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An isotropic anti-ferromagnetic quantum state on a square lattice is characterized by symmetry arguments
only. By construction, this quantum state is the result of anunderlying valence bond structure without breaking
any symmetry in the lattice or spin spaces. A detailed analysis of the correlations of the quantum state is
given (using a mapping to a 2D classical statistical model and methods in field theory like mapping to the
non-linear sigma model or bosonization techniques) as wellas the results of numerical treatments (regarding
exact diagonalization and variational methods). Finally,the physical relevance of the model is motivated. A
comparison of the model to known anti-ferromagnetic Mott-Hubbard insulators is given by means of the two-
point equal-time correlation function obtained i) numerically from the suggested state and ii) experimentally
from neutron scattering on cuprates in the anti-ferromagnetic insulator phase.

PACS numbers:

I. INTRODUCTION

The description of strongly correlated systems is one of thefundamental topics in condensed matter physics. These strongly
correlated systems are studied mainly using low dimensional instances, where quantum phenomena are relevant and strong and
thus one cannot expect to get an accurate understanding using classical concepts. Quantum phenomena contribute substantially
in the Mott-Hubbard models, where the focus is on questions concerning quantum critical phenomena, metal-insulator transi-
tions and quantum anti-ferromagnetism – with obvious connections to quantum technology. Very helpful for the description of
any physical system is the exploitation of symmetries. Using the symmetries, simplified models (toy models) can be builtto
understand some of the essentials of a given system.

In quantum anti-ferromagnetism, the traditional approachis linear spin wave theory (LSWT). Here, the assumption is that
the quantum system is well described by taking the classicalground state (the Néel state) and a subsequent quantizationof
the (linearized) deviations from that state. In the last decades, new models of anti-ferromagnets have been studied to describe
particular features of Mott systems where strong interaction effects cause a strong deviation from the picture of the Néel state.
Among these new models, there are the quantum spin liquids, which almost appear to be the opposite of the classical Néel order.
These spin liquids have at least two main characteristics that define them: (i) a spin liquid is a quantum state without magnetic
long range order, and Néel order implies, in fact, magnetic long range order; (ii) a spin liquid is a quantum state withoutany
spontaneously broken symmetry, and the Néel state breaks translational invariance andSU(2) spin invariance.

These models are not just an academic exercise, they try to describe states of physical systems that can appear in Nature,like
for instance in layers ofCuO2. Some of the appealing properties of these systems come fromthe "normal" state of the cuprate
which is known [1, 2] to be (i) a spin singlet i.e., it does not breakSU(2) invariance and it does not have magnetic long range
order; (ii) rotationally invariant, with adx2−y2 orbital symmetry; (iii) a time invariant quantum state.

In the next sections, we will analyze a class of quantum states which have a local tensor description that enforces these
important physical symmetries, the so called multipartitevalence bond states (MVBS). One of the most frequently studied states
with such a local tensor structure is the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model [3, 4], a spin-1 chain
with a Heisenberg-like Hamiltonian. The purpose of this work is to extend the AKLT construction to higher dimensions andstudy
the physical properties that emerge. The extension of the AKLT model that will be studied has been described and motivated in
detail in a prior publication, see Ref. [5].

The paper is organized as follows: in Sec. 2, we describe the tensor structure underlying the construction of the ground state
of the multipartite valence bond model. In that section, we introduce the notation and give a summary of the ideas behind the
construction. The following sections are then dedicated tothe study of the physical properties of the theoretically motivated
model. To do so, we employ several different approaches and work out in detail what we infer and what relevance the results
add to the theoretical model for the description of real-world physics. Along these lines, in Sec. 3, we use a mapping to a two



dimensional statistical model to characterize the properties of the state. This mapping will allow us to extract the properties of
the two dimensional quantum states from a one dimensional quantum system. In Sec. 4, 5 and 6, we give a detailed study of the
correlations in the system applying well-known analytic tools (mapping to the non-linear sigma model, bosonization techniques)
and numerical methods (exact diagonalization and variational methods). The main aim of these two sections is to try to discern
between an algebraic or exponential decay of the equal time correlations in the multipartite valence bond state.

Finally, in Sec. 7, we give a physical motivation of the real-world relevance of our theoretical model. We compare the two-
point equal-time correlation function obtained from theoretical predictions of our anti-ferromagnetic model and linear spin wave
theory with data from neutron scattering experiments of cuprates in the anti-ferromagnet insulator phase.

II. TWO-DIMENSIONAL ANTI-FERROMAGNETIC SYSTEM. THE MODEL

In this section, we characterize a quantum state defined on a 2D square lattice with symmetry arguments only. The aim of this
section is to give an understandable summary of steps for thedefinition of the multipartite valence bond state but we willnot try
to give all the detailed ideas that brought us to the construction of the state, for that purpose we refer to [5].

The two dimensional multipartite valence bond model is defined with the following requirements:

• It is a real singlet ofSU(2), i.e., it does not breakSU(2) invariance, it does not have magnetic long range order and itis
a time invariant quantum state.

• It is a homogeneous, translationally and rotationally invariant state, i.e., it is invariant under any point group symmetry of
the lattice.

• Its local degrees of freedom are characterized by superpositions of singlet (spin-0) and triplet (spin-1) representations of
SU(2).

• It is the ground state of a local Heisenberg-like Hamiltonian.

Many of the features and structures that we will find in this work can be seen as a generalization of theAKLT model [3, 4].
The basic building block of this ground state is given by a structure known as thevalence bond. We will hence call the resulting
state the multipartite valence bond state (MPVBS).

Figure II.1: (color online) Valence bond ground state. The first line with dark blue spots represents the physical state of the spin chain, while
the second line represent the implementation of the state with two ancillae systems per site and a maximally entangled state between neighbor
sites.

Following the original works [3, 4], theAKLT model describes a translationally invariant anti-ferromagnet spin-1 chain. Its
construction is done in two steps:

1. In the ancilla picture, every other pair of contiguous spin-1
2

sites is projected into a singlet state, i.e., a maximally entangled
state with zero total spin angular momentum (valence bond).

2. The remaining contiguous pairs are projected into the triplet subspace of two ancillary spin-1
2

subsystems, corresponding
to a local spin-1 site of the "physical system".

Denoting the state of a spin-1
2

ancilla subsystem by|α) ∈ C2, the first step in the construction of theVBSis equivalent to fixing
the state between neighboring ancilla spins to

|0) =
∑

{α,β}={↑,↓}
|α)ǫαβ |β) = | ↑↓) − | ↓↑), (II.1)
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with ǫ↑↓ = −ǫ↓↑ = 1 andǫ↑↑ = −ǫ↓↓ = 0. The projection of two spin-1
2

subsystems into the triplet subspace is imposed by the
definition of the physical particle to be

|ψαβ〉 =
1√
2

(|α)|β) + |β)|α)) =











√
2| + 1〉 α = β =↑

|0〉 α 6= β√
2| − 1〉 α = β =↓ .

(II.2)

Following the valence bond construction ofAKLT [3, 4], we will characterize a quantum system in a two-dimensional lattice
[5], but in a way that is complementary to their extension of the model to two dimensions. We are looking for a uniform,
translationally invariant singlet state in the square lattice. For this purpose, we restrict our attention to states ofthe following
form (for graphical description see Fig. II.2 and Fig. II.3):

Figure II.2: The multipartite valence bond ground state. Onthe left we find the lattice structure describing the model, where the local physical
degrees of freedom are located at every link. The interactions take place around every vertex and involve the four nearest neighbor sites. On
the right, the representation of the multipartite valence bond state in the ancillae picture.

