 

HBV infection and returns to normal in the recovery phase thus suggesting that these 

cells are involved in the resolution of infection (Echevarria et al. 1991). The NK and 

NKT cell-mediated inhibition of HBV replication in transgenic mice also indicates that 

these cells are important in the fight against HBV (Kimura et al. 2002; Pasquetto et al. 

2000; Kakimi et al. 2000). Furthermore, responders to vaccination with HBsAg possess 

higher frequencies of circulating NK and NT cells and these cells elicit superior 

cytokine-producing capacities in such subjects (Albarran et al. 2005). Since these 

studies have highlighted the importance of innate lymphocytes in HBV, it was believed 

that knowledge of the abundance and functions of these cells in controlled HBV 

infection would facilitate a better understanding of successful immune responses against 

HBV. Depleted numbers of circulating NK cells in chronically infected HCV patients 

have previously been found by our research group, while others have found reduced 

frequencies of iNKT cells and NT cells in HCV-infected livers (Golden-Mason et al. 
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2008; Deignan et al. 2002) and in HCC (Kawarabayashi et al. 2000). It appears that 

lower numbers of innate lymphocytes can predispose an individual to viral persistence 

in HCV and it was proposed the same for HBV. Alternatively, the virus might infect, 

activate or kill innate lymphocytes and be the cause of the numerical change. It was 

proposed that impaired innate lymphocyte responses lead to uncontrollable viral 

replication and inadequate adaptive responses and that, the subsequent immune 

responses cause liver damage without eliminating the virus. Since HBV is non-

cytopathic, such immune responses might be responsible for the liver disease associated 

with HBV infection. In this study however, patients who were persistently infected with 

a low viral burden but were not diseased were examined and therefore, exhibited an 

effective but apparently non-pathological immune response. The response found in such 

persons might be required to prevent high viral burden and liver cirrhosis in other 

persistently-infected patients. 

Expansions of circulating innate lymphocytes have been found in our patient 

cohort, compared to a group of uninfected controls, which this might be representative 

of an active antiviral response. NK, NT and  T cells, but not iNKT cells, were more 

abundant in the peripheral blood of HBV-infected patients than in that of uninfected 

control subjects. This suggests that these cells are important players in the control of 

HBV replication. 

After using the Bonferroni correction method to eliminate significant differences 

that may arise solely as a result of multiple testing, the higher frequencies of circulating 

NT cells and  T cells in HBV infection remained statistically significant. Therefore, it 

is proposed that these expansions were representative of an active but regulated hepatic 

immune response that kept HBV replication under control without causing liver damage.  

Expansions of  T cells have been identified in several viral infections and may 

enhance immune responses via cytokine production as well as eliciting both cytolytic 

and non-cytolytic inhibition of viral replication. However, a similar study to this has 

revealed depletions of  T cells in both asymptomatic HBV-infected patients and those 

with liver disease, compared to controls (Chen et al. 2008). However, the study 

population examined by that group was of Asian origin whereas ours is a group of 

mixed race comprising Caucasians, Africans and Asians. Furthermore, Chen et al. 

(2008) found the lower frequencies in the V2 T cell subset as opposed to the total  T 
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cell population. Both of these TCR-chain recognition and demographic issue have been 

addressed in Chapter 5 to determine if our data still disagree with Chen et al (2008).  

The NT cells may also elicit both cytolytic and non-cytolytic inhibition of viral 

replication and it is possible that these cells have been derived from CD8
+
 T cells which 

could not clear the virus due to weakened recognition capacity caused by antigenic drift 

(Kelly-Rogers et al. 2006). This may, therefore, represent an evolutionary mechanism 

of the immune system to facilitate a switch from an inefficient specific response to an 

efficient non-specific response. IL-2 is a potent stimulator of T cell proliferation and is 

commonly used as an adjuvant in immunotherapeutics (Dieli et al. 2007; Bennouna et 

al. 2008). It has also been shown to be a powerful inducer of NT cell-mediated 

cytotoxicity (Kelly Rogers et al. 2006; Jin et al. 1998; Zoll et al. 1998) and these cells 

may contribute to the Higher IL-2 induced cytotoxicity observed in HBV. However, it 

cannot be concluded whether cytotoxicity is a major contributor to immunity against 

HBV in our patient cohort or whether the higher levels of in cytolytic activity are a by-

product of an active antiviral response. Since liver damage is not evident in the majority 

of our study patients, it is likely that non-cytolytic mechanisms are primarily 

responsible for the control of HBV infection in these individuals. 

Overall, this study yields strong evidence that NT and  T cells are involved in 

the control of HBV replication. Furthermore, the frequencies of these innate T cells do 

not strongly correlate with differences in gender, age, viral load or disease severity but, 

although not statistically significant, higher frequencies of both cells are observed in 

patients with elevated ALT levels. This suggests that if not regulated, the expansions of 

these potent cytotoxic cells and inflammatory cytokine producers may lead to liver 

damage. Examination of demographically-matched controls also ensured that any 

differences observed between the control and patient group were not predominantly 

influenced by the race of the patients. 

Therefore, it is proposed that NK, NT and  T cells are important for the 

control of HBV infection. Our next aims are to determine if the cytokine profiles of 

innate lymphocytes reveal more about their antiviral functions in HBV and to discover 

which innate T cell subsets are expanded in this persistent infection. 
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4.1 Introduction 

In Chapter 3, it was shown that circulating innate lymphocytes are expanded in our 

patient cohort suggesting that these higher frequencies are indicative of a good immune 

response against HBV since the majority of the patients studied have low viral load and 

normal ALT levels. Although, viral clearance is not achieved, the majority of these 

patients appear to represent the best scenario for persistent HBV infection because viral 

load is maintained at a low level and there is no evidence of liver disease. Such immune 

control is found in other persistent infections such as CMV and EBV infection. Here, 

the cytokine profiles of these cells in HBV infection were investigated in order to gain 

knowledge of their functional capacity in immune responses against the virus. The 

frequencies of IFN--, IL-10-, IL-13- and IL-17-producing NK cells, NT cells and 

conventional T cells were investigated. This may inform us on the influence of innate 

lymphocytes on adaptive T cell responses in HBV infection. The cytokine profile of the 

total lymphocyte population was also examined to learn more about the overall immune 

response in these HBV-infected patients. 

IFN- is the classical antiviral cytokine and can elicit a variety of functions that 

promote viral clearance (Guidotti & Chisari 2001). These include the recruitment and 

activation of macrophages, NK cells and T cells, the polarisation of T cell responses, the 

upregulation of antigen processing, transport and MHC Class I expression in infected 

cells and the disruption of viral replication. IFN-is very important in the non-cytolytic 

control of virus infection which is often the preferred mechanism when large numbers 

of cells in large vital organs are infected (Guidotti & Chisari 2001). During infection by 

hepatotropic viruses such as HBV, strong cytolytic antiviral mechanisms could cause 

more harm than good and may contribute to the development of liver disease (Maini et 

al. 2000). One study in HBV-infected chimpanzees revealed that the clearance of HBV 

DNA from liver occurred at the same time as the appearance of IFN- and before the 

peak of T cell infiltration thus implying that viral clearance was mediated non-

cytolytically and that conventional T cells may not have been the source. Since NK and 

NKT cells are potent producers of the cytokine, they were proposed as the source of 

IFN- in this model (Guidotti et al. 1999). Therefore, a better approach to clearing HBV 

without causing significant liver damage might be a non-cytolytic mechanism mediated 

by cytokines such as IFN- and TNF-α. It was hypothesised that IFN- would be the 

predominant cytokine produced by innate lymphocytes in the successful immune 
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control of HBV. IFN- is released by NK cells, NT cells, iNKT cells and several subsets 

of γ T cells from mice and humans (Orange et al. 1996; Biron et al. 1999; Spada et al. 

2000; Kakimi et al. 2000; Kelly-Rogers et al. 2006; Eberl et al. 2009). It is 

representative of an active antiviral response and its expression by such cells is 

substantially higher in responders to HBV vaccination (Albarran et al. 2005). Therefore, 

the frequencies of IFN--expressing NK and NT cells in HBV-infected individuals and 

uninfected controls were quantified. 

IL-10 is an immunomodulatory cytokine produced by T cells, monocytes and 

NK cells and it is crucial in the regulation of inflammatory responses and the prevention 

of immune-mediated damage. However, its ability to suppress the differentiation of 

cells that produce antiviral cytokines has been manipulated by several viruses in order 

to evade antiviral immune responses (Taoufik et al. 1997; Stockl et al. 1999; Brady et al. 

2003). For instance HIV gp120 induces IL-10 production and inhibits IL-12 production 

by monocytes while CMV produces an IL-10 homologue that can elicit the same 

biological effects as human IL-10 (Taoufik et al. 1997; Kotenko et al. 2000). Also, 

HCV protein NS4 has been shown to induce IL-10 expression and in turn, dampen IFN-

, IL-12 and IL-17 production (Brady et al. 2003; Rowan et al. 2008). Therefore, an 

overriding regulatory response mediated by the production of IL-10 may promote viral 

persistence in HCV, HIV and CMV, and perhaps the same is true for HBV. The early 

stage of acute HBV infection is actually marked by a transient inhibition of NK and T 

cell responses that coincide with an increase in IL-10 at the time of HBV viremia (Dunn 

et al. 2009). This suggests that in persistent HBV infection, the virus may induce IL-10 

at an early stage in infection leading to inadequate antiviral immune responses and 

uncontrollable HBV replication. Furthermore, the higher expression of IL-10 in HCV 

infection is not only seen in Treg cells and monocytes, but also in NK cells, thus 

identifying an immunomodulatory role for innate lymphocytes in chronic HCV 

infection (De Maria et al. 2007). The frequencies of IL-10-expressing NK and NT cells 

were quantified in a cohort of relatively healthy HBV-infected patients compared to a 

group of uninfected controls to determine the immunomodulatory capacity of innate 

lymphocytes in a model of immune control. 

IL-13 is as a Th2 cytokine that promotes the humoral response while 

suppressing important components of the antiviral response i.e. macrophage 

inflammatory cytokine production and Th1 responses. Although IL-13 is predominantly 
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produced by T cells, NK and iNKT cells have also been shown to express it (Takahashi 

et al. 2002; Hepworth & Grencis 2009). Furthermore, iNKT cells isolated from 

individuals chronically-infected with HCV secrete higher levels of IL-13 than those 

taken from uninfected persons. It is possible that HCV induces this IL-13 production by 

iNKT cells as an immune subversion strategy in which Th2-biased iNKT cells can 

suppress antiviral responses and contribute to the persistence of HCV infection (Inoue 

et al. 2006).  Increases in iNKT-derived IL-13 have also been shown to correlate with 

the development of liver cirrhosis in viral hepatitis, thus supporting the hypothesis that 

innate lymphocytes exhibiting Th2 cytokine profiles may impede HBV clearance and 

promote disease progression (De Lalla 2004). To test this hypothesis, the frequencies of 

IL-13-producing innate lymphocytes and conventional T cells were examined in 

persons with controlled HBV infection, expecting that a Th2 bias would not be evident 

in such individuals.  

IL-17 is a pro-inflammatory cytokine whose importance is still not fully 

understood in the setting of viral infection. The inhibition of IL-17 production by the 

HCV protein NS4 suggests that the cytokine plays an active role in immunity against 

the virus (Rowan et al. 2008). Several studies in HBV have indicated that the cytokine 

is a prominent feature in chronic HBV and HBV-related disease. For instance, Zhang et 

al. (2010) have recently found expansions of circulating and intrahepatic IL-17-

producing CD4
+
 T cells in chronic HBV with increases positively correlating with 

disease progression. Similarly, Ge et al. (2010) have reported higher frequencies of 

circulating IL-17-producing with frequencies negatively correlating with frequencies of 

circulating IFN--producing T cells. Furthermore, IL-17 has also been implicated in 

HBV-related liver fibrosis (Xu et al.2009). These studies imply that IL-17 promotes 

liver disease but not necessarily viral clearance in HBV infection. The frequencies of 

IL-17-expressing NK, NT and conventional T cells were investigated in HBV-infected 

with low viral burden and with little or no evidence of liver disease to determine the 

abundance of the cytokine in what seems to be controlled HBV infection.  

RT-PCR was used to determine if the gene expression profiles of IFN-, IL-10 

and IL-17 were altered in PBMC from HBV-infected subjects, compared to control 

subjects. This would indicate whether the control of such responses was being 

performed at a protein level or a genetic level. It may also serve to support our results 

on cytokine expression by lymphocyte subsets. 
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4.2 IFN- expression by stimulated NK, NT, T and total lymphocytes from HBV 

patients and healthy controls 

4.2.1 IFN--producing NK cells in HBV patients and healthy control subjects 

Freshly isolated PBMC from 32 HBV-infected or 23 control subjects were incubated for 

4 hours in medium alone or with PMA/I or plate-bound anti-CD3 mAb and anti-CD28 

mAb, in the presence of Brefeldin A. FITC-labelled anti-IFN-mAb was used in 

combination with PE-labelled anti-CD56 mAb and PE-Cy5-labelled anti-CD3 mAb to 

identify IFN--producing NK (CD56
+
CD3

-
) cells (Figure 4.1B, C). It was observed that 

the MFI of CD56 expression was always decreased following PMA/I stimulation. Such 

findings are consistent with the findings of Kelly-Rogers et al. (2006). The frequencies 

of IFN--producing NK cells were calculated as a percentage of total NK cells (Figure 

4.2A) and as a percentage of lymphocytes (Figure 4.2B). 

In the absence of ex vivo stimulation, the mean frequencies of NK cells 

expressing IFN-were 3.5+/-0.3% and 6.4+/-0.8% of all NK cells in controls and HBV 

patients, respectively. As expected, these frequencies were not higher when PBMC were 

stimulated with the T cell mitogen, anti-CD3 and anti-CD28 mAb (2.4+/-0.2% and 

3.8+/-0.4% of NK cells). After PMA/I stimulation, means of 18.1+/-1.1% and 22.3+/-

1.8% of NK cells from controls and HBV patients expressed IFN-. This frequencies of 

IFN--expressing NK cells were slightly higher in HBV patients in the absence and 

presence of in vitro stimulation but none of these differences were statistically 

significant (Figure 4.2A, p=0.4, 0.2, 0.2). When calculated as a percentage of total 

lymphocytes, only 0.4+/-0.04% of lymphocytes from controls were CD56
+
CD3

-
 IFN-

+ 

lymphocytes, but this was significantly higher in PBMC from HBV patients (0.9+/-

0.1%; p = 0.01). These percentages were not higher when anti-CD3 and anti-CD28 

mAb treatment was used and they remained significantly higher in HBV patients 

compared to controls (0.4+/-0.07% and 0.8+/-0.2%; p=0.03). After PMA/I treatment, 

the percentages of IFN--expressing NK cells were increased to 2.1+/-0.2% and 2.6+/- 

0.3% in controls and HBV patients, respectively (Figure 4.2B).  

These data indicate that NK cells from patients with HBV infection are not more 

likely to produce IFN- than those NK cells from control subjects but that the overall 

number of IFN--expressing NK cells in PBMC are greater in HBV patients. 
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4.2.2 IFN--producing CD56
DIM

 and CD56
BRIGHT

 NK cells in HBV patients and 

healthy control subjects 

IFN--production was also examined among the CD56
DIM

 and CD56
BRIGHT 

subsets of 

NK cells and the frequencies of such cells were calculated as a percentage of the 

CD56
DIM

 and CD56
BRIGHT 

subsets and as a percentage of total lymphocytes (Figure 

4.1C).  

In the absence of ex vivo stimulation, the mean frequencies of CD56
DIM

 NK cells 

expressing IFN-were 4.4+/-0.3% and 8.3+/-1.3% of all CD56
DIM

 NK cells in controls 

and HBV patients, respectively. As expected, these frequencies were not increased 

when PBMC were stimulated with anti-CD3 and anti-CD28 mAb (3.1+/-0.3% and 

8.5+/-1.4% of CD56
DIM

 NK cells). After PMA/I stimulation, 17.7+/-1.2% of CD56
DIM

 

NK cells from controls expressed IFN- and this was significantly higher in HBV 

patients (24+/-1.6%; p=0.006, Figure 4.2C). When calculated as a percentage of total 

lymphocytes, 0.4+/-0.04% and 0.9+/-0.1% of resting lymphocytes in controls and HBV 

patients, respectively, were CD56
DIM

 NK cells expressing IFN-. This difference was 

significant (p=0.01). These percentages were not increased by anti-CD3 and anti-CD28 

mAb treatment (0.4+/-0.07% and 0.7+/-0.1%). However, after PMA/I treatment, 2+/-

0.2% and 2.4+/-0.3% of lymphocytes from controls and HBV patients, respectively, 

were IFN--expressing CD56
DIM

 NK cells (Figure 4.2D). The overall frequencies of 

stimulated lymphocytes that were IFN--expressing CD56
DIM

 NK cells were similar in 

HBV patients and controls. 

 In unstimulated PBMC, the mean frequencies of CD56
BRIGHT

 NK cells 

expressing IFN-were 36.4+/-4.8% and 38.6+/-4.4% of all CD56
BRIGHT

 NK cells in 

controls and HBV patients, respectively (Figure 4.2E). These frequencies were not 

increased when PBMC were stimulated with anti-CD3 and anti-CD28 mAb (6.8+/-1.2% 

and 14.9+/-1.5% of CD56
BRIGHT

 NK cells, p=0.01). After PMA/I stimulation, the 

numbers of CD56
BRIGHT

 NK cells shrunk considerably, due to the suspected 

downregulation of CD56 on the surface of the activated NK cells 22+/-4.1% of 

CD56
BRIGHT

 NK cells from controls expressed IFN- and this was significantly higher in 

HBV patients (38.2+/-4.5%; p=0.02). When calculated as a percentage of total 

lymphocytes, 0.04+/-0.01% and 0.05+/-0.01% of resting lymphocytes in controls and 

HBV patients, respectively, were CD56
BRIGHT

 NK cells expressing IFN- (Figure 4.2F). 

These percentages were not increased by anti-CD3 and anti-CD28 mAb treatment 
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(0.05+/-0.01% and 0.04+/-0.01%), however, after PMA/I treatment, 0.2+/-0.02% and 

0.2+/-0.04% of lymphocytes from controls and HBV patients, respectively, were IFN--

expressing CD56
BRIGHT

 NK cells. The overall frequencies of IFN--expressing 

CD56
BRIGHT

 NK cells were similar in both subject groups. 

These data suggest that both CD56
DIM

 and CD56
BRIGHT

 NK cells from HBV 

patients are more likely to produce IFN- than those from healthy control subjects.  
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Figure 4.1 
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Figure 4.2 
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4.2.3 The frequencies of IFN--producing NT cells are higher in HBV patients than 

in healthy control subjects 

FITC-labelled anti-IFN-mAb was used in combination with PE-labelled anti-CD56 

mAb and PE-Cy5-labelled anti-CD3 mAb to identify IFN--producing NT cells. IFN--

producing NT cells were identified as the CD56
+
CD3

+
 cells (Figure 4.1B) which also 

stained positively for IFN-(Figure 4.1D). The frequencies of IFN-

NT cells were 

calculated as a percentage of the total NT cell population (Figure 4.3A) and as a 

percentage of total lymphocytes (Figure 4.3B). 

In the absence of ex vivo stimulation, the mean frequencies of NT cells 

expressing IFN-were 2.8+/-0.6% and 2.1+/-0.3% of all NT cells in controls and HBV 

patients, respectively. These frequencies were increased when PBMC were stimulated 

with anti-CD3 and anti-CD28 mAb, (3.2+/-0.5% and 7.6+/-0.9% of NT cells; p<0.005) 

or with PMA/I (15.7+/-1.4% in controls and 45.2+/-4.2% of NT cells in HBV patients 

(Figure 4.3A, p<0.0001)).  These data suggest that NT cells in chronic HBV patients 

respond more effectively to stimulation in vitro than their counterparts in healthy 

control subjects. When calculated as a percentage of total lymphocytes, the frequencies 

of IFN--producing NT cells were less than 0.3% in all subjects. These percentages 

were slightly increased by anti-CD3 and anti-CD28 mAb treatment and again, the 

frequencies were significantly higher in HBV patients (0.1+/-0.02% and 0.4+/-0.05%; 

p<0.0001). Following PMA/I treatment, 0.5+/-0.05% of NT cells from controls 

expressed IFN-, and this was significantly higher in PBMC from HBV patients (2.2+/-

0.19% of lymphocytes; Figure 4.3B, p<0.001). 

These data indicate that NT cells from patients with HBV infection are more 

likely to produce IFN- in response to ex vivo stimulation and, therefore, along with NK 

cells, they make a significant contribution to the numbers of lymphocytes that produce 

IFN-. 

 

4.2.4 The frequencies of circulating IFN--producing conventional T cells are 

higher in HBV patients than in healthy control subjects 

FITC-labelled anti-IFN-mAb was used in combination with PE-labelled anti-CD56 

mAb and PE-Cy5-labelled anti-CD3 mAb to identify IFN--producing classical T cells 

i.e. CD56
-
CD3

+
 lymphocytes (Figure 4.1B, 4.1D). The frequencies of T cells were 
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calculated as percentages of the total CD56
-
 T cell population (Figure 4.3C) and as a 

percentage of lymphocytes (Figure 4.3D). 

As a percentage of the total T cell population, the means frequencies of IFN--

producing T cells were 1.1+/-0.1%, 3.7+/-0.53% and 1.7+/-0.2% in controls and 1.7+/-

0.3%, 10.8+/-1.1%, and 2.2+/-0.3%, in HBV patients for unstimulated, PMA/I-

stimulated and anti-CD3 and anti-CD28-stimulated PBMC, respectively (Figure 4.3C). 

The frequencies of IFN--producing T cells were consistently higher in HBV patients, 

with statistical significance when PMA/I-stimulated PBMC were used (p<0.0001). As a 

percentage of total lymphocytes, the mean frequencies of IFN--producing T cells were 

0.5+/-0.1% 2.4+/-0.4% and 0.9+/-0.2% in controls and 0.6+/-0.1%, 4.8+/-0.4%, and 

1.1+/-0.1%, in HBV patients for unstimulated, PMA/I-stimulated and anti-CD3 and 

anti-CD28-stimulated PBMC, respectively. Again, the frequencies of IFN--producing 

T cells were consistently higher in HBV patients, with statistical significance when 

PMA/I-stimulated PBMC were used (Figure 4.3D, p<0.0001). 

These data suggest that the occurrence of IFN--producing T cells is higher in 

chronic HBV patients than in healthy control subjects, upon stimulation in vitro. 

Furthermore, as both T and NT cell populations showed higher levels of IFN- 

production, it appears that there is a general overproduction of IFN- associated with 

HBV infection. 

 

4.2.5 The frequencies of circulating IFN--producing total lymphocytes are higher 

in HBV patients than in healthy control subjects 

FITC-labelled anti-IFN-mAb was used to identify IFN--producing lymphocytes. In 

the absence of stimulation, the frequencies of IFN--producing lymphocytes as a 

percentage of total lymphocytes ranged from 0.02% to 5.8% in control subjects and 

from 0.05% to 37.8% in HBV patients with mean frequencies of 1+/-0.2% and 4.8+/-

1.6%, respectively (Figure 4.3E). After PMA/I stimulation, the frequencies of total IFN-

-producing lymphocytes ranged from 0.47% to 34.2% in control subjects and from 

2.4% to 32.3% in HBV patients (Figure 4.3E), with means of 10+/-1.5% and 12.9+/-

1.3%, respectively. The frequencies of circulating IFN--producing lymphocytes were 

significantly higher in chronic HBV patients than in healthy control subjects both in the 

absence and presence of stimulation (p=0.01, p=0.05).  
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These data show that all T and NK cell subsets show higher IFN- expression 

which contributes to an overall higher level of IFN- production by the total lymphocyte 

population in the peripheral blood of HBV patients. 
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Figure 4.3 
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4.3 IL-10 expression by stimulated NK, NT, T and total lymphocytes from HBV 

patients and healthy controls 

Freshly isolated PBMC from 28 HBV-infected or 23 control subjects were incubated for 

4 hours in medium alone or with PMA/I or plate-bound anti-CD3 mAb and anti-CD28 

mAb, in the presence of brefeldin A. PE-labelled anti-IL-10mAb was used in 

combination with FITC-labelled anti-CD56 mAb and PE-Cy5-labelled anti-CD3 mAb 

to identify IL-10-producing NK cells, CD56
DIM

 and CD56
BRIGHT 

subsets of NK cells, 

NT cells, conventional T cells and total lymphocytes (Figure 4.4A, B). 

 

4.3.1 The frequencies of circulating IL-10-producing NK cells are slightly higher in 

HBV patients than in healthy control subjects 

The frequencies of IL-10-producing NK cells were 0.5+/-0.2% and 1.4+/-0.4% of all 

NK cells in controls and HBV patients, respectively. These frequencies were not 

increased when PBMC were stimulated with anti-CD3 and anti-CD28 mAb (0.6+/-0.2% 

and 1.8+/-0.5% of NK cells). After PMA/I stimulation, 0.7+/-0.2% of NK cells from 

controls expressed IL-10, but this was significantly higher in PBMC from HBV patients 

(2+/-0.5%; p=0.04, Figure 4.5A). When calculated as a percentage of total lymphocytes, 

the frequencies of IL-10-producing NK cells were consistently higher in HBV patients 

but constituted less than 0.5% of lymphocytes in all subjects. In vitro stimulation did 

not have a significant impact on these frequencies (Figure 4.5B). 

These data indicate that NK cells from HBV patients are more likely to produce 

IL-10 than their counterparts in healthy controls. However, their low occurrence 

suggests that they may have minimal impact on the regulation of inflammatory cytokine 

production in HBV infection.  

 

4.3.2 The frequencies of IL-10-producing CD56
DIM

 and CD56
BRIGHT

 NK cells are 

higher in the peripheral blood of HBV patients, compared to healthy control 

subjects 

IL-10-production was also examined among the CD56
DIM

 and CD56
BRIGHT 

subsets of 

NK cells. 

In the absence of ex vivo stimulation, the mean frequencies of CD56
DIM

 NK cells 

expressing IL-10were 0.6+/-0.1% and 1.7+/-0.4% of all CD56
DIM

 NK cells in controls 

and HBV patients, respectively. As expected, these frequencies were similar when 
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PBMC were stimulated with anti-CD3 and anti-CD28 mAb (0.7+/-0.1% and 1.9+/-0.5% 

of CD56
DIM

 NK cells). After PMA/I stimulation, 1+/-0.2% of CD56
DIM

 NK cells from 

controls expressed IL-10 but this was significantly higher in HBV patients (2.7+/-0.4%; 

p=0.002, Figure 4.5C). When calculated as a percentage of total lymphocytes, 0.04+/-

0.02% and 0.09+/-0.02% of lymphocytes in controls and HBV patients, respectively, 

were CD56
DIM

 NK cells expressing IL-10. These percentages were not significantly 

increased after anti-CD3 and anti-CD28 mAb treatment (0.04+/-0.02% and 0.1+/-0.02%) 

or PMA/I treatment (0.04+/-0.01% and 0.1+/-0.02%). However, PMA/I-stimulated 

CD56
DIM

 NK cells from HBV patients elicited higher responses than their counterparts 

from control subjects (p<0.0001, Figure 4.5D). 

 In the absence of ex vivo stimulation, the mean frequencies of CD56
BRIGHT

 NK 

cells expressing IL-10were 0.9+/-0.3% and 2.5+/-0.5% of all CD56
BRIGHT

 NK cells in 

controls and HBV patients, respectively. These frequencies were not increased when 

PBMC were stimulated with the T cell mitogen, anti-CD3 and anti-CD28 mAb (0.9+/-

0.3% and 2.4+/-0.5% of CD56
BRIGHT

 NK cells). However, after PMA/I stimulation, 

2.4+/-0.7% of CD56
BRIGHT

 NK cells from controls expressed IL-10 and this was 

significantly higher in HBV patients (3.8+/-0.7%; p=0.02, Figure 4.5E). When 

calculated as a proportion of total lymphocytes, frequencies of IL-10-expressing 

CD56
BRIGHT

 NK cells were consistently higher in HBV patients but at a percentage of 

less than 0.4% of all lymphocytes. It is therefore unlikely that they significantly 

contributed to overall IL-10 production and modulation of inflammatory responses 

(Figure 4.5F).  

These data indicate that both the IL-10-producing CD56
DIM

 and CD56
BRIGHT 

subsets of NK cells are higher in HBV patients but at such low frequencies, it is difficult 

to propose a possible role for such cells in immune responses against HBV. 
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Figure 4.4 
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Figure 4.5 
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4.3.3 The frequencies of circulating IL-10-producing NT cells are slightly higher in 

HBV patients than in healthy control subjects 

In the absence of ex vivo stimulation, the mean frequencies of NT cells expressing IL-

10were 1.7+/-0.3% and 2.8+/-0.4% of all NT cells in controls and HBV patients, 

respectively. These frequencies were increased when PBMC were stimulated with anti-

CD3 and anti-CD28 mAb, (2.4+/-0.4% and 3.2+/-0.5% of NT cells) or PMA/I (7.1+/-

1.1% in controls and 11.9+/-2.1% of NT cells in HBV patients, Figure 4.6A). Although 

frequencies of IL-10-producing NT cells were slightly higher in chronic HBV patients 

than healthy control subjects, statistical testing revealed that such differences were 

insignificant. When calculated as a percentage of total lymphocytes, the frequencies of 

IL-10-producing NT cells were 0.1+/-0.03% and 0.1+/-0.04%; in controls and HBV 

patients, respectively. These percentages were increased by anti-CD3 and anti-CD28 

mAb treatment (0.2+/-0.04% and 0.3+/-0.06%) and PMA/I treatment (0.2+/-0.04% and 

0.7+/-0.1%, Figure 4.6B).  

