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Abstract 

Using data on approximately 1240 games of bowling we examine the statistical properties of 

10-pin bowling scores.  We find evidence that that the distribution of bowling scores is 

approximately log-normally distributed with a common variance across players. This allows 

us to consider the effectiveness of alternative handicapping systems in allowing less skilled 

bowlers to compete against more skilled opponents. We show that the current system 

mitigates against bowlers of low skill and propose a new system which we show works well 

in equalising the playing field across all match-ups. 
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I: Introduction 

Primitive forms of bowling can be traced back as far as 3200BC (www.tenpinbowling.org 

2011). Ten pin bowling as we know it, is thought to have originated from the German nine 

pin bowling game called Kegal (www.tenpinbowling.org 2011). Today, it is estimated that 

the sport of ten pin bowling is played by over 100 million people in more than 90 countries, 

making it one of the most popular games played in the world.3 With this in mind, it’s 

surprising how little quantitative analysis has been conducted on the sport.  

Previous research has examined the correlation in scores between balls rolled Neal 

(2004) using a binomial distribution while Dorsey-Palmateer and Smith (2004) used 

empirical data to examine the phenomenon of a “hot-hand” whereby the probability of a 

strike with a given ball depends on the score obtained with the previous ball. There has also 

been a small body of work looking at the distribution of bowling scores (Cooper and 

Kennedy (1990) and Hohn (2009)) that did not use observed data. The only paper we are 

aware of that uses empirical data to analyse the distribution of bowling scores is work carried 

out by Chen and Swartz (1994), which used data on five pin bowling scores, a less-popular 

variant of ten-pin bowling played only in Canada. As noted by the authors however, their 

results cannot be applied to ten pin bowling due to differences in rules, equipment and 

scoring. 

 In this paper we carry out a statistical analysis of scores from approximately 1024 

games of ten pin bowling to determine the distribution of these scores. Since the score of a 

player in a single score is the sum over a number of frames one might expect something 

approximating normality if a central limit theorem is in operation. We examine normality of 

                                                            
3 See World Tenpin Bowling Association website http://www.worldtenpinbowling.com/ 

http://www.tenpinbowling.org/
http://www.tenpinbowling.org/
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both the raw scores and a suitably chosen transformation of these scores. We then use the 

results of this analysis to evaluate the effectiveness of alternative handicapping systems 

currently used. The latter is very topical among elite bowlers because if a bowler believes a 

certain handicapping system to be unfair towards them, they will not enter leagues or 

competitions which use that system. Section II introduces the game of ten pin bowling and 

describes the data set used in the analysis. The statistical analysis is conducted in section III, 

while section IV compares current handicapping systems and proposes a new, alternative 

system. 

II: The Game and the Data Set 

Ten pin bowling is a competitive sport in which a “bowler” rolls a bowling ball down the 

lane with the aim of scoring points by knocking down as many pins as possible. Ten pin 

bowling balls have a smooth surface bar two finger holes and a thumb hole. They have a 

maximum diameter of 8.59 in., and range in weight from 6lb. to 16lb. The ball is rolled down 

a wooden or synthetic lane with the objective of knocking down pins. The pins themselves 

are 4.75 in. wide at their widest point and 15 in. tall. They weigh 3 lb., 6 oz.  The bowling 

lane itself is 60 ft. from the foul line to the centre of the headpin.  Today it is estimated that 

over 100 million bowlers play the sport in over 90 countries, making it one of the most 

popular participant sport in the world. 

