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Padé discretization for linear systems with
polyhedral Lyapunov functions

Francesco Rossi, Patrizio Colaneri, Robert Shorten.

Abstract—This paper has been motivated by the need to assess
the preservation of polyhedral Lyapunov functions for stable
continuous-time linear systems under numerical discretization
of the transition matrix. This problem arises when discretizing
linear systems in such a manner as to preserve a certain
type of stability of the discrete time approximation. Our main
contribution is to show that a continuous-time system (with
distinct eigenvalues) and its Padé discretization (of any order
and sampling) always share at least one common piecewise linear
(polyhedral) Lyapunov function.

Index Terms—Stability of linear systems, discretization, Lya-
punov function.

I. INTRODUCTION

THE investigation of the properties of linear systems
when passing from the continuous-time analysis to the

discrete-time one has been subject of particular attention in
the literature of control theory. For linear time-invariant (LTI)
systems, this procedure is almost completely understood, and
forms a fundamental basis, both for the design of control
systems, and for numerical simulation.
Recently, in the context of the study of switched linear sys-
tems, several papers have considered the problem of discrete
approximations to continuous-time switched linear systems
[1], [2], [3], [4]. The theory of switched linear systems is
a relatively new field of research where the knowledge of the
shared properties between continuous-time and discrete-time
systems is completely absent. This constitutes a significant
gap in the literature as engineering practice requires discrete
time implementations of engineering designs. Consequently it
is possible to formulate many basic questions that, remarkably,
have yet to be addressed in any form.
One such question concerns preservation of stability. For
LTI systems, many discrete approximations are known to
preserve quadratic stability. Since quadratic and exponential
stability are indistinguishable concepts for LTI systems, the
story, in this case, is complete. A fundamental issue for the
discretisation of switched systems is that quadratic stability is
only a sufficient condition for exponential stability. A more
complete characterisation of exponential stability requires the
study of piecewise-linear and piecewise quadratic Lyapunov
functions [5]. Thus, for switched systems, the notion of stabil-
ity preservation goes beyond the notion of quadratic Lyapunov
functions, and requires the study of more elaborate Lyapunov
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functions. Our paper is motivated by this observation, and
takes a first small step in this direction. Among discretization
methods we will consider the Padé transformation, which
is widely used in real applications and intensively studied
from the numerical viewpoint: [6], [7]. Such a study is well
motivated, as diagonal Padé approximations are a method
of choice amongst control engineers. (the Tustin or Bilinear
transform is an example of a diagonal Padé approximation).
Our primary focus in this paper are polyhedral Lyapunov func-
tions. Such functions are known to be nonconservative in the
analysis of stability under arbitrary switching for polytopic and
switched systems We shall ask for what class of discretisations
are such norms preserved, and in this context we shall show
that a stable continuous-time system and its Padé discretized
version of order p ≥ 1 (for any sampling time) always share
such a function. This does not contradict previous results in
[8], where it is proven, through a counterexample, that a given
polyhedral Lyapunov function in continuous-time may be not
a Lyapunov function for the sampled discrete-time system
obtained via the particular class of bilinear transformations
with fixed sampling time.
The question as to what properties are preserved under such
discretisations appears to be a new problem and, despite its
importance, has not yet received the attention it deserves.
Roughly speaking, our results show that certain types of poly-
hedral Lyapunov functions are preserved under Padé discreti-
sations of LTI systems. The importance of this results follows
from the fact that, for switched linear systems, piecewise
linear Lyapunov functions are known to be non-conservative
for establishing the studying the stability of switched linear
systems. In this context, we believe that our main result is
the starting point to get a deeper understanding on the effect
of discretization of switched systems, also in the study of
preservation of optimality criteria [9].

