Valence Bond States: Link models
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An isotropic anti-ferromagnetic quantum state on a squatteeé is characterized by symmetry arguments
only. By construction, this quantum state is the result ofiaderlying valence bond structure without breaking
any symmetry in the lattice or spin spaces. A detailed aimlgthe correlations of the quantum state is
given (using a mapping to a 2D classical statistical model miethods in field theory like mapping to the
non-linear sigma model or bosonization techniques) as agethe results of numerical treatments (regarding
exact diagonalization and variational methods). Findhg physical relevance of the model is motivated. A
comparison of the model to known anti-ferromagnetic MotthHard insulators is given by means of the two-
point equal-time correlation function obtained i) numalig from the suggested state and ii) experimentally
from neutron scattering on cuprates in the anti-ferromtgivesulator phase.

PACS numbers:

I. INTRODUCTION

The description of strongly correlated systems is one ofuhdamental topics in condensed matter physics. Thesegiro
correlated systems are studied mainly using low dimensiostances, where quantum phenomena are relevant ang stnoh
thus one cannot expect to get an accurate understandirgyalassical concepts. Quantum phenomena contribute suitadita
in the Mott-Hubbard models, where the focus is on questiemeerning quantum critical phenomena, metal-insulatonsi
tions and quantum anti-ferromagnetism — with obvious cotiaes to quantum technology. Very helpful for the deséipiof
any physical system is the exploitation of symmetries. Yshre symmetries, simplified models (toy models) can be bwilt
understand some of the essentials of a given system.

In quantum anti-ferromagnetism, the traditional approadmear spin wave theory (LSWT). Here, the assumption & th
the quantum system is well described by taking the clasgicaind state (the Néel state) and a subsequent quantizstior
the (linearized) deviations from that state. In the lastadies, new models of anti-ferromagnets have been studiegstide
particular features of Mott systems where strong inteoacéiffects cause a strong deviation from the picture of thel Niate.
Among these new models, there are the quantum spin liqulishvalmost appear to be the opposite of the classical Néeror
These spin liquids have at least two main characteristetsdbfine them: (i) a spin liquid is a quantum state without mezig
long range order, and Néel order implies, in fact, magnetig Irange order; (ii) a spin liquid is a quantum state withenuyt
spontaneously broken symmetry, and the Néel state bremtdational invariance angi’/ (2) spin invariance.

These models are not just an academic exercise, they trystwide states of physical systems that can appear in Néikee,
for instance in layers of'uO-,. Some of the appealing properties of these systems cometfroimormal” state of the cuprate
which is knownﬂ[b] to be (i) a spin singlet i.e., it does na¢dk SU (2) invariance and it does not have magnetic long ranc
order; (i) rotationally invariant, with &,-_,» orbital symmetry; (iii) a time invariant quantum state.

In the next sections, we will analyze a class of quantum stateich have a local tensor description that enforces the
important physical symmetries, the so called multipaxtitkence bond stateM{VBS. One of the most frequently studied state:
with such a local tensor structure is the ground state of tie¢k-Kennedy-Lieb-TasakiXKLT) model [3,4], a spin-1 chain
with a Heisenberg-like Hamiltonian. The purpose of thiskisito extend the AKLT construction to higher dimensions siudly
the physical properties that emerge. The extension of thETAKodel that will be studied has been described and motiviate
detail in a prior publication, see Ref| [5].

The paper is organized as follows: in Sec. 2, we describestigot structure underlying the construction of the grouatks
of the multipartite valence bond model. In that section, mteoduce the notation and give a summary of the ideas behand
construction. The following sections are then dedicatethéostudy of the physical properties of the theoreticallytivabed
model. To do so, we employ several different approaches amkl aut in detail what we infer and what relevance the resul
add to the theoretical model for the description of realldiphysics. Along these lines, in Sec. 3, we use a mappinguwmwa t



dimensional statistical model to characterize the prigedf the state. This mapping will allow us to extract thepanies of
the two dimensional quantum states from a one dimensioraadtgm system. In Sec. 4, 5 and 6, we give a detailed study of the
correlations in the system applying well-known analyticlsolmapping to the non-linear sigma model, bosonizatiohrigues)
and numerical methods (exact diagonalization and vanatimethods). The main aim of these two sections is to trygoetn
between an algebraic or exponential decay of the equal tirrelations in the multipartite valence bond state.

Finally, in Sec. 7, we give a physical motivation of the realrld relevance of our theoretical model. We compare the two
point equal-time correlation function obtained from treg@ral predictions of our anti-ferromagnetic model ane@#inspin wave
theory with data from neutron scattering experiments ofatgs in the anti-ferromagnet insulator phase.

II. TWO-DIMENSIONAL ANTI-FERROMAGNETIC SYSTEM. THE MODEL

In this section, we characterize a quantum state defined Bnsgj@are lattice with symmetry arguments only. The aim o thi
section is to give an understandable summary of steps fatdfieition of the multipartite valence bond state but we wilt try
to give all the detailed ideas that brought us to the constmiof the state, for that purpose we referlto [5].

The two dimensional multipartite valence bond model is defiwith the following requirements:

e Itis areal singlet ofSTU(2), i.e., it does not breakU (2) invariance, it does not have magnetic long range order aed it
a time invariant quantum state.

e Itis a homogeneous, translationally and rotationally irarat state, i.e., it is invariant under any point group syetny of
the lattice.

e Its local degrees of freedom are characterized by supdipusof singlet (spin-0) and triplet (spin-1) represeiotas of
SU(2).

e Itis the ground state of a local Heisenberg-like Hamiltonia
Many of the features and structures that we will find in thiskvecan be seen as a generalization of T model [3,4].

The basic building block of this ground state is given by adtire known as thealence bondWe will hence call the resulting
state the multipartite valence bond state (MPVBS).

Figure 11.1: (color online) Valence bond ground state. Th&t fine with dark blue spots represents the physical statieeospin chain, while
the second line represent the implementation of the stdtetwo ancillae systems per site and a maximally entangkse setween neighbor
sites.

Following the original worksl[3,/4], th&KLT model describes a translationally invariant anti-ferrgmet spin-1 chain. Its
construction is done in two steps:

1. Inthe ancilla picture, every other pair of contiguousms@isites is projected into a singlet state, i.e., a maximaltgegled
state with zero total spin angular momentum (valence bond).

2. The remaining contiguous pairs are projected into tipdetrsubspace of two ancillary spéqsubsystems, corresponding
to a local spin-1 site of the "physical system".

Denoting the state of a spi@ancilla subsystem biyy) € C2, the first step in the construction of tv@Sis equivalent to fixing
the state between neighboring ancilla spins to

0= > |a)easl®) =111 = 11), (I.1)
{a,B}={1.1}



with e;) = —e;; = 1 andej; = —e|| = 0. The projection of two spin; subsystems into the triplet subspace is imposed by the
definition of the physical particle to be

) V2[+1) a=p=1
[Vag) = 75 (12)16) + [B)le)) = | 10) a#p (11.2)
V2[=1) a=p=].