1. On every link, the local Hilbert space is defined by a (weighted) projection of two ancillae spin-1/2 subsystems into the
triplet and singlet representation ofSU(2).

2. On every vertex, four ancillae subsystems are projected into a singlet ofSU(2).

Figure II.3: Representation of the physical Hilbert space,defined at every link by the projection of two spin-1/2 ancillae subsystems, and at
every vertex by the projection of four spin-1/2 ancillae subsystems. In the analyzed example, a singlet state is chosen at the vertex (It turns out
to be a special case of the classical six vertex model).

Mathematically, both conditions are imposed using a set of appropriate tensors – as in the case of theAKLT -model. First, at
every link, the local quantum states are characterized by

|ψ(Λ)〉 = a(0)σ0|0〉 +
∑

s={x,y,z}
a(s)σs |s〉 =

√
1 + 3Λ

2
σ0|0〉 + i

√
1 − Λ

2

∑

s={x,y,z}
σs |s〉, (II.3)

where the state|0〉 represents the singlet state and{|x〉, |y〉, |z〉} a basis of the triplet sector. The scalarsa(0), {a(s)} give the
amplitude of probability to find the state in the singlet and triplet sectors, respectively, such that:a(x) = a(y) = a(z) are the
probability amplitudes of the triplet sector; andσs correspond to the usual Pauli matrices.

Second, looking back at the construction ofAKLT, they built a real singlet state out of real singlet valence bonds, mathemat-
ically, they linked every second ancillary spin-1/2 subsystem with a tensorΓb2

a1
= ǫb2a1

that corresponds to the Levi-Civita
tensor and is uniquely given by the symmetries of the problem. In our case, at the vertices, four spin-1/2 meet to form
a singlet state ofSU(2). Decomposing the Hilbert space spanned by these spins into invariant subspaces ofSU(2), i.e.,

3



1
2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= 0+ ⊕ 0− ⊕ 1 ⊕ 2, we find that the singlet sector is not unique but two-dimensional. If we rewrite the

state at the vertex in asymmetricgauge, we find that any real singlet state can be described by

Γb2d4

a1c3
[φ] = cosφσ0

a1d4
σ0

c3b2 +
sinφ√

3

(

σx
a1d4

σx
c3b2 + σy

a1d4
σy

c3b2
+ σz

a1d4
σz

c3b2

)

(II.4)

where the angleφ determines a weight of the positive and the negative chiral singlet sectors [6]. There are two special points
φ = {0, π

2
} where this tensor describes a rotationally invariant real singlet.

It is straightforward to realize that the multipartite entangled state at every vertex corresponds to a special case of the classical
six vertex model (see for instance [7, 8] and references therein), so that the state is decomposed in a classical structure (scaffold-
ing) defined at the vertex and the link where we place the singlet-triplet degrees of freedom. The six vertex model characterized
by the tensorΓb2d4

a1c3
[φ] lies on the critical line with anisotropic parameter∆ = 1. This critical line describes the phase transition

between the disordered phase and the ferroelectric phase ofthe six vertex model.

III. GROUND STATE PROPERTIES AND CORRELATIONS. EXPECTATION VALUES

In this section, we characterize the quantum state we have just defined and obtain its correlations. Any expectation value can
be calculated via a mapping of the 2D multipartite valence bond state to a 2D classical statistical model, and from there to a 1D
quantum mechanical model. Hence, we obtain the properties of a two dimensional quantum model from the behavior of a one
dimensional quantum system. In the following, we give the detailed steps for this mapping.

Given the 2D multipartite valence bond state, we map the (local) projectors to classical vertex matricesR. These matrices
are hence derived directly from the tensors defining the projections at the links and at the vertices. E.g., in the calculation of
the vacuum-to-vacuum expectation value, the projectors defining the valence bond model are mapped to two different classical
structures:

• At every link, a transfer matrix is defined byE =
∑

s={0,x,y,z} |a(s)|2 (σs)∗ ⊗ σs

• At every vertex, a vertex matrix is defined byV = Γ∗ ⊗ Γ

and following from these definitions, the resultingR-matrix is given by

Ri2,i4
i1,i3

=
∑

{j1,j2,j3,j4}

√
Ei1,j1

√
Ei3,j3V

j2,j4
j1,j3

√
Ej2,i2

√
Ej4,i4 (III.1)

The vacuum-to-vacuumexpectation value in the valence bondstate now corresponds to the calculation of the classical partition
function of the derived classical vertex model:

〈ψ|ψ〉 =
∑

all configurations

∏

lattice

Rij
lk = Z2D (III.2)

where we sum over all possible configurations compatible with the weightsR.

c6

l

i k

j

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c1 c1c2 c3 c4 c5

Figure III.1: Vertex model in a classical context. The top part represents the vertexRij

lk, the Boltzmann weight of the vertex model. The bottom
part represents the row-to-row transfer matrix for the vertex model.

The classicalR-matrix or Boltzmann weight now depends on two parameters:φ, the angle in the vertex state, andΛ, the
difference in the amplitude of probability of being in the triplet and singlet sector at every link. Because we would liketo
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interpret theR-matrix as the Boltzmann weight of a hermitian Hamiltonian,we have to look at the eigenvalues of thisR-matrix
and check for which values of the parameters they are positive definite. We restrict our attention, without loss of generality, to
values ofΛ > 0. The eigenvalues of theR-matrix that can be negative are

r1 =
Λ

3

(√
3 sin (2φ) − 3 cos (2φ)

)

r2 =
Λ2

3

(√
3 sin (2φ) − 3 cos (2φ)

)

.

(III.3)

In both cases, theR-matrix is positive definite ifφ ∈ [π
6
, 2π

3
]. Thus we restrict the study of the vertex model to the parameter

regimen defined byΛ ∈ [0, 1] andφ ∈ [π
6
, 2π

3
].

From this point, we proceed with another well-known mapping, the equivalence betweenD-dimensional classical statistical
models andd = D − 1 dimensional quantum mechanical problems. In quantum mechanical problems,timeevolution is carried
out by the row-to-row transfer matrixT , with matrix elementsTab given by

Tab = Rc1b1
a1c2

Rc2b2
a2c3

· · ·Rcnbn

anc1
. (III.4)

If we understand this time evolution operator as the exponential of a quantum Hamiltonian̂H1d = − logT , then the classical

partition functionZ2D is just given by the trace of the density matrix of a Gibbs ensembleZ2D = Tr
(

e−NĤ1d

)

.

6

1 3 5

2 4

Figure III.2: Ladder model of spin-1/2 particles. This one dimensional quantum model describes the correlations of the two-dimensional
multipartite quantum valence bond state. For more details,please, see the main text.