II. PRELIMINARIES

Consider a linear autonomous system

ẋ(t) = Acx(t) (1)

where x(t) ∈ Rn and assume that the system is asymptotically
stable, i.e. matrix Ac is Hurwitz (all eigenvalues in the open
left half of the complex plane). It is well known that the motion
of the state, associated with an initial state x(0) = x0, can be
written as x(t) = eActx0. The exponential matrix eAct can
be numerically approximated in a variety of different ways. In
this paper we focus on the most popular one, that is diagonal
Padé approximation approximation of pth order, see e.g. [6],
[7]. This operator is well known to engineers and is commonly
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used by both the control and signal processing community.
To be precise, taking a sampling time h, the pth order Padé
discretization of eAch is defined as

Ad(h) = Z(Ach)Z(−Ach)
−1 (2a)

Z(X) =

p∑
i=0

ciX
i, ci =

(2p− i)!p!

(2p)!i!(p− i)!
(2b)

Hence, it is possible to associate with system (1), its discrete
approximation

xd(k + 1) = Ad(h)xd(k) (3)

where xd(k) approximates x(kh) = (eAchk)x0. It is well
known that the Padé discretization preserves the stability
properties. As a matter of fact, Ac is Hurwitz if and only if Ad

is Schur stable (all eigenvalues inside the open unit disc), for
any given sampling times h > 0. Moreover, the eigenvalues
of Ac and Ad(h) are related by the same transformation
induced by (2), and the eigenstrucure is preserved. If λ is
an eigenvalue of Ac associated with an eigenvector x̄, then
z = Z(λh)Z(−λh)−1 is an eigenvalue of Ad(h) associated
with the same eigenvector x̄. Even more, the transformation
is basis independent, i.e.

Z(TAcT
−1h)Z(−TAcT

−1h)−1 =

= TZ(Ach)Z(−Ach)
−1T−1 = TAd(h)T

−1

Finally, if TAcT
−1 is a Jordan form with distinct eigenval-

ues1 for Ac, then TAd(h)T
−1 is a Jordan form for Ad(h).

A particular Padé transformation is the celebrated bilinear
transformation (or Tustin transformation), that is given by (2)
with p = 1, i.e.

Ad(h) = (I +
h

2
Ac)(I −

h

2
Ac)

−1 (4)

III. QUADRATIC AND POLYHEDRAL LYAPUNOV
FUNCTIONS

Consider system (1) and its Padé discretization (3). Assume
that Ac is Hurwitz stable, so that Ad(h) is Schur stable for
each h > 0. We consider the 2-measure of a square matrix
X as µ2(X) = 1

2λmax (X +X ′) and the 2-norm as ∥X∥2 =√
λmax(X ′X). Also, letting Xij be the entries of X , we de-

fine the ∞-measure as µ∞(X) = maxi

(
Xii +

∑
j ̸=i |Xij |

)
and the ∞-norm as ∥X∥∞ = maxi

∑
j |Xij |. The main

results relating stability are recalled below, see e.g. [10].
Lemma 1:

(i) Ac is Hurwitz stable if and only if there exists a
full column rank matrix Wc ∈ RN×n, N ≥ n, and
Qc such that

WcAc = QcWc, µ2(Qc) < 0 (5)

(ii) Ac is Hurwitz stable if and only if there exists a
full column rank matrix Wc ∈ RN×n, N ≥ n, and
Qc such that

WcAc = QcWc, µ∞(Qc) < 0 (6)

1The published paper in TAC omitted erroneously in this statement the
assumption of distinct eigenvalues. All theorems and lemmas in the published
paper contain the correct assumption.

(iii) Ad is Schur stable if and only if there exists a
full column rank matrix Wd ∈ RN×n, N ≥ n, and
Qd such that

WdAd = QdWd, ∥Qd∥2 < 1 (7)

(iv) Ad is Schur stable if and only if there exists a
full column rank matrix Wd ∈ RN×n, N ≥ n, and
Qd such that

WdAd = QdWd, ∥Qd∥∞ < 1 (8)

Remark 1: Notice that WcAc = QcWc always imply
that Wd(h)Ad(h) = Qd(h)Wd(h) with Wd(h) = Wc and
Qd(h) = Z(Qch). However it is not true in general that
µ∞(Qc) < 0 implies ∥Qd(h)∥∞ < 1, unless h is small. A
counterexample is given in [8].
Notice that Lemma 1-(i) and 1-(iii) enforce the existence of
a quadratic Lyapunov function ∥Wcxc∥2 = x′cPcxc, where
Pc = W ′

cWc and ∥Wdx∥2 = x′dPdxd, where Pd = W ′
dWd,

respectively. Indeed, in the continuous-time case

A′
cPc + PcAc =W ′

c(Qc +Q′
c)Wc < 0

whereas in the discrete-time case

A′
dPdAd − Pd =W ′

d(Q
′
dQd − I)Wd < 0

Moreover, matrices Wc and Wd can be always chosen as
square n× n matrices, given by Wc = P

1/2
c , Wd = P

1/2
d .