 These data suggest that the frequencies of circulating IL-10-producing NT cells 

are similar in control subjects and HBV patients. 

 

4.3.4 The frequencies of circulating IL-10-producing T cells are similar in HBV 

patients and in healthy control subjects 

In the absence of ex vivo stimulation, the mean frequencies of T cells expressing 

IL-10were 0.6+/-0.3% and 0.3+/-0.04% of all T cells in controls and HBV patients, 

respectively. These frequencies were increased when PBMC were stimulated with anti-

CD3 and anti-CD28 mAb, (1.5+/-0.6% and 0.6+/-0.1% of T cells) or PMA/I (0.8+/-

0.1% and 0.9+/-0.1%, Figure 4.6C). When calculated as a percentage of total 

lymphocytes, the frequencies of IL-10-producing T cells were 0.4+/-0.1% and 0.2+/-

0.01% in controls and HBV patients, respectively. These percentages were increased by 

anti-CD3 and anti-CD28 mAb treatment (0.9+/-0.3% and 0.3+/-0.04%) and PMA/I 

treatment (0.4+/-0.04% and 0.4+/-0.04%, Figure 4.6D).  

These data suggest that the frequencies of circulating IL-10-producing T cells 

are similar in control subjects and HBV patients and thus, play no significant role in 

immune responses against HBV. 
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4.3.5 There are no significant differences in the frequencies of circulating IL-10-

producing lymphocytes between HBV patients and healthy control subjects 

FITC-labelled anti-IL-10mAb was used to identify all IL-10-producing lymphocytes. In 

the absence of stimulation, the frequencies of IL-10-producing lymphocytes as a 

percentage of total lymphocytes ranged from 0.03% to 2.7% in control subjects and 

from 0% to 7% in HBV patients, with means of 0.58+/-0.14% and 1.5+/-0.37%, 

respectively (Figure 4.6E, p=0.16). In the presence of PMA/I stimulation, the 

frequencies of IL-10-producing lymphocytes as a percentage of total lymphocytes 

ranged from 0.13% to 9% in control subjects and from 0.01% to 12.1% in HBV patients, 

with means of 2.3+/-0.5% and 3.1+/-0.5%, respectively (Figure 4.6E, p=0.4).  

These data suggest that, despite the presence of higher frequencies of circulating 

IL-10-producing NK cells and slightly higher frequencies of circulating IL-10-

producing NT cells, the overall number of circulating IL-10-producing lymphocytes is 

similar in chronic HBV patients and healthy control subjects.  
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Figure 4.6 
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4.4 IL-13 expression by stimulated NK, NT, T and total lymphocytes from HBV 

patients and healthy controls 

Freshly isolated PBMC from HBV-infected or control subjects were incubated for 4 

hours in medium alone or with PMA/I or plate-bound anti-CD3 mAb and anti-CD28 

mAb, in the presence of brefeldin A. PE-labelled anti-IL-13mAb was used in 

combination with FITC-labelled anti-CD56 mAb and PE-Cy5-labelled anti-CD3 mAb 

to identify IL-13-producing NK cells, NT cells, conventional T cells and total 

lymphocytes (Figure 4.7A, B). 

 

4.4.1 Frequencies of circulating IL-13-producing NK cells are low in both control 

subjects and HBV patients but, responses to in vitro stimulation are significantly 

reduced in HBV infection 

In the absence of ex vivo stimulation, the mean frequencies of NK cells expressing IL-

13were 2.7+/-0.3% and 2+/-0.2% of all NK cells in controls and HBV patients, 

respectively. These frequencies were not increased when PBMC were stimulated with 

anti-CD3 and anti-CD28 mAb (3.9+/-1% and 2.4+/-0.5% of NK cells). However, after 

PMA/I stimulation, 10.4+/-1.1% of NK cells from controls expressed IL-13, but this 

was significantly lower in PBMC from HBV patients (5+/-0.8%; p<0.05, Figure 4.8A). 

When calculated as a percentage of total lymphocytes, the mean frequencies of IL-13-

producing NK cells were 0.2+/-0.1% and 0.2+/-0.04% in controls and HBV patients and 

0.3+/-0.1% and 0.2+/-0.1% following stimulation with anti-CD3 and anti-CD28 mAb. 

PMA/I stimulation increased percentages of IL-13-producing NK cells to 0.9+/-0.04% 

in controls and 0.6+/-0.1% in HBV patients (Figure 4.8B). 

These data indicate that NK cells from HBV patient are less likely to produce 

IL-13 than their counterparts in healthy controls. 
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Figure 4.7 
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Figure 4.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 178 

4.4.2 Frequencies of circulating IL-13-producing NT cells are low in both control 

subjects and HBV patients and, there are no significant differences between the 

two groups 

In the absence of ex vivo stimulation, the mean frequencies of NT cells expressing IL-

13were 1.8+/-0.4% and 1.8+/-0.3% of all NT cells in controls and HBV patients, 

respectively. These frequencies were increased when PBMC were stimulated with anti-

CD3 and anti-CD28 mAb (7.9+/-1.6% and 6.6+/-0.7% of NT cells) or PMA/I (12.2+/-

1.9% and 12.1+/-2.4% of NT cells, Figure 4.9A). When calculated as a percentage of 

total lymphocytes, the mean frequencies of IL-13-producing NT cells were 0.2+/-0.03% 

and 0.3+/-0.1% in controls and HBV patients and 0.3+/-0.1% and 0.4+/-0.1% following 

stimulation with anti-CD3 and anti-CD28 mAb. PMA/I stimulation increased 

percentages of IL-13-producing NT cells to 0.4+/-0.1% in controls and 0.7+/-0.2% in 

HBV patients (Figure 4.9B). 

These data show that the numbers of circulating IL-13–producing NT cells are 

unchanged in HBV infection. 

 

4.4.3 Frequencies of circulating IL-13-producing T cells are higher in HBV 

infection 

In the absence of ex vivo stimulation, the mean frequencies of T cells expressing IL-

13were 0.5+/-0.1% and 0.8+/-0.1% of all T cells in controls and HBV patients, 

respectively (p<0.05). These frequencies were increased when PBMC were stimulated 

with anti-CD3 and anti-CD28 mAb (1.4+/-0.7% and 1.4+/-0.5% of T cells) or PMA/I 

(1.1+/-0.3% in controls and 3.6+/-0.9% in HBV patients, p=0.002, Figure 4.9C). When 

calculated as a percentage of total lymphocytes, the mean frequencies of IL-13-

producing T cells were 0.4+/-0.1% and 0.8+/-0.2% in controls and HBV patients 

(p=0.0005), and 1.1+/-0.7% and 1.4+/-0.7% following stimulation with anti-CD3 and 

anti-CD28 mAb. PMA/I stimulation increased percentages of IL-13-producing T cells 

to 0.8+/-0.3% in controls and this increase was significantly enhanced in HBV patients 

(3.2+/-1.3%; p=0.0008, Figure 4.9D). 

These data show that the frequencies of IL-13-producing T cells are significantly 

higher in HBV infection. 
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4.4.4 The frequencies of circulating IL-13-producing lymphocytes are higher in 

HBV patients than in healthy control subjects 

In PBMC incubated in medium alone, the frequencies of IL-13-producing lymphocytes 

as a percentage of total lymphocytes ranged from 0.06% to 1.1% in control subjects and 

from 0.43% to 2.3% in HBV patients, with means of 0.41+/-0.09% and 1.3+/-0.18%, 

respectively (Figure 4.9E, p=0.004).  After PMA/I stimulation, the frequencies of IL-

13-producing lymphocytes as a percentage of total lymphocytes ranged from 0.02% to 

2.4% in control subjects and from 1.2% to 7.5% in HBV patients, with means of 0.86+/-

0.22% and 2.6+/-0.5%, respectively (Figure 4.9E, p=0.01).  

These data suggest that higher frequencies of circulating IL-13-producing T cells 

contribute to an overall higher number of circulating IL-13-producing lymphocytes in 

chronic HBV infection. 
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Figure 4.9 
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4.5 IL-17 expression by stimulated NK, NT, T and total lymphocytes from HBV 

patients and healthy controls 

Freshly isolated PBMC from HBV-infected or control subjects were incubated for 4 

hours in medium alone or with PMA/I or plate-bound anti-CD3 mAb and anti-CD28 

mAb, in the presence of brefeldin A. PE-labelled anti-IL-17mAb was used in 

combination with FITC-labelled anti-CD56 mAb and PE-Cy5-labelled anti-CD3 mAb 

to identify IL-17-producing NK cells, NT cells, conventional T cells and total 

lymphocytes (Figure 4.10A, B). 

 

4.5.1 There are no significant differences in the frequencies of circulating IL-17-

producing NK cells between HBV patients and healthy control subjects 

In the absence of ex vivo stimulation, the mean frequencies of NK cells expressing IL-

17were 2.6+/-1% and 1.9+/-0.4% of all NK cells in controls and HBV patients, 

respectively. These frequencies were not increased anti-CD3 and anti-CD28 mAb 

(3.4+/-1% and 2.8+/-1.1% of NK cells). However, after PMA/I stimulation, 8.8+/-2% of 

NK cells from controls expressed IL-17, and this was similar in PBMC from HBV 

patients (8.7+/-3.2%, Figure 4.11A). When calculated as a percentage of total 

lymphocytes, the mean frequencies of IL-17-producing NK cells were 0.3+/-0.1% and 

0.2+/-0.04% in controls and HBV patients and 0.3+/-0.1% and 0.3+/-0.1% following 

stimulation with anti-CD3 and anti-CD28 mAb. PMA/I stimulation increased 

percentages of IL-17-producing NK cells to 1+/-0.2% in controls and 0.9+/-0.3% in 

HBV patients (Figure 4.11B). 

These data show that there are no significant differences in the frequencies of 

circulating IL-17-producing NK cells between HBV patients and healthy control 

subjects. 
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Figure 4.10 
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Figure 4.11 
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4.5.2 There are no significant differences in the frequencies of circulating IL-17-

producing NT cells between HBV patients and healthy control subjects 

In the absence of ex vivo stimulation, the mean frequencies of NT cells expressing IL-

17were 2.3+/-0.5% and 1.9+/-0.4% of all NT cells in controls and HBV patients, 

respectively. These frequencies were increased when stimulated with anti-CD3 and anti-

CD28 mAb (11.1+/-3.5% and 10.7+/-3.6%) or with PMA/I (12.4+/-1.9% and 16.1+/-

6.7%, Figure 4.12A). When calculated as a percentage of total lymphocytes, the mean 

frequencies of IL-17-producing NT cells were 0.3+/-0.1% and 0.3+/-0.1% in controls 

and HBV patients and 0.4+/-0.1% and 0.5+/-0.2% following stimulation with anti-CD3 

and anti-CD28 mAb. PMA/I stimulation increased percentages of IL-17-producing NT 

cells to 0.4+/-0.1% in controls and 0.9+/-0.4% in HBV patients (Figure 4.12B). 

These data show that the frequencies of circulating IL-17-producing NT cells are 

similar in HBV patients and healthy control subjects. 

 

4.5.3 Enhanced responses of circulating IL-17-producing T cells to in vitro 

stimulation in HBV infection 

In the absence of ex vivo stimulation, the mean frequencies of T cells expressing IL-

17were 0.4+/-0.1% and 0.7+/-0.1% of all T cells in controls and HBV patients, 

respectively. These frequencies were increased when PBMC were stimulated with, anti-

CD3 and anti-CD28 mAb (1.5+/-0.3% and 1.6+/-0.3% of T cells) or with PMA/I (1.5+/-

0.3% and 3.5+/-0.5% of T cells; p=0.01, Figure 4.12C). When calculated as a 

percentage of total lymphocytes, the mean frequencies of IL-17-producing T cells were 

0.4+/-0.1% and 0.7+/-0.1% in controls and HBV patients, and 0.5+/-0.2% and 1.1+/-

0.3% following stimulation with anti-CD3 and anti-CD28 mAb. PMA/I stimulation 

increased percentages of IL-17-producing T cells to 0.6+/-0.1% in controls and 1.4+/-

0.3% in HBV patients (Figure 4.12D). 

These data show that there are no significant differences in the frequencies of 

circulating IL-17-producing T cells between HBV patients and healthy control subjects 

but, as a proportion of CD56
-
 T cells, IL-17-producing T cells respond superiorly in 

HBV infection. 
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4.5.4 The frequencies of circulating IL-17-producing lymphocytes are similar in 

HBV patients and healthy control subjects 

In PBMC incubated in medium alone, the frequencies of IL-17-producing lymphocytes 

as a percentage of total lymphocytes ranged from 0.02% to 1.6% in control subjects and 

from 0.09% to 2.3% in HBV patients, with means of 0.48+/-0.11% and 0.7+/-0.21%, 

respectively (Figure 4.12E, p=0.9). After PMA/I stimulation, the frequencies of IL-17-

producing lymphocytes as a percentage of total lymphocytes ranged from 0.26% to 

2.5% in control subjects and from 0.26% to 5.5% in HBV patients, with means of 

1.15+/-0.17% and 1.3+/-0.37%, respectively (Figure 4.12E, p=0.6). 

These data suggest that the frequencies of IL-17-producing lymphocytes are not 

significantly different in HBV infection. 
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Figure 4.12 
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4.6 Cytokine RNA levels in whole PBMC isolated from HBV patients and healthy 

controls 

4.6.1 Significantly higher levels of IFN- RNA in PBMC isolated from HBV 

patients, compared with those taken from healthy control subjects 

Quantitative RT-PCR for IFN- was performed on cDNA from the PBMC of 10 HBV 

patients and 10 healthy control subjects. The duplicate Ct values for both IFN-  and β-

actin were very close (<1.5 cycles apart) which suggests that minimal pipetting error 

occurred. The Ct Values for β-actin ranged from 16.8 to 19.8 in control subjects and 

from 17.5 to 18.9 in HBV patients. These values were considered to be within or close 

to range, suggesting that the cDNA was of acceptable quality and quantity (Figure 

4.13A). The slope of the standard curves for both β-actin and IFN- was within range, 

with a slope of -3.4 and -3.2, respectively (Figure 4.13B). This confirms that the 

standard curves were created successfully. Finally the standard curve axes were 

switched and the new equation of the line was used to calculate the copy numbers (CN) 

for each sample by substituting the Ct value for x (Figure 4.13C).  For example, after 

switching the axes, the equation of the line for the IFN- standard curve became y = -

0.3101x + 12.606. By substituting a Ct value of 27.08 for x and solving for y (y = -

0.3101*(27.08) + 12.606), a copy number of 3.99 was computed. The corrected copy 

number (CCN) was then calculated by normalisation against the corresponding copy 

number for β-actin. The corrected copy numbers of IFN-  ranged from 10
2.3 

to 10
4.5

 in 

healthy control subjects  with a mean copy number of 10
3.3

 +/- 10
0.02

 and from 10
3.6

 to 

10
4.4

 in HBV patients with a mean copy numbers of 10
4
 +/- 10

0.07
(Figure 4.13D, 

p=0.008).  

These data support the results from the cytokine production assay and show that 

in addition to higher IFN- protein levels, the copy number of IFN- RNA is 

significantly higher in PBMC isolated from persons with HBV infection. This also 

indicates that the cytokine-mediated antiviral responses to HBV infection are regulated 

at the genetic level and that certain HBV proteins may interact with transcription factors 

that regulate IFN- expression. 
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Figure 4.13 
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4.6.2 Similar levels of IL-10 RNA in PBMC isolated from HBV patients and 

healthy control subjects 

QRT-PCR for IL-10 was performed on cDNA from the PBMC of 10 HBV patients and 

10 healthy control subjects. The duplicate Ct values for both IL-10 and β-actin were 

very close which suggests that the occurrence of pipetting error was minimal. The Ct 

Values for β-actin ranged from 17.5 to 18.7 in control subjects and from 16.7 to 18.7 in 

HBV patients. These values were considered to be within or close to range, suggesting 

that the cDNA was of acceptable quality and quantity (Figure 4.14A). The slope of the 

standard curves for both β-actin and IL-10 was within range, with a slope of -3.4 and -

3.2, respectively (Figure 4.14B). This confirms that the standard curves were created 

successfully. Finally the standard curve axes were switched and the new equation of the 

line was used to calculate the copy numbers for each sample by substituting the Ct value 

for x (Figure 4.14C). The corrected copy numbers of IL-10  ranged from 10
1.9 

to 10
3.4

 in 

healthy control subjects with a mean copy number of 10
2.5

 + / - 10
0.21

 and, from 10
1.6

 to 

10
3.2

 in HBV patients with a mean copy numbers of 10
2.6

 + / - 10
0.21 

(Figure 4.14D, 

p=0.8).  

These data show that the copy number of IL-10 RNA is similar in PBMC 

isolated from HBV patients and healthy control subjects. This is in agreement with what 

was observed in the total lymphocyte population. This indicates that there is not a strong 

anti-inflammatory response at play in such subjects and that the higher frequencies of 

IL-10-producing innate lymphocytes may be a control measure to prevent 

uncontrollable IFN- production and immune-mediated damage 
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Figure 4.14 
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4.6.3 Undetectable levels of IL-17A RNA in PBMC isolated from HBV patients and 

healthy control subjects 

QRT-PCR for IL-17A was carried out on cDNA from the PBMC of 8 HBV patients and 

9 healthy control subjects. The duplicate Ct values for β-actin were very close which 

suggests that minimal pipetting error occurred. The Ct Values for β-actin ranged from 

17.7 to 18.9 in control subjects and from 16.7 to 18.7 in HBV patients. These values 

were considered to be within or close to range, suggesting that the cDNA was of 

acceptable quality and quantity (Figure 4.15A). The Ct values for IL-17A were 

undetermined suggesting that IL-17A copy numbers in PBMC of HBV patients and 

healthy control subjects are too low to be detected by qRT-PCR. The slopes of the 

standard curves for β-actin and IL-17A were within range, with a slope of -3.5 and -3.2, 

respectively (Figure 4.15B). This confirms that the standard curves were created 

successfully and more importantly, that IL-17A primers and probes worked. The 

standard curve axes were not switched because the corrected copy numbers of IL-17A 

could not be calculated due to undetermined Ct values. All of the experimental controls 

used suggest that this is due to very low levels of IL-17A RNA. 

These data suggest that the copy number of IL-17A RNA is too low to be 

detected in PBMC isolated from HBV patients and healthy control subjects. It is 

possible that IL-17A RNA may only be detected in subjects where its production is 

significantly augmented and a pro-inflammatory response prevails. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 192 

Figure 4.15 
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4.7 IFN--producing lymphocytes in HBV patient groups 

4.7.1 The frequencies of circulating IFN--producing NK cells do not correlate 

with viral load, disease severity, gender or age. 

The frequencies of circulating IFN--producing NK cells were calculated following 

incubation in medium alone or medium containing with PMA/I or anti-CD3 mAb and 

anti-CD28 mAb. The frequencies of IFN--producing NK cells were quantified as a 

percentage of total NK cells (Figure 4.16A-D (left)) and as a percentage of lymphocytes 

(Figure 4.16A-D (right)), and compared between 19 - 25 HBV patients within the study 

cohort, based on clinical parameters.  All data are shown in Tables 4.1 and 4.2. A 

Mann-Whitney test was carried out to ascertain whether there were differences in the 

frequencies of IFN--producing NK cells between HBV-infected individuals with low 

viral load (less than 100,000 copies / ml) and high viral load (100,000 – 3.2x10
8 

copies / 

ml), and between subjects with low ALT (less than 40 IU/ml) and high ALT (greater 

than 40 IU/ml). A Mann-Whitney test was also used to determine any differences based 

on gender and age. All p-values are shown in Tables 4.1 and 4.2. No statistical 

differences were found. Furthermore, spearman correlation testing revealed that there 

were no correlations between frequencies of IFN--producing NK cells and disease 

severity, gender or age. All r-values are shown in Tables 4.1 and 4.2. 

All data shown suggest that the frequencies of circulating IFN--producing NK 

cells do not correlate with viral load, disease severity, gender or age. 
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Table 4.1 

The frequencies of circulating IFN--producing NK cells in HBV patient subsets: 

The frequencies of IFN--producing NK cells (shown as a percentage of total NK cells) 

within divisions of the HBV patient study cohort, based on varying ALT, viral load, age 

and gender. 

 

 Condition ALT  

<40 

 

ALT  

>40 

Low 

Viral 

Load 

High 

Viral 

Load 

Age  

<35 

Age 

35-

50 

M* F* 

Mean% Medium 8.4 4.5 7.3 6.5 7.2 6.7 5.6 8.9 

 PMA/I 22.4 19.1 20.9 22.5 24.3 17.4 18.4 25.5 

 anti-CD3 4.5 1.8 4.1 3.1 3.9 3.6 3.7 3.9 

          

SEM % Medium 1.3 1.2 1.4 1.1 1.3 1.4 1 1.5 

 PMA/I 3.1 2.4 2.9 3 3 2.5 2.5 3.2 

 anti-CD3 0.6 0.4 0.6 0.8 0.7 0.5 0.6 0.7 

          

N* Medium 18 7 17 8 15 10 14 11 

 PMA/I 13 6 13 6 11 8 11 8 

 anti-CD3 15 5 15 5 13 7 10 10 

          

p* Medium  0.2  1  0.9  0.2 

 PMA/I  0.7  0.8  0.1  0.2 

 anti-CD3  0.1  0.4  0.9  0.9 

          

r* Medium  -0.4  -0.1  0.007  - 

 PMA/I  -0.3  -0.3  -0.4  - 

 anti-CD3  -0.5  0.04  -0.1  - 

          

 

 

* Condition refers to the 4 hour incubation of the cells in medium alone or, in medium 

treated with PMA/I, prior to staining for flow cytometry. Low viral load is below 

10,000 copies / ml, high viral load ranges from 100,000 to 3.2x10
8
 copies / ml. N* is 

the number of subjects. The p-value p* is a product of the Mann-Whitney U-test and, 

indicates statistical significance when it falls below 0.05. The correlation coefficient r* 

is a product of the Spearman Correlation test and a value close to 1 or -1 indicates a 

linear correlation between two arrays of numbers. The columns with headers M* and F* 

comprise the male and female subjects, respectively.  
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Table 4.2 

The frequencies of circulating IFN--producing NK cells in HBV patient subsets: 

The frequencies of IFN--producing NK cells (shown as a percentage of lymphocytes) 

within divisions of the HBV patient study cohort, based on varying ALT, viral load, age 

and gender. 

 

 Condition ALT  

<40 

 

ALT  

>40 

Low 

Viral 

Load 

High 

Viral 

Load 

Age  

<35 

Age 

35-

50 

M* F* 

Mean% Medium 1.1 0.6 0.9 1.1 1.1 0.7 0.9 0.9 

 PMA 3.3 1.6 3 2.4 3.2 2.3 2.4 3.4 

 anti-CD3 1.1 0.6 0.9 0.9 0.9 0.8 0.7 1.1 

          

SEM % Medium 0.2 0.2 0.2 0.2 0.3 0.1 0.2 0.2 

 PMA 0.5 0.3 0.5 0.5 0.5 0.4 0.5 0.4 

 anti-CD3 0.3 0.05 0.2 0.2 0.3 0.1 0.1 0.3 

          

N* Medium 18 7 17 8 15 10 14 11 

 PMA 13 6 13 6 11 8 11 8 

 anti-CD3 15 5 15 5 13 7 10 10 

          

p* Medium  0.1  0.9  0.8  0.6 

 PMA  0.1  0.5  0.3  0.1 

 anti-CD3  0.9  0.5  0.4  1 

          

r* Medium  -0.3  0.2  -0.1  - 

 PMA  -0.3  -0.1  -0.4  - 

 anti-CD3  -0.3  -0.04  0.01  - 

          

 

 

* Condition refers to the 4 hour incubation of the cells in medium alone or, in medium 

treated with PMA/I, prior to staining for flow cytometry. Low viral load is below 

10,000 copies / ml, high viral load ranges from 100,000 to 3.2x10
8
 copies / ml. N* is 

the number of subjects. The p-value p* is a product of the Mann-Whitney U-test and, 

indicates statistical significance when it falls below 0.05. The correlation coefficient r* 

is a product of the Spearman Correlation test and a value close to 1 or -1 indicates a 

linear correlation between two arrays of numbers. The columns with headers M* and F* 

comprise the male and female subjects, respectively.  
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Figure 4.16 
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4.7.2 The frequencies of circulating IFN--producing NT cells do not correlate with 

viral load, disease severity, gender or age. 

The frequencies of circulating IFN--producing NT cells were calculated following 

incubation in medium alone or medium containing with PMA/I or anti-CD3 mAb and 

anti-CD28 mAb. The frequencies of IFN--producing NT cells were quantified as a 

percentage of total NT cells (Figure 4.17A-D (left)) and as a percentage of lymphocytes 

(Figure 4.17A-D (right)), and compared between 17 - 21 HBV patients within the study 

cohort, based on clinical parameters.  All data are shown in Tables 4.3 and 4.4.  A 

Mann-Whitney test was carried out to ascertain whether there were differences in the 

frequencies of IFN--producing NT cells between HBV-infected individuals with low 

viral load (less than 100,000 copies / ml) and high viral load (100,000 – 3.2x10
8 

copies / 

ml), and between subjects with low ALT (less than 40 IU/ml) and high ALT (greater 

than 40 IU/ml). A Mann-Whitney test was also used to determine differences based on 

gender and age. All p-values are shown in Tables 4.3 and 4.4. No statistical differences 

were found. Furthermore, Spearman correlation testing revealed that there were no 

correlations between frequencies of IFN--producing NT cells and disease severity, 

gender or age. All r-values are shown in Tables 4.3 and 4.4. 

All data shown suggest that the frequencies of circulating IFN--producing NT cells do 

not correlate with viral load, disease severity, gender or age. 
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Table 4.3 

The frequencies of circulating IFN--producing NT cells in HBV patient subsets: 

The frequencies of IFN--producing NT cells (shown as a percentage of total NT cells) 

within divisions of the HBV patient study cohort, based on varying ALT, viral load, age 

and gender. 

 

 Condition ALT  

<40 

 

ALT  

>40 

Low 

Viral 

Load 

High 

Viral 

Load 

Age  

<35 

Age 

35-

50 

M* F* 

Mean% Medium 2 1.7 1.9 1.8 1.6 2.3 1.7 2.1 

 PMA 41.1 37.4 42.3 36.9 39.4 40.6 35.4 46.1 

 anti-CD3 7.1 8.5 7.7 7.3 8.6 5.9 6.2 9.7 

          

SEM % Medium 0.4 0.2 0.4 0. 0.3 0.5 0.4 0.3 

 PMA 5.6 2.1 4.9 3.5 5.4 4 4.2 5.3 

 anti-CD3 1.4 1 1.3 1.2 1.4 0.8 1.2 1.3 

          

N* Medium 15 6 14 7 12 9 13 8 

 PMA 13 6 15 6 10 8 11 8 

 anti-CD3 11 6 12 5 11 6 10 7 

          

p* Medium  0.9  0.9  0.5  0.4 

 PMA  0.7  0.7  0.7  0.3 

 anti-CD3  0.5  1  0.3  0.2 

          

r* Medium  -0.1  0.1  0.3  - 

 PMA  0.0004  -0.01  0.1  - 

 anti-CD3  0.2  0.2  -0.1  - 

          

 

 

* Condition refers to the 4 hour incubation of the cells in medium alone or, in medium 

treated with PMA/I, prior to staining for flow cytometry. Low viral load is below 

10,000 copies / ml, high viral load ranges from 100,000 to 3.2x10
8
 copies / ml. N* is 

the number of subjects. The p-value p* is a product of the Mann-Whitney U-test and, 

indicates statistical significance when it falls below 0.05. The correlation coefficient r* 

is a product of the Spearman Correlation test and a value close to 1 or -1 indicates a 

linear correlation between two arrays of numbers. The columns with headers M* and F* 

comprise the male and female subjects, respectively.  
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Table 4.4 

The frequencies of circulating IFN--producing NT cells in HBV patient subsets: 

The frequencies of IFN--producing NT cells (shown as a percentage of lymphocytes) 

within divisions of the HBV patient study cohort, based on varying ALT, viral load, age 

and gender. 