A game of ten pin bowling consists of 10 frames. A bowler’s score is the sum of 

points over the game.  Frames 1 to 9 consist of a maximum of 2 legally delivered balls rolled 

by the same bowler on the same lane. Frame 10 consists of a maximum of three legally 

delivered balls by the same bowler on the same lane. In a frame of bowling, if a bowler 

knocks down all ten pins with their first ball, then a strike is awarded. If all ten pins are 



4 

 

                                                           

knocked down using two balls in any frame, a spare is awarded. A strike is worth 10 points, 

plus the points received from the next two balls rolled. A spare is worth 10 points plus the 

points received from the next ball rolled. A bowler who bowls a strike in the 10th frame is 

awarded two extra balls, which allow the awarding of bonus points. A bowler who bowls a 

spare in the 10th frame is awarded one additional ball to allow for the bonus points. The 

maximum score in ten pin bowling is 300, and is achieved by having 12 strikes in a row in 

one game. The typical average score for a woman is 153, and the typical average score for a 

man is 173.4 

The data set used in this paper was obtained from an adult ten pin bowling league in 

Alsaa Bowling Centre, Dublin Airport, Ireland. The league is 18 weeks in duration. There are 

23 bowlers in this league. These 23 bowlers played 3 games every Monday evening for the 

18 weeks. This gives a maximum of 54 games per bowler with possibly some missing values. 

This results in approximately 1240 games. Bowling scores vary in the data set. The maximum 

score is 289, bowled by player 20, and the minimum score is 114 bowled by player 16. Skill 

levels among the 23 bowlers differ. The average scores range from 153 (player 18) to 220 

(player 7). Further summary statistics are given in Table 1. 

III: Analysis 

a. Raw Scores: 

The first stage in this analysis will be to investigate if the raw data is approximately normally 

distributed. To begin we construct kernel density estimates of the underlying density. Kernel 

density estimation is a non-parametric way of estimating the probability density function of a 

random variable (Sheather 2004). The kernel density estimates for each of the 23 bowlers are 

 
4 http://www.ten‐pinbowling.com/faq.htm#3 



given in Figure 1. In these figures a normal density with mean and variance derived from the 

raw data is also provided for comparison. These graphs show deviations from normality for a 

number of players For instance results for players 1, 2, 13 and 20 seem to be skewed to the 

right, while players 5, 21 and 23 seem to have fatter tails that the underlying normal 

distribution.  

We supplement this graphical approach with a number of tests.  The tests used are the 

Shapiro-Francia test (Shapiro and Francia (1972), Royston (1983)) and the Skewness 

Kurtosis test (D’Agostino et al (1990), Royston (1991)). The Shapiro-Francia test equals the 

squared correlation between the ordered sample values and the expected order statistics of a 

standard normal and thus measures the straightness of the normal probability plot of the 

sample values. The Skewness  Kurtosis test presents a test for normality based on skewness 

and another based on kurtosis and then combines the two tests into an overall test statistic. 

Each test is conducted for each player in the data set. Then the p values are combined using 

Fisher’s Method (Fisher 1970). Fisher’s method combines p values for each test into one test 

statistic using the formula:  

 

where pi is the p value for the ith hypothesis test. When all the null hypotheses are true, and 

the pi are independent, P has a chi-squared distribution with 2k degrees of freedom (Fisher 

1925).  The results for both tests are presented in Tables 2 and 3. For both tests we reject the 

null hypothesis that all game scores are normally distributed.  

b. Transformed Scores 
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Having rejected normality of the raw scores we now consider whether it is possible to find a 

transformation of the underlying scores which is well represented by a normal distribution. 

To do this we consider Box-Transformations of the scores (Box and Cox 1964, Spitzer 1980).  

The original form of the Box-Cox transformation, as appeared in their 1964 paper, takes the 

following form: 
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Formally we posit the existence of a λ such that bowling scores for player i in game j, yij, can 

be written as :  

( )
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where єij is a draw from a normal distribution with mean zero and variance 2
i . Under the 

assumption of normality the density function for the jth observation of player i, can be written  
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The likelihood contribution for player i can then be written in terms of observed bowling 

scores yij : 
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where c is a constant. The log likelihood function across all players is then: 

1

N
* *
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Since i  is just the mean of ( )
ijy  , we can concentrate it out of the likelihood function by 

replacing it with its maximum likelihood estimate  
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We can simplify this further by solving for the parameter 2
i  directly from its first order 

conditions in terms of the other parameters and the data. The maximum likelihood estimate of 

