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Abstract 

 

This thesis presents the theory and applications of electromagnetic field 

calculation using orthogonal Gaussian beam modes within the context of far-infrared 

imaging systems. Laguerre and Hermite-Gaussian modes have been frequently 

reported in the analysis of paraxial millimetre-wave propagation in astronomical 

optical systems. Here the method of Gaussian beam mode analysis (GBMA) is 

extended to fields of optical research that have until recently been associated with 

wavelengths in the visible band.  

Using recently derived expressions for the non-paraxial diffraction of 

Hermite-Gaussian modes, the author demonstrates the modal calculation of far-field 

intensity distributions with less angular restriction on the accuracy of the method 

compared to the conventional paraxial description of orthogonal Gaussian modes. 

This method shows excellent agreement with predictions from more rigourous full-

wave numerical methods such as the finite-difference time-domain algorithm, which 

is also described as a software tool in the modelling of horn and lens antennas.  

The properties of diffraction limited Bessel beams is described using the 

Laguerre-Gaussian expansion of conical lenses, and experimental measurements of a 

conical lens is presented to explore the validity of the use of these optical elements as 

horn coupled devices in millimetre wave imaging systems.  

A study of diffractive Fresnel lenses has been undertaken with a comparison 

of experimentally measured fields with those predicted by the modal techniques. The 

effects of such lenses on ultrashort paraxial pulses are also investigated using a novel 

numerical description of few-cycle fields as a superposition of pulsed Laguerre-

Gaussian modes.  

The application of digital holography in the far-infra red band has the prospect 

of diffraction limited imaging systems without creating distortions and aberrations 

which is a common problem in conventional techniques using lenses and mirrors. The 

author presents results from a simple proof-of-concept system which exhibits the 

potential of this technique for application in, for example, mm-wave security 

imaging.  
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Chapter One 

 

Millimetre-wave and terahertz radiation 

 

1.1 - Introduction 

The study of light in all its forms is one of the major endeavours in Physics 

research and has great influence on the interaction of humans and their environment. In 

everyday life it is very simple to witness the variation in the behaviour of light of 

different wavelengths and the effects created by its interaction with the world around us, 

from the generation of a blue sky by Rayleigh scattering in the atmosphere to the 

refraction of light in water, electromagnetic (EM) radiation is subject to a broad range 

of phenomenon through its interaction with matter. The position of a certain form of 

radiation in the EM spectrum is defined by its wavelength λ (or associated frequency ν), 

and this parameter greatly affects the magnitude of effects it is subject to. See Figure 1.  

 

Figure 1.1 - The electromagnetic spectrum.  

 

It can be said that light was the catalyst for the huge advancement in Physics 

during the twentieth century. Einstein’s theory of the photoelectric effect and the 

development of the idea of the photon as a quantum mechanical entity was a massive 

step forward in understanding nature. For centuries, the most basic comprehension of 

the behaviour of EM radiation was obtained from the study of light within the visible 

region, an obvious endeavour as the retina in our eyes are sensitive only to light within 
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that relatively narrow section of the spectrum, with wavelengths within the approximate 

range of  380nm to 770nm.  

Isaac Newton predicted, and gave evidence for, the fundamental ideas relating to 

the colour of light, while it was James Clerk Maxwell and the equations that bear his 

name that unified the theories of light with the observed behaviour of electric and 

magnetic fields. These important equations are one of the cornerstones of modern 

physics, and importantly showed that the properties of light of all wavelengths are based 

on the same physical principles. The work of Heinrich Hertz was central in the study of 

radio waves, while Wilhelm Röntgen discovered X-rays. In between the extreme 

wavelengths associated with these latter forms of radiation lies a region of the EM 

spectrum that, in comparison with other common forms of radiation, has not been 

applied to everyday life applications to the same level. This is the terahertz (THz) and 

millimetre wave regime.  

 It can be said THz/mm-wave radiation is where electromagnetics cross over into 

optics. At radio frequencies, fields are described in terms of electromagnetic properties 

like polarisation and electrical impedance, whereas at shorter wavelengths in the infra-

red and optical regions the field is measured by phase and the irradiance, directly related 

to the photon flux. Also, microwave laboratory systems have traditionally relied on the 

transmission of radiation by waveguides, whereas with THz and mm-wave research the 

free-space propagation of field variations can be a more convenient, and less costly, 

alternative. The success and progression in recent years of terahertz imaging has, in 

part, been due to the borrowing of ideas from optical studies relating to both long and 

short wavelengths without any need to reinvent existing ideas relating to the 

manipulation or measurement of radiation. 

 

1.2 Application of terahertz / sub-millimetre waves 

There is no official standard definition for the limits of the terahertz and mm-

wave regime, with the two terms often used interchangeably. Siegel admits to 

submitting to a “popular culture” in the use of the word terahertz in the title of an 

article, despite the content relating primarily to properties of millimetre waves with 

frequencies of 300 GHz - 3 THz [SIE86]. Although the experimental measurements in 

this thesis are performed at 100 GHz, outside the range of this loose classification, we 

shall utilise “terahertz” to include this frequency.  
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In the last decade terahertz technology was greatly publicised by the general 

media through the publication of journal articles relating to research in medical and 

biological applications [WOO02], [PIC04]. The energy levels at terahertz frequencies, 

for example h×(300 GHz) = 1.2 meV, are significantly low which makes such radiation 

non-ionising, an important fact in the use of such radiation in medical and biological 

scenarios. The dangers of X-ray radiation in medical imaging are well known, thus any 

alternative to this high energy technique would be a beneficial addition. However, the 

plot below exhibits an obstacle to the development of medical applications utilising 

relatively long wavelengths, the absorption of terahertz and millimetre-wave radiation 

by water, an important compound in any biological sample [QUE91]. 

 

Figure 1.2 – Absorption α (left axis) and refractive index n of deionised water in the terahertz regime. 

Reproduced from [BER96].  

 

Terahertz radiation, or “T-rays”, was, and sometimes continues to be, represented by the 

print media as an alternative to X-rays. However the difference in the behaviour of both 

forms of radiation in a biological context is immense. Figure 1.2 shows the loss 

associated with H2O, with α quantifying the exponential decay of a field within the 

material, given by Beer’s law exp(-α z), where z is the distance of propagation. The data 

presented in the plot shows a big disadvantage for the application of terahertz/mm-wave 

radiation to medical imaging or diagnosis. The water content of animal tissue is very 

large, thus any penetration like that achieved with X-ray radiation, is very limited if not 
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impossible. However, the field has found some interesting applications, for example, 

Dr. Duncan Robertson at the University of St. Andrews has developed a mm-wave 

imaging system for the monitoring of wounds which would normally be obscured by 

bandaging, allowing for examination of the progression of healing [ROB04]. 

 The resolution of any diffraction limited image is proportional to the wavelength 

of radiation being used. Thus, the application of a sub millimetre wave technique with λ 

= 0.1mm to 3mm will have restricted medical applications, where the dimensions of 

features of interest can be on the same scale as the wavelength or even smaller. At 

millimetre wavelengths, the primary application of imaging has been targeted to the 

area of security scanning, with particular emphasis on counter-terrorism applications. In 

the 2000’s continuous progress was made in the commercialisation of mm-wave 

scanners and recently such technology has begun to be used in many international 

airports. A unique property of mm-waves is their ability to pass through several forms 

of material that are opaque in the visible and near-IR range of the spectrum, such as 

plastics, clothing, glass, and paper. Thus this form of radiation is very suitable for the 

detection and imaging of items concealed by clothes, or by using terahertz pulses to 

identify objects through comparison of their spectral signature.  

Below is an example of the kind of images and applications possible at 

millimetre wavelengths 

 

Figure 1.3 - An image of a large concealed knife in a briefcase. Reproduced from Karpowicz (2005). The 

system employed a continuous wave (cw) source operating at 200 GHz (λ=1.5mm). The use of cw 

radiation is evident from the appearance of standing waves across the image. 
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Figure 1.4 – (a) 100 GHz image of an envelope concealing an elastic band, an ‘R’ shaped piece of 

Teflon, and (b) image of a 3½” floppy disc. Measured by the author with a scanning Schottky diode 

detector in the near-field of the objects.  

 

Figure 1.4 shows mm-wave images obtained by near field active imaging, 

whereby the system contains a radiation source to generate the fields used to illuminate 

the object. However, all objects radiate energy and passive mm-wave imaging is based 

solely on the detection and focusing of naturally occurring long wavelength radiation.  

A good example of such imaging that does not require any artificial illumination 

is that applied in a system developed at the National Institute of Standards and 

Technology [GRO10]. The engineering involved in this arrangement is predominantly 

based on complex sensitive detection technology requiring intricate clean room 

development, and the use of motorised optical systems. An example image obtained 

with this system is given in Figure 1.5. 

 

Figure 1.5 - MM-wave image of a human body. Reproduced from [GRO10]. 

 

(b) (a) 
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The results in Figure 1.5 are measured on a 8×8 array of microbolometers, and 

measure the variation in temperature of an object, within a distance of 8m, from the 

temperature of some reference object. The images are also produced in real time which 

is a necessity for the application of the technology in security operations. 

While mm-wave systems are most often carried out on a laboratory scale, the 

study of that specific band of the spectrum has been growing in large-scale applications 

such fields as remote sensing. Although water is strongly absorbent in the millimeter-

wave regime, there are propagation windows at 35, 94, 140, and 220 GHz, where the 

attenuation is relatively modest in both clear air and fog. This may allow for imaging of, 

for example, land surfaces that are concealed by clouds or fog. In fact, millimetre-wave 

radiation can be attenuated several orders of magnitude less in clouds, fog, smoke and 

snow, than visual or IR radiation. For this reason, the use of millimetre wave radiation 

in airport traffic control has been studied [SHO93]. An example of similar work is 

shown in Figure 1.6 

      

Figure 1.6 – (a) Visible image of airport runway, and (b) the same scene measured by detection of 

94GHz radiation. Reproduced from [YUJ03].  

  

1.3 - Sources of terahertz radiation 

Research into the behaviour of electromagnetic waves, of any wavelength, could 

be divided into three subgroups: generation, propagation, and detection. This thesis is 

primarily concerned with the propagation of electromagnetic waves, and numerical 

techniques used to describe such. But to deal with mm-wave radiation and not mention 

the various technologies involved would be an incomplete summary of the field.  

The surge of interest in terahertz radiation in the past two decades or so has been 

primarily due to the increase in availability and decrease in cost of radiation sources. 



 7

Previous attempts at far-IR imaging in the 1970’s lacked continuity due to the expense 

of such technology, [HAR76].  

 

1.3.1 - Gunn diode oscillator 

At millimetre wavelengths the most commonly used, and least expensive, 

radiation source is known as a Gunn diode. Historically, this form of device was used 

primarily as a source of lower frequency radio waves, 500MHz-50GHz, but advances 

such as the use of gallium arsenide GaAs and gallium nitride GaN materials have 

allowed the generation of radiation with frequencies well into the terahertz range. 

Gunn diodes are created from a single section of n-type semiconducting material 

with a variation of the doping across the material creating three regions with two 

heavily doped n (n+) regions surrounding a lesser doped n region. The densely doped 

regions can act as conductive terminals for connection of a device to the Gunn diode.  

The active region of the diode is the central region which, because it is 

especially thin, will be subject to a large electric field when a voltage is applied across 

it. When the voltage in the central region exceeds a certain level the properties of the 

middle layer change and a current is induced and moves across this active region. While 

a current exists the potential gradient falls thus preventing any further current pulses to 

be generated, this is sometimes referred to as negative differential resistance see Figure 

1.7. The voltage across the active layer will only increase again when the current 

reaches the far-side of the central region.  

 

Figure 1.7 – Behaviour of current as a function of voltage in the middle layer of a Gunn diode.  

 

When combined with an oscillator circuit, by adjusting the bias voltage across the 

diode, the negative resistance of the Gunn diode can be used to counteract the AC 

Voltage 

Current 

Region of negative 

resistance 
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resistance of the circuit, and oscillations can be maintained indefinitely thus generating 

EM radiation. See Figure 1.8.  

 

Figure 1.8 – Schematic of a basic microwave oscillator circuit employing a Gunn diode [LEE09]. 

 

In practice, a Gunn diode is normally mounted in a waveguide system with the 

whole assembly acting as a resonant cavity, see Figure 1.9. In such an arrangement the 

frequency of operation of a Gunn diode can be modified by mechanical tuning of the 

waveguide dimensions.  

 

Figure 1.9 – Two examples of W-band Gunn-diode resonators.  

 

Generally, such sources can be considered monochromatic with the bandwidth often 

less than a fraction of a percentage of the designated frequency.  

 

1.3.2 - Free electron laser (FEL) 

The operation of the free-electron laser is similar to that of a conventional laser, 

but whereas a gas laser uses excited electrons in a bound state, the FEL uses a beam of 

free electrons as the lasing medium. To generate a radiative action from the free 

particles, an electron beam with relativistic speeds is targeted between the poles of 

-Vb 

+Vb 

Gunn Diode 

Radiation 
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magnets with alternating north and south poles, generally known as an undulator. The 

path of the electrons is defined by the Lorentz force F=v×B and results in a sinusoidal 

trajectory. Bremsstrahlung radiation is then emitted when the electrons undergo rapid 

acceleration at the crests and troughs of the electron path. Coherence is achieved as the 

oscillations of the electrons are in phase with the generated light. Note that in the 

descriptive figure below the waves are representative of oscillations that in reality 

would be polarised in the vertical direction (i.e. out of the page). A magnet is then used 

to direct the electron beam away from the direction of propagation of the coherent 

output radiation.  

 

Figure 1.10 - Illustration of the production of EM fields by a free-electron laser. 

 

In the last ten years, increasing numbers of publications have been devoted to the 

application of free-electron lasers in terahertz imaging, and the use of holography as an 

imaging technique using these sources has been suggested [CHE05]. Shown below is an 

example of images obtained by the illumination of a leaf with a free-electron laser, from 

[JEO05]. 

 

 

 

 

Electron 
beam N S N S N S 

N S N S N S 

Output 
radiation 
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Figure 1.11 – Imaging using a free electron laser, reproduced from Jeong et. al. [JEO05]. (a) Sample of 

leaf to be imaged. (b) Visible image, (c) THz image using FEL.  

 

The FEL is, however, not a portable or commercially available device. The length of the 

undulator can be several metres in length, depending on the desired power output, and 

the strength of the static magnetic field is required to be extremely large.  

 

1.4 - Waveguides and Horn antennas 

After generation of radiation within a Gunn diode, manipulation of the output 

field is often desired to provide effects such as attenuation, shifting of the phase of the 

wave, or indeed aiming of the beam in a desired direction. The components used to 

achieve such field alterations can be mounted to the output of the source as part of a 

waveguide system. Waveguides are effectively a one-piece transmission line which is 

tubular and most commonly has a circular or rectangular cross section. There are 

numerous possible field structures that can exist within a waveguide structure, 

represented by the transverse electric modes, TEmn and transverse magnetic modes 

TMmn, where, in simple terms, m and n represent the number of oscillations along the x 

and y direction respectively. The actual modes that will be generated within a 

waveguide cavity are dependant on the temporal excitation frequency of the EM field 

and the dimensions of the cavity [HUA08].  

(a) 

(b) (c) 
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In a rectangular symmetric system, the propagation of a wave within a 

waveguide can be described by  

( )( )tzkykxkiEE zyx ω−++= exp0  

 

Figure 1.12 – Illustration of wave propagation within a waveguide. 

 

The boundary conditions of a conductor define the allowable values of the transverse 

wavenumbers kx and ky of the normal E field which must have zero magnitude at the 

interior wall of the waveguide. Thus, 

a

m
k x

π
= , and 

b

n
k y

π
= , 

where m and n are integers. The length of the waveguide is assumed to be infinite thus 

the restrictions placed on kx and ky do not apply to kz. However, for propagation along 

the z axis it is essential that the value of kz must remain real, otherwise the wave will 

decay exponentially in that direction and there will be no transfer of electrical energy.  

The dispersion relation of the waveguide is given by  
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Thus, to allow for lossless propagation within the cavity kz
2 

> 0, this gives the minimum 

allowable, or cut-off, frequency within the waveguide as 
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which for the fundamental (m = 1, n = 1) mode  

a

c
c

2
=ν . 

For circular waveguides of radius a, where the allowed modes are described in terms of 

Bessel functions, the cut-off frequency is given by  
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2
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a
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kx 
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These values determine the minimum frequency at which radiation can propagate within 

the cavity of the antenna. The waveguides generally used in the laboratory at NUI 

Maynooth are the WR10 type which are designated for use at frequencies between 

75GHz and 110GHz, and with dimensions of 2.54mm×1.27mm, the cut-off frequency 

for the TE10 mode is ~59 GHz. Shown below, in Figure 1.13, is a simple example of the 

propagation of fields within a WR10 waveguide calculated by solving Maxwell’s curl 

equations using the Finite-Difference Time-Domain method. The field is derived from a 

100 GHz source (λ = 3mm), resulting in a waveguide wavelength λg of  

.7.3

1

2
mm

c

g ≈









−

=

λ

λ

λ
λ  

In the case of a one-dimensional depiction of waveguide propagation, the components 

of the electric field, excited in the fundamental mode, are given by 

( )( )tzki
a

x
EE zy ωπ −








= expsin0 , 

0== zx EE , 

while the magnetic field components are given by  

( )( )tzki
a

x
HH zx ωπ −








= expsin1

, 

0=yH , 

( )( )tzki
a

x
HH zz ωπ −








= expcos2 , 

where E0, H1, and H2 are constants.  
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Figure 1.13 - The propagation of the fundamental mode of a 100 GHz field within a WR10 waveguide.  

(a) Ey, (b) Hx, (c) Hz. The waveguide wavelength, marked λg, shows an increase from the free space 

wavelength of 3mm. 

 

The images shown in Figure 1.13 are an example of the importance of numerical 

simulation in mm-wave and terahertz optics. Although the field structures in the 

waveguide are relatively straightforward the technique used to derive those structures, 

FDTD, is not trivial. In the case of more complicated mode propagation this numerical 

method has significant potential in mm-wave applications, and will be discussed in 

more detail in Chapter 2.  

Waveguides are used to “carry” the wave from the radiation source, such as a 

Gunn-diode, to a desired point in an optical arrangement, but the similarity in the 

dimensions of the waveguide to the radiation wavelength means that upon entering free-

space from the waveguide, the EM field spreads out (diffracts) very rapidly which is not 

desired in a compact or indeed a large optical system. To allow for a more controlled 

and directed propagation, horn antennas are used to limit the angular spread of the 

radiation in free-space. The size, shape, and symmetry of such antennas have a huge 

variance, and the definition of whether a horn has a smooth or corrugated interior wall is 

an important factor in predicting its output. Cylindrically symmetric flared horn 

antennas are one of the most popular forms of horn antenna, while another frequently 

used form is a rectangular smooth-walled flared horn, see Figure 1.14.  

(a) 

(b) 

(c) 

λg 
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Figure 1.14 – Examples of horn antennas for the millimetre wave band. The two horns on the left are 

rectangular horns with WR15 (3.76mm×1.88mm) and WR10 (2.54mm×1.27mm) waveguide flanges, and 

on the right a WR10 corrugated circular horn.  

 

The following plots illustrate the advantage of using a horn antenna. The 

simulations are based on a two-dimensional model, so the horn antennas in Figure 1.15 

can be considered to be approximations to a sectoral horn. The value in the use of horn 

antennas in conserving the directionality of a propagating field is illustrated in the 

following Figure 1.15 (a) and (b).  

The data in Figure 1.15 was generated by the author with an intensive 

electromagnetic computational technique finite-difference time-domain (FDTD), but 

more generally, the field at the mouth of a sectoral horn of diameter d can be 

represented as 

( ) 







=

L

xk
idxExE

2
exp/cos)(

2

0 π , 

where L is the slant length of the interior wall of the horn.  
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Figure 1.15 - Propagation of a 100 GHz field, shown as│Ey│, from (a) a bare waveguide, (b) a 

rectangular pyramidal horn with flare angle of 20º. Both plots are “clipped” at -30 dB. The electric field is 

polarised along the vertical axis (out of page). The structures of the fields in these plots were calculated 

by the author using the finite-difference time-domain method (FDTD).  

 

The radiation generated by rectangular horn antennas is not uniform in that there 

are components of the field which are polarised orthogonally to the desired co-

polarisation axis. Detectors, such as those with a waveguide receiver, are sensitive to the 

polarisation of the field, so to minimise power loss due to the generation of cross 

polarisation by the antenna the internal wall of the horn may be designed to have a 

corrugated profile.  

The electric field in a conical cylindrical horn is dominated by an electric field 

with components having the form  
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where a is the maximum radius of the horn, kr and k0 are the transverse and free-space 

wavenumbers, A1 and A2 are amplitude coefficients, and Z and Y are the impedance and 

admittance, with 
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Cross polarisation is eliminated in this situation by exclusion of the angular variation 

present in Ex and Ey as cos(2θ) and sin(2θ),  which can be done by equating Z and Y or 

their value being zero. Hθ, and consequently Y, is nullified by the reduction of currents 

in the axial z direction which is done when the corrugations in the wall of the antenna 

(a) (b) 
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are one quarter of a wavelength deep, thus the currents interfere destructively to cancel 

any angular variation of the fields. With a sufficient number of corrugations, Eθ will 

tend to zero and as the cross polarisation is very low in these instances, vector 

representation of the field can be unnecessary, thus such horns are sometimes referred to 

as being scalar horns, [CLA84].  

In the laboratories at NUIM the standard method of detection is through the use 

of planar Schottky barrier diode detectors. Schottky diodes have a metal-semiconductor 

junction and exhibit a low voltage drop which allows for better efficiency and faster 

switching times.  

 

1.5 - Chapter outline 

This chapter has briefly introduced some of the applications and appliances in 

use today within the ever growing research field of terahertz and millimetre-wave 

technology. The author will describe methods for the calculation of electromagnetic 

fields in the mm-wave bands, and discuss their novel application in the modelling of 

imaging systems, namely, digital holography, ultrashort pulse behaviour, and diffractive 

optical components.  

  

The thesis is divided into chapters as follows 

 

Chapter 2  

This section gives a description of the behaviour of electromagnetic fields due to 

diffraction, with emphasis on the paraxial description of radiation whereby it is assumed 

that the angular spreading of the beam is limited to shallow angles relative to the optical 

axes. In particular, we discuss the Gaussian beam mode method which will be shown to 

give an accurate, and computationally swift, description of paraxially propagating fields 

such as those that occur in terahertz optics.  

Accounts are given of two methods used in the description of fields without any 

restriction to the angle of their diffractive spread, the finite-difference time-domain 

(FDTD) method, and a new form of GBM analysis using more recent expressions for 

the propagation of Hermite-Gaussian modes allowing for efficient and accurate non-

paraxial calculations of far-field diffraction patterns.  
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Chapter 3  

A description of a 100 GHz digital holographic system is presented for the 

measurement of phase by simple means. This is a good example of how techniques 

developed for the visible band may be applied to the terahertz/mm-wave band. This 

method relies on digital post-processing for imaging rather than physical manipulation 

of optical fields. The method has the potential to eliminate aberrations or other effects 

that may occur when relying on lenses or mirrors for the formation of images.  

The author describes the numerical reconstruction of images using the Hermite-

Gaussian expansion, which is completely independent from the Fourier theory that is 

the standard procedure in visible band hologram processing.  

  

Chapter 4  

The ideas presented in Chapter 2 are applied to the calculation of diffraction 

effects in fields that have time-dependent amplitudes, i.e. pulses. Knowledge of the 

behaviour of such waves has increased importance in the analysis of terahertz time-

domain imaging and spectroscopy which is becoming a more widely used technique.  

 Here, pulsed fields diffracted by an aperture are calculated using the Gaussian 

beam mode approach, by superimposing individual pulsed Gaussian beam modes with 

suitable weightings to determine the overall effect of an aperture on the behaviour of 

pulses. Individually, the pulsed modes exhibit interesting properties, and we highlight 

how these effects manifest themselves in the diffraction of a plane wave pulses by 

apertures.  

 

Chapter 5  

A study of the optical properties of diffractive lenses was undertaken using the 

Laguerre-Gaussian mode analysis for both continuous and pulsed wave fields.  A binary 

lens was designed by the author for operation at 100GHz and measured in a millimetre 

wave system. The modulation of optical pulses, near the visible band, by diffractive 

optical components was simulated, and an analysis of the focusing properties of these 

elements was performed.  

 

Chapter 6  

Bessel beams are solutions to the complete wave equation that, like an ideal 

plane wave, show complete resistance to diffraction. While they are also theoretical 
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field distributions, approximations to amplitude structures defined by a Bessel function 

can be generated using a conical lens, otherwise known as an axicon. The fields 

generated by these elements generate relatively long focal lines which may have 

advantages when incorporated onto THz and mm-wave imaging systems. We present a 

description of such fields using Gaussian beam mode analysis, along with experimental 

results measuring the intensity distribution of such an element.  

 

Chapter 7 Summarises the main contributions and results of the work undertaken.  
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Chapter Two 

 

Methods for Numerical Simulation of Far-Infrared 

Electromagnetic Fields 

 

2.1 – Introduction 

 

The branch of Physics known generally as Optics sets out to explain the myriad 

of phenomena associated with the propagation, reflection, absorption, scattering and 

other effects related to electromagnetic (EM) waves. From the formation of images by 

mirrors, to the transmission of radio signals, the study of how radiation interacts with its 

surrounding environment is one of the most important aspects of modern Physics. Like 

most phenomena in the physical sciences there are several theories with varying levels 

of complexity and accuracy that can be used to account for observed optical effects. In a 

broad categorisation, four theoretical formulations are used to describe the propagation 

of EM radiation and its interaction with matter, namely geometrical, scalar, physical, 

and quantum optics: 

 

Geometrical optics provides the simplest description of the propagation of light. 

The theory assumes that the wavelength λ of the radiation to be described tends towards 

zero, λö0, thus allowing all free space diffraction effects to be neglected. In this 

instance, a beam, or the edge of a beam, is represented as an infinitesimal linear ray 

described by its angular components of propagation, which are altered only by 

refractive or reflective interactions with optical components resulting in deviations in its 

path. This form of optics allows for explanation of such effects as reflection and image 

formation and has been mainly used for visible wavelengths, but loses much of its 

usefulness in the millimetre wave band of the spectrum, although some diffractive 

behaviour in that regime can be represented as a linear effect, such as the far-field 

diffraction angle of a beam from a truncating obstacle.  

 

Physical optics: This theory represents the oscillatory nature of light, and 

incorporates the description of light's electric and magnetic effects from Maxwell’s 

equations. Light is described as a wave vector, thus calculation of the polarization of the 

field is allowed by such a formulation. Physical electromagnetic calculations are based 
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on the determination of the reflected fields generated by the current distribution created 

by the incident radiation on a conducting reflector. Such computations, depending on 

the scenario, can be very intensive and are often carried out with dedicated commercial 

software, such as Grasp
TM

 a program developed by Ticra research corporation.  At 

NUIM such software is used frequently in the analysis of long wavelength radio 

telescope systems, [OSU02]. 

 

Quantum optics: The quantum theory of matter requires a theory that can allow 

for the quantisation of the electromagnetic radiation to permit the atomic energy 

transitions predicted by the atomic theory. In this case EM fields are represented as a 

photonic quanta of energy E = hν, and enables prediction of the effects such as 

absorption caused by materials on radiation of different frequencies. This theory is 

rarely used in the applied optics that we discuss in this thesis, but is required, for 

example, in laser design, [LOU73]. 

 

Scalar Wave Optics: The wave nature of light has been recognised since the 

seminal work of Huygens, Fresnel, and Young, to name but a few. It is however; mainly 

due to the mathematical foundations laid by Joseph Fourier that scalar wave optics has 

become one of the most commonly used methods in the description of macroscopic 

optical effects. The Fourier theory of optics has allowed for the prediction of diffractive 

effects from complex wave interactions, and work on the theory in recent years has 

allowed for such calculations to be performed quickly by digital computers. In this 

formulation, an electromagnetic field can be represented through the amplitude and 

phase of the dominant polarization component within the field. The amplitude 

represents the magnitude of the electric field while the phase tends to be the dominating 

effect in the variation of beams' characteristics by propagation from its source.  

 

One feature of electromagnetic wave propagation at long wavelengths that has 

the utmost importance is diffraction, defined in simple terms as the spreading or 

bending of waves as they pass through an aperture or round the edge of a barrier. 

Diffraction has been rigorously studied since the 18
th

 century, and many theories and 

simplifications of theories have been presented. Here, the effect will be discussed with 

application to millimetre wave optics through the Fresnel theory [GOO05], and the 

Gaussian beam mode approximations [GOL98]. These are scalar paraxial techniques 
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and some aspects of the true vectorial nature of the fields are lost, for instance, a 

description of the field's polarisation.  

Diffraction is an important subject in far-infrared optics due to the long 

wavelengths which are usually the same order of magnitude as the entrance pupil 

diameters of the optical systems through which the radiation propagates. If we use a 

simple formula for the angular spread of a beam from a circular truncating aperture of 

diameter D the angle of divergence is defined as q = 1.22 λ / D, where λ is the 

wavelength of radiation, one can see that any similarity in magnitude between 

wavelength and aperture dimensions would give a large angular spread, thus one can not 

treat such situations with geometrical optics as is commonly performed with visible 

wavelengths.  

This thesis is concerned with the scalar theory of optical diffraction and its 

analysis through mathematical techniques involving solutions to the paraxial form of the 

wave equation described by orthonormal wavefunctions more commonly associated 

with solutions of the Schrödinger equation in quantum mechanics. The form of 

diffraction calculation to be discussed is notably different, although physically related, 

to the far more frequently used method of the Fresnel diffraction integral to which 

thousands of scientific publications have been devoted since its derivation.  

 

2.2 - The Fresnel diffraction integral 

Christian Huygens postulated that the diffraction of a wave is due to every 

infinitesimal point on the wavefront being a source of secondary wavelets which 

recombine to form a subsequent wavefront. In the cases of ideal spherical and plane 

zwaves a description can be applied to their behaviour in all free space. However, when 

such waves encounter an obstacle causing dislocations in their ideal wavefront, 

discrepancies occur in the arrangement of the wavefront, as shown schematically in 

Figure 2.1, causing the phenomenon of diffraction.  

 

 

 

 

 

 



 22 

 

Figure 2.1 – Graphical depiction of Huygen's principle - the diffraction of a wave as a superposition of 

secondary spherical wavelets from each point on the wavefront.  

 

The superposition of each spherical wave is defined through the Huygens-Fresnel 

principle and is represented mathematically as  
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where the wavelength λ is the distance between the crests of the monochromatic field, 

and the wavenumber k gives the change in phase of the field in a unit distance, also 

related to k = ω/c with angular frequency ω and speed of light c. In eq. (2.1), x, y, and z 

represent the horizontal, vertical, and longitudinal Cartesian coordinates respectively in 

the region beyond the aperture z > z0. x0, y0, and z0 symbolise the coordinates at the 

aperture plane, where it is assumed that the aperture lies on a flat plane at z = z0, which 

unless otherwise stated will be assigned the value zero for convenience without any loss 

of generality. r corresponds to the distance between a point in the diffraction plane 

(x,y,z) and a point on the aperture plane (x0,y0,z0), and the obliquity factor (which 

prevents back-propagation of the field) has the form [GOO05] 
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Like most mathematical models of physical phenomenon, simplifications of this 

equation can be used to enable swifter calculations. The distance r is given by 
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and it is known that if a quantity |γ| is less than unity then the binomial series predicts 
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Rewriting r in the correct form for application of the expansion to the above integrals 
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This is one form of the paraxial approximation and gives the Fresnel diffraction integral 

in Cartesian coordinate frame as 
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Diffraction effects calculated using the above integral show frequent changes of the 

diffracted intensity structure in regions near the aperture. However, when the field is 

calculated at z >> z0, successive measurement planes show similar intensity patterns, 

albeit with differing intensity and transverse scaling. This allows for further 

simplifications in the diffraction integral. A condition known as the Fraunhofer 

approximation is given by [GOO05] as being valid if 
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which if applied to the Fresnel integral eq.(2.2) yields the Fraunhofer diffraction 

integral 
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The structure of this integral now allows for direct comparison with the Fourier 

transform, which, with modern algorithms, enables swift calculation of diffraction 

integrals. The Fourier transform, or spectral composition, F(kx) of a function f(x) is 

given as 
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and its inverse is calculable from 
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Shown below is the diffractive effect of a square aperture on a plane wave calculated by 

the fast Fourier transform (FFT) algorithm, and shows the amplitude of a wave very far 

from the aperture.  

        

Figure 2.2 – A square aperture and its Fraunhofer diffraction pattern as calculated using the Fourier 

transform.  

 

The main application of the Fourier transform is to derive a frequency-space 

representation of a function through elementary cosine and sine functions, and is an 

essential application in signal processing. It has also revolutionised the computational 

study of optics. The Fourier transform will be applied in later chapters, in the 

description of optical pulses and in image formation by digital holography.  

The binomial approximation used previously is the basis of the paraxial theory 

of optics. In essence it is the representation of a spherical wavefront by a similar 

parabolic function, and is also associated with the trigonometric approximation θ ≈ sinθ 

≈ tanθ where θ is the diffraction angle of the wavefront. Theories that employ this 

estimate are therefore valid only at points within relatively shallow angles to the optical 

axis where a sphere and a representative paraboloid deviate insignificantly. The angular 

region within which the paraxial method is valid, is ambiguous. The parabolic 

approximation of a spherical surface breaks down gradually at distances from its centre. 

Generally, and somewhat arbitrarily, fields within angles of 12° to the optical axes are 

considered valid within the literature. Despite these approximations, the diffraction 
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integrals obtained from (2.2) and (2.3) have become the standard mathematical 

procedure for analysis of many forms of optical fields.  

 

2.3 - Gaussian beam diffraction 

We have presented the general Fresnel diffraction integral for a general field 

without any reference to the form of the field E0(r0). One important form of amplitude 

variation, particularly in coherent radiation fields, is the circularly symmetric Gaussian 

beam. These beams are, in theory, infinitely wide fields characterized by the variation  
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where w is a real number known as the width parameter. With infinite extent, the ideal 

Gaussian beam is not realized in practice, but because of the rapid off-axis decrease in 

energy, approximations can be produced by coherent light sources such as Lasers and 

horn antennas like the conical corrugated horns discussed in [GOL98], and [LES90].  

With the Fresnel diffraction integral the propagation of an ideal Gaussian field 

can be characterized by simple formulaic means. There are a few occasions when the 

Fresnel integral can be solved to give a complete simple analytical description of the 

diffracted field, and these usually involve integration of fields over an infinite range, 

which is valid here given the extent of the Gaussian function.  

The field of a circularly symmetric field beam at a plane z can be calculated 

using the Fresnel integral from  
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which is the analogue of eq. (2.2) in cylindrical coordinates, with the zeroth order 

Bessel function J0 arising from the substitution of angular coordinates in equation (2.2). 

With E0(r0)=exp(-r0
2
/w0

2
), the integral in equation (2.5) has an appropriate form to be 

compared with the integral from [GRA07],  
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With some algebraic manipulation the diffraction of an ideal fundamental Gaussian 

beam ψ0 is given by the equation   

( )( ) 

















−








−








−= −

2

0

1
2

2

2

20

2
tanexp

)(2
expexp

)(
exp

)(

2
),(

wk

z
i

zR

kr
itzki

zw

r

zw
zr ω

π
ψ

 

(2.6) 

where the subscript in ψ0 indicates that this form of field is the basic form of a family of 

similar solutions. The functions w and R are given by 
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These parameters w(z) and R(z) have paramount importance in the modeling of long 

wavelength optical systems. w(z) represents the transverse broadening of the field due 

to diffraction with increasing distance from the source, while R(z) determines the 

variation in the radius of curvature of the wavefront of the field.  

The propagation equation of a Gaussian beam, eq. (2.6), can be divided into 

three distinct parts. Firstly, the parameter 2)(2 zwπ  normalizes the amplitude value 

of the beam such that the energy present in the field at any plane, i.e. ∫
∞

0

2
2 drrπψ , is a 

constant. The second real exponential term defines the transverse variation of the field 

amplitude envelope which is seen to always possess the form of a Gaussian function but 

varies with increasing z according to w(z). The final three complex exponential terms 

combine to define the phase of the beam. The direction of the wavefront can be 

considered to be the normal to the surfaces of equal phase of this function which are flat 

at the plane z = 0 due to the convergence of R(z = 0)→∞, and at larger distances the 

increasing spherical variation of the field increases causing the beam to diverge from 

the optical axis and become wider with increasing z.  

A useful parameter in describing Gaussian beam propagation is the confocal 

distance 
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Its value can be informally regarded as the distance at which a diffracted Gaussian beam 

mode no longer represents an image of the original field at z = 0, and gives the distance 

at which the width parameter w(z) is equal to 02w or as the plane at which the area of 

the beam becomes twice that at the source. w(z) increases approximately linear when z 

>> Zc, and the effective radius w(z) of each Gaussian beam diverges at an angle of 
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π
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θθ ≈≈      (2.10) 

while at the same distances the radius of curvature of the wavefront converges to the 

relationship R(z) ≈ z. Figure 2.3 depicts the propagation of a Gaussian beam according 

to equation (2.6).  

 

Figure 2.3 - The propagation of a fundamental Gaussian beam.  

 

The final term of equation (2.6) is an important term known as the Gouy phase shift. 

This factor represents a deviation of the Gaussian beam's phase from the ideal plane 

wave due to off-axis diffractive spreading. The variation of this phase difference is 

shown below.  

R(z) 

w(z) 

θFF 
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Figure 2.4 - The on-axis Gouy phase shift for a fundamental Gaussian beam.  

 

The phase converges, for the fundamental Gaussian beam, to π/2, and has important 

consequences on the behaviour of Gaussian beams. This will play an important role in 

the study of pulses subject to this phase shift to be described in chapter 4.  

 

2.4 - Ray transfer matrices 

The lens, and its effect on the propagation of a radiation field, is a very 

important aspect of optics, it being the most widely used optical element in all areas of 

optical research, and indeed in everyday life. The most basic and a frequently used 

method of describing the effect of a lens on a field is the application of ray-transfer 

matrices, or, as they are commonly known, ABCD matrices. The basis for this technique 

is the representation of an optical system by a product of matrices, by which each 

individual matrix represents the effect of an optical element on a ray of light, be it due 

to refraction, reflection, or propagation through a medium, such as a vacuum or glass. 

In the case of the traversal of free space by a ray of light the corresponding 

ABCD matrix maps the original spatial and angular direction co-ordinates, relative to 

the optical axis, to the new position and angle, as in Figure 2.5 
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Figure 2.5 - The translation of a ray of light (blue) over a medium of regular refractive index 

 

Given a medium of constant optical density of unit value it should be obvious that θ0 = 

θ1 and y1 = y0+L tanθ0. The matrix notation that represents these equations is [PED93] 
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using the approximation θ = tanθ. Thus, the transfer matrix associated with free-space 

propagation is given by 
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The most common occurrence of ABCD matrices in optics is in the transmission of a 

beam through a spherical surface that acts as an interface between two media of 

refractive indices n1 and n2 as, for example, in a thick lens with a surface curvature of R. 

In that case, using a paraxial form of Snell’s law n1θ1 = n2θ2 (valid under the paraxial 

assumption sinθ ≈ θ), the appropriate transfer matrix becomes 
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One can show that the transfer matrix of a beam entering a medium of refractive index 

n2 at a plane interface is given by 
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because a flat surface has a radius of curvature R→∞. Most common simple surfaces 

can have their effects on a light ray represented in an ABCD matrix. Other examples of 

transfer matrices are: 

For a thin lens 
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 and for a spherical mirror 
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where the sign of the mirror curvature R depends on the mirror being concave or 

convex.  

In millimetre wave optics, the propagation of Gaussian beams through an optical 

system can be determined by use of a complex beam parameter q 
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With representation of an optical system through an ABCD matrix the q parameter will 

vary according to the change in values of R(z) and w(z) as defined by eqs. (2.7) and 

(2.8). With definition of the radius of curvature and width of a Gaussian beam at the 

entrance of an optical system, the value of q at an output plane can be determined from  
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BAq
q
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and the beam parameters R and w can be calculated as 
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While very simple to use, ray transfer matrices are often not adequate for a 

complete description of a beam. This is so when the paraxial approximation breaks 

down or when the phase distribution of a beam at the face of a lens or medium is not 

spherical, or aberrations are present and the effect of the optical component is more 

complicated and therefore requiring the lens to be represented by a complex exponential 

phase term in, for example, the Fresnel diffraction integral. Goodman [GOO05] 

describes a variation of the spherical wavefront imposed by a lens on a beam as a 

parabolic/quadratic function for the situation of fields with only weak divergence in 
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relation to the optical axis. It should be noted however that this is still an approximation, 

valid only in the paraxial regime of diffraction. 