A notable result concerning quadratic Lyapunov functions is
that they are invariant under Padé transformations. This means
that, given a Hurwitz stable matrix Ac and P > 0 satisfying

A′
cP + PAc < 0

then
Ad(h)

′PAd(h) < P, ∀h > 0

This results follows directly by inspection for Padé trans-
formation of order 1. For higher orders transformations the
result relies on the existence of common quadratic Lyapunov
functions for commutative matrices, and from properties of
the complex 1’st order transformation; see [11], [12]. In our
case the two matrices that commute are Ac and Āc(h) =
(I +Ad(h))(Ad(h)− I)−1, see [12]. In conclusion, denoting
with Pc the set of P > 0 satisfying A′

cP + PAc < 0 and
with Pd(h) the set of P > 0 satisfying Ad(h)

′PAd(h) < P ,
it follows

Pc ⊂ Pd(h), ∀h > 0 (9)

On the other hand the Lyapunov functions associated with
Lemma 1-(ii) and 1-(iv) are of polyhedral type, i.e. ∥Wcxc∥∞,
resp. ∥Wdxd∥∞, where the number of vertices of the polyhe-
dra is 2N . In general N > n, and the minimal N for which
(6), (8) are verified depends on the location of the eigenvalues
of Ac, Ad in the complex plane. It can be proved, see [13],
that for a matrix Ac with distinct eigenvalues a necessary and
sufficient condition for N = n is that the complex eigenvalues
λ = −α+ jβ, α > 0, belong to the sector |β|α−1 < 1.
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Figure 1. The sectors Sc(m) for m = 2 (angle π/4), m = 3 (angle π/3),
m = 4 (angle 3π/8) and m = 5 (angle 4π/10).

IV. MAIN RESULT

In this section we analyze the properties and relation of
the sets Wc, [resp. Wd(h)] of matrices Wc, [resp. Wd(h)]
satisfying (6), [resp. (8)]. First of all, we recall a pair of results
available in the literature, [14], [15] for the continuous-time
and discrete-time case, respectively.

Lemma 2: Consider a Hurwitz stable matrix Ac, with dis-
tinct eigenvalues, with nr real and 2nc complex eigenvalues.
For each pair of conjugate complex eigenvalue λi = αi± jβi,
i = 1, 2, · · · , nc, take an integer mi such that λi lies in the
sector Sc(mi), where

Sc(m) = {λ = −α+ jβ : α > 0, |β| <
sin( π

m )

1− cos( π
m )

α}.

(10)
Then there exists Wc ∈ RN×n and Qc ∈ RN×N , with N =∑k

i=1mi + nr, satisfying (6).
In Figure 1, the sectors Sc(m) are drawn for m = 2 (angle
π/4), m = 3 (angle π/3), m = 4 (angle 3π/8) and m = 5
(angle 4π/10).

Lemma 3: Consider a Schur stable matrix Ad, with distinct
eigenvalues, with nr real and 2nc complex eigenvalues. For
each pair of conjugate complex eigenvalue λi = σi ± jωi,
i = 1, 2, · · · , nc , take an integer mi such that λi lies in the
interior of the regular polygon Pol(mi), where

Pol(m) = int conv
{
ej

pπ
m

}2m−1

p=0
. (11)

Then there exists Wd ∈ RN×n and Qd ∈ RN×N , with N =∑k
i=1mi + nr, satisfying (8).