 

 Condition ALT  

<40 

 

ALT  

>40 

Low 

Viral 

Load 

High 

Viral 

Load 

Age  

<35 

Age 

35-

50 

M* F* 

Mean% Medium 0.1 0.1 0.1 0.1 0.1 0.1 0.08 0.1 

 PMA 2 1.8 2 1.8 2 1.9 1.8 2.2 

 anti-CD3 0.4 0.5 0.4 0.4 0.4 0.3 0.3 0.6 

          

SEM % Medium 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 

 PMA 0.3 0.1 0.3 0.2 0.2 0.3 0.2 0.2 

 anti-CD3 0.1 0.1 0.1 0.1 0.1 0.04 0.04 0.1 

          

N* Medium 15 6 14 7 12 9 13 8 

 PMA 13 6 15 6 10 8 11 8 

 anti-CD3 11 6 12 5 11 6 10 7 

          

p* Medium  0.7  0.9  0.8  0.2 

 PMA  0.5  0.6  1  0.5 

 anti-CD3  0.3  0.9  0.5  0.07 

          

r* Medium  -0.1  0.1  0.2  - 

 PMA  0.02  0.01  0.1  - 

 anti-CD3  0.3  0.2  -0.1  - 

          

 

 

* Condition refers to the 4 hour incubation of the cells in medium alone or, in medium 

treated with PMA/I, prior to staining for flow cytometry. Low viral load is below 

10,000 copies / ml, high viral load ranges from 100,000 to 3.2x10
8
 copies / ml. N* is 

the number of subjects. The p-value p* is a product of the Mann-Whitney U-test and, 

indicates statistical significance when it falls below 0.05. The correlation coefficient r* 

is a product of the Spearman Correlation test and a value close to 1 or -1 indicates a 

linear correlation between two arrays of numbers. The columns with headers M* and F*  

comprise the male and female subjects, respectively.  
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Figure 4.17 
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4.7.3 The frequencies of circulating IFN--producing T cells do not correlate with 

viral load, disease severity, gender or age. 

The frequencies of circulating IFN--producing T cells were calculated following 

incubation in medium alone or medium containing with PMA/I or anti-CD3 mAb and 

anti-CD28 mAb. The frequencies of IFN--producing T cells were quantified as a 

percentage of total T cells (Figure 4.18 A-D (left)) and as a percentage of lymphocytes 

(Figure 4.18 A-D (right)), and compared between 17 - 25 HBV patients within the study 

cohort, based on clinical parameters.  All data are shown in Tables 4.5 and 4.6. A 

Mann-Whitney test was carried out to ascertain whether there were differences in the 

frequencies of IFN--producing T cells between HBV-infected individuals with low 

viral load (less than 100,000 copies / ml) and high viral load (100,000 – 3.2x10
8 

copies / 

ml), and between subjects with low ALT (less than 40 IU/ml) and high ALT (greater 

than 40 IU/ml). A Mann-Whitney test was also used to determine an differences based 

on gender and age. All p-values are shown in Tables 4.5 and 4.6. As a proportion of T 

cells, frequencies of IFN--producing T cells isolated from HBV patients with high 

ALT and high viral load appear to be significantly more responsive to stimulation with 

anti-CD3 mAb and anti-CD28 mAb (p=0.04 and p=0.03, respectively). However, 

spearman correlation testing did not indicate any significant correlations between 

increasing viral load, disease severity and numbers of IFN--producing T cells. 

Furthermore, as a proportion of total lymphocytes, these statistical differences were not 

observed. All other p and r-values are shown in Tables 4.5 and 4.6, and suggest that 

there are no differences in the frequencies of IFN--producing T cells between HBV 

patient groups. 

Overall, these data suggest that the frequencies of circulating IFN--producing T 

cells do not correlate with viral load, disease severity, gender or age. 
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Table 4.5 

The frequencies of circulating IFN--producing T cells in HBV patient subsets: The 

frequencies of IFN--producing T cells (shown as a percentage of total T cells) within 

divisions of the HBV patient study cohort, based on varying ALT, viral load, age and 

gender. 

 

 Condition ALT  

<40 

 

ALT  

>40 

Low 

Viral 

Load 

High 

Viral 

Load 

Age  

<35 

Age 

35-

50 

M* F* 

Mean% Medium 1.4 2.2 1.7 1.4 1.7 1.4 1.2 2.1 

 PMA 9.6 15.8 11.7 11.2 10.3 13.2 13.5 8.8 

 anti-CD3 1.6 2.9 1.7 3 2.1 2 2.6 1.5 

          

SEM % Medium 0.4 0.5 0.5 0.3 0.5 0.3 0.3 0.5 

 PMA 0.6 2.1 1.6 1.1 1.2 1.7 1.6 0.7 

 anti-CD3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 

          

N* Medium 17 8 17 8 15 10 14 11 

 PMA 13 6 13 6 11 8 11 8 

 anti-CD3 11 6 12 5 11 6 9 8 

          

p* Medium  0.4  1  0.9  0.4 

 PMA  0.2  0.9  0.3  0.1 

 anti-CD3  0.04  0.03  0.9  0.07 

          

r* Medium  0.5  0.01  0.1  - 

 PMA  0.1  0.2  0.1  - 

 anti-CD3  0.3  0.4  0.03  - 

          

 

 

* Condition refers to the 4 hour incubation of the cells in medium alone or, in medium 

treated with PMA/I, prior to staining for flow cytometry. Low viral load is below 

10,000 copies / ml, high viral load ranges from 100,000 to 3.2x10
8
 copies / ml. N* is 

the number of subjects. The p-value p* is a product of the Mann-Whitney U-test and, 

indicates statistical significance when it falls below 0.05. The correlation coefficient r* 

is a product of the Spearman Correlation test and a value close to 1 or -1 indicates a 

linear correlation between two arrays of numbers. The columns with headers M* and F*  

comprise the male and female subjects, respectively.  
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Table 4.6 

The frequencies of circulating IFN--producing T cells in HBV patient subsets: The 

frequencies of IFN--producing T cells (shown as a percentage of lymphocytes) within 

divisions of the HBV patient study cohort, based on varying ALT, viral load, age and 

gender. 

 

 Condition ALT  

<40 

 

ALT >40 Low 

Viral 

Load 

High 

Viral 

Load 

Age 

< 

35 

Age 

35-

50 

M* F* 

Mean% Medium 0.5 0.6 0.5 0.6 0.5 0.6 0.5 0.5 

 PMA 4.8 3.4 4.5 4.1 4.2 4.7 3.9 5 

 anti-CD3 0.9 0.9 0.9 0.9 1 0.7 0.8 1.1 

          

SEM % Medium 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 

 PMA 0.6 0.3 0.5 0.5 0.5 0.6 0.5 0.5 

 anti-CD3 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 

          

N* Medium 17 8 17 8 15 10 14 11 

 PMA 13 6 13 6 11 8 11 8 

 anti-CD3 11 6 12 5 11 6 9 8 

          

p* Medium  0.5  0.7  0.5  0.4 

 PMA  0.5  0.9  0.5  0.3 

 anti-CD3  0.8  1  0.7  0.4 

          

r* Medium  -0.01  0.2  0.003  - 

 PMA  -0.1  0.1  0.2  - 

 anti-CD3  0.2  0.3  -0.04  - 

          

 

 

* Condition refers to the 4 hour incubation of the cells in medium alone or, in medium 

treated with PMA/I, prior to staining for flow cytometry. Low viral load is below 

10,000 copies / ml, high viral load ranges from 100,000 to 3.2x10
8
 copies / ml. N* is 

the number of subjects. The p-value p* is a product of the Mann-Whitney U-test and, 

indicates statistical significance when it falls below 0.05. The correlation coefficient r* 

is a product of the Spearman Correlation test and a value close to 1 or -1 indicates a 

linear correlation between two arrays of numbers. The columns with headers M* and F*  

comprise the male and female subjects, respectively.  
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Figure 4.18 
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4.8 Higher frequencies of IFN--producing NK and NT cells following incubation 

with serum from HBV patients or HBV surface antigen 

 Since the frequencies of IFN--producing NK cells were found to be higher in 

HBV patients and the responses of IFN--producing NT cells to in vitro stimulation 

were enhanced in such subjects, it was sought to determine whether HBV antigens 

could induce the production of IFN- by these cell subsets. PBMC from 3 healthy 

donors were incubated in medium supplemented with FBS, medium supplemented with 

serum from healthy control subjects or HBV patients or, medium containing 1μg of 

HBV surface antigen (HBsAg) or 3μg of HBsAg, for 24 hours. Following this 

incubation, cells were treated with brefeldin A and incubated for a further 4 hours. 

Surface and intracellular staining with PE-labelled anti-CD56, PerCP-labelled anti-CD3 

and FITC-labelled IFN- was subsequently performed. 

 The mean frequencies of IFN--producing NK cells, as a percentage of 

lymphocytes, were 1.3+/-0.4% in medium supplemented with FBS i.e. cRPMI (Figure 

4.19A). These frequencies were not significantly different following incubation with 

serum from healthy donors (1.44+/-0.2%). However, the mean frequencies of IFN--

producing NK cells rose to 2.3+/-1.1% and 2.5+/-1.7% following incubation with serum 

from HBV patients and 3μg HBsAg, respectively. Such increases were not observed 

when PBMC were incubation with 1μg of HBsAg (mean; 0.7+/-0.3%). 

The mean frequencies of IFN--producing NT cells, as a percentage of 

lymphocytes, were 1.5+/-0.1% in medium supplemented with FBS (Figure 4.19B). 

These frequencies were not significantly different following incubation with serum 

from healthy donors (0.9+/-0.5%). However, the mean frequencies of IFN--producing 

NT cells rose to 2.7+/-1.6%, 2.6+/-0.6% and 2.5+/-1.7% following incubation with 

serum from HBV patients, 1μg of HBsAg and 3μg of HBsAg, respectively.  

 As all healthy donors tested were HBV vaccinees, the frequencies of IFN--

producing T cells were used as a control to show that the HBsAg was functional and to 

determine whether the serum contained HBV antigens.  The mean frequencies of IFN--

producing T cells were 0.1+/-0.03% under the following incubation conditions; medium 

supplemented with FBS, medium supplemented with serum from healthy donors and 

medium supplemented with serum from HBV patients (Figure 4.19C). These 

frequencies were increased to 0.4+/-0.1% when medium containing 1μg of HBsAg or 

3μg of HBsAg was used. This shows that the commercial HBsAg was intact and raised 
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memory responses in these subjects but raises a question over whether the patient serum 

used contained sufficient quantities of HBV antigens. Paired t-tests revealed that the 

differences observed in the frequencies of IFN--producing NK, NT and T cells 

following incubation with HBV serum or HBsAg were not significant (p>0.05). 

 Overall these data suggest that HBsAg induces IFN- production by NK and NT 

cells and supports the hypothesis that such cells play a role in immune responses against 

HBV. Furthermore, these data, while only preliminary, suggest that HBsAg may 

facilitate recognition of HBV by these innate lymphocytes and is in agreement with the 

findings of Albarran et al. (2005). The results gathered here also indicate that detection 

of HBV antigens in patient serum should be performed before such sera is used in any 

immune mechanism experiments. 
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Figure 4.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 208 

4.9 Bonferroni Correction method 

In the flow cytometric investigation of the cytokine profiles of innate lymphocytes, 104 

statistical tests were performed. The tests that yielded significant results are shown in 

Tables 4.7, 4.8 and 4.9. By applying the Bonferroni correction method to the p-values 

obtained from the Mann-Whitney U tests, the most substantial results were filtered out. 

Both the p-values and corrected p-values (pc) for all tests are listed in Tables 4.7, 4.8 

and 4.9. Following this correction, the remaining statistical differences between HBV-

infected subjects and uninfected controls were observed in the frequencies of IFN--

producing NT and T cells, upon PMA/I stimulation, both as a proportion of each T cell 

population and as a proportion of total lymphocytes, with a pc-value of less that 0.01 

(Table 4.7). The other statistically significant finding after Bonferroni correction was 

the higher frequency of IL-10-producing CD56
DIM

 NK cells with a pc-value of less than 

0.01 (Table 4.8). No differences observed in the frequencies of IL-13- and IL-17-

producing cells were deemed statistically significant after application of the Bonferroni 

correction method.  

These data suggest that the frequencies of IFN--expressing NT and T cells 

isolated from the peripheral blood of HBV-infected individuals are significantly more 

responsive to in vitro stimulation than those isolated from uninfected controls, as are the 

IL-10-expressing CD56
DIM

 NK cells. 
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Table 4.7 

Statistical analysis of the significant differences observed in the frequencies of IFN-


+ 

lymphocytes in HBV infection: The p-values and corrected p-values for 15 of 32 

statistical tests performed in the study of the frequencies of IFN--expressing 

lymphocytes in HBV infection. 

 

 

Significant results after Bonferroni correction (pc values) are highlighted in italics. 

 

 

 

TEST 

 

Medium 

 

PMA/I 

 

anti-CD3/28 

 p 

value 

pc 

value 

 

p  

value 

pc 

value 

 

p  

value 

pc 

value 

 

IFN-
+
 NK cells  

(% of lymphocytes) 

 

0.01 1.04   0.03 3.1 

IFN-
+
 CD56

DIM
 NK 

cells (% of NK cells) 

 

  0.006 0.624   

IFN-
+
 CD56

DIM 
NK 

cells  

(% of lymphocytes) 

 

0.01 1.04     

IFN-
+
 CD56

BRIGHT
 NK 

cells (% of NK cells) 

 

0.08 8.3 0.02 2.1 0.01 1.04 

IFN-
+
 NT cells 

(% of NT cells) 

 

  <0.0001 <0.01 0.004 0.416 

IFN-
+
 NT cells 

(% of lymphocytes) 

 

  <0.0001 <0.01 <0.0001 <0.01 

IFN-
+
  CD56

-
 T  cells 

(% of  CD56
-
 T cells) 

 

  <0.0001 <0.01   

IFN-
+
 CD56

-
 T cells 

(% of lymphocytes) 

 

  <0.0001 <0.01   

Total % of IFN-
+
 

lymphocytes 

 

0.01 1.04 0.05 5.2   
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Table 4.8 

Statistical analysis of the significant differences observed in the frequencies of IL-

10
+ 

lymphocytes in HBV infection: The p-values and corrected p-values for 12 of 32 

statistical tests performed in the study of the frequencies of IL-10-expressing 

lymphocytes in HBV infection. 

 

 

Significant results after Bonferroni correction (pc values) are highlighted in italics. 

 

 

 

 

 

 

 

TEST 

 

Medium 

 

PMA/I 

 

anti-CD3/28 

 p 

value 

pc 

value 

 

p  

value 

pc 

value 

 

p 

value 

pc 

value 

 

IL-10
+
 NK cells  

(% of NK cells) 

 

  0.04 4.16   

IL-10
+
 NK cells  

(% of lymphocytes) 

 

0.005 0.52 0.005 0.52 0.005 0.52 

IL-10
+
 CD56

DIM
 NK cells 

(% of NK cells) 

 

  0.002 0.208   

IL-10
+
 CD56

DIM 
NK cells 

(% of lymphocytes) 

 

0.005 0.52 <0.0001 <0.01 0.005 0.52 

IL-10
+
 CD56

BRIGHT
 NK 

cells (% of NK cells) 

 

  0.02 2.08   

IL-10
+
 NT cells 

(% of NT cells) 

 

0.004 0.416   0.02 2.08 

IL-10
+
 NT cells 

(% of lymphocytes) 

 

  0.001 0.1   
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Table 4.9 

Statistical analysis of the significant differences observed in the frequencies of IL-

13
+ 

and IL-17
+ 

lymphocytes in HBV infection: The p-values and corrected p-values 

for 7 of 20 statistical tests performed in the study of the frequencies of IL-13-expressing 

lymphocytes and 1 of 20 statistical tests performed in the study of the frequencies of IL-

17-expressing lymphocytes in HBV infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEST 

 

Medium 

 

PMA/I 

 

anti-CD3/28 

 P 

value 

pc 

value 

 

p 

value 

pc 

value 

 

p 

value 

pc 

value 

 

IL-13
+
 NK cells  

(% of NK cells) 

 

  0.03 3.12   

IL-13
+
 CD56

-
 T  cells 

 

(% of  CD56
-
 T cells) 

0.02 2.08 0.002 0.2   

IL-13
+
 CD56

-
 T cells 

(% of lymphocytes) 

 

0.0005 0.52 0.0008 0.08   

Total % of  IL-13
+
 

lymphocytes 

 

0.004 0.416 0.01 1.04   

IL-17
+
 CD56

-
 T  cells 

(% of  CD56
-
 T cells) 

 

  0.01 1.04   
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4.10 Discussion 

The findings of this part of the study suggest that HBV-infected subjects have higher 

frequencies of cytokine-producing lymphocytes than uninfected subjects. The IFN--

producers appear to be the predominant cytokine-producing lymphocyte population and 

this is to be expected as part of an active antiviral immune response (Guidotti & Chisari 

2001; Guidotti et al. 1999). The higher frequencies of IL-10-producing lymphocyte 

subsets may be a direct immunomodulatory response to the higher IFN- but overall, it 

appears that the HBV-infected subjects studied here may be a model of an efficient 

antiviral response i.e. an immune response which is strong enough to prevent the 

occurrence of high viral titres but low enough to prevent immunopathogenesis.  

Higher frequencies of cytokine-producing lymphocytes were observed when the 

subpopulations were quantified as a proportion of both individual populations and as a 

percentage of the overall lymphocyte population. This dual quantification was 

performed for several reasons. By examining the IFN--producing NK cells, for 

example, as a proportion of the overall lymphocyte population, the importance of any 

differences could be weighted in terms of the overall immune response. However, it was 

important to show the data as a proportion of the total NK cell population in order to 

assess any specific effects HBV infection might have on NK cells. Also, there are 

shortfalls of gating on the total lymphocyte population; such gating gives an estimate of 

the overall number of cells without using any specific surface markers. This population 

was gated based on size and granularity of total PBMC and it could be contaminated 

with dead cells which can non-specifically bind antibodies, debris and small monocytes 

for example which would skew the overall percentage values. By gating on the 

CD56
+
CD3

-
 lymphocyte population in the identification of NK cells, a large degree of 

this non-specificity was removed and therefore, these data can be considered to be more 

accurate. Further surface staining with markers such as propidium iodide (PI) and anti-

CD14 could have been used to exclude the dead cells and monocytes from the 

lymphocyte population, respectively. While PI staining was not included in our flow 

cytometric analyses, all samples were analysed by flow cytometry on the day of sample 

collection and EB/AO staining was always performed and only PBMC with a cell 

viability of 90% or greater were examined. The higher frequencies observed in HBV 

can only be considered as proportions of lymphocyte populations because absolute 

numbers were not measured. Absolute numbers could not be calculated when PBMC 



 213 

from buffy coat packs were used as the original volume of fresh blood was unknown. 

Quantitative RT-PCR was used as another method of cytokine quantification and it 

confirmed the differences in cytokine production at the level of gene expression. 

Frequencies of circulating IFN-- and IL-10-producing NK cells were found to 

be slightly but consistently higher in HBV-infected subjects and the CD56
DIM

 cells were 

identified as the predominant cytokine producing subset of NK cells. This is contrary to 

other findings which indicate that the CD56
BRIGHT

 cells are the main cytokine producers 

(Cooper et al. 2001). It must be noted that cytokine production was measured 

immediately after a 4 hour incubation in medium containing PMA/I and previous work 

from our lab has shown that PMA/I stimulation can reduce the fluorescence intensity of 

CD56 for up to 72 hours after stimulation (Kelly-Rogers et al. 2006).  

NT cells were found to be potent IFN- secretors as a population, particularly 

those isolated from HBV-infected subjects. The cytokine-producing capacity of NT 

cells was most evident when PBMC from HBV-infected patients were stimulated with 

PMA/I. 

Frequencies of IFN--, IL-10- and IL-17-producing CD56
- 

T cells were 

consistently higher in HBV which is an indication of an active immune response. As 

mentioned in the introductory paragraph, this could be expected in a virally-infected 

individual. It is possible that the higher levels in IL-10 are in response to higher levels 

of IFN- and, its role is antagonistic and anti-inflammatory. This supports the 

hypothesis of these subjects providing a model of an ideal immune response. IL-17 is a 

pro-inflammatory cytokine implicated in several inflammatory diseases and in immune 

responses against bacterial infections. It has recently been implicated in disease 

progression and the development of liver fibrogenesis in HBV (Zhang et al. 2010; Xu et 

al. 2009). However, while IFN- has been identified as a suppressor of Th17 cell 

induction, IL-17 has also been implicated as a negative regulator of IFN- (Mills 2008). 

Therefore, higher frequencies of IL-17-producing cells in HBV may be another 

mechanism by which the immune response in these subjects is regulated. 

The findings reported in section 4.6 show that there are no correlations between 

the frequencies of cytokine-producing lymphocytes and viral load, disease severity, age 

or gender. One major factor would be that most subjects have a relatively low viral load 

and normal ALT level. These low values indicate that the majority if not all patients are 

free of liver diseases (if all patients have no liver disease then, the minority with high 
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ALT may be experiencing hepatic flares which are common in HBV infection). The low 

viral load of the majority of subjects removed the need for therapy and suggests that the 

immune response is working strongly enough to keep viral titres at a low level. The low 

ALT levels in these subjects suggest that the immune response is well-regulated and is 

not causing any liver damage.  

Following the Bonferroni correction method, the frequencies of IFN--producing 

NT and T cells were shown to be significantly higher in HBV following in vitro 

stimulation, with almost 100% of NT cells from HBV patients producing IFN- 

following stimulation, in some cases. This implicates these cells and IFN- as 

predominant players in the immune responses against HBV. The results of qRT-PCR 

support the hypothesis of a central role for IFN- in immune control of HBV with 

significantly higher IFN- RNA expression observed in patients compared to controls.  

The Bonferroni correction method also revealed significantly higher frequencies 

of IL-10-producing CD56
DIM

 NK cells, as a proportion of total lymphocytes, in HBV 

patients, following in vitro stimulation. Although, these cells only constituted less that 

1% of lymphocytes, they may still represent a regulatory mechanism by which the 

antiviral responses are controlled. However, the shortfalls of measuring percentages as a 

proportion of lymphocytes must be noted along with the general finding of low 

frequencies of circulating IL-10-producing lymphocytes. At such low frequencies, if the 

CD56
DIM

 NK cells are the only true population of IL-10-producing lymphocytes that are 

higher in these HBV patients, then, this may explain why the higher level was not 

detected using qRT-PCR. One hypothesis is that IL-10 may act as a safety net allowing 

the antiviral response to prevail but if IFN- production surpasses a certain threshold, 

IL-10 gene expression may be induced and a Treg response might be stimulated to 

prevent immune-mediated damage. This is a more favourable cytokine milieu for viral 

clearance rather than that observed in chronic viremic HCV patients where NK cells 

appeared to preferentially produce IL-10 rather than IFN- (De Maria et al. 2007). 

Indeed, the innate lymphocytes in the HBV-infected subjects examined in this study 

appear to have significantly higher IFN- and IL-10 production capacities compared to 

that of uninfected subjects. However, IL-10 production appears to be sustained at 

relatively low levels compared to IFN- so that the antiviral response is allowed to 

control viral replication but is regulated so that it may not become too excessive and 

cause immune mediated damage.  
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In addition, it was found that IL-17-producing T cells display enhanced 

responses to PMA/I stimulation compared to those from uninfected controls. However, 

it was also found that IL-17A RNA was undetectable in PBMC from patients and 

controls. Since IL-17 has been implicated in disease progression, decreases in Th1 cell 

frequencies and the development of liver fibrosis in HBV, these data suggest that its 

transcription might be under strict control in this group of asymptomatic HBV patients 

so as not to cause liver damage or inhibit IFN- expression (Xu et al. 2009; Zhang et al. 

2010, Ge et al. 2010). However, sufficient stimulation can trigger IL-17 production 

suggesting that this pro-inflammatory cytokine plays a supporting role in the control of 

HBV infection.  

Our observations indicate that NT cells are key players in the control of HBV 

infection. This supports the findings of Northfield et al. (2008) who have found higher 

frequencies of tissue-infiltrating CD161
+
CD8

+
 T cells in HBV infection. Billerbeck et al. 

(2010) have recently shown that these NKR
+
CD8

+
 T cells exhibit a strong Th17 bias. 

Since CD161 (NKRP1A) is an NK cell cytotoxicity coreceptor and since IL-17 has been 

implicated in HBV-associated liver injury, Billerbeck et al. (2010) investigated 

association of such cells with liver disease in HCV infection and found that the 

repertoires of CD161
+
CD8

+
 cells co-producing IL-17 and IFN- were most abundant in 

the livers of HCV patients with mild liver disease. The authors proposed that such cells 

mediated immune control and that their functions might be depleted in HCV patients 

with severe liver disease. These findings along with our own identification of 

expansions of circulating CD56
+
 T cells in HBV, suggest that such NKR

+
CD8

+
 T cells 

or NKR
+
 T cells which may have lost CD8 expression play a crucial role in the immune 

control of HBV infection. So, while HBV-specific CD8
+
 T cell numbers are 

significantly lower in those individuals who develop chronic HBV infection (Maini et al. 

2000; Sobao et al. 2002, Yang et al. 2009) and large numbers of non-antigen specific 

CD8
+
 T cells are found in the livers of patients with uncontrolled HBV infections 

(Bertoletti & Maini 2000; Reignat et al. 2002), the control of HBV may be effectively 

mediated by a group of CD8
+
 T cells that upregulate NKRs (CD161 or CD56) in an 

effort to control HBV infection in a manner which minimises liver damage. Viral 

clearance via non-cytolytic mechanisms has already been shown for HBV (Guidotti et al. 

1999) and in our group of asymptomatic carriers, it appears that control but not 

clearance of HBV is sufficient since a persistent infection with no disease is a safer 
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option for the host. 

The role of NK and NT cells in immunity against HBV has previously been 

highlighted in responders to vaccination with HBsAg, where these cells exhibited 

higher IFN- and IL-2 expression compared to non-responders (Albarran et al. 2005). 

PBMC from healthy donors were incubated with serum from HBV patients or with 

HBsAg and then examined IFN- production by the NK, NT and T cell populations. 

From this, it was have shown similar results to Albarran et al. (2005) and have 

supported our hypothesis that elevated IFN- production by innate lymphocytes is a 

direct response to HBV infection. These results were obtained using whole PBMC from 

HBsAg vaccinated individuals and therefore, the interaction between NK and NT cells 

with memory T cells may contribute to the enhanced IFN- production in response to 

HBsAg. From these results, it is proposed that NK and NT cells are involved in 

conferring protective immunity against HBV, along with HBV-specific T cells. 

Furthermore, HBsAg, unlike the envelope protein E2 of HCV, does not appear to 

modulate NK cell functions (Tseng and Klimpel 2002). 

The HBV-infected subjects studied here may represent a preliminary model of 

the evolutionary changes that immune cells must undergo to control viral replication 

without causing liver disease. It is proposed that certain T cell subsets undergo 

phenotypic changes, minimise their cytolytic activity and maximise their antiviral 

cytokine production to promote control of HBV infection. Lessons learned here could 

be used to develop novel immunotherapies to treat HBV patients with higher viral loads 

but first, a similar study of such patients should be performed. 
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5.1 Introduction 

 T cells are a group of T lymphocytes that elicit potent cytokine production and 

cytotoxic activity usually in a much faster manner than their αβ
+ 

counterparts but they 

account for only 1-5% of circulating lymphocytes (Hayday 2000). All  T cells express 

TCRs consisting of a - and a -chain, as opposed to the α- and β-chain of the 

conventional T cell (Hayday 2000). Some  T cells exhibit TCR-mediated recognition 

of glycolipids (Spada et al. 2000; Russano et al. 2007) and phosphoantigens which can 

lead to significant expansion and activation of these cells (Constant et al. 1994; Tanaka 

et al. 1995; Morita et al. 1995; Jomaa et al. 1999). However, they can also recognise 

danger molecules in a TCR-independent manner via the expression of NKRs such as 

NKG2D and NKG2A (Battistini et al. 1997; von Lilienfeld-Toal et al. 2006; Toutirais 

et al. 2009). The multi-faceted nature of  T cell activation and their powerful cytokine 

production and cytotoxicity capabilities make them ideal targets for cell-based 

immunotherapies. 

The importance of δ T cells in antiviral immune responses has been reported in 

EBV, HIV and HSV infections (De Paolo et al.1990; Poccia et al.1999; Maccario et 

al.1995). δ T cells have also been implicated in immune responses to HCV and are 

believed to play a role in the liver injury associated with the virus (Tseng et al.2001; 

Nikolopoulou et al.1995). Several studies have investigated the role of δ T cells in 

HBV infection; Sing et al. (1998) found an association between expansions of  T cells 

and seroconversion while Chen et al. (2008) showed that their frequencies are depleted 

in the peripheral blood of persistent HBV infection. 

So far, a significant expansion of circulating δ T cells in HBV-infected persons 

has been found compared to uninfected control subjects. Although all patients had 

persistent HBV infection (HBsAg-positive), the vast majority of them had a low viral 

burden (<20,000 copies/ml) and were free of liver disease (ALT below 40). Therefore, 

our patient cohort can be considered as representative of a controlled immune response 

to HBV, which is under sufficient regulatory control so that does not cause significant 

pathology but it fails to completely eliminate the virus. Since  T cells appear to play a 

role in this immune response, the subsets which are numerically changed in the 

peripheral blood have been investigated here.  Their phenotypes, differentiation status 

expression of stimulatory receptors and their capacity to express IFN- and the 

cytotoxicity-associated receptor NKG2D have also been evaluated. 
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There are 3 main groups of  T cells in humans that are divided based on their  

chain usage i.e. V1, V2 and V3 T cells. V2 T cells are the most abundant  T cell 

in circulation while V1 subsets are most prevalent in the tissues and mucosal surfaces 

and V3 T cells have only been described in blood and liver (Dechanet et al. 1999; 

Kenna et al. 2004). 