2
i  is given by :  
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Substituting this expression into the individual likelihood function we get a final concentrated 

likelihood function depending only on  and data. 
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The concentrated log-likelihood across all players can then be written as  
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Maximising the concentrated likelihood function with respect to λ provides an estimated 

value 
^

 =-.148 with a standard error of .199 (lnL=-3331.2102). Since we cannot reject =0 

(i.e the log transformation) we adopt this for convenience throughout the remainder of the 

paper. 

Table 4 gives a brief description of the transformed log bowling scores. The kernel 

density graphs for the transformed bowling scores of each of the 23 bowlers are given in 

Figure 2 and the results of the formal tests are given in Tables 5 and 6. Looking at the 

Shapiro-Francia test results in Table 5 we see that while individually normality is rejected for 

2 out of the 23 players, Fisher’s combined test fails to reject the null-hypothesis of normality 

across all players. Table 6 presents the results of the Skewness Kurtosis. At the player level 

normality is rejected for only one of the twenty three players. Perhaps somewhat surprisingly 

Fisher’s combined test for normality across all players is rejected, the result driven by one 

single player. When this one player is omitted from the analysis the combined F-test fails to 

reject normality across the remaining players.  

Analysis of the handicapping system will require comparing scores of high and low 

ability bowlers. To do this it is useful to first examine whether or not the variance of bowling 

scores depends on a player’s ability. Figure 3 plots the variance of transformed scores against 

average score for each of the twenty three players, as well as the predicted variances from a 

least squares regression through the data.5 There is little evidence of a systematic relationship 

between variability and average ability.6 The estimated slope coefficient of the linear 

regression is -.002 with a robust standard error of .012.  

                                                            
5 The labels on each observation indicate the number of games played by the player in question. 

6 In contrast the raw scores exhibit a significant positive relationship between ability and variability. This may 
reflect the dramatic impact of strikes and spares (most likely to be bowled by high ability bowlers) on scores in 
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IV: Handicapping 

In bowling leagues the range of abilities can be wide. In our sample the average scores 

ranged from 155 to 220. In light of this a league may adopt a handicapping system. A 

handicap is simply a number added to a player’s gross score after each game which is 

dependent on the player’s average ability. Handicaps are used to allow less skilled bowlers 

compete with highly skilled bowlers on a more equal playing field. The idea is the bowler 

with the higher average should always have a smaller advantage given the handicapping 

system. This provides an incentive for bowlers to improve their bowling scores. The 

advantage of the higher average player should not be so great that it discourages the lower 

average player. Formally the US Bowling Congress defines a handicap league as follows  

“A handicap league is one in which handicap is added to a bowler’s score to place 

bowlers and teams with varying degrees of skill on as equitable a basis as possible for 

scheduled competition.” (USBC 2011) 

However, they are not explicit as to what is meant by equitable. The Council of 

National Golf unions, the association charged with determining the handicap scores for 

golfers in Britain in Ireland, are more explicit in stating that “A golf handicap allows players 

of all levels of golfing ability to compete against each other on a fair and equal basis.”7 Use 

of the term equal suggests that the purpose of a handicap system is to equalise the probability 

of victory across ability levels. It is this feature of the handicap system that we examine in the 

context of 10-pin bowling. 

 
a given frame. This contrasts to other sports such as golf where there is some evidence that variability declines 
with ability (Bingham and Swartz (2000)). 

7 http://www.congu.com/welcome.htm 

 

http://www.congu.com/welcome.htm
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There have been some studies of the fairness of handicapping system in other sports 

(see McHale (2010) and Bingham and Swartz (2000) for examples in golf). However there 

has been little empirical analysis on bowling handicaps. Chen and Swartz (1994) carried out a 

statistical analysis of 5-pin bowling, a variant of bowling, which is played only in Canada. 