In Figure 2 the polygons Pol(m) are depicted for m = 2
(square), m = 3 (hexagon), m = 4 (octagon), m = 5
(decagon). The two Lemmas above have been shown to be
valid also in case of multiple eigenvalues. However, for the
sake of simplicity, we assume that the eigenvalues are distinct,
so facilitating the construction of Wc and Wd. As shown in
[14], matrix Wc can be constructed as follows. Let Tc be the
state-space transformation that puts Ac in its real Jordan form,

Figure 2. The polygons for m = 2 (square), m = 3 (hexagon), m = 4
(octagon), m = 5 (decagon).

i.e.

TcAcT
−1
c =


Hc1 0 · · · 0 0
0 Hc2 · · · 0 0
...

...
. . .

...
...

0 0 0 Hcnc 0
0 0 0 0 Rc


where

Hci =

[
−αi βi
−βi −αi

]
and Rc is a nr × nr diagonal matrix accounting for the real
eigenvalues. Moreover let, for i = 1, 2, · · · , nc:

Wci =


1 0

cos( π
mi

) sin( π
mi

)

cos( 2π
mi

) sin( 2π
mi

)
...

...
cos( (mi−1)π

mi
) sin( (mi−1)π

mi
)

 ,

Qci =


xi yi 0 0 0
0 xi yi 0 0
...

...
. . .

...
...

0 0 0 xi yi
−yi 0 0 0 xi


where

xi = −αi −
βicos(

π
mi

)

sin( π
mi

)
, yi =

βi
sin( π

mi
)

Then, it is easy to verify that (6) is satisfied with

Wc =


Wc1 0 · · · 0 0
0 Wc2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Wcnc 0
0 0 · · · 0 I

Tc, (12)

Qc =


Qc1 0 · · · 0 0
0 Qc2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Qcnc 0
0 0 · · · 0 Rc

 (13)
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Notice indeed that µ∞(Qc) < 0 is forced by the assumption on
the position of the eigenvalues that is equivalent to xi+ |yi| <
0.

The computation of the polyhedral Lyapunov function
∥Wdxd∥∞ for the discrete-time system (3) follows the same
lines and can be found in [15]. Let Td the state-space trans-
formation that puts Ad in its real Jordan form, i.e.

TdAdT
−1
d =


Hd1 0 · · · 0 0
0 Hd2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Hdnc 0
0 0 · · · 0 Rd


where

Hdi =

[
σi ωi

−ωi σi

]
and Rd is a nr × nr diagonal matrix accounting for the real
eigenvalues. It can be verified that (8) is met with by choosing
Wd =WcT

−1
c Td and Qd as in (13), with Rc replaced by Rd

and Qci replaced by

Qdi =


z1,i z2,i · · · zm−1,i zm,i

−zm,i z1,i · · · zm−2,i zm−1,i

...
...

. . .
...

...
−z3,i −z4,i · · · z1,i z2,i
−z2,i −z3,i · · · −zm,i z1,i


where zj,i are such that

∑m
j=1 |zj,i| < 1. Notice that ∥Qd∥∞ <

1 is forced by the assumption on the position of the eigenvalues
in the regular polygon Pol(mi). We are now interested in the
action of the Padé transformation over the sectors Sc(m) of
the complex plane defined above. Our first result is a technical
lemma, showing that, if λ belongs to Sc(m) then its image
under the Padé transformation belongs to Pol(m).

Lemma 4: Let m be a positive integer number, Sc(m)
defined in (10) and Pol(m) defined in (11). Fix a sampling
time h > 0 and consider Sd(m,h) the image of Sc(m) under
the Padé transformation (2), i.e.

Sd(m,h) = {z = Z(λh)Z(−λh)−1, λ ∈ Sc(m)}

Then
Sd(m,h) ⊆ Pol(m).

Proof. The Padé transformation can be written as

z = Z(λh)Z(−λh)−1 =

nr∏
i=1

ei1 + λ

ei1 − λ

nc∏
i=1

di2 + di1λ+ λ2

di2 − di1λ+ λ2

where nr is the number of real roots of Z(λh), and 2nc the
number of complex conjugate roots of Z(λh), with nr+2nc =
p [12]. On the other hand, it is well known, see [16], that
the polynomial Z(λh) is Hurwitz, so that all coefficients are
positive, in particular ei1 > 0 and di2 > 0. The proof is split
into three parts.