Vδ2 T cells are the predominant δ T cell subset in circulation and their TCR 

most often consists of a V2 chains paired with a V9 chain (Eberl et al. 2009). They 

exhibit potent cytotoxic activity and predominantly produce Th1 cytokines such as IFN-

 and TNF-α (Eberl et al. 2009; Conti et al. 2005; Angelini et al. 2004; Dudal et al. 

2006; ; Unpublished work from our lab). V9V2 T cells play central roles in innate and 

adaptive immune responses  through their ability to recruit neutrophils, induce 

maturation of DC into APC and provide help to B cells promoting their maturation into 

antibody-producing plasma cells (Conti et al. 2005; Ismaili et al. 2002; Agrati et al. 

2009; Caccamo et al. 2006).  V9V2 T cells have also been shown to have antigen 

presentation properties and upregulate HLA-DR, and the lymph node homing receptor 

CCR7, when activated (Brandes 2005). Resting V9V2 T cells lack these properties 

therefore indicating that an antigen presentation role is assumed in an inflammatory 

environment. V9V2 T cells have also been implicated in wound repair via the 

production of tissue growth factors (Workalemahu et al. 2004). Their multi-functional 

capacity makes V9V2 T cells ideal candidates for immunotherapy and they are 

already the centre of several clinical trials as immunotherapeutics in cancer (Dieli et al. 

2007; Bennouna et al. 2008). The role of V2 T cells in immunity against HBV is 

uncertain but their frequencies in the peripheral blood of chronic HBV patients with 

varying degrees of liver disease were shown to be decreased in a study by Chen et al. 

(2008). Here, circulating V2 T cells were quantified in order to confirm if they are the 

δ T cell population that is expanded in our patient cohort. 

 V1 T cells are mostly found in the tissues and mucosal surfaces and constitute 

70-90% of δ T cells in the intestine where they have been shown to exhibit 

immunoregulatory functions (Groh et al. 1998; Bhagat et al. 2008). However, IFN-- 

and TNF-α-expressing V1 T cells have also been isolated from tissue suggesting that 

they play a role in antiviral immunity (Spada et al. 2000). V1 T cells are expanded in 

tumor-bearing livers and in HIV and HSV infection (Fenoglio et al. 2009; Kenna et al. 
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2004). Furthermore, research by Rossol et al. (1998) yielded data which suggest that 

circulating V1 T cell frequencies are unchanged in HSV-1, HSV-2, HCV and HBV 

infection and have proposed that their expansion is unique to HIV infection. 

Interestingly, Agrati et al. (2001) have reported that V1 T cells are the main δ T cell 

subset infiltrating HCV-infected liver and have suggested that their Th1 cytokine profile 

makes them possible contributors to liver inflammation. Here, the frequencies of 

circulating V1 T cells have been quantified to determine if they contribute to the 

expansions of δ T cells previously observed in our patient cohort.  The frequencies of 

CD56-expressing subsets of these cells have also been investigated to determine if 

expanded NT and δ T cell populations observed in Chapter 3 are overlapping shared 

populations.  

Phenotypic analysis has revealed that HBV-specific CD8
+
 T cells in PBMC 

from patients with acute HBV infection predominantly express a memory T cell 

phenotype suggesting that they are actively involved in immunity against HBV (Sobao 

et al. 2002; Urbani et al. 2002). Since  T cells appear to play a role in immune control 

of HBV in this patient cohort, the differentiation status of circulating  T cell subsets 

were examined using a method described by Dieli et al (2003). According to this 

scheme,  T cells can be divided into memory subsets using the markers CD27 and 

CD45RA. Naïve  T cells express both CD27 and CD45RA while central memory  

T cells lose CD45RA but retain CD27 expression (Dieli et al. 2003). Both naïve and 

central memory  T cells tend to home to the secondary lymphoid organs and usually 

lack immediate effector functions i.e. cytotoxicity and rapid cytokine production (Eberl 

et al. 2002). Effector memory (TEM)  T cells lack both CD45RA and CD27 surface 

expression but CD45RA re-appears on terminally differentiated effector memory  T 

cells (Dieli et al. 2003). Effector memory  T cells home to the sites of infection where 

they exhibit immediate effector functions (Eberl et al. 2002). Dieli and colleagues have 

shown that the majority of  T cells express a central memory or TCM phenotypes 

(Dieli et al. 2003). 

 Here, the frequencies of naïve, TCM, TEM and terminally differentiated effector 

memory (TEMRA) V2 and V1 T cells were compared between HBV-infected subjects 

and uninfected control subjects by quantifying the frequencies of circulating 
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CD45RA
+
CD27

+
,  CD45RA

-
CD27

+
, CD45RA

-
 CD27

-
  and CD45RA

+
CD27

-
 V2 and 

V1 T cells. 

 Since the frequencies of δ T cells were found to be higher in HBV infection, the 

effector functions of such cells were examined by quantifying their IFN-production.  

The Vδ2 T cells were investigated in this part of the study because they are the 

predominant δ T cell subset present in the peripheral blood and their expansion in HBV 

infection was more pronounced than that of total δ T cells. IFN-was the cytokine of 

choice because several studies, including studies from our own lab, have revealed that 

cytokine production by Vδ2 T cells is limited to the Th1 cytokines IFN-and TNF-α 

(Eberl et al. 2009; Conti et al. 2005; Angelini et al. 2004; Unpublished work from our 

lab). Furthermore, IFN- is the classical antiviral cytokine and can elicit a variety of 

functions that promote viral clearance (Guidotti & Chisari 2001). In addition, a study in 

HBV-infected chimpanzees revealed that the clearance of HBV DNA from liver 

occurred at the same time as the appearance of IFN- thus implicating a central role for 

the cytokine in the control and resolution of HBV infection (Guidotti et al. 1999). Chen 

et al. (2008) have also found that  T cell-derived IFN- is significantly decreased in 

chronic HBV infection thus suggesting that impairment of  T cell function is 

associated with the failure to eliminate the virus. 

 NKG2D is an activating receptor originally identified on NK cells but, it can 

also mediate cytotoxicity by some T cells. It is an important component of the antiviral 

response because it facilitates the recognition of virus-infected cells in the absence of 

classical MHC-restricted antigen presentation. The activating receptor has been 

manipulated by several viruses in order to evade immune recognition. For instance, 

CMV and HIV have evolved mechanisms by which the expression of NKG2D ligands 

is inhibited (Gonzalez et al. 2008). Furthermore, the frequencies of circulating NKG2D-

expressing NK cells are significantly lower in HBV infection and in even more so in 

HBV patients with liver cirrhosis and HCC. These decreases correlated with the 

cytotoxic activity of the NK cells suggesting that NKG2D downregulation may be a 

means through which HBV evades NK cell cytotoxicity (Zeng et al. 2009). Recent work 

by Chen et al. (2008) has revealed that  T cell cytotoxicity is impaired in persistent 

HBV infection but they have not shown the mechanism through which this putative 

dysfunction is mediated. In this study, the expression of NKG2D on Vδ2 T cells was 

investigated as a measure of their cytotoxic potential in controlled HBV infection. If our 
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data support that of Chen et al. (2008) then, this work may have identified a mechanism 

through which inhibition of  T cell cytotoxicity is mediated. 

 Overall, this study should provide a good insight into the  T cell repertoires 

needed to provide immune control of HBV infection without causing liver injury. 
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5.2  T cell subpopulations in HBV infection 

5.2.1 The frequencies of circulating V9
+
Vδ2

+
 T cells are higher in HBV patients 

than in control subjects 

PBMC were prepared from the fresh blood of 33 HBV patients and from the buffy coat 

packs of 55 control subjects. Surface staining with FITC-labelled anti-V9 mAb, PE-

labelled anti-Vδ2 mAb and PE-Cy5-labelled anti-CD3 mAb was performed to identify 

V9
+
Vδ2

+
 T cells in the peripheral blood (Figure 5.1A and 5.1B). It was found that most 

V9
+
 T cells express Vδ2 (mean; 81.2 +/- 3.4%, Figure 5.1A) and most Vδ2

+
 T cells 

express V9 (mean; 90+/- 3.9%) and therefore, it was only necessary to use one marker 

to identify the V9
+
Vδ2

+
 T cell population. PE-labelled anti-Vδ2 mAb was the marker 

of choice and the V9
+
Vδ2

+
 T cell population is herein referred to as the Vδ2 T cells. 

Another interesting observation made when using FITC-labelled anti-V9 mAb and PE-

labelled anti-Vδ2 mAb together was that the occurrence of 2 different V9
+
Vδ2

+
 T cell 

populations with differing intensities of V9 or Vδ2 (Figure 5.1A). The frequencies of 

circulating Vδ2 T cells, as a percentage of total T cells, ranged from 0.3% to 11.7% in 

controls, and from 1.8% to 21.2% in HBV. The mean frequencies were 3.6+/-0.38% in 

controls and 7.8+/-0.95% in HBV. This difference is significant (p < 0.0001, Figure 

5.1C). 
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Figure 5.1 
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5.2.2 The frequencies of circulating Vδ1 T cells are higher in HBV infection 

The frequencies of T cells with the Vδ1 chain were also quantified to determine which 

δ T cell subset was expanded in HBV infection. PBMC from 23 HBV-infected subjects 

and from the buffy coat packs of 21 control subjects were indirectly surface stained with 

unconjugated anti-Vδ1 mAb (murine IgG), followed by PE-labelled anti-mouse IgG, in 

combination with direct surface staining with PE-Cy5-labelled anti-CD3 mAb. Vδ1 T 

cells were identified as those T cells which stained positive for CD3 (Figure 5.1A) and 

Vδ1 (Figure 5.2A). The frequencies of circulating Vδ1 T cells were then quantified, as a 

percentage of total T cells. Frequencies of circulating Vδ1 T cells ranged from 0.1% to 

3.8% in controls, and from 0.1% to 2.9% in HBV, with mean frequencies of 0.77+/-

0.19% and 1.2+/-0.16%, respectively (p = 0.02, Figure 5.2B). 

These data show that there are statistically significantly higher frequencies of 

circulating Vδ1 and Vδ2 T cells in HBV infection. 
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Figure 5.2 
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5.2.3 The frequencies of circulating CD56
+ 

Vδ2 T cells are similar in HBV-infected 

and control subjects 

The findings documented in Chapter 3 indicated that the frequencies of both circulating 

CD56
+
 T cells and δ T cells are higher in HBV-infected persons. It was next sought to 

determine if frequencies of CD56
+ 
δ T cell subsets were higher in HBV infection. 

Firstly, the frequencies of CD56
+ 

Vδ2 T cells were quantified. PBMC from 18 HBV-

infected subjects and from the buffy coat packs of 30 control subjects were surface 

stained with FITC-labelled anti-CD56 mAb, PE-labelled anti-Vδ2 mAb and PE-Cy5-

labelled anti-CD3 mAb to identify CD56
+ 

Vδ2 T cells in the peripheral blood (Figure 

5.3A). When the proportion of CD56
+
 T cells were quantified as a percentage of Vδ2 T 

cells, the mean frequencies of CD56
+ 

Vδ2 T cells were 23.8+/-3.1% in controls and 

18.6+/-3.2% in HBV-infected individuals (p = 0.4, Figure 5.3B). These differences were 

not significant. The frequencies of circulating CD56
+
Vδ2 T cells, as a percentage of 

total T cells ranged from 0.07% to 2.7% in controls, and from 0.2% to 6.4% in HBV, 

with means of 0.92+/-.14% and 1.53+/-0.40%, respectively (p = 0.4, Figure 5.3C).  

These data show that the higher frequencies of CD56
+
 T cells in HBV infection 

is not due to higher frequencies of CD56
+ 

Vδ2 T cells. 
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Figure 5.3 
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5.2.4 The frequencies of circulating CD56
+ 

Vδ1 T cells are significantly higher in 

HBV infection as a proportion of total T cells, but not as a proportion of Vδ1 T 

cells 

The frequencies of CD56
+ 

Vδ1 T cells were also investigated to determine if such cells 

were responsible for the higher frequencies of CD56
+
 T cells in HBV infection. PBMC 

from 17 HBV patients and from the buffy coat packs of 15 control subjects were 

directly surface stained with FITC-labelled anti-CD56 mAb and PE-Cy5-labelled anti-

CD3 mAb and indirectly stained with unconjugated anti-Vδ1 mAb (murine IgG), 

followed by PE-labelled anti-mouse IgG to identify CD56
+ 

Vδ1 T cells in the peripheral 

blood (Figure 5.4A). When quantified as a percentage of Vδ1 T cells, the mean 

frequencies of CD56
+ 

Vδ1 T cells were 30.6+/-7.9% in controls and 37.7+/-3.8% in 

HBV-infected individuals and this difference was not significant (p = 0.4, Figure 5.4B). 

The frequencies of circulating CD56
+ 

Vδ1 T cells, as a percentage of total T cells, 

ranged from 0% to 1.3% in controls, and from 0.08% to 1.6% in HBV, with means of 

0.31+/-0.11% and 0.61+/-0.11%, respectively. The numbers of CD56
+ 

Vδ1 T cells in 

the peripheral blood were slightly but significantly higher in  HBV-infected subjects 

than in control subjects, when quantified as a proportion of the total CD3
+
 lymphocyte 

population (p = 0.01, Figure 5.4C). 

These data show that a significant proportion of Vδ1 T cells in patients and 

controls express CD56 and that Vδ1 T cells make a significant contribution to the 

higher frequencies of CD56
+
 T cells observed in HBV infection in Chapter 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 232 

 

 

 

 

 

Figure 5.4 
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5.3 Memory phenotypes of  T cell subpopulations in HBV infection 

5.3.1 Proportions of naïve and memory Vδ2 T cells are altered in HBV infection 

PBMC from 27 HBV-infected subjects and from the buffy coat packs of 40 control 

subjects were surface stained with PE-labelled anti-Vδ2 mAb, PerCP-labelled anti-CD3 

mAb, FITC-labelled anti-CD45RA mAb and APC-labelled anti-CD27 mAb to identify 

the naïve, TCM, TEM and TEMRA Vδ2 T cells (Figure 5.5A). 

The frequencies of naive Vδ2 T cells, as a proportion of the total Vδ2 T cell 

population, ranged from 1.2% to 61.1% in controls and from 1% to 38.4% in HBV, with 

means of 23.75+/-2.4% and 14.1+/-2.8%, respectively, (Figure 5.5B, p=0.006). The 

frequencies of TCM Vδ2 T cells ranged from 1.8% to 89.3% in controls and from 0% to 

55.1% in HBV, with means of 33.7+/-3.3% and 22.2+/-3.7%, respectively. These lower 

frequencies of TCM Vδ2 T cells in HBV were significant (Figure 5.5C, p=0.03). The 

frequencies of TEM Vδ2 T cells ranged from 0% to 57.1% in controls and from 2.3% to 

72.3% in HBV with means of 25.3+/-2.8% and 33.8+/-5.3%, respectively. This 

difference was not statistically significant (Figure 5.5D, p=0.1). The frequencies of 

TEMRA Vδ2 T cells ranged from 0% to 71% in controls and from 0.9% to 64.1% in HBV, 

with means of 17.1+/-2.6% and 26.8+/-4.3%, respectively (Figure 5.5E, p=0.02). 

These data show that the frequencies of TCM and naive Vδ2 T cells are 

significantly lower in HBV infection, while the frequencies of TEMRA Vδ2 T cells are 

higher, suggesting that the effector Vδ2 T cells are expanded in order to facilitate the 

control of HBV infection. 
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Figure 5.5 
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5.3.2 Proportions of naïve and memory Vδ1 T cells are altered in HBV infection 

Further phenotypic studies were also performed to ascertain whether the frequencies of 

TEM, TCM, naïve and TEMRA Vδ1 T cells were altered in HBV infection. PBMC from 17 

HBV-infected subjects and from the buffy coat packs of 21 control subjects were 

indirectly surface stained with unconjugated anti-Vδ1 mAb (murine IgG), followed by 

PE-labelled anti-mouse IgG and directly surface stained with PerCP-labelled anti-CD3 

mAb, FITC-labelled anti-CD45RA mAb and APC-labelled anti-CD27 mAb. The 

frequencies of naive Vδ1 T cells, as a proportion of the total Vδ1 T cell population, 

ranged from 17.5% to 100% in controls and from 4.6% to 50% in HBV, with means of 

61+/-5.2% and 28.2+/-3.6%, respectively (Figure 5.6A, p=0.0002). The frequencies of 

TCM Vδ1 T cells ranged from 0% to 33.9% in controls and from 0% to 36.4% in HBV, 

with means of 7+/-2.1% and 14.3+/-2.5%, respectively (Figure 5.6B, p=0.02). The 

frequencies of TEM Vδ1 T cells ranged from 0% to 16.7% in controls and from 0% to 

48.2% in HBV with means of 3+/-1.2% and 12.9+/-3.2%, respectively. This difference 

was significant (Figure 5.6C, p=0.004). The frequencies of TEMRA Vδ1 T cells ranged 

from 0% to 65.6% in controls and from 6.4% to 77.3% in HBV, with means of 26.1+/-

4.2% and 44.6+/-5.4%, respectively (Figure 5.6D, p=0.02). 

These data show that the frequencies of all memory subsets of Vδ1 T cells are 

expanded in HBV infection while, naïve Vδ1 T cells are significantly lower, suggesting 

that Vδ1 T cells are actively involved in the successful immune control of HBV. 
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Figure 5.6 
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5.4  T cell subpopulations in HBV patient groups 

5.4.1 The frequencies of circulating Vδ2 T cells do not correlate with viral load, 

disease severity and age in HBV but are slightly higher in female subjects 

The Vδ2 T cell frequencies of the HBV patients within the study cohort were compared 

based on clinical parameters. Figure 5.7A shows the frequencies of circulating Vδ2 T 

cells as a percentage of total T cells for 23 HBV patients with a low viral load i.e. below 

100,000 copies/ml and 5 HBV patients with a high viral load i.e. between 100,000 and 

5x10
8 

copies/ml. The frequencies of circulating Vδ2 T cells in patients with low viral 

load ranged from 3.1% to 10.8% (mean 6.6+/-0.4%) and in patients with high viral load, 

ranged from 3.6% to 12.2% (mean 8+/-0.7%). There was no significant difference 

between these numbers (p=0.6). Furthermore, a Spearman correlation test yielded a 

correlation coefficient of r=-0.1, suggesting that there is no linear correlation between 

the frequencies of Vδ2 T cells and viral load. Figure 5.7B shows the frequencies of Vδ2 

T cells for 19 HBV patients with a low ALT and 7 HBV patients with a high ALT. For 

those patients with low ALT, the frequencies of Vδ2 T cells ranged from 1.8% to 12.2% 

(mean 7.9+/-0.5%) and for those with a high ALT, the frequencies ranged from 3.1 % to 

21.2% (mean 9.2+/-1%). There were no significant differences (p=0.2) and moreover, 

there was no linear correlation between the numbers of Vδ2 T cells and ALT levels 

(r=0.03). Figure 5.7C shows the frequencies of circulating Vδ2 T cells in 12 males and 

17 females. The frequencies ranged from 3.1% to 14.9% (mean 6.8+/-0.7%) and from 

1.8% to 21.2% (mean 10.2+/-0.8%), respectively. There was slightly but significantly 

higher frequencies of Vδ2 T cells in HBV-infected females than HBV-infected males 

(p=0.02). Figure 5.7D shows the frequencies of circulating Vδ2 T cells in 17 HBV-

infected subjects aged between 19 and 35 years of age and 12 HBV-infected subjects 

aged between 35 and 55 years of age. The frequencies of Vδ2 T cells ranged from 1.8% 

to 21.2% in the younger group of patients (mean 9+/-0.6%) and ranged from 7.6% to 

14.9% in the older group of patients (mean 7.8+/-0.8%). There was no significant 

difference (p=0.9) and there was no linear correlation between the frequencies of 

circulating Vδ2 T cells and the age of the HBV patients (r=0.05).  

These data suggest that the frequencies of circulating Vδ2 T cells are slightly 

higher in female HBV-infected subjects than their male counterparts but the numbers do 

not correlate with viral load, disease severity or age. 

 



 238 

Figure 5.7 
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5.4.2 Frequencies of circulating Vδ1 T cells are not significantly different between 

HBV patient groups 

The frequencies of Vδ1 T cells in HBV patients within the study cohort were compared 

based on clinical parameters. Figure 5.8A shows the frequencies of circulating Vδ1 T 

cells as a percentage of total T cells for 19 HBV patients with a low viral load i.e. below 

100,000 copies/ml and 3 HBV patients with a high viral load i.e. between 100,000 and 

5x10
8 

copies/ml. The frequencies of circulating Vδ1 T cells in patients with low viral 

load ranged from 0.1% to 2.9% (mean 1.5+/-0.1%) and in patients with high viral load, 

ranged from 0.6% to 2.3% (mean 1.3+/-0.5%). There was no significant difference 

between these numbers (p=0.9) and there was no linear correlation between the 

frequencies of Vδ1 T cells and viral load (r=-0.01). Figure 5.8B shows the frequencies 

of Vδ1 T cells for 13 HBV patients with a low ALT and 7 HBV patients with a high 

ALT. For those patients with low ALT, the frequencies of Vδ1 T cells ranged from 

0.1% to 2.9% (mean 1.1+/-0.2%) and for those with a high ALT, the frequencies ranged 

from 0.4% to 1.9% (mean 1.1+/-0.1%). There were no significant differences (p=0.8) 

and moreover, there was no linear correlation between the numbers of Vδ1 T cells and 

ALT levels (r=0.003). Figure 5.8C shows the frequencies of circulating Vδ1 T cells in 

11 males and 12 females. The frequencies ranged from 0.2% to 2.9% (mean 1.2+/-0.1%) 

and from 0.1% to 2.7% (mean 1.6+/-0.1%), respectively. There was no significant 

difference between the frequencies of Vδ1 T cells in HBV-infected females and HBV-

infected males (p=0.5). Figure 5.8D shows the frequencies of circulating Vδ1 T cells in 

10 HBV-infected subjects aged between 19 and 35 years of age and 12 HBV-infected 

subjects aged between 35 and 55 years of age. The frequency of circulating Vδ1 T cells 

ranged from 0.1% to 2.3% in the younger group of patients (mean 1+/-0.1%) and ranged 

from 0.2% to 2.9% in the older group of patients (mean 1.3+/-0.2%). There was no 

significant difference (p=0.9) and there was no linear correlation between the 

frequencies of circulating Vδ1 T cells and the age of the HBV patients (r=0.05).  

These data suggest that the frequencies of circulating Vδ1 T cells do not 

correlate with viral load, disease severity, gender or age. 
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Figure 5.8 
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5.4.3 Frequencies of circulating CD56
+
 Vδ2 T cells are not significantly different 

between HBV patient groups 

The frequencies of CD56
+ 

Vδ2 T cells in HBV patients within the study cohort were 

compared based on clinical parameters. Figure 5.9A shows the frequencies of 

circulating CD56
+ 

Vδ2 T cells as a percentage of total T cells for 13 HBV patients with 

a low viral load i.e. below 100,000 copies/ml and 4 HBV patients with a high viral load 

i.e. between 100,000 and 5 x 10
8 

copies/ml. The mean frequencies of circulating Vδ2 T 

cells in patients with low and high viral load were 1.4+/-0.4% and 2.2+/-0.8%, 

respectively. There was no significant difference between these numbers (p=1) and 

there was no linear correlation between the frequencies of CD56
+ 

Vδ2 T cells and viral 

load (r=-0.3). Figure 5.9B shows the frequencies of Vδ2 T cells for 9 HBV patients with 

a low ALT and 9 HBV patients with a high ALT. The mean frequencies of CD56
+ 

Vδ2 

T cells in patients with low and high ALT were 1.8+/-0.5% and 1.3+/-0.7%, 

respectively (p=0.2, r=-0.2). Figure 5.9C shows the frequencies of circulating CD56
+
 

Vδ2 T cells in 8 males and 10 females. The mean frequencies for males and females 

were 1.1+/-0.3% and 1.9+/-0.7%), respectively (p=0.7). Figure 5.9D shows the 

frequencies of circulating CD56
+ 

Vδ2 T cells in 10 HBV-infected subjects aged between 

19 and 35 years of age and 8 HBV-infected subjects aged between 35 and 55 years of 

age. The mean frequencies of CD56
+ 

Vδ2 T cells in the younger and older groups of 

patients were 1.7+/-0.7% and 1.3+/-0.4%, respectively (p=0.9, r=0.08).  

These data suggest that the frequencies of circulating CD56
+
 Vδ2 T cells do not 

correlate with viral load, disease severity, gender or age. 
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Figure 5.9 
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5.4.4 Frequencies of circulating CD56
+ 

Vδ1 T cells are not significantly different 

between HBV patient groups 

The frequencies of CD56
+ 

Vδ1 T cells in HBV patients within the study cohort were 

compared based on clinical parameters. Figure 5.10A shows the frequencies of 

circulating CD56
+ 

Vδ1 T cells as a percentage of total T cells for 13 HBV patients with 

a low viral load i.e. below 100,000 copies/ml and 3 HBV patients with a high viral load 

i.e. between 100,000 and 5 x 10
8 

copies/ml. The mean frequencies of circulating CD56
+ 

Vδ1 T cells in patients with low and high viral load were 0.6+/-0.1% and 0.6+/-0.3%, 

respectively. There was no significant difference between these numbers (p=0.9) and 

there was no linear correlation between the frequencies of CD56
+ 

Vδ1 T cells and viral 

load (r=0.1). Figure 5.10B shows the frequencies of CD56
+ 

Vδ1 T cells for 9 HBV 

patients with a low ALT and 8 HBV patients with a high ALT. The mean frequencies of 

CD56
+ 

Vδ1 T cells for HBV patients with low and high ALT were 0.6+/-0.1% and 

0.7+/-0.2%, respectively (p=0.8 , r=0.2). Figure 5.10C shows the frequencies of 

circulating CD56
+ 

Vδ1 T cells in 7 males and 10 females. The mean frequencies for 

males and females were 0.6 +/-0.2% and 0.6+/-0.1%, respectively (p=0.8). Figure 5.10D 

shows the frequencies of circulating CD56
+ 

Vδ1 T cells in 9 HBV-infected subjects 

aged between 19 and 35 years of age and 8 HBV-infected subjects aged between 35 and 

55 years of age. The mean frequencies of circulating CD56
+ 

Vδ1 T cells in the younger 

and older patient groups were 0.6+/-0.2% and 0.6+/-0.2%, respectively (p=1, r=-0.1).  

These data suggest that the frequencies of circulating CD56
+ 

Vδ1 T cells do not 

correlate with viral load, disease severity, gender or age. 
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Figure 5.10 
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5.4.5 Frequencies of naïve, TCM, TEM and TEMRA Vδ2 T cells do not correlate with 

viral load, disease severity, gender or age in HBV infection 

The frequencies of Vδ2 T cells of different memory phenotypes were quantified as a 

percentage of total Vδ2 T cells and compared between HBV patients within the study 

cohort, based on clinical parameters. The memory phenotypes were the same as those 

investigated in section 5.2 i.e. naïve, TCM, TEM, and TEMRA phenotypes. The minimum, 

maximum and mean frequencies for circulating naïve, TCM, TEM, and TEMRA Vδ2 T cells 

are shown in Table 5.1. The frequencies of naïve, TCM, TEM, and TEMRA Vδ2 T cells 

divided based viral load, ALT, gender and age are shown in Figures 5.11A, B, C and D, 

respectively.  

All data shown suggest that there were no statistically significant differences in the 

frequencies of circulating naïve, TCM, TEM  or TEMRA Vδ2 T cells between HBV patient 

groups. 

 

5.4.6 Frequencies of naïve, TCM, TEM and TEMRA Vδ1 T cells do not correlate with 

viral load, disease severity, gender or age in HBV infection 

The frequencies of Vδ1 T cells of different memory phenotypes were quantified as a 

percentage of total Vδ1
+
T cells and compared between HBV patients within the study 

cohort, based on clinical parameters. The minimum, maximum and mean frequencies 

for circulating naïve, TCM, TEM and TEMRA Vδ1 T cells are shown in Table 5.2. The 

frequencies of naïve, TCM, TEM and TEMRA Vδ1 T cells divided based viral load, ALT, 

gender and age are shown in Figures 5.12A, B, C and D, respectively.  

All data shown suggest that there were no statistically significant differences in 

the frequencies of circulating naïve, TCM, TEM or TEMRA Vδ1 T cells between HBV 

patient groups. 

Altogether, there are higher frequencies of effector-memory Vδ1
+
 and Vδ2 T 

cells in HBV infection. However, these higher frequencies do not correlate with 

increases in viral load and disease severity, suggesting that such cells are involved in 

immune responses against HBV but not pathogenesis. 
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Figure 5.11 
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Table 5.1 

Differentiation status of circulating Vδ2 T cells in subgroups of HBV patients: The 

frequencies of Vδ2 T cells in patient subsets, based on varying ALT, viral load, age and 

gender. 