To write down the one dimensional Hamiltonian explicitly, we first realize that the indices of theR-matrix have rank four. The
corresponding Hilbert space can be represented by two quantum spin-1/2 systems. The one dimensional quantum Hamiltonian
can thus be described as a ladder of coupled spin-1/2 particles. To build the quantum ladder Hamiltonian we will use the spin
operators

Sx =
1

2

(

0 1
1 0

)

; Sy =
1

2

(

0 −i
i 0

)

; Sz =
1

2

(

1 0
0 −1

)

; (III.5)

and we will use a notation such that the spins in the upper row are labelled with consecutive odd integers and the spins in the
lower row are labelled with consecutive even integers. In summary, the ladder Hamiltonian can be written as

H = β1

(

(~S1 · ~S2) + (~S3 · ~S4)
)

+ β2

(

(~S1 · ~S3) + (~S2 · ~S4)
)

+ β3

(

(~S1 · ~S4) + (~S2 · ~S3)
)

+

β4

(

(~S1 · ~S2)(~S3 · ~S4)
)

+ β5

(

(~S1 · ~S3)(~S2 · ~S4)
)

+ β6

(

(~S1 · ~S4)(~S2 · ~S3)
)

,
(III.6)

where the interaction involves the nearest four spin-1/2 in a plaquette of the spin ladder.
The values of the constantsβi depend on two parametersΛ andφ. Initially, we will fix φ = π

2
, for two reasons: (i) for

simplicity, in a preliminary study of the phase diagram over{Λ , φ} and due to the fact that these values describe a rotationally
invariant real singlet state. (ii) as we mentioned at the beginning of this paper, the different values ofφ describe different
instances of the six vertex model, nonetheless all of them correspond to the anisotropy parameter∆ = 1 and lie on the critical
line of the six vertex model. (iii) Our numerical study of thephase diagram{Λ andφ} with the DMRG method [9, 10] shows
that the parameterφ is irrelevant (see Fig. III.3).
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Figure III.3: Minimum gap of the ladder Hamiltonian that encodes the behaviour of the correlation length of the 2D multipartite valence bond
state inΛ andφ. This phase diagram is built with 100 sample points using a DMRG method. Dark color describes states with small energy
gaps and light color bigger ones.

Then, the constantsβi(Λ,
π
2
) are given by

β1 =
1

12
√

9 + 6Λ2 + 49Λ4

[
(

√

9 + 6Λ2 + 49Λ4 log 9 + 7Λ2 log 36 − log 46656− 2(3 − 7Λ2 + 4
√

9 + 6Λ2 + 49Λ4) log Λ
)

+

+
(

(−3 + 7Λ2) log (3 + 7Λ2 −
√

9 + 6Λ2 + 49Λ4) + 3(3 − 7Λ2) log (3 + 7Λ2 +
√

9 + 6Λ2 + 49Λ4)
)

]

β2 =
1

12

(

log (6561/Λ4) +
2(
√

9 + 6Λ2 + 49Λ4 log Λ + (−3 + Λ(12 + 7Λ)) log (3+7Λ2+
√

9+6Λ2+49Λ4

6Λ
))√

9 + 6Λ2 + 49Λ4

)

β3 =
1

12

(

log (9/Λ4) +
2(
√

9 + 6Λ2 + 49Λ4 log Λ + (−3 + Λ(−12 + 7Λ)) log (3+7Λ2+
√

9+6Λ2+49Λ4

6Λ
))√

9 + 6Λ2 + 49Λ4

)

β4 =
1

3
√

9 + 6Λ2 + 49Λ4

[
(

−
√

9 + 6Λ2 + 49Λ4 log 9 − 7Λ2 log 36 + log 46656− 2(−3 + 7Λ2 + 2
√

9 + 6Λ2 + 49Λ4) log Λ
)

+

+
(

(3 − 7Λ2) log (3 + 7Λ2 −
√

9 + 6Λ2 + 49Λ4) + 3(−3 + 7Λ2) log (3 + 7Λ2 +
√

9 + 6Λ2 + 49Λ4)
)

]

β5 =
1

3

(

2 log (Λ) +
(
√

9 + 6Λ2 + 49Λ4 log 81 − 2(−3 + Λ(12 + 7Λ)) log (3+7Λ2+
√

9+6Λ2+49Λ4

6Λ
))√

9 + 6Λ2 + 49Λ4

)

β6 =
1

3

(

log (Λ4/9)− 2(
√

9 + 6Λ2 + 49Λ4 log Λ + (−3 + Λ(−12 + 7Λ)) log (3+7Λ2+
√

9+6Λ2+49Λ4

6Λ
))√

9 + 6Λ2 + 49Λ4

)

(III.7)

It is illuminating to show a plot of the values of these coupling constants as a function of the parameterΛ (see Fig. III.4 and
III.5). From this first figure, Fig. III.4, we can deduce that the coupling between diagonal spins in the plaquette is negligible;
and whenΛ → 1 the ladder decouples into two independent Heisenberg spin-1/2 chains, sinceβ2 → 1 andβ1 → 0. This fact
allows us to do perturbation theory around two weakly coupled Heisenberg chains [11].

From the second picture, Fig. III.5, we can deduce that the values of the three coupling constants of the four spins in a
plaquette are of the same order, i.e., none of them are negligible and there are regions where these couplings can be negative so
that they cause ferromagnetic interaction.
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0.2 0.4 0.6 0.8 1.0
LAMBDA -ß-

1

2

3

4

COUPLINGS

TWO BODY COUPLINGS.

Figure III.4: Values of the coupling constant that involve two-body interactions. Blue corresponds to the couplingβ1 along the rung of the
ladder; Red corresponds to the couplingβ2 parallel to the spin-1/2 chains; Orange corresponds to the couplingβ3 between diagonal spins in
the plaquette.

0.2 0.4 0.6 0.8 1.0
LAMBDA -ß-

-0.5

0.5

1.0

1.5
COUPLINGS

FOUR BODY COUPLINGS.

Figure III.5: Values of coupling constant that involve fourbody interactions. Blue corresponds to the couplingβ4 along the rung of the ladder;
Red corresponds to the couplingβ5 parallel to the spin-1/2 chains; Orange corresponds to the couplingβ6 between diagonal spins in the
plaquette.

IV. SEMICLASSICAL ANALYSIS: MAPPING TO THE NON-LINEAR SIGMA MODEL.

We have seen that the expectation value of any operator in the2D multipartite valence bond state can be mapped to a one
dimensional quantum problem that is equivalent to a quantumladder with two body and four body interactions. To get some
insight into the behaviour of the system, we are going to use asemiclassical analysis using the Haldane mapping [12, 13, 14]
for the ladder problem [15] (see also [16]). This mapping is acommonly used tool in quasi-one dimensional quantum models
which allows to get a first description of the excitations of these quantum models.

We should point out that although the picture that emerges with this semiclassical study follows some of the results thatwe
will get with the numerical methods, the limits of validity of this approach should be analyzed in more detail. In fact, itis
known that the presence of plaquette interactions in a ladder system gives a rich phase diagram with different critical points
[17, 18, 19, 20, 21]. Also see [22, 23, 24] where this semiclassical approach is used to study two-dimensional anti-ferromagnets
at low temperature.

Before entering in details, we fix the notation of the spin operator in the ladderSa
µm, with [Sa

µm, S
b
νn] =

iδµ,νδm,n

∑

c ǫ
abcSc

µm, in such a way that it carries three indices:a ∈ {x, y, z} labels the direction of the spin operator;
µ ∈ {1, 2} labels the chain in the ladder andm labels the position along the chain.