Following the valence bond construction®KLT [3,/4], we will characterize a quantum system in a two-diniemel lattice
[5], but in a way that is complementary to their extensiontef model to two dimensions. We are looking for a uniform,
translationally invariant singlet state in the squarddatt For this purpose, we restrict our attention to statetheffollowing
form (for graphical description see F[g_1I.2 and Hig.1l1.3)

Figure 11.2: The multipartite valence bond ground state tlémleft we find the lattice structure describing the modélere the local physical
degrees of freedom are located at every link. The intenastiake place around every vertex and involve the four neasgghbor sites. On
the right, the representation of the multipartite valenaedstate in the ancillae picture.

1. On every link, the local Hilbert space is defined by a (weddgh projection of two ancillae spih/2 subsystems into the
triplet and singlet representation 8t/ (2).

2. On every vertex, four ancillae subsystems are projeated singlet ofSU (2).
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Figure 11.3: Representation of the physical Hilbert spatefined at every link by the projection of two spin-1/2 ars@llsubsystems, and at
every vertex by the projection of four spin-1/2 ancillaesggiems. In the analyzed example, a singlet state is chosies eertex (It turns out
to be a special case of the classical six vertex model).

Mathematically, both conditions are imposed using a seppf@priate tensors — as in the case of th€ LT-model. First, at
every link, the local quantum states are characterized by

[¥(A)) = a(0)0|0) +

S a(s)o* Is) = V1+3 o* |s), (11.3)

\/1 —A
o%l0) +it—— Y
s={z,y,z} s={z,y,z}

where the stat@)) represents the singlet state afid), |y), |z)} a basis of the triplet sector. The scala(§), {a(s)} give the
amplitude of probability to find the state in the singlet aniglét sectors, respectively, such thatz) = a(y) = a(z) are the
probability amplitudes of the triplet sector; ant correspond to the usual Pauli matrices.

Second, looking back at the constructionAd€LT, they built a real singlet state out of real singlet valenoeds, mathemat-
ically, they linked every second ancillary spin-1/2 suteys with a tensofb2 = b2 that corresponds to the Levi-Civita
tensor and is uniquely given by the symmetries of the problédmour case at the vertices, four spifi2 meet to form
a singlet state ofSU(2). Decomposing the Hilbert space spanned by these spinsrinéwiant subspaces U (2), i.e.,



lolelei=0, 9012 wefind that the singlet sector is not unique but two-dimemai. If we rewrite the
state at the vertex insymmetriggauge, we find that any real singlet state can be described by

bad 0o 0 sin ¢ : :
Fazlci [(b] = COS¢0a1d4UC3b2 + \/g (0Z1d40§3b2 + 021d4033b2 + 021d40-§3b2) (“4)

where the angle determines a weight of the positive and the negative chingleat sectors[[6]. There are two special points
¢ = {0, 5 } where this tensor describes a rotationally invariant rieglet.

Itis straightforward to realize that the multipartite emgéed state at every vertex corresponds to a special cake offessical
six vertex model (see for instancé [7, 8] and referencegihprso that the state is decomposed in a classical strugsiaffold-
ing) defined at the vertex and the link where we place the sirgfdet degrees of freedom. The six vertex model charamteri
by the tensoi29: [¢] lies on the critical line with anisotropic paramet®r= 1. This critical line describes the phase transition

aic3

between the disordered phase and the ferroelectric phalse six vertex model.

1. GROUND STATE PROPERTIESAND CORRELATIONS. EXPECTATION VALUES

In this section, we characterize the quantum state we hatel@iined and obtain its correlations. Any expectationevakn
be calculated via a mapping of the 2D multipartite valencedostate to a 2D classical statistical model, and from theeelD
guantum mechanical model. Hence, we obtain the properti@éwio dimensional quantum model from the behavior of a one
dimensional quantum system. In the following, we give thiaitied steps for this mapping.

Given the 2D multipartite valence bond state, we map thea(Jqurojectors to classical vertex matricBs These matrices
are hence derived directly from the tensors defining thegptmjns at the links and at the vertices. E.g., in the calicraf
the vacuum-to-vacuum expectation value, the projectdinidg the valence bond model are mapped to two differensadab
structures:

e Atevery link, a transfer matrix is defined by = >>__, .y la(s)]* (0*)" @ 0®
e At every vertex, a vertex matrix is defined by=T* @ I

and following from these definitions, the resultiRgmatrix is given by

R = > VEi, ;,VEi, j VIVE), ,.VE;, i, (11.1)

01,13 J3 " j1,73
{J1,J2,J3,Ja}

The vacuum-to-vacuum expectation value in the valence btate now corresponds to the calculation of the classicétipa
function of the derived classical vertex model:

Wwy="> ] Bl =20 (111.2)

all configurationdattice

where we sum over all possible configurations compatible Wie weightsk.

i+k
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Figure I1.1: Vertex model in a classical context. The toptpepresents the verteli(fi, the Boltzmann weight of the vertex model. The bottom
part represents the row-to-row transfer matrix for theeserhodel.

The classicalR-matrix or Boltzmann weight now depends on two parametgrghe angle in the vertex state, ad the
difference in the amplitude of probability of being in théptet and singlet sector at every link. Because we would tike



interpret theR-matrix as the Boltzmann weight of a hermitian Hamiltoniame, have to look at the eigenvalues of tiiismatrix
and check for which values of the parameters they are pegigfinite. We restrict our attention, without loss of gefigrao
values ofA > 0. The eigenvalues of thB-matrix that can be negative are

A
r = —= V3sin — 3cos

i2( 3sin (20) — 3cos (20)) .
= (\/Esm(w) — 3cos (2¢)) .

In both cases, th&-matrix is positive definite itp € [F, %”]. Thus we restrict the study of the vertex model to the paramet
regimen defined by € [0,1] and¢ € [%, 27].

From this point, we proceed with another well-known mappthg equivalence betwedn-dimensional classical statistical
models andl = D — 1 dimensional quantum mechanical problems. In quantum nmécalgoroblemstime evolution is carried

out by the row-to-row transfer matrik, with matrix elementd,;, given by

Tap = REGREE - R0 (111.4)
If we understand this time evolution operator as the exptaesf a quantum Hamiltoniattl;; = — log 7", then the classical

partition functionZ,p is just given by the trace of the density matrix of a Gibbs ense Z,p = Tr (e‘Nﬁld) .
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Figure 111.2: Ladder model of spin/2 particles. This one dimensional quantum model describesdhrelations of the two-dimensional
multipartite quantum valence bond state. For more defalidgse, see the main text.