 

 Memory 

Phenotype 

ALT  

<40 

 

ALT >40 Low 

Viral 

Load 

High 

Viral 

Load 

Age 

< 

35 

Age 

35-

50 

M* F* 

Min % Naïve 3.9 3.2 3.8 3.2 3.2 3.9 6.1 3.2 

 TCM 15   6.7 14.9 6.7 6.7 9.9 15 6.7 

 TEM 9.4 6 7.7 6 6 7.8 7.8 6 

 TEMRA 3.4 0.9 0.9 4.9 0.9 3.4 7.8 0.9 

Max % Naïve 38.4 29.3 38.4 22 34.4 38.4 38.4 29.2 

 TCM 49.5 55.1 55.1 25.2 47.9 55.1 55.1 49.5 

 TEM 50.5 66.9 50.5 66.9 66.9 50.5 66.9 50.5 

 TEMRA 39.3 59.1 36.4 59.1 59.1 54.3 36.3 59.1 

Mean% Naïve 21.8 13.3 20.7 10.7 13.2 23 23.2 14 

 TCM 34 25.9 36 16.2 26 35 34.2 27.4 

 TEM 24.8 29 26.6 27.1 30.8 22.2 26.7 26.8 

 TEMRA 19.5 23.7 16.5 33.5 22.9 19.8 15.7 25.5 

SEM % Naïve 4.3 3.1 3.3 3.6 3.5 4.1 5.1 2.9 

 TCM 4 6.3 3.7 3.7 4.7 5.6 5.7 4.9 

 TEM 4.8 7.5 4.3 10.7 6.3 5.6 8.4 4.7 

 TEMRA 4.3 8.1 3.3 11.2 6.4 6.1 3.9 6.7 

N* Naïve 9 8 12 5 10 8 7 10 

 TCM 9 8 12 5 10 8 7 10 

 TEM 9 8 12 5 10 8 7 10 

 TEMRA 9 8 12 5 10 8 7 10 

P* Naïve 0.2  0.1  0.1  0.1  

 TCM 0.3  0.02  0.7  0.5  

 TEM 0.9  0.8  0.4  0.8  

 TEMRA 1  0.2  0.7  0.5  

r* Naïve -0.3  -0.5  0.4  -  

 TCM -0.3  -0.3  0.1  -  

 TEM 0  0.07  -0.4  -  

 TEMRA 0.01  -0.01  0.02  -  

 

 

* Low viral load lies below 100,000 copies/ml, high viral load ranges from 100,000 to 

1x10
8
 copies/ml. N* is the number of subjects. The p-value p* is a product of the 

Mann-Whitney U-test and indicates statistical significance when it falls below 0.05. The 

correlation coefficient r* is a product of the Spearman Correlation test and a value close 

to 1 or -1 indicates a linear correlation between two arrays of numbers. The columns 

with headers M* and F* comprise the male and female subjects. 
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Figure 5.12 
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Table 5.2 

Differentiation status of circulating Vδ1 T cells in subgroups of HBV patients: The 

frequencies of Vδ1 T cells in patient subsets, based on varying ALT, viral load, age and 

gender. 

 

 Memory 

Phenotype 

ALT  

<40 

 

ALT >40 Low 

Viral 

Load 

High 

Viral 

Load 

Age 

< 

35 

Age 

35-

50 

M* F* 

Min % Naïve 16.5 4.6 4.6 11.8 7.2 4.6 4.6 11.8 

 TCM 2 0 2 0 0 4.6 0 2 

 TEM 0 0 0 0 0 0  0 0 

 TEMRA 11.1 6.4 6.4 24.1 6.4 12.2 11.1 6.4 

Max % Naïve 48 50 48 50 50 48 50 48 

 TCM 36.4 22.3 36.4 15.9 33.3 36.4 33.3 36.4 

 TEM 27.3 48.2 31.7 48.2 48.2 27.3 31.7 48.2 

 TEMRA 70 77.3 77.3 72.6 72.6 77.3 77.3 72.6 

Mean% Naïve 4.2 23.7 27.9 29 29.1 27.3 28.3 28.2 

 TCM 16 12.4 16.9 7.9 12.7 16 14.2 14.3 

 TEM 8.6 17.8 12.4 14.3 16.1 9.3 10.7 14.5 

 TEMRA 7.5 46.1 42.8 48.8 42.1 47.4 46.8 43 

SEM % Naïve 4.2 6 4.2 7.3 5.5 5.1 7.2 4 

 TCM 4.1 2.9 3 2.9 3.7 3.4 4.3 3.2 

 TEM 2.7 5.8 2.9 8.7 5.3 3.1 4 4.7 

 TEMRA 7.5 8.4 6.8 8.1 8.2 7.4 8.4 7.4 

N* Naïve 9 8 12 5 10 8 7 10 

 TCM 9 8 12 5 10 8 7 10 

 TEM 9 8 12 5 10 8 7 10 

 TEMRA 9 8 12 5 10 8 7 10 

p* Naïve 0.4  1  1  1  

 TCM 0.6  0.06  0.5  1  

 TEM 0.2  0.7  0.5  0.5  

 TEMRA 0.7  0.6  0.7  0.9  

r* Naïve -0.2  -0.2  0.07  -  

 TCM -0.1  -0.4  0.02  -  

 TEM 0.2  0.06  0.03  -  

 TEMRA 0.1  0.2  0.2  -  

 

 

* Low viral load lies below 100,000 copies/ml, high viral load ranges from 100,000 to 

1x10
8
 copies/ml. N* is the number of subjects. The p-value p* is a product of the 

Mann-Whitney U-test and indicates statistical significance when it falls below 0.05. The 

correlation coefficient r* is a product of the Spearman Correlation test and a value close 

to 1 or -1 indicates a linear correlation between two arrays of numbers. The columns 

with headers M* and F* comprise the male and female subjects. 
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5.5 V and V T cell frequencies in demographically-matched healthy controls 

Our patient cohort consisted of a group of individuals of different race as discussed in 

Chapter 2 and 3 and our knowledge of the healthy control subjects was also limited in 

this part of the study. Therefore, blood samples were obtained from healthy controls that 

were demographically-matched to our patient cohort in an effort to minimise the risk of 

false-positive results based on race and not HBV infection. The demographically-

matched control blood samples were taken from 13 African, 14 Caucasian and 9 Asian 

healthy donors. PBMC preparation and surface staining was performed in the same 

manner as for all other subjects and the frequencies V and V T cells were 

quantified. 

 The mean frequencies of circulating V T cells were 3+/-0.5%, 2.8+/-0.4% and 

3.3+/-0.3% in African, Caucasian and Asian control subjects (Figure 5.13A). The mean 

frequencies of circulating V T cells were 0.9+/-0.2%, 0.6+/-0.1% and 1.6+/-0.4% in 

African, Caucasian and Asian control subjects (Figure 5.13B). Performance of the 

Mann Whitney U test revealed that neither the frequencies of V or VT cells were 

significantly different between African, Caucasian or Asian control subjects, with all p 

values falling outside our confidence interval of 0.05. 

 These data suggest that the frequencies of circulating V and V T cells do 

not significantly differ between persons from the 3 ethnic groups investigated in this 

study and therefore, the differences observed here between HBV patients and control 

subjects are not biased by the demographics of the patient group. 
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Figure 5.13 
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5.6 IFN- production by Vδ2 T cells in HBV infection 

5.6.1 The frequencies of circulating IFN--producing Vδ2 T cells are higher in 

HBV patients than in healthy control subjects 

PBMC from 10 HBV-infected subjects and 18 control subjects were incubated for 4 

hours in medium alone or with PMA/I, in the presence of brefeldin A. This was 

followed by surface staining with PE-labelled anti-Vδ2 mAb and PE-Cy5-labelled anti-

CD3 mAb and intracellular staining with FITC-labelled anti-IFN- to identify IFN--

producing Vδ2 T cells (Figure 5.14A). The frequency of IFN--producing Vδ2 T cells 

was calculated as a percentage of the Vδ2 T cells and as a percentage of the total T cells. 

In the absence of stimulation, the mean frequencies of IFN--producing Vδ2 T cells as a 

percentage of total Vδ2 T cells were 2.7+/-0.7% in controls and 6.7+/-1.4% in HBV 

patients (Figure 5.14B, p=0.01). After PMA/I stimulation, the mean frequencies of IFN-

-producing Vδ2 T cells were 48.7+/-7.9% and 35.6+/-5.2%, respectively (Figure 5.14C, 

p=0.6).  

In the absence of stimulation, the mean frequencies of IFN--producing Vδ2 T 

cells, as a percentage of T cells, were 0.06+/-0.02% in controls and 0.4+/-0.2% in HBV 

(Figure 5.13D, p=0.005). In the presence of stimulation, the mean frequencies of IFN--

producing Vδ2 T cells as a percentage of T cells were 1+/-0.2% in controls and 1.6+/-

0.4% in HBV (Figure 5.14E, p=0.2). 

These data show that the frequencies of IFN--expressing resting Vδ2 T cells 

isolated from HBV-infected individuals are significantly higher than those isolated from 

uninfected controls. However, Vδ2 T cells isolated from control subjects have similar 

responses to in vitro stimulation, as those cells from HBV-infected subjects. 
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Figure 5.14 
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5.6.2 The frequencies of circulating IFN--producing Vδ2 T cells in HBV patient 

groups 

The frequencies of IFN--producing Vδ2 T cells were quantified as a percentage of total 

Vδ2 T cells and compared between 10 HBV patients within the study cohort, based on 

clinical parameters. The minimum, maximum and mean frequencies of circulating IFN-

-producing Vδ2 T cells following incubation in medium alone or medium conditioned 

with PMA/I are shown in Table 5.3. The p and r values are also shown in Table 5.3. All 

patients investigated in this part of the study had low viral load (i.e. below 100,000 

copies/ml) and therefore, a Mann-Whitney test was carried out to ascertain whether 

there were differences in the frequencies of IFN--producing Vδ2 T cells between 

HBV-infected individuals with very low viral load (10 – 1000 copies/ml) and a low to 

medium viral load (10 – 10,000 copies/ml). Furthermore, only 2 HBV-infected 

individuals in this part of the study had ALT greater than 40 IU/ml and thus, Mann-

Whitney tests could not be performed to ascertain differences between patients with low 

and high ALT because the test requires at least 3 data points in each group. Instead, the 

test was performed to compare frequencies in patients with ALT less than or greater 

than 35 IU/ml. All data are shown in Table 5.3. The frequencies of IFN--producing 

Vδ2 T cells divided based on viral load, ALT, gender and age are shown in Figures 

5.15A, B, C and D, respectively.  

All data shown suggest that the frequencies of circulating IFN--producing Vδ2 

T cells do not correlate with viral load, disease severity, gender or age in this patient 

cohort. 
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Figure 5.15 
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Table 5.3 

The frequencies of circulating IFN--producing Vδ2 T cells in HBV patient subsets: 

The frequencies of IFN--producing Vδ2 T cells within divisions of the HBV patient 

study cohort, based on varying ALT, viral load, age and gender. 

 

  

Condition* 

ALT  

<35 

 

ALT >35 Low 

Viral 

Load 

Low to 

Medium 

Viral 

Load 

Age 

< 

35 

Age 

35-

50 

M* F* 

Min  

% 

Medium 1.6 2.2 1.6 2.2 1.6 2.4 2.6 1.6 

 PMA/I 

 

22.8 22.9 22.8 22.9 22.8 23.6 22.9 22.8 

Max  

% 

Medium 15.2 10.7 9.5 15.2 15.2 6.4 15.2 9.5 

 PMA/I 

 

44.3 75.6 75.6 44.3 75.6 44.6 75.6 44.6 

Mean % Medium 7 6.2 6 7.6 7.9 3.8 9.5 4.8 

 PMA/I 

 

36.8 37.1 40.2 33 36.7 37.5 40.1 34.5 

SEM % Medium 2 2.2 1.4 3.2 2 1.1 2.6 1.3 

 PMA/I 

 

3.7 12.8 8.9 5 8.2 6 12.4 4.1 

N* Medium 

 

6 4 6 4 7 3 4 6 

 PMA/I 

 

5 4 5 4 6 3 5 4 

p* Medium 

 

1  0.8  0.4  0.1  

 PMA/I 

 

0.7  0.9  0.5  1  

r* Medium 0.02  0.3  0.01 

 

 -  

 PMA/I 

 

-0.2  -0.3  0.5  -  

 

* Condition refers to the 4 hour incubation of the cells in medium alone or, in medium 

treated with PMA/I, prior to staining for flow cytometry. Low viral load is below 1,000 

copies/ml, low to medium viral load ranges from 1,000 to 10,000 copies/ml. N* is the 

number of subjects. The p-value p* is a product of the Mann-Whitney U-test and 

indicates statistical significance when it falls below 0.05. The correlation coefficient r* 

is a product of the Spearman Correlation test and a value close to 1 or -1 indicates a 

linear correlation between two arrays of numbers. The columns with headers M* and F* 

comprise the male and female subjects, respectively.  

5.6.3 The frequencies of circulating IFN--producing Vδ2 T cells were lower 

following incubation with HBsAg 
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Since frequencies of IFN--expressing resting Vδ2 T cells are higher in HBV, a 

preliminary experiment to ascertain whether HBV can induce IFN- production by Vδ2 

T cells was performed. PBMC from 3 healthy donors were incubated in medium 

supplemented with FBS, medium supplemented with sera from healthy control subjects 

or from HBV patients with a viral load above 10
6
 copies/ml or, medium containing 1 μg 

of HBV surface antigen (HBsAg) or 3 μg of HBsAg, for 24 hours. Following this 

incubation, cells were treated with brefeldin A and incubated for a further 4 hours. 

Surface and intracellular staining with PE-labelled anti-Vδ2, PerCP-labelled anti-CD3 

and FITC-labelled IFN- was subsequently performed. 

 The mean frequencies of IFN--expressing Vδ2 T cells, as a percentage of total 

Vδ2 T cells, were 14.5+/-3.6% following incubation in medium supplemented with FBS. 

Contrary to our hypothesis, the frequencies of IFN--expressing Vδ2 T cells were lower 

following 24 hour incubation with medium supplemented with sera from healthy control 

subjects or HBV patients or, medium containing 1μg of HBV surface antigen (HBsAg) 

or 3μg of HBsAg, with mean frequencies of 10.3+/-2.2%, 9.5+/-2.9%, 6.6+/-1.7% and 

6.3+/-1.6%, respectively (Figure 5.16A). Paired t-tests revealed that only the differences 

observed in the presence of HBV serum were statistically significant (p=0.04) 

 As shown in Chapter 4, the serum from HBV patients is not a definite source of 

HBV antigens but the commercial HBsAg used in these experiments is intact. Therefore, 

these data suggest that Vδ2 T cells do not produce IFN-as a direct response to HBsAg, 

and perhaps, another viral epitope or cell of the host immune system triggers the 

enhanced numbers of IFN--expressing Vδ2 T cells observed in HBV infection. 

Furthermore, these data suggest that HBsAg causes a decrease of more than 50% in the 

frequencies of IFN--expressing Vδ2 T cells. It appears that HBsAg may have inhibited 

IFN- expression by Vδ2 T cells under the conditions provided here but in the HBsAg
+
 

carriers studied in sections 5.5.1 and 5.5.2, another arm of the immune system may 

counteract this inhibition and lead to overall higher frequencies of IFN--expressing 

Vδ2 T cell and immune control. This experiment is only a preliminary investigation of 

the immune mechanisms in HBV and further work must be carried out before any 

conclusions can be made. 
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5.7 NKG2D expression by Vδ2 T cells in HBV 

Surface staining with PE-labelled anti-Vδ2 mAb, PerCP-labelled anti-CD3 mAb and 

APC-labelled anti-NKG2D was performed to identify NKG2D-expressing Vδ2 T cells 

in the peripheral blood. Frequencies of NKG2D
+ 

Vδ2 T cells were similar in HBV-

infected subjects and controls with mean frequencies of 43% and 46.7%, respectively 

(p=0.6, Figure 5.17A). However, the mean fluorescence intensity of the receptor on the 

surface of Vδ2 T cells in HBV infection (mean MFI: 27.2+/-3.2) was lower than that 

observed on the surface of such cells in uninfected controls (mean MFI: 83+/-42.6, 

p=0.1, Figure 5.17B).  

 These data suggest that the frequencies of NKG2D-expressing Vδ2 T cells are 

intact in HBV but, the level of NKG2D surface expression by such cells may be 

impaired. 
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Figure 5.16 
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Figure 5.17 
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5.8 Bonferroni correction method 

Since the present study involved the analysis of the frequencies of multiple  T cell 

subpopulations in patient and control subject groups, it is possible that statistically-

significant differences in the two subject groups will be identified by chance alone.   

For the phenotypic study of  T cells, 14 tests were performed as shown in 

Table 3.5. By applying the Bonferroni correction method to the p-values obtained from 

the Mann-Whitney U tests, the most substantial results could be filtered out. Both the p 

and pc values for all tests are listed in Table 5.4. Following this correction, the 

differences in the frequencies of total V2 T cells and naïve V1 cells, only, were 

shown to be statistically significant with pc-values of 0.01 and 0.003, respectively 

(Table 5.4).  

These data provide strong evidence that the frequencies of circulating V2 T 

cells are higher in HBV infection while, the frequencies of naïve V1 T cells appear to 

be depleted. 
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Table 5.4 

Statistical analysis of the phenotypical differences observed in  T cell 

subpopulations in HBV infection: The p-values and corrected p-values for all 14 

statistical tests performed in the phenotypical study of  T cell subpopulations in HBV 

infection. 

 

 

 

*This column indicates whether the frequencies of cells are higher or lower in HBV-

infected subjects, compared to control subjects. 

Significant results after Bonferroni correction (pc values) are highlighted in italics. 

 

 

 

 

 

  

 

 

TEST 

 

*Change 

in HBV 

 

 

p value 

 

pc  

value 

 

V2 T cells (as % of T cells) 

 

Higher <0.0001 0.014 

V1 T cells (as % of T cells) 

 

Higher 0.02 0.28 

CD56+V1 T cells (as % of T cells) 

 

Higher 0.01 0.14 

Naïve V2 T cells (as % of  V2 T cells) 

 

Lower 0.006 0.084 

TCM  V2 T cells (as % of  V2 T cells) 

 

Lower 0.03 0.42 

TEMRA  V2 T cells (as % of  V2 T cells) 

 

Higher 0.02 0.28 

Naïve V1 T cells (as % of  V1 T cells) 

 

Lower 0.0002 0.0028 

TCM  V1 T cells (as % of  V1 T cells) 

 

Higher 0.02 0.28 

TEM  V1 T cells (as % of  V1 T cells) 

 

Higher 0.004 0.056 

TEMRA  V1 T cells (as % of  V1 T cells) 

 

Higher 0.02 0.28 
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5.9 Discussion 

This study investigated the frequencies of circulating  T cell subpopulations in 

patients with asymptomatic HBV infection to identify which subsets of  T cells are 

expanded in HBV. Since the majority of the patients had a viral load below 20,000 and 

an ALT below 40, the group of patients were considered to have minimal or no liver 

disease and controlled viral replication. Therefore, although all patients are HBsAg 

carriers, they represent a model of immune control in the absence of severe immune 

pathology.  

 An association between Higher frequencies of  T cells and seroconversion has 

previously been identified in HBV thus implicating these cells in the resolution of HBV 

infection while, the inability to clear the virus has been linked to deficiencies in 

circulating Vδ2 T cells (Sing et al. 1998; Chen et al. 2008). Furthermore, impaired IFN-

 production and cytotoxic activity by Vδ2 T cells was observed in chronic HBV with 

the most significant deficiencies observed in those with the most severe liver disease 

(Chen et al. 2008). 

Expansions of circulating V2 T cells and to a lesser extent, V1 T cells, have 

been found in our patient cohort, compared to a group of uninfected controls. It has also 

been found that effector memory V2 and V1 T cells  were more abundant in the 

peripheral blood of HBV-infected patients than in that of uninfected control subjects 

while naïve subsets were substantially lower. This suggests that the expanded 

populations of V2 and V1 T cells are actively involved in the immune control of 

HBV in these patients. The quantification of IFN-- and NKG2D-expressing V2 T 

cells in HBV-infected patients and uninfected controls revealed that the frequencies of 

IFN--expressing V2 T cells are higher in HBV but the frequencies of NKG2D-

expressing V2 T cells are not. While the frequencies of NKG2D
+
 V2 T cells are 

unchanged in the HBV patients, the surface expression of NKG2D (MFI) by V2 T 

cells is lower. Together with previous work by Chen et al. (2008) which has revealed 

that depletions of V2 T cells correlate with an increase in liver inflammation, our data 

suggest that higher frequencies of V2 T cells are required to control HBV infection and 

prevent immune-mediated damage. The mechanism by which this occurs may involve 

the IFN--mediated downregulation of NKG2D. IFN- has been shown to inhibit 

NKG2D ligand expression in melanoma and could employ a similar mechanism in 

HBV so that IFN--mediated viral clearance can prevail and liver damage from 



 264 

cytolytic activity is limited (Schwinn et al. 2009). As discussed in Chapter 4, non-

cytolytic control of virus infection is preferable when large numbers of cells in large 

vital organs are infected (Guidotti & Chisari 2001). δ T cells have previously been 

implicated in the liver injury associated with HCV with Th1-biased V1 T cells 

identified as the predominant δ T cell subset to infiltrate HCV-infected livers and 

therefore, need to be controlled in order to facilitate viral clearance without causing 

liver damage (Tseng et al. 2001; Nikolopoulou et al.1995). Furthermore, NKG2D has 

been implicated in NK cell-mediated hepatocyte injury in virus-induced hepatitis and 

liver failure in mice thus showing why its regulation is critical in the avoidance of 

severe liver disease (Zou et al. 2010). Therefore, it appears that the expansions of IFN-

-expressing V2 T cells with lower NKG2D expression may represent a repertoire of 

V2 T cells that can control HBV replication without causing significant liver injury. 

Furthermore, the application of the Bonferroni correction method to our data have 

informed us that the expansions of V2 T cells are highly significant. 

The elevated frequencies of circulating V1 T cells, although not as significant 

as those observed for V2 T cells, suggest that these cells also play a role in the antiviral 

immune response against HBV, possibly via the production of IFN- and TNF-α (Spada 

et al. 2000). Their active role in immunity in these patients is evident in the expansions 

of their effector memory repertoires. The production of IFN- by these cells might also 

contribute to the inhibition of NKG2D-mediated cytotoxicity. Furthermore, the 

expansion of the CD56
+
 repertoire of V1 T cells in HBV suggests that they are part of 

the IFN--producing NT cell population which was already found to be expanded in 

HBV. Since V1 T cells have previously been implicated in the pathogenesis of HCV 

infection and arthritis, they might require strict regulation in asymptomatic HBV 

infection (Tseng et al. 2001; Bank et al. 2002). However, they have also previously 

been shown to regulate inflammatory responses of CD8
+
 T cells in the small intestine 

via the suppression of IFN-, granzyme-B and NKG2D expression (Bhagat et al. 2008). 

Therefore, further work is required to determine whether this  T cell subset plays a 

predominant antiviral or regulatory role in the control of HBV infection. Future work 

might also examine the role of Vδ3 T cells in HBV-infected liver. This  T cell 

subpopulation is most prevalent in liver and therefore, may be of particular importance 

in controlling HBV infection but its investigation was not feasible for this study due to 

limited access to liver samples. 
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 Since higher frequencies of circulating IFN--producing V2 T cells have been 

found in HBV patients in the absence of stimulation, the potential of these increases 

were mimicked in vitro using HBV patient serum or HBsAg. However, it was found 

that the frequencies of IFN--producing V2 T cells were lower following incubation 

with HBV patient serum or HBsAg, suggesting that HBV proteins may have an 

immunomodulatory effect on V2 T cells. Chen et al. (2008) previously found 

depletions of V2 T cells and reduced IFN- expression in chronic HBV. They found 

the greatest depletions in patients with the highest viral load suggesting that HBV 

proteins may have detrimental effects on V2 T cells. Since, higher frequencies of V2 

T cells have been found in a group of HBV patients with low viral load, this study may 

have identified an environment in which HBV proteins cannot reach sufficient levels to 

affect V2 T cell frequencies or functions. Therefore, it is proposed that the expansions 

of V2 T cells observed in our study group may be an indirect consequence of HBV 

infection and a more direct effect of a highly activated cell population, most likely NT 

cells. 

The data obtained in this study suggest that  T cells contribute to the control of 

HBV replication in these HBV patients, most likely via the production of IFN-. It is 

proposed that the expansion of such  T cells in HBV infection may be in response to 

other innate lymphocytes, rather than the virus. Since no significant differences were 

observed in CD1 expression in Chapter 3, it is also proposed that the expanded V2 and 

V1 T cells are not CD1-restricted populations of δ T cells. Furthermore, the 

frequencies of V2 and V1 T cells were similar between control subjects of different 

race suggesting that our findings are not significantly influenced by the demographics 

of our patient group. 

From these findings, it is proposed that innate T cells, most notably CD56
+ 

T 

cells and V2 T cells, are crucial to the control of HBV replication and such cells may 

be used as the basis for future immunotherapies. 

 

 

 

 

 

 



 266 

 

 

Chapter 6 

 

Reciprocal 

interactions between 

V2 T cells and 

epithelial cells 

 

 

 

 

 

 

 



 267 

6.1 Introduction 253 

   

6.2 The effects of epithelial cells on V2 T cell surface marker 

expression 

 

256 

6.2.1 The levels of NKG2A expression by HMBPP-expanded V2 T cells 

are unchanged after co-culture with epithelial cells 

 

256 

6.2.2 The levels of HLA-DR expression by HMBPP-expanded V2 T cells 

are unchanged after co-culture with epithelial cells 

 

257 

6.2.3 The levels of NKG2D expression by HMBPP-expanded V2 T cells 

are lower after co-culture with epithelial cells 

 

257 

6.2.4 The levels of NKG2D expression by PHA and IL-2-expanded T cells 

are lower after co-culture with epithelial cells 

 

258 

6.2.5 The levels of NKG2D expression by fresh T cells are lower after co-

culture with epithelial cells 

 

259 

   

6.3 The effects of V2 T cells on epithelial cell surface marker 

expression 

 

266 

6.3.1 The levels of CD54 expression by epithelial cells are higher following 

co-culture with HMBPP-expanded V2 T cells 

 

266 

6.3.2 The levels of CD54 expression by epithelial cells are higher following 

co-culture with PHA and IL-2-expanded T cells 

 

267 

6.3.3 The levels of CD54 expression by HT29 and GRM cells are higher 

following co-culture with freshly isolated PBMC 

 

268 

6.3.4 The levels of HLA-E expression by HT29 cells, but not Hep3B or 

GRM cells, are slightly but significantly altered following co-culture 

with HMBPP-expanded V2 T cells 

 

268 

6.3.5 PHA and IL-2-expanded T cells have comparable effects to HMBPP-

expanded V2 T cells on HLA-E expression by HT29 cells, but not 

Hep3B or GRM cells 

 

 

269 

6.3.6 The levels of HLA-E expression by HT29 cells are not significantly 

altered following co-culture with fresh PBMC 

 

270 

6.3.7 The levels of MICA/B expression by epithelial cells are reduced 

following co-culture with HMBPP-expanded V2 T cells 

 

270 



 268 

6.3.8 The levels of MICA/B expression by epithelial cells are reduced 

following co-culture with PHA and IL-2-expanded T cells 

 

271 

6.3.9 The levels of MICA/B expression by epithelial cells are unchanged 

following co-culture with fresh PBMC 

 

272 

   

6.4 The effects of epithelial cell / V2 T cell co-incubation on cytokine 

expression 

 

280 

6.4.1 Co-incubation of epithelial cells with V2 T cells had no significant 

effects on IL-4 expression by either cell type 

 

280 

6.4.2 There were no significant differences in IL-6 protein levels between 

the supernatants of epithelial cell or V2 T cell cultures and the 

supernatants of co-cultures containing both 

 

 

281 

6.4.3 IL-10 expression is significantly higher in Hep3B cell / V2 T cell co-

cultures, compared to V2 T cell cultures 

 

281 

6.4.4 Co-incubation of V2 T cells with epithelial cells had no significant 

effects on IL-13 expression 

 

282 

6.4.5 Co-incubation of epithelial cells and V2 T cells had no significant 

effect on IFN- expression 

 

282 

6.4.6 The levels of TGF-β1 protein are depleted from supernatant of the co-

cultures, compared to when the epithelial cells are cultured alone 

 

283 

6.4.7 Undetectable levels of IL-12 in supernatants from epithelial cell and 

V2 T cell cultures 

 

284 

   

6.5 Discussion 292 

 

 

 

 

 

 

 

 

 



 269 

6.1 Introduction 

HCC is a major global health problem and a potential endpoint of HBV infection (Bruix 

& Llovet 2003; Stefaniuk et al. 2010; Paraskevi et al. 2006; Fattovich et al. 2004). 

There are limited curative options for HCC and since surgical resection is only possible 

for small HCC malignancies, liver transplantation is often the best option (Jinushi et al. 

2005; Stefaniuk et al. 2010; De Villa & Lo 2007). Treatment of HBV can prevent the 

development of liver disease and HBV-associated HCC but HBV treatments are not 

always effective, durable or tolerated as discussed in Chapter 1. Therefore, new 

immunotherapies are required for the successful treatment of HBV-associated liver 

cancer. 