The semiclassical analysis starts with a mapping of the spinoperator at every rung to a combination of a local staggered
magnetization operator~ϕ and a fluctuating one~l,

~Sµm =
1

2
~lm + (−1)m+µs~ϕm; ~lm · ~ϕm = 0 (IV.1)

wheres is the value of the representation of the spin operator, i.e.,
(

~Sµm

)2

= s(s+1). With this definition and the commutation

7



relation of the spin operators, it is straightforward to obtain

[lam, l
b
n] = iδn,m

∑

c

ǫabclcm; [lam, ϕ
b
n] = iδn,m

∑

c

ǫabcϕc
m;

[ϕa
m, ϕ

b
n] = i

δn,m

s2

∑

c

ǫabclcm → 0, (s≫ 1); (~ϕm)
2

= 1 +
1

s
−

(

~lm

)2

4s2
→ 1, (s≫ 1);

(IV.2)

In the continuum limit,~ϕ will become the field of theO(3) non-linearσ-model and~l will become the generator of rotations, i.e.
~l ≃ ~ϕ× d~ϕ

dt

Hence, the set of operators that defined our Hamiltonian are mapped to

(

~S1n · ~S2n

)

=
1

2

(

~ln

)2

− s(s+ 1)

(

~S1n · ~S1,n+1

)

=
1

4
~ln ·~ln+1 +

(−1)n

2
s
(

~ln · ~ϕn+1 − ~ϕn ·~ln+1

)

− s2~ϕn · ~ϕn+1

(

~S2n · ~S2,n+1

)

=
1

4
~ln ·~ln+1 −

(−1)n

2
s
(

~ln · ~ϕn+1 − ~ϕn ·~ln+1

)

− s2~ϕn · ~ϕn+1

(

~S1n · ~S2,n+1

)

=
1

4
~ln ·~ln+1 −

(−1)n

2
s
(

~ln · ~ϕn+1 + ~ϕn ·~ln+1

)

+ s2~ϕn · ~ϕn+1

(

~S2n · ~S1,n+1

)

=
1

4
~ln ·~ln+1 +

(−1)n

2
s
(

~ln · ~ϕn+1 + ~ϕn ·~ln+1

)

+ s2~ϕn · ~ϕn+1,

(IV.3)

Assuming that~ϕ and~l are slowly varying on the scale of the lattice, we calculate the Hamiltonian in a gradient expansion with

a lattice spacingδ. Keeping term up toO
(

(∂~ϕ
∂x )2

)

andO(~l2), only since,~l effectively contain a time derivative and dropping

constant terms, we obtain

(

~S1n · ~S2n

)

+
(

~S1,n+1 · ~S2,n+1

)

→
(

~l(x)
)2

(

~S1n · ~S1,n+1

)

+
(

~S2n · ~S2,n+1

)

→
(

~l(x)
)2

+
s2δ2

2

(

∂~ϕ

∂x

)2

(

~S1n · ~S2,n+1

)

+
(

~S2n · ~S1,n+1

)

→ −s
2δ2

2

(

∂~ϕ

∂x

)2

(

~S1n · ~S2n

)(

~S1,n+1 · ~S2,n+1

)

→ −s(s+ 1)
(

~l(x)
)2

(

~S1n · ~S1,n+1

)(

~S2n · ~S2,n+1

)

→ −s(s+ 1)
(

~l(x)
)2

− s3(s+ 1)δ2

2

(

∂~ϕ

∂x

)2

(

~S1n · ~S2,n+1

)(

~S2n · ~S1,n+1

)

→ −s
3(s+ 1)δ2

2

(

∂~ϕ

∂x

)2

(IV.4)

Finally, summing up all the terms from the Hamiltonian,

H =
vg2

2

(

~l(x)
)2

+
v

2g2

(

∂~ϕ

∂x

)2

,

vg2

2
= β1 + β2 − s(s+ 1)(β4 + β5);

v

2g2
=
s2δ2

2
(β2 − β3 − s(s+ 1)(β5 + β6))

(IV.5)

This effective Hamiltonian corresponds to theO(3) non-linearσ-model with zeroθ-term; it describes at every site of the
lattice a particle moving on a sphere(~ϕ(x))

2
= 1 with angular momentum~l(x) [25, 26]. The angular momentum takes all

possible integer values,l(x) = 0, 1, · · · ,∞. In the limit g ≫ 1 the kinetic termvg2

2

(

~l(x)
)2

dominates over the potential term

v
2g2

(

∂~ϕ
∂x

)2

, and the ground state is obtained choosing the smallest possible value ofl(x) at every site. The first excited states

are obtained by choosing the irreducible representationl = 1 at one site andl = 0 in the rest of the chain. Since this can be done
at every site, there is a huge degeneracy, which is broken by the potential term. It delocalizes thel = 1 excitations. The3N
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degenerate first exited states become a band ofl = 1 magnons, separated from the ground state by a gap, which can be computed
using perturbation theory. In [25] this gap was computed up to 6th order in 1

g2 . The first three terms read

∆ = vg

(

1 − 2

3g2
+

0.074

g4
+O(

1

g6
)

)

(IV.6)

In the weak coupling limit, a perturbative RG analysis [27] shows that the gap vanishes exponentially as

∆ ≃ v

g
e−2π/g (IV.7)
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Figure IV.1: Values of effective coupling constant that define theO(3) non-linearσ-model and minimum gap obtained from perturbation
theory. Blue corresponds to the coupling constantg; Red corresponds to the effective velocityv; Orange corresponds to the minimum gap∆
in the strong coupling limit and green one to the gap in the weak coupling limit.

V. BOSONIZATION OF A SPIN LADDER

In this section, we will apply another well-known tool from field theory, the bosonization of the spin degrees of freedom
(see for instance [11, 14, 28, 29] and reference therein). This technique is complementary to the mapping to the sigma model,
in the sense, that this method becomes exact when the coupling between spins in a rung of the ladder is weak while the one
applied in the last section corresponds to the strong coupling limit. Nonetheless, we will see that the phase diagram covered
by bosonization is in some sense richer than with the sigma model, giving the possibility to characterize different phases and
to understand the transition between them. Also, it should be mentioned that bosonization techniques will allow us to have a
qualitative description of the behavior of the system but several non-universal, i.e. model dependent, quantities will appear in
the calculations that should be matched with numerical techniques.

In the next lines, we will apply a method known as abelian bosonization keeping just the most relevant terms in the interactions.
We will see that this procedure is good enough to give the correct physics that appears in spin ladders. Nonetheless, a more
careful and detailed study of the ladder is probably needed.Several features have not been analyzed like the importanceof
marginal operators or theSU(2) invariance is not explicitly kept in our derivation; for that propose, we suppose that more
advance methods like nonabelian bosonization would be required (see for example [30]).

In what follows, we would like to look at the physics of two legHeisenberg spin-1/2 ladders. We will start studying the
properties of two decoupled Heisenberg chains and then we will introduce a weak coupling between the chains along the rung
and the plaquettes of the ladder. Hence, a one-dimensional Heisenberg spin chain is defined by the Hamiltonian,

H =
∑

n

~Sn
~Sn+1 =

∑

n

(

Sx
nS

x
n+1 + Sy

nS
y
n+1

)

+
∑

n

Sz
nS

z
n+1 = Hxy +Hz (V.1)

with the usual spin operators,[Sα
n , S

β
m] = iδn,mǫ

αβγSγ
n, and{α, β, γ} ∈ {x, y, z}. In the previous Hamiltonian, we have split

the contribution that comes from the interaction in thexy-plane from the interaction in thez-spin direction, for a reason that will
become immediately clear.

The first step to describe a spin chain in terms of bosons is to write the spin operators in terms of Jordan-Wigner fermions,i.e.