(i) First we prove that, if λ ∈ Sc(m) then

zi(λ) =
ei1 + λ

ei1 − λ
∈ Pol(m) (14)

Figure 3. Proof: Existence of A2.

We split Sc(m) in a family of lines

Λs := {−α+ jβ | β = sα, α > 0} ,

indexed by s ∈ (−r, r), where

r =
sin( π

m )

1− cos( π
m )

. (15)

Our goal is to prove that zi(Λs) ⊂ Pol(m). Observe that zi is a
Möbius transformation, thus it sends lines and circles into lines
and circles. In our case, the image zi(Λs) is thus either an arc
of circle or a segment. We compute limα→0 zi(−α+jsα) = 1
and limα→+∞ zi(−α+jsα) = −1. Also the intersection with
the imaginary axis can be computed, that is jψ(s) with

ψ(s) :=
s

1 +
√
1 + s2

.

Thus the image of Λs via zi is an arc on the complex plane
connecting 1 to jψ(s) to −1 (the extreme points 1 and −1
being excluded). Notice that ψ(s) is an increasing function,
thus the images of Λs via zi are “ordered”: given a fixed
real component x ∈ [−1, 1], the corresponding imaginary
component y such that x + jy ∈ zi(Λs) is an increasing
function with respect to s. For this reason, if zi(Λs1) ⊂
Pol(m) and zi(Λs2) ⊂ Pol(m), then zi(Λs) ⊂ Pol(m) when
s1 < s < s2. We can thus restrict ourselves to prove that
zi(Λ−r) ⊂ Pol(m), zi(Λr) ⊂ Pol(m). For symmetry with
respect to the real axis, we can moreover restrict ourselves
to prove that zi(Λr) ⊂ Pol(m). This is equivalent to prove
that the arc connecting 1 to jψ(r) to −1 is contained in the
regular polygon Pol(m) (the extreme points 1 and −1 being
excluded). Since we are dealing with a bilinear transformation,
zi(Λr) is symmetric with respect to the imaginary axis. We
can thus restrict ourselves to the part of the arc joining 1 to
jψ(r) (the extreme point 1 being excluded). With this goal,
we first observe that the arc is contained in the unit circle.

The slope of the arc in 1 can be computed deriving
zi(−α + jrα) for α → 0. The slope is exactly rC = −r,
and it coincides with the slope of the first edge of the
polygon Pol(m), joining 1 to ej

π
m . Consider now the vector

zi(−α+ jrα)−1: its slope is always bigger than −r. Indeed,

zi(−α+ jrα)− 1 =
−2α(ei1 + α+ r2α− jrei1)

(ei1 + α)2 + α2r2
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so that
Im(zi(−α+ jrα)− 1)

Re(zi(−α+ jrα)− 1)
= − rei1

ei1 + α(1 + r2)
> −r, (16)

recalling that α > 0 and ei1 > 0. We consider the equation
of the arc in polar coordinate ρ(θ) with θ ∈ (0, π2 ] and ρ the
corresponding radius. The function ρ(θ) is decreasing, due
to geometrical observations Assume that there exists a point
A1 = ρ1e

jθ1 = zi(−α1+ jrα1) ̸∈ Pol(m). If θ1 ̸∈ (0, π
m ], we

prove that there exists another point A2 = ρ2e
jθ2 = zi(−α2+

jrα2) ̸∈ Pol(m) such that θ2 ∈ (0, π
m ]. See Figure 3. Consider

the unique point B1 = ρBe
jθ1 that is the intersection of the

boundary of Pol(m) with the segment joining 0 to A1. We
have ρB < ρ1 because A1 is outside Pol(m). Compute now
k such that θ1 ∈ (kπm , (k+1)π

m ]. Then the point B2 = ρBe
j(θ2)

with θ2 = θ1− kπ
m , lies on the boundary of Pol(m) because of

invariance of the boundary with respect to rotations of angle
kπ
m . Consider now the point A2 = ρ2e