To write down the one dimensional Hamiltonian explicitly first realize that the indices of tie matrix have rank four. The
corresponding Hilbert space can be represented by two gumespiind /2 systems. The one dimensional quantum Hamiltonian
can thus be described as a ladder of coupled $piparticles. To build the quantum ladder Hamiltonian we wikuhe spin

operators
e L[0T\ o, 1[0 =i\ o 1/10)\
5_5<1 0), 5_5(1. 0), 5_5(0 _1), (I11.5)

and we will use a notation such that the spins in the upper rewadbelled with consecutive odd integers and the spinsén th
lower row are labelled with consecutive even integers. mmary, the ladder Hamiltonian can be written as

H = By (51 S2) + (S5 S0)) + B2 (51 S6) + (S - S0)) + s (S S0) + (52 - b)) +

fa ((gl + 55)(S5 - §4)) + 065 ((gl - 93)(Ss - §4)) + Bs ((51 SIS - §3)) : (111.6)

where the interaction involves the nearest four sphiin a plaquette of the spin ladder.

The values of the constants depend on two parameteAsand ¢. Initially, we will fix ¢ = 7, for two reasons: (i) for
simplicity, in a preliminary study of the phase diagram o{&r, ¢} and due to the fact that these values describe a rotationally
invariant real singlet state. (ii) as we mentioned at theirb@gg of this paper, the different values ¢fdescribe different
instances of the six vertex model, nonetheless all of themespond to the anisotropy paramefer= 1 and lie on the critical
line of the six vertex model. (iii) Our numerical study of thhase diagraniA and¢} with the DMRG method [d, 10] shows

that the parametef is irrelevant (see Fid. 1I1]3).
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Figure 111.3: Minimum gap of the ladder Hamiltonian that edes the behaviour of the correlation length of the 2D maitipe valence bond

state inA and¢. This phase diagram is built with 100 sample points using aRBvinethod. Dark color describes states with small energy
gaps and light color bigger ones.

Then, the constants; (A, 7) are given by

5 1
' 120 1 6AZ + 49M1

[(\/9 T 6A2 + 49ATlog 9 + TA2log 36 — log 46656 — 2(3 — TA2 + 4/9 1 6A2 + 49A1) log A) +
+ ((—3 +7A%)log (3 + TA% — /9 + 6A2 + 49A%) + 3(3 — TA?) log (3 + TA% + /9 + 6A2 + 49A4))]
2(v/9 + 6AZ + 49ATlog A + (—3 + A(12 + TA)) log (3HTATEVIH6ATHAIAT )))

By = 1—12 (log (6561 /A%) +

V9 + 6AZ 1 40A%
2(vVO+ 6A2 + 49A T Tog A + (—3 + A(—12 + TA)) log (3ETAZ£VOL6A2+40A
ﬂgzi 1Og(9/A4)—|— ( + + og +( + ( + )) Og( 6A ))
12 V9 + 6A2 + 49A1
1 (I1.7)
I = AT o o

[(—\/9 T 6A2 + 49AT1og 9 — TA21og 36 + log 46656 — 2(—3 + TA2 + 21/9 + 6A2 + 49A1) log A) +
+ ((3 — 7TA?)log (3 + TA? — /9 + 6A2 + 49A%) + 3(—3 + 7TA?)log (3 + TA% + /9 + 6A2 + 49A4))]

(VO + 6AZ + 2977 log 81 — 2(—3 + A(12 + TA)) log (EHTAVIELGATHIINT
VO + 6AZ + 49AT

Bs = % <210g (A) +

1 4 2(V9 + 6A2 + 49A*log A + (=3 + A(—12 + 7A))10g(3+7A2+\/%X6A2+49A4)>
B = = | log (A*/9) —
3 9+ 6AZ + 4971

It is illuminating to show a plot of the values of these congltonstants as a function of the paramétésee Fig[ .4 and
[L5). From this first figure, Fig[IILW, we can deduce thhetcoupling between diagonal spins in the plaquette is gibdg
and whenA — 1 the ladder decouples into two independent Heisenbergisf@rchains, sincgls — 1 andg; — 0. This fact
allows us to do perturbation theory around two weakly coipleisenberg chains [1L1].

From the second picture, Fig._11.5, we can deduce that theegaof the three coupling constants of the four spins in a

plaquette are of the same order, i.e., none of them are iitgdgland there are regions where these couplings can beiveegat
that they cause ferromagnetic interaction.
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Figure IIl.4: Values of the coupling constant that involvetbody interactions. Blue corresponds to the coupl#glong the rung of the
ladder; Red corresponds to the couplifigparallel to the spink/2 chains; Orange corresponds to the coupliadetween diagonal spins in
the plaquette.
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Figure 111.5: Values of coupling constant that involve fdagady interactions. Blue corresponds to the coupliaglong the rung of the ladder;
Red corresponds to the coupliily parallel to the spink/2 chains; Orange corresponds to the coupliagbetween diagonal spins in the
plaquette.

IV. SEMICLASSICAL ANALYSIS: MAPPING TO THE NON-LINEAR SIGMA MODEL.

We have seen that the expectation value of any operator idBheultipartite valence bond state can be mapped to a one
dimensional quantum problem that is equivalent to a quanagaer with two body and four body interactions. To get some
insight into the behaviour of the system, we are going to usenaiclassical analysis using the Haldane mapping [14, 413, 1
for the ladder problem [15] (see algo[16]). This mapping émmonly used tool in quasi-one dimensional quantum models
which allows to get a first description of the excitationsla#te quantum models.

We should point out that although the picture that emerg#s this semiclassical study follows some of the results wet
will get with the numerical methods, the limits of validity this approach should be analyzed in more detail. In fads it
known that the presence of plaguette interactions in a laslgltem gives a rich phase diagram with different criticaihts
[17,[18]15[ 20, 21]. Also sek [22,/43] 24] where this seméitas approach is used to study two-dimensional anti-faegnets
at low temperature.

Before entering in details, we fix the notation of the spin raper in the ladderSy,,, with [S],, Sh o=
10,00m,n D . eabCSﬁm, in such a way that it carries three indices:€ {z,y, z} labels the direction of the spin operator;
u € {1,2} labels the chain in the ladder andlabels the position along the chain.