âl =

(

∏

m<l

2Sz
m

)

(Sx
l − iSy

l ) ; {âl, âm} = δl,m {âl, âm} = 0. (V.2)
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With this transformation the Hamiltonian is recast into

H =
1

2

∑

n

(

ânâ
†
n+1 + ân+1â

†
n

)

+
∑

n

(

â†nân − 1

2

)(

â†n+1ân+1 −
1

2

)

(V.3)

From this equation we realize that the first part of the Hamiltonian, the one coming from thexy-interaction, is bilinear in fermion
operators; hence, with a Fourier transformation, we can diagonalizeHxy. Moreover, taking the continuum limit, keeping the
lattice spacingα, and linearizing the Hamiltonian around the Fermi points (kF = ± π

2α ), the first part of the Hamiltonian has
two independent contributions due to left and right moving fermions,

Hxy = iα

�
dx
(

â†L(x)∂xâL(x) − â†R(x)∂xâR(x)
)

(V.4)

with

â(x) =
ân√
α

= eikF xâR(x) + e−ikF xâL(x) (V.5)

Now, the crucial point made by bosonization is that the low energy description of this model is given by particle-hole excitations,
i.e., it is characterized by excitations written in terms ofbilinear fermionic operators, like the electron density, which fulfill
bosonic commutation relations

ρR(x) =: â†R(x)âR(x) :, ρL(x) =: â†L(x)âL(x) :,

[ρµ(x), ρν(y)] =
iδµν

2π
∂xδ(x− y)

(V.6)

where:: means normal ordering with respect to the ground state of theHxy Hamiltonian. With these definitions (and up to
operators that modify the expectation values with logarithmic corrections [31]), the Heisenberg Hamiltonian can be recast into,

H = Hxy +Hz =
πu

2

�
dx

(

1

g
(ρL(x) + ρR(x))

2
+ g (ρL(x) − ρR(x))

2

)

(V.7)

with u = α
π

√

(π − 1)(π + 3), which corresponds to a renormalized Fermi velocity that always can be fixed tou = 1 and

g =
√

π−1
π+3

; this value corresponds to a weak coupling calculation, comparing the field theory methods and Bethe ansatz results,

it is known that in the (isotropic) Heisenberg modelg = 1
2
.

With these transformations, the fermionic operators have asimple form in a bosonic language,

ρR(x) =
1

4π

(√
g − 1√

g

)

∂xφL(x) +
1

4π

(√
g +

1√
g

)

∂xφR(x)

ρL(x) =
1

4π

(√
g +

1√
g

)

∂xφL(x) +
1

4π

(√
g − 1√

g

)

∂xφR(x)

(V.8)

where theφµ fields fulfill the following commutation relations,

[φµ(x), ∂yφν(y)] = 2πiδ(x− y)δµ,ν (V.9)

and the Hamiltonian is recast into,

H = Hxy +Hz =
u

8π

�
dx
(

(∂xΦ(x))
2

+ (∂xΘ(x))
2
)

(V.10)

with the bosonic fieldΦ(x) = (φL(x) + φR(x)) and the dual oneΘ(x) = (φL(x) − φR(x)).
Extending the relations between the bosonic and fermionic fields to the spin operators, the following equations can be found

Sz(x) =

√
g

2π
∂xΦ(x) +

(−1)x/α

πα
sin (

√
gΦ(x))

S+(x) =
(−1)x/α

√
2πα

exp

(

iΘ(x)

2
√
g

) (V.11)
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In the next lines, we will bosonize the two legs spin ladder, following the previous preliminary steps. Although, there is a huge
literature on this subject (see for example [32, 33, 34] ), wewill follow the methods used by Tsvelik and coauthors [17, 18, 19, 35]
. In particular, we will see that perturbed field theory for the Heisenberg ladder has only one relevant perturbation which preserve
the SU(2) symmetry and the leading SU(2)-invariant perturbation is of dimension 1.

For that propose, we introduce a new indexσ ∈ {1, 2} for every spin operator which specifiy the chain of the ladder. The
model, that we consider, is given by the Hamiltonian

H = Hrung +Hleg +Hplaquette

= β1

∑

n

(

~Sn,1 · ~Sn,2

)

+ β2

∑

n,σ

(

~Sn,σ · ~Sn+1,σ

)

+ β4

∑

n

(

~Sn,1 · ~Sn,2

)(

~Sn+1,1 · ~Sn+1,2

)

+ β5

∑

n

(

~Sn,1 · ~Sn+1,1

)(

~Sn,2 · ~Sn+1,2

)

+ β6

∑

n

(

~Sn,1 · ~Sn+1,2

)(

~Sn,2 · ~Sn+1,1

)

(V.12)

The first term in the Hamiltonian is the Heisenberg interactions between the nearest neighbor spins in a rung of the ladder, the
second term is the Heisenberg interaction between the nearest neighbor spins in a chain of the ladder; finally, the third,fourth
and fifth interactions describe four-body spin interactions within in a plaquette in the ladder.

The second term in the Hamiltonian is the one that we have justobtained and its bosonized expression reads

Hleg =
uβ2

8π

∑

σ

�
dx
(

(∂xΦσ(x))
2

+ (∂xΘσ(x))
2
)

(V.13)

The first term in the ladder Hamiltonian, using the definitions of the spin operators in terms of bosonic field and keeping the
most relevant terms, can be recast into,

Hrung =
β1

2πα

�
dx
[

cos (
√
g (Φ1(x) − Φ2(x))) − cos (

√
g (Φ1(x) + Φ2(x))) + 2 cos

(

Θ1(x) − Θ2(x)

2
√
g

)

]

(V.14)

For the plaquette interactions, it can be seen that can be mapped to a similar bosonic interaction with an effective four bodyβeff,
that depends on the values ofβ4, β5 andβ6 and non universal coefficients like the lattice spacingα, hence, it is actual value
should be fixed comparing the numerical results and field theory methods [20, 21],

Hplaquette=
βeff

2πα

�
dx
[

cos (
√
g (Φ1(x) − Φ2(x))) + cos (

√
g (Φ1(x) + Φ2(x)))

]

(V.15)

Introducing the linear combinations of the fieldsΦ1 andΦ2:

Φ± =
Φ1 ± Φ2√

2
(V.16)

theΦ+ decouples from theΦ− contributions and the total Hamiltonian can be seen as the sum of two independent Heisenberg
chains,

H+ =
uβ2

8π

�
dx
(

(∂xΦ+(x))2 + (∂xΘ+(x))2
)

+
βeff − β1

2πα
cos (Φ+)

H− =
uβ2

8π

�
dx
(

(∂xΦ−(x))
2

+ (∂xΘ−(x))
2
)

+
βeff + β1

2πα
cos (Φ−) +

β1

πα
cos (Θ−)

(V.17)

At this point, we can refermionize these models introducinga spinless Dirac fermion

ãR,L(x) =
1√
2πα

exp (±iφ+;R,L(x)) (V.18)

then, the HamiltonianH+ recast into a free massive fermion theory,

H+ = iveff

�
dx
(

ã†L∂xãL − ã†R∂xãR

)

+ imt

�
dx
(

ã†LãR − ã†RãL

)

(V.19)

with mt = β1−βeff
2π The HamiltonianH− also appears as a free massive fermion theory but including apairing interaction,

c̃R,L(x) =
1√
2πα

exp (±iφ+;R,L(x))

H− = iveff

�
dx
(

c̃†L∂xc̃L − c̃†R∂xc̃R

)

+ i
β1 + βeff

2πα

�
dx
(

c̃†Rc̃L − c̃†Lc̃R
)

+
iβ1

πα

(

c̃†Rc̃
†
L − c̃Lc̃R

)

(V.20)
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Finally, defining the (real) Majorana fermions,