V9V2 T cells constitute the majority of  T cells in the peripheral blood and 

have a predominant Th1 cytokine profile (produce IFN-, IL-2 and TNF-α), elicit 

cytotoxic responses and have antigen presentation capabilities (Brandes 2005; Dudal et 

al. 2006; Eberl et al. 2009). While V9V2 T cells can directly modulate adaptive 

immune responses via cytokine production, they can also indirectly activate αβ T cell 

responses via activation of DC maturation. Blocking experiments have revealed that the 

V9V2 T cell induction of DC maturation is mediated, at least in part, by IFN- and 

TNF-α (Ismaili et al. 2002; Conti et al. 2005; Dunne et al. 2010). The functional 

plasticity of V9V2 T cells and the relative ease at which they can be cultured and 

expanded in vitro positions them as ideal candidates for immunotherapy. Since Vδ2 T 

cells usually co-express the V9 chain and vice versa, the identification of V9V2 T 

cells can be achieved using an antibody against just one of the chains (Eberl et al. 2009; 

Chapter 5 of this thesis). The mAb against Vδ2 was predominantly used in this study 

and therefore, these cells are referred to as V2 T cells throughout this work. 

Since expansions of V2 T cells were identified in HBV patients with controlled 

infection and little or no liver disease, it was proposed that these innate T cells are 

crucial to the control of HBV infection and in limiting progression to liver cirrhosis and 

HCC. Here, it was hypothesised that such cells may have potential for the treatment of 

HBV-associated carcinoma. 

Although V2 T cells are the main  T cell subset in peripheral blood, they still 

only constitute 0.5-4.5% of circulating lymphocytes and must be expanded in vitro in 

order to gain sufficient numbers to induce a therapeutic immune response. This can be 

achieved by stimulating whole PBMC with phosphoantigens such as HMBPP or BrHPP 
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or with aminobiphosphonates such as zoledronate, while using IL-2 as a growth factor. 

This induces significant expansion of V2 T cells (Dieli et al. 2007; Bennouna et al. 

2008; Wilhelm et al. 2003; Eberl et al. 2002; Abe et al. 2009). Various pyrophosphates 

or aminobisphosphonates have been used to expand and activate V2 T cells in cell-

based therapies that are being tested in several advanced stage malignancies (Eberl et al. 

2009; Dieli et al. 2007; Bennouna et al. 2008; Wilhelm et al. 2003). Recognition of 

phosphoantigens is believed to be mediated through the V2-TCR and these non-

peptide antigens induce significant activation and expansion of the cells (Eberl et al. 

2002). NKG2D expression is also believed to be crucial in the lysis of tumour cells by 

BRHPP+IL-2 or Zoledronate+IL-2-expanded V9V2 T cells (Bouet et al. 2008; 

Wrobel et al. 2007; Das et al. 2001). 

 The importance of  T cells in anti-tumour immune responses is evident in their 

isolation from the tumour infiltrates in breast, bladder, kidney, lung and ovarian cancer 

(Malkovsky 2003). Previous studies in our lab have shown that V2 T cell frequencies 

are depleted in tumour-bearing livers (Kenna et al. 2004). They kill primary cultures of 

tumour cells including renal, hepatocellular and colorectal carcinoma cells (Viey et al. 

2005; Mattarollo et al. 2007) and a variety of tumor cell lines (Fisch et al. 1990; Wrobel 

et al. 2007; Vantourout et al. 2009). This study aimed to investigate if V2 T cells 

recognise and respond to HBV-associated HCC-derived cells i.e. Hep3B cells, and to 

determine whether such cells can inhibit or suppress V2 T cell functions. 

The pyrophosphate HMBPP together with IL-2 was used to propagate V2 T 

cells in vitro and subsequently investigated the effects of a HBV-associated HCC cell 

line, Hep3B, on the phenotype and cytokine secretion profiles of the expanded V2 T 

cells. The expression of HBsAg by this cell line makes it an ideal model for studying 

the possible therapeutic effects of V2 T cells in HBV-associated HCC in vitro 

(Knowles et al. 1980).   

Epithelial cells can potentially stimulate V2 T cells via the expression of 

MICA/B or HLA-E which bind to NKG2D or NKG2A/C, respectively, on the surface 

of the V2 T cells. In addition to ligation of the Vγ9V2 TCR by phosphoantigen, 

ligation of NKG2D or NKG2C (dimerized with CD94) can induce the activation of V2 

T cells. On the other hand, ligation of NKG2A (dimerized with CD94) would inhibit 

their activation. The effects of co-incubation of HMBPP/IL-2-expanded V9V2 T cells 

and Hep3B cells on the expression of receptor-ligand pairs involved in T cell activation 
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and inhibition was evaluated to determine the immunotherapeutic potential of these 

cells in HCC. The effects of Hep3B cells on the expression of the antigen presentation 

molecule HLA-DR by V2 T cells was also assessed to determine if HCC can modulate 

or suppress the capabilities V2 T cells have in antigen presentation to αβ T cells. The 

expression of the adhesion molecule CD54 (ICAM-1) by Hep3B cells was also 

investigated following co-culture. In addition, the expression levels of a variety of 

inflammatory and immunomodulatory cytokines was investigated to analyse the 

reciprocal effects of V2 T cell and Hep3B cells in co-culture. The colorectal 

carcinoma-derived cell line HT29 and the melanoma-derived cell line GRM were used 

as additional target cell populations and served as control epithelial cell lines. Fresh 

PBMC and PHA/IL-2-expanded αβ T cells were used as controls for expanded V2 

cells. PHA/IL-2-expanded αβ T cells served as an expanded population of non-V2 T 

cells and also served as a control for any αβ T cell contamination of enriched V2 cell 

populations. PBMC served as a control for the stimulated / expanded cells by providing 

resting V2 T cell and αβ T cell populations which could be individually identified by 

flow cytometry. 

 Overall, the aim of this preliminary study was to gain knowledge of the 

immunotherapeutic potential of HMBPP/IL-2-expanded V2 T cells in HBV-associated 

HCC and to identify any possible mechanisms by which HCC may subvert their effector 

functions. However, it was kept in mind that a HCC-derived cell line may not be 

representative of HCC and that this study should purely serve as a platform for further 

studies where such cellular interactions may be investigated in HCC patients. 
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6.2 The effects of epithelial cells on V2 T cell surface marker expression 

V2 T cells were expanded from the PBMC of 4-5 donors, using the pyrophosphate 

antigen HMBPP in combination with IL-2 as described in Chapter 2. The Hep3B, HT29 

and GRM cell lines were maintained in culture as described in Chapter 2. Each 

epithelial cell line was subsequently cultured in the absence or presence of 14-day old 

expanded V2 T cells at 1:1 ratios. After 24 hours of co-culture, culture plates were 

centrifuged and supernatants were frozen for subsequent cytokine analysis. The pelleted 

cells were re-suspended in PBA and surface stained to examine NKG2A, HLA-DR and 

NKG2D surface expression by V2 T cells (Table 2.19). The use of mAbs specific for 

BerEP4, V2 and CD3 facilitated the exclusion of epithelial cells and ensured that 

surface marker expression was only examined on the V2 T cell population (Figures 

6.1A–E). 

 

6.2.1 The levels of NKG2A expression by HMBPP-expanded V2 T cells are 

unchanged after co-culture with epithelial cells 

Surface staining with FITC-labelled anti-BerEP4, PE-labelled anti-V2, PerCP-labelled 

anti-CD3 and APC-labelled NKG2A was performed to identify epithelial cells and V2 

T cells and to ascertain whether the level of NKG2A expression by the V2 T cells had 

changed after co-culture with Hep3B, HT29 or GRM cells (Figure 6.2A).  

The frequencies of 14-day old expanded V2 T cells expressing NKG2A ranged 

from 21.6% to 99.1% (mean 56+/-13%) of total V2 T cells. This did not change 

significantly after co-culture with Hep3B cells with frequencies ranging from 21.45% to 

100% (mean 62+/-17%). Similar frequencies were also observed following co-culture 

with HT29 cells (range; 23.5-99.4%, mean; 71.8+/-15.5%) or with GRM cells (range; 

50.8-100%, mean; 87.2+/-9.4). 

The mean fluorescence intensity (MFI) of NKG2A staining by V2 T cells 

ranged from 32.4 to 138.4 (mean 61+/-18) and from 14.7 to 178.1 (mean 64+/-27) when 

measured after culture in the absence and presence of Hep3B cells, respectively (Figure 

6.2B). When measured after culture in the presence of HT29 cells, NKG2A expression 

ranged from 33 to 620.1 (mean; 169.8+/-113.4, Figure 6.2C) and, ranged from 27.8 to 

82.4 (mean; 47.4+/-10) following co-culture with GRM cells (Figure 6.2D). A paired t-

test revealed that no statistically significant changes in the levels of NKG2A expression 
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by V2 T cells occurred following co-culture with Hep3B, HT29 or GRM cells (p=0.4, 

0.2 and 0.2).  

These data show that expression of the inhibitory receptor NKG2A by V2 T 

cells is not altered by co-culture with Hep3B, HT29 or GRM cells. 

 

6.2.2 The levels of HLA-DR expression by HMBPP-expanded V2 T cells are 

unchanged after co-culture with epithelial cells 

Surface staining with FITC-labelled anti-BerEP4, PE-labelled anti-V2 and PerCP-

labelled anti-CD3 was performed to identify epithelial cells and V2 T cells and further 

surface staining with FITC-labelled anti-HLA-DR in combination with PE-labelled anti-

V2 was performed to ascertain whether the level of HLA-DR expression by the V2 T 

cells had changed after co-culture with Hep3B cells (Figure 6.3A). 

 The frequencies of 14-day old V2 T cells expressing HLA-DR ranged from 

59.4% to 97.5% (mean 79+/-6%) of total V2 T cells. This did not change significantly 

after co-culture with Hep3B cells with frequencies ranging from 88.2% to 97.2% (mean 

88+/-4%, Figure 6.3A). Similar frequencies were also observed following co-culture 

with HT29 cells (range; 82.05-99.5%, mean; 73.8+/-18%) or with GRM cells (range; 

92.4-99.2%, mean; 96+/-1.2%). 

The MFI of HLA-DR expression by V2 T cells also did not change and ranged 

from 26.9 to 190.8 (mean 107+/-33) and from 28.1 to 197 (mean 112+/-38, Figure 6.3B) 

when measured after culture in the absence and presence of Hep3B cells, respectively 

(Figure 6.3C, J, p=0.3). Furthermore, co-culture with HT29 or GRM cells did not alter 

HLA-DR expression levels by V2 T cells with MFI values ranging from 4.8 to 98.77  

(mean; 51.9+/-17.2, p=0.3) and from 38.1 to 193.7  (mean; 90.3+/-31.8, p=0.4), 

respectively. 

 These data show that expression of the antigen presentation marker 

HLA-DR by V2 T cells is not altered by co-culture with Hep3B, HT29 or GRM cells. 

 

6.2.3 The levels of NKG2D expression by HMBPP-expanded V2 T cells are lower 

after co-culture with epithelial cells 

Surface staining with FITC-labelled anti-BerEP4, PE-labelled anti-V2, PerCP-labelled 

anti-CD3 and APC-labelled anti-NKG2D was performed to examine expression levels 

of NKG2D by V2 T cells, in the absence and presence of epithelial cells (Figure 6.4A).  
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The frequencies of 14-day old V2 T cells expressing NKG2D ranged from 

75.7% to 100% of total V2 T cells (mean 89.1+/-4.9%). This did not change 

significantly after co-culture with Hep3B cells with frequencies ranging from 79.2% to 

100% (mean 73.8+/- 16%). Similar frequencies of NKG2D-expressing V2 T cells were 

also observed following co-culture with HT29 cells (range; 77.2-99.6%, mean; 89+/-

3.9%) or GRM cells (range; 98.2-100%, mean; 99.6+/-0.4%). 

The MFI of NKG2D expression by V2 T cells ranged from 109.2 to 390.4 

(mean 216.3+/-50) but ranged from 55.2 to 164.9 (mean 83.2+/-22.2) when measured 

after culture in the presence of Hep3B cells (Figure 6.4B). A paired t-test revealed that 

these changes were not statistically significant (p=0.07). However, the lower NKG2D 

expression by V2 T cells, observed following co-cultured with HT29 cells was 

statistically significant (range; 35.2-84.3, mean; 64+/-8.9, p<0.05, Figure 6.4C). 

Significantly lower levels of NKG2D expression by V2 T cells were also recorded 

following co-culture with GRM cells (range; 45.7-163.6, mean; 86.3+/-23.5, p<0.05, 

Figure 6.4D). 

 These data show that the levels of NKG2A and HLA-DR expression by 

HMBPP expanded V2 T cells are unchanged after co-culture with epithelial cells, 

while NKG2D expression is consistently lower, suggesting a possible downregulation 

of this activating receptor by several different carcinoma-derived cell lines. 

 

6.2.4 The levels of NKG2D expression by PHA and IL-2-expanded T cells are 

lower after co-culture with epithelial cells 

To determine if the reduction in NKG2D expression was restricted to HMBPP-

enriched V2 T cells, T cells were also expanded using PHA and IL-2 from PBMC as 

described in Chapter 2. The majority of such cells were αβ T cells with a minimal 

enrichment of V2 T cells as shown in Figure 6.1F. Fourteen-day old PHA/IL-2-

expanded T cells from 2 healthy donors were then cultured alone or in the presence of 

equal numbers of Hep3B, HT29 or GRM cells for 24 hours. Hep3B cells were only co-

cultured with PHA/IL-2-expanded T cells from 1 donor due to limited cell numbers. 

Surface staining with FITC-labelled anti-BerEP4, PerCP-labelled anti-CD3 and APC-

labelled anti-NKG2D was performed to identify epithelial cells and T cells and, to 

ascertain whether the level of NKG2D expression by the PHA/IL-2-expanded T cells 

had changed after co-culture with epithelial cells. 
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The mean MFI of NKG2D expression by PHA and IL-2-expanded T cells was 

112.5+/-22.5. This was not altered by co-culture with Hep3B cells (140, Figure 6.4E). 

However the NKG2D expression was reduced following co-culture with HT29 (mean 

MFI: 60+/-9.8) or GRM cells (mean MFI: 49.9+/-4.9).   

These data are only preliminary but, they suggest that the putative NKG2D 

downregulation observed above may not be restricted to HMBPP-expanded V2 T cells 

and, that these cancers may inhibit NKG2D on all T cells expressing it.  

 

6.2.5 The levels of NKG2D expression by fresh T cells are lower after co-culture 

with epithelial cells 

To determine if the reduction in NKG2D expression was restricted to expanded 

V2 T cells, fresh PBMC were prepared from the buffy coat packs of 2 donors and 

cultured alone or in the presence of HT29 or GRM cells for 24 hours. Only results 

shown to be statistically significant were investigated further and therefore, the Hep3B 

cells were not used for this part of the study. Surface staining with FITC-labelled anti-

BerEP4, PE-labelled anti-V2, PerCP-labelled anti-CD3 and APC-labelled anti-

NKG2D was performed to identify epithelial cells and V2 T cells and, to ascertain 

whether the level of NKG2D expression by the fresh V2 T cells had changed after co-

culture with HT29 cells.  

The MFI values of NKG2D expression by fresh V2 T cells were 81.6 and 73.4 

in those PBMC incubated alone, 35.9 and 37.7 in those PBMC incubated with HT29 

cells, and 31.6 and 30.2 in those PBMC cultured with GRM cells (Figure 6.4F). This 

shows that co-culture with epithelial cells causes lower levels of NKG2D expression by 

both fresh and expanded V2 T cells.  

NKG2D expression by the αβ
+
 T cells in the PBMC was also quantified. MFI 

values of 47.4 and 42.8 on αβ
+
 T cells incubated alone, 32.6 and 25 on αβ

+
 T cells co-

cultured with HT29 cells and 22.4 and 21 on αβ
+
 T cells co-cultured with GRM cells, 

indicated NKG2D is also lower on fresh αβ
+
 T cells after incubation with HT29 cells 

(Figure 6.4F). 

These data show that the reduction in NKG2D expression is not specific to 

expanded T cells and that fresh V2
+
 and αβ

+
 T cells may be subjected to the same 

mechanism of immune subversion by carcinoma-derived cells. Overall, it appears that 
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colorectal carcinoma and melanoma-derived cells may downregulate NKG2D-mediated 

cytotoxicity as a means of evading host immune responses. 
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Figure 6.1 
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Figure 6.2 
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Figure 6.3 
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Figure 6.4 
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Figure 6.4 
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6.3 The effects of V2 T cells on epithelial cell surface marker expression 

The Hep3B, HT29 and GRM cell lines were maintained in culture as described in 

Chapter 2. V2 T cells were expanded from the PBMC of 3-5 donors, using the 

pyrophosphate antigen HMBPP in combination with IL-2 as described in Chapter 2. 

Each type of epithelial cell was subsequently cultured in the absence or presence of 14-

day old expanded V2 T cells at 1:1 ratios. After 24 hours of co-culture, culture plates 

were centrifuged and supernatants were frozen for subsequent cytokine analysis. The 

pelleted cells were re-suspended in PBA and surface stained to examine CD54, HLA-E 

and MICA/B surface expression by epithelial cells. The use of mAbs specific for 

BerEP4 and CD3 facilitated the exclusion of PBMC and, ensured that surface marker 

expression was only examined on the carcinoma-derived epithelial cells (Figures 6.1A-

D). 

 

6.3.1 The levels of CD54 expression by epithelial cells are higher following co-

culture with HMBPP-expanded V2 T cells 

Surface staining with FITC-labelled anti-BerEP4, PerCP-labelled anti-CD3 and APC-

labelled anti-CD54 was performed to identify epithelial cells and T cells and, to 

ascertain whether the level of CD54 expression by epithelial cells had changed after co-

culture with V2 T cells (Figure 6.5A).  

The MFI of CD54 expression by Hep3B cells ranged from 19.8 to 318.6 with a 

mean MFI of 80.6+/-59.5. Following co-culture in the presence of HMBPP-expanded 

V2 T cells, the MFI ranged from 21.9 to 250.3 (mean; 90.8+/-45.3, Figure 6.5B). 

Higher CD54 expression by Hep3B cells was observed after co-culture with V2 T cells 

from 4/5 donors and lower after co-culture with V2 T cells from 1/5 donors. A paired 

t-test revealed that these changes were not statistically significant (p=0.4). 

 The MFI of CD54 expression by HT29 cells ranged from 26.9 to 50.4 with a 

mean MFI of 35.9+/-5.5. Following co-culture in the presence of HMBPP-expanded 

V2 T cells, the MFI ranged from 129.3 to 1122.6 (mean; 547+/-166.6, Figure 6.5C). 

Higher CD54 expression by HT29 cells was observed following co-culture with V2 T 

cells from 5/5 donors (p=0.02). 

 The MFI of CD54 expression by GRM cells ranged from 18.7 to 507.2 with a 

mean MFI of 121.7+/-96.5. Following co-culture in the presence of HMBPP-expanded 

V2 T cells, the MFI ranged from and from 340.2 to 913.6 (mean; 558.9+/-101, Figure 
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6.5D). Higher levels of CD54 expression by GRM cells were observed following co-

culture with V2 T cells from 5/5 donors (p=0.02). 

 These data show that co-culture with HMBPP-expanded V2 T cells leads to 

higher levels of CD54 expression by carcinoma-derived cells, particularly those derived 

from colorectal carcinoma and melanoma. These findings suggest that HMBPP-

expanded V2 T cells may increase the visibility of certain tumours and enhance anti-

tumour immune responses, therefore, making these cells potential candidates for 

immunotherapies against these cancers. 

. 

6.3.2 The levels of CD54 expression by epithelial cells are higher following co-

culture with PHA and IL-2-expanded T cells 

To determine if the enhanced CD54 expression on epithelial cells was restricted to co-

culture with HMBPP-enriched V2 T cells, T cells were also expanded using PHA and 

IL-2 from PBMC as described in Chapter 2. The majority of such cells were αβ T cells 

with a mean 12.8% of V2 T cells as shown in Figure 6.1F. HT29 or GRM cells were 

cultured alone or in the presence of equal numbers of 14-day old PHA and IL-2-

expanded T cells from each of 2 donors for 24 hours. Only PHA and IL-2-expanded T 

cells from 1 donor were co-cultured with equal numbers of Hep3B cells due to limited 

cell numbers. Surface staining with FITC-labelled anti-BerEP4, PerCP-labelled anti-

CD3 and APC-labelled anti-CD54 was performed to identify epithelial cells, exclude all 

T cells and any PBMC from analysis and, to ascertain whether the level of CD54 

expression by epithelial cells had changed after co-culture with PHA and IL-2-expanded 

T cells 

CD54 expression by HT29 cells rose from 26.89 to a mean MFI of 425.91+/-

35.72 following co-culture with PHA and IL-2-expanded T cells (Figure 6.5E). CD54 

expression by GRM cells rose from 18.72  to a mean MFI of 102.46+/-46.6 following 

co-culture and the MFI of Hep3B cells (318.56) almost doubled following a single co-

culture experiment with PHA and IL-2-expanded T cells (611.91, Figure 6.5E). Since 

these experiments were only performed using PHA and IL-2-expanded T cells from 1–2 

donors, paired T test could not be performed because this significance test requires a 

minimum of 3 pairs of data. 

These data suggest that PHA and IL-2 expanded T cells can enhance CD54 

expression by epithelial cells to a level comparable with that following co-culture with 
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HMBPP and IL-2-expanded T cells. However, it must be noted that these data are 

preliminary and must be repeated with PHA and IL-2 expanded T cells from more 

donors. 

 

6.3.3 The levels of CD54 expression by HT29 and GRM cells are higher following 

co-culture with freshly isolated PBMC 

To determine if the enhanced CD54 expression by epithelial cells was specific to 

co-culture with expanded T cells, fresh PBMC from 2 donors were incubated at 1:1 

ratios with HT29 or GRM cells for 24 hours. Only results shown to be statistically 

significant using expanded T cells above were investigated further and therefore, the 

Hep3B cells were not used for this part of the study. Surface staining with FITC-

labelled anti-BerEP4, PerCP-labelled anti-CD3 and APC-labelled anti-CD54 was 

performed to identify epithelial cells, exclude PBMC from analysis and to ascertain 

whether the level of CD54 expression by epithelial cells was altered following co-

culture with fresh PBMC.  

The MFI of CD54 expression by the HT29 cells rose from 50.4 to 84.2 and 75.1, 

after a 24 hour incubation with PBMC from each of 2 healthy donors, thus showing that 

a much smaller increase in CD54 expression by HT29 cells occurred when fresh PBMC 

were used instead of HMBPP- or PHA-expanded T cells (Figure 6.5F, p = 0.05).  

The MFI of CD54 expression by the GRM cells rose from 45.04 to 71.2 and 

65.1, after a 24 hour incubation with PBMC from each of 2 healthy donors. These data 

show that a much smaller increase in CD54 expression by GRM cells occurred when 

fresh PBMC were used instead of HMBPP-expanded V2 T cells (Figure 6.5F, p = 

0.04). 

These data show that CD54 expression is enhanced by co-culture with fresh 

PBMC but, the magnitude of enhancement is lower than that observed with HMBPP-

expanded V2 T cells. 

 

6.3.4 The levels of HLA-E expression by HT29 cells, but not Hep3B or GRM cells, 

are slightly but significantly altered following co-culture with HMBPP-expanded 

V2 T cells 

Surface staining with FITC-labelled anti-BerEP4, PE-labelled anti-HLA-E and PerCP-

labelled anti-CD3 was performed to ascertain the levels of HLA-E expression by 
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epithelial cells, following culture in the presence and absence of HMBPP-expanded V2 

T cells (Figure 6.6A).  

The MFI of HLA-E expression by Hep3B cells ranged from 2 to 10 with mean 

MFI of 7.3+/-2.6. The MFI of HLA-E expression by Hep3B cells ranged from 2.7 to 16 

when measured after co-culture with HMBPP-expanded V2 T cells (mean; 6.6+/-2.8, 

Figure 6.6B). Higher HLA-E expression was observed following co-culture with 

HMBPP-expanded V2 T cells from 3/4 donors and lower following co-culture with 

HMBPP-expanded V2 T cells from 1/4 donors. A paired t-test revealed that these 

changes were not statistically significant (p=0.4). 

The MFI of HLA-E expression by HT29 cells was 1.83 but rose slightly to 2.6, 

2.9 and 4 when measured after co-culture with HMBPP-expanded V2 T cells from 

each of 3 healthy donors (Figure 6.6C, p=0.04).  

The MFI of HLA-E expression by GRM cells ranged from 1.98 to 199.4 with 

mean MFI of 51.3+/-44.1. The MFI of HLA-E expression by GRM cells ranged from 

2.9 to 50 when measured after co-culture with HMBPP-expanded V2 T cells (mean; 

14+/-10.5, Figure 6.6D). Higher HLA-E expression was observed after co-culture with 

HMBPP-expanded V2 T cells from 3/4 donors and lower after co-culture with 

HMBPP-expanded V2 T cells from 1 donor (p=0.2).  

 These data show that slightly but statistically significantly higher levels of HLA-

E expression by HT29 cells occur after co-culture with HMBPP-expanded PBMC, but 

its expression by the other carcinoma-derived cells remains unchanged under the same 

conditions. 

 

6.3.5 PHA and IL-2-expanded T cells have comparable effects to HMBPP-

expanded V2 T cells on HLA-E expression by HT29 cells, but not Hep3B or GRM 

cells 

HT29 or GRM cells were cultured alone or in the presence of equal numbers of 14-day 

old PHA and IL-2-expanded T cells from each of 2 donors for 24 hours. Only PHA and 

IL-2-expanded T cells from 1 donor were co-cultured with equal numbers of  Hep3B 

cells due to limited cell numbers. Surface staining with FITC-labelled anti-BerEP4, PE-

labelled HLA-E and PerCP-labelled anti-CD3 was performed to identify epithelial cells, 

exclude all T cells and any PBMC from analysis and, to ascertain whether the level of 
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HLA-E expression by epithelial cells was altered following co-culture with PHA and 

IL-2-expanded T cells. 

HLA-E expression by HT29 cells rose slightly from 1.83 to a mean MFI of 

3.1+/-0.1 following co-culture with PHA and IL-2-expanded T cells (Figure 6.6E). Co-

culture did not alter HLA-E expression by GRM cells with MFI of 2 when cultured 

alone and mean MFI of 2.1+/-0.2 following the co-culture. The MFI of Hep3B cells (2) 

also rose slightly following a single co-culture experiment with PHA and IL-2-

expanded T cells (3.4, Figure 6.6E). 

 These data show that PHA and IL-2-expanded T cells do not greatly induce 

HLA-E expression on epithelial cells and only have subtle effects like those observed 

with HMBPP-expanded V2 T cells. 

 

6.3.6 The levels of HLA-E expression by HT29 cells are not significantly altered 

following co-culture with fresh PBMC 

To determine if the slightly enhanced HLA-E expression by HT29 cells was 

specific to co-culture with HMBPP-expanded V2 T cells, fresh PBMC from 2 donors 

were incubated at 1:1 ratios with the colorectal carcinoma-derived cells. The MFI of 

HLA-E expression by the HT29 cells was 1.83 following culture alone and 1.6 and 1.5 

following culture with fresh PBMC, thus showing that the same slight increases in 

HLA-E expression by HT29 cells did not occur following co-culture with fresh PBMC 

(Figure 6.6F).  

 

6.3.7 The levels of MICA/B expression by epithelial cells are reduced following co-

culture with HMBPP-expanded V2 T cells 

Surface staining with FITC-labelled anti-BerEP4, PerCP-labelled anti-CD3 and APC-

labelled anti-MICA/B was performed to determine if co-culture with HMBPP-expanded 

V2 T cells altered MICA/B expression by epithelial cells (Figure 6.7A).  

The MFI of MICA/B expression by Hep3B cells ranged from 19 to 29.3 with a 

mean MFI of 24.3+/-3.2. Following co-culture in the presence of HMBPP-expanded 

V2 T cells, the MFI ranged from 14.3 to 19.4 (mean; 16.8+/-1.6, Figure 6.7B). The 

expression of MICA/B by Hep3B cells, although lower, was not statistically 

significantly altered according to a paired t-test (p=0.3). 
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 The MFI of MICA/B by HT29 cells ranged from 32.1 to 147.3 (mean; 60.9+/-

25.8) and from 11.2 to 124.6 when measured after co-culture with HMBPP-expanded 

V2 T cells (mean; 42.1+/-24.6, Figure 6.7C). The expression of MICA/B by HT29 

cells was significantly lower following co-culture with HMBPP-expanded V2 T cells 

(p=0.002). 

 The MFI of MICA/B by GRM cells ranged from 13.2 to 40 (mean; 33.3+/-6) 

and from 10.9 to 17.1 when measured after co-culture with HMBPP-expanded V2 T 

cells (mean 13.4+/-1.2, Figure 6.7D). The expression of MICA/B by GRM cells was 

reduced following co-culture with HMBPP-expanded V2 T cells from each of 4 donors 

(p=0.02). 

These data show that MICA/B expression by HT29 and GRM cells is 

significantly reduced following co-culture with HMBPP-expanded V2 T cells, 

suggesting that MICA/B may mediate the NKG2D downregulation observed on the V2 

T cells after the same co-culture experiments. 