If the total thickness of the lens at the coordinates x and y is given by D,  the 

phase transformation imposed by a lens is given by          

( ) )),()1(exp(exp yxnkii lens ∆−=φ              

The total thickness function of the lens � is taken to be the sum of the depth of three 

individual sections of the lens �=�1+�2+�3,  see Figure 2.6.  

 

 

 

Figure 2.6 – Layout for simplification of the structure of a thin lens.   

 

We can see from the figure above, 
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and, calculating in the same manner  
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Thus, total thickness at (x,y) becomes 
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Using the binomial approximation we now define a transformation function for the lens 

as 
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where  
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f  being the focal length of the lens. The phase distribution described in eq. (2.11) is 

akin to the definition of the curved wavefront of a Gaussian beam, and thus the effect of 

such transformation is to alter the radius of curvature of a Gaussian wavefront incident 

on the lens. This form of approximation is commonly used in the paraxial regime of 

diffraction analysis in estimating field divergence. 

 Equation (2.12) is often referred to in optics and quasi-optics as the “Lens-

makers formula”, as it allows for a quick calculation of the parameters required for a 

desired lens.  

 

2.5 - Orthogonal beam modes 

 Fourier analysis is a fundamental technique used in the physical sciences for the 

expansion of an arbitrary function as a series of fundamental harmonic sinusoids. There 

are several functions like the sine and cosine functions that allow for a similar 

formulation of arbitrary functions.  

 Two functions fi(x) and fj(x) are said to be orthogonal if they satisfy the 

condition
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where δmn is the Kronecker delta function, given as  
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Π(x) is known as a weighting function, and C is a constant. Other examples of such 

orthogonal functions include the Legendre polynomials, and the Laguerre and Hermite 

polynomials. A Gaussian modulation of the latter two functions provides two important 

solutions to the paraxial wave equation, arising in optical theory as free-space modes, or 

as modes within a Laser cavity [SIE86, MUR93, PED93]. The orthogonality of the 

Hermite and Laguerre-Gaussian beam modes is the characteristic of the functions that 

make them so useful in the context of far-infrared applications.  

Suppose we wish to describe the Fraunhofer diffraction from an obstacle which 

consists of two rectangular slits parallel to each other. It would be correct to insert the 
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entire aperture function into the diffraction integral and integrate over the entire area 

surrounding the two slits to obtain a solution. However a much simpler method would 

be to define the overall transmittance as the superposition of two independently 

diffracting rectangular apertures, for which the Fraunhofer calculation is widely known. 

The characterisation of a beam diffracted by an aperture of transmittance E0 can only be 

directly expressed analytically for a certain number of aperture functions, usually with 

infinite extent. If, however, an irregular transmittance can be described in terms of 

constituent beams for which the diffraction characteristics are known, we can then 

describe the total diffractive behaviour of the aperture through the summation of the 

independently propagating fields. This is the basic reasoning behind Gaussian beam 

mode analysis (GBMA), whereby the unknown characteristics of a field diffracted by an 

obstacle are calculated by a weighted sum of field modes whose properties can be well 

described. 

 

2.5.1 – Higher-order paraxial Gaussian beams 

The propagation of the fundamental Gaussian beam in the previous section has 

been studied intensively for decades. The beam is often used as a first order 

approximation of fields with similar structures, such as a laser output field or the beam 

derived from a cylindrical horn antenna which may be useful in preliminary analyses of 

optical systems. There are, however, other similar solutions that can observe similar 

propagation laws to those for the Gaussian beam, and it turns out that the form of 

Gaussian beam described previously is a fundamental form of a complete family of 

beam modes.  

An alternative description of paraxial propagation involves a reduction of the 

wave equation. Electromagnetic fields are generally defined in the general form of 

harmonic waves given by  

E(x,y,z)=ψ(x,y,z)exp(i (k z - ω t))      (2.13) 

where the quantity ψ is assumed to be a slowly varying time-independent function, i.e. 

the wave is monochromatic. In this case the wave equation can be rewritten as the 

Helmholtz equation 

.022 =ψk+ψ∇       (2.14) 

Defining a paraxial field as one for which the longitudinal (on-axis) variation is less 

than the order of a wavelength, this can be represented as the paraxial 
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equation to the paraxial wave equation, given in the Cartesian co-ordinate frame as  
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Up to this, only the propagation of the fundamental Gaussian beam has been discussed. 

However, the paraxial wave equation gives rise to several other forms of more 

complicated solutions, but which display similar diffraction characteristics. These are 

they Hermite-Gaussian and Laguerre-Gaussian beam modes. 

 

2.5.2 - Hermite-Gaussian beam modes 

In the Cartesian frame of the paraxial wave equation the solutions obtained were 

found to be the Hermite-Gaussian (HG) functions, which were applied in Quantum 

theory as the solutions for the wave-functions of a harmonic oscillator. These 

polynomials satisfy Hermite's differential equation [WEI02] and as solutions to the 

paraxial wave equation (PWE) take the two-dimensional form Hl(ax)Hm(by) where l and 

m are integers, and a and b are constants related to the scaling of the modes in a 

coordinate system defined by x and y. The first few Hermite polynomials are easily 

obtained from its generating function, and for low values of the mode index we obtain  

H0(s) = 1, H1(s) = 2s,H2(s) = 4s
2
-2, H3(s) = 8s

3
-12s. 

The Hermite polynomials of order m are m
th

 order polynomials thus each mode has m 

roots of Hm(s) = 0. Texts on mathematical techniques commonly give the following 

integral  
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which allows for the waist parameter and Gaussian envelope to be more easily 

recognised.  
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Thus, the one-dimensional normalised Hermite-Gaussian mode is given by  
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The orthogonal properties of Hermite-Gaussian functions are extremely convenient and 

result in their frequent application in the physical and mathematical sciences. In 

particular, image processing is one such area that has used Hermite-Gaussian functions 

in, for example, forensic fingerprint analysis [WANG07a], seismic image analysis 

[WANG07b], and other image processing functions such as edge detection [SHE95]. 

Figure 2.7 shows the one-dimensional structure of the Hermite-Gaussian modes.  

 

 
 

Figure 2.7- The Hermite-Gaussian functions  (a) m = 1, (b) m = 2, (c) m = 3, (d) m = 10. 

 

As solutions of the complete PWE in Cartesian systems the HG modes appear as ψlψm. 

Examples of these two-dimensional Hermite-Gaussian distributions are shown in Figure 

2.8.  

(a) (b) 

(c) (d) 
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Figure 2.8 - Two dimensional Hermite-Gaussian beam modes for (l,m)= (a) (0,2) (b) (8,5).  

 

The propagation of the HG beam modes can be defined from the Fresnel diffraction 

integral in Cartesian coordinates for z > 0 and their field is defined as [MUR93] 
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where w and R have the same meaning as defined earlier in this chapter, eqs. (2.7) and 

(2.8), but here subscripts of x and y indicate that there may be a difference in the beam 

parameters in the horizontal and vertical directions due to asymmetry in the definition of 

the propagation space. Cm is the normalization constant 
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πwm!

=C
m

m
−

   (2.18) 

used to maintain a constant energy at each z plane. Figure 2.9 depicts the propagation of 

the m = 5 HG beam mode.  
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Figure 2.9 - The propagation of the one-dimensional m = 6 Hermite-Gaussian beam mode,
H

6ψ . The 

field values have been normalised to the maximum amplitude.  

 

The behaviour of the phase of the Hermite-Gaussian fields is similar to that of 

the fundamental Gaussian mode, but for the higher order modes the Gouy phase term 

includes a factor of the beam mode index, with the phase shift now converging on 

(l+m+1) π / 2 in the far-field.  

 

2.5.3 - Synthesis of functions using Hermite-Gaussian modes 

 In many real applications in long wave optics, the composition of functions 

with the appropriate orthogonal Hermite-Gaussian mode set has a high rate of 

convergence with an increasing number of modes. Like Fourier analysis, observation 

can allow for exclusion of certain modes, for example, those with the same symmetry as 

the field being considered.  

The synthesis of a one-dimensional function using HG modes involves the 

calculation of an overlap integral between each mode and the desired field E0(x) given 

in eq. (2.19) 
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This equation defines the mode coefficient Am, similar to the coefficients used in Fourier 

analysis, and represents a correlation between each mode and the function E0(x). With 

knowledge of the coefficients the synthetic function can be constructed 
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with a summation over a finite number of M modes which will closely approximate 

E0(x0), i.e. 

∑ 







−








�≅

−

M

=m

mm
m w

x

w

x
HA

wπm!

xE
0

2

0

2

0

0

0

2

0

2/1
00 exp2

2

1
)(   (2.20)  

where the superscript denotes a truncated series expansion. In Figure 2.10 we show the 

HG synthesis of a rect function given as  
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We can expand this function within the range x0 = {-a,a} without any loss of 

information as E(x0) = 0 beyond these points.  

 

Figure 2.10 - The convergence of a HG synthesis towards a desired top hat signal.  

 

There are an infinite number of mode sets that can be achieved from successive 

overlap integrals, and this is because the Hermite-Gaussian modes are orthonormal for 

all values of the width parameter w0. w0 affects the extent of the Gaussian envelope of 

the mode, and therefore any integration over a finite region will create a reduction of the 

mode coefficients for larger values of m as those modes will be truncated more 
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significantly by the aperture function. Carter has defined the effective extent H

mσ  of a 

Hermite-Gaussian mode to be [CAR80] 

21+= mw
H

mσ         (2.22)  

We can numerically show that for synthesis of a real function using a maximum 

mode number M, there is an ideal waist value w allowing for the optimum field 

synthesis related to the value of H

mσ . To quantify the accuracy of the Hermite-Gaussian 

mode synthesis E the error can be calculated through its deviation from the ideal 

function E0 by the root mean squared error (rms), given as 

( )| |∫
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Like Fourier analysis, it is found that the HG modal sum converges to E0(x) in smoothly 

varying continuous regions, and in regions of discontinuity the synthesis tends to the 

mean of the two values of E0(x0) either side of the dislocation, which for a rect function 

is 0.5. Figure 2.11 shows the deviation of the rms errors for the aperture synthesis 

shown in Figure 2.10.  

 

Figure 2.11– The rms error for various values of M, in a Hermite-Gaussian expansion of the “top-hat” 

function. w0 is given as a fractions of the aperture semi-width. See also [LIU06] 

 

From the above analysis it can be found that, in general, the optimum parameter for HG 

synthesis of  a function with abrupt truncation at a, such as the rect function, is 

M

a
w 20 =      (2.24)  
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which is an expression given in [LIU06], but is modified here as the definition of mode 

structure varies amongst the literature.  

 

2.5.4 – Laguerre-Gaussian beam modes 

 The paraxial wave equation, in a symmetric cylindrical frame of reference, is 

given as  
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Solutions of this equation, the Laguerre-Gaussian functions, have the form [GOL98, 

MUR93)]   
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Examples of the structure of these functions are shown in Figure 2.12.  

 

 
Figure 2.12 - The structure of the Laguerre-Gaussian beam modes. 

 

In a cylindrically symmetric coordinate frame the Laguerre-Gaussian beam modes 

propagate according to 
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and like the Hermite functions the Laguerre forms in eq. (2.27) are orthogonal with a 

Gaussian weighting, and a radially symmetric function E0(r0) can be represented as
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where M is the index of the highest order mode used and the mode coefficients Am are 

determined from  
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An asymptotic variation of an LG function is given as [GRA07]
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for large values of m, where O represents the order of magnitude of the argument. When 
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 is substituted into the LG expression and the Gaussian function envelope of the 

corresponding argument is included, the asymptotic behaviour becomes 
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While this representation of the LG polynomials is valid only for small values of r > 0, 

equating the argument of the cosine term to π / 2, the occurrence of the first zero-

crossing, ρ1, is found to approximately be 

.
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wπ
ρ =      (2.30) 

For indices of m greater than approximately ten, this gives a relatively accurate estimate 

of the radius of the central lobe, but is not accurate in predicting the roots over the entire 

mode function. Phillips and Andrews [PHI83] defined the “spot size” of a Laguerre-

Gaussian beam as  

12 += mw
L

mσ      (2.31) 

in the same manner as the effective extent was determined by [CAR80] for the Hermite-

Gaussian  modes in eq.(2.22). This value will also have importance in the convergence 

of the modal synthesis to the desired function.  
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 The circ function is the analogue of the rect function in the cylindrical frame and 

is defined as  
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The error analysis of synthesis of the circ function using the Laguerre-Gaussian 

formulism was studied by [BORG96], and show very similar convergence as seen in 

synthesis with Hermite-Gaussian functions, as shown in Figure 2.13 (a). Figure 2.13 (b) 

shows the rms errors for the LG synthesis of the function exp(-r
12

/a
12

) known as a 

super-Gaussian distribution. 

 

Figure 2.13 - The root mean squared errors in the Laguerre-Gaussian synthesis of the functions (a) 

circ(r0/a), and (b) the super-Gaussian function exp(-r0
12

/a 
12

).  

 

With such error analysis, it can be found from the data in Figure 2.13 that the most 

efficient value of w0 for synthesis of the circ function (hard aperture) is that given by 

[BORG96] as 

Maw /0 = .     (2.33) 

In Figure 2.13 (b), the super-Gaussian function is truncated at a lower value (0.37) than 

in the case of the circ function which has a unit value at r0 = a, thus the rms errors in 

Figure 2.13 (b) show significantly lower values. In the case of (a) the larger values of 

∆rms must be attributed to the difficulty in reconstructing the dislocation at the radius r0 

= a.  

 

2.6 - Applications of Gaussian beam modes in classical optics 

Now, we can apply the knowledge of the propagation of higher order Gaussian 

beam modes in calculating the diffraction effects in an optical scenario by 

reconstructing an arbitrary field as a superposition of several modes. Due to the 

(a) 

(b) 
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orthogonality of the Laguerre and Hermite Polynomials, we know that we can 

synthesise accurate representations of functions, and as the propagation of each 

individual mode is known we can determine the field in the plane z > 0 diffracted by a 

cylindrically symmetric aperture as 

∑=
M

=m

L

mm zyxψAzrE
0

),,(),(     (2.34 (a)) 

or for an aperture in a two-dimensional Cartesian space 
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where ψ is the Laguerre-Gaussian and Hermite-Gaussian mode structures defined in 

(2.17) and (2.27), with the usage  of these forms of mode depending on the symmetry of 

the defined situation. Eq. 2.34 (a) and (b) are the basis for the modal calculations of 

diffraction used through out this thesis.  

In the Fourier theory of optical diffraction, the calculation of an intensity pattern 

is a one-step process, requiring only the computation of the Fourier coefficients and 

converting the extent of frequency space into spatial coordinates. In the case of 

diffraction analysis using Gaussian beam modes the calculation of the HG or LG mode 

coefficients is only the first procedure in depicting the diffraction effects, the second 

being the summation of the modes according to the weights defined by the mode 

coefficients.  

While expressions above may have defined the amplitude of the electric field 

of diffracted beams, these fields will oscillate rapidly with a phase angle of ωt, a 

property which is not detectable with conventional radiation detectors. CCD cameras 

and millimetre wave diode detectors conventionally measure the time averaged intensity 

of a field which is represented as  
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where T is the duration of the field measurement at that point. In the case of a 

continuous wave described by a complex exponential term in the form 

E(r,z,t)exp(iϕ(r,z,t)), the time averaged intensity is given merely as |E(r,z)|
2
. For other 

methods in computational optics that rely on computation of the physical electric field 

only, determining the time-averaged intensity requires a less direct calculation.  
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In examples of diffraction analysis in this thesis it should be assumed, unless 

stated otherwise, that apertures or optical elements are illuminated by plane waves with 

constant unit transverse amplitude.  

 

2.6.1 – Diffraction of a Gaussian beam at a circular aperture  

 Propagation of fields truncated by circular apertures is one of the most studied 

scenarios in optics, as it is the basis for all diffraction effects within circularly 

symmetric systems, and has relevance in mm-wave research in, for example, the 

propagation of horn antenna fields. To generalise the simulations of diffraction the 

optical system can be described in terms of the Fresnel number NF which relates the 

wavelength, measurement distance, and aperture dimensions through 

z

a
NF

λ

2

=      (2.35) 

Figure 2.14 describes the optical arrangement used in this discussion.  

 

Figure 2.14 – Layout for calculation of diffraction by a circular aperture. 

 

A complete analytical expression for the intensity pattern caused by a circular obstacle 

cannot be obtained directly from the diffraction integral in the near-field as the field is 

rapidly evolving, although using the Fresnel integral the Fraunhofer diffraction pattern 

can be calculated analytically for distances in the far-field where the field profile 

remains constant, but with a transverse varying scale. The Fraunhofer diffraction caused 

by an aperture defined by a circ function E0(r0) = circ(r0/a) is the described by  
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where J1 is the first order Bessel function of the first kind, and F{} represents a Fourier 

transformation. Hence the intensity distribution is given as  
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The LG mode coefficients relating to a circular aperture of radius a, illuminated by an  

on-axis Gaussian beam of waist radius win, and with a flat wavefront, are given by  
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Conventionally, this form of integral is calculated numerically without any difficulty, 

but in this situation analytical expressions for the lowest order mode coefficient values 

could be written. However, higher order modes must be determined numerically. It is 

now relevant to introduce the use of recurrence relations in the LG decomposition of 

circularly symmetric fields which can be used to simplify the calculation of mode 

coefficients. Akin to most special functions derived from the study of higher order 

differential equations, such as Bessel functions or Legendre Polynomials, there are well-

known recurrence relations defining polynomials of a desired index m through those of 

a lower value of m-1. There are three common recurrence relations for the simple 

Laguerre polynomials given in standard texts relating to the subject of special functions 

and from these the pure recurrence relation is obtained, 

( ))()()12(
1

1
)( 11 sLssLsm

m
sL mmm −+ −−+

+
=  

 This recurrence relation can be used to determine mode coefficients for certain 

aperture functions from the values of A0 and A1 without need for numerical integration. 

For the truncation of a Gaussian beam with waist radius win at an annular aperture of 

outer radius a and inner radius a0 this relation allows for derivation of the propagation 

of a field from a circularly symmetric aperture with Gaussian illumination as 
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(2.37) 

Presented in Figure 2.15 are the mode coefficients for a plane wave illuminated circular 

aperture, calculated using the above recursive equation eq.(2.37) with a0 = 0.  

 
Figure 2.15 - The coefficients of a M=100 LG mode set for circ(r0 / a) with plane wave illumination, 

win=∞, (a) w0 = 0.1a (optimum value in this case), (b) w0 = 0.2a.  

 

The plots of Figure 2.15 show that the mode set that gives the more accurate 

reconstruction, shown in (a) with Maw =0 , has a more balanced distribution 

between coefficients of modes that are truncated significantly and therefore negligible 

values of Am and those that have large mode coefficients. It can be said that the 

reconstruction of the gross structure, E(r0<a) = 1, is performed with modes with m < M / 

2, while the dislocation at the edge of the aperture is represented more closely by the 

modes with higher spatial frequencies m ≥ M/2. To calculate the diffraction effects 

caused by an aperture, the sum of the LG beam modes with weightings defined by Am 

and with desired propagations distance z and wavelength λ, is calculated, resulting in 

the diffraction patterns shown in Figure 2.16.  

(a) (b) 
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Figure 2.16 - The diffraction patterns from a circular aperture illuminated by a Gaussian beam  

exp(-r
2
/win

2
), calculated at distances from the aperture given by (a) z = a

2
/11λ, (b) z = a

2
/6λ, (c) z = a

2
/3λ, 

(d) 2a
2
/λ. The fields were calculated using 100 Laguerre-Gaussian modes.  

 

 Comparisons with the Fresnel integral calculations are omitted in Figure 2.16 as 

comparisons show insignificant deviation. The plots show the general characteristics of 

near-field diffraction at a circular aperture, for example at distances with an even 

Fresnel number the amplitude pattern has a null at its centre due to the symmetry of the 

Fresnel zone arrangement with each zone interfering destructively with another at that 

point. With odd Fresnel numbers a maximum intensity is found at r = 0.  

 The use of Gaussian beam modes has thus far had limited application in optics. 

Methods such as the Fourier transform technique, of which the mathematical properties 

has been known since the early nineteenth century, is the standard technique for the 

calculation of diffracted scalar paraxial fields, accelerated by the use of the fast Fourier 

transform algorithm. Also, using the Fresnel integral, approximations with certain 

constraints can allow for the analytical expression of the structure of Fraunhofer 

diffraction patterns, albeit with limited application. While analytical expressions of the 

Fresnel integrals are regularly quoted in the literature, they can often only represent a 
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symbolic reduction of the equation, based on the substitution of an appropriate error 

function or Fresnel integral, and does not provide any useful increase in computational 

speed. The advantage of GBMA over Fresnel diffraction integral calculations is that 

once the mode coefficients of the aperture function have been determined, all 

information regarding near-field and far-field regions can be obtained, no further 

numerical integration is necessary with the diffraction calculation relying on finite 

sums.  

The Gaussian beam mode analysis of optical fields provides an asymptotic 

evaluation of the Fresnel diffraction integral. From eq. (2.31) the effective radius of an 

LG mode is given by 12)( +mzw , thus we would expect the region over which the 

finite term LG expansion converges with the result of a Fresnel diffraction calculation is 

limited by this extent.  Shown below is a comparison of the Fresnel-integral method and 

the GBMA process using an M = 30 expansion.  

 

Figure 2.17 - The diffraction pattern of a circular aperture calculated by the Fresnel diffraction integral 

(blue line)  compared with that formed by a 31 term Laguerre-Gaussian series at z = a
2
/λ.  

 

In Figure 2.17 the effective width of the m = M / 2 mode is ~8a. Relatively significant 

discrepancies can be seen to begin to occur between the two methods slightly within 

this distance as modes with m just less than M / 2 begin to be appreciably truncated. 

However as the number of modes used in this example is relatively low, and the 

amplitude is comparatively insignificant at this point of deviation, it is foreseeable that 

the effect will have negligible influence within practical/paraxial distances from the 

optical axes, particularly when using larger mode sets.  
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2.6.2 - Modulation of a plane wave by a thin lens 

The thin spherical lens is one of the most common and important optical 

elements in use. Throughout the literature, they are commonly classified through their 

Fresnel number, 

f

a
N F

λ

2

=       (2.38)  

a being the pupil diameter and f the focal length of the lens. This factor is often used to 

represent the focusing ability power of a lens as a single number without having to 

describe the radius and wavelength. With a larger Fresnel number, the “quality” of the 

focused beam increased, i.e. it becomes more representative of the ideal convergence of 

a parabolic wave to an infinitesimal point focus. Another parameter commonly used is 

the f-number or F# defined as the ratio of the focal length to the diameter of the lens. To 

verify the use of GBMA in the modelling of this familiar element, we can briefly 

examine the variation in the properties of the focus of a lens caused by a variation of its 

Fresnel number NF.  

 The overlap integral required for the calculation of mode coefficients of a 

spherical thin lens, is given by  
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For a circularly symmetric thin lens under plane wave illumination the LG mode 

coefficients can be determined recursively using: 
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   (2.39) 

with the mode coefficients now becoming complex. The occurrence of complex terms 

introduces longitudinal phase shifts in the propagation of the individual modes, causing 

the interference between the modes to result in an overall curved wavefront just behind 

the lens. (Note that the recursive equation above can also be used for beams with 

diverging phase fronts with substitution of f→R, R being the radius of curvature of the 

field).  

 Using w=0.1a, and M=100, mode coefficients were calculated for two lenses of 

Fresnel number NF =2 and 5. See Figure  2.18.  
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Figure  2.18 – The real part of Am for a thin spherical lens of NF = (a) 2, (b) 5.  

 

When the coefficients are examined through the squaring of their absolute values, for 

low values of NF the trends show very little difference from the description of a circular 

aperture. As the coefficients are now complex for a thin lens, inspection of the separate 

real and imaginary parts shows how the increase in frequency of the lens function 

causes an increase in oscillation between values of Am and therefore the complex phase 

angle of each mode becomes important. Figure 2.19 shows the diffraction of a plane 

wave modulated by a thin spherical lens. 

 

Figure 2.19 - The diffraction half-plane of a thin spherical lens illuminated by a plane wave for (a) NF = 

2, (b) NF = 5.  

  

In the case of NF = 2 the focusing effect is seen to be quite limited without any 

generation of a well-defined narrow focal region, in fact, the output bears little 

difference from that of a plane wave illuminated circular aperture. With NF = 5 there is 

a more obvious concentration of energy towards the focal point, and with increasing 

Fresnel number there is a decrease in the transverse and longitudinal dimensions of the 

focal spot.  

(a) (b) 
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 To compare this GBMA technique to the conventional result, the focal shift 

phenomena, as examined by [LI81], is illustrated through use of this technique. The 

focal shift of a lens is the movement of the focus, or more correctly the point of 

maximum axial intensity, towards the focusing lens as the Fresnel number is reduced, 

either by reducing the aperture diameter or increasing the wavelength of the 

illuminating radiation. In either case the Fresnel number of the lens is reduced. Figure 

2.20 (a) shows this movement of the point of maximum intensity towards the lens and 

Figure 2.20 (b) plots this shift as a proportion of the defined focal point as the aperture 

size is increased.  

 

Figure 2.20 – (a) The axial intensity of a thin spherical lens with various Fresnel numbers, under 

illumination by a plane wave. (b) The variation of plane of maximum intensity of the spherical lens 

relative to the focal length f for various values of NF. See [LI81]. 

 

2.6.3 - Diffraction of a plane wave at a double slit 

 For diffraction in Cartesian systems, this effect can be depicted using the 

Hermite-Gaussian HG functions as the applied orthogonal mode set. The overlap 

integral of any two dimensional function is given by  
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However, in the case of the double slit the geometry of the aperture, depicted in Figure 

2.21, allows for separation of variables in the overlap integral. i.e.  

E0(x,y) = E0x(x)E0y(y). 

(a) 

(b) 
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Figure 2.21 - Layout of double slit diffraction.  

 

In this case, the function is symmetric in x0 and y0 so only HG modes with even indices 

are required. The mode coefficient values for this arrangement can also be obtained 

using recurrence relations for Hermite Polynomials. The "pure" recurrence relation, that 

involves no derivatives, is given by  

Hm(x) = 2 x Hm-1(x)-2 (m-1) Hm-2(x) 

and can be used to obtain the following recursive equation, [MUR93], for the 

calculation of mode coefficients of plane wave truncation by a top-hat aperture of width 

2a as   
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With this equation the diffraction of a plane wave illuminated double slit can be easily 

modelled as two individual slits using an appropriate spatial offset of the HG modes to 

reconstruct the aperture function along the x direction. The results of a GBMA 

diffraction calculation for a double slit are shown in Figure 2.22.  

a/2 

b 

x0 x 

a/2 

z 

y0 

y 
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Figure 2.22 - Diffraction patterns of a double slit aperture with a = 2b. (a) z = 0, (b) z = a

2
/6λ (c) a

2
/2λ  

(d) z = a
2 
/ λ.  

 

 In Mathematica
TM 

the recurrence relations were found, for M = 150, to calculate 

the required one-dimensional overlap integrals in a time of 0.2 seconds compared with a 

time of approximately one minute using the conventional integration technique.  

Although we have only described the recurrence relations as applied to obtaining 

analytical expressions for the values of the mode coefficients, the relations are also used 

in the software developed by the author to define the Laguerre and Hermite polynomials 

themselves. While mathematical software packages such as Mathematica
TM

 and 

Maple
TM

 provide efficient prewritten functions for the definition of these polynomials, 

lower level numerical languages such as C or Matlab
TM

 do not include such functions in 

standard libraries and thus recurrence relations are an efficient method for definition of 

the higher-order Gaussian beam mode structures.  

 

2.7 - The Wen-Breazeale method 

 An alternative, but somewhat related, technique to that of GBMA for the 

calculation of paraxial diffraction effects is that introduced by Wen and Breazeale 

[WEN87], which defines a diffracted field in terms of fundamental (m = 0) Gaussian 

(a) (b) 

(c) (d) 
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beams only. This method was initially reported with applications in acoustic field 

calculations but it also allows for direct application to optical diffraction with no change 

of mathematics. An advantage of this technique is that it shows strong convergence with 

a low number of terms, and with correct analysis has been shown to converge on the 

desired field more rapidly than a Laguerre-Gaussian synthesis.  

 The method is based on the field calculation as a summation of paraxial 

Gaussian beams, described mathematically by 
♦
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where Am and Bm are complex terms that modify the amplitude and phase curvature of 

the fields. Figure 2.23 shows the amplitude structures of some of these modes (series 

terms of index m) in relation to the Rayleigh distance zR = a
2 

/ λ.  

 It can be seen that the constituent modes of this series are merely conventional m 

= 0 Gaussian beams but the complex coefficient Bm creates a variation of the width of 

each beam along with a deviation of each mode's phase curvature. For example in (c) 

the mode is a Gaussian beam focused to a waist caused by the complex value of B11.  

 The disadvantage of the Wen-Breazeale diffraction method is the technique by 

which the values of the coefficients A and B are determined. Because the modes used in 

this synthesis are not formally orthogonal, a brute force search algorithm is 

implemented which searches through values of Am and Bm, and the deviation of the 

synthesised function from the objective function E(r0) is measured by  

( )( )∫
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♦

The form of equation (2.41) given in Wen and Breazeale (1987) (as eq. (9) in that paper), has been 

modified here as typographical errors were found in the original description. 
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Figure 2.23 - The modes used in the 15 term Wen-Breazeale expansion, eq. (2.41) of the circular aperture 

with m = (a) 1, (b) 6, (c) 11, (d) 15. ZR = a
2 
/ λ is the Rayleigh distance of the aperture.  

 

  

The A and B coefficients are then chosen by minimising Q with the conditions  

0==
mm dB

dQ

dA

dQ
 

This is obviously a time consuming computation and does not attract the use of the 

method in the same manner as LG and HG synthesis which allow for very fast 

impromptu synthesis of arbitrary functions. However, those authors calculated the 

coefficients required for analysis of a “radiating piston”, which is the acoustic analogue 

of optical diffraction of a plane wave by a circularly symmetric aperture. Given the 

importance of that diffraction scenario the data published by the authors is very useful 

and has been used in the optical literature [YANG07, TAO03]. The coefficients of a 

circular aperture using 15 terms are shown in table 2.1.  

 

 

 

 

 

(a) (b) 

(c) (d) 
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m Am Bm 

1 -2.97158 + 8.61871 i 4.18685 – 5.15597 i 

2 -3.48107 + 0.96865 i 3.83976 – 10.80037 i 

3 -1.39817 - 0.81272  i 3.43551 – 16.35823 i 

4 0.07731 - 0.33032  i 2.46175 – 27.71334 i 

5 2.87979 + 1.61087 i 5.46993 + 28.63194 i 

6 0.12589 - 0.09573  i 1.98326 – 33.28850 i 

7 -0.26407 - 0.67225 i 2.93348 – 22.015 i 

8 18.01896 + 7.82906 i 6.30351 + 36.77717 i 

9 0.05183 + 0.01816 i  1.30459 – 38.46504 i 

10 -16.94374 - 9.93841 i 6.58886 + 37.06791 i 

11 0.37078 + 5.45223 i 5.55176 + 22.42550 i 

12 -6.69285 + 4.07218 i 5.40125 + 16.73262 i 

13 -9.36382 - 4.99983 i 5.14975 + 11.12486 i 

14 1.58723 - 15.42119 i 4.96645 + 5.68551 i 

15 19.00243 + 3.68501 i 4.62955 + 0.30546 i 

 

Table 2.1 - The coefficients, calculated by Wen and Breazeale (1987), for an expansion of a circular 

aperture using complex Gaussian beams.  

 

In a comparison of a 15 term synthesis using the LG and WB methods, the 

synthesised circ function using the WB method produced an rms error with a significant 

reduction from that of the LG expansion. Figure 2.24 compares the two methods.  

 

Figure 2.24 - Comparison of the Wen-Breazeale, eq. (2.41), and Laguerre-Gaussian expansion (eq. 

(2.34a)) methods in the synthesis of the circular aperture using 15 modes.  

 

The Wen-Breazeale method intrinsically reduces the deviation of the synthesis 

from the desired function, whereas with a truncated LG expansion, an error is inherent 

in the formulation of the method and is, in the general scheme, inadaptable for a fixed 
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number of modes and constant waist parameter w0. Figure 2.25 exhibits the near-field 

diffraction patterns of a circular aperture calculated using both methods.  

 

Figure 2.25 - Near-field comparison of (a) the Laguerre-Gaussian expansion and (b) the Wen-Breazeale 

methods for diffraction of a plane wave at a circular aperture using an expansion series of fifteen terms. 

Shown with a normalised logarithmic dB scale.  

 

The calculated Fraunhofer diffraction effects show negligible differences 

between the two methods, but in the near-field, < ~0.2 zR, it can be seen in Figure 2.25 

that there is noticeable inconsistencies between the two methods, with the WB method 

allowing calculation of the oscillatory field with greater accuracy towards the aperture.  

While the complexity associated in calculating the coefficients A and B restricts 

the use of the method for arbitrary fields, its use could be worthwhile to determine these 

values for analysis of a diffraction arrangement that a researcher might frequently refer 

to. In the context of millimetre wave optics, a calculation of the A and B coefficients of 

a field at the mouth of a circular corrugated horn may be useful, which could allow for 

swifter calculations than those obtained using a diffraction integral calculation and 

increased accuracy from a LG expansion with similar number of terms.  

 

2.8 - Propagation outside the paraxial regime 

Thus far, we have discussed only the paraxial representation of the 

electromagnetic fields, the validity of which is limited to weakly diverging wavefronts, 

as in the diffraction of a field by an aperture with dimensions considerably larger than 

the wavelength. While generally outside the scope of this thesis, a synopsis of methods 

used for non-paraxial wave propagation would be useful, particularly in determining the 

limits of applicability of the approximate paraxial approaches used in this thesis.  

(a) (b) 
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The Rayleigh-Sommerfeld diffraction integrals quantify the exact diffraction 

properties of a field and are given by, [BORN97],  
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with the Greens function (a spherical wave) given by 
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with x, y, and z the Cartesian coordinates in an observation plane, and x0 and y0 are the 

coordinates on the aperture plane.  

While not universally necessary, these integrals allow for calculation of the total 

field through the sum of its polarisation components. The dominant reason, assumed by 

the author, that these integrals are not as commonly used as the Fresnel diffraction 

integrals in the literature relating to scalar optics is the difficulty associated with 

deriving analytical expressions of fields structures with them.  

 

2.8.1 - Non-paraxial Gaussian beam mode analysis 

The transverse structure of paraxial Hermite-Gaussian beam modes as given by 

eq. (2.17) remains the same relative to the value of w0 / λ regardless of whether or not 

the actual physical propagation of the field obeys the paraxial wave equation. In the true 

physical forms of these fields, decrease in the value of w0/λ increases the angle of 

diffraction of a Gaussian mode beyond the limits of the paraxial description creating 

deviations from the analytical descriptions. Associated with this are physical evanescent 

effects that occur when the increased transverse frequency kx becomes so rapid (>k) that 

forward propagation of the harmonic fields is no longer supported in the mode structure, 

see Figure 2.26.  

In Figure 2.26 (b) one can see that energy is propagated only from the outer 

extremities of the source field, and closer to x = 0 where the amplitude structure 

becomes more oscillatory the transverse local frequency kx exceeds k0 and no longer 
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supports forward propagation of the wave. In these regions evanescence dominates the 

field with the longitudinal field structure exhibiting a non-harmonic exponential 

decrease in amplitude with distance z.  

 

 

Figure 2.26 – Propagation of the m = 30 Hermite-Gaussian field structure (at z = 0) with w0 = λ according 

to (a) the paraxial description given by eq. (2.17), and (b) direct solution of Maxwell's equations using 

FDTD. The value of w0 / λ = 1 creates a diffraction angle of ~18.23°. Fields have been normalised to the 

maximum intensity value, and the colour scale in (b) is clipped at 0.3 to visually enhance the near-field 

effects of evanescence.  

 

While this phenomenon does not affect the use of beam modes given by 

equation (2.17) and equation (2.27) in the approximation of the Fresnel diffraction 

integral as the modes still obey the diffractive behaviour described by that integral, 

evanescence limits the applicability of those paraxial descriptions in defining the true 

physical behaviour of the Gaussian beams with lower values of w0 / λ. This is especially 

(b) 

(a) 
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true in the case of higher order beam modes with much more extensive ranges of 

transverse frequency.  

The irregular periodicity of the HG functions does not allow one to predict the 

exact spatial frequency at a specific point in the transverse mode structure. However, 

adapting equation 7.376.1 of [GRA07] we can define the Fourier spectrum of a un-

normalised Hermite-Gaussian function as  
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which, with β = 2/w0, defines the Fourier spectrum also as a Hermite-Gaussian function 

in frequency space.  

The diffraction of a field can be computed using the angular spectrum of plane 

waves [GOO05], whereby the field is defined as an integration of plane waves with 

weightings for a specific frequency kx, defined by the Fourier transform of the field 

structure at the source of the beam, or any defined plane where the phase and amplitude 

properties of the field are known. The field can then be computed at any plane as a 

superposition of plane waves with amplitudes specified by the Fourier transform of a 

given field such as that given by eq. (2.43). If we quantify the width of the spectrum in 

equation (2.43) in the same manner that the spatial extent of a HG mode was given by 

equation (2.22) then the range of frequencies of a HG mode is 

2

1
2 +=∆ mk x β .    (2.44) 

For propagation of a field structure at the plane z > 0 the value of kx must not exceed the 

freespace wavenumber k. With values of �kx > k preventing propagation, we can give a 

first-order estimate for the proportion of non-evanescent wave-vectors in a physical 

Hermite-Gaussian mode of order m to be  

2/12

0

+
≈

∆ m

w

k

k

x λ

π
.    (2.45) 

Then with even lower values of w0, propagation of harmonic energy can be almost 

completely eliminated from the field.  

While the Rayleigh-Sommerfeld integrals give exact results, this thesis is 

concerned with the modal description of diffraction, and for the paraxial Fresnel 

diffraction integral the eigen-mode solutions are known with completeness, thus we 
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concentrate our attention on those fields. However, we may also describe an 

approximate modal formulation of the Rayleigh-Sommerfeld formulation using recently 

derived expressions for the propagation of Gaussian beam modes with a less restriction 

on angular divergence.  

In [DUAN05], the authors derived very useful expressions for the calculation of 

diffraction effects in higher order Hermite/Laguerre-Gaussian beam modes with very 

small values of w0 / λ, which under the conventional paraxial approximation would give 

invalid physical results. With low values of w0 / λ, the divergence of Gaussian fields is 

much greater than the paraxial descriptions can account for, and in that situation the true 

physical field of each mode no longer maintains a constant amplitude profile with 

increasing z.  

In [DUAN05] an approximation was introduced allowing for simplification of 

the Rayleigh-Sommerfield integrals as 
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where 222
zyxr ++= and 2

0

2

00 yxr += . Dealing with a vertical linearly polarised 

field, the y component of the field is given by  
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The x and z polarisation components of a field can be calculated with a similar integral 

with appropriate change of subscripts, but polarisation effects are omitted here. For a 

description of the longitudinal and horizontal components of the modes the reader is 

referred to [DUAN05].  

By substituting the previous conventional description of a Hermite-Gaussian 

mode at the plane z = 0, i.e. eq. (2.16), into the Rayleigh-Sommerfeld integral given (eq. 

2.42), the propagation of non-paraxial Hermite-Gaussian (NPH) beam modes were then 

shown in [DUAN05] to be  
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with  
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The description given by equation (2.48) differs from that of eq.7 (a) in 

DUAN05 as that paper described the mode in relation to a unit on-axis amplitude value 

at the source. This author has included the normalisation terms required for application 

in a modal field synthesis. Here, although the waist parameter w(z) no longer holds the 

same obvious relation to the spatial width of the mode, as it did in the paraxial 

definition of the modes, the normalisation factor of the diffracted mode maintains its 

form as the energy through each plane must remain a constant (energy loss due to 

evanescence is not predicted in Duans’ expressions).  

While eq. (2.48) introduces some invalidity of the mode fields near the source 

plane due to the approximation used in eq. (2.46), these solutions can be used in an 

identical procedure as the paraxial beam modes for the synthesis of the beam patterns of 

fields involving non-paraxial diffraction at planes with lower values of the Fresnel 

number, i.e. in the far-field, in a similar manner as eq. (2.34).  

Duan’s definition of the amplitude structure of the non-paraxial modes converge 

upon the paraxial prediction for large values of w0 / λ, but with smaller values of this 

ratio the deviant behaviour of the mode’s propagation beyond the paraxial constraints 

becomes evident, as shown in Figure 2.27. Consistency in the structure of the absolute 

value of the transverse amplitude pattern was a feature of the paraxial expressions of the 

Hermite and Laguerre-Gaussian modes. As the modes can now be depicted without the 

paraxial restriction, the far-field pattern of each mode is no longer represented by the 

Fraunhofer diffraction integral and therefore is no longer related to the Fourier 

transform of the field at z = 0.  