ǎx
µ =

ãµ + ã†µ√
2

, ǎy
µ =

ãµ − ã†µ

i
√

2
, ǎz

µ =
c̃µ + c̃†µ√

2
, ǎ0

µ =
c̃µ − c̃†µ

i
√

2
, (µ ∈ L,R) (V.21)

the total Hamiltonian is recast into the sum of four independent free massive majorana fermions,

H = H+ +H− =
∑

µ={x,y,z}
Hmt

[ǎµ] +Hms
[ǎ0] (V.22)

with ms = − 3β1+βeff

2π and

Hm[ǎ] =
iveff

2

�
dx (ǎL∂xǎL − ǎR∂xǎR) + im

�
dx (ǎLǎR) (V.23)

From the above formulas, one readily obtains the line where the triplet mass vanishes, i.e.mt → 0, when βeff

β1

∼ O(1) (see
Fig.V.1). This transition belongs to the universality class of the critical, exactly integrable,S = 1 spin chain (Takhtajan-Babujian
point [36, 37]) with the cental chargec = 3/2. Based on the fact that the critical line is specified in termsof three massless
majoranas, theSU(2)2 WZNW model is the universality class describing this line. The gap, which is the mass of the majorana
triplets, opens linearly as one deviates form criticality.Owing to theSU(2) symmetry of the model no other perturbations than
mass terms of majoranas are allowed.

0.4 0.6 0.8 1.0
LAMBDA -ß-
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EFFECTIVE FOUR BODY COUPLING.

Figure V.1: Estimation of the effective plaquette interaction in the ladder coming from the multipartite valence bond state. In the plot, it is
presented the sum of the absolute values of four body interactions(|β4| + |β5| + |β6|) over the interaction along the rungβ1

VI. NUMERICAL RESULTS

In this section, we study the ladder system resulting from the mapping defined by Eq. (III.6) by numerical means. The
Hamiltonian of this system depends on two parametersφ ∈ [π/6, 2π/3] andΛ ∈ [0, 1] which fix the six parameters of Eqs.
(III.7).

In the following, we present results concerning the exact diagonalization of ladders up to 28 spins or lengthL = 14 for
different values ofΛ with open boundary conditions and using DMRG calculations.Several points seem to be remarkable. First,
there is a region of criticality around the pointΛ → 1; as the system approaches this region, it can be described bytwo decoupled
Heisenberg chains, a critical system. Second, the first excited state is three-fold degenerate. Third, in Fig. III.3, weplot the
minimum gap as a function of the parameters(φ,Λ). From the plot, it seems that the angleφ is an irrelevant parameter at least
for a substantial part of the phase diagram(φ,Λ). Nevertheless, there are special regions that require a careful analysis.

To achieve some knowledge about the behavior of the system inthe thermodynamical limit, we used the DMRG method
[9, 10] to find the system ground state and the first excited state energy. We sample the two-dimensional parameter space with
one hundred points, and for ladders of up toL = 60 rungs, retainingm = 40 states to compute the gap of the system (we
checked convergence of the results tillm = 100 for some typical points). Typical results are shown in Fig. VI.1. These results
have been compared with exact diagonalization calculations for small instances of the problem, e.g.L = 14. The complete
phase diagram forL = 60,m = 40 is displayed in Fig. III.3.

From the phase diagram it is clear that the gap is closing forΛ → 1. Due to the closing gap, the correlations in the ground
state become stronger and thus the numerical simulations require more and more resources. We moved to a ladder withL = 100,
retainingm = 60. In Fig. VI.1 the gap values forΛ = 1 andφ = 1.15 are shown. In the inset, it can be also seen the results in
the regimeΛ = 2

3
andφ = π

2
which signal a different behavior.
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Figure VI.1: Results of DMRG calculations of first energy gapas a function of the length and the number of states kept in thesimulations, with
(Λ, φ) = (1, 1.15) in the main plot and( 2

3
, π

2
) in the inset. Blue points correspond to a number of statesm = 40, purple points tom = 60

and golden points tom = 100. In the main plot the golden points follow a linear behaviourexpected in a critical theory.

Exact diagonalisation is used here to provide exact information about the low energy spectrum of the system with the sizeup
to N=28 spins and to benchmark the DMRG results. Exact diagonalization by construction is an unbiased and reliable method
but its main drawback lies on the limitation of the systems that can be analyzed due to the exponential growth of the Hilbert
space with the system size. The developed code utilizes the PETSc [38] and SLEPc [39] libraries and is run on a Blue Gene/P
supercomputer utilising up to 2048 processing cores.

The question that we try to solve with exact diagonalizationis the behavior of the minimum gap of the system with the length
and the perturbationΛ. We already got some a priori knowledge about the possible scenarios that can appear due to the field
theoretical analysis. In the case that the system is gapless, in the thermodynamical limit, the minimum gap should present a
linear dependence with the system size as it is shown in the Fig. VI.2.
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Figure VI.2: Results of exact diagonalization of first energy gap as a function of the length andΛ for length up toL = 14. All the plots show
a clear linear dependence of the gap with the inverse of the length of the ladder. The lines correpond to the best linear fitsand are just to guide
the eye

Another convincing argument about the gapless system is to show how the gap scales with the perturbationΛ. Now, we know
that perturbed conformal fields theory shows that there is only one relevant perturbation which preserves theSU(2) symmetry of
the system with scaling dimension one, which means that close to theΛ = 1, where we have two decoupled Heisenberg chains,
the gap of the system should open linearly if the system remains gapped in the thermodynamical limit. In Fig. VI.3, we have
plotted the first energy gap as a function ofΛ−1, there, we can see that the plots does not show a linear dependence of the gap
with the perturbationΛ.
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Figure VI.3: Results of exact diagonalization of first energy gap as a function of the length andΛ. On the left side, it is shown the plots for
system sizesL = {12, 14}. One the right side, it is plotted a closer look of the resultsfor L = 14. The blue line correponds to the best linear
fit, the red line corresponds to the best quadratic fit; they are just to guide the eye but it seems that the plots does not showa linear dependence
of the gap with the perturbationΛ.

VII. NEUTRON SCATTERING USING THE 2D MULTIPARTITE VALENCE BOND STATE

This section is dedicated to the study of the real-world relevance of the theoretical model. To this aim, we compare the two-
point equal-time correlation function obtained from the theoretical predictions of our anti-ferromagnetic model andthe linear
spin wave theory with data from neutron scattering experiments of cuprates in the anti-ferromagnet insulator phase.

In the context of high-Tc superconductivity, the investigation of the different competing phases of a potentially superconduct-
ing material and the transition between them is of strong interest. In the limit of low temperature and no doping, a very simple
structure is dominant: the Néel order, the signature of an anti-ferromagnetic long-range ordered state. However, thisphase is
not the interesting one. Changing the environmental conditions or doping might cause a phase change, in some cases leading
to superconductivity. Thesenormal phasesdo not show long range order and have also other interesting structural properties.
Among these is the formation ofstripes, whose occurrence is conjectured by experimentalists to belinked to high-Tc supercon-
ductivity [40, 41, 42, 43, 44]. In this section we want to investigate the multipartite valence bond state from this pointof view.
Since it is lacking long range order, it might be a candidate for the description of normal states of a wide range of materials.
To give an example, we might be able to model cuprates, which are assembled from spin-1/2 sites, but might exhibit – in a
low-energy sector of the normal phase – the behaviour of a substrate made of spin-1 sites. Another example is the nickelates
which are actually assembled directly from spin-1 sites. In this case, we might be able to grasp even the full theory, not only an
effective one.