 

6.3.8 The levels of MICA/B expression by epithelial cells are reduced following co-

culture with PHA and IL-2-expanded T cells 

To determine if the reduced MICA/B expression on epithelial cells was restricted to co-

culture with HMBPP-enriched V2 T cells, conventional T cells were also expanded 

using PHA and IL-2 from PBMC of 2 donors. HT29 or GRM cells were cultured alone 

or in the presence of equal numbers of 14-day old PHA and IL-2-expanded PBMC from 

each of 2 donors for 24 hours. Only PHA and IL-2-expanded PBMC from 1 donor were 

co-cultured with equal numbers of Hep3B cells due to limited cell numbers. Surface 

staining with FITC-labelled anti-BerEP4, PerCP-labelled anti-CD3 and APC-labelled 

anti-MICA/B was performed to identify epithelial cells, exclude T cells and any PBMC 

from analysis and, to ascertain whether the level of MICA/B expression by epithelial 

cells had changed after co-culture with PHA and IL-2-expanded T cells 

MICA/B expression by HT29 cells fell from 32.1 to a mean MFI of 15.5+/-1.7 

following co-culture with PHA and IL-2-expanded PBMC (Figure 6.7E). MICA/B 

expression by GRM cells fell from 40 to a mean MFI of 12.3+/-1.3 following the co-

culture and, the MFI of Hep3B cells (29.3) was reduced to 14.6 following a single co-

culture experiment with PHA and IL-2-expanded PBMC (Figure 6.7E). 
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These data show that MICA/B expression by epithelial cells is reduced 

following co-culture with PHA and IL-2-expanded T cells, suggesting that MICA/B 

may mediate the NKG2D downregulation observed on such T cells after the same co-

culture experiments. Again, it must be noted that these data are preliminary and must be 

repeated and expanded to determine the role, if any, of MICA/B in the putative 

downregulation of NKG2D on T cells. 

 

6.3.9 The levels of MICA/B expression by epithelial cells are unchanged following 

co-culture with fresh PBMC 

HT29 or GRM cells were incubated alone or in the presence of equal numbers of 

freshly prepared PBMC from each of 2 donors for 24 hours to ascertain if the reductions 

in MICA/B expression were specific to co-culture with expanded T cells. Surface 

staining was performed as before and analysis revealed that, after a 24 incubation with 

PBMC from each of 2 healthy donors, the MFI of MICA/B by the HT29 cells remained 

unchanged from 62.1 to 62.2 and 58.1, respectively, thus showing that co-culture with 

fresh PBMC has very little effect on MICA/B expression by HT29 cells (Figure 6.7F, 

p=0.3). The MFI of MICA/B by the GRM cells slightly changed from 122.1 to 124 and 

113, respectively, thus showing that co-culture with fresh PBMC has very little effect 

on MICA/B expression by GRM cells (Figure 6.7F, p=0.3).  

 These data show that MICA/B expression by HT29 or GRM cells is not altered 

by co-culture with fresh PBMC.  

 Overall, these data suggest that HMBPP-expanded V2 T cells may increase 

tumour visibility by inducing CD54 upregulation. Furthermore, these data also indicate 

that such tumours may employ immune evasion strategies such as the downregulation 

of NKG2D on V2 T cells. The lower surface expression of MICA/B by Hep3B cells 

which is concurrent with the reduced NKG2D expression by V2 T cells suggests that 

these decreases are caused by ligand-receptor binding. It must be noted that tumour cells 

can shed MICA/B to evade immune responses and that Hep3B might have employed 

this strategy to mediate NKG2D downregulation in these experiments. However, further 

experiments to quantify the amount of soluble MICA/B would be required before such 

conclusions can be drawn. 

 Higher levels of MICA/B expression by epithelial cells were observed when 

fresh PBMC were used but these higher levels cannot be attributed to V2 T cells alone 
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as they are a much smaller proportion of fresh PBMC. Interestingly, reduced NKG2D 

expression by both, αβ
+
 and V2

+
 T cells in fresh PBMC was observed, suggesting that 

this a general immune evasion strategy used by the tumours and, it is not specific to 

HMBPP-expanded V2 T cells. The simultaneous reduction in MICA/B expression by 

the epithelial cells was observed to a much lower extent when fresh PBMC were used, 

suggesting that another factor is involved in the putative NKG2D downregulation. 
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Figure 6.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 291 

 

Figure 6.5 
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Figure 6.6 
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Figure 6.6 
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Figure 6.7 
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Figure 6.7 
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6.4 The effects of epithelial cell / V2 T cell co-incubation on cytokine expression 

The BD
TM

 Cytometric Bead Array (CBA) was used to quantify cytokine expression by 

V2 T cells and epithelial cells, following 24 hours of culture alone and culture together. 

The culture plates were then centrifuged and the supernatants removed and stored at -

20ºC, The supernatants were later thawed and then prepared for multiplex analysis of 

cytokine levels as described in Chapter 2, along with the standards for IL-4, IL-6, IL-10, 

IL-12, IL-13, IFN and TGF-β1. Analysis was performed as described in Chapter 2 such 

that the MFI of each cytokine standard corresponded to the concentration in pg/ml. The 

concentration of each cytokine could then be compared between supernatants from 

cultures of V2 T cells from 3 healthy donors, from Hep3B cells, HT29 cells or GRM 

cells alone and from cultures containing both V2 T cells from 5 donors and Hep3B, 

HT29 or GRM cells. 

 

6.4.1 Co-incubation of epithelial cells with V2 T cells had no significant effects on 

IL-4 expression by either cell type 

Using an appropriate gating technique, the concentrations of IL-4 were determined in 

each sample of interest (Figure 6.8A-D). The mean concentration of IL-4 in the 

supernatants from V2 T cell cultures was 6.4+/-1.9 pg/ml (Figure 6.8E). The 

concentration of IL-4 in the supernatants from Hep3B, HT29 and GRM cells was 1.6, 

5.7 and 1.5 pg/ml, respectively (Figure 6.8E). The supernatants from Hep3B cell / V2 

T cell co-cultures had a mean concentration of 4.9+/-2.1 pg/ml of IL-4, while mean 

concentrations from HT29 cell / V2 T cell and GRM cell / V2 T cell co-cultures were 

4.4+/-0.9 and 5.9+/-1.9 pg/ml, respectively (Figure 6.8E). A paired t-test revealed that 

there were no significant differences between IL-4 levels in the cultures containing V2 

T cells, Hep3B cells, HT29 cells or GRM cells alone and in the cultures containing both, 

V2 T cells and Hep3B, HT29 or GRM cells. 

   These data show that co-culture has no significant effects on IL-4 secretion by 

V2 T cells, Hep3B, HT29 or GRM cells. 
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6.4.2 There were no significant differences in IL-6 protein levels between the 

supernatants of epithelial cell or V2 T cell cultures and the supernatants of co-

cultures containing both 

The concentrations of IL-6 were also determined in each sample of interest (Figure 

6.9A-D). The mean concentration of IL-6 in the supernatants from V2 T cell cultures 

was 79.1+/-22 pg/ml (Figure 6.9E). The concentration of IL-6 in the supernatants from 

Hep3B, HT29 and GRM cells was 2.1, 3.1 and 42.6 pg/ml, respectively (Figure 6.9E). 

The supernatants from Hep3B cell / V2 T cell co-cultures had a mean concentration of 

171.26+/-102.9 pg/ml of IL-6, while mean concentrations from HT29 cell / V2 T cell 

and GRM cell / V2 T cell co-cultures were 124.02+/-86.1 and 1921.32+/-1380.749 

pg/ml, respectively (Figure 6.9E). A paired t-test revealed that there were no significant 

differences between IL-6 levels in the cultures containing V2 T cells, Hep3B cells, 

HT29 cells or GRM cells alone and in the cultures containing V2 T cells and any of 

the epithelial cells. 

 These data show that co-culture has no significant effects on IL-6 secretion by 

V2 T cells, Hep3B, HT29 or GRM cells. 

 

6.4.3 IL-10 expression is significantly higher in Hep3B cell / V2 T cell co-cultures, 

compared to V2 T cell cultures 

The concentrations of IL-10 were determined in each sample of interest (Figure 6.10A-

D). The mean concentration of IL-10 in the supernatants from V2 T cell cultures was 

8.3+/-0.8 pg/ml (Figure 6.10E). The concentration of IL-10 in the supernatants from 

Hep3B, HT29 and GRM cells was 42.7, 9.7 and 1.5 pg/ml, respectively (Figure 6.10E). 

The supernatants from Hep3B cell / V2 T cell co-cultures had a mean concentration of 

55.1+/-14.3 pg/ml of IL-10 and a paired t-test revealed that this was significantly higher, 

compared to the concentration of IL-10 in the supernatants from V2 T cell cultures 

(p=0.03). The mean IL-10 concentrations from HT29 cell / V2 T cell and GRM cell / 

V2 T cell co-cultures were 20.3+/-6.1 and 31.4+/-15.3 pg/ml, respectively (Figure 

6.10E).  

These data show that IL-10 expression is significantly higher when Hep3B cells 

and V2 T cells are co-cultured, compared to when V2 T cells are cultured alone. 

However, the levels of IL-10 are similar between Hep3B cell cultures and Hep3B/ V2 
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T cell co-cultures. Therefore, this suggests that Hep3B cells are the predominant 

producers of IL-10 in these co-culture experiments.  

 

6.4.4 Co-incubation of V2 T cells with epithelial cells had no significant effects on 

IL-13 expression 

Gating on IL-13-conjugated beads only was performed to determine the IL-13 protein 

level in each sample of interest (Figure 6.11A-D). The mean concentration of IL-13 in 

the supernatants from V2 T cell cultures was 236.5+/-100.5 pg/ml (Figure 6.11E). The 

concentration of IL-13 in the supernatants from Hep3B, HT29 and GRM cells was 10.5, 

62 and 16.5 pg/ml, respectively (Figure 6.11E). The supernatants from Hep3B cell / 

V2 T cell co-cultures had a mean concentration of 1176.6+/-849.7 pg/ml of IL-13, 

while mean concentrations from HT29 cell / V2 T cell and GRM cell / V2 T cell co-

cultures were 873.2+/-422.8 and 1467.2+/-915.6 pg/ml, respectively (Figure 6.11E). A 

paired t-test revealed that there were no significant differences between IL-13 levels in 

the cultures containing V2 T cells, Hep3B cells, HT29 cells or GRM cells alone and in 

the cultures containing both, V2 T cells and Hep3B, HT29 or GRM cells. 

These data show that co-culture had no significant effects on IL-13 expression 

by V2 T cells, Hep3B, HT29 or GRM cells 

  

6.4.5 Co-incubation of epithelial cells and V2 T cells had no significant effect on 

IFN- expression 

The concentrations of IFN- were determined in each sample of interest (Figure 6.12A-

D). The mean concentration of IFN- in the supernatants from V2 T cell cultures was 

1619+/-837.1 pg/ml (Figure 6.12E). The concentration of IFN- in the supernatants 

from Hep3B, HT29 and GRM cells was 36, 1248.6 and 43.8 pg/ml, respectively (Figure 

6.12E). The supernatants from Hep3B cell / V2 T cell co-cultures had a mean 

concentration of 281.8+/-91.1 pg/ml of IFN-, which is a marked reduction from that 

observed in cultures of V2 T cells alone but not statistically significant (p=0.4). The 

mean concentrations from HT29 cell / V2 T cell and GRM cell / V2 T cell co-cultures 

were 1186.4+/-892.9 and 536.7+/-453.2 pg/ml, respectively (Figure 6.12E). 

These data show that IFN- release is almost always higher when epithelial cells 

are co-cultured with V2 T cells compared to when epithelial cells are cultured alone, 
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most probably because the HMBPP-expanded V2 T cells are potent producers of this 

cytokine. More importantly, although no changes in IFN- secretion were deemed 

statistically significant, its reduction in the supernatants of V2 T cell co-cultured with 

Hep3B cells compared to when V2 T cells were cultured alone suggests that these 

HCC-derived cells might suppress the cytokine-mediated effector functions of 

HMBPP/IL-2-expanded V2 T cells. One might speculate that this putative inhibition of 

IFN- release is mediated by Hep3B cell-derived IL-10. 

 

6.4.6 The levels of TGF-β1 protein are depleted from supernatant of the co-

cultures, compared to when the epithelial cells are cultured alone 

Using an appropriate gating technique, the concentrations of TGF-β1 were determined 

in each sample of interest (Figure 6.13A-D). The mean concentration of TGF-β1 in the 

supernatants from V2 T cell cultures was 106.3+/-79.6 pg/ml (Figure 6.13E). The 

concentration of TGF-β1 in the supernatants from Hep3B, HT29 and GRM cells was 

168.1, 228.1 and 89.5 pg/ml, respectively (Figure 6.13E). The supernatants from Hep3B 

cell / V2 T cell co-cultures had a mean concentration of 90.8+/-14.3 pg/ml of TGF-β1 

which is a marked reduction from that observed in cultures of Hep3B cells alone 

(Figure 6.13E, p=0.005). The mean concentrations from HT29 cell / V2 T cell was 

also significantly lower than that observed in culture of HT29 cells alone (mean; 

107.2+/-29.8 pg/ml, p=0.02, Figure 6.13E). The mean concentration of TGF-β1 in the 

supernatants from GRM cell / V2 T cell co-cultures was 86+/-16.7 pg/ml which is 

similar to that observed in cultures of GRM cells alone and slightly lower than the 

levels observed in the supernatants of V2 T cell cultures (Figure 6.13E). 

These data suggest that the expression of TGF-β1 by Hep3B and HT29 cells is 

reduced in the presence of V2 T cells. Further experiments might show that this 

reduction could be due to the engagement of TGF-β1 with the V2 T cells as part of its 

role in the downregulation of NKG2D. However, such conclusions could only be drawn 

after the effects of exogenous TGF-β1 or neutralizing antibodies against TGF-β1 on 

NKG2D expression are evaluated. 
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6.4.7 Undetectable levels of IL-12 in supernatants from epithelial cell and V2 T 

cell cultures 

Using an appropriate gating technique, the concentrations of IL-12 in each standard tube 

could be determined (Figure 6.14A, B, C). However, IL-12 protein was undetectable in 

the supernatants collected from Hep3B, HT29, GRM and V2 T cell cultures and co-

cultures. As the IL-12 standards worked as expected these data suggest that HMBPP-

expanded V2 T cells do not produce IL-12 under the culture conditions provided. 
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Figure 6.8 
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Figure 6.9 
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Figure 6.10 
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Figure 6.11 
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Figure 6.12 
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Figure 6.13 
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Figure 6.14 
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6.5 Discussion 

In the phenotypic analysis of innate lymphocyte populations in HBV infection (Chapter 

3), the frequencies of circulating V2 T cells were found to be significantly expanded in 

patients with HBV infection who had low viral loads and were either asymptomatic or 

had mild liver disease. From this it was proposed that these cells played an active role in 

the immune control of HBV. Since HCC is a potential endpoint of chronic HBV 

infection with a 100-fold higher risk in chronically infected persons compared to age-

matched uninfected controls, the anti-tumour potential of V2 T cells in this malignancy 

was evaluated (Beasley 1988; Beasley et al. 1981). Only 0.2% of asymptomatic carriers 

are diagnosed with HCC compared to approximately 5% of chronically infected patients 

with liver cirrhosis (Beasley 1988; Beasley et al. 1981; Rehermann & Nascimbeni 

2006). The expansions of V2 T cells observed in asymptomatic carriers may be 

responsible for the low prevalence of HCC in similar HBV-infected subjects. If this is 

the case, V2 T cells expanded in vitro could be administered as an immunotherapy to 

those chronically infected patients who are at a higher risk of developing the 

malignancy. 

 To evaluate the immunotherapeutic potential of V2 T cells in HBV-associated 

HCC, the HCC-derived Hep3B cells were co-cultured with HMBPP-expanded V2 T 

cells and then investigated the expression of several surface markers and cytokines by 

both cell types. The cytotoxicity of Hep3B cells by V2 T cells was also investigated by 

analysis of cell surface CD107 expression, but these experiments proved to be 

unsuccessful. 

 It was found that NKG2D surface expression by HMBPP-expanded V2 T cells 

is lower following co-culture with Hep3B cells. It was also found that MICA/B surface 

expression by Hep3B cells is lower following co-culture with V2 T cells. Interestingly, 

altered cytokine expression levels were also observed; the levels of IL-10 were higher in 

the supernatants of V2 T cell/Hep3B cell co-cultures compared to the supernatants of 

V2 T cells or Hep3B cells alone while the IFN- levels were lower. Furthermore, the 

levels of the immunomodulatory growth factor TGF-β1 are significantly lower in the 

supernatants from the V2 T cell/Hep3B cell co-cultures compared to the supernatants 

of Hep3B cells alone. These alterations indicate that NKG2D and IFN- expression by 

V2 T cells is reduced following co-culture with Hep3B cells and it is proposed that the 

Hep3B cells are mediating this reduction via the shedding of MICA and MICB.  
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 Previous studies have revealed that NKG2D is a target for immune evasion and 

that the frequencies of circulating NKG2D-expressing NK cells are depleted in HCC, 

HBV and cervical cancer (Zeng et al. 2009; Arreygue-Garcia et al. 2008). MICA and 

MICB are natural ligands of NKG2D and their expression by tumour and virus-infected 

cells is crucial to NKG2D-mediated recognition (Wrobel et al. 2007; Bouet et al. 2008; 

Corvaiser et al. 2005). The engagement of NKG2D with MICA/B results in 

internalisation of the receptor and the bound ligand and, phosphorylation of DAP10 

which triggers a cascade of events that ultimately result in calcium flux and cytotoxicity 

(Mistry & O‟Callaghan 2007). In the immune subversion of NKG2D-mediated effector 

functions, MICA and MICB can be shed from tumour cells in a soluble form that 

impairs immune responses against the tumours by reducing NKG2D-ligand densities on 

malignant cells (Salih et al. 2006). This can lead to endocytosis and degradation of 

NKG2D by the cells on which it is expressed thus reducing the capacity of those cells to 

recognise tumour or virus-infected cells (Gonzalez et al. 2008). TGF-β can also 

suppress NKG2D-mediated recognition of tumours, by reducing NKG2D ligand 

expression (Eisele et al. 2006). TGF-β-mediated downregulation of NKG2D has been 

reported on both CD8
+
 T cells and NK cells and epithelial cells and Treg cells are a 

common source of such TGF-β (Ghiringhelli et al. 2006; Clayton et al. 2008). 

Inhibition of NKG2D most probably exploits the mechanism by which this receptor is 

downregulated in the absence of malignancies or viral infections. The involvement of 

NKG2D in autoimmune diseases such as rheumatoid arthritis, autoimmune diabetes and 

coeliac disease shows why such regulation is required (Obeidy & Sharland 2008). 

From these studies and our current findings, it is proposed that the reduction of 

MICA and MICB expression by Hep3B cells is due to shedding of the molecules in a 

soluble form. The soluble MICA and MICB then bind to NKG2D on the surface of V2 

T cells and cause its internalisation and degradation, resulting in reduced NKG2D 

expression and impaired NKG2D-mediated effector functions. Since, the expression of 

NKG2D on BRHPP+IL-2 or zoledronate+IL-2-expanded V2 T cells was found to be 

important in the lysis of HCC primary cells and HCC-derived cell lines, it might be 

hypothesised that this immune subversion may be indicative of HCC in vivo (Bouet et 

al. 2008). It is possible that the reduced detection of NKG2D on V2 T cells and 

MICA/B on Hep3B cells in these experiments may be due to NKG2D-MICA/B 

engagement and therefore, further experiments would be required to confirm MICA/B 
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shedding and/or NKG2D downregulation. Such experiments would include the addition 

of exogenous soluble MICA/B to V2 T cell cultures or the performance of ELISAs to 

compare the amount of soluble MICA/B in the supernatants of Hep3B cell cultures to 

those in which Hep3B cells and V2 T cells are cultured together. 

Depleted levels of TGF-β1 were also found in the V9V2 T cell/Hep3B cell 

supernatants compared to the supernatants of Hep3B cells alone. This is possibly due to 

V2 T cell-mediated inhibition of TGF-β1 expression. The suppression of TGF-β1 

might help to facilitate an effective V2 T cell-mediated anti-tumour immune response 

since the growth factor can serve as both an immunomodulator and a tumour promoter.  

Reduced IFN- and augmented IL-10 production were also apparent in the 

supernatants of V2 T cell/Hep3B cell co-cultures compared to supernatants taken from 

V2 T cells cultured alone suggesting that epithelial cell-derived IL-10 may serve to 

modulate the inflammatory responses of the V2 T cells.  

It must be noted that the cellular source of the cytokines in the co-culture 

supernatants are unknown but the source can be gauged by comparing levels in 

supernatants of V2 T cell or Hep3B cell single cultures to those of the co-cultures. 

However this is only an estimation and therefore, future experiments using intracellular 

cytokine staining and flow cytometry would be desirable to confirm the source of IFN-, 

IL-10 and TGF-β1. However, the cytometric bead assay was considered as the best 

option for this preliminary study because it allowed the detection of 7 cytokines and 

facilitated the identification of the cytokines which are involved in V2 T cell-Hep3B 

cell interactions. 

CD54 (ICAM-1) expression by HT29 and GRM, but not Hep3B cells, was 

significantly higher following co-culture with V2 T cells. CD54 is expressed by APCs, 

memory and activated T cells and tumour cells (Roebuch & Finnegan 1999; Sun et al. 

1999; Alexiou et al. 2001) and its primary function as a cell adhesion molecule enables 

intercellular communication and can facilitate MHC-restricted antigen presentation to T 

cells (Roy et al. 2001). CD54 expression can be induced by IFN-, IL-1, IL-2, IL-6, 

TNF-α and LPS and can be inhibited by IL-4 and IL-10 (Roy et al. 2001; Dymicka-

Pierkarska & Kemona 2009). Therefore, the absence of CD54 upregulation by Hep3B 

cells following co-culture with V2 T cells may be due to the presence of IL-10 and the 

apparent inhibition of IFN- and might represent an immune evasion strategy of the 

HCC-derived cells. Furthermore, its enhanced expression by HT29 and GRM cells 
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following co-culture with HMBPP/IL-2-expanded V2 T cells, fresh PBMC or PHA/IL-

2-expanded αβ T cell may increase recognition of these epithelial cells and facilitate 

their immune-mediated destruction. Shedding of CD54 is an immune evasion strategy 

used by tumours to facilitate metastasis (Sun et al. 1998; Dymicka-Pierkarska & 

Kemona 2009). In this study, the lack of CD54 surface expression upregulation by 

Hep3B cells may indicate that the CD54 has been shed as an immune evasion strategy 

of the HCC-derived cells. Higher serum levels of CD54 have been found in HCC and 

soluble CD54 is believed to play a role in the resistance of such tumours to 

immunotherapy. It can achieve this by blocking attachment of CTLs and NK cells to 

tumour cells and therefore, increases the potential for tumour development and 

metastasis (Sun et al. 1999). Future experiments may confirm if Hep3B cells shed 

CD54 by comparing the ratios of soluble and surface expressed CD54 in Hep3B cell 

cultures to Hep3B cell/ V2 T cell co-cultures. 

The use of PHA/IL-2 expanded αβ T cells instead of HMBPP/IL-2-expanded 

V2 T cells in one co-culture experiment with Hep3B cells appeared to have similar 

effects on MICA/B expression by Hep3B cells but not on NKG2D expression by the αβ 

T cells suggesting that these cells are not susceptible to the same suppression 

mechanisms as their  T cells. However, no real conclusions can be drawn from a 

single result. Furthermore, the proportion of PHA/IL-2-expanded αβ T cells expressing 

NKG2D (mean; 54.2%) was significantly lower than the proportion of HMBPP/IL-2-

expanded V2 T cells expressing the activating receptor (mean 89.1%), suggesting that 

it does not play as large a role in the effector functions of conventional T cells. 

 All data shown here have been obtained using HMBPP-expanded V9V2 T 

cells from a maximum of 5 healthy donors and are therefore, preliminary. Despite this, 

the findings raise some important issues for the use of these cells in therapeutics against 

HCC. At present, measures are being taken to curb similar tumour cell-mediated 

inhibition such as the use of metalloproteinase inhibitors to inhibit MICA shedding or in 

vitro testing of MICA conjugated mAbs specific for tumour-associated antigens to 

sensitize NKG2D-mediated lysis (Gonzalez et al. 2008). Furthermore, Wrobel et al. 

(2007) suggest that NKG2D suppression could be overcome by „forced‟ TCR-

dependent tumour cell recognition which might be achieved by using 

aminobiphosphonates and BrHPP in combination. They also suggest that tumours 

whose recognition by V9V2 T cells is solely mediated by NKG2D would not be 
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suitable candidates for a V9V2 T cell-based immunotherapy. TCR-dependent 

recognition of F1-ATPase is another means whereby V9V2 T cells can recognise 

hepatocytes and it may be a preferable option for the treatment of HCC (Wrobel et al. 

2007).  

The investigation of V9V2 T cell/HT29 cell and V9V2 T cell/GRM cell co-

culture experiments have yielded equally interesting results with significantly lower 

levels of NKG2D expression by V2 T cells and MICA/B expression by HT29 and 

GRM cells therefore, suggesting that the same effects may take place in the use of cell-

based immunotherapies for the treatment of CRC and melanoma. In fact, many signs of 

immune subversion appear to be more striking for these cancers suggesting that they 

might be more difficult to treat with such immunotherapies than HCC. 

 From these findings, it is hypothesised that cell-based immunotherapies may be 

the way forward for the treatment of HCC but the effector cell type and the mechanisms 

by which they are activated in vitro and through which they recognise tumour cells in 

vivo must be carefully considered. 
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7.1 Immune control in HBV infection 

Despite the availability of a vaccine since the 1970s, HBV is one of the major causes of 

liver disease worldwide and is responsible for over 1 million deaths each year (Millman 

& Blumberg 1978; Pisani et al. 1990; Evans & Landon 1998; Christina & Page 2001; 

Lok & McMahon 2001; Lauer & Walker 2001). While, the majority of adult HBV 

infections are resolved, an alarming 95% of neonates develop persistent infection 

(Stevens et al. 1975; Rehermann & Nascimbeni 2006; Chisari & Ferrari 1975). A 

serious endpoint of chronic HBV infection is liver cirrhosis which occurs in 2-5% of 

HBV patients and can lead to the development of hepatocellular carcinoma (HCC) and, 

often liver failure. Approximately 5% of chronically infected patients who develop liver 

cirrhosis are diagnosed with HCC (Beasley et al. 1981; 1988; Rehermann & 

Nascimbeni 2006). The majority of chronically-infected patients however, do not 

develop liver disease and are said to be asymptomatic carriers. They are also referred to 

as HBsAg-positive and a cohort of such subjects have been investigated in this study. 

Most of the HBV-infected persons in our study cohort had a viral load below 20,000 

copies/ml and an ALT below 40 which indicates that the virus is maintained at a low 

replicative phase and that no or little liver damage has arisen from the antiviral immune 

response. Therefore, despite the failure to completely eliminate the virus, these subjects 

exhibit a good antiviral immune response that keeps viral load at a low level without 

causing immune-mediated damage. However, it should be noted that definitive 

classification of asymptomatic disease would ideally require liver biopsy and/or 

fibroscan testing which was not possible in the present study. 

Resolution of HBV infection is associated with strong, polyclonal and multi-

specific CTL responses directed against epitopes within the polymerase, envelope and 

core and pre-core proteins of HBV while, persistent HBV infection is characterised by 

lower numbers of HBV-specific CD8
+
 T cells (Penna et al. 1991; Missale et al; 1992; 

Bertoletti et al. 1991; Nayersina et al. 1993; Rehermann et al. 1995; Maini et al. 1999; 

Maini et al. 2000; Sobao et al. 2002, Thimme et al. 2003; Yang et al. 2009). 

Furthermore, the presence of large numbers of non-antigen specific CD8
+
 T cells in the 

livers of patients with uncontrolled HBV infections and the ability of CTLs cells to 

produce IFN- and TNF-α in chronic HBV may contribute to liver inflammation 

clearing the virus (Bertoletti & Maini 2000; Reignat et al. 2002; Das et al. 2008). 

Inefficient T cell priming by DC and immunomodulation by Treg cells have been 
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implicated as factors in the inadequate T cell responses that are seen in persistent HBV 

infection (Duan et al. 2006; Fu et al. 2007). Moreover, HBV variants carrying 

mutations in cytotoxic T cell epitopes have been detected in chronic hepatitis B 

suggesting that viral immune escape mechanisms have a part to play in the 

establishment of persistent infection (Bertoletti et al. 1994; Rehermann et al. 1995). 

Since HBV is a non-cytopathic virus, it is quite possible that non-specific CD8
+
 T cells 

that were once specific but are now redundant due to antigenic drift play a role in the 

liver pathology associated with HBV. CD8
+ 

T cells have also been shown to upregulate 

NK receptors in murine influenza A suggesting that the expression of such receptors 

increases the chances of antigen recognition and viral clearance (Kambayashi et al. 

2000). 

 Since innate lymphocytes can modulate DC maturation and adaptive immune 

responses, it was proposed that deficiencies in their numbers or functions might result in 

impaired adaptive immune responses and a failure to resolve HBV infection (Kakimi et 

al. 2000; Liu et al. 2000; Nishimura et al. 2000; Cooper et al. 2001; Guidotti & Chisari 

2001; Vincent et al. 2002; Ismaili et al. 2002; Martino et al. 2002; Dieli et al. 2004; 

Devilder et al. 2006; Ing & Stevenson 2009; Dunne et al. 2010). In this study the role of 

innate lymphocytes in immune responses against HBV has been investigated by 

quantifying their frequencies in the peripheral blood and examining their cytokine 

profiles in HBV-infected subjects and uninfected controls. Since the HBV patient 

cohort primarily consists of asymptomatic HBV carriers, it was expected that the 

findings would reflect the requirements of an effective immune response. 