However, the scoring in this version of the game differs significantly from the more popular 

10-pin bowling version and little attention was paid to developing a more equitable 

handicapping system. 

There are several handicapping systems used in 10-pin bowling and they can vary 

from league to league. When considering fairness in this context we need to consider both 

players. It is important the handicapping system is fair to the lower average player in order to 

provide an incentive to increase their bowling scores. However, we want to avoid systems 

that are so generous such that the lower average bowler can win without playing very well; 

the incentives from such a system are wrong for both players. Since the low ability player can 

win without playing very well they have little incentive to improve their game. This in turn 

may prohibit such players from competing in leagues that don’t use handicaps (scratch 

leagues). On the other hand if the high ability player believes the system is such that they will 

lose even when playing well, they will have little incentive to try hard and may opt out of 

leagues using the system.  

At present there are a variety of used in Ireland. Depending on which of the systems is 

used the final score of a player with average ability mi (determined over previous games 

played by the player) is adjusted by adding a bonus to their raw score. The bonus is 

determined by a weighting factor (w) and a par or scratch score P as follows: 

Bonus = w(P – mi) 



The most common weighting factor is 80% or .8, though weighting factors as low as .66 are 

used. Typical scratch scores are 220 or 200. Cleary the higher the weighting factor and par 

score the more generous the system is. Typical handicap systems use w=.8 and P=220. Under 

this system a player with an average of 120 would be credited with an extra 80 pins (or 

equivalently have an extra 80 points added to their raw score) under this system. Reducing w 

to .66 and P to 200 would result in the same player only receiving only an additional 52 

points. Although the base or scratch score used to calculate the handicap affects the number 

of pins added to a player’s score, the choice of base will not affect the probability of victory 

provided the scores of both players are adjusted under the handicap. So for instance in cases 

where negative handicaps are allowed (whereby players above the base score have pins 

deducted from their gross score; “plus handicappers” in golfing terms) then only the 

weighting factor will impact on the probability of victory. 

With w=.8 and P=220 a bowler with an average of 160 would have to beat a lower 

ability opponent with an average say of 120 by more than 32 (.8*40) points in order to win 

the game. Letting the higher ability players score be denoted by X and that of the lower 

ability player by Y, then to establish the probability that the favourite (high ability player) 

wins, we need to determine Pr(X>Y+32). More generally we can think of variations in 

handicap systems by considering Pr(X>Y+h) for a range of h (corresponding to different 

handicap systems). Letting f(X,Y) denote the joint distribution of X and Y, we can write this 

probability as : 

   
0

x h

h

Pr X Y h f X ,Y dxdy
 

        (1) 
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If we further assume that X and Y are independent then using theory on the distribution of 

functions of random variables, together with    2
x xZ ln x ~ N ,   and 

   2
y yW ln y ~ N ,    we can derive f(X,Y) as8 :  

         
2 2

2 2

2

1 1

2 2
f X ,Y exp ln x ln x ln y ln y

1

2 x y

 


              
     

 

Evaluation of the subsequent integral in (1) requires either numerical methods or 

some additional approximations (Chen and Swartz (1994). Instead we use Monte-Carlo 

techniques to evaluate these probabilities under two handicap systems; corresponding to 

weighting factors of .8 and .66 respectively. We compare the win probabilities of the 

favourite using raw and gross scores under both handicap systems.  

To do this we simulate bowling scores for a given player with average ability mi by 

generating random draws from a   distribution. We use the pooled 

variance across all players which is estimated as 2
^

p =.01957.9 We then take the exponential 

of the random draw as our raw bowling score. We adjust the score by applying each of the 

handicap systems and then compare outcomes across players of different ability. We choose 7 

values of mi  from 100 to 220 in intervals of 20.   When  , we refer to player i as the 

underdog and player j as the favourite.  For each pair of players, 10,000 bowling scores are generated 

and adjusted as described above. We then estimate the probability of the favourite defeating the 

                                                            
2 2 2
x y
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8 Here we have used the further simplification that    . 