The investigation carried out in this section is the numerical analysis of a hypothetical neutron scattering experiment, per-
formed on the MPVBS. It is then compared to experimental dataas well as predictions of other theoretical models. Our focus
will be on the short-range entanglement features exhibitedby the experiment (and the predictions), because these features enter
the construction of the MPVBS on a very fundamental level.

The aim of and the essential idea behind a scattering experiment is to find out which degrees of freedom (to absorb energy
and momentum, etc., from the incident scattered beam) a target system has, and from this to draw conclusions about the internal
structure of the target. In principle, a theoretical model derived from first principles should provide us with these degrees of
freedom and therefore with the possible outcomes of the interaction of beam and target.

The central quantity for our following analysis is the experimentally and theoretically accessibledifferential cross section
(

dσ

dΩ

)

ground state→any
.

We assume a setting where the incoming and outgoing beams arewaves of definite momentum. We are not interested in the final
state of the target system and choose the ground state of the anti-ferromagnet as our target. The fact that we are not interested in
the final state liberates us from the task to determine the exact Hamiltonian; when traced out, it is not important. In rotationally
invariant states we obtain the formula

(

dσ

dΩ

)

ground state→any
=
∑

ri,rj

exp [−iκ (ri − rj)] 〈λ|Sz,iSz,j |λ〉 ,

which implies a relation between the two-point correlationfunction and the differential cross section. For further references and
details, we refer to e.g. [45]. The correlation functions are accessible in calculations involving the MPVBS. In this section and
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using this relation, we will now make further use of these (numerically accessible) quantities and hence be able to compare them
to cross sections of other models, techniques and to experimental data. One of these alternatives techniques is the linear spin
wave theory.

A. The linear spin wave approach in an anti-ferromagnet and alternative theories

Assuming that we have already found the right model for the description of a solid state system, a big challenge remains: the
problem of performing the quantum mechanical calculation in the thermodynamic limit, i.e., for objects of macroscopicsize that
are observed in the laboratory and usually consist of∼ 1023 particles. In the context of scattering experiments, but not only
there, a good way to reduce the complexity of the macroscopicsystem is to make certain a priori assumptions about its degrees
of freedom. One of the conventional assumptions that can be made and that will be used in this paper as a reference is the idea
that the excitations ofspin wavesare the essential events that take energy and momentum from the incident beam of scattered
particles.

If we assume that the system is properly described by the Heisenberg Hamiltonian on a square lattice

H = J
∑

〈j,k〉
Sj · Sk, J > 0,

where〈j,k〉 is a sum over nearest neighbors, then in the correspondingclassicalground state every two neighbors would be
aligned in parallel, but with opposite orientation. This leaves us with two sub-lattices (I and II) with equally oriented spins, one
sub-lattice pointing up and one down. This ordering is called the Néel ordering and the corresponding state with this ordering
is called the Néel state. The deviations from this order can be described in terms of modes with definite wavelength. The
quantization of these modes leads to another quantum theoryof the state. The linearized version of this theory is the traditional
description of the quantum mechanical anti-ferromagnet: linear spin wave theory.

Hulthen [46] carried through the quantization of these spinwaves, which subsequently were used by Anderson [47] in his
approximate theory of the quantum mechanical anti-ferromagnetic ground state. They finally obtain the proportionality

∑

j,l, both fromI,II

exp [−ik (j− l)] 〈Sj,xSl,x〉 ∝
√

(1 − γk) / (1 + γk),

whereγk =
∑

i cos ki, i.e.,
√

(1 − γk) / (1 + γk) is proportional to the differential scattering cross section into the direction of
k.

Another approach worth mentioning is the superposition of the classical ground state of the anti-ferromagnet – the Néelstate
– with fluctuating valence bonds. This approach is a construction of (an approximation of) a ground state that offers a qualitative
understanding but fails to make the right predictions in certain regions ofQ-space. We will not elaborate on this approach here,
but account for its predictions later, if appropriate.

As it has already been pointed out in [48], there are many moremodels and techniques to make predictions beyond linear
spin wave theory and the multipartite valence bond state. A very important technique is, of course, quantum Monte-Carlo,
which gives the right answers (or at least being very close),as indicated by simulations at certain points of interest inQ-
space which were performed and discussed in [48]. The approximate correctness of quantum Monte-Carlo simulations for this
model gives confidence that the basic assumptions about the model are justified and we can concentrate on finding its solutions.
However, the quantum Monte-Carlo simulations are not suited to understand the features of the solutionqualitativelyand are
hence unsatisfactory. We also stress again that the Heisenberg Hamiltonian is not theoptimalchoice either, since it is known that
plaquette interactions take place in the real-world anti-ferromagnetic substrates [49]. However, the family of Heisenberg-like
Hamiltonians is large and includes alternative anti-ferromagnetic Hamiltonians; also the parent Hamiltonian of the multipartite
valence bond state belongs to this class.

B. The experiment

Recently, the various scattering cross sections of a two-dimensional square-lattice anti-ferromagnet have been measured ex-
perimentally in great detail [48], offering a great opportunity to test a wide range of theoretical models.

The substance to be measured was a single crystal of CFTD [Cu(DCOO)2·4D2O], with lattice constantsa = 8.113, b = 8.119
and c = 12.45. In an effective model of CFTD, the essential sites (i.e., those that are responsible for the properties of the
substance) are given by the electrons in thed-shells of the copper ions, naturally being spin-1/2 particles. In the ionic picture, the
electrons are strongly localized and there is almost no coupling between two layers in thec-direction. Moreover, the effective
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interactions between these sites cause the crystal to be anti-ferromagnetic. Hence CFTD is an almost perfect realization of a
two-dimensional square lattice Heisenberg anti-ferromagnet.

In the experiment, several assumptions were tested. (i) Oneassumption is the idea that the quantum anti-ferromagnetic
ground state is essentially the classical counterpart withminor quantum corrections, which – once found – are moreoverwell
understandable conceptionally. This assumption expresses the hope that the quantum anti-ferromagnetic ground statecan be
understood qualitatively. (ii) The second assumption thatwas tested is the idea that spin waves are the essential degrees of
freedom of excitation in the anti-ferromagnetic ground state.

We furthermore notice that both linear spin wave theory and the experiment assume the interaction to be described by the
Heisenberg Hamiltonian. This assumption makes these models different from the MPVBS, because its parent Hamiltonian
contains plaquette terms.

C. Comparison of theoretical predictions with experimental data

We compare the experimental data with the predictions of thelinear spin wave theory and the two-dimensional multipartite
valence bond state. In both cases, the differential cross section is proportional to the Fourier transform of the two point function.
The calculation of this two point function is straightforward but – without further simplifications – naturally becomesmore and
more tedious as the system size grows. In the case of the multipartite valence bond state, we did not use any further assumptions
about the degrees of freedom but calculated the two-point function directly. In fact, we fix the parameters(Λ, φ) that defined
the MPBVS to the values(1

3
, π

2
). We have performed the calculations up to a grid size of8 × 8, and we use the results of this

lattice for the analysis. Finite size effects are an issue insuch a small lattice and will be most notable for wave vectorsof large
magnitude, i.e., in the center of theQ-space, which is given by the interval(0, 2π) × (0, 2π).

We will now discuss the cross sections in greater detail. Initially, the cross section is given as a function

(0, 2π) × (0, 2π) ∋ Q 7→
(

dσ

dΩ

)

GS→any
(Q) .