These expressions, eq. (2.48), open up new opportunities for the application of 

the modal approach of diffraction using a non-paraxial Gaussian beam mode analysis 

(NPGBMA) of widely diverging fields. Using equation (2.34) with the modes defined 

by equation (2.48), one can generate a much more accurate prediction of far-fields than 

was previously described in this chapter, a particularly useful tool for the modelling of 

sources that are narrow in relation to the field wavelength such as horn antenna bare 

waveguides.  
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Figure 2.27 – Comparison of the m = 10 non-paraxial Hermite-Gaussian modes given by eq. (2.48) 

(shown in red) and the conventional form of the paraxial HG mode (blue) from equation (2.17). The mode 

structures |ψm| are calculated at z = 10 Zc, with  w0 / λ = (a) 5, (b) 2, (c) 1, (d) 0.5.  

 

For their application in a field synthesis, at z = 0 the non-paraxial beam modes 

given by (2.48) have the exact structure of the modes discussed previously in this 

chapter, and calculation of the related mode coefficients Am for an aperture function is 

identical for the paraxial and non-paraxial forms. The modal structures deviate from 

each other only with propagation at z > 0.  

To demonstrate the practical applications of this new method we describe the 

diffraction of a plane at a square aperture using the same modal expansion presented 

earlier in the chapter, and compare the results of the non-paraxial expression of HG 

mode propagation with the conventional use of the paraxial Hermite-Gaussian modal 

technique. Calculating the mode coefficients in the conventional manner with equation 

(2.19), we can now determine the far-field beam structure using the non-paraxial beam 

modes as a modal sum given by  
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The following figures show a comparison of the paraxial and non-paraxial forms of the 

Gaussian beam mode calculations for a narrow square aperture using eq. (2.49).  

 
Figure 2.28 – Logarithmic dB scale comparison of the (a) paraxial and (b) non-paraxial forms of the 

Gaussian beam mode calculation for diffraction of a plane wave at a narrow square aperture of width 2a = 

6.66λ, predicted at z = 2.27a
2
/λ using 101 modes.  

 

As the angle of diffraction is dependent on the ratio of the aperture diameter to 

the radiation's wavelength, with a relatively larger aperture the paraxial approximation 

has greater validity as depicted in Figure 2.29 (a).  

 

Figure 2.29 – Diffraction patterns of a single slit with semi-width a = (a) 10 λ, and (b) 1 λ, showing the 

breakdown of the paraxial validity for very narrow apertures under plane wave illumination. The fields 

were simulated at the plane z = 10 a
2 

/ λ using the paraxial and non-paraxial forms of the Hermite-

Gaussian expansion with M = 30.  

 

The deviation inherent in the paraxial calculation is obvious, particularly in 

Figure 2.29 (b) where the appearance of several off-axis intensity maxima completely 

diverges from the non-paraxial predictions. At greater offsets, the non-paraxial 

calculation shows a more rapid fall-off in amplitude away from the origin, while off-

axis maxima occur more frequently in the paraxial prediction. However, given these 

discrepancies in the paraxial method and with relevance to the work in this thesis, the 

(a) (b) 

(a) (b) 
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important aspect to note from these comparisons is the convergence of the paraxial 

results to the non-paraxial in the case of relatively large apertures like that shown in 

Figure 2.29 (a).  

The non-paraxial GBM method will be further verified in the next section in a 

comparison between results from it and a numerical algorithm for the direct solution of 

Maxwell’s equations.  

 

2.8.2 - The finite-difference time-domain method 

While the paraxial theory of diffraction should be considered an extremely 

useful tool in the study of electromagnetic and other wave phenomena, it nevertheless 

has limitations in certain situations as shown in the previous section. As well as the 

obvious limits placed on the angular spread of the field, a further necessary drawback is 

the manner in which objects that interact with radiation are defined in a scalar model, 

creating an inexact description of the matter/component along a flat transverse surface, 

thus approximations must be employed in the description of non-planar surfaces that 

neglect diffraction and reflection effects within a thick optically dense component, as 

was described in the paraxial description of a spherical lens in an earlier section. This is 

not just the case in paraxial methods, but is also a feature of non-paraxial scalar 

diffraction techniques such as the Rayleigh-Sommerfeld integrals. 

A relatively recent progression in the field of computational electromagnetics 

was the development of an algorithm known as the finite-difference time-domain 

(FDTD) technique, first suggested by Kane Yee [YEE66], and gained more attention 

after a series of publications by Alan Taflove and co-workers [TAF80,TAF82]. The 

interested reader is referred to the excellent paper by [CHU95] for an introductory but 

thorough description of the technique. While the algorithm was originally described 

decades ago it is really only in the last fifteen years that the method has begun to be 

explored and applied because of the affordability of computers. Referring to literature 

from the early 1990’s, simulations that could now be performed rapidly on the most 

basic of commercially available computers, then required access to supercomputers 

[JOS91].  

The accuracy of the FDTD solution, based on its direct solution of Maxwell's 

curl equations, makes it an optimum model of field calculation in terms of precision. 

However, the number of calculations required for numerical convergence can be a 

significant disadvantage. Sampling of the field is necessarily high so as to ensure an 
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accurate approximation of a derivative using finite differences, and the minimum spatial 

sample rate is conventionally given within the literature as λ / 20. As the field 

magnitude is dependent on previous states, in both time and space, calculations of the 

field far from the source, particularly in three dimensional computations, may require 

hundreds of hours using a single processor machine, and of course with the large data 

arrays required for this, computer memory then becomes another issue.  

While the Fresnel and Rayleigh Sommerfeld diffraction integrals can be used 

to describe diffraction by a planar source, the primary advantage of the FDTD technique 

is the ability to define realistic descriptions for the structures of optical components and 

media with which a field might interact. Even in its most basic form, reflection and 

refraction effects are inherently calculated by the method, these are phenomena which 

would require further significant modification of a diffraction integral technique for 

similar analysis. The technique has been used most regularly in calculation of EM field 

structures with radio applications, and with the involvement of wavelengths that are 

long in comparison to the dimensions of the electrical/optical components it becomes a 

less extensive calculation in predicting near field effects. At visible or infra-red 

wavelengths the technique has not gained widespread use, but examples of its use in the 

modelling of electrically-small low Fresnel number micro-lenses are in the literature 

[FENG04]. 

It must be noted that FDTD is not an algorithm with specific uses in 

electromagnetics, but rather it can be generally adapted to solve any differential wave 

equation. One discipline that relies on the use of FDTD to the same degree as optics is 

acoustics where the method is used to model pressure waves of various wavelengths 

ranging between micrometres (medical ultrasound) [PIN07], to kilometres 

(earthquakes), [THO07, JAH07].  

 In numerical techniques used in the analysis of scalar diffraction such as the 

Fresnel diffraction integral, or its evaluation through the Gaussian beam expansion, the 

optical properties of a material are represented most commonly by the refractive index, 

which is a completely macroscopic property and gives little information about the 

electronic or magnetic behaviour of the substance. In more rigorous electromagnetic 

calculations, such as FDTD and the finite-element method [RAH95], the refractive 

index of a medium is defined more relevantly through the characterization of its 

relationship with the magnetic permeability m and electric permittivity ε. The 

permittivity of a material, ε, measured in units of F/m, defines the effect of an applied 
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electric field E on a material in relation to the electric displacement field generated 

within the material, i.e. ε = D / E. The permittivity of a vacuum, and therefore a close 

approximation to the same quantity in air, is given as ε0=1/(c
2
�0) where m0 is the 

magnetic permeability of free space, describing the relationship between the applied and 

internal magnetic fields, B and H respectively, as �0 = B / H. These two fundamental 

constants, ε0 and �0 have utmost importance in electromagnetics, for example, ε0 has a 

vital role in the effects of the fundamental Coulomb force.  

For numerical calculation of electric fields, the shape and composition of the 

environment, such as the propagation of a wave through an optical component, is 

defined through the variation in ratio of the local permittivity and permeability, to the 

free space constants given above (for a coordinate r) 
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which have values of unity in a vacuum. The calculation of the refractive index of a 

material, and of course it can vary with location, is then 
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The current density J within a conducting material is related to the applied electric field 

through J = sE, with the material conductivity s. One important effect of this is the 

creation of a exponentially decreasing field amplitude of the EM wave within a 

conductor.  

 The FDTD method allows for use of these material parameters in simulations 

and can therefore be seen to be a much more suitable method for modelling the realistic 

behaviour of radiation within a material. Recently the algorithm has been applied in the 

study of meta-materials that exhibit a negative refractive index [WANG08, CHEN10].  

 

2.8.2.1 - Formulation of the FDTD algorithm in Cartesian systems 

 The fundamental description for behaviour of electromagnetic radiation, is given 

by the fundamental Maxwell curl equations,  
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we can use the common identity 



 68 

zyx FFF

zyx

kji

F
∂

∂

∂

∂

∂

∂
=×∇
�

, 

to derive the following six scalar equations  









−

∂

∂
−

∂

∂
=

∂

∂
x

yzx E
z

H

y

H

t

E
σ

ε

1

 
  (2.51a) 









−

∂

∂
−

∂

∂
=

∂

∂
y

zxy
E

x

H

z

H

t

E
σ

ε

1

 
  (2.51b) 









−

∂

∂
−

∂

∂
=

∂

∂
z

xyz E
y

H

x

H

t

E
σ

ε

1

 
  (2.51c) 










∂

∂
−

∂

∂
=

∂

∂

y

E

z

E

t

H zyx

µ

1
    (2.51d) 










∂

∂
−

∂

∂
=

∂

∂

z

E

x

E

t

H
xzy

µ

1
    (2.51e) 










∂

∂
−

∂

∂
=

∂

∂

x

E

y

E

t

H yxz

µ

1
    (2.51f) 

The use of these equations in Yee’s method relies on the evaluation of the 

functions E and H over a discretely sampled space. In such methods a function F is 

defined by  

( ) ( )tnzkyjxiFkjiF n ∆∆∆∆= ,,,,,  
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with, for simplicity, δ = �x = �y = �z. O(�x
2
) and O(�t

2
) are errors which arise from 

the approximation of the derivative as a truncated Taylor series, so it is extremely 

important that �x and �t have values that are sufficiently small to minimise these errors 

to a satisfactory level. The minimum values for these can be determined from the 

Courant-Friedrichs-Levy condition, [LAK88], which gives the minimum time sampling 

allowable for accurate convergence of FDTD results: 
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where the refractive index of the medium must be accounted for in the definition of the 

speed of light c. Also, for calculation of fields with extremely ultrashort durations, the 

value �t may have to be decreased significantly.  

The space in which the field is to be calculated is sampled with each E and H 

component defined on a three dimension grid of cubic cells. The H vectors are defined 

on the faces of the cell and the E fields are determined along its edges. The H value is 

calculated from the appropriate E components that exist at a previous time of �t / 2. See 

Figure 2.30.  

 

Figure 2.30 – Yee’s grid - The geometry used for the FDTD computational solution of Maxwell’s 

equation.  

 

In Figure 2.30 the components Ey(i,j+½,k+1) and Ez(i,j+1,k+½) are related to 

the neighbouring cells, and are used in calculation of the Hz vector for the cell 

illustrated.  

While their position in the Yee grid cell shown in Figure 2.30 differs, 

components of the electric field E are defined in the simulation at the same point in 

space, while each component of the magnetic field vector H has the same position 

which is defined in the simulation space at distances �x / 2, �y / 2, �z / 2 beyond the E 

components, along all the respective axis. Their positions in the grid are arranged so as 

to allow for calculation of the curl of the vector field through comparison of each 
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component with its analogue in a neighbouring grid cell. Using equations 2.51a-f, the 

following discrete relations are derived for Maxwell's equations for the above geometry, 

with the superscript of E and H representing the time index. Each discrete equation is 

related to the continuous scalar equations given in eq. (2.51) respectively.  
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As signals are defined in the time domain in this technique, one convenient 

aspect of this algorithm is that it does not discriminate between continuous and pulsed 

waves and therefore there is no requirement for spectral analysis of the amplitude 

signal, which we will show in a later chapter to be a feature of the analysis of pulsed 

fields using conventional diffraction techniques.  

The author of this thesis used Matlab
TM

 to develop a two-dimensional (x-z) 

FDTD simulation. Initially, the code was written using FOR loops, addressing each data 

array element independently. However, total running time can be reduced greatly when 

the process of vectorisation is used. Vectorisation allows for a data array to be 

manipulated in a single operation without referring to array elements individually. The 

segments of Matlab
TM

 code below compare the two programming methods for the 

computation of Hx in a two-dimensional TEy simulation. Both sections of code are 

nested in FOR loops that advance the time value.  

 

When using the vectorisation method the arithmetic expressions are initiated 

for all array positions at the same time rather than one element at a time. While such 

operations on arrays require a longer time than with a single variable, this form of code 

gave a three-fold decrease of the computation time when compared to the version of the 

%for loop method 

for m=1:Nx, 

     for n=1:Nz, 

Hx(m,n)=Hx(m,n)+dt*(Ey(m,n+1)- Ey(m,n))/(mu0*dz); 

     end 

end 

%Vectorisation method 

 

Hx(1:Nx-1,1:Nz-1) = Hx(1:Nx-1,1:Nz-1) ... 
+ dt*(Ey(1:Nx-1,2:Nz)-Ey(1:Nx-1,1:Nz-))/(mu0*dz); 
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program that used FOR loops. The vectorisation method of array manipulation is also 

available in the Octave and Python open-source programming languages.  

The simulation was tested briefly on an enhanced desktop PC (6 GB of RAM, 

and a 3.1GHz CPU), and resulted in a further threefold decrease in computation time. 

The memory allocation for each array is reduced by using a single precision 

representation of the values halving the memory required for the default double 

precision. This can affect the numerical precision but only minutely for the relatively 

low field values used here, with errors of the order of a hundredth of a percent between 

the two representations. Further minor improvements to the software could have been 

continuously achieved, but it must be stated that for simulations of realistic three-

dimensional Cartesian systems the use of computing clusters may have to be 

incorporated into the development of simulations, depending on the required volumes of 

the calculation regions.  

To illustrate the general capabilities of FDTD we can exhibit as a simple 

example the propagation of a one-dimensional infinitely wide pulsed plane wave, (a 

time limited signal will allow for clearer depiction of reflection effects). With such a 

field electrically polarised in the y-direction and propagating along the z axis, only two 

field components are required, Ey and Hx. The physics of this situation is relatively 

straightforward, but if we simulate the wave being transmitted from a vacuum through a 

material of a higher refractive index we can exhibit the possible applications of this 

powerful technique. In the simulated results presented in Figure 2.31 a 1 THz pulsed 

plane wave with a duration of 2.54 ps is transmitted from free-space through a section 

of homogenous material with refractive index n = 1.732, (ε = 3ε0). The FDTD results 

show a much more realistic description of field propagation within a material than that 

achievable with diffraction integral techniques. The reflection of the field at the left-

hand side of the dense medium, the first-order effects of dispersion within the material 

shown by the decrease in wavelength, and the internal reflection at its right hand 

boundary are all predicted with FDTD, whereas the scalar techniques discussed in this 

chapter neglect such important physical effects.  
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Figure 2.31 – Propagation of a 2.54 ps plane wave pulse, with ν0 = 1 THz with a Gaussian temporal 

shape, calculated using the FDTD algorithm. A region of higher refractive index, n = 1.732, is marked by 

the blue lines.  

 

The solution of differential wave equations by the finite-difference time-

domain algorithm has been referred to as the “workhorse” of computational 

electrodynamics as it is, along with finite-element analysis, the most robust algorithm 

for the calculation of electromagnetic fields in complicated structures [KAN06]. It is, 

however, still a relatively modern technique, and has not gained widespread use. A fact 

which can be partially attributed to the rigorous computation involved using large arrays 

of memory, which is necessary because of the fine sampling of the fields required to 

accurately represent continuous derivatives by discrete differences. The FDTD results 

presented in this chapter were calculated on a conventional PC with 3GB of random 

access memory, and a processor speed of 2.17 GHz. Even with such a standard 

machine, and although the two-dimensional results to be shown may require up to thirty 

minutes, the computation times using the algorithm were found to be very acceptable 

given the thoroughness of the analysis.  
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When using scalar diffraction integrals or associated methods such as GBMA, 

the intensity of a field is proportional to the square of the complex electric field value. 

With FDTD the time-averaged intensity of the field can be calculated numerically by 

integration of the square of the electric field, |Ex+Ey+Ez|
2
, and subsequent division by 

the duration of the simulation. This is a much more useful quantity for comparison of 

predicted fields with those measured by experiment.  

The following plots, Figure 2.32 (a) and (b), show a comparison of calculations 

from the FDTD method and the two forms of Gaussian beam mode analysis, paraxial 

and non-paraxial, described in this chapter for diffraction of a plane wave by a one 

dimensional aperture, with semi-width a = 3.33 λ, aperture dimensions which are 

typical of millimetre wave sources.  The fields are predicted at z = 2.27a
2 

/ λ. 

 

Figure 2.32 - Comparison of the FDTD and HG syntheses of diffraction of a plane wave by (a) a one-

dimensional slit and (b) the aperture function E0(x0)=cos(2.5π x0 /a), both apertures have a width of 2a = 

6.66 λ. Predicted at z = 2.27a
2
/λ, the data is shown with a logarithmic scale normalized to the maximum 

intensity value.  

(a) 

(b) 
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Comparing the calculated fields of Figure 2.32 visually through features such 

as the positions and relative intensity levels of the off-axis nulls and peaks, the non-

paraxial GBMA and FDTD methods can be seen to show very good agreement with 

each other. The discrepancies that do occur between these schemes could, in the opinion 

of the author, be attributed to the numerical approximations used in the FDTD method. 

The FDTD process applied by this author follows the conventional description of the 

method given in the majority of literature describing electromagnetic applications of the 

technique. This is a first-order form of the algorithm in that the derivatives occurring in 

the Maxwell curl equations are represented by finite differences determined from a 

Taylor expansion with neglect of terms involving higher order derivatives, d 
2
/dx

2
 etc. 

With the convergence of the non-paraxial GBMA synthesis to the values of the 

Rayleigh-Sommerfeld integrals in the far-field, which are quoted in the literature as 

exact solutions [DUAN05], [BORN97], the author predicts that by using a higher-order 

formulation of the FDTD technique greater agreement would be found between the two 

methods. Use of a higher order Taylor series in deriving the finite difference 

expressions would also allow for less frequent spatial sampling of the propagation 

space, but does require the storage of instances of the field at multiple times, requiring 

more memory.  

The paraxial calculations shown in Figure 2.32 again exhibit significant 

deviations, but within angular regions of approximately 15° show strong convergence to 

the non-paraxial results. 

The paraxial and non-paraxial methods of field calculation that have been 

described all have their positive and negative attributes. The following tables below 

summarise the strengths and weaknesses, in the opinion of this author, for the paraxial 

Gaussian beam mode and finite-difference time-domain methods of field calculation.  
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FDTD Advantages FDTD Disdvantages 
Provides solution with no constraints on the 

complete wave equation. A previous 

knowledge of diffraction or other optical 

effects is not required as they are inherent in 

the evolution of the field. 

Computation time is almost certainly going to 

be extensive, due to the high sampling rate. 

Particularly true if the calculation involves 

propagation through both free-space and 

materials of higher refractive index, or 

indeed, negative refractive index 

Numerical approximations, i.e. finite 

difference representation of derivatives, have 

very little influence on the accuracy of the 

calculation when used appropriately. 

Without extreme computer power, 

calculations in the far-field of a source are 

difficult to process. However, transform 

techniques do exist to predict fields in that 

region. 

Allows for a robust determination of 

propagation effects in optically dense and 

conductive media with arbitrary shapes. 

Does not allow for variable sampling rates, 

which would enable more accurate 

calculations in regions of greater interest and 

less rigourous analysis in other areas. This 

feature is permitted in finite-element analysis.  

 

 

GBMA Advantages GBMA Disadvantages 
In terms of computation time, this can be a 

rapid method. And gives reliable results within 

an off-axis angle of ~12°.  

In its conventional form it provides solutions 

only for the paraxial wave equation. Aperture 

dimensions must be relatively large in 

comparison with the field wavelength. 

Information required for field calculations can 

be determined from M integrals. The field at 

any plane can then be established directly 

using this data, without any further reference 

to the aperture that may be represented with 

high sampling. 

Optical elements must be modelled as an 

infinitesimal planar surface. Calculated 

effects can be inaccurate for thick 

components. This is also a feature of non-

paraxial scalar methods, 

 

Table 2.2 – Advantages and disadvantages of the FDTD and paraxial GBMA techniques.  

 

2.8.2.2 – Example: FDTD simulation of a dielectric lens antenna 

Horn antennas, and in particular, cylindrical corrugated horns require intricate 

design and manufacture and the tolerance required in creating λ / 4 corrugations used to 

create linear polarisations incurs high costs from specialist tool makers. A potential 

simple and cost-effective alternative for transmitter and detector horn antennas lies in 

the use of dielectric lens antennas (DLA’s), which have garnered some application at 

frequencies higher into the terahertz and infrared waveband as manufacturing of horn 
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antennas can be difficult to create for operation at such small wavelengths in those 

bands [BORK04],[SAU06]. Such lens antennas are, in comparison with horn antennas, 

extremely easy to manufacture and design. However, despite having such a simplistic 

shape, prediction of the electromagnetic structure of waves reflected, diffracted and 

refracted within a DLA has proven itself to be a very difficult task [LAV08].  

The structure of the antenna surface is essentially a hemispherical lens 

supplanted on a cylinder of the same material and equal radius, see Figure 2.33. But 

with a small radius, and therefore increased thickness, simplifications such as the use of 

the binomial expansion as described earlier in relation to the thin spherical lens cannot 

be used, as the approximation of such a highly curved surface as being planar would be 

completely deviant from the real physical nature of this situation.  

  

Figure 2.33 – A dielectric lens antenna for operation at 100GHz.  

 

The focusing of a field to such a short focal length within the dielectric by the 

hemispherical structure will create large convergent angles, and conversely when used 

as a radiation source the diffraction of the field from the feed antenna can cause rapid 

evolution of the beam width over a short distance within the lens, rendering the paraxial 

techniques inapplicable in this scenario. This is a scenario in which a full-wave 

algorithm must be used and FDTD is an ideal candidate due to its completeness in 

describing both complete propagation effects and its ability to determine the electric and 

magnetic effects of unconventional dielectric and conductor structures.  

The reader should note that the simulations presented here are two dimensional 

representations of the real 3D antenna system. A full three-dimensional simulation is 

presently beyond the capabilities of the author, with such a computational domain 

requiring large computer memory and possibly “parallelisation” of the software. 

Nevertheless, prediction of wave effects in a three-dimensional system through two-
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dimensional numerical FDTD schemes, like those used here, has gained some 

acceptance in the optics community due to the computational difficulty involved with 

the method and there are several examples of work which simplify the prediction of 

optical effects in three-dimensional systems using two-dimensional models 

[DRE00,FENG04]. An algorithm described in [PRA99] presents a finite-difference 

formulation of the Maxwell equations in the cylindrical regime. But even with such a 

more relevant description of the coordinate system simulating the linear polarisation and 

rectangular structure of the waveguide source using this technique will also have a high 

level of complexity. The method involves the use of a Fourier series expansion of the 

field in angular coordinates which may not converge with great accuracy to the required 

rectangular symmetry of the feed waveguide.  

To exhibit a practical application of FDTD we define a conventional high-

density polyethylene (HDPE) DLA for operation at 100GHz with hemispherical surface 

with radius 15mm (5λ) and a cylindrical base with an equal radius and depth of 15mm, 

the dimensions of such an element as described in [LAV08], see Figure 2.33. For 

optimum performance of the lens antenna the focusing of the incoming field must 

concentrate a significant portion of the total incident power to the receiving antenna at 

the base of the lens. At terahertz frequencies lens antennas are conventionally applied in 

the focusing of fields generated by planar sources, for example, microstrip patch 

antennas [JHA09]. Figure 2.34 shows the simulated components of a vertically 

polarised 100 GHz field within such a lens antenna fed by a waveguide transmitting a 

fundamental mode.  
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Figure 2.34 - The components of an electromagnetic field originating in a waveguide within a two-

dimensional dielectric lens antenna, showing the lens itself marked with a blue line, and the flange of the 

feed waveguide at the left of the figures indicated in green. (Shown with a saturated linear scale).  

 

The results in Figure 2.34 show the complexity of the field structure and why 

accurate analytical descriptions of such fields may be impossible to obtain. [LAV08] 

shows far-field measurements of the lens antenna described at 100 GHz and while the 

measured structures show smoothly varying intensity patterns at large distances from 

the source, one could easily assume that such behaviour is predictable, but as shown 

above the far-field is derived from a very complicated electromagnetic field structure. 

As mentioned, the computational power available to the author was limited so far-field 

|Hz| 

|Ey| 
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predictions were not possible, but Figure 2.35 demonstrates the field divergence just 

outside the lens.  

 

Figure 2.35 - The time averaged normalized electric and magnetic field intensities of dielectric lens 

antenna. Plots have been clipped at -20dB for clarity. (dB scale).  

 

For simulation of the DLA as a receiver the detected field was modelled to 

represent a planar wavefront but with a Gaussian envelope a short distance from the 

central maximum of the antenna surface. The amplitude envelope would avoid any 

discrepancies caused by unwanted reflections at the boundaries of the simulation region. 

See Figure 2.36.  

 

Figure 2.36 – False-colour plot of the time averaged intensity of Ey with the lens antenna operating as a 

receiver. Note the creation of fringe features near the surface of the lens due to reflection from its surface. 

Shown with a linear scale. 

 

Incoming radiation 
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While the possibility of defining optical elements according to their true structure is a 

significant advantage over scalar methods, a feature of FDTD not apparent in the above 

depictions is that the discrete sampling of the surface of a component, such as a lens 

surface or horn antenna wall, results in a representation of the surface by continuous 

lines which will deviate from the ideal description of the surface. However, with the 

extremely fine sampling rate required in the algorithm this effect will only cause 

noticeable discrepancies in the calculation of fields at surfaces with extremely small 

radii of curvature.  

As explained in all introductory literature relating to the finite-difference time-

domain algorithm, it is always suggested that the technique is suitable only for 

“electrically small” regions, i.e. volumes or areas only two or three times the order of 

the wavelength. With such unavoidable computational restrictions on the distance from 

the source at which the field can be predicted directly, one must use a suitable technique 

in calculating the far-field scattering effects based on the near-field electric field 

structures calculated by FDTD. Numerical techniques to perform this are referred to as 

“far-field transforms” and there are a variety of approaches described in the literature, 

often applied to the study of scattering effects of various materials [GON00, KUNZ93]. 

Here, the accuracy of the non-paraxial Gaussian beam mode analysis, shown in the 

previous section, could suggest its use as a simple but very efficient approach of far-

field calculation from the FDTD predictions of electromagnetic fields derived from horn 

antennas.  

 

2.9 - Conclusion 

The properties of diffractive effects in basic optical arrangements have been 

presented in terms of the Fourier/Fresnel theory of diffraction and its representaion 

through the method of Gaussian beam mode analysis (GBMA) using orthogonal 

Laguerre-Gaussian and Hermite-Gaussian functions. Comparison of the two methods 

shows complete agreement within a predictable finite transverse range, with the 

advantage of the GBMA theory shown by a smaller number of integrations required and 

the synthesis of a field as an efficient finite term series.  

The application of the Fourier transform and Gaussian mode expansions in 

optical diffraction calculations has been exhibited. In the case of the Fourier transform, 

the optical information is contained in the transform data itself, i.e. far-field diffraction 

patterns are related to the Fourier coefficients of the aperture function. Whereas with 
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Hermite-Gaussian calculations the optical information is not obtained directly from the 

expansion coefficients, rather they are used to weight a convergent series from which 

diffraction effects are computed, akin to the Fourier series expansion of a function.  

For the problem of diffraction at a circular aperture, simplified expressions for 

the calculation of the mode coefficients were derived and extended to the focusing of 

plane waves by a thin lens. Such expressions rely on only one numerical integration and 

common recurrence relations can be then used to derive coefficient values. This can be 

an even more accurate calculation when using Mathematica™, as that software package 

appears to have difficulty integrating high frequency functions such as the HG and LG 

modes of higher indices.  

While this thesis is concerned mainly with optical diffraction techniques 

applied within the validity of the paraxial approximation, the author has described 

methods for the calculation of widely diverging electromagnetic fields that cannot be 

analysed by the Huygens/Fresnel theory of optical diffraction. With direct relevance to 

the modal method of diffraction calculation described in this thesis, the author has 

shown how recently derived expressions for the propagation of Gaussian beam modes 

beyond the paraxial limit can be used to accurately describe the far-field diffraction of 

arbitrary fields in a similar fashion to the convention paraxial technique. As far-field 

calculations have high importance in the analysis of millimetre and terahertz antennas, 

this method has the potential be a very efficient and accurate method for far-field 

calculations within such wavebands, but further work will be required to achieve its full 

potential as a complete technique, particularly in understanding the limitations of the 

expressions due to the approximation used in eq. (2.46).  

The finite-difference time-domain algorithm has been described as a method for 

solving Maxwell’s equations directly. While inevitably time-consuming in comparison 

with the modal synthesis of optical fields, the technique is directly suited to the 

determination of electromagnetic behaviour involving the interaction of fields with 

complicated structures and media. Several commercial software packages, for example 

HFSS
TM

 [HUA08] and CST Microwave Studio
TM

 [http://www.cst.com], have been used 

in the NUIM mm-wave group for the electromagnetic analysis of millimetre wave 

sources using methods similar to FDTD. HFSS is based on Finite Element models, 

while CST Microwave Studio
TM

 employs a finite-integration technique, which uses a 

similar grid scheme to that of FDTD but instead employs the Yee's grids to evaluate an 

integral form of Maxwell’s equations [CLE01]. Also, the well documented free FDTD 
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package “MEEP”, developed by researchers at MIT, is a flexible program and ideal 

candidate package for analysis of millimetre wave receivers and transmitters [OSK10]. 

However, the simplicity of the FDTD procedure allows for researchers to generate 

custom written code, with equally accurate results.  

Finite-difference time-domain is far from being a standard technique in mm-

wave research, but the calculations shown in this chapter exhibit how a rigorous 

analysis of electromagnetic structures is possible without the excessive financial costs 

of software packages, which may ultimately lack transparency to the user. FDTD is also 

becoming a widely applied numerical tool in Geophysics for the simulation of 

earthquakes, and the procedure has been suggested within that field as “the future of 

Seismology?” [SHE09]. With powerful computing capabilities becoming more 

affordable, and in particular the growing use of graphics processing units in scientific 

computing, the proposal that FDTD is the future of electrodynamics does not lack merit.  
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Chapter Three 

Hermite - Gaussian Modal Expansion of Far-Infrared Digital 

Holograms 

 

3.1 – Introduction to holography 

In general, methods of far-infrared imaging require direct measurement of 

physical intensity distributions obtained using conventional optical techniques using 

lenses and mirrors. In this chapter we present work undertaken in the application of 

digital holography at 100 GHz. Rather than recording an image directly, the method 

involves the measurement of data from which the image data is then extracted using 

numerical representation of the diffraction process,[HAR02].  

In the science surrounding electromagnetic radiation, given the enormity of the 

frequencies of light, an averaged value of the intensity |E|
2
 of an oscillating field over a 

significant time is usually the only possible measured quantity, either by direct 

observation with the eye, photographic recording, or electronic detection. However, in 

optical imaging systems intensity measurements of diffracted fields are generally of 

little use in obtaining information about the source of the radiation (object), for we 

cannot comment on the course of a field based solely on the intensity measurement due 

to the diffraction which occurs between the object and the recording plane. Without 

knowledge of the phase properties of the beam no comment can be made about the 

direction of the field, its divergence, or convergence, or the amplitude structure at the 

source plane.  

In an attempt towards solving the problem of phase retrieval from intensity 

measurements only, the Hungarian scientist Dennis Gabor invented the method of 

holography in 1948 [GAB48]. An alternative name for the technique originating in the 

1960’s, wavefront reconstruction, is perhaps a more descriptive label for the technique 

in which the recording and subsequent retrieval of the phase, and therefore the direction, 

of the diffracted radiation is possible. Gabor’s method involved the superposition of a 

scattered field, the object beam, the imaging of which is desired, with another field 

defined as the reference beam, the properties of which are known or are easy to 

replicate in an experimental scene. Through his seminal 1948 paper Gabor proposed, 
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and proved experimentally that by recording such an interference structure (hologram) 

on a photographic plate, and illuminating the recorded hologram with the original 

reference beam, one could reconstruct exactly the behaviour of the object beam thus 

allowing for viewing of the original target. The figure below shows images obtained 

through the use of Gabors original inline method. 

 

Figure 3.1 - One of the first published results of wavefront reconstruction by Gabor. (a) The recorded 

hologram, (b) the object, (c) reconstructed image. 

 

However, Gabors original method went unnoticed for two reasons: 

1) In order to form a clear interference pattern, the radiation used must have a high 

degree of temporal coherence, i.e. the interference pattern remains constant over 

time. Although the mercury arc lamp used by Gabor had a relatively narrow 

bandwidth compared to other light sources available at the time, his original 

imaging results, in Figure 3.1 (c), show that improvements to his technique were 

desired.  

2) Gabors original design of a holography experiment involved a simple on-axis 

optical arrangement. Thus, the multiple diffraction orders caused by the 

hologram resulted in a superposition of the desired image field with the 

transmitted zeroth order reference beam, restricting the imaging capability.  

(a) 

(b) (c) 
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It was almost fifteen years before Gabors technique would gain significant attention 

with the invention of the laser. Through the work of Emmet Leith and Jurith Upatneiks 

at the University of Michigan, a new field of optical research was founded by the 

publication of their paper “Wavefront reconstruction with Diffused Illumination and 

Three-Dimensional Objects” [LEI64]. That publication described an optical 

arrangement using the then newly invented Laser which enhanced Gabor’s original 

design through the long coherence length of the source and the novel idea of an 

obliquely incident reference beam which could separate the transmitted reference beam 

from the reconstructed object wave to allow for clear viewing of the object image 

without obscuration by the reference beam. A typical modern arrangement of hologram 

formation in the visible band is shown in Figure 3.2.  

The form of holography described by Leith and Upatneiks and throughout this 

chapter is known as transmission holography, referring to the fact that reconstruction of 

the three-dimensional images are formed by the direct transmission of a reference beam 

through the photographic plate (hologram). This is in contrast to reflection holography 

where the object beam and reference beam are incident upon the recording medium 

from opposite sides, and for the reconstruction process the image is viewed from the 

same side of the hologram as the source of the reference beam. This is the most popular 

and commercial form of that non-scientists would be familiar with, and is used as a 

media application more often than a scientific technique.  

One of the advantages of holography is the fact that while lenses and mirrors are 

used in the generation of both the object and reference beams as shown in Figure 3.2, 

the imaging process is not reliant on any focusing elements (with the exception of the 

human eye), thus eliminating any aberrations or other imperfections in the reconstructed 

image. The term lensless is often used to describe such imaging techniques, and this 

feature is a main reason for research into the application of holography.  
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Figure 3.2 - A typical optical layout for the formation of a transmission hologram.  L1: Reference lens, 

L2: Object lens, M2: Reference mirror, M3: Object mirror. The reference beam is shown in red and the 

object beam in blue.  

 

The process of image reconstruction by holography is mathematically 

straightforward, and is described as follows. At the plane of the hologram, the object 

and reference beams, defined here as being linearly polarised, take the respective forms 

of 

( )OO iyxOyxE φexp),(),( 0000 =    (3.1) 

( )RR iyxRyxE φexp),(),( 0000 =    (3.2) 

where ϕO and ϕR are the phase of the object and reference beams at the plane of the 

hologram recording respectively. When both waves interfere, their interaction is 

described by the resulting intensity calculated as  

 

Object 

M1 

M3 

M2 

L1 

L2 

Laser 

Photographic plate 
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                 (3.3) 

and this quantity represents the actual measured hologram. When recorded at visible 

wavelengths the strength of the hologram is dependant on the duration over which the 

photographic plate is exposed to the radiation but with electronic detection by a diode 

detector this factor can be neglected.  

The method by which a holographic image is viewed is termed reconstruction 

and is achieved through illumination of the recorded hologram with the original 

reference beam, which is represented mathematically as  

),(),( 0000 yxhyxEE RI = . 

Reconstruction of images is achieved by illumination of the recorded interference 

pattern with the original reference beam ER.  

( ) ( ) ( )ORORRI iiORiORROEhEyxE φφφ −+++== 2expexp),(
2222

00 . 

When this multiplication is performed the result defines the presence of three optical 

fields at the plane of the hologram, each representing independent fields : 
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Figure 3.3 illustrates the physical meaning of each term.  
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Figure 3.3 – Reconstruction of images from a transmission hologram with an off axis reference beam.  

 

The first term EI
(1)

 defines the propagation of the reference beam through the hologram. 

The second term EI
(2)

 is the most important, and contains the desired information of the 

object field which is obtained by viewing the hologram from the side opposite the 

original object. EI
(3)

 signifies the formation of a conjugate real image which has an 

angular separation from the optical axis twice that of the reference beam.  

The experimental process of holography to be presented in this chapter relates to 

the detection of radiation and subsequent image retrieval, using the numerical 

techniques of diffraction to simulate the image formation. However, in a reversal of the 

process the method can be used to generate a desired amplitude structure. This involves 

the numerical design of a computer generated hologram (CGH), a synthesised 

interference pattern which when realised and illuminated by a wave of the correct form 

will produce a desired image/field at a certain plane. At millimetre wavelength an 

example of this work is given in [MEL03] where the authors describe the measurement 

of a large scale CGH for operation at 310 GHz in a compact antenna test range. The 

results presented show that the formation of complex amplitude structures is possible, 

but perhaps the most practical application for antenna testing may be the use of CGHs in 

generating an approximate localised plane wave with uniform amplitude and phase in 

the far-field of the component, as shown in Figure 3.4.  
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Figure 3.4 - Results of beam formation using computer generated holograms at 310GHz, in [MEL03] 

Comparison of simulated and measured data of structured field. Ampliude and phase of a beam 

approximating a plane wave generated with a CGH.  

 

The results shown above are derived from the testing of computer generated holograms 

where the field incident on the hologram has its field modulated in terms of its 

amplitude only. A phase modulation can be included in such optical elements by 

adjusting the position of transparent cells so as to modify the relative phase at a point on 

the reconstruction plane, [LOH68]. The holographic element can also be purely phase 

modulating. By applying the Gertchberg-Saxton algorithm the desired intensity 

distribution at a plane can be related to the required phase distribution at the source of a 

field [GER72]. By repeated simulation of the propagation of the field between the two 

planes, optimisation techniques can be used to determine the most appropriate phase 

structure for generation of the desired field. This algorithm has been applied to the 

millimetre wave band by [GRAF01] and [MAY08] with the prospect of applications for 

radio telescope receivers.  
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3.2 - Digital holography 

The two-step physical process of recording and viewing an optical hologram can 

be reduced through the measurement of a hologram by electronic means instead of the 

photographic recording methods that were conventionally used. While the layout of the 

optical system used to form the holograms can remain the same for both photographic 

and electronic recording methods, a digital measurement of the hologram structure can 

allow for reconstruction of the desired image with numerical simulation of the image 

formation through the methods outlined in chapter 2.  

This process of digital holography has several advantages over the photographic 

form of the reconstruction technique in that the measurement of a digital hologram can 

allow for further analysis of the recorded data. For example, the technique of double 

exposure interferometry is often used in the analysis of materials to examine the effects 

of deformation by an applied force. By recording digital holograms before and after the 

application of a load on an object, the fringe pattern formed by the interference of the 

image fields obtained from both holograms can be analysed to gain information about 

the deformation. With photographic holography, the interference of both images has to 

be determined visually from the reconstructed images, whereas with the technique of 

digital holography such images can be manipulated digitally, allowing for analysis of 

the retrieved data.  

The idea and experimental verification of the digital recording of a hologram 

and the reconstruction of images using numerical simulations of diffraction was first 

proposed in [LAW67]. However, it was a paper by Schnars and Jueptner in 1994 that 

launched the technique as a huge field of research [SCH94]. In that publication, the 

authors suggested that instead of using a photographic plate as a hologram and optical 

reconstruction methods, CCD detectors could be used to record the intensity pattern of a 

hologram while digital simulation of the diffraction effects could reconstruct the desire 

image. This allows for storage and manipulation of the hologram and a fast 

computational reconstruction of the image without the photographic development of 

photographic plates as used in traditional holography.  

In Fourier holography, the reference beam may be generated by a point like 

source, in most cases a pinhole located the same distance from the hologram as the 

object. This allows for simplified reconstruction, where knowledge of the reference 

beam is not required as a direct Fourier transform of the measured data can separate the 

relevant spatial frequency components for image reconstruction. With photographic 
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transmission holograms, the reconstruction procedure recovers an image precisely with 

a viewer having great difficulty in identifying if indeed the image is holographic or 

physically real. With digital holography there is obviously a loss of the parallax effect 

and realism due to the 2D nature of the reconstruction, however, the image resolution 

promised by the theory has led to great interest in the application of the technique 

[COL02].  