The semiclassical analysis starts with a mapping of the gperator at every rung to a combination of a local staggered

magnetization operatagf and a fluctuating ong

—

Sym = =l + (1) sGm; Ly G =0 (IV.1)

. 2
wheres is the value of the representation of the spin operator,G%,m) = s(s+1). With this definition and the commutation



relation of the spin operators, it is straightforward toadbt
s 1) = 0 > €Uy [l O] = i0nm Y €055
-\ 2 (IV.2)
1 ()

a 6nm abcic — 2
[wm,wilzls—gzeblm*(), (s> 1); (Fm)” =14 - === =1, (s> 1)

In the continuum limit,3 will become the field of th€(3) non-linears-model and will become the generator of rotations, i.e.
l~gx ‘Z—f
Hence, the set of operators that defined our Hamiltonian agged to

(§1n : an) = % (1:1)2 —s(s+1)

S I ) LU R L
(Sln . Sl,nJrl) = Zln . ln+1 + ( 2) S (ln cPn+1 — Pn - anrl) - 524%771 * Pn+1
Son o) = 2T Trr — T (T G — G Tt — %60 - @ (1V:3)
2n 0241 ) = 7' Cbn41 D) Slln* Pnt+l1 — Pn " lntl S Pn - Pn41 .
. 1. L . L
(Sln : SQ,n-i—l) - Zln . ln-i—l - ( 2) S (ln T Pn+1 + On - ln-l-l) + 52(;011 *Pn+1
S T ) L P o
(SQn . Sl,nJrl) = Zln . ln+1 + ( 2) S (ln *Pn+l + Pn anrl) + 529071 *POn+1,

Assuming thatp and!l are slowly varying on the scale of the lattice, we calculagHamiltonian in a gradient expansion with
a lattice spacing. Keeping term up t@ ((%)2) and O(P), only since,feffectively contain a time derivative and dropping
constant terms, we obtain

(gln : §2n) + (ﬂl,n+1 : §2,n+1) - (f(ff))Q
(S-S (S-S0 = () + 5 ()
(gln ‘ §2n) (51,n+1 : §2,n+1) — —s(s+1) (?@)2 |
(S’ln ) §1_’n+1) (§2n ) §27n+1) e s(s+1) (?I))Q B $3(s —|2— 1)62 <g_f)2
(S Samin) (Sor- Suir) = 2L (22
Finally, summing up all the terms from the Hamiltonian,
2, =\ 2
" % (Z(I))z : 2%2 (3_9 | (IV.5)
2 252
=Bt o= sl D+ BN 5 = T (B = B = s(s + 1B + )

This effective Hamiltonian corresponds to t&&3) non-linearc-model with zerof-term; it describes at every site of the
lattice a particle moving on a sphefg(z))* = 1 with angular momenturiz) [25,[26]. The angular momentum takes all
2

possible integer value&z) = 0,1, - -, co. In the limitg > 1 the kinetic term”Qiz (f(m)) dominates over the potential term

N\ 2
# g—i) , and the ground state is obtained choosing the smallesibp@sslue ofi(z) at every site. The first excited states
are obtained by choosing the irreducible representatieri at one site andl= 0 in the rest of the chain. Since this can be done

at every site, there is a huge degeneracy, which is brokehéopatential term. It delocalizes thhe= 1 excitations. The8 N



degenerate first exited states become a banhd-of magnons, separated from the ground state by a gap, whicteazoniputed
using perturbation theory. 10 [25] this gap was computecbufith order inq%. The first three terms read

2 0.074 1
In the weak coupling limit, a perturbative RG analysid [2dws that the gap vanishes exponentially as

A~ Lem2m/s (IV.7)
g
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Figure IV.1: Values of effective coupling constant that deftheO(3) non-linearo-model and minimum gap obtained from perturbation
theory. Blue corresponds to the coupling constariRed corresponds to the effective velocityOrange corresponds to the minimum gap
in the strong coupling limit and green one to the gap in thekvseaipling limit.

V. BOSONIZATION OF A SPIN LADDER

In this section, we will apply another well-known tool fronelfi theory, the bosonization of the spin degrees of freedom
(see for instancé [11, 14,128,129] and reference thereinis fBlehnique is complementary to the mapping to the sigmaefnod
in the sense, that this method becomes exact when the cgumimween spins in a rung of the ladder is weak while the one
applied in the last section corresponds to the strong cogilinit. Nonetheless, we will see that the phase diagraneiea\
by bosonization is in some sense richer than with the sigma@emgiving the possibility to characterize different pbasnd
to understand the transition between them. Also, it shoaldhentioned that bosonization techniques will allow us teeha
qualitative description of the behavior of the system buesa non-universal, i.e. model dependent, quantitiesapipear in
the calculations that should be matched with numericaltiegles.

Inthe nextlines, we will apply a method known as abelian ba=dion keeping just the most relevant terms in the int@vas.

We will see that this procedure is good enough to give theecbiphysics that appears in spin ladders. Nonetheless, @ mor
careful and detailed study of the ladder is probably nee@®=leral features have not been analyzed like the importaince
marginal operators or th8U(2) invariance is not explicitly kept in our derivation; for tharopose, we suppose that more
advance methods like nonabelian bosonization would benedj(see for examplé [30]).

In what follows, we would like to look at the physics of two letgisenberg spin-/2 ladders. We will start studying the
properties of two decoupled Heisenberg chains and then Wéntwoduce a weak coupling between the chains along thg run
and the plaquettes of the ladder. Hence, a one-dimensi@is¢hberg spin chain is defined by the Hamiltonian,

H=Y 881 = (S5Sz, +SUSY, )+ > SiSi,, =Hyy+H. (V.1)

n

with the usual spin operatorl§<, S2] = i6,, me*?7SY, and{a, 3,7} € {z,y, z}. In the previous Hamiltonian, we have split
the contribution that comes from the interaction in #hyeplane from the interaction in thespin direction, for a reason that will
become immediately clear.

The first step to describe a spin chain in terms of bosons isite the spin operators in terms of Jordan-Wigner fermiaas,

a = <H 25;) (SF—iSY);  Aar, am} = 0rm {ar, am} = 0. (V.2)

m<l



With this transformation the Hamiltonian is recast into
H—1 Al ( ol al G 1 al 1 V.3
=5 Z ny, 1 + Gny16) ) + Z ala, — 5 Ay Gng1 — 3 (V.3)

From this equation we realize that the first part of the Hamikin, the one coming from thgj-interaction, is bilinear in fermion
operators; hence, with a Fourier transformation, we cagatialize,,. Moreover, taking the continuum limit, keeping the
lattice spacingy, and linearizing the Hamiltonian around the Fermi poits & +57-), the first part of the Hamiltonian has
two independent contributions due to left and right movieigfions,

H,y = ia / dx (a}(a:)amaL(a:) - ag(a:)azaR(a:)) (V.4)
with
ale) = S = M an(a) + (o) (v5)

Now, the crucial point made by bosonization is that the loergg description of this model is given by particle-holeitadtons,
i.e., it is characterized by excitations written in termsbdinear fermionic operators, like the electron densitpiat fulfill
bosonic commutation relations

h(@)ar(x):, pr(z) = a}(z)aL(e)

m

Q>

pr(T) =
(V.6)

[pu(T), pu(y)] =

where:: means normal ordering with respect to the ground state offfaeHamiltonian. With these definitions (and up to
operators that modify the expectation values with logarithcorrections [31]), the Heisenberg Hamiltonian can lsaseinto,

U

i =ty 1= 5 [ (5 00(0) + pr@)* + 3 (01(0) - pule))’) v7)

with . = £/(7 — 1)(7 + 3), which corresponds to a renormalized Fermi velocity thatgk can be fixed ta. = 1 and