For convenience, we will follow this function on a path – being depicted in Fig. VII.1 – that crosses several interesting regions
of Q-space; the reasons for these regions being interesting will be explained later. This way we arrive at a two-dimensionalplot
of scattering cross section versus length on the path, whichis more accessible than a three-dimensional version. The shape of
the path is motivated by experimental work [48] and the data provided therein.

Figure VII.1: The path to follow.

Our discussion starts with the raw qualitative features of the predicted and experimental cross sections using Fig. VII.2. In this
plot the cross sections of the linear spin wave model, the multipartite valence bond state and the experiment along the path are
given. The units are arbitrary and all curves and data pointsare normalized to give the best possible match with the experiment
overall.

We see that LSWT predicts the experimental data with excellent quality on a crude scale. The singularity at(π, π) is predicted
properly. Moreover, there are nohugequalitative differences to be seen, although the cross section is false in some regions,
showing a slightly wrong tendency there. Most interestingly, in the first part of patch2 of the path the cross section is generally
too high, this feature being reflected again in the last part of patch5, which covers a similar region. A comparison of LSWT
with the experimental data in this region shows that close tothe point(2π, 0) LSWT predicts a too small scattering cross section;
and close to(π, 0) the prediction is too large. The error of the prediction shows an almost linear relation along patch5. This
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Figure VII.2: Cross sections along the path.
Features of the predictions of linear spin wave model, the multipartite valence bond state and the experimental data. The inset shows the same
data, normalized such that the value of the LSWT equals one everywhere. G. Aeppli’s group provided the experimental datapublished in [48].

feature is closely linked to the prediction of linear spin wave theory that at the point(2π, 0) the cross section should be zero.
Considering the data, this is most likely a qualitatively wrong statement about the cross section, based on wrong assumptions
about the degrees of freedom available and hence about the electron structure at these length scales. Generally, we observe that
the cross section in the central region of the wave vectors, i.e., close to the point(π, π) are more precise in their predictions
than those at the zone boundary, the latter belonging to wavevectors resolving features of the electron structure of small scale;
a typical length being around the size of a small multiple of the distance Cu-Cu in the lattice.

Like the LSWT, the MPVBS follows the experiment very well, considering the finite size effects of the simulation. Please note
that there are two regions of the plot that we should considerseparately in the context of our simulation of the MPVBS. Finite
size effects divide the zone into two regions of different precision: like in the case of LSWT we have to distinguish between
wave vectors in central and peripheral regions, the latter being more precise than the former numerically, since finite size effects
have a great impact in the central region.

The first region is represented by the patches1, 2, 3 of the path. The singularity at(π, π) is not predicted. We believe that the
deviations in this region are mostly due to the finite size of the lattice that was used to perform our calculations, and notdue to
the qualitative features of the MPVBS. However, we were unable to prove this, since direct calculations with larger lattices have
so far not been feasible, and in principle one should go to thethermodynamic limit. The patches4 and5 of the path belong to
wave vectors at or close to the boundary of the zone and hence are not strongly affected by the small lattice size. Please note
that this is the region of the most interesting deviations ofLSWT from the experiment. Here, one qualitative differencebetween
LSWT and the MPVBS is apparent; at the point(2π, 0) the LSWT scattering cross section vanishes completely and becomes
comparatively small already in a comparatively large region near this point. The MPVBS shows a completely different behavior;
the scattering cross section stays finite. Unfortunately the experiment does not provide data in this region.

As has been pointed out before, the patches4 and5 of the path are most expressive, but also the region where patch 1 and
2 meet, the finite lattice size does not have a strong impact. Inthe latter region, we see that LSWT predicts the experimental
data with an error of100%. The MPVBS, however, shows the right tendency. The predicted value is less than that of LSWT.
The comparison of the qualitative behavior of the LSWT, the MPVBS and the experimental data is possible in an optimal way
in a plot that shows the data from Fig. VII.2 normalized to thepredictions of LSWT. Here the tendency in the patches4 and5
is most apparent. Please notice again that the patches1, 2 and3 are severely affected by the finite size of the lattice used for

17



computations.
What is the significance of patch5 and the meeting points of patches1 and2? The cross section in this region of the zone

reflects the electron structure at short distances of the lattice. As has been conjectured already in [48], the entanglement features
on this length scale in the Heisenberg anti-ferromagnet andhence also in CFTD might be completely different from those of
the Néel state and the spin wave excitations. On the one hand,the Néel state is a classical state with no entanglement and also
the excitable degrees of freedom, the magnons, show the entanglement structure of collective modes of excitations of harmonic
oscillators.

On the other hand, the MPVBS is constructed to have the entanglement structure of (two-electron) singlets, established
between nearest neighbors. This assumption about the electron structure obviously allows for better predictions at the small
length scale. An assumption similar to the construction of the MPVBS is made when we start with the Néel state as the ground
state but allow for a superposition with resonating valencebonds, in the ground state as well in its modes of excitation.As
shown in [48], this construction gives a very good match at point (π, 0), but results at the same time in a prediction that is far
too low – though qualitatively right – when approaching the point (2π, 0). This wave vector pointing in the diagonal direction
of the lattice, where no valence bonds are assumed in the construction. Obviously some degrees of freedom are missing in this
description, which again are included in the MPVBS. Please note in this context that the effective interactions in CFTD arise
under mediation by formate groups in between the copper ions, a situation which is considered and reflected in the construction
of the multipartite valence bond state.

VIII. CONCLUSIONS

In this paper we carried out several approaches for the analysis of the multi partite valence bond state described in Ref.[5].
This state is based on a local tensor description that enforces important physical symmetries. It can hence be interpreted as being
a two-dimensional generalization of one of the most frequently studied states with such a local tensor structure, the ground state
of the Affleck-Kennedy-Lieb-Tasaki (AKLT) model [3, 4], a spin-1 chain with a Heisenberg-like Hamiltonian. Moreover, it can
be seen as a complementary generalization to their extension to higher dimensions.

Our main goal in this paper was to analyze the behavior of the two point correlation functions of the multipartite valencebond
state model and to compare it with the classical linear spin wave theory (LSW) and experimental data.

To achieve this goal, we proceeded in two directions: first, we applied a mapping to a quantum ladder problem, in order to
discern between an algebraic and an exponential decay of thecorrelations. In this step, we use analytical tools (mapping to
the non-linear sigma model and bosonization techniques) and numerical tools (exact diagonalization and variational methods).
Another strategy that should be investigated in the future,and we leave open, it is the study of the equivalent two dimensional
classical vertex model, its integrability properties and the relations with the Yang-Baxter equations.

Second, we calculated the equal time two point functions andcompared it with both the results of LSW and data from a
neutron scattering experiment on a Mott-Hubbard anti-ferromagnet insulator material.

In the context of the description of two-dimensional solid states in the anti-ferromagnet insulator phase, our model can be
seen as an alternative to the linear spin wave approach. In fact, the scattering cross sections of both models differ qualitatively
in important regions. These regions correspond to structures that the LSW approximation fails to describe properly andthat are
conjectured to correspond to important qualitative features of the electron structure in the actual solid. More precisely, these
features are believed to be related to short-range entanglement structures of the electrons in the solid and hence reflect a design
goal of the generalized AKLT model that we give.

Moreover, the multi-partite valence bond state offers a newand unusual constructive approach for toy models in solid state
physics, providing unusual points of view on the structure of high-Tc superconductivity.
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