Dr. Thomas Naughton of the Department of Computer Science at NUI 

Maynooth is one of the leading researchers in the field of digital holography within the 

visible band. An experimental result from his work is exhibited below.   

             

Figure 3.5 - (a) Visible wavelength digital hologram recorded on a CCD camera and (b) digital 

reconstruction. Reproduced from [NAU02]. 

 

Gabor's original interest in holography was based in the potential use of the techniques 

use in electron microscopy, and while the technique has evaded significant application 

in that area, optical microscopy using digital holography is a technique which has begun 

to be commercialized, and promises improvement over conventional techniques due to 

the lack of aberrations in construction of the image. Figure 3.6 shows an example of 

microscopy by holography, from [GAR08], where the technique was used to visualise 

fluid flow on the micron scale in real time.  
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Figure 3.6 – (a) Hologram of fluid flow (b) Reconstruction of the microscopic image by holography, 

from [GAR08] .  

   

Holography was initially developed for application at visible wavelengths, and the 

application of the technique has, for the most part, been in that band of the spectrum. 

But the theory of the optical processes involved in holography are not limited to visible 

optics but can be, in theory, applied to any wave phenomenon and there has therefore 

also been significant research into the use of holography with radiation outside of the 

visible part of the electromagnetic spectrum, and indeed with non-electromagnetic 

waves.  

One recent application of wavefront reconstruction was highlighted on the front 

cover of the journal Nature, in the paper by Eisebitt et. al. [EIS04]. The authors 

described a digital holography arrangement for the imaging of objects on the nanometer 

scale using X-rays. As demonstration, an amplitude mask was used to generate both the 

object and reference beams, with the reference field created by an off-axis point source 

generating an off-axis spherical reference wave, which is the definition of a Fourier 

hologram. Images obtained using this system are illustrated in Figure 3.7.  
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Figure 3.7 – Data from Eisebitt et. al. [EIS04]. (a) Illustration of experimental layout. (b) The recorded 

hologram, (c) the reconstructed image, and (d) A comparison of the reconstructed image with a direct 

measurement of the object, the blue line shows the reconstruction from the digital hologram.  

 

 The resources required by the group developing this technique were beyond the 

capabilities of standard laboratories, with the project involving the use of the Advanced 

Light Source at Berkeley, California, and complicated nano-fabrication techniques used 

in creating the object. At the opposite side of the visible band from X-rays, with longer 

wavelengths the application of holography is a much more approachable undertaking.  

 For near infra-red radiation with wavelengths only up to one order of magnitude 

greater than visible laser light, the process of infra-red digital holography could 

potentially be carried out with the same optical arrangement and components as a 

visible band setup, with the exception of altering the source of coherent radiation and 

detector. Allaria et. al. [All03] carried out research into the use of directly recorded 

digital holograms using a CCD camera responsive to near infra-red radiation at λ = 10.6 

µm, with a camera having 124 × 124 pixels each covering an area of 85×85 µm
2
. The 

(a) 
(b) 

(c) (d) 
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spatial resolution possible in this case is similar to the resolution at visible wavelengths 

with standard CCD technology, and such coarse sampling restricts the angle of the 

reference beam to large angles in relation to the detection plane to allow for 

measurement of the fringes formed by the interference. The recorded data and 

reconstructed images are shown in Figure 3.8. 

     

Figure 3.8 - (a) Hologram, and (b) reconstruction of recorded data showing image of object in the upper 

right hand side. Reproduced from [ALL03].  

 

Using radiation within the same region of the EM spectrum as the work of 

[ALL03], [MIY07] reports a system that uses two bands of EM radiation, with 

electronic technology related to the visible region alongside physical processes 

particular to the infra-red band to measure diffraction effects. The group used a material 

called nitroanisole which displays a thermal lens effect in which the refractive index is 

proportional to the temperature change induced by the intensity and duration of infrared 

radiation incident upon it. By examining the phase distribution of visible light 

modulated by the nitroanisole, i.e. by recording a visible wavelength digital hologram of 

the material, the phase properties of the diffracted infra-red radiation can be recovered. 

See Figure 3.9. 
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Figure 3.9 - Experimental results of Miyamoto et. al. (2007). The figure shows (a) The recorded 

hologram. (b) Reconstruction by FFT of the image plane. (c) Close up of object reconstruction in (b), and 

(c) the phase of the reconstructed object field.  

 

The digital holography technique has also been applied in acoustic imaging 

where energy is propagated by pressure variations. Brenden described the recording of 

holograms of objects submerged in water by photographically capturing the interference 

pattern of the acoustic reference and object beams formed on the surface of the water, 

and then applying a numerical reconstruction to obtain the desired image [BRE75].  

 The work summarised in this section shows the trend of applying digital 

holography to radiation, and other wave variations, beyond the conventional visible 

band, and also presents the generality of the holographic procedure.  

 

3.3 - Numerical reconstruction of digital holograms 

In the previous chapter the author described several methods, with varying 

degrees of accuracy, which can be used to simulate the phenomenon of diffraction. 

Conventionally, the numerical image formation from the measured hologram data is 

performed by the Fresnel diffraction integral, which can be accelerated with application 

of the fast Fourier transform (FFT). Although we have shown the paraxial diffraction 

methods to be an approximate model for the physical propagation of EM waves, this 
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chapter serves as a further example of how the Fresnel formulism, and paraxial 

techniques in general, can give an excellent description of the behaviour of waves in 

practical applications. The figure below describes the coordinate system used in our 

description of the holographic process.  

 

Figure 3.10 – Schematic of the coordinate system used in the numerical reconstruction of digital 

holograms.  

In reconstruction of waves diffracted by rectangular apertures, such as digitally 

recorded holograms, the diffracted field can be determined from the Fresnel diffraction 

integral [GOO05].  
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While direct numerical calculation of this integral is not a difficult task, its solution can 

be simplified and greatly accelerated by recognising that the double integral on the 

right-hand side of the equation can represent a Fourier transform of the function 
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where again F represents a Fourier transformation, which will be calculated numerically 

using the fast Fourier transform. Comparing the second exponential term of the 

diffraction integral with a complex Fourier component 
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we can calculate the spatial Fourier frequencies in the image plane as  

z

x
kk x = , and 

z

y
kk y =     (3.5) 

In practical terms, these relations are important as they allow for transformation of the 

array indices of the Fast Fourier transform data into more useful spatial co-ordinates. 

Digital holography is one field of research that has had huge benefit through the 

application of the fast Fourier transform, and throughout the literature on digital 

holography, the theories invariably involve the application of that algorithm. For 

example, an alternative formulation frequently presented in the literature describes the 

reconstruction as a convolution process. The Fresnel integral given above is a binomial 

(paraxial) approximation to the following equation  
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 This integral can described as a superposition integral, with g referred to as the 

impulse response. Using the well-known convolution theorem [WEI02], it can shown 

that the Fourier transform of the convolution of the two functions is equal to the product 

of the Fourier transforms of the individual functions i.e. 
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where P and Q are Fourier transforms of the two functions p and q respectively.  

 For a numerical implementation with application to discretely sampled data, 

the impulse response g(x,y) is expressed in terms of the indices of a square array (m,n) 

(with N
2
 elements and pixel separation of ∆x and ∆y in the horizontal and vertical 

directions respectively) as  
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The reconstruction at the image plane can then be calculated by  
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The Fourier transform of g(m,n) can be expressed analytically as [SCH04] 
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which is useful, reducing the number of times that the FFT has to be applied. Therefore 

the amplitude in the image plane of the hologram can be determined from  
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An advantageous and direct consequence of this convolution method is that the 

simulated reconstruction plane has the same spatial dimensions of the hologram plane, 

allowing here for viewing of the on-axis object, also the image field will have the same 

resolution as the measured interference pattern. This may have to be modified 

depending on the optical layout, but in the system we employ this was a convenient 

feature of the method. This is in contrast to the Fourier transform method where scaling 

techniques may have to be used to obtain an image with sufficient resolution.  

In the following sections, we will describe the use of a proof-of-concept digital 

holography arrangement for operation at millimetre wavelengths, specifically 100GHz, 

and apply these numerical procedures discussed in this section to experimental data. 

While the primary intended application of the technique is through its imaging 

capability, the process of phase retrieval could also allow for an efficient and 

inexpensive method of phase measurement of antenna fields.  

 

3.4 - Digital holography at millimetre wavelengths 

Direct phase measurement at millimetre wavelengths is a more viable endeavour 

than at lower frequency bands of the electromagnetic spectrum. The vector network 

analyzer (VNA) is a system commonly used in antenna testing and provides the 

possibility of phase measurement, giving complete knowledge of a field. However, the 

financial expense of these complex devices does inhibit their widespread use.  

Sheen et. al. at the Pacific Northwest National Laboratories (PNNL), have 

developed a fully operation personnel scanner with intended operation in airports and 

other areas where objects and people are prone to scrutiny. As is obvious from the 
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descriptions given above, the imaging process used in the NUIM system which is based 

entirely on photonic techniques, whereas the holographic, or phase-retrieval techniques 

used at PNNL are based on the direct measurement of phase using electronic techniques 

whereby phase can be measured directly without the need for a reference field [SHE01].  

We will describe the use of a basic millimetre-wave digital holographic system 

developed by the author and co-workers, based on optical phase retrieval, and the 

theories of reconstruction that can be used in such a technique. In particular, the 

application of Hermite-Gaussian beam mode analysis to image formation by holography 

will be presented. Imaging results obtained using this system has previously been 

presented in [MAH06]. The layout for a millimetre-wave holographic system, with the 

intention of measurement of beams that could be regarded as being generally on-axis, is 

shown in Figure 3.11.  

 

Figure 3.11  - General schematic of the holography arrangement used.  

For our optical setup, a reference beam with a large angular separation, θref, 

between itself and the object beam was used, which would separate the object and 

reference wave vectors allowing for greater distances over which the field and the 

reconstructed image of the object would not be obscured, a frequent problem with 

conventional DH. In addition, to reduce the range of Fourier coefficients in the 

reference field and allow for more accurate determination of the angle of incidence, a 

plane wave approximation generated using a collimating mirror was considered  most 

appropriate, producing a beam at the hologram plane with a phase of the form 

φR(x)=kxsinθref, θref being the horizontal angle of incidence of the reference beam in 
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relation to a normal of the hologram plane, assuming in this description that there is no 

angular incidence in the vertical plane, which is viable given the optical arrangement. 

There are advantages for the use of digital holography at millimetre wavelengths, 

because the intensity of a field can be recorded with high sub-wavelength resolution. 

This is in contrast to the same process with light in the visible band, where CCD 

cameras are only beginning to gain the necessary pixel sizes to record spatially small 

fringe separations which are inevitable with a large reference angle and short 

wavelengths. This is the major restriction to the further development of digital 

holography in the visible band, like most areas of physics where the theory surrounding 

an application predates the available technology.  

 

3.4.1 - Hologram measurement system 

The electronic system used for measurements in this thesis is that developed by 

William Lanigan [LAN98]. The mechanical element of the arrangement consists of two 

stepper motors each controlling two belts which translate a stage on which a Schottky 

diode detector is mounted. Each motor controls the movement of the stage in the 

horizontal (x0) and vertical (y0) directions. The area and resolution of the scan can be 

adjusted by the user. The detector then moves horizontally from the origin to the left-

most edge of the defined region and then moves down vertically in a continuous motion, 

recording a sample at each desired sample position. At the bottom of the scanning stage 

an LED sensor detects the presence of the detector at the vertical extent and the motors 

bring the detector back to the maximum vertical limit, the detector moves horizontally to 

the position of the next sample and continues with the next vertical scan, and so on, see 

Figure 3.12.  

 

Figure 3.12 – The movement of the radiation detector used in the measurement of 100 GHz holograms.  

y0 

x0 
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A phase locking system allowing two different sources of mm-wave radiation is 

quite expensive and complicated, so in this work both the reference and object beams 

were derived from the same Gunn diode source. For generation of both object and 

reference beams, a 3 dB cross waveguide coupler was attached to the transmitting chain 

of a 100 GHz Gunn diode oscillator source thus eliminating the requirement for beam-

splitter in the optical setup, as is usually done at visible wavelengths, and this allowed 

for a very compact source. A 3 dB cross-guide coupler is effectively an optical 2-

channel multiplexing waveguide component, dividing the total Gunn output, with 

maximum power of approximately 35 mW, into two beams with equal powers. The 

reference beam was derived by placing the predicted phase centre of a conical 

corrugated horn at the focal plane of a parabolic mirror, which collimated the reflected 

beam with an angle of incidence of 45° to the hologram plane. See Figure 3.13.  

 

Figure 3.13 – Schematic of 100 GHz digital holography system.  
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of an interference pattern defines its contrast (fringe visibility) where Imax and Imin are 

the maximum and minimum recorded intensities. The value of the contrast can greatly 

affect the quality of reconstructed images in a holography system. In the technique 

described here, a maximum contrast of unity was attainable through the adjusting of 

signal attenuators attached to the object and reference beam sources. Calculation of the 
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contrast value can only be calculated from regions of the hologram where obvious 

interference fringes are generated. Inclusion of areas with low or no recorded intensity 

is obviously invalid. 

The movement of the detector along the vertical axis is continuous, thus 

changing the sample rate/resolution of a scan does not affect the duration of a single 

vertical line scan. The system allows for a measurement to be recorded every 100 ms 

which is suitable for the averaging of a steady signal. This time sample was typically 

used to minimise any effects of the continuous motion of the detector.  

The photograph in Figure 3.14 shows the transmitting chain used in the 

holography arrangement. To eliminate any cross polarisation loss in the reference beam 

a cylindrical corrugated horn was used, and for the object beam, which would directly 

illuminate the object, or act as an object itself, a relatively small rectangular horn was 

used to ensure sufficient coverage of the object.  

 

 

 

 

Figure 3.14 – Photograph of the 100GHz transmission chain used to generate the object and reference 

beams necessary for holography.  
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The software used to automate and synchronise the mechanical and electronic 

components is based in LabviewTM allowing for a transparent setup of each 

measurement. The graphical user interface allows for arbitrary movement of the receiver 

with a digital readout of the signal strength which is useful in setting the position for the 

centre of the scan, particularly for recording Gaussian-like antenna beams where the 

position of the maximum intensity value should coincide with the centre of the scanned 

area. It must be said that the total time of a highly resolved scan is very long with most 

measurements recorded overnight. The detector itself is a Schottky barrier diode detector 

mounted with a beveled WR10 waveguide as the detector feed antenna.  

 

3.4.2 - Frequency and sampling considerations 

The reconstruction of holographic images using the Fourier transform 

immediately suggests that the range of spatial frequencies involved in the image 

formation is very important to the quality of the image obtained.  

The spatial transverse wavenumbers kx of a field at a recording plane are 

determined by the angle of incidence of the field at any given point. In the case of a 

parabolically diverging field with a wavefront exp(ikx
2
/2z) the local angular frequency  

is kx = k x / z. For an axially centred spherical wave at a distance z from the hologram 

plane the maximum range of frequencies, or bandwidth, ∆k attainable over the 

measurement plane, is given by  

z

ak
k

2
=∆      (3.8) 

Therefore an object that is located further from the hologram measurement plane will be 

more difficult to reconstruct as less Fourier frequencies will be detected at the hologram 

plane, and therefore less spectral components are involved in the image synthesis. Also, 

when illuminating an object that contains features that are small in relation to the 

wavelength diffraction into larger angles will occur requiring a larger recording area to 

sample the higher spatial frequencies in the scattered beam. Thus a Fourier 

representation of the scattered radiation will require larger spectral components to 

synthesise these finer details of the object. Clearly this limits resolution to 

approximately a wavelength as features smaller than this scatter the fields with large 

angles approaching 180°.  

As an example a one dimensional interference pattern (hologram) of a spherical 

wave and a plane reference beam can be simulated with the equation  
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The frequency content of a hologram, like any other measured signal, can be determined 

from the discrete Fourier transform. Performing an FFT of a section of a hologram with 

an obliquely incident plane reference field, as is done here, the wavevectors of the object 

field are shown with a shift in frequency space equal to the frequency of the 

approximately planar reference beam k0sinθref. A synthesised hologram corresponding to 

eq. (3.9), with k = 2π mm
-1

, θref = 45°, and z = 100mm is shown below with its 

associated Fourier Spectrum.  

 

 

Figure 3.15 – Simulated hologram calculated using eq. (3.9) and its corresponding Fourier spectrum. 

Calculated with λ=1, θref = 45°. 

 

In this case,with a plane reference beam with an angle of incidence of 45° the spectrum 

shows a shift of the spectrum in frequency space to k sinθref = 4.44 mm
-1

, and around 

this frequency the bandwidth of frequencies is approximately 2ka / z ≈ 5mm
-1

.  

 In the system developed here with an object beam such as one derived from a 

horn antenna the divergence and spatial width of the beam are limited and complete 

information of the field divergence can be theoretically attained. However everyday 

objects will frequently contain features on the order of a wavelength that will cause large 

divergence of the field. This may be a problem for millimetre wave holography in terms 

of the dynamic range of the detector which may lack sensitivity to measure the reduced 

(a) 

(b) 



 106

power of such widely diffracted portions of a field.  However, mm-wave imaging 

research is generally concerned with observation and detection of objects generally 

much larger than the wavelength, therefore these limitations in resolution may be 

negligible in practical applications. Using the holographic technique in the visible band, 

the wavelength is normally much smaller than any features of the inspected object 

reducing the divergence of the field, although truncation of the field may be an issue 

with small CCD arrays and may require measurement over a larger area using a 

scanning system.  

The Nyquist sampling theorem states that for a complete disrete reconstruction 

of a signal with zero power spectrum for frequencies ν > νmax, the signal must be 

sampled at a rate with a minimum value νN ≥ 2νmax. No information on the properties of 

signal is lost by sampling at this Nyquist frequency νN, and little information is gained 

by sampling at a greater rate. The theorem is stated more concisely in [PRE07] as  

“Critical sampling of a sine wave is two sample points per cycle” 

In this work, the highest frequency was in general found to correspond to the radiation 

wavelength, therefore νN = 2/3 mm
-1

. Holograms were generally sampled discretely in 

steps of 1mm.  

 

3.4.3 - Results 

To demonstrate the application of the digital holography technique, a hologram was 

formed by the measurement of the interference between the reference beam and two 

rectangular horn antennas arranged vertically. The hologram measured with this 

arrangement, shown in Figure 3.16, shows horizontal and vertical fringing representing 

the horizontal incidence of the reference beam and the interference of antenna fields 

with each other. 
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Figure 3.16 – Recorded hologram of two vertically arranged rectangular horns.  

 

The horns were placed 90mm apart, and at 500mm from the hologram measurement 

plane, with the source fields polarised horizontal to the optical bench. The aperture 

dimensions of each horn was ~20mm×28mm (6.6λ×9.3λ). The following figures show 

the numerical reconstruction of the object field at various distances from the hologram 

plane, calculated using the convolution approach.  

 

 

 

z = 200mm z = 300mm 
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Figure 3.17 –Reconstruction of the object field with increasing distance from the hologram plane, using 

the convolution approach given by eq. (3.6).  

 

The total reconstructed field is shown in Figure 3.18, as a function of distance from the 

hologram z. This type of reconstruction could be very useful in the testing of optical 

elements as a method of visualising phase and amplitude structures without the 

requirement of making multiple experimental measurements which can be very time 

consuming.  

 

Figure 3.18 – Two dimensional reconstruction of the object field from the hologram Figure 3.16.  

 

Figure 3.19 shows the hologram of an ‘M’ shaped section cut from the absorbing 

material Eccosorb
TM

 and Figure 3.20 depicts its reconstruction using the two methods 

defined, the FFT, and the convolution method.  

z = 400mm z = 500mm 
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Figure 3.19 – The 100 GHz hologram of an ‘M’ shaped amplitude mask cut from Eccosorb, with a 

reference beam angle of incidence of ~45°.  

 

 

 

 

 

 

Image 
Reference 

beam 

Real Image (a) 
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Figure 3.20 – Reconstruction of a ‘M’ shaped section cut from Eccosorb. (a) Image obtained using the 

FFT implementation of the Fresnel diffraction integral (eq. 3.4), and (b) Reconstruction with the 

convolution approach (eq. 3.6).  

  

The indentation on the right hand diagonal of the reconstructed image was an actual 

feature of the amplitude mask, and shows the potential accuracy possible with this 

method of imaging.  

 

3.5 - Reconstruction of digital holograms using Hermite-Gaussian modes 

The conventional approach to digital holographic image formation is through the 

use of fast Fourier transforms, but with the system developed for this thesis, we are in a 

position to investigate hologram reconstruction with the alternative technique of 

Gaussian beam mode analysis, which is a novel application of the method. This is 

possible due to the high sampling rate, as a fraction of the wavelength, and also the size 

of the complete recorded hologram is only 50-100 times the dimensions of the 

wavelength. From the data presented in the previous sections here it can be easily seen 

that holograms may contain as few as 20-30 interference fringes. Thus it may be 

possible to simulate image formation from a recorded hologram with fewer modes than 

would be required with a Fourier synthesis. The work shown here for reconstruction of 

millimetre wave holograms may also be applied to similar work in the near-infrared 

band, as digitally recorded infrared holograms, for example in Figure 3.8 (a), show 

similar structures in terms of the number of fringes in the recorded field patterns.  

(b) 
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For a modal synthesis of two-dimensional holograms, the HG modes structures 

are evaluated in Matlab™ from the zeroth and first indexed modes using recurrence 

relations. This becomes a relatively swift calculation using the vectorisation process 

available in the software but becomes less efficient with a very large number of modes 

(>200×200), and finely sampled measured holograms (>300×300 pixels). Due to the 

discrete nature of the holograms, integration of the overlap integral must now be based 

on numerical techniques. As a basic approximation the discrete integration over the 

hologram was generally implemented as a basic sum. The accuracy could be increased 

with various numerical techniques like the trapezoidal rule, but for examples in this 

chapter the enhancement is negligible.  

Before any link with optical arrangements is made, the adequacy of a two-

dimensional Hermite-Gaussian synthesis in representing digital images would be a good 

indication of their use in holography. Digital images can be represented using the 

portable gray map (.pgm) scheme, with which a simple text file defines the number of 

pixels within the image and then defines intensity values for each picture element on a 

scale of 0 to 255, 0 representing black, and 255 representing white. To illustrate the 

capability of the discrete Hermite-Gaussian expansion, we can briefly show such a 

synthesis of the high contrast image shown below which is commonly referred to in 

literature relating to image processing.  
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Figure 3.21 – Reconstruction of the “Cameraman” image using 101 Hermite-Gaussian modes.  (a) 

Original image. (b) HG synthesis. 

 

It must be noted that like in the GBM synthesis of ideal aperture functions with 

hard truncation in other chapters, the waist parameter used in the image synthesis above 

is given by the value described in [LIU06]. However, in the example given above it is 

almost certain that this waist value does not determine the most efficient mode set, as the 

highest pixel values occur toward the centre of the image, whereas the waist value used 

is optimal for a variation with abrupt truncation at the edge of the sampled field. For the 

synthesis of the above images, a large number of modes is required for strong 

convergence to the desired signal, due to the minute features which require modes with 

very high frequency.  However, it will be shown that for synthesis of the holograms 

measured in the system discussed, complete reconstruction of the measured intensity 

structure is not necessary.  

As we saw in chapter 2, the roots of the Hermite polynomials are irregular and 

thus no simple expression can be defined to precisely represent the spatial frequency of 

a Hermite-Gaussian mode due to this irregularity. An estimation of the average 

frequency of a HG mode with index l and width parameter w is given in [SIE86] as 

(a) 

(b) 
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w

l
=l

4
ν      (3.10) 

and its angular analogue 

w

l
=l

4
2πκ .     (3.11) 

Figure 3.22 compares two modes with their corresponding sinusoids with equal 

frequency obtained from eq. (3.11).  

 

Figure 3.22 – Comparison of the Hermite-Gaussian modes (red) with sinusoids of “equal” frequency 

(blue). (a) m = 4, (b) m = 12.  

 

For a modal synthesis of field data consisting of features that are small in comparison 

with the dimensions of the total field attention must be given to the relationship of the 

waist parameter and the effective frequency of the HG modes. The expression given by 

eq.(2.22) for the effective extent of a HG function can be approximated for large values 

of l or m as mwm 0=σ . If we assume that the smallest feature of the field data, with 

dimension dx, is to correspond to the minimum frequency contained in the mode set for 

which the value is wm 4  then the maximum mode index can be shown to be [SIE86] 

dx

a
M

4
>      (3.12) 

 with  

4
0

Mdx
w ≤      (3.13) 

These values however are only necessary when a complete reconstruction of the aperture 

structure is required. We shall retain the discussion here in relation to one hologram of 

an ‘M’ shaped aperture cut from an Eccosorb
TM

 mask shown in Figure 3.20 (a).  

(a) (b) 
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 In the system described here, the object lies directly in front of the hologram 

plane, while the reference beam has a significant angle of incidence, here ~45°. The 

appreciable separation of the reference beam from the object, the spatial dimensions of 

which are generally relatively larger than the wavelength, ensures that the divergent 

wavefront of the diffracted object field will diverge at angles much less than those of the 

reference beam at the hologram plane. So in a spectral analysis the wavevectors of the 

object beam and those relating to the reference beam are separated in spatial and 

frequency space. Therefore, as we are interested only in reconstructing the object field, 

we can attempt to reconstruct a holographic image with a relatively small number of 

modes, in comparison with the mode set size used to reconstruct the complete recorded 

hologram.  

This simplifies the application of the Hermite-Gaussian expansion for the 

holograms depicted here, in that a complete reconstruction of the measured hologram 

structure is not required thus higher order modes are not necessarily needed for 

reconstruction of the high frequency interference fringes associated with the reference 

beam. This will naturally affect the form of the actual field reconstructed at the 

hologram plane which will contain information only on the object beam with elimination 

of the high-frequency features generated by its interference with the reference beam. 

Therefore the reference beam can be eliminated from any reconstruction, without 

significant effect on the reconstructed image in this arrangement.  

The mode coefficients of the hologram in Figure 3.19 are shown as a function of 

mode indices and the approximate vertical and horizontal frequencies given by eq. 

(3.11).  

With larger mode sets such as in  Figure 3.23 (e)-(f), the mode coefficients of the 

higher order modes, in l, become more significant, which corresponds to a 

reconstruction of the high-frequency fringes associated with the reference beam. 

Although in this section we have depicted the HG mode coefficients in a similar manner 

as Fourier coefficients, i.e. as a function of frequency, this is only to illustrate an 

approximate correspondence of frequency and mode index.  
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Figure 3.23 - The Hermite-Gaussian mode coefficients Alm, of the recorded hologram shown in Figure 

3.19. The coefficients are described according to the mode indices in the left column, and in the right 

column the coefficients are depicted with their related approximate frequencies, given by eq. (3.12). M = 

(a)-(b) 20, (c)-(d) 40, (e)-(f) 100. Shown with a logarithmic scale.  

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3.24 shows the reconstruction of the phase and amplitude at the hologram 

plane with differing number of modes, showing an elimination of the high frequency 

fringes associated with the reference beam.  

 

 

 
 

Figure 3.24 - The phase and amplitude of the hologram in Figure 3.19 as formed using a truncated HG 

synthesis. The left column shows the reconstructed phase, and the right depicts the amplitude 

Re{E0(x0,y0)}, with (a)–(b) M = 10, (c)–(d) M = 40, (e)–(f) M =100.   

The image can be reconstructed with an arbitrary number of modes although the quality 

is greatly reduced for very small mode sets. See Figure 3.25. 

 

 

(a) (b) 

(e) (f ) 

(c) (d) 
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Figure 3.25 – Reconstruction of a hologram using Hermite-Gaussian modes with various sizes of the 

mode set M = (a) 10, (b) 20, (c) 40, (d) 100. (e) shows the elimination of the reference beam using M = 40 

compared to the M = 100 reconstruction in (f).   

 

The elimination of the reference beam from the reconstruction is a desired result in 

digital holography in the visible band where there is usually only small angular 

separation between the object and reference beams thus the reconstructed image will 

likely be obscured in some way. Using the conventional FFT technique, [KRE97] 

suggested that the influence of reference beam could be eliminated from the image 

reconstruction through subtraction of the mean of the recorded intensity values, i.e. 

000000 ),(),( hyxhyxh −=  

where <h0> is the mean intensity value of the original recorded hologram h0. 

(a) (b) 

(c) (d) 

(e) (f) 
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In Figure 3.25, it is clearly shown that the increase in modes, with comparison of (c) 

and (d) show no significant improvement of the image with an increase of M = 40 to M 

= 100, thus allowing for image reconstruction without the complete frequency content 

of the hologram and elimination of the reference beam. 

The author must emphasise that this method may only have useful application in 

long-wavelength holography systems such as the one developed by the author and co-

workers involving a large angular separation between the reference and object beams.  

 

3.6 - Conclusion 

The details of a millimetre wave digital holographic system have been presented. 

With reference to the literature and other descriptions of digital holography at visible 

wavelengths, a measurement system operating at 100 GHz has been modified to record 

holograms from which the field structure of diffracted fields have been determined  

using numerical techniques.    

The Hermite-Gaussian mode expansion as an alternative technique for 

holographic image reconstruction has been demonstrated. The technique allows for the 

formation of images with an incomplete description of the hologram structure using a 

fewer number of modes, and thus less spectral information than is used in the fast 

Fourier transform. While not inefficient, the technique does not “compete” with the 

speed of the FFT which is the benchmark for methods of image reconstruction in digital 

holography. The Hermite-Gaussian expansion, in its standard form, does not allow for 

the near real-time reconstruction of images like the more established method, thus 

development of a similar speedy algorithm for generation of Hermite-Gaussian modes is 

required. The technique of singular value decomposition (SVD) has been investigated by 

other researchers within this department, [WHI06], [GRD04], and although it returns 

approximate values of mode coefficients, its employment in software could go some 

way towards increasing the efficiency of modal calculations. One elementary time 

saving method would be the generation of “look-up” tables for each of the HG modes 

for commonly used mode quantities and sampling rates. This would be suitable when 

measuring holograms of consistent dimensions. With no specific scaling these modes 

could be used for synthesis of holograms without the need to generate large two- 

dimensional arrays every occasion a mode is required, which can be inefficient. 

Nevertheless, the method has the potential of being a useful application particularly in 

the retrieval of phase information from long-wavelength holograms and may have use in 
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the application of the system for determination of, for example, the phase centres of horn 

antennas, and work is ongoing within the NUIM Physics department on such a function.   

Since the publication of [MAH06] the technique has also been applied at 

millimetre wavelengths (310GHz) in a reflection imaging mode by [TAM08].  

In future work, the phase properties of the reference beam may have to be 

obtained more accurately to improve the quality of the image reconstruction. This may 

involve the use of a simple plane mirror instead of the parabolic reflector that was 

employed here. Although a plane mirror will create a wider beam at the plane of the 

hologram, its phase will be easier to predict allowing for even greater accuracy in the 

image reconstruction.  
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Chapter Four 

 

Gaussian Beam Mode Expansion of Optical Pulses 

 

4.1 – Introduction 

In this chapter we discuss the novel application of GBMA to short 

electromagnetic fields and illustrate the power of the technique over the conventional 

use of the Fresnel diffraction integral, which requires a description of the behaviour of 

pulsed Gaussian beam modes (PGBM).  

The nature of light that the human eye detects everyday is vastly different from 

the coherent and almost ideally monochromatic radiation generated by lasers and 

millimetre wave sources. The white light that we see is a superposition of all 

wavelengths of light in the visible band of the EM spectrum, resulting in an incoherent 

field due to the unrelated phase between waves of different colours scattered by objects. 

But when the phases of each spectral component in a polychromatic field have a 

definable relationship, the behaviour is much different to that of white light.  

Up to this we have discussed the propagation of continuous wave (cw) 

monochromatic beams, with uniform amplitude and durations large enough to allow for 

neglect of the time dependence of a field in an intensity calculation. However, advances 

in laser technology have allowed for the generation and, perhaps more importantly, the 

detection of pulses caused by signals with durations on the order of femtoseconds (10
-

15
s) at visible wavelengths, with the low number of substantial oscillations in the signals 

earning these fields the description ultrashort. These types of pulses are particularly 

useful for experiments where fields with energies and durations associated with atomic 

transitions are required, [HARR90, MCK07]. The study of short pulses is also applied 

in telecommunications with transmission of such fields along fibre optical cables 

[KAM97].  

At terahertz frequencies, the techniques of time domain imaging and 

spectroscopy using pulsed radiation has become a powerful research tool in the process 

of material classification using ultrashort pulses, [PRA07, KIN96,WAT04)]. Figure 4.1 

shows an example of a typical experimental layout for terahertz imaging in the time-

domain.  
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Figure 4.1 - Schematic of a THz time domain optical system. Reproduced from [CHA07].  

 

The system described in Figure 4.1 consists of a femtosecond source generating 

a train of pulses assumed to have identical temporal shapes, usually with a repetition 

rate in the kHz range. Using a beam-splitter the pulse train is divided into two further 

signals with one used to generate the terahertz pulse for illumination of an object, while 

the other is employed to define the time and duration of each detection. The terahertz 

radiation is generated by targeting a photoconductive antenna with an ultrashort 

femtosecond pulse in the visible or near-IR bands generated by a mode-locked laser. A 

bias voltage is applied across electrodes attached to a sample of, for example, Gallium-

Arsenide (GaAs), but with no illumination by the laser pulse the resistivity of the 

material is very large and no significant movement of charge occurs. When the sample 

is illuminated by the laser field charge carriers are created in the semiconductor 

allowing a current to flow within the material which generates a short terahertz pulse, 

the strength of which is related to the rate of change of the current density J, i.e. E ∝ dJ 

/ dt. The detector relies on similar physical processes but in this case photocurrents in 

the GaAs substrate are generated by the detection of a laser pulse and the illuminating 

terahertz pulse induces currents which are then measured using an ammeter attached to 

the terminal electrodes. The temporal structure of the pulse then determined, not from a 

single pulse, but by sampling pulses in the wave train at different times which is made 

possible with a mechanical variation of the optical path length of the pulse responsible 

for the generation of the THz field. 
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Generally, millimetre-wave imaging systems rely strongly on the prediction or 

measurement of the diffractive behaviour of the fields and obtaining information from 

the field intensity. Image formation using THz time-domain systems relies more on 

analysis of temporal properties such as the delay caused by the interaction of the pulse 

with media of differing refractive indices, with lesser attention paid to diffraction effects 

of the pulse. Time-of-flight measurements have been demonstrated using pulsed fields 

which with post processing can determine, for instance, the interior make-up of a test 

object based on the arrival times and phases of the pulse peaks  reflected by interior 

surfaces, which can then be used to calculate the position of material interfaces within 

the target. Figure 4.2 shows an example of results obtained using this technique.  

 

Figure 4.2 - Terahertz image recorded by time-of-flight measurements of a pulse. The lower image 

represents the depth of the object discs’ features at the dashed line in the upper figure, calculated from the 

measured delay of the reflected pulse. Reproduced from [MIT97].  

 

While the study of ultrashort pulse behaviour is a relatively recent endeavour, 

there is nevertheless a wide variation of techniques used to model the behaviour of time 

dependent fields, from the intensive finite-difference time-domain approach 

[GOO92,LUE90] to integral techniques such as the Smythe-Kirkhoff and Rayleigh-

Sommerfeld formulations of diffraction, [GUR00, BUD98]. Nevertheless, the use of the 

paraxial approximation has gained widespread acceptance in valid situations such as, for 
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example, the case of a pulse with narrow “bandwidth” and truncation of such a field by 

an aperture relatively larger than the carrier wavelength, [KEL08, SHE97, VEE06], and 

we shall continue to apply that approximation in this chapter. Firstly, to illustrate the 

dynamics of pulse diffraction the author used a two-dimensional FDTD model to 

simulate the general effects involved in the truncation of an ultrashort pulse at an 

aperture. Results of this simulation are illustrated in Figure 4.3.  

 
Figure 4.3 - The diffraction of an ultrashort pulsed Gaussian mode by an aperture shown by the absolute 

value of its amplitude |E|. The duration of the field is 1.27 ps with a central frequency of ν0 = 1 THz. The 

arrows depict the boundary wave (BW) and the geometric wave (GW).  

 

In Figure 4.3, if the aperture shown is defined by the presence of two opaque 

screens which are assumed to be infinitely thin, the features generated at the aperture 

BW 
GW 
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edge can then, in two dimensions, be considered as completely circular secondary 

pulses, or boundary waves (BW), which will have significant influence on pulse 

measurements in the near-field of the aperture. The portion of the field directed 

approximately perpendicular to the aperture plane is often referred to as the geometric 

wave (GW) [MEN07]. However, as described in chapter two, the FDTD method in its 

elementary form is not suitable for efficient calculation of fields at distances further 

from the source, and in general, unless material effects are a concern, such rigourous 

simulation can be very excessive.  

In the case of a continuous wave field, the generating signal amplitude is 

constant over time, oscillating at a single frequency. If the strength of that signal was 

modulated to have significant amplitude only within a finite time period, a spectral 

analysis would show energy content at frequencies surrounding the carrier frequency. 

Here, the diffraction of a field generated by a time-limited excitation is determined by 

the Fourier decomposition of the time signal into its constituent frequencies. The 

diffractive propagation of the individual monochromatic waves at each frequency is 

determined, and then the integration of the calculated fields for all spectral components, 

weighted by the corresponding spectral coefficients, is performed to determine the 

characteristics of the total structure of the diffracted pulse. 

In theoretical studies, the time signal of a pulse most commonly referred to 

within the literature involves a Gaussian envelope which we describe as 
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where t is the time, ω0 is the central or carrier angular frequency, and we shall refer to 

2τ as the pulse duration, which in the case of a true continuous wave is infinite. This 

form of excitation is commonly used due to the mathematical simplicity of the Gaussian 

function. Also, this function allows for numerical truncation of the spectrum in an 

analysis without any appreciable loss of energy contained within the pulse. This is in 

contrast to, say, the sinc function which defines the spectrum used for the modelling of 

a constant signal over a finite time (“top hat”). That requires a much larger spectral 

extent for accurate representation of the time signal due to the relatively large local 

maxima of the sinc function far from the carrier frequency. The form of signal given by 

eq. (4.1) will be used throughout this discussion.  
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Although the scalar diffraction methods described in chapter 2 show greater 

computational efficiency than the finite-difference time-domain method, the simulation 

of pulsed fields using FDTD actually has an advantage over this Fourier method in that 

the time signal can be explicitly set in a numerical simulation without having to address 

each component of a Fourier spectrum separately. Therefore the duration of simulations 

is not greatly increased from continuous wave models, which is a significant feature of 

the Fourier method discussed in this chapter.  

For the Gaussian signal defined in eq. (4.1), the analytical Fourier-transform is 

well known, and is given by  
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The definition for the bandwidth of a spectrum, �ω, differs within the literature, with 

some researchers quoting it as the full width at half maximum of the spectra. Here, for 

consistency with the conventional characterisation of the Gaussian function used 

throughout, we define the bandwidth of a Gaussian spectrum as the frequency range 

between a spectral width of 4 / τ surrounding the central frequency, i.e. the standard 

Gaussian 1/e width. The spectrum can be generalised by the dimensionless fractional 

bandwidth g = Dω / ω0, with g = 0 representing a continuous wave. For a comparison, 

the FWHM of any Gaussian function can be easily calculated from its width parameter 

w by 

2ln2wFWHM = .     (4.3) 

For the Gaussian bandwidths of 0.2 and 0.5, used here by the author, the FWHM 

fractional bandwidths correspond to 0.166 and 0.42 respectively. The number of 

oscillations over the duration of a signal, 2τ, is also a useful quantity for reference and, 

for a Gaussian definition of the signal, is given by 4 / (γ π), (γ = 0.2→~6.36 cycles, γ = 

0.5→~2.5 cycles). While these bandwidths are comparatively large, the effects of pulse 

propagation are more easily visualised with shorter durations. The reader should note 

the use of both the temporal frequency ν and the angular frequency ω will be used 

interchangeably. Figure 4.4 depicts an example of such a time signal and its 

corresponding Fourier spectra.  
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Figure 4.4 – (a) An example of a time signal and its Fourier spectra expressed in terms of (b) frequency 

and (c) wavelength. λ0 = 0.3mm, g = 0.5, 2τ = 2.54 ps. Note the asymmetry of the spectrum in (c).  

 

In the literature, the general method of calculation of the paraxial diffraction of 

pulsed fields is again through the use of the Fresnel diffraction integral, eq. (2.2 and 

2.5). The following equation (4.4) describes this computation in the cylindrical regime 

as the integration of each monochromatic field within the spectral range of the defined 

spectrum with relative amplitudes defined by S(ω).  
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with ω the angular frequency, related to the temporal frequency ν as ω = 2πν. The term 

within the braces defines the diffracted field of an individual component for an 

individual value of ω first defined in chapter 2 by eq. (2.5). The outer integral, over ω, 

defines that the diffracted monochromatic field is calculated for all values of ω and 

superimposed to determine the nature of the resulting pulse.  