jθ2 with ρ2 = ρ(θ2).
It lies on the arc of circle and is outside Pol(m), since ρ2 is
given by the image of ρ(.). Moreover ρ2 > ρ1 because ρ(.)
is decreasing and θ1 > θ2. Recalling that ρ2 > ρ1 > ρB , we
have that A2 is outside the polygon. We now have a point
A2 belonging to the arc with θ2 ∈ (0, π

m ] that is outside the
polygon Pol(m), but inside the circle. Then the vector A2−1
to 1 has a slope that is strictly more negative than −r. But
A2 ∈ zi(Λr), thus A2 − 1 = zi(−α + jrα) − 1 for some α,
and we have proved that this vector’s slope is bigger than or
equal to −r. This is a contradiction.

(ii) Now we consider the function

zi(λ) =
di2 + di1λ+ λ2

di2 − di1λ+ λ2
(17)

We assume λ ∈ Λs ⊂ Sc(m), that is λ = −α + jsα with
|s| < r where r is given by (15). We define

λ̄(λ) =
zi(λ)− 1

zi(λ) + 1

Notice that

zi(λ) =
1 + λ̄(λ)

1− λ̄(λ)
.

After some manipulations it follows

Im(λ̄(λ))

Re(λ̄(λ))
= −s

(
di2 − α2(1 + s2)

di2 + α2(1 + s2)

)
.

Recalling that di2 > 0, we have∣∣∣∣Im(λ̄(λ))

Re(λ̄(λ))

∣∣∣∣ ≤ |s|,

thus λ̄(λ) ∈ Λs̄ ⊂ Sc(m) for a certain s̄ satisfying |s̄| ≤
|s|. We can now apply the proof in Part (i) to λ̄ ∈ Sc(m),
observing that the expression of zi with respect to λ̄ is of
kind (14). Thus zi(λ) ∈ Pol(m).

(iii) Finally notice that

z = Z(λh)Z(−λh)−1 =

nr+2nc∏
i=1

zi

where zi ∈ Pol(m). We just miss to show that z ∈ Pol(m)
as well. We prove this by showing that the set Pol(m) is

Figure 4. The vector z = Z(λh)Z(−λh)−1 (with p = 2) as a function of
α > 0, for λ = −α(1 + jr), h = 1 and m = 2, 3, 4.

Figure 5. The vector z = Z(λh)Z(−λh)−1 as a function of α > 0, for
λ = −α(1 + jr), h = 1 and Padé of order p = 1, 2, 3.

closed under multiplication. Indeed, take ξ1 ∈ Pol(m) and
ξ2 ∈ Pol(m). Each of them can be written as a convex
combination of two vertices of the polygon, i.e.

ξ1 = a1e
jθ11 + a2e

jθ12 , ξ2 = b1e
jθ21 + b2e

jθ22

with ai, bi ≥ 0, a1 + a2 < 1, b1 + b2 < 1 and θij =
kijπ
m for

kij ∈ Z. Hence,

ξ1ξ2 = a1b1e
j(θ11+θ21) + a1b2e

j(θ11+θ22) +

+a2b1e
j(θ12+θ21) + a2b2e

j(θ12+θ22)

with a1b1 + a1b2 + a2b1 + a2b2 = (a1 + a2)(b1 + b2) < 1. In
conclusion, ξ1ξ2 ∈ Pol(m).

In Figure 4 the 2nd order Padé mapping z =
Z(λh)Z(−λh)−1 is considered as a function of α > 0,
when h = 1 and λ = −α(1 + jr), where r is defined
in (15), for m = 2, 3, 4. Finally, in Figure 5, the mapping
z = Z(λh)Z(−λh)−1 is considered as a function of α > 0,
when h = 1 and λ = −α+ jα (i.e. m = 2), taking the Padé
transformation of order p = 1, p = 2 and p = 3.
We are now in the position to prove the main result of the
paper.

Theorem 1: Consider a Hurwitz stable matrix Ac of dimen-
sion n and its Padé discretization Ad(h) of order p. Assume
that all eigenvalues of Ac are distinct. Let nr be the number
of real negative eigenvalues, and 2nc be the number of pairs
of complex eigenvalues −αi± jβi, i = 1, 2, · · · , nc. For each
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pair of complex eigenvalues, let mi be an integer greater than
one such that −αi ± jβi belongs to the sector

|βi| <
sin( π

mi
)

1− cos( π
mi

)
αi.