T

g=/ ;—;é; this value corresponds to a weak coupling calculation,maming the field theory methods and Bethe ansatz results,
it is known that in the (isotropic) Heisenberg moget %

With these transformations, the fermionic operators hasiengle form in a bosonic language,

1 1 1 1
Pr() = — (\/_ - ﬁ) Ozo1(2) + <\/§+ \/_ﬁ) 02 PR () )
1 1 1 1 '
o) = 3= (Vi+ == ) dnte) + 4 (V- =z ) ol
where theyp,, fields fulfill the following commutation relations,
[0(2), 0y du (y)] = 2mid(x = Y)Op (V-9)
and the Hamiltonian is recast into,
H = Hy+ H. = /da: (02())* + (0.0(x))°) (V.10)

with the bosonic fieldb(x) = (¢ (z) + ¢r(z)) and the dual on®(x) = (¢ (z) — ¢r(x)).
Extending the relations between the bosonic and fermiogliddito the spin operators, the following equations can bado

_1\z/a
S*(z) = ga@(x)ﬂ ;L sin (,/g®(z))
. (V.11)
_ (/e iO(x)
5= e (27
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In the next lines, we will bosonize the two leg s spin laddatpfving the previous preliminary steps. Although, thera huge
literature on this subject (see for examplée [32/38, 34] wiligollow the methods used by Tsvelik and coauth& [17/1% 35]

. In particular, we will see that perturbed field theory for theisenberg ladder has only one relevant perturbationhydreserve
the SU(2) symmetry and the leading SU(2)-invariant peatidn is of dimension 1.

For that propose, we introduce a new index {1,2} for every spin operator which specifiy the chain of the laddédre
model, that we consider, is given by the Hamiltonian

H = Hrung + Hleg + leaquette

= Z ( Sn 2) + B2 Z (gna : §n+1,a) + 4 Z (gnl : §n2) (§n+1,1 : §n+1,2)

e n (V.12)
+ 05 Z ( 1 Sn+l 1) (gnQ . §n+1,2) + B Z (gnl . §n+1,2) (§n2 . §n+1,1)

The first term in the Hamiltonian is the Heisenberg interawibetween the nearest neighbor spins in a rung of the latt@er
second term is the Heisenberg interaction between the staaghbor spins in a chain of the ladder; finally, the thicdyrth
and fifth interactions describe four-body spin interadiaithin in a plaquette in the ladder.

The second term in the Hamiltonian is the one that we havejustined and its bosonized expression reads
u 32 2 2
Hieg = 87203/@6 ((&C@g(:c)) + (0,94 (x)) ) (V.13)

The first term in the ladder Hamiltonian, using the definisi@i the spin operators in terms of bosonic field and keepigeg th
most relevant terms, can be recast into,

B ) [ ©1(z) — O2(x)
L /da:[cos (VG (®1(2) — Bo())) — cos (/7 (P1(x) + o (x))) + 2 cos N } (V.14)
For the plaquette interactions, it can be seen that can bpedap a similar bosonic interaction with an effective foadp Geg,
that depends on the values ©@f, 55 and s and non universal coefficients like the lattice spacindience, it is actual value
should be fixed comparing the numerical results and fieldrthexethods([20, 21],

Hrung

Hpaquere= -2 [ [ 008 (V3 (@1(2) = Ba(a))) + cos (VG (@1 (2) + Ba(e)))] (V.15)
Introducing the linear combinations of the fieldlg and ®,:
O + Py
L = V.16
i —~ (V.16)

the ®, decouples from thé@_ contributions and the total Hamiltonian can be seen as threa$uwo independent Heisenberg
chains,

o, = 1;_52 /dx (024 () + (2.0, ()% + Bett = b1 o5 (3,)
s yiye;
uB Bett + 8 (-17)
_ up2 2 2 eff 1 P
Ho = /dx ((&C(I)_(:v)) + (0,0_()) ) + S cos () + S cos (0-)
At this point, we can refermionize these models introducirspinless Dirac fermion
im () = ¢217T—a exp (its:,1.(¢)) (V.18)
then, the Hamiltoniari/, recast into a free massive fermion theory,
H, = iveﬁ/da: (ELTL&C&L — CNL];%(?IELR) + imt/d:c (aLaR — aTRaL) (V.19)

with m; = M The HamiltonianH _ also appears as a free massive fermion theory but includrairang interaction,

Cr,r(x ) = 5 exp (+id4;p,L(x )

- /dx L0ue — hdaen ) + {1 et / da (e — e in) + 2 h ~ (ehel, — ven)

2T

Q

(V.20)
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Finally, defining the (real) Majorana fermions,

4 — ay —|—dL Ly ay —dL Cu +5L 0 _ Cn— EL (u € L, R) (V.21)

- 9 a;, = s = ) a’l,_ . )
V2 V2 V2 V2

the total Hamiltonian is recast into the sum of four indepartdree massive majorana fermions,

, a

H=H,+H = }: H,,,[a"] + Hp, [a°] (V.22)
n={=z,y,z}
with m, = — 3815 gng
Hm[d] = LUeft /dI (d,;azd,; — dRade) + zm/da: (deR) (V23)

From the above formulas, one readily obtains the line wheeetriplet mass vanishes, i.ea; — 0, When% ~ O(1) (see
Fig[\J)). This transition belongs to the universality cla$the critical, exactly integrablé, = 1 spin chain (Takhtajan-Babujian
point [36,(37]) with the cental charge= 3/2. Based on the fact that the critical line is specified in teahthree massless
majoranas, th&U (2). WZNW model is the universality class describing this linéaeTgap, which is the mass of the majorana
triplets, opens linearly as one deviates form critical®ywing to theSU (2) symmetry of the model no other perturbations than
mass terms of majoranas are allowed.

EFFECTIVE FOUR BODY COUPLING,

COUPLING

0.35
0.30
0.25

i ‘ ‘ ‘ . LAMBDA -A-
0.4 0.6 0.8 1.0

Figure V.1: Estimation of the effective plaquette intei@ctin the ladder coming from the multipartite valence botates In the plot, it is
presented the sum of the absolute values of four body irtteresq| 54| + |8s| + | 3s|) over the interaction along the rurg

VI. NUMERICAL RESULTS

In this section, we study the ladder system resulting fromttapping defined by Ed. (I11.6) by numerical means. The
Hamiltonian of this system depends on two parametes [7/6,27/3] andA € [0, 1] which fix the six parameters of Egs.
(D).

In the following, we present results concerning the exaagdnalization of ladders up to 28 spins or length= 14 for
different values of\ with open boundary conditions and using DMRG calculati®@eeral points seem to be remarkable. First,
there is a region of criticality around the poikt— 1; as the system approaches this region, it can be descritewldecoupled
Heisenberg chains, a critical system. Second, the firstezksitate is three-fold degenerate. Third, in Fig_111.3, plet the
minimum gap as a function of the parametefsA). From the plot, it seems that the anglés an irrelevant parameter at least
for a substantial part of the phase diagr@fmA). Nevertheless, there are special regions that requiresfutanalysis.