(a) (b) 

(c) 
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As the spectral technique described requires integration over the frequency range 

the resulting analysis is obviously a double integral, further increasing the complexity of 

the calculation and therefore greatly increasing its computation time. The most 

significant cause of excessive computation times in the Fourier method of pulse 

calculation, regardless of the method by which diffraction effects are predicted, is the 

number of samples, Nω, used to discretise the continuous frequency spectrum. With a 

discrete representation aliasing of the field will always occur and unwanted features are 

replicated in the time domain at delayed times of  

δω
πδ ωN

t 2= , 

where δω is the range over which the spectrum is defined, which, in the simulations 

here involving Gaussian spectra, is six times the bandwidth, 6�ω, so as to ensure an 

accurate representation of the spectrum. Therefore, a sufficient number of samples 

should be used to eliminate the aliasing effects from the region of interest, which can 

add significant computation time to the models.  

Some publications attempt to reduce the complexity of eq. (4.4) by development 

of algorithms simplifying the spectral integration through signal processing techniques, 

[VEE06, KEL08]. However, with our knowledge of modal diffraction techniques we 

can reduce the complexity of that calculation by introducing the Gaussian beam mode 

approach for field propagation in the time domain.  

Here we will describe the propagation of pulsed orthogonal beam modes and 

how the summation of such modes can be used to calculate the structure of pulsed fields 

diffracted by practical apertures. As with continuous wave calculations in the preceding 

chapters, the GBMA method serves to reduce the computation time of the Fresnel 

formulation of pulses, by reducing the complexity of the diffraction integral to an M+1 

term sum with negligible loss of accuracy in regions of interest. This theory of 

diffraction also provides an alternative physical insight into the propagation of 

ultrashort pulses, in that rather than an integration of monochromatic beams in 

frequency space, as is the conventional method, the complete field of the diffracted 

pulse can be thought of as a superposition of individual and independent pulsed beam 

modes which, when superimposed with correct weightings, combine to form the total 

pulsed field diffracted by the aperture. In particular, we highlight the similarities in the 

propagation of higher order pulse modes and the boundary waves generated by a 

discontinuous aperture edge.  
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Here, and throughout this thesis, Matlab
TM 

was used in numerical simulations. 

The amount of code required is much more extensive than, say, Mathematica
TM

 or 

Maple
TM

, but the increase in calculation speed is adequate cause. In particular, the use 

of vectorisation, described briefly in chapter 2, is a very useful programming tool for 

numerical work.  

 

4.2 - Pulsed Laguerre-Gaussian beam modes 

The structure of an unobstructed infinitely wide pulsed plane wave can be 

determined by the inverse Fourier transform 
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With a Gaussian spectrum in the form of eq. (4.2), eq. (4.5) can be solved analytically to 

give  
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The amplitude part of the field, as a function of the longitudinal position, is defined as a 

Gaussian due to the properties of the Fourier transform of the Gaussian time signal, and 

this form of plane wave can be used as the benchmark for comparison with pulses that 

undergo diffraction and transformation. The longitudinal length of the plane wave pulse 

is easily extracted from the Gaussian amplitude term of equation (4.6) and is given as 

2cτ. In a similar manner to eq. (4.5), the diffracted field of a pulsed Laguerre-Gaussian 

beam mode of index m in free-space can be determined from 
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We can rewrite the Gaussian beam parameters in terms of the angular frequency, for 

convenience, as 
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We shall refer to the confocal distance at the central frequency as Z0 = Zc(ω0). Figure 4.5 

shows the evolution of LG pulses over time at various distances calculated from eq. 
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(4.7). At z = 0, the pulse structure resembles the cw mode with a temporal modulating 

envelope. But as the distance z increases one can see the influence of the deviating 

diffractive behaviour of each spectral component on the overall structure of the pulse.  

For depiction of pulsed fields in the time domain, the results are shown with relative 

values on the temporal axis using a retarded time of z / c, which is the arrival time at 

each z plane of an undisturbed planar pulse, and scaled in relation to the temporal half-

duration τ of the Gaussian time signal.  

 

Figure 4.5 – Propagation of the  m = 15 pulsed paraxial Laguerre-Gaussian beam mode shown. γ = 0.2, 

w0 = 100 λ0. The fields are calculated with (a) z = 0, (b) Z0, (c) 4 Z0, (d) 12 Z0, and are shown on a 

logarithmic scale normalised to the maximum intensity value |E|
2
. The radial coordinate is shown in 

relation to the waist parameter at the central frequency wz = w(ω0,z), at each plane.  

 

Due to their more complicated transverse amplitude profile, pulsed Laguerre-Gaussian 

beams obviously exhibit strong deviation from the propagation of pulsed plane waves, 

and their analysis shows some peculiarities due to the Gouy phase shift of each spectral 

component. While the above plots show the changing structure of the PGBMs, such 

fields are subject to phenomena that may not be apparent in the illustrations given. 

(a) 

(d) 

(c) 

(b) 
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These effects are more distinct in the propagation of much higher ordered pulsed modes 

as described in Figure 4.6 with an on-axis comparison of pulsed modes with an 

unobstructed pulsed plane wave given by eq. (4.6).  

 

 

 

 

Figure 4.6 - A comparison of the m = 40 and m = 100 pulsed Laguerre-Gaussian modes with a pulsed 

plane wave (red) with g = 0.5, λ0 = 0.3 mm, w0 = 100 λ0. Calculated at z = (a) 0.1 Z0 (b) Z0 (c) 2 Z0 (d) 200 

Z0.  The amplitude of the LG modes has been normalised to unity for comparison.  

 

Note that the peaks of the amplitude envelopes do not necessarily coincide with 

the peak of the oscillatory real part of the fields. A discussion of this delay in the 

amplitude envelope relative to the phase of lower index ultrashort Laguerre-Gaussian 

beams is presented in [YANG08].  

The fields described in Figure 4.6 show behaviour very similar to that exhibited 

by pulsed fields affected by dispersion within an optically dense medium, which is 

caused by a variation of the phase velocity of the frequency component. A temporal and 

spatial delay in the propagation of the GBM pulses along with a broadening of their 

temporal and spatial width causes a reduction in the peak amplitude alongside a delay in 

(a) 

(b) 

(c) 

(d) 
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the pulse peak, all of which are representative of the effects of normal dispersion. While 

after a certain distance it can be seen that the pulse duration begins to decrease towards 

its original duration, and linked with this phenomena the delay of the pulse in arriving at 

z is reduced, indicating a greater speed, which is behaviour akin to anomalous 

dispersion. Following the suggestion in [POR02], and from the investigative numerical 

results shown above, a suitable description of the on-axis propagation of a pulsed 

Laguerre-Gaussian beam can be achieved through the analogy of a plane wave 

propagating through a dispersive medium, with the inhomogenous dispersion relation 

n(ω) of the hypothetical  effective medium causing behaviour equal to that generated by 

the Gouy phase term.  

Although not particularly noticeable with narrow bandwidths and lower order 

pulsed modes, similar associated effects have previously been described in relation to 

pulsed Bessel-Gauss beams in [HU02]. In that report the effects are suggested to 

represent a “spatially induced dispersion” (SID) which is a very suitable description of 

the behaviour.  

 

4.2.1 – Elements of optical dispersion 

In a famous experiment, Isaac Newton demonstrated the dependence of the 

refractive index on the colour of the light, thus proving the notion of dispersion, a 

variation in the velocities of light of different colours in transparent material. This 

thesis, and indeed a large proportion of literature relating to diffraction, has been 

primarily concerned with the free-space propagation of electromagnetic fields, where 

the permeability and permittivity result in a refractive index n that is normally 

approximated to be unity, equating the wavelength to that in a vacuum. The modern 

theory of dispersion is described through the bulk polarisation of the electrons in a 

medium acted upon by an oscillating electric field, see [BORN97]. When one is dealing 

with the interaction of broadband pulsed fields with optically dense materials such as 

those used in lenses, the variation in refractive index across the frequency spectrum of 

the pulse must be incorporated into any mathematical description.  

The refractive index n of a material can be calculated by use of the Cauchy or, as 

given here, the Sellmeir formula: 
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where Bj and Cj are the “Sellmeir coefficients”, determined from experiments. Note that 

in the above equation, λ is the radiation wavelength in a vacuum, assumed to be in 	m, 

while the wavelength in the medium is given by λ/n(λ). Table 4.1 below gives the 

Sellmeir coefficients, for λ in 	m, for three frequently used forms of glass, with each 

coefficient corresponding to a resonance frequency of the material at which radiation of 

the corresponding wavelength is absorbed.  

 

 Borosilicate  (BK7) Quartz  (SiO2) Fluorite  (CaF2) 

  B1 1.03961212 6.9616630×10
-1

 5.675888×10
-1

 

B2 2.31792344×10
-1 

4.0794260×10
-1

 4.710914×10
-1

 

B3 1.01046945 8.974794×10
-1

 3.8484723 

C1 6.00069867×10
-1

 6.8404300×10
-2

 2.5264299×10
-3

 

C2 2.00179144×10
-2

 1.1624140×10
-1

 1.00783328×10
-2

 

C3 1.03560653×10
2
 9.8961610 1.20055597×10

3
 

Table 4.1 – Sellmeir coefficients of BK7, SiO2, CaF2. Reproduced from the Schott optical catalogue.  

 

Figure 4.7 displays the variation of refractive index for BK7 using the data of table 4.1 

in the Sellmeir relation of eq. (4.8). 
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Figure 4.7 - The refractive index in BK7 for a Gaussian frequency spectrum with the central wavelength 

λ0=800nm.  

 

In an elementary sense, a variation of refractive index, n(ω), within a medium reduces 

the speed of a monochromatic wave with angular frequency ω from c to c/n(ω), 

therefore the wavenumber within the material is n k. The on-axis propagation of the m
th

 

pulsed Laguerre-Gaussian beam mode can be calculated from  
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 (4.9) 

The primary phenomenon of concern in dispersive materials is the alteration of 

the pulse velocity that depends on the variation of refractive index across the frequency 

spectrum, which will also create a broadening in space and time due to a variation in 

velocity of each spectral component. Shown in Figure 4.8 is the structure of a plane 

wave pulse after propagation in borosilicate (BK7).  
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Figure 4.8 – Example of dispersion of a plane wave pulse in quartz (SiO2). γ = 0.5, λ0=800nm. Note the 

temporal delay, asymmetric broadening, and variation in wavelength along the pulse.  

 

 The effects of dispersion on the pulse are very evident in Figure 4.8. In that 

case, the group velocity of the pulse is reduced to ~0.6c, illustrated by the significant 

delay in comparison to a wave with group velocity of c. The variation of the individual 

phase velocities at each frequency creates an irregularity in the amplitude structure, 

commonly known as a chirp, along with a broadening of the pulse length. With the 

emergence of such a pulse from a dispersive material of length L into free space the 

increased pulse duration acquired by the wave train in the medium is maintained in free 

space, with the dispersed pulse trailing an ideal free space pulse by a distance of cL / vg. 

This has significant consequences in the focusing of ultrashort femtosecond pulses by 

lenses, and will be applied in a later chapter. See also [BOR89,DENG05].  

 

4.2.2 – Free-space dispersion effects in pulsed Gaussian fields 

While the propagation of pulses is determined by a superposition of frequency 

components over continuous spectra, the addition of two individual monochromatic 

waves is a very simple demonstration for the calculation of the general properties of 

polychromatic wave-trains. Suppose two right-travelling waves of differing 

wavelengths, but equal velocities and wavelengths, are given by  

E1 = E0 ( )tzk 11sin ω−  and E2 = E0 ( )tzk 22sin ω−  

The sum of these two waves is given by use of the identity, 
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which gives the total amplitude as 
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and this results in a wave whose frequency is the average of ω1 and ω2 and the 

amplitude of which is modulated by the cosine term in the above expression. The 

velocity at which the phase of a sinusoidal travelling wave propagates is given by ω / k. 

However, in the expression of Etotal as given above the total resultant wave is given by 

the superposition of a sine and cosine term, each representing waves with propagation 

velocities that may vary. For the disturbance defined by the sine term, the speed at 

which this wave energy propagates defines the phase velocity given by  

p

p

p
k

v
ω

=  

where ( ) 221 ωωω +=p  and ( ) 221 kkk p +=  are the average values of the angular 

frequency and wavenumber respectively of each individual wave. The multiplication of 

the sine term by the cosine term produces an amplitude modulated field evident in the 

total wave field by the appearance of clusters of nodes along the wave train, see Figure 

4.9. The propagation rate of this modulating envelope, the group velocity, is calculated 

in the same manner as above, but results in a velocity given by 

kkk
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As the difference between wavelengths become infinitesimal, as is the case with 

continuous spectra, the general expression for the group velocity vg is given by 

dk

d
vg

ω
=  

which can, but not necessarily, equal the phase velocity vp. 
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Figure 4.9 – Superposition of two sinusoidal waves of differing wavelengths. The red line indicates the 

amplitude modulation for which the group velocity is defined.  

 

This expression for group velocity in general holds for multi-spectral fields. However, a 

more broad definition is given in [BORN97], with Dω/ω0 << 1, and expresses the group 

velocity as  
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where f represents the phase of each spectral component at each point (x,y,z). For 

pulsed plane waves f(ω) = ω z / c giving vg = c. A more practical expression for the 

group velocity of a pulse propagating in a dispersive medium with refractive index n(ω) 

can be derived from d(n(ω)ω/c) / dω and is given in [PED93] as 
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and essentially defines the velocity of the amplitude modulating waveform, [DENG05]. 

From the definition of a Gaussian beam given in chapter 2, it can be seen that the Gouy 

phase shift creates a variation of the local wavenumber proportional to the propagation 

distance z. For waves described by complex exponential or sinusoidal variations the 

local wavenumber of the field is calculated from the derivative of the phase term with 

respect to z [GOO05]. So, for a radially symmetrical Laguerre-Gaussian beam mode, 

the on-axis phase is 
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Now, to proceed with a formulation of the group velocity of the pulsed Gaussian beam, 

we can make an analogy with the propagation of a plane wave through an optically 

dense material. If the refractive index of a material such as glass or high 

density� polyethylene is given by n, then an on-axis description of the monochromatic 

wave is given by  

E(z,t) = exp(i κ z - ω t), with  κ = n k 

Thus, the on-axis field of a Gaussian beam can be equated, after division of κ(z) by, and 

substitution of, k = ω / c, to a plane wave propagating through a hypothetical material 

with a refractive index that varies on the optical axis according to the propagation 

distance as 
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Then we can write, using (4.11), for a short pulsed LG mode with index m 
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where Z0 is the confocal/Rayleigh distance for the central frequency component ω0. 

Note that this expression is also valid for a one-dimensional Hermite-Gaussian pulse 

with a replacement of the mode indices 2m + 1 ï m + 1/2, without interfering with the 

preceding derivation. This analytical result, equation (4.14), is verified by the numerical 

results depicted in the following plots for a “very” paraxial pulse, i.e. w0 / λ >> 1, but 
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does naturally have restrictions beyond the paraxial regime that causes this prediction 

(4.14) to deviate from the true physical behaviour with w0 ≤ λ, based on the effects 

described in section 2.8.1. Porras et. al. describe such non-paraxial behaviour for the 

pulsed fundamental Gaussian beams in [POR02].  

 

Figure 4.10 – The group velocity of an ultrashort pulsed Laguerre-Gaussian beam. λ0=0.3mm, w0 = 100 

λ0, and γ = 0.2.  

 

The group velocity of the pulse has a value vg < c at distances less than the confocal 

distance, but at z = Z0 its speed has increased to c and acquires a greater group velocity, 

which reaches a maximum superluminal value at cZz 3=  beyond which the group 

velocity decreasingly converges upon the vacuum speed of light. The temporal delay of 

the m
th 

pulsed LG mode at a plane z can be determined by accounting for the delay 

incurred within each previous infinitesimal distance dz'.  
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Figure 4.11 shows the variation of the temporal delay, Dtm, of Laguerre-Gaussian beam 

modes due to the Gouy phase shift, quantified by the difference in their arrival time at a 

plane to that of a plane wave pulse with equal duration and bandwidth.  
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Figure 4.11 – The temporal on-axis delay, �t, of the amplitude envelope peak of a pulsed Laguerre-

Gaussian mode at a plane z. The delay is shown relative to the value of τ.  λ0 = 0.3 mm, w0 = 100 λ0, g = 

0.2.  

 

For Laguerre-Gaussian pulses with m > 0, the variation in delay follows the 

same trend as those of the fundamental fields but with increased magnitude, with each 

mode showing a maximum delay from z / c at the confocal distance Z0 which has a 

magnitude of 

( )
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21
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+
=∆

m
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The increased delay in detection of the modes of higher indices is determined by the 

Gouy phase shift and is found to be (2m+1) times the shift of the m = 0 mode, [VAS09].  

With numerical simulation of the propagation of pulsed LG modes using 

eq.(4.7) further phenomena involving the pulse structure are identified. One such effect 

observed in this work is that of free-space temporal and spatial broadening of the pulsed 

LG modes, particularly in the near field of their propagation. At the source (z = 0), the 

duration of the LG pulses is consistent with that of a pulsed plane wave with the same 

signal modulation. But as z increases, the duration of the detected pulse, 2τ(z), reaches a 

maximum value before the confocal distance, and converges to a value that slightly 

exceeds the original duration 2τ. See Figure 4.12.  
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Figure 4.12 – Free-space pulse broadening of a pulsed Laguerre-Gaussian beam. The variation is 

described in relation to the original duration of the pulse τ at the source.  g = 0.2, λ0 = 0.3mm. w0 = 100 

λ0.  

 

The comparison of pulsed plane waves with ultrashort LG modes in Figure 4.6 

does not exhibit the variation in amplitude, which has been normalised to that at its 

source for easier assessment. However, the dispersion-like effects observed in the near 

field create a deviation in the amplitude fall-off of the LG modes compared to the 

monochromatic amplitude variation given by 2)(2 zwπ (or w0/w(z) when normalised 

to the amplitude value at z = 0). This divergence from the continuous-wave field 

strength is brought about by the pulse broadening depicted in Figure 4.12, and in 

conserving energy the peak axial amplitude of the pulse envelope is reduced in regions 

where pulse expansion occurs. Shown below are examples of the longitudinal envelope 

peak amplitude at increasing distances for LG pulses with various mode indices.  
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Figure 4.13  – The normalised variation of the maximum on-axis amplitude of Laguerre-Gaussian pulses 

at distance z.  Calculated with g = 0.2, λ0 = 0.3 mm, w0  = 100 λ0.  

 

For consistency with the preceding plots a value of w0 = 100 λ0 was used in 

calculating the data of Figure 4.13, and modes of extremely high indices were required 

to illustrate the behaviour of the on-axis amplitude. With smaller values of w0 / λ, these 

effects are much more obvious in the propagation of lower index modes. As a point 

reference, the variation of the peak axial amplitude in the case of m = 0 deviates only 

negligibly with these parameters from that of the corresponding continuous wave mode, 

w0 / w(z).  

The pulses described in the preceding text have the common feature of more 

than one oscillation over the pulse duration 2t and generally exhibit similar spatial and 

temporal features in relation to this time. In the case of signals with less than one 

significant cycle within the pulses defined duration, the behaviour of Gaussian beam 

modes driven by such a short  impulse show significant deviation from those described 

previously, with a large increase in the relative temporal delay and broadening. See 

Figure 4.14.  
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Figure 4.14 – The structure of the (a) - (b) m = 0 and (c) - (d) m = 10 Laguerre-Gaussian pulses with an 

extremely wide bandwidth, g = 4, ν0 = 1 THz, w0 = 100 λ0. The fields are calculated at z = Z0 in (a) and 

(c), and at z = 20 Z0 in (b) and (d).  

 

The validity of the fields plotted in Figure 4.14, with γ = 4, is questionable. With 

such a large bandwidth, similar calculations involving significant wavelength 

components in the spectrum that are much larger relative to the beam dimensions will 

cause divergence beyond that accounted for in the paraxial regime. However, the 

propagation of fundamental paraxial Gaussian pulses with similar “ultrawide” 

bandwidths has been explored in [ZIO92], with the fields exhibiting the same structure 

of Figure 4.14 (a) and (b), and with a large value of w0 / λ the predictions should 

maintain some accuracy along the optical axis.  

 

 

(a) 

(b) 

(c) 

(d) 
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4.3 – Diffraction of an ultrashort pulse at a circular aperture using 

Laguerre-Gaussian pulse modes 

 

The knowledge obtained of pulsed Laguerre-Gaussian beams in the previous 

sections can now contribute to a more practical numerical application, the prediction of 

pulse dynamics diffracted by general aperture functions. Instead of using the Fresnel 

integral, the calculation can be simplified using the Gaussian beam mode expansion for 

each monochromatic spectral component. We can apply the calculation of mode sets for 

each individual frequency in the pulse spectrum, but in the modelling of an aperture 

transmission function that is independent of wavelength, i.e. those that affect only the 

amplitude of the illuminating wavefront, the mode sets are equivalent for all 

wavelengths which allows for very efficient execution of numerical simulations. In the 

case of optical elements such as lenses, with the aperture function exp(iωr
2
/2cf), the 

structure of the field at the source varies according to frequency, therefore an overlap 

integral is required for each individual monochromatic component.  

For a phase independent aperture, replacing the monochromatic diffraction 

integral in (4.4) with the Gaussian mode expansion, eq. (2.37), the field of a pulse 

diffracted by an aperture can now be written as  

( ) ( ) ( )titzrAStzrE
M

m

L

mm ωωψω
π

−







≅ ∫ ∑

∞

∞− =

exp,,,
2

1
),,(

0

  (4.15) 

This form of calculation will be applied in the description of modulation of pulses by 

diffractive optical elements in chapter five. However, in this chapter we present the 

calculation of general pulses as a sum of ultrashort Laguerre-Gaussian modes described 

in section 4.2.  

If we assume the aperture E0(r0) to be an amplitude modulation only with no 

variation of the transmission properties across the frequency spectrum, then the mode 

set Am is constant for all frequency components, and we can then interchange the 

summation and integral in (4.15) to give  

( ) ( )∑≅
M

m=

mm tz,r,Atz,r,E
0

ξ  ,                                 (4.16) 

where the modal constituents of the field now have the form of pulsed LG modes ξm 
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a simplified form of eq. (4.7). Therefore, instead of a superposition of monochromatic 

waves, eq. (4.16) represents the diffracted field of a pulse through summation of 

individual and independently propagating pulses which the author believes to be a novel 

interpretation of the physical situation. We will show in the following pages how 

features of pulse diffraction by an aperture can be described intuitively through the 

behaviour of the individual modes as described in the previous section.  

In practical terms, we can solve for the diffraction of pulses by an aperture using 

eq. (4.15) or eq. (4.16). But when using Matlab
TM

, in which Laguerre polynomials have 

to be defined through customised recursive methods, eq. (4.15) is the most efficient 

description, as it reduces the number of times that such functions have to be calculated. 

The advantage of the GBM expansion of pulses over the conventional diffraction 

integral techniques, as with cw calculations, is that once the mode coefficients have 

been determined, which can be speedy, the calculation of diffraction effects no longer 

relies on the sampling rate of the aperture function, which, particularly for oscillatory 

transmission functions, can be necessarily large. At further distances from the aperture 

the complexity of the diffraction calculation can be reduced by truncating the sum at 

lower values of M without any detrimental effects on the accuracy of the pulse field 

calculation, in regions within the limited transverse extent of the modes. As a novel 

approach, in this chapter we will discuss pulse simulation using (4.16), paying attention 

to the properties of PGBMs as described in the previous section. 

It may be possible to obtain an analytical solution for ξm(r,z,t) in the far-field, 

particularly if an idealised pulse spectrum is based on the exponential function which 

could be combined with the Gaussian amplitude and exponential phase terms of the LG 

modes. This was shown in [ZIO92] with the authors deriving approximate expressions 

for the propagation of an ultrashort pulsed fundamental (m = 0) Gaussian mode, but for 

the specific Gaussian temporal pulse shape. A similar derivation for higher order LG 

and HG pulses would allow for a very efficient method, eliminating the time expense in 

equation (4.17), but here, for generality, we employ numerical calculation of each 

pulsed LG mode without restricting the technique to one particular form of temporal 

signal.  

In the following example of pulse propagation we show the near-field on-axis 

diffraction effects of a pulse with γ = 0.2, diffracted by a circular aperture with radius a 

= 25λ0, calculated using (4.16) with M = 500. We define the carrier angular frequency 

as ω0 = 6.28×10
12

 rad / s corresponding to a frequency of ν0 = 1 THz (λ0~0.3mm), and 
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the radius of the aperture is 7.5mm. However, we will present the results with a generic 

description of the diffraction parameters based on the Fresnel number of the optical 

system at the carrier wavelength, NF = a
2
/(λ0 z). See Figure 4.15.  

As seen in the following Figure 4.15, the diffraction of a pulse at a hard aperture 

is apparent in the form of a boundary wave that trails the geometric wave on the optical 

axis. This is an artefact of the generation of spherical pulsed waves by Huygens' sources 

at the edge of the aperture and is a more evident feature in the near-field of the 

propagation, see also Figure 4.3. At a time t, the boundary waves are centred at the 

edges of the aperture and manifest themselves on the axis at a position of  

,222 atcz −=  

and in the time domain the boundary waves are detected at a given plane at the time 

.
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az
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+
=  

Under the paraxial approximation there are deviations from this value at distances very 

close to the aperture, with the boundary waves predicted to arrive at a plane z at a time 
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Figure 4.15 – The on-axis field Re{E(r = 0,z,t)}, in red, and the envelope |E(r = 0,z,t)|, shown in blue,  of 

a paraxial pulse truncated by a circular aperture, with increasing distance, NF = a
2
/λ0z = (a) 25, (b) 16, (c) 

11, (d) 5, (e) 1, (f) 0.1, using M = 500, γ = 0.2.  

 

As the propagation distance increases, the position of the secondary peak 

increases towards the primary pulse, with superluminal velocity, until both pulses 

converge upon each other. When this occurs both peak features interfere to cause a 

further delay of the pulse maximum from the plane wave arrival time (t – z / c) = 0 as 

well as an increase in amplitude, see Figure 4.15 (c) and (d). This feature is discussed in 

detail in [MEN07], where the authors discuss the application of the Rayleigh-

Sommerfeld integral to the analysis of this axial phenomenon.  

(a) (b) 

(c) (d) 

(e) (f) 
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The occurrence of the secondary on-axis pulse is not so apparent with longer 

pulses (i.e. narrow spectral bandwidths) in which case there is an overlap of the main 

geometric pulse with the boundary waves. In the case of extremely short pulses the 

effect becomes more pronounced when the narrow pulse length creates an evident on-

axis trailing feature over a much greater distance into the far-field.  

As well as affecting the valid transverse range of the mode, see Figure 2.17, 

truncation of an LG series to a finite number also restricts the longitudinal 

representation of a pulsed field more obviously at planes close to the aperture with very 

large Fresnel numbers, see Figure 4.16. Even when accurate convergence to the Fresnel 

result is obtained using a truncated LG expansion, one mode (with index m = M) 

becomes more evident in the near-field reconstruction, as there are no higher order 

modes with which this mode interferes and this causes divergence from the desired 

signal at that modes position. Yet, in the case of a M = 500 calculation used in the 

previous example the peak of the highest order mode, including the mode coefficient 

factor, occurs in the normalised axial near-field at approximately -50dB near the 

aperture, which is a negligible variation from the diffraction integral method.  

The process of calculating the on-axis amplitude for a pulse using the GBM 

method is swift and we can describe the longitudinal on-axis field calculation with 

various values of M using the complete mode set and compare the result with that of the 

Fresnel diffraction integral. Calculated at r = 0, and z = a
2 

/ 20λ0, the temporal 

amplitude patterns in Figure 4.16 and Figure 4.17 show the presence of the predicted 

boundary wave on the optical axis at a later time (~8τ ).  
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Figure 4.16 - The convergence of the on-axis pulsed Gaussian beam synthesis given by (4.16) (in red) to 

the Fresnel diffraction integral solution (blue) at z = a
2
/(20λ0), with varying sizes of the mode sets. The 

aperture radius a = 25 λ0, λ0=0.3mm, γ = 0.5.  

 

In Figure 4.17, it is seen that in the very near-field of the aperture, NF = 20, a 

relatively large number of modes is required for the result to converge to a sufficiently 

accurate result just as in continuous wave simulations. However, at further distances 

from the aperture, the field can be calculated using a significantly smaller mode set with 

negligible loss of accuracy, significantly reducing the computation time. Figure 4.18 

shows the variation of the normalised mean squared error between the on-axis LG 

synthesis, from eq. (4.16) compared with the prediction of the Fresnel diffraction 

integral eq. (4.4) for various values of the Fresnel number NF = a
2
/(λ0z).  
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Figure 4.17 – Two-dimensional reconstruction of |E(r,z,t)| with the same parameters as used in Figure 

4.16, at z = a
2
/20λ0. Shown with a dB scale with the field normalised to the maximum value of |E|.  

 

 

Figure 4.18 – The normalised mean squared error (NMSE) of the LG expansion of a γ = 0.5 Gaussian 

temporal pulse diffracted by an aperture of radius a = 25 λ0.  

 

Figure 4.19 shows results of a two-dimensional beam mode calculation at 

various distances in the diffraction scenario described above using a superposition of 
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501 pulsed modes, allowing for transverse calculation of the field well beyond the 

angular region of paraxial applicability.  

 

 

Figure 4.19 – The temporal form of a pulsed plane wave intensity |E|
2
 diffracted by a circular aperture at 

a
2 
/ λ0 z = (a) 25, (b) 10, (c) 1, (d) 0.1, using the pulsed GBM expansion eq.(4.16). γ = 0.5, ν0 = 1 THz. The 

fields are shown with a logarithmic  dB scale normalised to the maximum amplitude value.  

 

Now, a comment on the reconstruction of such fields with a Gaussian beam 

mode expansion is necessary. In our formulation of pulse diffraction as a superposition 

of ultrashort LG modes given by eq. (4.17), the reconstruction of the trailing boundary 

wave in the near-field, as depicted in the preceding figures, is made possible by the 

“dispersive” properties of the higher order modes described in section 4.2. Boundary 

waves are reconstructed only with a synthesis that includes a large number of pulse 

modes, and this is because of the similarity in propagation between these features and 

the higher order pulse modes. Like the pulsed Gaussian beam modes, the on-axis 

(a) 

(b) 

(c) 

(d) 
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manifestation of the boundary waves also has a superluminal velocity. The on-axis 

feature is generated by the interference of the spherical boundary waves and first 

appears on the axis at z = 0 at a time of t = a / c. See Figure 4.20.  

 

Figure 4.20 – Schematic of boundary wave propagation from a hard aperture.  

 

The length of the on-axis feature caused by the boundary waves, symbolised by 

the red arrows in Figure 4.20, decreases with increasing z which is similar to the 

spatially induced dispersive behaviour of the gaussian beam mode pulses, which show 

significant expansion in their near-field propagation, as shown in Figure 4.12.  

With an increasing mode number m the group velocity of a pulsed GBM at z = 

0 decreases, see Figure 4.10, thus it is only with high order gaussian pulses that the 

delay in the formation of the on-axis boundary wave feature begins to be mimicked. 

This is also in accordance with the GBM synthesis of the circ function described in 

chapter 2, where the discontinuity at the aperture boundary is simulated more accurately 

with larger values of M, thus the formation of boundary waves in a pulsed GBM 

diffraction calculation is an obvious exhibition of an accurate aperture synthesis.  

With increasing z the high frequency axial boundary waves converge upon the 

main geometric wave, and likewise the delay between the fundamental and the higher 

order pulsed mode components becomes less significant. Then, in the far-field the GBM 

solution can converge with a much smaller number of modes (within the transverse 

distances allowable by the finite extents of the modes). As an example, for the predicted 

field shown in Figure 4.19 (c) a similar calculation using M = 80 gave negligable 

deviation within the region shown from the field values obtained with the M = 500 

series, and for the data in Figure 4.19 (d) a superposition of 11 modes was sufficient to 

aperture 

z = 0 

a 
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reconstruct the same field. This adaptable approach of the modal technique is one of the 

primary advantages of the GBM calculation of pulses over the use of diffraction 

integrals.  

The similarity in structure of the pulsed modes and the boundary wave are 

highlighted in a further example, which also shows the applicabilty of the method with a 

somewhat more arbitrary source. We can easily illustrate the diffraction of a pulse by 

the aperture function given by  
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using the Laguerre-Gaussian expansion, with  coefficients as shown in Figure 4.21.  

 
Figure 4.21 – (a) The aperture function defined by eq. (4.19), and (b) the Laguerre-Gaussian mode 

coefficients of the same function.  

 

The red symbols in Figure 4.21 indicate the positions in the mode set of the 

fundamental m = 0 LG mode, and the m = 91 and m = 250 modes, with the effective 

extents of the latter two modes coinciding with the two outer discontinuities of the 

aperture in Figure 4.21 (a). In Figure 4.22 the pulsed modes with the indices, ξ0, ξ91, and 

ξ250, are overlaid with the total pulse field emerging from the aperture calculated with 

the complete mode set shown in Figure 4.21 (b). The association of the behaviour of 

these individual modes with the formation of the geometric and boundary waves can be 

clearly seen.  

 

(a) (b) 
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Figure 4.22 - False-Colour map of the diffraction of a pulse with γ = 0.5 by the amplitude grating defined 

by eq. (4.19) as calculated using eq. (4.16), with a = 25 λ0, and M = 500. Calculated at z = (a) a
2 

/ 25λ0, 

(b) a
2
/10λ0, (c) a

2
/5λ0. The -30dB contours of the normalised pulsed LG modes with m = 0 (white), m = 

91 (red), and m = 250 (M/2) (black), are shown to exhibit the roles of these modes in the pulse synthesis.  

 

For propagation within dispersive media, the diffraction effects of an aperture 

can also be determined with a GBM analysis. But it must be noted that within a 

dispersive medium the duration of the field is increased significantly thus higher 

sampling of the frequency spectrum is required to eliminate temporal aliasing effects in 

(a) 

(b) 

(c) 

(d) 
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the calculation that may overlap with the desired field. However, even in this more 

time-consuming calculation the GBM method again showed its efficiency over the 

diffraction integral approach. Figure 4.23 shows the propagation of a γ = 0.4 pulse in a 

dispersive media after diffraction by a circular aperture with radius a = 25 λ0.  

 

Figure 4.23 - Propagation of a γ = 0.4 field in BK7 after diffraction by a circular aperture. Predicted at z 

= a
2  

/ (λ0 z)  = 1.  λ0 = 800nm is the central wavelength of the spectrum in free-space . Dispersion has 

broadened the pulse to approximately 2.3 times its original duration.  

 

 The effects shown in Figure 4.23 have great significance in determining the 

dynamics of pulses modulated by transparent optical lenses. Dispersion will be 

discussed further in a later chapter, where we will apply the techniques presented here 

in the prediction of pulse behaviour after modulation by disperive lenses.  

 

4.4 - Amplitude smoothing of time dependent pulsed fields 

With narrow bandwidths the near-field diffraction pattern of an ultrashort 

pulse, recorded at the main pulses arrival time t = z / c, is similar to that of the cw beam 

(γ = 0) in terms of its overall structure and dimensions, but the increase in the spectral 

bandwidth (reduction in pulse duration) does cause a smoothing of the diffraction 

pattern, with an elimination of the narrow high frequency features observed within 

continuous fields. Each spectral component produces a different diffraction pattern 

which interfere causing a smoothing of the transverse amplitude structure, as described 

in Figure 4.24. Note that in this section the plots represent  the transverse instantaneous 

diffraction patterns at the plane z at a time t = z / c.  
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Figure 4.24 - The effect of the pulse bandwidth on the near-field diffraction pattern of a circular aperture 

at z = a
2
/(11 λ0), with λ0 = 0.3 mm and a = 25 λ0. γ = (a) 0, (b) 0.05, (c) 0.15, (d) 1.  

 

We know that for an infinitely long continuous wave field Huygens principle 

states that the field at any point is formed by the superposition of spherical waves 

derived from every point of a diffracting aperture, thus the field at any point consists of 

all possible frequency components defined by the location of the point in the diffraction 

plane and the dimensions and structure of the aperture. However, in the near field of a 

diffracted pulsed wave the high frequency wave-vectors, such as those involved in the 

formation of the boundary waves at the edges of the aperture, are separated in space and 

time from the geometric part of the field which has wave-vectors which are close to 

being parallel to the optical axis. Thus, the field at a constant transverse plane near the 

aperture does not, for the most part, contain the full range of spatial wave vectors 

created by diffraction at the aperture at any one instant, resulting in the effects shown in 

Figure 4.24.  

Figure 4.25 shows this effect in two dimensions with a field diffracted by an 

one-dimensional aperture and scattered by an arbitrarily shaped dielectric structure, as 

calculated using the finite-difference time-domain method.  

(a) (b) 

(c) (d) 
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Figure 4.25 – The time-averaged intensity in the diffraction plane of a one-dimensional aperture 

illuminated by (a) a continuous plane wave, and (b) a broadband γ = 1 Gaussian pulse. λ0 = 0.3 mm. (dB 

scale).  

 

The duration of the pulse signal affects the transverse amplitude variation at all 

planes for z > 0, but in the far-field the effects are somewhat different from those shown 

in Figure 4.24; the narrower longitudinal beam length combined with a smaller radius of 

curvature of the pulsed wavefront at greater distances means that a transverse 

measurement of the field at a constant plane z shows a beam with a greatly reduced 

width with larger bandwidths. While the near-field diffraction patterns of Figure 4.24 

generally maintain their original spatial width with increasing bandwidth, Figure 4.26 

shows that the duration of a pulse significantly affects the beam width of the 
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instantaneuous intensity distribution at the far-field plane z = c t, with elimination of the 

side lobe structure and significant narrowing of the measured field.  

 

Figure 4.26 – Far-field pattern of a plane wave field diffracted by circular aperture with varying 

bandwidth of a Gaussian modulating signal, calculated at a time t = z / c, with z = 100 a
2
/λ0.  

 

These aspects of pulsed diffraction could be important in the design of pulsed 

imaging systems where the illumination of a sample with complete coverage at any 

given time is required. The effects shown are also somewhat related to the smoothing of 

irradiance distributions formed by incoherent polychromatic white light, which explains 

why the high frequency ringing seen in continuous wave diffraction patterns described 

throughout this thesis are rarely seen visually outside of laser laboratories.  

 

4.5 - Diffraction induced variation of pulse spectra 

 While the prediction of a pulsed field amplitude at a certain point is an important 

issue in this research, the spectra of pulses are also affected by diffractive propagation, 

particulary in the near field of the propagation region, and effects relating to this must 

be accounted for in any analysis.  

Throughout the literature, the spectrum S(ω) used in theoretical computer 

simulations of pulse propagation is generally given within numerical software as an 

easily definable function, such as the Gaussian temporal variation used in this work. 

Another example of a commonly used spectrum is the Lorentzian distribution given by  

( )
2

2

0
2

12

1
)(









Γ+−

Γ
=

ωω
π

ωS  



 158 

with spectral full-width at half maximum Γ. However, such functions are used to define 

the behaviour of the pulse at the source of the field only. Upon propagation away from 

the source, the diffraction characteristics of the individual Fourier component fields at a 

point create a deviation of the measured spectral composition at each location from the 

original definition of the spectrum at the source. Consider a wave train defined as the 

sum of two Gaussian beams, one “blue” and one “red”, both with equal amplitude 

values at z = 0, and therefore equal coefficients in a Fourier analysis. Beyond the source 

plane the amplitude fall-off, say on-axis, will be greater for the beam with the longer red 

wavelength so the Fourier spectrum of the total field will show a less significant content 

of longer wavelengths, and maximum spectral amplitude will be seen at a frequency 

higher than ω0.  

For a pulsed Gaussian beam mode the variation of diffractive behaviour of the 

individual spectral components must be accounted for in the spectral description, and 

doing so results in an altered on-axis spectrum given by  
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which is independent of mode index. Therefore, in the case of the Gaussian spectrum 

assumed throughout this chapter, eq. (4.2), the altered frequency spectrum of the 

diffracted LG pulse modes can be described along the r = 0 axis as  
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This on-axis spectrum maintains a Gaussian-like spectral structure, but shows a shift of 

the maximum spectral amplitude to ω > ω0. Figure 4.27 shows, through numerical 

calculation, the on-axis influence of diffraction at a circular aperture on a pulse's 

Gaussian spectrum in the near and far fields.  



 159 

 

Figure 4.27 - The axial variation of the normalized Gaussian source spectrum of a pulse after diffraction 

by a circular aperture. Calculated with γ = 0.5, (a) z = 0.1 a
2 
/ λ0, and (b) z = 1000 a

2
 / λ0.  

 

 In section 2.6.1 it was shown that a null occurs in the on-axis amplitude of a 

field diffracted by circular apertures at a distance with an even integral Fresnel number. 