Then there exist W = Wc = Wd(h) ∈ RN×n, with N =∑k
i=1mi + nr, Qc ∈ RN×N , Qd(h) ∈ RN×n, such that (6),

(8) are met with, for all h > 0.
Proof. First recall that the Padé transformation preserves

the Jordan form of Ac and Ad. Now take T such that both
Jc = TAcT

−1 and TAd(h)T
−1 are in the real Jordan form.

Compute Wc as in (12). For each pair of complex eigenvalue
λi = −αi ± βi, the expression of Wci is uniquely by mi

such that −αi ± βi ∈ Sc(mi). Now consider the expression
of Wd(h), that is identical to (12), replacing each Wci with
Wdi, accounting for the pair of complex eigenvalues µi =
σi ± jωi = Z(λih)Z(−λih)−1. Applying Lemma 4, we have
that µi lies in the interior of the regular polygon Pol(mi), with
the same mi of the eigenvalue λi of the continuous system.
As a consequence, the expression of Wdi can be chosen to be
identical to Wci. Thus Wd(h) = WcT

−1
c Td. Since Tc = Td,

we have the conclusion.
Comment : The result above says that there always exists
a common polyhedral Lyapunov function ∥Wx∥∞ for Ac

and Ad(h). Moreover, the construction of W is based on the
matrix Ac only, and the previous theorem shows ∥Wx∥∞ is
a polyhedral Lyapunov function for Ad(h) computed with a
Padé approximation of any order p. As a consequence, the
polyhedral Lyapunov function is common to Ac and all Padé
approximants, of any order p and with any sampling time h.
We recall that, however, there is a great difference between
quadratic and polyhedral Lyapounov functions, as stated in
[8]: indeed, all quadratic Lyapunov functions are preserved
under any Padé discretization, while this is not more valid for
polyhedral functions. The following counterexample is given
in [8]. Consider the Hurwitz matrix

Ac =

[
−1 0
−2.4 −3

]
Hence, since µ∞(Ac) < 0 it is very simple to compute Wc

and Qc satisfying (6). Indeed, such equations are satisfied by
Wc = I and Qc = Ac. Now, take Ad(1) given by the 1st

order Padé approximation with h = 2, namely

Ad(1) = (I +Ac)(I −Ac)
−1 =

[
0 0

−0.6 −0.5

]
and notice that Qd = (I +Qc)(I −Qc)

−1 satisfies AdWd =
WdQd, with Wd = Wc. However, ∥Qd∥∞ > 1. From this
the authors in [8] concluded that Wc = I is not preserved.
Nevertheless, using our result, it is possible to find another
Wc that is preserved. A choice is given by

W =

[
−1 0
1.2 1

]
, Qc =

[
−1 0
0 −3

]
, Qd =

[
0 0
0 −0.5

]
V. CONCLUSIONS

In this paper it was shown that a continuous-time stable
system and its associated sampled system via Padé transfor-
mation (of any order) always share a particular polyhedral

Lyapunov function. The consequence of our result is most
pronounced for the discretisation of switched systems. It is
in this context that our result may be important. It is well
known that polyhedral Lyapunov function are non conservative
in the analysis of stability of switched linear systems under
arbitrary switching. Consequently, we believe that the result
on polyhedral Lyapunov functions also shades some light on
a possible approach to discretise switched linear systems;
namely, if certain types of Lyapunov functions are common
to all modes of the system, then stability of preserved under
Padé discretisations. Despite this fact, much work remains to
be done, and this work can take several possible directions.
First, we can look for discretisation methods that preserve all
polyhedral Lyapunov functions for sets of matrices irrespective
of sampling rate and of order. This is difficult, but some
progress along these lines has been made in the context
of positive systems [2]. Another direction is to search for
conditions on the the sampling time for which such Padé
approximation preserves Lyapunov functions of a certain type.
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