To achieve some knowledge about the behavior of the systeimeithermodynamical limit, we used the DMRG method
[9,[10] to find the system ground state and the first excitete staergy. We sample the two-dimensional parameter spahe wi
one hundred points, and for ladders of uplto= 60 rungs, retainingn = 40 states to compute the gap of the system (we
checked convergence of the resultsstill= 100 for some typical points). Typical results are shown in Eid.IV These results
have been compared with exact diagonalization calculatfonsmall instances of the problem, elg.—= 14. The complete
phase diagram fak = 60, m = 40 is displayed in Figl TIL.B.

From the phase diagram it is clear that the gap is closind\fes 1. Due to the closing gap, the correlations in the ground
state become stronger and thus the numerical simulatigugeamore and more resources. We moved to a ladderivith100,
retainingm = 60. In Fig.[VI.1 the gap values fok = 1 and¢ = 1.15 are shown. In the inset, it can be also seen the results in
the regime\ = % and¢ = 5 which signal a different behavior.
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| FIRST GAP(A, ¢)

ENERGY
0.07t

0.462
0.06F0.460; === = =

0.458

[ 0.456 h
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0.04f °
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00 ® o
! ]
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0.02 0.04 0.06 0.08 LENGTH

Figure VI.1: Results of DMRG calculations of first energy @ega function of the length and the number of states kept isithelations, with
(A, ¢) = (1,1.15) in the main plot and%, %) in the inset. Blue points correspond to a number of states 40, purple points ton = 60
and golden points tex = 100. In the main plot the golden points follow a linear behaviexpected in a critical theory.

Exact diagonalisation is used here to provide exact inftionabout the low energy spectrum of the system with the gize
to N=28 spins and to benchmark the DMRG results. Exact dialigation by construction is an unbiased and reliable naktho
but its main drawback lies on the limitation of the systenat tan be analyzed due to the exponential growth of the Hilber
space with the system size. The developed code utilizesEi&®[38] and SLEP¢ [39] libraries and is run on a Blue Gene/P
supercomputer utilising up to 2048 processing cores.

The question that we try to solve with exact diagonalizaisathe behavior of the minimum gap of the system with the lengt
and the perturbation. We already got some a priori knowledge about the possil@eastos that can appear due to the field
theoretical analysis. In the case that the system is gaptesise thermodynamical limit, the minimum gap should prese
linear dependence with the system size as it is shown in théVi2.

FIRST GAP(A=0.3) FIRST GAP(A=0.5

ENERGY ENERGY
1.25
2.30
1.20
2.25
1.15
2.20 1 1
" 0.080.100.120.140.160.18 0.20L ENGTH " 0.080.100.120.140.160.180.20LENGTH
FIRST GAP(A=0.7) FIRST GAP(A=0.9)
ENERGY ENERGY
0.70
0.50
0.65 0.45
0.40
0.60 0.35
055 0.30
1 0.25 1
" 0.080.100.120.140.160.18 0.20LENGTH " 0.080.100.120.140.160.18 0.20LENGTH

Figure VI.2: Results of exact diagonalization of first eryeggp as a function of the length andfor length up toL. = 14. All the plots show
a clear linear dependence of the gap with the inverse of tigtheof the ladder. The lines correpond to the best lineaafitsare just to guide
the eye

Another convincing argument about the gapless system Isow ow the gap scales with the perturbatiorNow, we know
that perturbed conformal fields theory shows that therelis@me relevant perturbation which preserves$i&2) symmetry of
the system with scaling dimension one, which means thaé¢ttheA = 1, where we have two decoupled Heisenberg chains,
the gap of the system should open linearly if the system mnesngapped in the thermodynamical limit. In Fig. V1.3, we have
plotted the first energy gap as a function/of!, there, we can see that the plots does not show a linear depeadf the gap
with the perturbation.

13
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Figure VI.3: Results of exact diagonalization of first eryegap as a function of the length and On the left side, it is shown the plots for
system sized, = {12, 14}. One the right side, it is plotted a closer look of the residts, = 14. The blue line correponds to the best linear
fit, the red line corresponds to the best quadratic fit; theyjust to guide the eye but it seems that the plots does not alioear dependence
of the gap with the perturbatiaf.

VIl. NEUTRON SCATTERING USING THE 2D MULTIPARTITE VALENCE BOND STATE

This section is dedicated to the study of the real-worldvaaiee of the theoretical model. To this aim, we compare thee tw
point equal-time correlation function obtained from thedretical predictions of our anti-ferromagnetic model émellinear
spin wave theory with data from neutron scattering expemisief cuprates in the anti-ferromagnet insulator phase.

In the context of highF,. superconductivity, the investigation of the different quating phases of a potentially superconduct-
ing material and the transition between them is of strongrédt. In the limit of low temperature and no doping, a venyde
structure is dominant: the Néel order, the signature of dinfarromagnetic long-range ordered state. However, phigse is
not the interesting one. Changing the environmental canditor doping might cause a phase change, in some casesdeadi
to superconductivity. Thesgormal phaseslo not show long range order and have also other interedtingtgral properties.
Among these is the formation sfripes whose occurrence is conjectured by experimentalists timked to highd. supercon-
ductivity [40,[41] 4P| 43, 44]. In this section we want to istigate the multipartite valence bond state from this pofriiew.
Since it is lacking long range order, it might be a candidatetlie description of normal states of a wide range of mdgeria
To give an example, we might be able to model cuprates, whietassembled from spih/2 sites, but might exhibit — in a
low-energy sector of the normal phase — the behaviour of atsatk made of spin-sites. Another example is the nickelates
which are actually assembled directly from spisites. In this case, we might be able to grasp even the furyhaot only an
effective one.

The investigation carried out in this section is the nunaramalysis of a hypothetical neutron scattering expertieger-
formed on the MPVBS. It is then compared to experimental datevell as predictions of other theoretical models. Our $ocu
will be on the short-range entanglement features exhilnjetthe experiment (and the predictions), because thesarésagnter
the construction of the MPVBS on a very fundamental level.

The aim of and the essential idea behind a scattering expatiis to find out which degrees of freedom (to absorb energy
and momentum, etc., from the incident scattered beam) attaygtem has, and from this to draw conclusions about teenak
structure of the target. In principle, a theoretical modsiied from first principles should provide us with theseréeg of
freedom and therefore with the possible outcomes of thedot®n of beam and target.