With the field data shown in Figure 4.27 (a), with NF = 10, this effect is shown with an 

elimination of the spectral strength at the carrier frequency ω0, as well as at other 

frequencies which also have an even Fresnel number at that plane.  

Figure 4.27 (b) shows how the field is subjected to a blue-shift in the far-field. 

Due to the greater diffraction effects that occur with longer wavelengths, their on-axis 

amplitude far from the source has relatively decreased more significantly, thus their 

content in the spectrum at that position is reduced. Also, while not obvious in Figure 

4.27 (b), the far-field spectrum shows a small reduction in the width of the spectrum. In 

the case of fields diffracted by basic aperture functions, the spectral behaviour can be 

(a) 

(b) 
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written explicitly and [HAN07] has derived paraxial expressions from the Fresnel 

diffraction integral for such spectral shift and compression in pulses diffracted by 

annular apertures in the far-field. [YAN07] presents a description of the spectral shift 

observed in pulsed Bessel beams.  

Like the phenomenon shown in the preceding section, these effects could have 

important implications in time-domain spectroscopy or imaging experiments where a 

spectrum at each point on a sample varies and a diffractive shift or compression of the 

spectrum must be accounted for in any analysis of a measured spectra.  

 

Conclusion 

Prediction of the characteristics of pulse diffraction is a relatively recent 

endeavour in the field of Optics, becoming a significant field of research only in the last 

fifteen years, primarily due to the complexity of the numerical calculations required. 

The methods we have employed in analysis of ultrashort fields could be a very useful 

supplement to the existing techniques within the literature, which, in the paraxial regime 

rely almost entirely on the integral formulation of diffraction. Through its numerical 

efficiency in depicting the evolution of diffraction effects quickly, the use of the 

Gaussian beam expansion in the calculation of pulsed fields was extremely beneficial to 

the author in his understanding of the dynamics of few-cycle pulses. The application of 

the Gaussian beam mode analysis in simulation of pulse propagation has allowed for a 

description of the behaviour of higher order pulsed Gaussian beam modes which has 

received little attention in optical research. Effects of the deviant behaviour in pulsed 

Gaussian modes from the ideal planar pulse due to the Gouy phase shift have been 

described. These cause a variation of the phase velocity in each spectral component and 

thus induce a group velocity deviating from c, which causes a spatial shift and temporal 

delay of the pulse peak. Related to this behaviour, a broadening of the pulse, in space 

and time, is created which is a phenomenon usually associated with the dispersion of 

beams within optically dense media, thus we have used this analogy, referred to as 

spatially induced dispersion to determine the group velocity of pulsed LG modes, and 

illustrated the occurrence of these free-space phenomena in the near field of Laguerre-

Gaussian beam modes according the mode indices.  

We have presented the use of Gaussian beam mode analysis in the calculation 

of few-cycle pulses both as a numerical technique and as an alternative physical model 
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of the diffraction of such short fields. In particular we have exhibited a qualitative 

relationship between the propagation of the pulsed higher-order modes and the 

formation of boundary waves created by diffraction aperture and the similarity in 

superluminal features exhibited by both.  

Gaussian beam mode analysis has been used in the numerical prediction of 

time-dependent fields within a refractive medium, with the effects of pulse dispersion in 

a linear dielectric being briefly described. The phenomena shown will have implications 

in the calculation of optical and terahertz pulsed fields diffracted/refracted by optically 

dense components such as lenses or optical fibres. Applying the GBM method to the 

calculation of diffractive effects by a dispersive optical component requires an overlap 

integral for each spectral component which can be time-consuming, but the GBMA 

procedure is again suggested to be efficient and will be employed in a later chapter.  

As a recommendation for future work, the modal description of pulses may 

perhaps also be applied to non-paraxial fields. The description of higher order Gaussian 

beam modes reported in [DUAN05] and applied by this author in section 2.8.1, could be 

easily adapted to the analysis of pulsed fields. Although those descriptions would lose 

validity near the aperture plane, the method would be a simple approach to solving the 

complicated Rayleigh-Sommerfeld diffraction integrals for pulses over a broad 

frequency range with less restriction on the validity of a calculated field at large angles 

off-axis in the far-field.  
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Chapter Five 

Focusing of Continuous and Pulsed Optical Waves by 

Diffractive Lenses  

 
5.1 – Introduction 

At millimetre wavelengths, optical systems are often confined to small volumes, 

particularly in telescope systems where numerous frequency channels may have to exist 

in the same confined space. Mirrors and lenses are necessarily large due to the 

wavelength and beam widths, and in particular lenses can be excessively bulky both in 

the transverse and longitudinal planes. With short focal lengths the resulting small 

radius of curvature of a lens means that absorptive losses, especially towards the centre 

of a thin spherical lens, may become very significant. Diffractive effects that can occur 

within a thick section of dielectric, but which are not accounted for in a planar model, 

could also reduce the validity of a predicted field when using paraxial techniques.  

For these reasons, planar lenses are desirable optical components for the 

concentration of radiation, and can be as thin as λ/(2(n-1)), making them easier to 

manufacture. The Fresnel lens, [ALDA06, ZHA07], is a typical example of such a lens, 

whereby the surface of a spherical lens is reduced in thickness by a modulo 2π operation 

on its phase modulation, resulting in a phase variation across the surface corresponding 

to its spherical analogue. These lenses are traditionally used, for example, in lighthouses 

where spatial and material restrictions demand the use thinner elements. This form of 

lens, however, remains difficult to manufacture due to small spherical variations in the 

surface height over minute regions. Thus for easier milling or lithographic etching, as is 

used for operation at visible wavelengths, such lenses are approximated by “staircase” 

profiles of the spherically varying surfaces with a number of surface levels P. While this 

formulation can reduce the suitability of the lens in an imaging scenario, particularly 

with a small number of surface steps, it allows for a much simpler method for the 

focusing of radiation to a detector while maintaining an acceptable degree of efficiency. 

Diffractive lenses, and in particular Fresnel zone plates have for example also become 

popular in X-ray systems where accurate manufacture of lenses with features on the 
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scale of nanometres becomes very difficult reducing the ability to create ideally 

spherical features, [MIC86].  

The applicability of scalar and more rigourous numerical techniques in 

accurately predicting the performance of diffractive lenses has been offered by [PRA01] 

where the authors highlighted the deviations between models that account for 

shadowing by the lens surface and non-paraxial propagation, i.e. finite-difference time-

domain, and those that do not, such as the scalar diffraction integrals. However, that 

paper did show, see Figure 5.1, that scalar diffraction techniques were suitable for the 

modelling of two-level (binary) lenses with F-numbers (ratio of the focal length to the 

lens diameter) as low as ~ 0.3.  This value is an exceptionally low value for the F-

number of a millimetre wavelength system, and the scalar theory is therefore suitable 

for most practical diffractive lenses for operation in the far-infrared. Figure 5.1 shows 

the regions of validity for the scalar techniques as proposed by Prather.  

 

Figure 5.1 – The validity of the scalar diffraction theory in the study of diffractive lenses. Reproduced 

from [PRA01].  

 

In this chapter we shall discuss the scalar diffraction of incident plane waves 

upon propagation through diffractive lenses and zone plates using the method of 

Gaussian beam mode analysis, and shall apply the same techniques as outlined in 

chapter 4 in the simulation of the effects of pulsed illumination of such elements.  

The object for comparison of the field structure of diffractive lenses is, of 

course, the field of an ideal thin spherical lens at its focal plane which can be calculated 
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analytically by substitution of the phase transformation term of a thin lens, exp(ikr
2
/2f), 

into the Fresnel diffraction integral, eq.(2.5), which, with z = f, eliminates the complex 

exponential terms from the integrand resulting in  
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where a is the outer radius of the lens, r0 is the radial position on the aperture plane and 

r the coordinate in the image plane. Using the identity  
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where we have again assumed plane wave illumination of the lens. The field in the focal 

plane of a thin spherical lens is thus related to the first order Bessel function of the first 

kind J1(r), which has its first root at 3.832, thus kra/f = 3.832 gives the radius of the 

inner lobe as 0.61 λ f / a, a common result stated in undergraduate texts on the 

resolution of imaging systems. The field structure given by eq. 5.1 is very convenient as 

it has very low-level sidelobes, with the first off-axis maximum of the function J1(r)/r 

occurring at r = 5.136, with an intensity of -17.57 dB for a normalised on-axis intensity 

of 0 dB.  

 

5.2 - The Fresnel Zone Plate 

 The simplest form of diffractive focusing element is the Fresnel zone plate 

(FZP), which modulates an illuminating beam through amplitude modulation of its 

wavefront only. Its surface consists of alternating opaque and transparent zones whose 

radii decrease with increasing distance from the centre of the lens, and due to the 

presence of the opaque rings the energy throughput of the component is significantly 

reduced.  However, in active systems employing radiation sources that allow for 

adjustment of power levels, in contrast with passive systems, this may not be such an 

important feature, with the emphasis being primarily on the focusing of the field to the 

correct focal plane for illumination in an imaging system for example. Zone plates are 
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popular due to their basic structure and the comparative ease at which they are 

manufactured, compared to the high precision required for creation of a spherical 

surface. At visible wavelengths, FZPs can be created by photoreduction in which a large 

scaled representation of the transmittance is photographed and reduced to its design size 

on photographic film. At millimetre wavelengths zone plates can be created through the 

use of ultraviolet lithography where a printed circuit board is created by an appropriate 

masked illumination, and the resulting board acts a zone plate or hologram, [MEL03].  

 The purpose of the amplitude zone plate is to mimic the effects of refraction 

within a lens by the focusing of light to a point using diffraction and the related 

interference effects. When the optical path length difference between the emanate rays 

is an integral number of wavelengths, constructive interference occurs and an 

interference maximum is observed at the desired focal plane. This is done by setting the 

radii of alternating transparent and opaque zones such that the optical path lens of rays 

emanating from each zone differs by a suitable phase value, thus, in the geometrical 

limit, constructive interference will occur at the defined position of the focal length.  

 

 

Figure 5.2 – (a) The transmittance of a Fresnel zone plate with black and white representing opaque and 

transparent regions respectively. (b) The geometry of the focusing effect produced by a zone plate.  

 

The structure of a zone plate can also be in the form of a negative of that illustrated in 

Figure 5.2, as the total throughput of energy and phase properties will remain the same 

for both forms when there is complete beam coverage of the element. In fact, it can be 

assumed in this work that the central zone is transparent, and that the element contains 

an odd number of zones so that fields are transmitted by the outermost zone.  

 For a Fresnel zone plate the outer radus of the j
th

 zone is given by  

(a) 

 f 
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A common approximation to this expression can be given when the value λ/f is much 

less than unity and the second term in the brackets may be ignored as it is negligible 

compared to the first term, thus we can estimate the zone radii as  

λρ fjj = .     (5.2)  

In general, the zone plates and similar lenses discussed in this chapter will have 

conventional ratios of wavelength to lens diameter for the terahertz and millimetre-wave 

regime. But the size of the elements relative to the wavelength will also allow for a 

direct comparison with so-called “microlenses” frequently discussed in literature 

relating to visible wave and X-ray manipulation, and we will simulate coherent 

radiation in the near-infrared band in some examples.  

The structure of an amplitude zone plate may also be expressed analytically as 




































+=

f

rk
rE

2
sinsgn1

2

1
)(

2

0
00 ,   (5.3) 

which highlights the elements structure as a modified representation of the traditional 

form of spherical lens based on the parabolic phase term kr0
2
/2f. Figure 5.3 shows the 

diffraction half-space of a zone plate when illuminated by a plane wave as calculated 

using a Laguerre-Gaussian beam mode expansion of eq. (5.3).  
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Figure 5.3 - The focusing of a plane wave by a Fresnel Zone plate with (a) NF = 11, (b) NF = 21. (dB 

scale).  

While there is an obvious and desired focal point at the designated distance f, the 

structure of the zone plates in Figure 5.3 also generates multiple foci at distances 

between the element and the focal plane where constructive interference also occurs, 

these foci occur at longitudinal distances of  

12 +
=

j

f
f j      (5.4) 

where j is an integer, and are clearly visible in Figure 5.4.  

(a) 

(b) 
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Figure 5.4 - The on-axis intensity variation of a plane wave focused by a FZP with NF = 11. The plot 

shows secondary focal points at z = f / 3, f / 5, f / 7 etc.  

 

5.3 – Diffractive Fresnel Lenses 

While zone plates are very useful and cost effective elements, the opaque 

regions of the lens can significantly reduce the throughput of energy within an optical 

system. The diffractive Fresnel lens is an improvement to the zone plate in that while 

the structure of the field modulation it creates can be similar to that of amplitude zone 

plates in some cases, all regions of the lens surface transmit energy thus maintaining a 

greater proportion of the optical energy in a system. The phase profile of a Fresnel lens 

can be defined by  
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This function creates a phase variation that contains spherical features which can be 

difficult to manufacture, but can be reduced further to create a form of quantised or 

“staircase” approximation by a phase function of the form 
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where  x  represents the floor function, giving the largest integer lower than x, and P is 

the integer number of levels to which the surface is quantised. The phase structures 
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arising from this operation of eq.(5.5) for various values of the quantisation level P are 

shown in Figure 5.5.  

 

 

 

 

Figure 5.5 – The profile of P level diffractive lenses.  

 

Figure 5.6 illustrates the determination of phase effects of a diffractive Fresnel lens. 

 

Figure 5.6 – Calculation of phase function of a diffractive lens.  

 

The desired phase profile of the lens is generated by modifying the height h of the lens 

such that the phase difference along the two optical path lengths in free-space and 

within the dielectric, ϕ2-ϕ1, creates the desired phase ϕP(r0). For a lens with P surface 

levels, the maximum phase difference introduced by the lens is 
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The maximum thickness of the lens is then determined by   

( )
( )

P

P

n
h

1

1
0

−
−

=
λ

.    (5.7) 

h 

ϕ1=kh 

ϕ2=nkh 

P = ∞ 

surface 

P = 4 

surface 

P = ∞ 

P = 8 

P = 4 

P = 2 



 170 

One of the main restriction of the scalar diffraction techniques, discussed in 

[PRA01], is that for low F-numbers, see Figure 5.1, the focal plane is close to the 

element and the lens will be simulated as a planar phase variation. As well as the typical 

restrictions of the paraxial techniques in this situations, the geometrical angles between 

the more distant transverse points on the lens and the optical axis introduces errors 

associated with shadowing that may occur through reflection and refraction of the field 

by neighbouring zones, see Figure 5.7 and Figure 5.8.  

     

Figure 5.7 – Shadowing effects by refraction and reflection are not accounted for in the general scalar 

theory.  

 

Figure 5.8 – Two-dimensional FDTD calculations by [FENG04] of a modified binary diffractive lens 

compared with its un-quantised analogue.  

 

Free 

space 

Lens 
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Figure 5.8 (a)-(d) show the effects within the diffractive lens which prevents the scalar 

techniques from modelling the true physical behaviour of the lens within the lens 

material. However, we will maintain this discussion to elements with paraxial and scalar 

validity as expressed in Figure 5.1.  

To expand the phase effect of a diffractive lens in terms of Laguerre-Gaussian 

modes, assuming uniform illumination with a plane wave, the mode coefficients are 

determined by the integral   

00

2

0

0

2

0

2

0

2

0

2

0

2

0

2
2

2mod
22

expexp2
2

drr
f

kr
P

P
i

w

r

w

r
L

w
A

a

nm π
π

π
π

π
























































−








= ∫  .   (5.8) 

The modes calculated by this equation are shown in Figure 5.9, with M = 100, and w0 = 

(a / M)
1/2

.  

 
Figure 5.9 - The Laguerre-Gaussian mode coefficients of a binary diffractive lens with NF = 5, with the 

number of surface levels P = (a) 2 (b) 4 (c) 8 (d) 16.  

 

The effect of the lens surface is apparent in the variation of the mode 

coefficients, particularly the step-like trend replicated in Figure 5.9 (a).  For a larger 

number of surface levels, the values of the coefficients, and thus the diffracted field, 

(a) (b) 

(c) (d) 
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converge to that of the corresponding thin spherical lens, which with a finite number of 

modes limits the application of GBMA with large values of P. From these figures, the 

value of P = 2 can be assumed to cause the most significant deviation from the ideal 

lens field which is exhibited in Figure 5.10 with the focusing of an incident plane wave 

by diffractive Fresnel lenses with varying number of surface levels.   

 

 

Figure 5.10 - The focused intensity of a plane wave by a diffractive lens with a varying number of 

surface levels P, with NF  = 9. Each plot is shown with a logarithmic dB scale normalised to the maximum 

field intensity.  

 

The increase in diffraction effects generated by the quantised surface of the lens now 

induces a decrease of the amplitude at the focal plane due to diffraction away from the 

optical axis caused by the smaller features of the lens surface, see Figure 5.11.   

 

 

 

P = 4 P = 8 

P = 3 P = 2 
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Figure 5.11  - The intensity at the focal plane of a diffractive lens under plane wave illumination with a 

varying number of levels P, with NF  = 9 (in red). Each plot is normalised to the intensity at the focus of 

an ideal Fresnel lens with P = ∞ (shown in blue).  

 

P = 3 

P = 2 

P = 4 



 174 

As was seen with the focusing effects of the Fresnel zone plate, the quantisation of the 

surface of a Fresnel lens also creates minor secondary foci, the structure and position of 

which changes according to the level of quantisation, as shown below.  

 

 

Figure 5.12 - The on-axis longitudinal intensity of a NF = 9 diffractive Fresnel lens at the focal plane f 

with various values of the number of surface steps P.  

 

The profile described by eq. (5.1) occurs at the geometrical focal plane, and not 

necessarily the plane of the maximum intensity value. The data in Figure 5.13 describes 

the effect of the quantisation of a Fresnel lens surface on the intensity at the focal plane 

of a diffractive Fresnel lens.  

P = 2 P = 3 

P = 6 P = 4 



 175 

 

Figure 5.13 - The variation of the focal intensity of diffractive lenses as a ratio of the maximum (on-axis) 

intensity at the focal plane z = f of a thin spherical lens illuminated by a plane wave.  

 

In Figure 5.13, there is a quite large variation in the maximum focal intensity between 

lenses having P = 2 and those with P = 8. For values of P ≥ 8 there is less variation in 

focusing ability, with the intensity converging to that of the ideal thin lens. The greatest 

deviation in intensity occurs in the transition from P = 3 to P = 2 with a decrease of 

almost 30 %. The efficiency of such lenses can be quantified by the ratio of the intensity 

within the central lobe of the focused field to the total intensity of the field illuminating 

the lens. With unit amplitude plane wave illumination of a lens of radius a the total 

input intensity is simply πa
2
, thus the efficiency of a diffractive lens with P surface 

levels can be numerically determined from  
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where R1 is the radius of the first off-axis intensity null at the focal plane of the field EP 

of a P-level diffractive lens. The values of the diffraction efficiencies were calculated 

for four lenses with various values of P, for variation of the Fresnel number from 1 to 

30, which for f = 100 λ corresponds to respective F-numbers of 27.4 and 0.91. It was 

found that using the theoretical value of R1 = 0.61 λ f / a in the numerical evaluation of 

ηP gave almost identical results to those found by calculating the location of the first 
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off-axis local minimum directly, which itself is a further sign of the diffractive lens's 

ability to mimic the focal profile of the  ideal lens.  

 

Figure 5.14 – Diffraction efficiencies for diffractive lenses with P = 2 (blue), P = 3 (green), P = 4 (red), 

P = 8 (black).  

 

The efficiency of the P = 2 lens as shown in Figure 5.14 represents a great loss of 

focusing ability with the quantisation of the lens surface. This may possibly inhibit the 

application of such lenses in passive systems where mirrors may be the optimum choice 

of focusing optics. However, in active imaging systems with radiation sources allowing 

for the adjustment of output power this loss of efficiency may be insignificant.  

 

5.4 - Bandwidth effects of diffractive lenses 

The design of binary and diffractive lenses is generally carried out with the 

motive of use at a single wavelength. In the case of conventional spherical lenses found 

in the optics laboratory, effective focusing can be obtained for a wide range of 

wavelengths with a variation in the focal length for different wavelengths based on the 

dispersion relation of the glass or dielectric used. However, the Fresnel lens does show 

some level of focusing ability with wavelengths deviating from the design wavelength, 

albeit with a reduction of efficiency.  

P = 2 

P = 3 

P = 4 

P = 8 
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The focal length of a Fresnel zone plate or diffractive lens varies according to 

the wavelength of the monochromatic radiation illuminating the component, which is 

also a feature of refractive spherical lenses known as chromatic aberration, but should 

not to be thought of as being due by the same physical processes. The focal length, f(λ), 

of a Fresnel zone plate illuminated with wavelength λ, deviating from the design 

wavelength, can be determined from the radius of the innermost zone region, i.e.  
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with f0 the focal distance for the design wavelength λ0 or frequency ν0. The profile of a 

diffractive Fresnel lens is related to the structure of a FZP, therefore the same 

movement of the focal length according to the field wavelength will also occur with 

these phase elements.  

 

Figure 5.15 – Illustration of chromatic effects in a Fresnel lens/zone plate.  

 

However, the phase modulation imposed by the diffractive lens will be altered due to 

the change in the ratio of the incident wavelength to the lens depth, which is responsible 

for the variation of the phase values across the lens.  

 With a P level diffractive lens of depth h, the phase variation ϕP’ imposed when 

illuminated by a field with wavelength λ is  
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Now, while the Fresnel zone radii of the lens correspond to an altered focal 

length f(λ), the average phase difference of rays from adjacent zones no longer 
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corresponds to the correct phase to support complete constructive interference at the 

focal plane. With the variation in the phase profile of the element created by the 

wavelength mismatch the desired constructive interference at the focal plane is reduced. 

In fact, in some cases the focusing ability is completely eliminated.  Consider eq. (5.11) 

in the case of a dispersionless (n(λ)=n(λ0)), P = 2 lens, with illumination by a field of 

wavelength λ = λ0/2. The phase profile then corresponds to a binary variation with 

values 0 and 2π, which both create identical values in a complex exponential function. 

Thus the lens has no focusing influence on the incident field, producing a field profile 

equal to that of a completely transparent circular aperture. With such exceptions, the 

Fresnel lenses do show an ability to generate efficient focusing for a practical range of 

wavelengths surrounding the design wavelength. This is shown in the examples given in 

Figure 5.16, data is presented for the case of a binary lens with λ0 = 3mm (ν0 = 100 

GHz), with the refractive index n0 = n(λ0) = 1.52.  
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Figure 5.16 – The effects of wavelength mismatch on a planar field with a P = 2 diffractive lens. λ0 = 

3mm (100GHz), f0 = 200mm, NF = 9.  

The main effect of the mismatch is the movement of the point of maximum 

intensity to the plane z = f0 λ0/λ. But at this plane the effect of the alteration in the lens 

phase structure causes a deviation from the ideal focal plane structure. However, the 

λ = λ0 

λ = 0.6 λ0 

λ = 1.4 λ0 
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figure shows that the fields maintain the beam width of the focal spot at that plane 

predicted using eq. (5.1).  

The application of the diffractive lens in terahertz imaging has been discussed by 

Wang et. al. [WANG04]. There, the authors of that paper used the frequency dependent 

variation of the focal length of a diffractive lens, as discussed, to form the images of 

objects located at different planes, see Figure 5.17.  

 

Figure 5.17 – Schematic of imaging system utilising a binary diffractive lens. Reproduced from 

[WANG04]. The chromatic properties of the binary lens allows for the measurement of images of objects 

at different distances without having to move the detector longitudinally.  

 

The fundamental equation of image formation by a thin lens is given by [GOO05]  
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with zo the distance of an object from the lens of focal length f, and zi is the plane at 

which an image of the object is formed, and f (ν) represents the variation of the focal 

plane with frequency. Referring to Figure 5.17, the broadband nature of the input field 

causes the focusing effect of the lens to become dependent on the frequency/wavelength 

of the illuminating field. With the radiation measured at a constant distance zi from the 

lens, the field of a specific wavelength with optimal focus at zi is related to an object at a 

distance zo which varies for each frequency, thus the binary/Fresnel lens can be used to 

image several objects that are positioned at different planes. However, as can be see in 

Figure 5.17 the images of fields with frequencies deviating from the design frequency 

of 1 THz are somewhat degraded, particularly in the case of the 1.4 THz measurement.  
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5.4.1 - Experimental Results 

A two-level high-density polyethylene (HDPE) Fresnel lens was manufactured 

by Mr. David Watson in the engineering workshop at the NUIM Experimental Physics 

department. Following the lens simulated in the preceding section, the lens was 

designed by the author for operation at ν0 = 100 GHz, so that with a refractive index of 

1.52 for HDPE at that frequency [BIR92], the difference in depth between adjacent 

zones is 2.88mm. The lens has a radius of 73.5 mm, and incorporates nine Fresnel 

zones, with ρ1 = 24.5mm, ρ2 = 34.6mm, ρ3 = 42.4mm, etc, defined by the lens focal 

length of 200mm. The F-number of the component is therefore 1.36.  

 

Figure 5.18 – A F#1.36 binary lens manufactured at the NUIM physics department.  

 

The element was tested experimentally by measurement of a field derived from a 

cylindrical corrugated horn object with a radius of a = 7.14mm at its mouth, and a slant 

length of 65mm. Figure 5.20 shows the measured fields compared with predictions 

calculated using Gaussian beam mode theory for different frequencies. It was assumed 

that there is no variation in the refractive index of HDPE (n = 1.52) at the frequencies 

measured.  
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Figure 5.19 – Two dimensional measurement at the image plane of binary Fresnel lens with NF = 9 and 

F#1.36 at 100 GHz.  

 

 

Figure 5.20 – The recorded and Gaussian beam mode prediction intensity at the design image plane 2f0 = 

400mm of a binary HDPE Fresnel lens with different frequencies (a) 100 GHz, (b) 80 GHz, (c) 110 GHz.  

 

(b) (c) 

(a) 
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At 80 GHz, no concentration of energy occurs at the plane of the 100GHz focus, and 

while there is some central localisation of energy shown in the 110GHz field at the 

same plane, the effect could not be considered an efficient focus.  For a frequency of 

80 GHz with an object/source at -2f0 the frequency specific image plane is located at zi ≈ 

267mm. The measurement of the intensity at this plane is shown below with a 

comparison with a GBMA model.  

 

Figure 5.21 – Measurement at the image plane (z = 267mm) of an 80 GHz field focused by a diffractive 

lens designed for operation at 100GHz.  

 

The first off-axis local maximum in Figure 5.21 of the focused field has increased in 

amplitude from a level of approximately -19.5 dB in the predicted distribution (for 

Gaussian illumination) to -17.14 dB (calculated from the model) which is insignificant. 

For 80 GHz illumination, the phase step between adjacent zones is 0.8π which does 

create some constructive interference between fields from each zone, although it is 

reduced from the measurement at 100GHz. The predicted focal radius of 8.31mm at the 

image plane shows excellent agreement with the measured data.   

 

5.5 - Diffraction of optical pulses by Fresnel zone plates 

While the properties of the conventional optical tools such as mirrors and lenses 

have been well known for centuries, the knowledge of their effects has in general been 

derived from observation of their manipulation of continuous wave fields either 

coherent or incoherent. As the field of pulsed terahertz spectroscopy and imaging 

grows, suitable methods for the determination of diffractive propagation of pulses 
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through focusing components must be analysed. In the previous section we have seen 

through numerical and experimental data that the deviation of a monochromatic wave's 

frequency ν from the design frequency ν0 of a diffractive lens has a great effect on the 

nature of the diffracted wave. Now we can look at how that behaviour affects the 

performance of Fresnel lenses and zone plates when illuminated by a coherent 

superposition of a spectrum of optical fields spread around the design frequency of the 

lens representing a time-dependent signal, using the Gaussian beam mode expansion.  

 Assuming that the amplitude variation of a Fresnel zone plate is consistent for 

all wavelengths, i.e. the material is either fully transparent or opaque only, the 

calculation of mode coefficients for this structure is a single task, independent of 

frequency and so only one overlap integral is required, allowing for efficient prediction 

of paraxial optical effects. However, as we have seen, the diffracted field of each 

spectral component will have a focus at a different distance from the zone plate, and this 

will affect greatly the structure and quality (in terms of intensity and localization) of the 

focused field, if, as it remains to be seen, the term “focused” may be applied to the 

complete diffracted pulse field at the focal plane.  

Using the GBM expansion, as a test example we will look at pulse diffraction by 

zone plate with a focal length of 100 λ0 and define the radius of the plate according to 

the desired focusing power represented by the Fresnel number NF, defined using the 

most powerful spectral component ν0, NF = ν0 a
2
/(cf). For the following example, NF = 

11, F# = 1.5076, λ0 = 0.3 mm, f0 = 30 mm). In calculation of pulse structures in the 

spatial domain the term focal “point” or “plane” may be ambiguous when describing the 

spatial variation of a pulsed field as each spectral component will have a different focal 

position as we have seen, thus we will shall first refer to the spatial structure of a pulse 

at the “focal time”, the time taken for a pulsed plane wave originating at the plane of the 

zone plate to reach the focal plane z = f0 for the central frequency ω0.  

The simulated pulsed fields shown in Figure 5.22 are calculated from the inverse 

Fourier transform of each diffracted monochromatic spectral field, again defined using 

the Laguerre-Gaussian beam expansion of the zone plate aperture function  
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Figure 5.22 -The spatial intensity on a logarithmic dB scale at a time of t = f0 / c, for a NF = 5 Fresnel 

zone plate. γ = (a) 0 (b) 0.1, (c), 0.5, (d) 1. λ0 = 0.3 mm, f = 30 mm.  

 

As is evident in the above figures, an increase in the bandwidth of a time 

dependant signal has a great influence in the focusing of the pulse by a zone plate, see 

also [ASH03]. Of utmost importance is the generation of spherical boundary waves by 

the diffraction at off-axis zone boundaries, which are then manifested on the optical axis 

at a distance significantly less than ct causing a broadening of the on-axis field as 

illustrated in Figure 5.23.  

         

 

Figure 5.23 – Schematic and saturated plot, in the time-domain, of the amplitude Re{E(r, z = f0,t)} at the 

focal plane of a zone plate (NF = 21) showing the axial lengthening of the pulse on the optical axis due to 

edge diffraction at each individual zone of the component.  

Zone plate 

(a) (b) 

(c) (d) 
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The amplitude variation Re{E} in Figure 5.23 shows, more so than plots of 

intensity, how lengthened on-axis focal regions occur due to the formation of pulsed 

spherical features by the edge diffraction at the boundary of each zone. The effect of 

this in the spatial variation of |E(r = 0,z,t = f / c)|
2
 along the optical axis at the focal time 

is shown below for various bandwidths. Note the change in limits along both axes.  

 

 

 

 

 

Figure 5.24 - The variation in the longitudinal spatial intensity at the time t = f0 / c of a Fresnel zone plate 

according to the fields bandwidth, with ν0 = 1 THz, f0 = 100, λ0 = 0.3mm, NF = 11, F# = 1.51. Illumination 

is by a plane wave pulse with unit amplitude. The fractional bandwidth for each plot is γ = (a) 0, (b) 0.5, 

(c) 1, (d) 3.  

  

In previous examples of pulse propagation, in chapter 3, with increasing 

bandwidth (reducing duration) the duration of a pulse at its source and in the far-field 

remains very similar. Here we see that at the focal plane of a lens, even with a relatively 

high F#, with decreasing duration of the pulse the on-axis length of the pulse diffracted 

by the zone plate increases significantly in comparison with the plane wave pulse length 

(a) (b) 

(c) (d) 
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cτ. This is due to the edge diffraction at each individual zone of the diffractive element. 

As shown above, for a large bandwidth the spatial length of the complete signal 

converges, in the geometrical limit, to 222 atctc −− which deviates greatly from the 

spatial length of an unobstructed pulsed plane wave of equal duration. In the case of 

pulses with lower values of the fractional bandwidth γ, when calculated in the spatial 

domain the trailing on-axis boundary waves have greater lengths on the axis, are 

superimposed on each other, and will thus interfere to cause a smoother variation of the 

longitudinal intensity. But with pulses having extremely short durations, as in the case 

of Figure 5.24(d) , the narrow lengths of each boundary wave on the axis causes a much 

more obvious “spiking” effect at the focal plane with the creation of NF+1 peaks along 

the axis.  

As the bandwidth of a signal increases there continues to be a focusing effect of 

zone plate fields at the focal time, evident from an increase in intensity from that of a 

unit amplitude plane wave pulse diffracted by a circular aperture only. However, the 

diffractive broadening of shorter pulses by the element reduces the maximum focal 

intensity achieved. In the time domain, see Figure 5.25, calculation of the amplitude of 

the pulse at the focal plane describes a more smoothly varying field than that in the 

spatial calculations shown previously.  
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Figure 5.25 - The temporal behaviour of the axial field intensity |E(r = 0,z = f0,t)|
2
 of a Fresnel zone plate, 

for various bandwidths. NF  = 11, F# = 1.51, ν0  = 1 THz.  

 

The focusing ability of a lens element with pulsed illumination can be 

quantified by the maximum amplitude of the pulsed field at the focal plane relative to 

the focal strength produced with continuous wave illumination. As shown in the 

preceding results, an increase in the longitudinal on-axis length and temporal durations 

of a pulse at the focal plane is associated with a decrease in the maximum value of the 

field.  With an increase in the bandwidth of the pulsed field there is a smooth but rapid 

decrease in the value of the maximum intensity, relative to the continuous wave 

illumination with γ = 0, at the focal plane particularly with large Fresnel numbers, see 

Figure 5.26.  

(c) (d) 

(a) (b) 
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Figure 5.26 - The variation in maximum intensity |E(r=0,z=f0,t|
2
 at the focal distance f0 of a uniformly 

illuminated Fresnel zone plate according to the bandwidth of a source driven by a Gaussian amplitude 

signal. The data is normalised to the maximum focal plane intensity of a cw (γ = 0) field focused by each 

zone plate. ν0 = 1 THz, f 0= 100 λ0.  

 

With low Fresnel numbers and relatively small bandwidths the FZP does show 

some level of a practical focusing ability in terms of generating increased amplitude at 

the focal plane, but with increasing bandwidth the amplitude of the focus plane becomes 

significantly reduced. Another effect of the zone plate transmittance is, as described in 

chapter 4, the deviation in the diffractive behaviour of each frequency component of the 

pulse also causes a variation in the spectral structure of the pulse at various points in 

space. Thus the axial pulse lengthening observed in the previous examples points to a 

significant variation in the spectral bandwidth along the optical axis at the focal plane, 

which could have significant effect on any experiment involving pulsed illumination of 

diffractive focusing elements. Simulation of a polychromatic field at planes within a 

broad region around z = f0 shows increased spectral content at frequencies deviating 

from ω0 (or ν0) due to the frequency dependence of the focal length as given by (5.10), 

and predictions of this effect are shown in Figure 5.27. 
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Figure 5.27 - The on-axis spectrum of a γ = 0.5 temporal field focused by a zone plate (blue line) 

compared to the original spectrum at the source (red line). f0 = 30mm, ν0 = 1 THz, (λ0 = 0.3mm), and NF  

= 21. The relative spectral amplitudes have been normalised to unity. z = (a) 0.8 f0, (b) 0.8 f0, (c) 1.2 f0, (d) 

1.5 f0.  

 

Figure 5.27 (b) shows the spectrum of the on-axis field at the focal plane f0 being altered 

to a “sinc-like” variation around ω0, caused by an increase of the on-axis pulse duration 

due to boundary diffraction which also signifies a reduction in spectral amplitude of 

frequencies deviating from ω0 that are focused to different planes.  

 A “focal range” can be attributed to a zone plate for a pulse of given bandwidth 

�ν determined by the longitudinal distance over which one significantly powerful 

spectral component, i.e. with a frequency within v0 ± �v/2, is focused, which is given as 

0

0

ff
ν

ν
λ

∆
=∆ ,     (5.14) 

which in the case of the element described in Figure 5.27 gives a focal range of the 

significant spectral components between distances of 24mm and 36mm. Beyond 36mm, 

as in figure 5.25 (d), no focusing of any single spectral component occurs.  

To quantify the variation of the spectral distributions at the focal plane f0 

numerically, the FWHM of the spectral variations were calculated for comparison with 

(a) 

(c) (d) 

 

(b) 
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the original spectrum, rather than the spectral width at the 1/e level so as to avoid any 

possible discrepancies involving the secondary lobes of the spectra that may, or not, 

occur during the automated calculation. Figure 5.28 depicts the reduction in the FWHM 

of the spectral bandwidth at the focal plane of a zone plate.  
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Figure 5.28 -The ratio of the on-axis spectral width calculated at the focal plane of a FZP to the original 

fractional bandwidth of the signal (γ = �ω /ω0) at the source. NF = 11 and f = 100 λ0.  

 

5.6 - Modulation of optical pulses by diffractive Fresnel lenses 

 Under illumination by ultrashort pulses, conventional thin spherical lenses also 

induce a vast change in the structure of the pulse at the focal plane. This deviation is 

caused by material dispersion resulting from the variation of the refractive index across 

the frequency spectrum which, for each spectral component, alters the focal length f(ω), 

causing a change in the dynamics and structure of the focused pulse. The effects 

described above relating to FZPs are somewhat similar to those caused by dispersion in 

thin spherical dielectric lenses, but are induced by diffraction in a Fresnel zone plate 

rather than dispersion.  

In the preceding chapter we showed the propagation of a temporally modulated 

field through a transparent dispersive material and through numerical simulations 

showed the effects of group velocity and broadening due to the varying phase velocity 

of each frequency component within the medium. Now, we examine how dispersion in 
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a diffractive dielectric lens effects the focusing of a pulse, which requires simulating the 

emergence of the field from a dispersive dielectric with a suitable description of the 

materials influence on the wavefront. In this section, we refer to pulses in the near-

infrared band. Although the free-space propagation can be related to fields in the 

terahertz band, the validity of dispersion relations of materials used in that EM region, 

such as HDPE or Teflon PTFE, was not known to the author.  

To determine the dispersive effects suffered by a pulse after propagation through 

an optically dense material using a scalar theory, the dispersive influence of the 

glass/dielectric can be analysed analytically. As an example, the propagation of an ideal 

plane wave pulse through a homogenous dispersive medium of length z can be 

represented as 
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∞
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π
dtiziStzE  

where the wavenumber κ(ω) = n(ω)ω/c. To avoid having to numerically simulate the 

dispersion effects caused within the lens as a separate computation to the freespace 

propagation, we use a Taylor series representation of the frequency dependent 

wavenumber within the lens, [DENG05]. A function g(x) can be represented through the 

Taylor expansion  
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 derivative of g(x) at x0. Applying this representation to the 

wavenumber ωn(ω)/c and truncating the series to the first three terms gives 
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The first term, κ1(ω), on the right of eq. (5.15) defines the deviation of phase caused by 

the medium on the central wavenumber which creates an equal phase shift for every 

spectral component but does not affect the structure of the pulse. The second term κ2(ω) 
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of eq. (5.11) defines the phase difference caused by the delay of the pulse generated by 

the reduction in group velocity of the field within the medium, and is identical to an 

expression we used previously in chapter 4. The third phrase κ3(ω) defines the effect on 

the phase due to the group velocity dispersion which accounts for the broadening of the 

pulse due to the deviating velocities of each spectral component.  Generally, even for 

significant propagation distances z, it can be acceptable for higher-order Taylor 

dispersion terms (m>3) to be neglected. However, this assumption also requires that the 

variation of the refractive index across the frequency range in the simulated spectrum is 

relatively gradual, and for fields with carrier frequencies closer to resonance 

frequencies, much higher order Taylor terms may have to be included for an accurate 

description of the dispersion relation. Inclusion of these κ terms in the inverse Fourier 

transformation of the spectral components used in calculating the field will then allow 

for prediction of the dispersive effects. Figure 5.29 below shows the effect of truncation 

of the Taylor series on calculations of a v0 = 1 THz, γ = 1 pulse after propagation 

through a SiO2 dielectric of depth 10 λ0.  

 

Figure 5.29 – Effect of inclusion of higher order Taylor terms κm in the dispersion of a planar γ = 1,  

λ0 = 800 nm pulse within a SiO2 dielectric.  

While the approximation of (5.15) is not essential for numerically calculating the pulse, 

it does allow for analytical prediction of dispersion effects, such as the temporal pulse 

broadening introduced. The duration of the pulse after propagating a distance z, τ(z), in a 

dispersive media can be approximated from [KHE08]  
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The simulation of pulses modulated by dispersive lenses using the Gaussian 

beam mode expansion is a more extensive computation than that discussed in the case 

of amplitude modulating zone plates, although showing somewhat similar effects. Each 

frequency component of the pulse spectrum will now have a different amplitude profile 

at the plane of the optical element due to the frequency dependence of the radial phase 

variation. The mode coefficients must then be computed for each individual spectral 

component to determine the propagation dynamics of the pulse. As an example, we 

simulated the propagation of a field diffracted/refracted by quartz (Silicon Dioxide 

SiO2) lenses with λ = 800 nm. This is the operating wavelength of the Titanium-

Sapphire laser systems referred to in the literature as a common source of ultrashort 

femtosecond pulses. Also, the absorption frequencies required for evaluation of the 

refractive index using the Sellmeir equation are well known to be valid within this 

region of the EM spectrum. In simulating the propagation of a polychromatic field with 

a carrier wavelength of 800nm in SiO2, a fractional bandwidth of γ = 0.5 was found to 

be acceptable in defining valid values of n(ω) without encountering 

resonance/absorption frequencies in the dispersion relation defined by the Sellmeir 

relations.  