Treatment of HBV infection is burdened with several challenges including poor 

tolerance of immunomodulatory therapy and resistance to antiviral treatment (van 

Zonneveld et al. 2005; Janssen et al. 1990; Buster & Janssen 2006). Therefore, novel 

effective and well-tolerated immunotherapies are very necessary for the treatment of 

HBV. Several clinical trials have evaluated the potential of innate lymphocytes in 

immunotherapeutics and many have proven to be effective and well-tolerated (Schmidt-

Wolf et al. 1999; Shi et al. 2004; Leemhuis et al. 2005; Chang et al. 2005; Bennouna et 

al. 2008; Motohashi et al. 2009; Dieli et al. 2009). It was proposed that the 

identification of innate lymphocyte populations that mediate effective immune control 

without causing liver disease may pave the way for the development of new 

immunotherapies in HBV.  
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Expansions of circulating innate lymphocytes have been identified in our patient 

cohort which might represent an active antiviral response. NK, NT and  T cells, but 

not iNKT cells, were more abundant in the peripheral blood of HBV-infected patients 

than in that of uninfected control subjects. This suggests that these cells are important 

players in the control of HBV replication. After the application of the Bonferonni 

correction method to eliminate significant differences that may arise solely as a result of 

multiple testing, higher frequencies of circulating NT cells and  T cells in HBV 

infection remained statistically significant. Further phenotypical studies revealed that 

the V2 T cell subset of  T cells were most significantly expanded in the peripheral 

blood of these patients, while V1 T cells were expanded to a lesser extent. Interestingly, 

in this study it has been found that effector memory V2 and V1 T cells were more 

abundant in the peripheral blood of HBV-infected patients than in that of uninfected 

control subjects while the frequencies of naïve subsets were substantially higher. This 

suggests that the expanded populations of effector V2 and V1 T cells are actively 

involved in the immune control of HBV in these patients. 

The identification of an active antiviral immune response is further evident in 

the expansions of circulating IFN--producing NT and T cells in HBV, particularly 

following in vitro stimulation. This implicates these cells and IFN- as predominant 

players in the immune responses against HBV. The results of quantitative RT-PCR 

support the hypothesis of a central role for IFN- in immune control of HBV as do the 

higher frequencies of IFN--expressing NK cells,  T cells and total lymphocytes. 

However, upon application of Bonferroni correction, it was the expansions of IFN--

producing NT and T cells which proved to be most significant. These findings are in 

agreement with the findings of studies which have indicated that viral clearance is 

mediated non-cytolytically by IFN- and that NT cell-derived IFN- plays a role in 

immune responses against HBV (Guidotti et al. 1999; Albarran et al. 2005). 

Furthermore, IFN--deficient mice exhibit impaired control of HBV replication and 

delayed clearance of HBV protein suggesting that the cytokine plays an important role 

in such mice but that another mechanism of viral clearance is employed in its absence 

(Yang et al. 2009).  

Higher frequencies of IL-10-producing NK and NT cells were also observed in 

HBV patients. However, after Bonferroni correction, only the higher frequencies of IL-

10-producing CD56
DIM

 NK cells in HBV patients were found to be significant thus 
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identifying a putative immunomodulatory role for NK cells in controlled HBV infection 

and a possible measure of protection against liver disease. Since these cells constitute 

less that 1% of lymphocytes and are the only IL-10-producing lymphocytes whose 

expansions are highly significant in these HBV patients, it may explain why the higher 

levels of IL-10 were not detected using PCR. From these results, one may speculate that 

an abundance of IFN--expressing cells and low numbers of IL-10-expressing cells may 

be the required composition of an immune response that controls viral replication in 

HBV without causing liver damage. Since IL-10-producing CD56
DIM

 NK cells are 

higher, particularly in response to in vitro stimulation, it is proposed that they may 

proliferate rapidly in response to excessive IFN- production in vivo and quickly 

regulate the inflammatory response before it causes immune-mediated damage. 

However, further experimentation is required before such putative immune mechanisms 

can be proven because it may just be a balancing act between the pro-inflammatory and 

anti-inflammatory cytokines and the source of IL-10 and IFN- may not be important 

once the ratio of the two cytokines is optimal for viral clearance. 

IL-17 has been implicated in disease progression, the development of liver 

fibrosis and the inhibition of IFN--production in HBV infection (Xu et al. 2009; Zhang 

et al. 2010; Ge et al. 2010). These findings suggest that IL-17 promotes liver disease 

but not necessarily viral clearance in HBV infection. However, more recently Billerbeck 

et al. (2010) have identified IL-17-producing CD161
+
CD8

+
 T cells whose abundance in 

HCV-infected liver correlates with less severe liver disease. Enhanced responses of IL-

17-producing T cells to in vitro stimulation have been identified in our HBV patient 

cohort. IL-17 production is not significantly enhanced among unstimulated PBMC from 

HBV patients and this finding has been confirmed by qRT-PCR. Since IL-17 has been 

identified as a negative regulator of IFN- (Mills 2008), this suggests that such 

enhanced responses in HBV may be another mechanism by which the immune response 

in these subjects is regulated. It is proposed that an IL-17-producing subset has been 

identified that does not elicit highly inflammatory responses when resting but upon 

sufficient stimulation, exhibits superior antiviral and/or immunoregulatory functions. 

 Since it is possible that the NT cells can be generated from CD8
+
 T cells (Kelly-

Rogers et al. 2006), it is possible that these expanded IFN--producing cells may have 

previously been the virus-specific CD8
+
 T cells that became redundant due to weakened 

recognition capacity caused by antigenic drift. HBV variants carrying mutations in CTL 
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epitopes have been detected in chronic HBV and this evolutionary escape mechanism of 

the virus might be challenged by an evolutionary mechanism of the host (Rehermann et 

al. 1995; Bertoletti et al. 1994). Therefore, the host immune system may have evolved 

from an inefficient specific response to an efficient non-specific response to control 

HBV replication. The expression of NK receptors by CD8
+
 T cells and the acquisition 

of NK-like, MHC-unrestricted cytotoxic activity has also been reported in murine 

influenza A infection suggesting that such changes from a specific adaptive immune 

response to a more innate-like response may occur in viral infections where the virus 

exhibits a lot of genetic variation (Kambayashi et al. 2000). Furthermore, CD161
+
CD8

+
 

T cells have been found in HBV and HCV and their abundance in HCV-infected liver 

has been associated with milder liver disease (Northfield et al. 2008; Billerbeck et al. 

2010). This may represent a model in which CD8
+
 T cells upregulate NK receptors in an 

effort to increase their recognition capacity and increase their ability to control but not 

clear certain genetically heterogeneous viruses and ultimately, to elicit effector 

functions that are most beneficial to the host. 

While NT cells represent one population of expanded IFN--expressing cells in 

our patients, V2 T cells are a second. The quantification of the frequencies of IFN-- 

and NKG2D-expressing V2 T cells in HBV-infected patients and uninfected controls 

revealed that the frequencies of IFN--expressing V2 T cells are higher in HBV but the 

frequencies of V2 T cells expressing the cytotoxicity-associated receptor NKG2D are 

not. However, the surface density of NKG2D is reduced on V2 T cells in HBV 

indicating that the expanded populations of V2 T cells may be mediating immune 

control via non-cytolytic mechanisms rather than cell-killing. This might involve the 

IFN--mediated downregulation of NKG2D. NKG2D has been implicated in NK cell-

mediated hepatocyte injury and liver failure in murine virus-induced hepatitis (Zou et al. 

2010) and since IFN- has been shown to inhibit NKG2D ligand expression in 

melanoma, the cytokine might employ a similar mechanism in HBV so that liver injury 

from cytolytic activity is limited (Schwinn et al. 2009). As discussed in Chapter 4, non-

cytolytic control of virus infection is preferable when large numbers of cells in large 

vital organs are infected and the dominance of IFN- in our patient cohort may represent 

such control (Guidotti & Chisari 2001). These expansions may represent an active but 

regulated hepatic immune response that maintains a low viral load without causing liver 

disease.  
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Previous work by Chen et al. (2008) has revealed depletions of circulating V2 

T cells in chronic HBV infection with the most significant decreases observed in the 57 

patients with mild to severe liver disease. However, contrary to our findings, Chen et al. 

(2008) also found that frequencies of V2 T cells were slightly but significantly lower 

in 46 asymptomatic patients and 38 patients with low grade liver disease, compared to 

healthy donors. They have used the same PE-conjugated anti-V2 (BD Bioscience) that 

was used in this study but the demographics of their patient cohort is different to ours. 

Our cohort is racially diverse comprising African, Caucasian and Asian patients while 

theirs is entirely Asian and endogenous to the city of Chongqing. The endogeneity of 

their population may also explain why slightly higher frequencies of V2 T cells in 

Asians were found here compared to the Africans and Caucasians since the Asians 

investigated in this study were from different regions. The discrepancy between our 

results may also be due to another factor such as genotype of the virus but since this is 

unknown for our study, this can only be proposed as a determining factor. Overall, the 

significantly lower frequencies of circulating V2 T cells in HBV patients with higher 

severity of liver disease and ALT 3 times the upper limit of normal reported by Chen et 

al. (2008) supports our proposal that V2 T cells are important in the control of HBV 

replication and in limiting progression to liver disease. Since, HBV patient serum and 

HBsAg had negative effects on IFN- production by V2 T cells from healthy donors, it 

is proposed that HBV proteins have immunomodulatory effects on this  T cell subset 

and that other cells may be required to keep viral load at a minimum so that the 

frequencies of V2 T cells can reach a sufficient level to take part in an antiviral 

response. Since IFN- production by NT cells is higher in asymptomatic HBV patients 

and its production by NT cells from healthy donors is enhanced in response to HBV 

patient serum or HBsAg, it is proposed that these cells are the key players in the control 

of HBV replication and can reduce HBV replication to levels at which HBV proteins 

cannot significantly immunomodulate V2 T cell responses. Once HBV has been 

maintained at a low replicative phase, the V2 T cells may help sustain the antiviral 

response. Further immune mechanism experiments using HBV proteins should be 

performed to confirm their immunomodulatory effect on V2 T cells. 

Although they are much less prevalent in peripheral blood than V2 T cells, the 

frequencies of V1 T cells have also been found to be higher in HBV patients in this 

study but their cytokine production capabilities have not been elucidated. However, the 
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effector memory repertoires of V1 T cells are higher while the frequencies of naïve 

subsets are lower, suggesting that they play an active role in the antiviral response in 

these patients. These  T cells have been found to be producers of antiviral cytokines 

(Spada et al. 2000) and have also been implicated in the pathogenesis of HCV and 

arthritis (Tseng et al. 2001; Bank et al. 2002). However, they have also been shown to 

regulate inflammatory responses in the small intestine via the suppression of IFN-, 

granzyme-B and NKG2D expression by CD8
+
 T cells and perhaps, they prevent 

excessive IFN- production and NKG2D-associated cytotoxicity in our patient cohort 

too (Bhagat et al. 2008). While IFN- production by V2 T cells is enhanced in the 

absence of in vitro stimulation in HBV, its production in response to PMA/I-stimulation 

is lower. This indicates that while IFN- appears to play a predominant role in the 

control of HBV replication, its expression is under strict control and can be inhibited if 

it rises above a certain threshold. V1 T cells may be involved in the regulation of IFN-

 or alternatively, they may contribute to the IFN- production. The higher proportion of 

CD56
+
 V1 T cells in HBV indicates that this  T cell subset may form part of the 

expanded IFN--producing NT population. However, further experiments to assess the 

cytokine producing capabilities and effector functions of V1 T cells in controlled HBV 

infection are needed to elucidate whether their role is predominantly inflammatory or 

anti-inflammatory. 

Chromium release assays were performed using unstimulated, IL-2-stimulated 

or IFN-α-stimulated PBMC as effector cells and K562 cells as target cells. Cytotoxicity 

was slightly but consistently enhanced in our HBV patient cohort compared to the 

controls and since K562 are widely used as NK cell targets, this indicates that NK 

cytolytic activity is not impaired. IL-2 induced cytotoxicity was found to be 

significantly higher in HBV and since this cytokine is a strong activator of T cell 

proliferation and NT cell-mediated cytotoxicity (Jin et al. 1998; Zoll et al. 1998; Kelly 

Rogers et al. 2006; Dieli et al. 2007; Bennouna et al. 2008) it is proposed that the IL-2 

induced cytotoxicity may be mediated by the expanded NT cell population in our 

patient cohort (Arreygue-Garcia et al. 2008; Zeng et al. 2009). This proposal is 

supported by our observations of lower NKG2D expression by V2 T cells and the 

findings of other groups which revealed that numbers of NKG2D-expressing NK cells 

are depleted in chronic HBV infection and in HBV-associated HCC. Further work using 

enriched populations must be performed to confirm this proposal. Furthermore, since 
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cytotoxicity was consistently but only slightly enhanced under most conditions provided, 

it might only play a small role in the antiviral response in these asymptomatic HBV 

patients. 

Overall, this study yields strong evidence that NT and  T cells are expanded in 

controlled HBV infection and appear to play a crucial role in the immune responses in 

this study cohort via predominantly non-cytolytic mechanisms. Furthermore, the 

frequencies of these innate T cells do not strongly correlate with differences in gender, 

age, viral load or disease severity but higher frequencies of both NT and total  T cells 

are observed in patients with elevated ALT levels, although these differences are not 

statistically significant. This suggests that if not regulated, the expansions of these cells 

and inflammatory cytokine producers may lead to liver damage. However, it must be 

noted that the highest ALT level among our patient cohort was 100 with most ALT 

values falling around the upper normal limit of 40. Other studies have used 3 times the 

upper limit of normal as a marker of liver disease and to distinguish between 

asymptomatic/low grade HBV patients and patients with mild/severe liver disease 

(Chen et al. 2008). However, none of our patients had such elevated ALT levels and so, 

the evaluation of the association between cell frequencies and high ALT was very 

limited. 

The HBV-infected subjects studied here may represent a preliminary model of 

the immune responses required to maintain low viral load without causing liver disease 

in HBV and lessons learned here could be used to predict outcome of infection and to 

develop novel immunotherapies for patients with higher viral loads. However, a similar 

phenotypical study of HBV patients with mild to severe liver disease should be 

performed before this can achieved. Such a study would reveal which immune 

responses are prevalent and deficient in HBV-associated liver disease. 

Questions may be raised concerning the usefulness of a therapy that can boost 

immune responses to a level that will control HBV infection but not clear it since such 

therapies would not reduce the prevalence of HBV. However it may reduce the viral 

burden and also prevent progression to liver cirrhosis and the development of HCC thus 

removing the need for liver transplantation. The persistence of HBV DNA may be due 

to the cccDNA pool in the nucleus of the hepatocytes. This transcriptional template is 

accumulated in the nucleus when there is a disruptive excess of proteins in the 

endoplasmic reticulum. The cccDNA is believed to serve as a reservoir for viral 
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replication and spread of infection and such reservoirs are important in the maintenance 

of chronic HBV infection (Zoulim 2004; Rehermann & Nascimbeni 2006).  Therefore, 

while IFN- might target HBV via post transcriptional degradation of RNA and post 

translational inhibition of HBV capsid formation, its antiviral activity may not affect the 

persistence of cccDNA in the nucleus once it has been established (Guidotti & Chisari 

2001). Therefore, perhaps cytolytic mechanisms are required to destroy the hepatocytes 

that harbour the nuclear cccDNA. However, the cytolytic mechanisms carry a risk of 

liver disease. Therefore, for a HBV-infected patient in which liver inflammation is 

evident, there is a high chance of progression to liver cirrhosis and in which resistance 

to antiviral treatment has emerged, a cell-based immunotherapy which boosts the 

immune response and lowers viral burden, may be preferred. 

 

7.2 Immunomodulation by HBV-associated HCC 

 While only 0.2% of asymptomatic HBsAg carriers are diagnosed with HCC, 5% 

of chronically infected patients with liver cirrhosis develop HCC (Beasley 1988; 

Beasley et al. 1981; Rehermann & Nascimbeni 2006). Therapeutic options are limited 

for HCC and surgical resection is only suitable for small malignancies (Jinushi et al. 

2005; Stefaniuk et al. 2010). Therefore, new therapies are required for the treatment of 

this cancer and since immunotherapies using innate lymphocytes have proven to be 

effective and well-tolerated in other cancers, they are an obvious choice for the 

treatment of liver cancer (Chang et al. 2005; Bennouna et al. 2008; Motohashi et al. 

2009; Dieli et al. 2009). When developing a cell-based immunotherapy, it is important 

to assess the effects of the target tumour cells on the effector cells in order to identify 

any suppressive effects that may hinder immunotherapeutic potential. In this study, the 

reciprocal effects of V2 T cells and the HCC-derived Hep3B cells on stimulatory and 

inhibitory receptor/ligand expression and cytokine expression by both cell types were 

investigated. Expansions of circulating V2 T cells have already been found in 

controlled HBV infection in this work and it can be hypothesised that they are key 

players in a well-balanced immune response against the virus and that they might be 

responsible for the low prevalence of HCC in similar patients with low grade HBV. The 

anti-tumour potential of phosphoantigen-activated V2 T cells is well-documented but 

here, the immunomodulatory effects of HCC-derived cells on their effector functions 

was determined (Dieli et al. 2009; Bennouna et al. 2008). Furthermore, Hep3B cells 
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were derived from the tumour of a HBV-infected person with HCC and even express 

HBsAg thus making them an ideal model of HBV-associated HCC (Knowles et al. 

1980). 

Lower NKG2D expression by V2 T cells and lower MICA/B and higher levels 

of CD54 expression by the epithelial cells following co-culture was found here.  

The lower NKG2D surface expression by HMBPP-expanded V2 T cells 

following co-culture with Hep3B cells is not surprising as similar decreases have been 

reported for NK cells in HBV and HCC (Zeng et al. 2009). Furthermore, since NKG2D 

expression by BRHPP+IL-2 or zoledronate+IL-2-expanded V2 T cells was found to be 

important in the lysis of HCC primary cells and HCC-derived cell lines, its 

downregulation would be an ideal immune evasion mechanism (Bouet et al. 2008; 

Arreygue-Garcia et al. 2008). Since MICA/B surface expression by Hep3B cells is 

reduced following co-culture, it can be proposed that the Hep3B cells cause 

downregulation of NKG2D in an effort to suppress the cytolytic functions of V2 T 

cells. Hep3B cells might achieve this by shedding MICA and MICB which are the 

natural ligands of NKG2D. The shedding of these molecules from tumour cells in a 

soluble form impairs immune responses against the tumours by reducing NKG2D-

ligand densities on malignant cells (Salih et al., 2006). This can lead to internalisation 

and degradation of NKG2D by the cells on which it is expressed thus reducing the 

capacity of those cells to recognise tumour or virus-infected cells (Gonzalez et al., 

2008). Further experiments are required to confirm the speculative shedding of MICA 

and MICB by Hep3B cells since the reduced detection of NKG2D and MICA/B 

expression may only be due to their engagement. Perhaps, ELISAs could be performed 

to quantify soluble MICA/B in the supernatants and flow cytometry could be used to 

measure surface bound MICA/B in an effort to compare the ratios of surface bound and 

soluble MICA/B in Hep3B cultures and Hep3B cell/V2 T cell co-cultures. Furthermore, 

the addition of exogenous MICA/B to V2 T cell cultures might reveal if the ligand in 

soluble form can cause downregulation of NKG2D expression by V2 T cells. Since 

similar and greater decreases in NKG2D expression by V2 T cells and MICA/B 

expression by HT29 cells and GRM cells were observed after their co-culture, it can be 

suggested that these cell lines may employ the MICA/B-shedding strategy of immune 

subversion, also. Again, further experimentation is needed to confirm these suggestions, 
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followed by studies in HCC, CRC and melanoma patients to confirm that the findings of 

cell-line in vitro studies are representative of the malignancies.  

Reduced levels of IFN- and TGF-β1 have also been found in the supernatants 

of the V2 T cell and epithelial cell co-cultures compared to the supernatants of V2 T 

or epithelial single cell cultures, respectively. 

 TGF-β1 is quite ambiguous in its functions in immunity against malignancies. It 

can regulate cell proliferation, differentiation, migration and can elicit tumour 

suppressor effects but it can also act as a potent immunosuppressant (Elliott & Blobe 

2005; Li et al. 2005). Moreover, TGF-β1 acts as a tumour suppressor in normal colon 

but in the later stages of CRC, it serves as a tumour promoter (Li et al. 2005). TGF-β1-

mediated downregulation of NKG2D has also been reported on both CD8
+
 T cells and 

NK cells and the level of the growth factor is higher in the serum of HCC, CRC and 

melanoma patients (Elliott & Blobe 2005; Ghiringhelli et al. 2006; Clayton et al. 2008). 

Therefore, TGF-β1 was a suspected cause of NKG2D inhibition in these experiments. 

Its involvement in the reduced NKG2D expression was evaluated here by investigating 

the levels of the growth factor in the V2 T cell/Hep3B cell supernatants compared to 

the supernatants of Hep3B cells alone.  Significantly depleted levels of TGF-β1 were 

found in the V2 T cell/Hep3B cell co-culture supernatants compared to the Hep3B cell 

supernatants. This might be due to lower TGF-β1 expression by the Hep3B cells and 

propose that this may be a result of V2 T cell-mediated inhibition of the growth factor. 

Such inhibition could hinder the immunosuppressive effects of the epithelial cells on the 

V2 T cells and could facilitate more effective anti-tumour immune responses. 

IFN- expression was higher when Hep3B cells were co-cultured with V2 T 

cells, most probably because the HMBPP/IL-2-expanded V2 T cells are potent 

producers of this cytokine. However, it was significantly reduced in the co-culture 

supernatants compared to when V2 T cells were cultured alone suggesting that Hep3B 

cells caused a decrease in its expression by V2 T cells. Interestingly, IL-10 levels were 

found to be higher in the supernatants of V2 T cell/Hep3B cell co-cultures compared to 

the supernatants of V2 T cells alone while they were similar to when Hep3B cells were 

cultured alone. This suggests that Hep3B cells were producing the majority of the IL-10. 

From this, it may be proposed that that IFN- expression by V2 T cells may be 

inhibited by Hep3B-derived IL-10, however, further experiments using exogenous IL-

10 or neutralising antibodies against IL-10 might provide stronger evidence of this. 
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Furthermore, intracellular cytokine staining and flow cytometry could also confirm the 

sources of such cytokines and their expression before and after co-culture. 

 The putative MICA/B-shedding mechanism of NKG2D downregulation appears 

to be used by all cell lines assessed in these experiments and it is even more significant 

in the co-cultures with the HT29 and GRM cells suggesting that these cell lines may 

have more immunosuppressive potential than Hep3B cells. However, the reduced IFN- 

levels are most evident in the co-cultures with the HCC-derived cells while HT29 cells 

appear to produce the cytokine. Since the Hep3B cells are derived from a HBV patient 

and express HBsAg, it is possible that the protein may induce IL-10 production by the 

Hep3B cells. In Chapter 5, the frequencies of IFN--expressing V2 T cells were shown 

to be lower after PBMC were cultured in the presence of HBsAg thus suggesting that 

the protein may inhibit IFN- by these cells. From the results obtained with Hep3B cells, 

it would appear that the suppression of IFN- is achieved via the induction of IL-10. If 

this is true, HBV would not be the only virus to induce IL-10 production. HIV gp120 

and HCV NS4 induce IL-10 production by monocytes while CMV produces an IL-10 

homologue that can elicit the same biological effects as human IL-10 (Taoufik et 

al.1997; Kotenko et al. 2000; Brady et al. 2003; Rowan et al. 2008). Therefore, HBsAg 

may elicit immunomodulatory effects on V2 T cells but since this is not apparent in 

our patient cohort of asymptomatic carriers who are all HBsAg-positive, it may depend 

on high viral load. 

 Although HT29 and GRM cells were used initially as control cell lines while our 

main concern was HBV-associated HCC and the Hep3B cell line, they have proven to 

be equally interesting in terms of their interactions with V2 T cells. The struggle for 

immune evasion is apparent in the expression patterns of many of the surface markers 

on either cell type. CD54 (ICAM-1) expression by HT29 and GRM, but not Hep3B 

cells, was significantly higher following co-culture with V2 T cells. CD54 is expressed 

by B cells, dendritic cells, memory and activated T cells and tumour cells (Roebuch & 

Finnegan 1999; Sun et al. 1999; Alexiou et al. 2001). The main function of CD54 is to 

induce a specific reversible cell-cell adhesion that enables intercellular communication 

and in the normal immune response, it facilitates MHC-restricted antigen presentation 

to the T cell and subsequent signal transduction to induce T cell stimulation (Roy et al. 

2001). CD54 expression can be induced by IFN-, IL-1, IL-2, IL-6, TNF-α and LPS and 

inhibited by IL-4, IL-10 and glucocortoids (Roy et al. 2001; Dymicka-Pierkarska & 
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Kemona 2009). Therefore, the absence of CD54 upregulation by Hep3B cells following 

co-culture with V2 T cells may be due to the presence of IL-10 and the apparent 

inhibition of IFN- and might further enhance tumour survival in HCC. However, in 

HT29 and GRM cells, CD54 expression appears to be greatly increased following co-

culture with HMBPP/IL-2-expanded V2 T cells, fresh PBMC or PHA/IL-2-expanded 

αβ T cell thus increasing tumour cell recognition and the chances of immune-mediated 

destruction. CD54 expression has been found to be critical for colon tumour recognition 

by V2 T cells and, its expression is higher in CRC patients compared to controls but 

significantly decreased after resection of the tumour. CD54 has also been associated 

with lesion thickness and metastasis in melanoma (Sun et al. 1999; Alexiou et al. 2001). 

Furthermore, the serum levels of CD54 are higher in CRC patients with metastasis, 

compared to those without metastasis (Alexiou et al. 2001; Corvaiser et al. 2005; 

Dymicka-Pierkarska & Kemona 2009). However, these increased serum levels are due 

to shedding of CD54 which is an immune evasion strategy used by tumours to facilitate 

metastasis (Sun et al. 1998; Dymicka-Pierkarska & Kemona 2009). Soluble CD54 

enables this by interfering with NK and lymphocyte activated killer cell activity. It also 

permits the adhesion of tumour cells with migratory leukocytes thus facilitating the 

dissociation of individual cells from the primary tumour and the occurrence of „blood 

borne metastasis‟. Here, the lack of CD54 surface expression upregulation by Hep3B 

cells may indicate that the CD54 has been shed as yet another immune evasion strategy 

of the tumour cells. Indeed, serum levels of CD54 have previously been shown to be 

higher in HCC and soluble CD54 is believed to play a role in the resistance of such 

tumours to immunotherapy. It can achieve this by blocking LFA-1 thus preventing 

attachment of CTLs and NK cells to tumour cells and therefore, helping to provide a 

suitable environment for tumour development and metastasis (Sun et al. 1999). 

 Overall the V2 T cell/Hep3B co-culture experiments suggest that HCC-derived 

cells employ aggressive mechanisms of immunoregulation in order to evade destruction. 

The design of an effective immunotherapy must take these mechanisms into 

consideration. Neutralizing antibodies against IL-10 may restore IFN- expression by 

V2 T cells while metalloproteinase inhibitors are already being tested to inhibit MICA 

shedding. MICA conjugated mAbs specific for tumour-associated antigens are also 

being assessed for their ability to restore NKG2D-mediated cytotoxicity (Gonzalez et al. 

2008). Furthermore, Wrobel et al. (2007) suggest that NKG2D suppression could be 
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overcome by therapies that induce „forced‟ TCR-dependent tumour cell recognition 

which might be achieved by using both aminobiphosphonates and BrHPP. They also 

suggest that tumours whose recognition by V2 T cells is solely mediated by NKG2D 

would not be suitable candidates for a V2 T cell-based immunotherapy and our results 

support this belief. Previous research has also shown that TCR-dependent recognition of 

F1-ATPase is another means whereby V2 T cells can recognise hepatocytes (Wrobel et 

al. 2007).  This may be a preferable option for the treatment of HCC. 

More work is warranted before this can be confirmed but the putative subversion 

strategies of HCC cells must be addressed before any effective and durable cell-based 

therapy can be developed. However, the treatment of HBV may be a better option which 

in turn, could limit disease progression and prevent the development of HCC. 

 

Overall, this work has identified a novel mechanism of non-cytolytic control of HBV 

infection in which NT cells play a key role.  It may be proposed that such cells are 

derived from an inefficient virus-specific CD8+ T cell response which could no longer 

control HBV replication due to antigenic drift. Such NT cells appear to reduce HBV 

replication to a level which is subsequently sustained with the help of V2 and V1 T 

cells and leads to an asymptomatic carrier condition in which little or no liver injury 

occurs. It is hypothesised that the identification of the potential of innate T cells to 

control HBV infection can be manipulated to treat patients in which HBV infection is 

not sufficiently controlled and in whom there is a high risk of liver disease. 
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