The central quantity for our following analysis is the exp@ntally and theoretically accessildferential cross section

(i6)
ds ground state.-any

We assume a setting where the incoming and outgoing beamsses of definite momentum. We are not interested in the final
state of the target system and choose the ground state daftifie@omagnet as our target. The fact that we are notésted in

the final state liberates us from the task to determine thetéiamiltonian; when traced out, it is not important. In taaally
invariant states we obtain the formula

da)
7oy = exp [—ik (r; — ;)] (A[S2,:5:,;|A)
(dQ ground state-any rzr] 7 ’

which implies a relation between the two-point correlafionction and the differential cross section. For furthéerences and
details, we refer to e.d. [45]. The correlation functions accessible in calculations involving the MPVBS. In thistim and
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using this relation, we will now make further use of thesenfeucally accessible) quantities and hence be able to cantipam
to cross sections of other models, techniques and to expetahdata. One of these alternatives techniques is tharlsn
wave theory.

A. Thelinear spin wave approach in an anti-ferromagnet and alternative theories

Assuming that we have already found the right model for tteedption of a solid state system, a big challenge remalres: t
problem of performing the quantum mechanical calculatiothé thermodynamic limit, i.e., for objects of macroscapae that
are observed in the laboratory and usually consist af0?? particles. In the context of scattering experiments, butamby
there, a good way to reduce the complexity of the macros@®ysitem is to make certain a priori assumptions about itsegesgr
of freedom. One of the conventional assumptions that candmerand that will be used in this paper as a reference is the ide
that the excitations agpin wavesre the essential events that take energy and momentum fimdident beam of scattered
particles.

If we assume that the system is properly described by theeHBé&rg Hamiltonian on a square lattice

H:JZsj-sk, J >0,
)

where(j, k) is a sum over nearest neighbors, then in the correspomtfisgicalground state every two neighbors would be
aligned in parallel, but with opposite orientation. Thiaves us with two sub-lattices (I and II) with equally oriesh&pins, one
sub-lattice pointing up and one down. This ordering is chllee Néel ordering and the corresponding state with thisrargd

is called the Néel state. The deviations from this order canléscribed in terms of modes with definite wavelength. The
guantization of these modes leads to another quantum tloédng state. The linearized version of this theory is thditranal
description of the quantum mechanical anti-ferromagi@talr spin wave theory.

Hulthen [46] carried through the quantization of these spéaves, which subsequently were used by Andersohn [47] in his
approximate theory of the quantum mechanical anti-fergmaéic ground state. They finally obtain the proportioyalit

Z exp [—ik (j — 1)] (Sj,25,2) \/(1 =)/ (1+ %),

J,1, bothfrom I, I'T

wherey, = >, cosk;, i.e.,1/(1 — 1) / (1 + ) is proportional to the differential scattering cross saeinto the direction of
k.

Another approach worth mentioning is the superpositiomefdiassical ground state of the anti-ferromagnet — the dtaad
—with fluctuating valence bonds. This approach is a constnuof (an approximation of) a ground state that offers ditatave
understanding but fails to make the right predictions inaemregions ofQ-space. We will not elaborate on this approach here,
but account for its predictions later, if appropriate.

As it has already been pointed out in|[48], there are many mwedels and techniques to make predictions beyond linear
spin wave theory and the multipartite valence bond state.ed important technique is, of course, quantum Monte-Carlo
which gives the right answers (or at least being very cloas)indicated by simulations at certain points of interesQmn
space which were performed and discussed ih [48]. The ajipade correctness of quantum Monte-Carlo simulationsHisr t
model gives confidence that the basic assumptions aboutdbelrare justified and we can concentrate on finding its sisti
However, the quantum Monte-Carlo simulations are not duibeunderstand the features of the solutipralitativelyand are
hence unsatisfactory. We also stress again that the Harsghlamiltonian is not theptimalchoice either, since it is known that
plaquette interactions take place in the real-world aerifmagnetic substratés [49]. However, the family of Hefigeg-like
Hamiltonians is large and includes alternative anti-feragnetic Hamiltonians; also the parent Hamiltonian of thatipartite
valence bond state belongs to this class.

B. Theexperiment

Recently, the various scattering cross sections of a twwedsional square-lattice anti-ferromagnet have beenunedex-
perimentally in great detail [48], offering a great opp®iity to test a wide range of theoretical models.

The substance to be measured was a single crystal of CFTID[EBDIQ),-4D-, O], with lattice constantg = 8.113,b = 8.119
andc = 12.45. In an effective model of CFTD, the essential sites (i.eosththat are responsible for the properties of the
substance) are given by the electrons indtshells of the copper ions, naturally being spin-1/2 phasicin the ionic picture, the
electrons are strongly localized and there is almost noloaypetween two layers in thedirection. Moreover, the effective
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interactions between these sites cause the crystal to béeaimagnetic. Hence CFTD is an almost perfect realratf a
two-dimensional square lattice Heisenberg anti-ferrameag

In the experiment, several assumptions were tested. (i)@semption is the idea that the quantum anti-ferromagnetic
ground state is essentially the classical counterpart mitior quantum corrections, which — once found — are moreaedr
understandable conceptionally. This assumption expsebgehope that the quantum anti-ferromagnetic ground stateébe
understood qualitatively. (ii) The second assumption thas tested is the idea that spin waves are the essentialedegfie
freedom of excitation in the anti-ferromagnetic groundesta

We furthermore notice that both linear spin wave theory dnedexperiment assume the interaction to be described by the
Heisenberg Hamiltonian. This assumption makes these mdliérent from the MPVBS, because its parent Hamiltonian
contains plaquette terms.

C. Comparison of theoretical predictionswith experimental data

We compare the experimental data with the predictions ofitiear spin wave theory and the two-dimensional multiparti
valence bond state. In both cases, the differential craggsds proportional to the Fourier transform of the twomtdunction.
The calculation of this two point function is straightfomsidbut — without further simplifications — naturally beconmesre and
more tedious as the system size grows. In the case of thepautité valence bond state, we did not use any further assomsp
about the degrees of freedom but calculated the two-pomttion directly. In fact, we fix the paramete(4, ¢) that defined
the MPBVS to the vaIues},;7 Z). We have performed the calculations up to a grid siz& ef8, and we use the results of this
lattice for the analysis. Finite size effects are an issumuth a small lattice and will be most notable for wave veavbtarge
magnitude, i.e., in the center of tiig-space, which is given by the interv@, 27) x (0, 27).

We will now discuss the cross sections in greater detailialhy, the cross section is given as a function

(0,2m) x (0,27) 3 Q — (j_?z>e&any

For convenience, we will follow this function on a path — lgetepicted in Fig_VILIL — that crosses several interesteggans
of Q-space; the reasons for these regions being interestihgeviixplained later. This way we arrive at a two-dimensiqhal
of scattering cross section versus length on the path, wkiotore accessible than a three-dimensional version. Téaeesbf
the path is motivated by experimental work|[48] and the dataiged therein.

2n

Figure VII.1: The path to follow.

Our discussion starts with the raw qualitative featurebeftredicted and experimental cross sections using FigZ2MH this
plot the cross sections of the linear spin wave model, thaipautite valence bond state and the experiment along ttregre
given. The units are arbitrary and all curves and data pairgsiormalized to give the best possible match with the éxyeeit
overall.