Using the Gaussian beam mode formulation, we can now describe the free-space 

propagation of a few-cycle pulse upon emergence from a dispersive plano-convex thin 

spherical lens defined by the structure outlined in Figure 5.30.  

         

Figure 5.30 – Schematic of lens structure to be modelled using the GBM approach of pulse simulation.  

 

h(r0) 
h0 

r0 

z = 0 

z = -h0 
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For a focal length f0 the radius of curvature of a lens of transverse radius a is 

given by Rlens = f0 (n0 - 1) so the height of the lens as a function of the radial offset r0 is 

then  

222

0

2

0 )( aRrRrh lenslens −−−= . 

The central and thickest point of the lens is defined at z = 0, with off axis points located 

at z = -h(r0). In an example case to be discussed, the maximum thickness of the lens is 

16.64 	m (≈ 20.8 λ0). The reader should note that in this section we have used the exact 

description of a sphere in defining the lens instead of the paraxial approximation 

derived in chapter 2. The main application of the parabolic portrayal is for mathematical 

simplicity, in that the variation of exp(ikr
2
/2f) allows for easier manipulation compared 

to the square root term in the true spherical description, therefore allowing analytical 

solutions of the Fresnel-Kirchoff diffraction integrals to be obtained, such as eq. (5.1).  

The Laguerre-Gaussian mode coefficients used to simulate this diffraction 

scenario are now a function of frequency and are determined from the following overlap 

integral  
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The argument of the complex exponential in equation (5.16) describes the 

change in phase imposed on the field upon transmission through the optically dense lens 

and subsequent propagation through free-space from the surface of the lens medium, at 

z = -h(r0), to the plane of the lens zenith which is defined to be at z = 0. Note that while 

a more realistic description of the spherical lens surface has been used, the calculations 

continue to neglect diffractive effects within the lens as with the paraxial approximation 

of the lens phase function. Predicting the combined effects of diffraction and dispersion 

within a curved lens is complicated, even assuming paraxial propagation, but would be 

a suitable and very practical application of the FDTD method
♣

.  

                                                 
♣

 As it is obviously a time domain method, the frequency dependence of permittivity is not an inherent feature of the 

fundamental form of FDTD as described in chapter 2. The permittivity of a medium, ε(ω), with n(ω)  = (ε(ω)/ε0)
1/2, 

can be deduced from the Lorentzian model of an oscillating electron as 
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The GBM description of a pulsed field diffracted by a dispersive phase 

modulating element is now calculated from 
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which now incorporates the dispersive effects defined by κ1, κ2, and κ3, as incorporated 

in eq. (5.16).  

Despite the requirement of calculating Laguerre-Gaussian mode sets for all 

spectral components, the GBMA code does again maintain very practical efficiency 

compared to the use of the Fresnel diffraction integral in predicting the diffracted 

structure of pulses undergoing dispersive transformation. This is particularly true when 

studying a field at varying distances z for which the same mode sets can be used for 

calculations at multiple planes without involving numerical integrations of the aperture 

function. Figure 5.31 shows the paraxial calculations for the propagation of a γ = 0.5 

pulse focused by a NF = 20 spherical lens, with λ0=800nm a = 35.7	m, and f0 = 80 	m, 

F#1.18.  

 

 

 

 

 

 

                                                                                                                                               
with εDC and ε∞ the low and high frequency limits of ε(ω) respectively, while ωR is some resonance frequency of the 

medium (perhaps one of many), and δ is a frictional damping constant of the electron motion. An inverse Fourier 

transform of ε(ω) gives the second order differential equation  
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which when discretised, can be implemented in a model to determine the temporal response of a dispersive medium 

to a pulsed field. See [JOS91] for further details.  
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Figure 5.31 - The focusing of a planar pulse (γ = 0.5, 2τ = 6.8 fs, λ0 = 800 nm) by a SiO2 hemispherical 

lens with focal length f0 = 80	m. The left column shows a first order dispersive calculation while the right 

column shows a second order dispersive calculation, noticeable through the temporal broadening of the 

pulse. z = (a)-(b) 0, (c)-(d) f0/4, (e)-(f) f0/2, (g)-(h) f0, (i)-(j) 2 f0. The fields are shown by their amplitude 

|E(r,z,t)| on a linear scale.  

 

In Figure 5.31 (a) the delay of the pulse wavefront caused by dispersion can be 

seen. At r = a, where the depth of the lens is zero, the relative delay is given by h(a)/c ~ 

77fs (22.9τ), while at r = 0 the relative delay is h0/vg ~ 130 fs (38.27τ), where vg is the 

(g) (h) 

(c) (d) 

(e) (f) 

(i) (j) 

(a) (b) 
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group velocity of the wavefront within the lens, in this case vg = 1.795×10
8 

m/s. The 

group velocity dispersion of the refractive index in the lens causes a temporal 

broadening in the pulse approximately twice the original pulse duration 2τ = 6.8 fs at r0 

= 0 as seen in Figure 5.31 (b). Due to the broadening there is also an increasing 

reduction in the maximum longitudinal amplitude of the pulse at each offset, which is 

proportional to the varying lens thickness. Because of the lesser pulse delay in the lens 

at r = a the on-axis manifestation of the boundary waves from the edge of the lens 

actually arrives at a plane before the primary geometric wave, as can be seen in Figure 

5.31 (i)-(j).  

Now, for thin optical components such as the diffractive Fresnel lenses 

described in this chapter, with a maximum thickness of h0 = (P-1)λ0/P(n0-1) the effects 

of the lens profile on an incident pulsed field are so small that they can be determined 

without necessarily accounting for dispersion effects. As the pulse broadening is 

dependent on the optical path length of the pulse in the dispersive medium, the field 

will, to a good approximation, hold its temporal form in propagating through very thin 

diffractive lenses. Therefore, the complete pulse wavefront at the surface of the lens 

may be computed by accounting only for the phase modulation on each spectral 

component. With a dielectric diffractive lens, neglecting dispersion in the relatively 

small optical depth of the lens, the mode coefficients can be given as  
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where ϕP(r0) is the transverse phase variation imposed by the diffractive lens on a field 

at the design frequency ω0, defined by eq. (5.5). Despite only minor differences 

between the results of this equation and eq. (5.16), with future work in mind, the 

dispersive description of propagation given by eq. (5.16) was used so as to gain an 

understanding of the type of field dynamics involved in a dispersive scenario.  

The mode coefficients for a polychromatic field with γ = 0.5 were calculated for 

a two level SiO2 diffractive lens with λ0 = 800nm, and NF = 10. The values of Am(ω) are 

shown in Figure 5.32.  
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Figure 5.32 – The LG mode coefficients |Am(ω)| of a γ = 0.5 pulsed plane field refracted by a SiO2 

diffractive lens with NF  = 10, P = 2. The normalised Gaussian spectral variation S(ω)has been 

superimposed on the variation.  

 

Using the mode set in Figure 5.32 the field can then be predicted at any point in the 

diffraction half-plane for z > 0. Figure 5.33 illustrates the predicted evolution of a γ = 

0.5 pulsed plane waves modulated by diffractive lenses with P = 2, and P = 6.  

Calculations based on equations (5.16) and (5.18) predict almost identical pulse 

structures, with the exception that the computation used, which accounts for dispersive 

delay and broadening, i.e. eq. (5.16), predicts a small but realistic time delay of h0/vg 

compared to the field determined with the non-dispersive technique.  A time delay 

between the P = 2 and P = 6 fields should also be noted due to the greater depth and the 

associated increased delay within the P = 6 lens.  
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Figure 5.33 – The amplitude |E(r,z,t)| of a γ = 0.5 pulse at various planes diffracted by a quartz (SiO2) 

diffractive Fresnel lens. λ0 = 800 nm, f0 = 100 λ0, NF = 10. The left column shows the effects of a lens 

with P = 2, and in the right column P = 6. The fields are predicted at z = (a)-(b) 0 , (c)-(d) f0 / 4, (e)-(f) f0 / 

2, (g)-(h) 0.75 f0, (i)-(j) f0.  

 

With the exception of an approximately twofold increase in maximum amplitude 

values and a time delay due to dispersion, the effects of a diffractive lens modulation on 

the dynamics of pulsed fields, such as the influence of boundary waves, are generally 

similar for Fresnel lenses with P = 2 and Fresnel zone plates of equal dimensions and 

(a) (b) 

(c) (d) 

(e) (f) 

(i) (j) 

(g) (h) 
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Fresnel numbers. However, with a higher number of surface levels of a diffractive lens 

there is greater concentration of energy close to the optical axis with noticeable increase 

of the maximum intensity, which is described in Figure 5.34.  

 

 

 

Figure 5.34 – (a) The axial intensity of a pulsed γ = 0.5 Gaussian shaped pulse at the focal plane of a NF 

= 10, f0 = 100λ0 diffractive lens illuminated by a γ = 0.5 Gaussian shaped pulse. (b) The variation of the 

maximum intensity in relation of diffractive lenses to the ideal Fresnel lens (P = ∞).  

 

Figure 5.34 shows, upon comparison with the data in Figure 5.13, that the 

variation of the relative intensities at the focal plane of a diffractive lens with increasing 

P illuminated by a pulsed field differs only negligibly from the same characterisation of 

P 

(a) 

(b) 



 202 

a zone plate under continuous wave illumination. Figure 5.35 below compares the 

temporal field at the focal plane and shows the significant deviation in the duration and 

transverse structure of a pulse at the focal plane of one of these diffractive lenses.  

 

Figure 5.35 – Contours showing the -20dB levels of the normalised intensity structure at the focal plane 

of a binary (P = 2) Fresnel lens with (a) NF = 10 and (b) NF = 20 illuminated by a Gaussian temporal 

pulse. The vertical gray lines indicate the continuous-wave focal radius calculated from eq. (5.1).  

 

The chromatic influence of Fresnel zone plates, eq. (5.10), which also has 

relevance in this section, shows an opposite effect to that of the material dispersion 

imposed in spherical lenses in that the individual focal planes of the fields with longer 

wavelengths focused by a complete ideal thin lens are located further from the element 

than those with shorter wavelengths, effectively a chromatic aberration. The fields 
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depicted in Figure 5.35 show that the pulsed fields arrive at the focal plane with a broad 

transverse width and reduce in breadth as the pulse passes through the focal plane. This 

is in contrast to the fields shown in Figure 5.31 (g) and (h). Assuming first-order 

dispersion, the focal length of a spherical lens with a radius of surface curvature R is 

determined by  
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Generally, far from absorption wavelengths, the refractive index n(λ) of commonly used 

lens materials decreases with increasing wavelength, therefore focal lengths for longer 

wavelengths will be further from the ideal focal plane lens, which is an opposite effect 

to the variation of focal lengths for zone plates and diffractive lenses described by eq. 

5.10.  

 An increase of a pulsed field's bandwidth results in a smoothing of the transverse 

amplitude variation, as shown in section 4.4, and in the fields discussed here, this effect 

will be important in determining the suitability of a diffractive lens for pulsed imaging. 

As shown in the following figures, the temporal modulation of the field causes 

significant deviation from the distribution described by equation 5.1.  
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Figure 5.36 – The normalised variation, with bandwidth, of the transverse time-averaged intensity at the 

focal plane z = f0 of a NF = 10 diffractive lens with (a) P = 2, (b) P = 6, SiO2, illuminated by a pulsed 

plane wave with central wavelength λ0 = 800nm.  

 

The calculated intensities show a definite focus of fields. As can be seen in the 

case of γ = 0.1 the relative intensity levels of the off-axis beam lobes do not vary 

significantly from the structure of the continuous wave field. But with a reduction of the 

signal duration the increase in the relative intensity levels of the first off-axis maxima 

show that useful localisation of the ultrashort pulsed fields becomes limited with these 

optical components.  

 

 

 

 

(b) 

(a) 
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Conclusion 

The properties of diffractive lenses and Fresnel zone plates under illumination 

by continuous and pulsed fields have been discussed using the Laguerre-Gaussian beam 

approximation of the Fresnel diffraction theory.  

A binary Fresnel lens with NF = 9 and F#1.33 was designed by the author and 

manufactured in the department workshop. Experimental measurement of the imaging 

of a corrugated horn was performed and the results showed excellent agreement with a 

51 term Gaussian beam mode calculation.  

We have exhibited the spatial and temporal characteristics of the electric field 

at the focal plane of a diffractive lens. In the case of time-dependent signals, we have 

shown that the generation of secondary pulses by the edges of each individual zone 

causes a significant broadening of the pulse when compared with the length wL ( = cτ) of 

an unobstructed pulsed plane wave. The effect is particularly noticeable at large 

bandwidths, but for signals with narrower frequency spectra the position of the peak of 

the trailing on-axis pulse from a zone boundary will occur within the extent of the main 

primary pulse and therefore broadening, relative to the pulse duration 2τ, is less 

significant. With such lengthening of the extent of a pulse there is an obvious decrease 

in maximum intensity of the pulse at the focal time. Again, it is with an increase in 

bandwidth that we see reduction in this property.  

The results show that for pulsed wave illumination, the ability of a Fresnel 

zone plate in generating a significant concentration of energy at its focal plane is 

diminished due to the variation of the focal plane for each spectral component. 

However, diffractive lenses and FZPs do show maintain an ability to concentrate some 

energy towards this point which may be appropriate in spectroscopic and imaging 

experiments. However, the broadening of pulses by diffraction through a FZP shows 

similar effects to the dispersive effects of a thin lens on a pulse, and affects greatly the 

spectra of pulses at the focal plane of the elements, which must be accounted for in any 

application. We have exhibited the decrease in field bandwidth on-axis at the focal 

plane in comparison with the original spectra at the source for a zone plate of NF  = 11.  

The propagation of few-cycle pulses in dispersive media has again been 

exhibited, but with a more practical application than in chapter four. Here we have 

applied the Gaussian beam mode method for simulating the free space propagation of 

ultrashort fields modulated by dispersive lenses. With the same method a discussion of 

the effects of diffractive and dispersive Fresnel lenses has been presented, and we have 
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exhibited the effects of dispersion on the focusing ability of these optical elements. 

However, it has been described that with the thin diffractive lenses, the field can be 

predicted, excepting a time delay at the focal plane, by neglecting the effects of group 

velocity dispersion within the element and considering only the effect of lens thickness 

on the modulation of the phase of the field.  

The effect of non ideal focusing of pulses is also an issue in the conventional 

spherical lenses exhibiting chromatic aberration. With an ideal non-dispersive material, 

spherical lenses could generate highly focused pulses with a coincidence in the focal 

plane of each spectral component. However, the effects of dispersion that occur 

naturally in optical glasses disallow such propagation and the author has shown the 

behaviour of optical pulses subject to such phase modulation.  

Attention must be brought to the fact that analysis of the modulation of pulses 

by diffractive lenses was carried out in this thesis with a spectrum with its most 

significant frequency component corresponding to the design frequency of each lens. 

The effects of diffractive lenses on EM fields will vary significantly for pulses with 

irregular spectra.   
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Chapter Six 

 

Laguerre-Gaussian Expansion of Non-diffracting Beams 

 
 
6.1 - Introduction 

 

The linear lossless wave equation has several solutions, and the occurrence and 

usage of these solutions depend most often on the coordinate frame in which the 

equation is studied. For example, the vibrating membrane of a circular drum would be 

analysed using the cylindrical system where the z parameter is rendered insignificant 

and is reduced to an angular and radial problem only. On the other hand the Schrödinger 

equation in a square potential well is solved using the Cartesian description of space. As 

discussed in the previous chapters the paraxial wave equation yields different solutions, 

yet each of these paraxial fields is analogous to corresponding fields derived from the 

full wave equation using the same mathematical methods. Cylindrical systems give rise 

to, for example, the Bessel and Laguerre-Gaussian wave functions, in the Cartesian 

system the plane wave solutions exp(i(kxx+ kyy+ kzz) are the paraxial analogues of the 

Hermite-Gaussian functions. For elliptical systems, which have limited application in 

optical systems, the Mathieu functions are solutions of the corresponding wave equation 

while the Ince-Gaussian beam modes are derived from the paraxial wave equation in the 

same system [BAN04].  

In 1987 J. Durnin at the University of Rochester published a paper that 

described the generation of a form of electromagnetic field showing limited diffraction 

effects in comparison with any other known field, with the exception of the fundamental 

plane wave [DUR87]. These field structures, now known as Bessel beams (BB's), were 

obtained from a straightforward solution of the wave equation, and it was shown that 

approximations to such fields could be produced in a straightforward optical 

arrangement. The experimental results showed the propagation of a field containing a 

narrow, intense, spot that propagated much further without significant diffraction effects 

compared to a Gaussian beam of a similar full width at half maximum (FWHM).  

However, the term “non-diffracting beam”, which has been used widely, is a misnomer 

as those fields are subject to the same laws of wave propagation as any other field thus 
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diffraction must be a feature of their behaviour. In the same manner a Gaussian beam 

will maintain an approximately constant width for an appreciable distance, ideal BB’s 

will propagate in the same way, but because of the structure of the Bessel functions, 

such beams will propagate with a very narrow intense central spot over an infinite 

distance.  

The mathematical solution to the wave equation that represents these Bessel 

beams is valid over the spatial range of {-∞,∞}, and thus a truly non-diffracting beam 

cannot be realized in a laboratory, analogous of course to a uniform plane wave in the 

Cartesian coordinate system. However, several methods now exist for the generation of 

approximate BB's, including the focusing of an annular beam [DUR87], conical lens or 

axicon [MONK99], and computer generated holograms [MEL03]. In fact, the capability 

to produce Bessel Beams was described in the 1970's in [BRYN76], where a CGH was 

used in the creation of a conical wavefront, the phase variation necessary for the 

formation of Bessel beams, but the (non-)diffractive properties of the reconstructed 

object field was not recognised by the authors. Since the first experimental description 

in [DUR87], these fields have been formed at several regions of the spectrum, from the 

mm-wave band, [TRA04,MONK99], to ultraviolet wavelengths [DAO09]. Ultrasound 

has also been used to generate such a diffraction limited field and measurement of these 

fields has been visualized in water [LU90]. The prospect of generating an intense focal 

line is a very useful application in several areas of research that involves wave 

phenomena.  

The main application of Bessel beams has been found in manipulation of 

micron-scale objects and optical trapping using intense visible laser light. [ZWI10] has 

recently shown the manipulation of microscopic particles using Bessel beams generated 

by a conical lens. Also in this area, the research carried out by a team at the University 

of St. Andrews has been the prime example of such work, see [ARLT01], [DHO06].  

The field of nonlinear optics is an area which has applied the increased localized 

intensity possible with Bessel beams. With very intense fields the relationship between 

the applied electric field and induced dipole moments within a dielectric are no longer 

related through a linear relationship, and non-diffracting beams have been applied for 

generation of second harmonic radiation [WUL93)].  

Various numerical techniques have been used in the analysis of BB's, including 

the stationary phase approximation [BUR04,FRI96], the Fresnel formulations [ZAP06] 
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and the Laguerre-Gaussian beam mode analysis [TRA04]. In this chapter we 

numerically analyze various methods for the production of Bessel beams/focal lines 

using the Gaussian beam mode approach, concentrating on the situation where the 

wavelength of the electromagnetic radiation is a similar order of magnitude to the scale 

size of the optical element being used, a signature of millimeter wave quasi-optics. We 

also present results of measurements of a conical lens with low Fresnel number 

measured at 100GHz.  

 

6.2 - Derivation of non-diffracting Bessel beams 

If the transverse amplitude profile of a circularly symmetric non-diffracting 

beam is to be described independently of z by )(rf , then the general solution for such a 

radially symmetric wave is given by  

)exp()(),,( tzikrftzr z

B ωψ −=    (6.1) 

where ω is the angular frequency of the radiation, ω = ck, and kz is a constant yet to be 

determined. As f is defined only in terms of the radial coordinate, it is obvious that the 

beam profile is invariant throughout its propagation along the z-axis. We are thus 

seeking a solution for f(r) such that it obeys the wave equation in the regime of 

cylindrical coordinate systems where the wave equation has the following form 
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Assuming no angular variation of the function, upon substitution of the desired profile 

(6.1) into (6.2), we obtain  
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This form of second order differential equation is very common in Physics and 

Engineering and is known as Bessel’s equation. Applying the Frobenius method to 

solve this function [STE73], we assume that f can be defined by an infinite sum of 

polynomials and their coefficients, cn, in a similar manner as Fourier series 
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with constant cn and integer m. Using this method it can be shown that f has the form 

Jm(x), where Jm is a zeroth order Bessel function of the first kind described by 

mn
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mn
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= 2

0
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and from the equation above it can be shown that a fundamental solution of a non 

diffracting beam is given by  

( ) ( )tzikrkJ zr

B ωψ −= exp0                                    (6.3)            

with the condition 

222 kkk zr =+ .     (6.4) 

This expression, eq. (6.3), derived for a Bessel beam is the zeroth order form of the 

field, but higher order beams do exist, just like Laguerre-Gaussian fields, in the form 

[SALO97] 

( ) ( ) ( )( )tzkiimrkJ zrm

B

m ωθψ −= expexp .   (6.5) 

The generation of these higher order fields is more complex than the fundamental 

Bessel beams of equation 6.2, and involve the propagation of what is known as an 

optical vortex describing an angular variation of the phase according to mθ which 

causes a singularity at r = 0. This feature of the higher order Bessel beams has been 

described in relation to the use of such fields in the manipulation of microscopic 

particles, for example, in atomic optical traps [LEE04] through transferral of angular 

momentum.  

 The structure of the Bessel functions of the first kind are shown in Figure 6.1. 
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Figure 6.1 - Examples of m
th

 order Bessel functions Jm(r) of the first kind.  

 

Bessel functions are one of the most important polynomials in the study of wave 

phenomena. We have already seen their application in chapter 2 where the approximate 

intensity structure of a beam diffracted by a circular aperture can be represented in 

terms of the first order Bessel function. The Bessel functions were known to be 

solutions of the wave equation long before Durnins descriptions of their free space 

propagation, and they are commonly found in microwave and mm-wave methods in the 

theoretical description of circular waveguides where the field can be represented as an 

integration of Bessel modes in a similar manner to GBMA. In a cylindrically symmetric 

coordinate system, a function E(r) can be represented as a series expansion given by 
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with Am the analogue of the mode coefficients in LG synthesis, αm is the m
th 

root of the 

zeroth order Bessel function of the first kind J0(r), and a is the extent of the function to 

be expanded, equivalent to the radius of an aperture in a optical system. This technique, 

known as the Fourier-Bessel expansion, will be applied to calculation of free-space 

diffraction of fields later in this chapter. 

 In this chapter we will retain the discussion of diffraction limited Bessel beams 

in relation to a cylindrically symmetric coordinate system. The Bessel functions will 

often be described in terms of the position of their roots with αm representing the m
th
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root of the J0 function such that J0(αmr) = 0 with the first five values of αm given as 

2.4048, 5.52, 8.654, 11.79,14.93.  

 

6.3 - Proof of diffraction-free propagation in Bessel beams 

By use of the Fresnel diffraction equation the diffraction free behaviour of the 

ideal Bessel beam can be easily shown using the typical form of the diffraction equation 

in a cylindrical system 
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which is a more suitable form for comparison with the diffraction integral. Substituting 

a = ik/2z, b = kr/2 and c = kr0/2z into the diffraction integral gives the intensity variation 

(which allows for the neglect of the complex exponential terms) of an infinitely wide 

diffraction free Bessel beam as  

( ) 2

0

2
),( rkJzrE r=  

showing the intensity profile to be independent of distance z.  

 

 

6.4 - Propagation of truncated Bessel beams 

The field amplitude of an ideal, untruncated zeroth order Bessel beam to be 

discussed in this chapter is given by eq. (6.3). The radial wave number kr is an 

important parameter in a discussion of these Bessel beams. From this value the central 

spot size of the field is determined, and further characteristics of the field structure can 

be predicted, albeit within the limitations of geometrical optics. For example, the 

limitation of diffraction effects in a BB can be assessed through the magnitude of the 

diffraction-free range, which is defined as the longitudinal on-axis distance over which 

self-interference of the field occurs, thus, with a geometric approximation, maintaining 

a constant amplitude profile. For ideal BB’s this distance is infinite due to the unlimited 
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transverse extent of the Bessel function, but in the case of practical Bessel beams, 

truncated at r = a, this distance is given as  

r

z

k

k
aZ =max      (6.6) 

Using the Laguerre-Gaussian modal method, the amplitude patterns of Bessel beams 

with various radial wavenumbers were calculated and are shown in Figure 6.2.  

 

 
Figure 6.2 - The propagation of Bessel beams with kr =(a) α5 / a, (b) α10 / a. Shown in terms of the linear 

amplitude |E(r,z)|. The radius of the truncated Bessel field at z = 0 is 90mm, and the wavelength is 

λ=3mm. 

 

The limitation of diffraction effects of the of the Bessel beam are obvious 

through observation of the central lobe of the beams in Figure 6.2 . This lobe has a full-

width at half-maximum of 3.04/kr, with an off-axis secondary maximum at r = 3.832/kr. 

The ideal normalised field at the focal plane of a thin lens which has a first off-axis lobe 

at -17.57dB, while the first sidelobe of Bessel has have an intensity level of -7.9dB, 

(b) 

(a) 
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which is a significant increase. For a Bessel beam, Zmax can be used as a reference 

distance in a similar manner to the focal point of a spherical lens. It does, however, give 

a value for the diffraction free range based only on geometrical considerations and with 

the approximations involved one would expect an abrupt amplitude fall off at this point 

in the case of λö0. However, as can be seen from the above false-colour graphs, 

diffraction effects related to the longer wavelengths deny this and instead an on-axis 

amplitude fall-off begins at a plane z <  Zmax after reaching a maximum value, see Figure 

6.3.  

 

Figure 6.3 - The on-axis Amplitude |E| of Bessel beams of various radial wavenumbers kr=αm / a, where 

αm is the position of the m
th

 root of the zeroth order Bessel function J0(•).  

 

With uniform plane wave illumination with amplitude E0, the axial amplitude at 

Zmax is found to be approximately 0.5 |E0|, and the gradient of the intensity variation at 

this point further highlights the limited application of the value of Zmax given by eq. 

(6.6), particularly for lower values of kr, as can be seen in Figure 6.3 

The authors of [ZAM04] discuss an interesting possible application of Bessel 

beams for generating axial intensity variations with specific structure. In that paper it 

was suggested that by superimposing Bessel beams of the same optical frequency but 

differing values of kz, each individual beams on-axis variation could act as a Fourier 

sinusoid and by weighting each Bessel beam according to a the Fourier coefficients of 

the intensity function, a desired axial variation could be achieved. Thus far, this author 
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is unaware of any experimental verification of this method which would rely on 

holographic techniques for physical generation of polychromatic Bessel beams. Figure 

6.4 shows a numerical demonstration of the formation of a predefined axial intensity 

structure [ZAM04] 

 

Figure 6.4 – Synthesis of a specific axial variation by use of a superposition of Bessel beams, reproduced 

from [ZAM04].  

 

[LAV10] describes an algorithm for the synthesis of desired transverse fields using 

Laguerre-Gaussian beam modes in a similar fashion to the above method. 

 

6.5 - Laguerre-Gaussian synthesis of zeroth order Bessel functions 

There is an obvious similarity in the amplitude structure of the Laguerre-

Gaussian modes and the Bessel functions of the first kind, with both functions showing 

a large intense circular spot with a radial amplitude fall-off resulting in increasingly less 

intense outer lobes. An exception in such a comparison is the infinite extent of the 

Bessel functions, where as the LG modes show oscillatory behaviour only over a finite 

transverse range. To show the similarity between Laguerre-Gaussian structures and 

truncated Bessel functions, an overlap integral can be performed of the function 
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In this example Am is now a function of the waist parameter to allow for comparison of 

the LG mode make-up of the Bessel structures. Figure 6.5 describes how with 

increasing value of w0 / a the number of modes with significant values becomes less.  

              

Figure 6.5 – The variation of the mode coefficients, from equation 6.7, with different values of w for a 

truncated zeroth order Bessel function (a) kr = α5, (b) kr = α10. The dashed line in the figure marks the 

value of w0 which results in the best possible LG synthesis of the circ function of equal radius a, as 

defined in [BOR06].  

 

As the value of w0 / a increases the number of modes with substantial coefficient 

magnitudes is reduced, and a strong correlation between the truncated Bessel function 

and a just a few LG modes of higher indices appears, see Figure 6.6.  

 

Figure 6.6 – The dependence of a one-dimensional Bessel function using synthesize LG functions on w 

and n. Mode coefficients for J0(α5r), for w0 = (a) 0.1a (b) 0.8a.   

 

The above results show how, with variation of w0, an adequate description of a 

truncated beam with amplitude proportional to a Bessel function can be represented 

(a) (b) 
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with a few LG modes, as shown in Figure 6.6 (b) where the number of mode 

coefficients with significant value is reduced from that in (a). An analysis showing the 

rms error of the synthesis of a Bessel function with parameter kr = 30.63/a = (α10 / a), is 

shown below.  

 

Figure 6.7 – The rms error of the Laguerre-Gaussian formulation of a Bessel amplitude profile J0(30.63 

r0 / a).  

 

In comparison with the quantified errors of the LG reconstruction of the circ 

function, shown in figure 2.14, the errors in the synthesis of a Bessel function in Figure 

6.7 shows that there is only a finite window for the range of values of the width 

parameter w0 with which significant reduction of the error in the synthesized function is 

achieved. Previously, the value of the optimum width parameter for the synthesis of the 

top-hat function was shown to be relatively consistent for increasing values of the mode 

set size M+1. However, as can be seen from Figure 6.7, the optimum value of w0 

calculated for M = 100 actually increases from its value for M = 50, which shows that 

the optimum value of w0 = (a / M)
1/2

 as defined by [BOR96] no longer holds for the 

Bessel functions, and the author predicts that this is true for other oscillatory functions 

also, e.g. sinusoidal functions. Nevertheless, although Borghi’s value may not give an 

optimal figure, the discrepancies in diffraction calculations associated with a large mode 

set using that value of w0 are so completely negligible even in the case of lenses with 

relatively large Fresnel numbers that its use will not cause significant effects on 

diffraction calculations in this work.  
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An appropriate integral for the decomposition of zeroth order Bessel beams is 

found in [GRA07] 
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Neglecting the absence of some constant normalization factors, and the Gaussian waist 

parameter w, this equation has the correct form for the calculation of the LG mode 

coefficients of an ideal Bessel beam of infinite extent. Letting α = 2/w
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While this expression is valid only for Bessel beams of infinite extent, it can be altered 

to include a localized (real) non-diffracting beam by including only modes whose 

extents lie within a certain finite distance. However, the drawback in this analytical 

formulation is the finite extent of such a truncated series, which would be inadequate for 

the representation of a sharp amplitude fall-off caused by a truncation at hard aperture, 

but is suitable for Bessel beams where the amplitude at the point of truncation is small, 

i.e. if the field is truncated at a zero-crossing of the Bessel function.  

Not surprisingly and by analogy with the structure of the Bessel beams, the 

profile of Laguerre-Gaussian beam modes are themselves subject to some degree of 

resistance to diffractive effects relative to their associated confocal length in that their 

diffracted profiles are not altered. In fact, the observation of a LG mode in the near field 

could easily be mistakenly identified as a pseudo Bessel beam in the near field, but in 

the far-field the two fields are significantly different.  

To show the contrasting behaviour in the propagation of these two similar field 

structures, we can compare a Bessel beam with a Laguerre-Gaussian mode with an 

equal central spot size and for which the value m-1 equals the number of lobes in the 

truncated BB. From eq.2.32, for a LG mode with a spot size of equal radius to that of a 

Bessel beam truncated at it’s m
th

 root, the width parameter w0 is approximately  
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Figure 6.8 compares the propagation of the LG and BB fields.  

 

 
Figure 6.8 – Comparison of the propagation of a truncated Bessel beam (black) and an m = 14 Laguerre-

Gaussian mode (blue) with an equal number of lobes and equal radius of the central spot in both fields.  

 

The width of the Laguerre-Gaussian modes is defined by the parameter w(z) 

given in chapter 2 and accordingly its FWHM behaves in a similar manner to w(z) 

increasing gradually in the near field. A truncated Bessel beam, although similar in 

structure, will exhibit oscillation of the FWHM value of the central lobe even within the 

so-called diffraction free range, as shown in Figure 6.9.  

 
Figure 6.9 – Behaviour of the FWHM of the central lobe of the Bessel beam (black) truncated at the m

th
 

root, and a Laguerre-Gaussian of order m - 1. (a) m = 5, (b) m = 15. 

 

(a) (b) 
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6.6 - The annular aperture method 

There are various methods that are used to generate non-diffracting Bessel 

beams. The first experimental procedure used to specifically generate non-diffracting 

fields was that described in the seminal paper by Durnin, [DUR87]. This method 

involved the focusing of the diffracted field from a annular aperture (a circular aperture 

with a central circular obscuration), placed at the focal length f of a thin lens, see Figure 

6.10.  

 

 

 

 

 

 

 

 

 

  

Figure 6.10 – Schematic of optical system used in original description of Bessel beams, consisting of an 

annular aperture AA with radius d, and a thin lens of focal length f. 

 

From [BOR97] it can be shown that the Fraunhofer diffraction pattern generated 

by an annular aperture is proportional to the structure of a first order Bessel function. 

However, when the ratio of the central obscuration radius, a0, to the outer radius of the 

aperture, a, is small compared to the wavelength, the diffracted far-field pattern can be 

represented by a zeroth order Bessel function.  

AA 

f 

d 
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The field produced by this annular aperture form of generation is the closest 

approximation to an ideal truncated Bessel beam, for at the original plane of the non-

diffracting field, i.e. just behind the lens, z = 0, both the amplitude and phase exist in the 

form required by the basic equation for a monochromatic non-diffracting field eq. (6.3). 

To a good approximation, the wavefront diffracted from annular aperture with similar 

inner and outer radii can be represented as the superposition of spherically diverging 

fields with their origin at the centre of the transmitting region (ring). This generates the 

amplitude profile of a zeroth order Bessel beam, while the wavefront is converted by the 

spherical surface of the lens according to  
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with d the radial position of the centre of the annular aperture d = a0+(a-a0)/2. This 

circularly symmetric linear variation of phase introduces a linear radial phase variation 

generating self-interference and subsequently the Bessel amplitude profile J0(krr). The 

Bessel beam generated then has the radial wavenumber kr = kd / f.   

The Laguerre-Gaussian Mode analysis of this optical arrangement, i.e. the 

expansion of an annular aperture, see Figure 6.11, suggests a strong relationship 

between individual higher order LG modes and the diffracted field.  

 

Figure 6.11 – The mode coefficients of an annular aperture for various values of the inner radius a0. 

Calculated with M = 100.  
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The variation of the LG mode coefficients shown in Figure 6.11 for an annular 

aperture of inner radius a0 show a shift in the dominant LG modes used to represent 

such a ring structure and a reduction in the number of modes with significant values of 

|Am|. This decrease in the value of the lower order modes signifies a more oscillatory 

transverse diffraction pattern, which is again due to the similarity in spatial structure 

between the higher-order Laguerre-Gaussian modes and the zeroth order Bessel 

function representing the amplitude of the diffracted beam generated at the annular 

aperture. 

A very simple experiment to verify this formation was arranged by the author 

using a 100GHz radiation source. Eccosorb™ was used to create a 18mm circular null 

in an aperture of radius 30mm, and a spherical lens made from HDPE with f =230mm. 

This would also establish the suitability of Gaussian beam mode decomposition for the 

simulation of non-diffracting beams and related fields. Shown in Figure 6.12 are 

predicted fields for the annular aperture method, and a measured field is compared with 

its simulated counterpart.  
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Figure 6.12 - Simulated fields for the production of a Bessel beam from an annular aperture of outer 

radius 30mm, inner radius 18mm, and f = 230mm. (a) The predicted field in the diffraction half-plane.  

Intensity at (b) z = 0, (c) z = f / 2, (d) z = f  from the lens. (e) experimental measurement at z = 2f, and (f) a 

comparison of models at the focal plane of the lens. Note that the upper limit of intensity scale in some 

cases is reduced to enhance less obvious diffraction features.  

(a) 

(f) 

z (mm) 
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Apart from the purpose of demonstrating the propagation of non-diffracting 

beams, this method of BB creation has found little practical applications in optical 

systems as the power available to the Bessel beam formation is limited by the area of 

the transparent region of the annular aperture, which will inevitably be small.  

 

6.7 - The conical lens 

One method that overcomes the truncation and loss of energy in the annular 

aperture method, is through the application of the conical lens, or axicon, a transparent 

and conical element that produces a similar line focus to the apparatus in the previous 

section.  This element is, as suggested by its name, a conical optically dense element 

that modifies the phase of an incoming wave according to the linear radial variation of 

the thickness of the lens. The term axicon has often been used generally for any optical 

method used in the generation of Bessel beams, but in this thesis this description will be 

reserved for this transparent and symmetric conical lens. The basic operation of a 

conical lens is seen in Figure 6.13, and describes the formation of a pseudo-Bessel beam 

by generating self-interference in a plane wave through a conical phase modulation.  

 

Figure 6.13 – The formation of a pseudo Bessel beam by conical lens. Reproduced from [MONK99].  

 

A mathematical description of such a lens is achieved in a similar way to the 

method used to describe the thin spherical lens in Chapter two by assuming that 

diffraction effects in the axicon itself are negligible, and thus the axicon is represented 

as an infinitesimally thin phase modulation. Figure 6.14 below shows how a simple 

numerical portrayal of a conical lens of refractive index n can be obtained. 
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Figure 6.14 – Model for determining the planar phase transformation of a conical lens.  

 

The physical height of the conical lens at a point r0 is h(r0) = r0 tanθcon, and by 

completely neglecting diffraction effects of the incident field within the conical lens, the 

phase variation imposed by the axicon is determined as ϕ(r0) = nkh(r0) + kH – kh(r0). 

Eliminating the constant phase term kH, as it makes no contribution to the relative phase 

variations, we find the phase of a conical lens to be given by 

concon rnkr θφ tan)1()( 00 −= .    (6.10) 

Now, in comparison with the phase variation of a thin lens, the conical lens produces a 

phase variation which causes a wavefront at each point on the surface to be directed at a 

constant angle to the optical axis, whereas for a spherical lens the angle of refraction at 

each point varies in direction toward a single point on the axis. 

Before simulations are developed that show the diffraction characteristics of a 

beam propagated through such a conical phase variation, certain qualities of the conical 

lens can be estimated, for reference, using simple geometrical optics’ rules such as 

Snell's law. The figure below shows the arrangement for predicting the axicon field’s 

geometric behaviour.  

 

 

 

 

 

 

 

 

Figure 6.15 – Calculation of the Bessel beam angle of a conical lens.  

  

Using Snell’s law the angle of refraction of the conical wave with respect to the base of 

the axicon is given by 

H 
qcon 

h(r0) 

r0 

qBB 

qi 

qr 

qcon 
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( ) conconBB n θθ
π

θ +−= − sinsin
2

1
,   (6.11) 

and from (6.11) the radial and longitudinal wave vectors of the resulting Bessel beam 

kr = k cosθBB,      (6.12(a)) 

kz = k sinθBB.       (6.12(b)) 

and again the condition 222

zr kkk +=  holds. Figure 6.16 shows the variation of the kr 

and kz values relative to the wavenumber k for a value of the refractive index  n = 1.52. 

However, due to total internal reflection, not all values of kr can be achieved.  

 

Figure 6.16 – Behaviour of the radial and longitudinal wavevectors created by refraction of a plane wave 

in a conical lens with n = 1.52.  

 

The comparison of an axicon with its “equivalent” ideal truncated Bessel beam 

shows a similarity in the spatial frequency of both aperture functions. In the case of 

Bessel functions the transverse spatial frequency does not have a constant value, but the 

distances between its roots do rapidly converge upon a value of p/kr with increasing r.  

Unlike the BB’s produced with the previous annular aperture method, and the 

ideal truncated BB’s,  the pseudo-Bessel beam produced by an axicon exhibits a non-

uniform on-axis intensity distribution, due to the greater convergence of energy on the 

optical axis from more extreme parts of the axicon surface with increasing z.  

Bessel functions J0(r) and the cosine function can be related using the 

asympototic expression 
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which can be used as a reliable approximation with r à 0 where a central singularity 

occurs in the above description. Figure 6.17 compares the Bessel and axicon aperture 

functions for generation of fields with equal radial wavevectors kr.  