We see that LSWT predicts the experimental data with extedjeality on a crude scale. The singularityatr) is predicted
properly. Moreover, there are Haugequalitative differences to be seen, although the crossoseis false in some regions,
showing a slightly wrong tendency there. Most interestinigl the first part of patch of the path the cross section is generally
too high, this feature being reflected again in the last plpiatch 5, which covers a similar region. A comparison of LSWT
with the experimental data in this region shows that clogkegoint(27, 0) LSWT predicts a too small scattering cross section;
and close td, 0) the prediction is too large. The error of the prediction se@m almost linear relation along pateh This
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Figure VII.2: Cross sections along the path.

Features of the predictions of linear spin wave model, thitipautite valence bond state and the experimental data.if$et shows the same
data, normalized such that the value of the LSWT equals osyetere. G. Aeppli's group provided the experimental gatialished in[[48].

feature is closely linked to the prediction of linear spinverdheory that at the poir{2r, 0) the cross section should be zero.
Considering the data, this is most likely a qualitativelyomg statement about the cross section, based on wrong assusnp
about the degrees of freedom available and hence aboutebieasl structure at these length scales. Generally, wensbdeat
the cross section in the central region of the wave vectas,dlose to the pointr, ) are more precise in their predictions
than those at the zone boundary, the latter belonging to wes®rs resolving features of the electron structure oflissoale;

a typical length being around the size of a small multiplehefdistance Cu-Cu in the lattice.

Like the LSWT, the MPVBS follows the experiment very wellnsidering the finite size effects of the simulation. Pleaste n
that there are two regions of the plot that we should considparately in the context of our simulation of the MPVBS.itein
size effects divide the zone into two regions of differergqision: like in the case of LSWT we have to distinguish betwe
wave vectors in central and peripheral regions, the lattérgomore precise than the former numerically, since fin#e sffects
have a great impact in the central region.

The first region is represented by the patcheX 3 of the path. The singularity dtr, 7) is not predicted. We believe that the
deviations in this region are mostly due to the finite sizeheflattice that was used to perform our calculations, andinetto
the qualitative features of the MPVBS. However, we were lmabprove this, since direct calculations with largeritzts have
so far not been feasible, and in principle one should go talteemodynamic limit. The patchésand5 of the path belong to
wave vectors at or close to the boundary of the zone and heaa®astrongly affected by the small lattice size. Pleage no
that this is the region of the most interesting deviations®#T from the experiment. Here, one qualitative differehegveen
LSWT and the MPVBS is apparent; at the po(2tr, 0) the LSWT scattering cross section vanishes completely aodrbes
comparatively small already in a comparatively large ragiear this point. The MPVBS shows a completely differentvédr;
the scattering cross section stays finite. Unfortunatedyettperiment does not provide data in this region.

As has been pointed out before, the patchesid5 of the path are most expressive, but also the region wheoh pand
2 meet, the finite lattice size does not have a strong impacdthddatter region, we see that LSWT predicts the experinienta
data with an error 0100%. The MPVBS, however, shows the right tendency. The predicédue is less than that of LSWT.
The comparison of the qualitative behavior of the LSWT, thHe\lBS and the experimental data is possible in an optimal way
in a plot that shows the data from FigVII.2 normalized to phnedictions of LSWT. Here the tendency in the patchesnd5
is most apparent. Please notice again that the paftctzeand3 are severely affected by the finite size of the lattice used fo
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computations.

What is the significance of pat¢hand the meeting points of patchesnd2? The cross section in this region of the zone
reflects the electron structure at short distances of tliedatAs has been conjectured alreadyl ir [48], the entangjéfeatures
on this length scale in the Heisenberg anti-ferromagnettemte also in CFTD might be completely different from thoke o
the Néel state and the spin wave excitations. On the one llzmtéel state is a classical state with no entanglementlaad a
the excitable degrees of freedom, the magnons, show thegtataent structure of collective modes of excitations afianic
oscillators.

On the other hand, the MPVBS is constructed to have the elatauegt structure of (two-electron) singlets, established
between nearest neighbors. This assumption about theaesiructure obviously allows for better predictions a #mall
length scale. An assumption similar to the constructiomefNMPVBS is made when we start with the Néel state as the ground
state but allow for a superposition with resonating valelngeds, in the ground state as well in its modes of excitatiag.
shown in [48], this construction gives a very good match amtper, 0), but results at the same time in a prediction that is far
too low — though qualitatively right — when approaching tlénp (27, 0). This wave vector pointing in the diagonal direction
of the lattice, where no valence bonds are assumed in théraotisn. Obviously some degrees of freedom are missingis t
description, which again are included in the MPVBS. Pleaste im this context that the effective interactions in CFTiBa
under mediation by formate groups in between the copper @siuation which is considered and reflected in the coottm
of the multipartite valence bond state.

VIIl. CONCLUSIONS

In this paper we carried out several approaches for the sisad§ the multi partite valence bond state described in .
This state is based on a local tensor description that eegangportant physical symmetries. It can hence be intezgias being
a two-dimensional generalization of one of the most fretjyestudied states with such a local tensor structure, tbamnp state
of the Affleck-Kennedy-Lieb-TasakiKLT) model [3]4], a spin-1 chain with a Heisenberg-like Hanmilem. Moreover, it can
be seen as a complementary generalization to their extetesiigher dimensions.

Our main goal in this paper was to analyze the behavior oflgibint correlation functions of the multipartite valermand
state model and to compare it with the classical linear spivertheory (LSW) and experimental data.

To achieve this goal, we proceeded in two directions: firgt,applied a mapping to a quantum ladder problem, in order to
discern between an algebraic and an exponential decay afoiinelations. In this step, we use analytical tools (magpm
the non-linear sigma model and bosonization techniquashamerical tools (exact diagonalization and variationathnods).
Another strategy that should be investigated in the futane, we leave open, it is the study of the equivalent two dinoeras
classical vertex model, its integrability properties anel telations with the Yang-Baxter equations.

Second, we calculated the equal time two point functions@mdpared it with both the results of LSW and data from a
neutron scattering experiment on a Mott-Hubbard antief@agnet insulator material.

In the context of the description of two-dimensional soliates in the anti-ferromagnet insulator phase, our modebea
seen as an alternative to the linear spin wave approachcintifee scattering cross sections of both models differitpiaiely
in important regions. These regions correspond to strastiirat the LSW approximation fails to describe properly thiadl are
conjectured to correspond to important qualitative fezgwof the electron structure in the actual solid. More pedgighese
features are believed to be related to short-range entaegiestructures of the electrons in the solid and hence tefldesign
goal of the generalized AKLT model that we give.

Moreover, the multi-partite valence bond state offers a aad@ unusual constructive approach for toy models in soditest
physics, providing unusual points of view on the structurieigh-7,. superconductivity.
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