 

Figure 6.17 – A comparison, at z = 0, of Bessel beam (blue) and the real part of the axicon (red) aperture 

functions, E0(r0) producing pseudo-Bessel beams with the same values of kr. The axicon angle is 10±, the 

wavelength λ = 3mm, and the radius a = 30λ. NF = 2.83.  

 

The trend of mode coefficients of the aperture functions in Figure 6.17 also 

show strong similarity with each other, with the exception of a modulating envelope in 

the case of the Bessel function analogous to the transverse fall-off in the amplitude 

profile.  

 

Figure 6.18 – The mode coefficients, with M = 100, of an axicon field and of the ideal Bessel beam that it 

attempts to approximate. The change in sign of the modes inherent in the integration of LG modes has 

been eliminated for a clearer description. 
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Zapata-Rodríguez et. al. [ZAP06] discussed the concept of a Fresnel number to 

represent the diffraction characteristics of a Bessel beam in the same manner as the 

Fresnel number of field focused by a spherical lens was mentioned in section 2.6.2 

[ZAP06]. Here, the Fresnel number of a Bessel beam is given by  

max

2

Z

a
N F

λ
=      (6.13) 

and yields the number of oscillations in the real part of the Bessel beam function. While 

it will not give an exact figure for the number of Fresnel zones contained in an axicon 

beam, it will give a useful approximation for quantifying the effects of such a lens.  

 The field produced by an axicon is obviously strongly dependent on the base 

angle of the conical surface and the refractive index of the material, and also the radius 

of the element affects the number of lobes in the Bessel-like output field. As shown in 

Figure 6.19 (a) with a very low value of NF the field created by the axicon will not 

deviate greatly from that of a simple circular aperture, but with an increase of NF the 

limitation in diffractive spreading of the central lobe becomes more apparent.  

 

 
Figure 6.19 - The amplitude of the field from a conical lens illuminated by a plane wave. a = 30λ with 

the base angle of the axicon qcon = (a) 3±  (b) 6± (c) 10± (d) 20±, corresponding to NF = 0.82, 1.65, 2.82, and 

6.4 respectively.  

 

(a) (b) 

(c) (d) 
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The behaviour of the field of a conical lens is compared with an equivalent truncated 

Bessel beam in Figure 6.20. The plots show that for a conical lens there is only a limited 

region in which a field closely corresponds to a Bessel function with the greatest 

similarity in structure of the two fields occurring between Zmax/2 and Zmax. 

 

 

Figure 6.20 – Normalised diffraction patterns of a Bessel beam (red) compared with a corresponding 

conical lens (blue) producing the same radial wavevectors. The base angle of the axicon is 10°, with a 

radius a = 30 λ and refractive index of n = 1.52.  
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The formation of the beam from an axicon shows that as the central lobe begins 

to form, just in front of the element, its width is determined by the width of the central 

lobe of the sinusoidal aperture function, and is slightly narrower than that predicted 

from the radial wavenumber of an equivalent BB. However, with increasing z the 

median spot size of the axicon beam increases to a diameter that is consistent with the 

corresponding ideal truncated Bessel beam.  

In terms of the phase structure of an axicon beam, see Figure 6.21, the phase 

profile of the field becomes inverted approximately beyond a distance of Zmax / 2 

representing a divergence of the BB away from the optical axis.  

 

Figure 6.21 - A comparison of the variation in phase of an axicon beam and Bessel beam at various 

planes.  

 

At the plane z = 0 the phase of the axicon beam is radially linear but as the field 

amplitude evolves into a more “Bessel-like” structure the phase develops a stepped 

structure with the phase effectively constant across each individual lobe of the 

amplitude pattern but varying from that of the adjacent lobe. The phase of the Bessel 

beam at the plane z = 0 is defined by a grating like structure of the Bessel function with 

phase values of –π/2 and π/2 corresponding to positive and negative values of J0(krr).  

 In the case of Bessel beam propagation, the on-axis amplitude oscillates about 

an average value of E0. With a uniformly illuminated axicon, the elimination of the 

transverse amplitude decay seen in Bessel functions, asymptotically given as rkrπ2 , 

produces a much different on-axis variation. When illuminated by a plane wave the 
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axicon generates a focal line which varies in intensity proportionally to z, as shown in 

Figure 6.22.  

 

Figure 6.22 - The on-axis variation of the output field of a conical lens under plane wave illumination for 

three cone angles, with the axicon radius a = 30 λ.  

 

Figure 6.22 also shows a limitation of the finite series Laguerre-Gaussian 

synthesis in the very near field of the diffraction plane, where the expected high 

frequency oscillations are eliminated by the truncation of the LG mode set to a finite 

number. However, calculating these fields using a diffraction integral technique actually 

gives spurious amplitude values in these regions due to a 1 / z factor of the integral. 

While the rapid on-axis oscillations in the extreme near-field of the element cannot be 

determined even when using a large M = 500 mode set, the calculation shows the field 

in these regions as an average of the expected oscillatory values, thus maintaining the 

general trend of the field variation.  

The results of Figure 6.22 also show the limitations of the geometrical 

characterisation of the axicon lens. The value predicted by ray optics for the diffraction 

free range Zmax deviates from the actual point at which an on-axis intensity fall off 

occurs, as shown in Figure 6.23.  
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Figure 6.23 - The position of the maximum axial amplitude for a conical lens/axicon and the equivalent 

truncated Bessel beam. λ = 1, a = 30 λ.  

 

To quantify the extent of the limitation of diffraction effects in the focal line of 

an axicon, one simple method is the calculation of the width of the focal line which will 

be defined, in this instance, by the full-width at half maximum of the intensity
2

),( zrE . 

Figure 6.24 compares the beam-widths of two axicon beams. The FWHM of the axicon 

beam intensity is compared with the same characteristic of the corresponding truncated 

Bessel beam, which is given for an ideal Bessel intensity |E|
2
 as approximately 2.2513 / 

kr.  

 

Figure 6.24 - The full width at half maximum for an axicon angle θcon  = (a) 10
◦
, (b) 20

◦
. Conical lens 

(red), compared with the truncated Bessel beam having equal value of kr (blue), a = 30λ. The data in (a) 

corresponds to a Fresnel number NF = 2.82, and in (b) NF = 6.44. See also [ZAP06].  

 

Figure 6.24 exhibits the deviation of the diffractive model of Bessel beams from the 

ideal notion of a truly consistent field profile as given by a geometrical analysis. As can 

be seen from the plots, while both beams exhibit an oscillatory variation of the central 
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spot diameter, the FWHM of the truncated Bessel beam maintains a greater consistency 

about the predicted diameter than that of the axicon.  

 

6.8 - Experimental investigation 

In terms of practical usage of Bessel beams, in particular fields from conical 

lenses, the combination of the high intensity and depth of focus provided by axicons has 

the potential to have many applications in optimising the performance of terahertz 

imaging systems through development of novel axicon-coupled devices. For example, 

one could produce a compact Bessel-beam source by placing an axicon at the aperture 

of a large scalar horn for delivery of intense fields to a subject without the requirement 

of collimating optical systems. In [MAY09], the author described a system developed 

for near-field reflection imaging using mm-wave horn antennas transmitting and 

receiving reflected radiation from an object, as described in Figure 6.25.  

 

Figure 6.25 – Layout of near-field imaging technique applied in [MAY09].  

 

An axicon coupled to a horn antenna may be a useful addition to such an 

arrangement creating an illuminating field on the object, with greater concentration of 

power than may be possible with a horn antenna alone.  

To examine this, a low Fresnel number conical lens was manufactured from 

high-density polyethylene, with a radius of 30mm and axicon base angle of 20±, NF = 

2.133. To measure the beam, a Gunn diode with an operating frequency range of 95–

105 GHz was employed. The operating frequency was set to 100 GHz and a profiled 

corrugated horn (aperture radius 10.5 mm, axial length 105 mm) was used as the 

radiating antenna. The measured and predicted farfield patterns of the horn exhibit low 

sidelobes and hence exhibit a high level of “Gaussicity” i.e. strong similarities with the 

Receiver 

Transmitter (horn) 
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ideal Guassian function. The phase centre or waist position of the corrugated horn (with 

w0 = 6.1 mm) lies a predicted distance of 18.6 mm behind the aperture and is placed to 

coincide with the focal point of an off-axis parabolic mirror (f = 500 mm), which 

collimates the beam incident on the axicon. The angle of throw of the parabolic mirrors 

was 45±. In this optical configuration, a corresponding Gaussian waist of 78mm is 

produced at the axicon with a flat phase front. The truncation of the field is therefore 

relatively slight. The field power was recorded by a Schottky-diode detector mounted 

on a computer-controlled XY scanner as used in chapter 3.   

 
Figure 6.26 – Experimental setup for measurement of axicon field at millimetre wavelengths. 

Reproduced from [TRA04]. 

 

The conical lens tested in this arrangement is predicted to have a radial wavenumber of 

0.473mm
-1

, which with k = 2.0944, results in a BB spot radius of 5.5mm, and a 

diffraction free range of 140mm. The measured intensity patterns in this test are shown 

in Figure 6.27 with a comparison of an LG model of the conical lens. 

For this particular axicon, the radius of 30mm (10λ) means that the maximum 

thickness at the centre of the lens is 10.91mm, which is small in relation to the free-

space wavelength, and indeed to the wavelength in the lens of 1.97mm. With these 

dimensions, the analytical prediction of the axicon phase as a planar modulation given 

by eq. (6.10) is quite appropriate, and this is shown with agreement between the 

recorded and predicted diffraction patterns of Figure 6.27.  
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Figure 6.27 - Experimental measurement of the field generated by a conical lens at 100GHz. a = 30mm. 

z = (a) 0 mm (b) 25 mm, (c) 50 mm, (d) 80 mm, (e) 100 mm.  

 

6.9 – Modal comparison of spherical and conical lenses 

Due to the circular symmetry associated with most ideal radiation patterns, the 

occurrence of the Bessel function occurs widely in paraxial optics. As previously stated, 

the field at the focal plane of a uniformly illuminated thin lens is defined by a first order 

Bessel function and is given by eq. (5.1) 

( )
2

12
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(a) (b) 

(c) (d) 

(e) 
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The spherical lens provides an intense focus in the close vicinity of the defined focal 

distance and one advantage of the spherical lens over an axicon is the lower side lobe 

levels generated as defined by the equation above. As the axicon produces a much 

extended depth of field the peak amplitude is necessarily lower to conserve energy but 

the production of a relatively intense spot at multiple planes may be an advantage over 

the spherical lens in certain situations.  

Shown below is the diffraction patterns of two axicons compared with the 

patterns of lenses with equal Fresnel numbers, i.e. the focal planes of the spherical 

lenses coincide with the diffraction free range Zmax of the corresponding conical lens.  

(a) (b) 

(c) (d) 

 

Figure 6.28 – Propagation of beams from conical (on left) and spherical lenses with equal Fresnel 

numbers. (a)-(b) q=5±, NF = 4.58.  (c)-(d) q=10±, NF = 9.42. λ = 3, a = 100λ. The mode sets shown in (e) 

and (f) correspond to elements with NF = 9.42 NF = 21.5 respectively.  

(e) (f) 
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Comparison of the Laguerre-Gaussian mode coefficients of both lens types 

shows considerable deviations based on the structure of each function. When examined 

through their absolute value, representative of their individual importance to the overall 

diffraction effects, the most evident variation is a reduction in power of the lowest order 

modes, which corresponds to the formation of fields with similar oscillatory structures 

as the LG beam modes.  

For a useful comparison of the LG mode structure of various types of lenses it is 

necessary to obtain a common mathematical description that can describe the two 

optical elements. A hyperbola can approximate both surfaces so we can describe the 

lens functions as 
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which converges to a true conical function as Rhyp→0. Using this definition we can 

show how the deviation of a conical phase transformer from a spherical/hyperbolic form 

to a conical one generates a change in the dominance of the constituent LG modes of the 

optical field.  

The above description of a hyperbola represents the surface of a cone of angle q 

intercepted by at vertical plane a distance Rhyp from the apex of the cone. With 

increasing Rhyp, the structure changes from a cone (at Rhyp→0), to a hyperbola, and 

converges upon an approximate spherical function. In this manner this formulation can 

be used to examine the deviation of an axicon beam from that of the more conventional 

form of lenses.  

As Rhyp is increased, there is an evident change in the surface of the wavefront 

from being completely conical with a well defined apex, to a hyperbola with a 

spherical-like surface near the centre and linear surface towards the outer edges. In this 

manner, the element then begins to behave as a lens/axicon hybrid. For the parameters λ 

= 1mm, θ = 10°, the mode coefficients and axial intensities of varying hyperbolic 

sections are depicted below.  
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Figure 6.29 – The mode coefficients (left) of a hyperbolic lens for various values of Rhyp, with λ=1, a = 

100λ, θcon = 10°, and the corresponding axial intensity patterns on the right column. 

 

The plots show an obvious increase in lower index mode coefficients with an increase 

in the value of Rhyp.  

 

6.10 – Self-reconstruction in Bessel beams 

The propagation of a Bessel beams show interesting properties when modulated 

by truncating aperture, and show the ability, referred to as self-healing, to maintain 

energy at a plane even when centrally obstructed at its source.  
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 The Fresnel integral for the diffraction of a circularly symmetric wave field 

E0(r0) is given by  
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If the calculation of the on-axis intensity only is desired, then this equation becomes 
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To determine the propagation effects of a Bessel beam modulated by an aperture 

function g(r0), then E0(r)=g(r0)J0(krr0), we can use the equation 
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Comparing this to (6.15), the reader should note that the two integrals are of the same 

form, with the exception of the r dependency in the argument of the Bessel function in 

(6.15). With a parameter change of r = z kr / k in (6.15), both equations have identical 

structure. This change of variable fundamentally represents a amplitude variation of the 

diffracted modulating field g(r,z) measured along a line directed at an angle to the 

optical axis. Alternatively, this action represents a rotation of the field at an angle to the 

optical axis, and a measurement of the field distribution along z at r = 0, therefore we 

can say that the on-axis intensity variations of a Bessel beam modulated by a field g(r) 

are directly related to the Fresnel diffraction properties of g(r0).  

Due to the integration over an infinite range, the function g(r) may have any 

form, such as, for example, the “top-hat” function which could be used to represent a 

hard aperture, a Gaussian amplitude profile, or perhaps a phase modulating thin 

spherical lens. To demonstrate this effect, the hypothetical propagation of a Bessel beam 

modulated by a circularly symmetric cosine function was calculated and compared with 

the diffraction of the tilted cosine beam.  
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Figure 6.30 – Comparison of the propagation of (a) Bessel beam, and (b) the same Bessel beam 

modulated by cos(5.5π r/a). The on-axis (r = 0) amplitude of the field in (a) is identical to the amplitude 

along the diagonal line shown in (b).   

 

This behaviour was previously studied in Jiang et. al’s “Propagation of apertured 

Bessel beams” where the authors informally suggested that the on-axis intensity of a 

Bessel beam truncated by a hard aperture “looks very much like the Fresnel diffraction 

pattern of the straight edge”, and this effect was shown for other modulating functions 

such as a truncated Gaussian beam, and an airy amplitude profile. However, the 

reasoning for such behaviour was not noted from the similarity in the above diffraction 

equations, and the study of the on-axis behaviour in axicons and Bessel beams has 

continued to maintain a significant number of publications. A notable example of this 

has been the publication “Fractal conical lenses” by Monsoriu et. al. [MON06], where 

the authors described the propagation of a beam from an axicon whose surface has been 

defined by the cantor function relating to fractal surfaces. This paper suggested that 

“these (Fractal, conical) lenses produce focal segments that are distributed along the 

(b) 

(a) 
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optical axis in a way that they reproduce the fractal profile of originating fractal conical 

lens”, however this statement is true of any beam modulated by a conical lens.  

Based on the preceding phenomenon, one of the most interesting properties of 

Bessel beams is the property known as self-healing or self-reconstruction, the ability of 

a BB to maintain its diffraction limited characteristics even after truncation by a small 

opaque screen. In Figure 6.31, the effects of an obscuration on an axicon beam is shown 

for the case of θ = 15
◦
, a = 100 λ, λ = 3mm. The radius of the circular obscuration is 

0.25 a, and 0.5 a.  

 

 
Figure 6.31- The self-reconstruction effects of an axicon beam under illumination by a plane wave. 

θ=20
◦
, a = 30 λ. The first row shows the effects of obscuration by a circular disc of radius a/4, while in 

the second row its radius is a / 2.  

 

Figure 6.31 shows the reconstruction of the on-axis amplitude, towards Zmax, even with 

truncation of the source field. This is due to the correspondence between a point on the 

optical axis and the points along a constant radius on the surface of the axicon lens. This 

is in contrast to the spherical lens, wherein the amplitude at the focal plane is dependent 

on amplitude contributions from all points on the lens surface.  

This interesting property of Bessel beams may have applications in terahertz and 

mm-wave security screening where the self-reconstruction could allow for the 
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generation of a focal line even after obscuration by media composed of opaque and 

transparent regions. 

 

6.11 - The influence of the input field on axicon beam characteristics 

The characteristics of Bessel beams formed using an axicon illumination beam 

that has an infinite radius of curvature in its wavefront and a constant amplitude profile 

as described thus far is an ideal situation. Such fields do not occur in nature, and are far 

removed from realistic beams derived from lasers or diode oscillators. Especially at 

millimetre-wavelengths, a Gaussian structure is more evident from a waveguide field 

manipulated by a horn antenna. We thus need to examine how the geometrical 

predictions set out in earlier sections are altered by the deviation of a long wavelength 

field from the perfect source field of a plane wave.  

Firstly, a variation in the width of a Gaussian input beam shows a decrease in 

the diffraction free range of the BB, and a reduction in its transverse extent. The 

presence of a Gaussian illuminating beam will affect the maximum on-axis intensity 

caused by the loss of off-axis power, and also the radial extent of the Bessel field due to 

the loss of energy at the edges of the optical element. Analytically, the LG 

decomposition of an ideal Bessel beam subject to an amplitude modulating Gaussian 

envelope, can be predicted from [GRA07] 

( ) ( )
( )

( )









−

−
=








−

−
∞

+∫ αβα

β

α

βα
βα α

22

1
2/exp

2

2

1

0

10000

2

0

2

0

2

r
n

k

n

n

rm

k
LedrrrkJrLr

r

 

where we can represent a Gaussian influence through 
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While this method can give a swift calculation of a finite Bessel-Gauss beam, the 

infinite extent of both the Bessel and Gaussian functions allow for a direct analytical 

determination of its characteristics. In the same manner that the propagation 

characteristics for Laguerre and Hermite Gaussian beams were derived in previous work 

[MUR93], the diffraction effects of a Bessel beam modulated by a Gaussian amplitude 

function can be written explicity.[GOR89] was the first publication to give an 

expression for the Bessel-Gauss beam as 
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There is a decrease in the on-axis amplitude of a Bessel-Gauss beam due to the first 

factor in the above equation, while the cross-sectional profile is maintained for a finite 

distance in accordance with apodised Bessel beams. The most notable difference 

between this form, and a typical Bessel beam is the dependence of the on-axis 

amplitude on the illuminating field, characterized by  
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which is an effect of the phenomenon discussed in the previous section. For a conical 

lens, a similar analytical prediction is not available, and thus the effect of such Gaussian 

illumination must be studied numerically. For this case, the LG mode coefficients are 

given by  
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where win is the waist radius of the illuminating Gaussian beam. Figure 6.32 shows the 

variation of the on-axis intensity variation as a function of the waist radius of the 

Gaussian illumination of the axicon.  

 
Figure 6.32 – On-axis behaviour of the axicon beam generated with a Gaussian beam of varying waist 

radius win. λ = 1, a = 100, q = 10±, n = 1.52. The phase of the illuminating field is assumed to be planar.  
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The transverse amplitude structures are naturally affected, and show a reduction in the 

total intensity, which is natural with illumination by Gaussian field structures with 

reduced power, see Figure 6.33. 

 
Figure 6.33 – The transverse amplitude at z = Zmax/2 (left) and z = 4 Zmax for a conical lens with a = 100 

λ, and θcon=10° with n = 1.52.  

 

In Figure 6.32, it can be seen for Gaussian beams that have a beam width much less 

than that of the aperture radius a the on-axis intensity becomes a smoother and less 

oscillatory as diffraction caused by the edge of the axicon becomes less significant 

when truncating the beam at a lower amplitude value, i.e. with smaller values of win. 

Similarly in the far-field the transverse amplitude structure is also less oscillatory due to 

the same effect. However, the most important effect with Gaussian illumination is the 

reduction of overall energy in the system as can be seen in both plots of Figure 6.33.  

So far, this study of axicons has concentrated on the ideal situation of the axicon 

being illuminated by a wave with an infinite radius of curvature, and this allows for the 

prediction of the radial wavenumber kr, and diffraction free range Zmax. This is however 

an ideal scenario and it would now be advantageous to examine the focusing effects of 

conical illumination with a spherically diverging beam, typically characterised as being 

derived from an infinitesimal point source. In this case the behaviour of the field 

refracted by the axicon is altered by the presence of a curved wavefront. In this case, see 

Figure 6.34, the angle at which each point of the wavefront is refracted is not a constant 

across the element, and so the field at each z plane is, according to geometry, formed by 

the self-interference of radial wavevectors that increase with greater propagating 

distance, thus generating an expanding beam width.  
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Figure 6.34 – The illumination of an axicon with a diverging wavefront causes varying angle of 

refraction across the element, and subsequently a variation of the angle of incidence to the optical axis. 

 

At each point on the optical axis with the focal region the beam profile is still defined 

by a Bessel function, but with a decreasing radial wavenumber, causing a transverse 

broadening of the beam. The LG mode coefficients in this situation are obtained from 
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Publications on the study of axicon and lens characteristics are often based on the study 

of the axial/on-axis intensity variations calculated by the Fresnel integral. This 

calculation is much simplified in GBMA by the elimination of the transverse variation 

of each LG mode, and the complex quadratic phase factor, giving the complete variation 

as a simple sum:  
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Such a calculation is much faster than an equivalent Fresnel calculation, with only M 

integrations required.  

We can exhibit the variations caused to the focal line of an axicon by the 

deviation of the wave’s curvature from the ideal scenario of plane wave modulation, for 

λ = 1mm, aperture radius a = 100mm, and θcon = 10°. See Figure 6.35.  

Point source 

Axicon 
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Figure 6.35 - The variation of the axial intensity of a conical lens through illumination by a diverging 

wavefront. Calculated for a conical lens with a = 100λ, and θcon=10° with n = 1.52. The radius of 

curvature of the illuminating spherical wavefront is 10a while the amplitude variation is neglected across 

the conical lens at z = 0 to highlight the effect of the curved phase influence.  

 

Along the optical axis, an increased radius of curvature of the input field creates a much 

longer focal line, but as can be seen in Figure 6.36 the amplitude of such a field is 

greatly reduced with increasing divergence of the lens illumination.  

 

 

Figure 6.36 – The variation of the on-axis amplitude from an axicon by refraction of a spherically 

diverging field. Shown with the same optical parameters as Figure 6.35.  

 

While the beams are shown to have increasingly larger spot sizes at greater distances 

from the axicon, the field does maintain an appreciable amplitude value along the axis 

for a considerable distance. Despite the larger beam widths, such focusing could be used 
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as a source of illumination in a terahertz imaging system without requiring collimating 

optics as was used in the section 6.8 this chapter.  

 

6.12 - Focusing of Bessel beams 

The plane wave solution to the wave equation can be considered as a special 

type of Bessel beam of radial parameter kr = 0. The modulation of a plane wave by a 

spherical lens is known to give an intense central spot at the focal length f of the 

element, which can be expressed analytically.  Generally, for the calculation of 

diffraction patterns of a field which has propagated through several optical elements or 

regions of higher refractive indices, several integrals would have to be solved 

numerically, which would make geometrical and paraxial techniques tolerable 

predictions for the properties of linear optical systems to compensate for the 

computation times of diffraction calculations.   

A very useful variation of the Fresnel diffraction integral was introduced in 

[COLL70], which defined the propagation of optical waves through a circularly 

symmetric linear optical system defined through an ABCD matrix description. The 

complete form of this integral is 
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where all symbols have their usual meaning in relation to matrix optics. For the 

calculation of the diffracted field of a Bessel beam (at z = 0) of radial wavenumber kr 

focused by a thin lens of focal length f, the appropriate ABCD matrix is given by  
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and the associated diffraction integral for the focusing of a BB becomes given by 
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and for a plane wave, kr = 0, this equation is given by eq. 5.1. Here, we can simulate the 

focusing of Bessel beams without the requirement of analytically solving such integrals.   

The LG mode coefficients for the focusing of Bessel beam at its source are 

predicted from 

Free space lens 
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The behaviour of these fields in the focal region of a thin lens is shown in Figure 6.37 

with a varying focal length.  

 

 
Figure 6.37 – The diffraction of Bessel beams focused by a thin lens with  f = (a) Zmax/4, (b) Zmax/2, (c) 

Zmax, (d) 2Zmax. λ = 3mm, a = 100λ, kr = 0.096 (θcon=5°).  

 

Such properties of the focused axicon beams are important in the field of optical 

trapping where particles can be contained and manipulated in the hollow intense region 

of the field at the focal plane of the lens. In the above examples, with a laser wavelength 

of λ = 633nm the outer radius of the conical lens is 63�m, thus comparison of the 

diameter of the field at the focal plane to this radius depicts the microscopic dimensions 

of objects which can be manipulated, as was reported in [ZWI10] and [ARLT01].  

 

6.13 – Synthesis of optical fields using Bessel beams 

As shown earlier in this chapter Bessel functions and LG functions share 

certain similar characteristics in their oscillatory structure, namely rapid radial 

amplitude fall-offs and large central values at r = 0. Another important property shared 

(c) (d) 

(a) (b) 
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by both is that of orthogonality. Unlike the Laguerre-Gaussian functions which are 

orthogonal over r = {-∞, ∞}, the zeroth order Bessel functions are orthogonal over 

range {0,a}, such that for a circularly symmetric function E0(r0).  
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and αm is the m
th

 root of J0(r0) [HOLM98]. Like the LG modes, these equations allow us 

to formulate any circularly symmetric function, which can be assumed to represent the 

transmittance function of an optical pupil. To account accurately for the entire field at z 

> 0, the optical propagation of each individual mode must be calculable, with diffraction 

angles and field strength dependent on waist parameters and radii of curvature for 

example. For Bessel beam analysis this becomes a trivial task: It is known that an ideal 

Bessel beam, (that described by a real Bessel function of infinite extent), propagates 

according to J0(krr)exp(ikzz-ωt) with kr
2
+kz

2
=k

2
 , thus we can define that each individual 

Bessel beam mode of a expanded aperture will propagate according to eq. (6.3).  

This is clearly a much simpler description of a mode than that of a LG mode, 

where several parameters are required for calculation of each mode. Also, and more 

importantly, Bessel beams are solutions to the complete wave equation and are therefore 

not restricted by the paraxial approximation, which could be a significant advantage 

over the conventional form of Gaussian beam mode analysis. BB mode analysis may be 

more useful in describing optical fields analytically, as Bessel functions are easily 

manipulated mathematically and are also more extensively described in the literature. 

Considering the illumination of a circular aperture with monochromatic radiation of 

wavenumber k, the diffracted field can be expressed using BB mode coefficients given 

by 
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The infinite limit posed on the summation of Bessel modes in (6.23) poses little 

problem. As with LG synthesis, these series converge quickly with low values of M and 
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more accurate descriptions can be obtained using several thousand modes which is of 

little difficulty with modern computers.  

As stated, Bessel functions are orthogonal only over a finite extent in contrast to 

the LG modes which exhibit orthogonality over all space. A field represented in this 

manner will be adequate only over the range r0={0, a}, with other undesired spurious 

features being reconstructed periodically outside this region. This means that the 

calculated diffracted field is valid over a finite longitudinal distance only as the 

undesired aliased transverse features will also “diffract” and will eventually overlap 

with the desired diffraction calculation. A solution to this is to define the function to be 

synthesised, E0(r0) over a much larger extent r2 with zero values between a and r2. In 

this case the aperture function now includes the zero values between r0=a and r0=r2 

which requires a much larger number of modes to expand the fine structure of the 

desired aperture function in r0 < a. See Figure 6.38. 

 

Figure 6.38 - The Bessel beam mode structure used in the Bessel expansion of the function circ(r0 / a) 

with r2 = 5a.  

 

The diffraction effects the field in the diffraction half plane z ≥ 0 can be 

calculated from  
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in an identical manner to the use of the Gaussian beam mode methods used throughout 

this thesis.  
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The advantage of this simple technique is its complete independence from the 

Fresnel theory of diffraction and also it allows for calculation of diffraction effects with 

solutions of the complete wave equation without the paraxial approximation. However, 

the use of a Bessel mode calculation may only have validity in the near field due to the 

orthogonality properties of the Bessel functions, but even this is useful for modelling of 

low F-number systems which the Fresnel diffraction integral has difficulty predicting in 

the very near field. Also, this method predicts evanescent waves in the near field of the 

diffraction plane, with αm>k in eq. (6.26) whereas the Fresnel diffraction model would 

predict these high frequency features as generating harmonic energy.  

We can now demonstrate the use of Bessel functions in the modelling of 

diffraction effects, and as an example we will use the diffraction of a plane wave by a 

spherical thin lens. The calculation of BB mode coefficients for a thin spherical lens is 

given by 
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where again f is the focal length of the lens. For a lens with a low F-number the phase 

curvature at z = 0 is large, thus the number of modes used in a Fourier-Bessel synthesis 

is required to be high. Figure 6.39 shows the mode coefficients and the reconstruction 

of the diffracted fields using (6.26).  
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Figure 6.39 – Calculation of the modulation of a plane wave by a thin lens (top) F#2, and (bottom) F#1 

as a superposition of Bessel beams using eq.(6.26) and eq.(6.27). λ = 1, a = 20 λ, r2 = 20 a. The BB mode 

coefficients of each lens are shown in the left column.  

 

Apart from their non-paraxial behaviour the application of ideal Bessel beam modes in 

this manner has a practical advantage over the Laguerre-Gaussian field modes when 

using software such as Matlab
TM

 and Python as those languages contain a very efficient 

built-in function for the calculation of Bessel functions which allows for relatively swift 

generation of results. This is in contrast to the LG modes which have to be generated 

recursively in custom written functions.  

 

6.14 – Pulsed Bessel beams 

The resolution and depth of field shown with continuous wave Bessel beams and 

their generation using conical lenses is also desirable for temporal pulsed fields such as 

those used in THz spectroscopy. Such short field structures would be of benefit in 

terahertz time-domain systems where the use of a pulse that would maintain a narrow 

central spot could have useful applications in imaging at spectroscopy systems. The 

propagation of a time dependent zeroth order pulsed Bessel beam is defined by the 

integral  
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where V is the on-axis phase velocity ω/kz [ZAM03], related to the propagation angle of 

the individual Bessel beams. One particular form of pulsed Bessel beam that has been 

given considerable attention particularly in the field of medical ultrasound, 

[LU90,LU92] is the field structure known as an X-wave. This term refers specifically to 

a pulsed Bessel beam with a frequency spectrum defined by S(ω) = exp(-βω), where β is 

a real number. Inserting this spectral description into eq. (6.27), the integral can be 

solved explicitly to give the expression [ZAM03] 
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with velocity V = c / cos(π/2-θBB). In eq. (6.28) the field is generated by the integration 

of Bessel beams each with the same characteristic propagation angle θBB. The wavefront 

generated by this field has been the subject of some controversy due to a propagation of 

the pulse peak with apparent superluminal velocity. See Figure 6.40. 

 

 

 

 

 

 

 

 

Figure 6.40 – Schematic of X-wave propagation. 

 

The generation of the so-called X-waves is not possible with a real conical lens 

due to dispersion across the wide bandwidth of the function exp(-βω) which, depending 

on the value of β, is valid over all frequencies of the spectrum, and has more significant 

spectral components with lower frequencies. However, the conventional Gaussian 

spectrum used within this thesis does generate similar pulse effects as the X-waves.  

Like several fields discussed in this thesis, the true description of Bessel pulses 

is again hypothetical due to its infinite extent and its realisation is performed by 

z 

θBB 

Conical 

Wavefronts 
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physical approximations. Using the technique developed in chapter 4, we can describe 

the propagation of a temporal pulsed field refracted by a conical lens. In this model the 

assumption is made, for simplicity, that the refractive index of the hypothetical lens 

material is constant across the pulse spectrum with n = 1.51. For conical lenses with 

larger base angles, and therefore larger depths, the planar approximation may not be as 

suitable as it was the case in the discussion of dispersive diffractive lenses in chapter 5. 

Nevertheless, with a central frequency of ω0 = 374.74 THz (λ0 = 800nm), the 

propagation of a paraxial pulse with a relative bandwidth γ = 0.5 refracted by a 

borosilicate (BK7) conical lens with base angle 20
◦ 
is described in the following section.  

The mode coefficients of a conical lens in the paraxial regime are determined for 

each frequency from  
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In the case of non-dispersive refraction, all values of the refractive index are equal thus 

n(ω) = n(ω0). Figure 6.41 illustrates the mode coefficients derived from this equation 

for an axicon beam. The values of the coefficients are modulated to account for the 

Gaussian spectrum of the pulse.  

 

Figure 6.41 - The mode coefficients, Re{Am} / (-1)
m
 with M = 500, for each spectral component of a γ = 

0.5 Gaussian shaped planar pulse focused by a non-dispersive axicon with a = 25 λ0, λ0 = 800 nm, θcon = 

20
◦
, w0 = (a / 500)

1/2
, the refractive index n = 1.51 . The effect of the spectrum on each frequency has been 

included and accounts for the modulating envelope along the frequency axis.  
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The propagation of the pulse formed by the GBM modal description in eq.(6.29), using 

the mode coefficients of Figure 6.41, is shown in Figure 6.42. Note that the central spot 

size of the pulse again shows consistency.  

 

 

 
Figure 6.42 – Propagation of a plane wave pulse refracted by a dispersionless axicon with θcon = 20

◦
,  

a = 25λ0.  z = (a) Zmax / 4, (b) Zmax /2, (c) 0.75 Zmax , (d) Zmax.  

 

6.15 - Conclusion 

We have presented the properties of diffraction limited (Bessel) beams by use of 

the Laguerre-Gaussian synthesis. The transverse diffraction patterns shown in this 

chapter agree completely with the results determined directly from the Fresnel 

diffraction integral. However, in calculations of longitudinal on-axis amplitude 

variations a deviation between the two methods does become apparent, particularly in 

the near field, with the loss of high frequency oscillations on the optical axis which are 

dependent on higher order Gaussian modes. The transverse pattern, however, is not 

affected by this effect, and in fact a reduction of this oscillatory behaviour can help 

make on-axis amplitude trends more apparent, without any significant loss of useful 

information.  

The results of the experimental measurement of a low Fresnel number conical 

lens have been presented, and similar elements may have potential applications in mm-

wave imaging whereby a narrowly focused field can propagate over significant 

distances without the requirement of intensive collimating optical systems.  

We have exhibited the structure of the pulsed fields refracted by conical lenses 

and showed that the pulsed form of pseudo-Bessel beam also maintains a diffraction 

free range of the central lobe.  

(a) (b) 

(c) (d) 
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 The effect of non-uniform illumination of conical lenses has been illustrated 

with Gaussian beam illumination shown to reduce the overall amplitude of the field but 

also the diffraction free range. In the case of illumination by a diverging wavefront, the 

generated field no longer maintains an approximately constant beam radius over Zmax 

but creates a field that expands with increasing distance from the lens. However, this 

has been shown to maintain significant energy on the optical axis, and causes an 

increase in the length of the "focal line".  

 The author has also applied the description of ideal Bessel beam propagation as 

a method of non-paraxial field calculation. From the well-known Fourier-Bessel 

expansion of a circularly symmetric function, the diffraction at an aperture can be 

determined through a superposition of Bessel beams. This method as applied here is 

only valid in the near-field, but was shown to give very useful results in the simulation 

of spherical lenses.  
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Chapter Seven 

 

Conclusion 

 

This thesis has described the paraxial theory of Gaussian beam mode 

propagation and applied the associated techniques to modern areas of optical research 

such as ultrashort pulse propagation and digital holography, within the mm-wave and 

THz bands of the EM spectrum. Although rooted in the far-infrared band, the 

techniques used in the prediction of such long wavelength fields also have direct 

relevance in optical propagation in the near-infrared and visible regions of the 

spectrum.  

While the primary concern of this thesis has been the paraxial diffraction of 

electromagnetic fields, the later sections of chapter 2 described methods that can be 

used for a more complete simulation of field propagation without paraxial restrictions. 

In particular, the author has demonstrated the more intensive method of the finite-

difference time-domain algorithm in simulation of a 100GHz field in a dielectric lens 

antenna, a component which has evaded significant classification in the mm-wave 

band. The author considers FDTD to be the optimum model of electromagnetic field 

simulation for two reasons  

(1) FDTD allows for modelling of electromagnetic effects based on the 

fundamental physical description given by Maxwell’s equations.  

(2) The method allows for simulation of arbitrarily shaped optical elements 

eliminating requirement of planar approximations conventionally used in 

scalar models.  

Due to its computational complexity, FDTD has not become a standard simulation 

technique of electromagnetic effects in the mm-wave band. However, for the analysis 

of horn antennas and waveguides FDTD is a very useful supplement to conventional 

techniques in mm-wave research and can be used to obtain very realistic models 

without the requirement of complex and abstract mathematical theories.  

 The author has also suggested a novel method of Gaussian beam mode analysis 

using recently derived expressions for the propagation of Hermite-Gaussian modes 

allowing for application of the modal technique outside of the paraxial regime, which 

may be very useful in the analysis of mm-wave horn antennas.  

The study and understanding of the dynamics of ultrashort pulses is a relatively 

new field of optical research. Throughout the literature, the methods of simulating 
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pulsed fields in the scalar theory rely primarily on diffraction integrals in both the 

paraxial and non-paraxial regimes. The inefficiency in numerically solving these 

integrals, one of the motivations of this work, is further exaggerated in the prediction of 

pulse diffraction due to the manner in which the short field is represented as a 

superposition of monochromatic fields with varying frequencies, requiring solution of a 

multitude of such diffraction integrals at each point in space.  

The numerical simplification achieved with GBMA allows for very swift 

calculation of each monochromatic field with negligible deviation from the integral 

results and subsequently pulsed field calculations become much quicker. The GBM 

method calculates the monochromatic field at each point through a sum of M+1 modal 

terms while at each point in the diffraction half-plane the diffraction integrals require 

integration over an aperture function, which for oscillatory functions, such as lenses, 

have to be sampled at very large rates. While the aperture also has to be highly sampled 

in the Gaussian beam mode expansion, numerical integration is required only M+1 

times. As well as this inherent optimisation of diffraction calculation, GBMA also 

combines well with the programming facility of vectorisation available in Matlab and 

Python which can accelerate the procedure even further. The GBMA method of pulse 

simulation allows for prediction of fields that, in comparison with similar examples in 

the literature, can have very high resolution and allow for examination of the fields on 

logarithmic scales.  

From a physical viewpoint, the author has shown how GBM techniques can 

give an alternative view of the physical formation of optical pulses. The diffraction of a 

pulse by an aperture has been exhibited as a superposition of individual and 

independently propagating pulsed modes which gives an alternative explanation for the 

appearance of features such as boundary diffraction waves which propagate in a similar 

manner to the higher order ultrashort Gaussian beam modes.  

The use of Gaussian beam mode analysis in pulsed simulations was also applied 

in the simulation of diffraction effects caused by quantised diffractive Fresnel lenses. 

Experimental continuous wave measurement of such a lens defined for operation at 

100GHz showed excellent agreement with a finite term modal expansion in the 

focusing of a horn antenna beam.  

Application of digital holography in millimetre wave imaging has been 

demonstrated through a simple optical arrangement. Images obtained using the system 

show very good resolution for objects that are only one order of magnitude greater than 

the wavelength. The technique has potential applications beyond those presented in the 
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context of imaging, for example, the use of a similar system as an interferometric 

method in the analysis of millimetre wave sources. Horn antennas have ambiguous 

phase centres, but by measurement of the phase of a generated beam using a similar 

system to that described, one could predict a radius of curvature of the detected field 

and subsequently determine the location of the horns phase centre which would be an 

important result in analysis of antennas with applications relating to astronomical 

radiotelescopes.  

We have also exhibited the reconstruction of images from measurements of 

digital holograms using the Hermite-Gaussian expansion with complete independence 

from the conventional methods which involve fast Fourier transforms. 

The properties of the conical lens, which is yet to gain widespread use in optics, 

have been described through the GBMA method. Through experimental testing of such 

a component at 100GHz, the generated Bessel beams suggest useful application in mm-

wave imaging systems, possibly without the requirement of collimating optics, for 

generation of small focal spots.  

 

The behaviour of individual Gaussian beam modes is well reported in the 

literature. However, the application of the orthogonal properties of these modes is 

rarely described. This thesis has shown that the efficiency and accuracy of Gaussian 

beam mode analysis can be an extremely useful addition to the more familiar 

diffraction techniques. 
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