9 This pooled variance is almost identical to the predicted variance across all ability levels given by the fitted 
regression shown in Figure 3. Using the fitted line the estimated variance ranges from .0208 for the lowest 
ability to .0199 for the highest ability. 
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underdog by computing the fraction of the 10,000 games the favourite has won based on raw and 

adjusted scores. 

Table 7 details the probabilities of the favourite winning across each possible match-

up using both raw unadjusted scores (first entry in each cell), adjusted according to most 

generous system (2nd entry in each cell) and adjusted according to last generous system (3rd 

entry in each cell). Looking first at the probabilities based on raw scores we see that even 

with modest differences in ability the probability of the favourite winning is consistently over 

75% and can quickly rise to above 90%. It is this imbalance in the probability of winning that 

motivates the use of handicap systems. The 2nd and 3rd entry in each cell reports the 

probability of the favourite winning using the scoring methods in the most generous and least 

generous handicap systems. As expected the adjustment reduces the favourites advantage, 

however the playing field remains far from level. The probability of a player with ability 

level 180 beating a player with ability level 100 ranges from 70%-83% depending on the 

system, despite the difference in skills having been taken into account in the handicap system. 

It is clear from these results that even under the most generous handicap system currently 

used in Irish bowling leagues the system remains inequitable with the more able players more 

likely to win, especially when the ability differential is relatively large. 

These simulated probabilities are based on our estimated variance and the assumption 

of log normality. It is interesting to compare how these probabilities compare to the actual 

outcomes in the bowling league under analysis. As well as the individual scores we also have 

access to the average score of each player in the previous 20 games bowled (which is the 

basis for the handicap score). For example at the start of the league player 7 had an average 

of 220 and player 15 an average of 160. Since this was a team league these players never 

competed directly against each other in head to head games. Nevertheless both players 
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bowled in all 54 games, with their games taking place on the same evenings, at the same time 

and in the same bowling alley. One check of our results is to compare the scores recorded by 

both of these players on games played at the same time as if they were competing against 

each other and to determine the victor in each of these 54 games. Using just the raw scores 

we find that the high ability player would have emerged victorious in 53 of the 54 games. The 

one exception was in game 49 when player 15 scored 189 compared to player 7’s score of 

174. The higher ability player won all the remaining games with a margin of victory ranging 

from 9 to 121 points. This comparison yields an estimated probability of victory for the high 

ability player equal to .98, which compares favourably to our predicted estimate of .95. We 

then repeat the analysis this time adjusting scores using  a par score of 220 and a weighting 

factor of .8 (similar to what is actually used in the league). With these adjusted scores the 

number of games won by the favourite falls to 35, giving a probability of victory equal to 

.648.  This again compares very well to our simulated probability of .621. It would thus 

appear that our simulated probabilities based on 10,000 simulated games provide estimates 

that match very well to recorded victories, in actual league play based on much fewer games. 

We now examine what changes, if any, to the handicap system would produce more 

equitable outcomes. As noted earlier the key feature of handicap system determining the 

probability of victory is the weighting factor. The United States Bowling Congress (2011) 

recommends that their leagues adopt a weighting of 100% in order to equalise probabilities. 

Table 8 shows the outcome probabilities under such a system. As expected this system 

produces a much more level playing field with probabilities closer to .5. However, under this 

scheme the odds of victory shift towards the lesser ability player. In all cases the probability 

of the favourite wining is less than .5. Some authors (McHale 2010) argue that such a system 

would distort incentives. Thus given the observed distribution of bowling scores in Ireland 
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we would propose a weighting factor slightly less than 1. Table 9 shows the results obtained 

when the weighting factor is .95.  We see that across all match-ups the probability of the 

favourite winning falls in the range .505-.547. This scheme thus results in a significant 

levelling of the playing field without removing the incentive for players to improve their skill 

level. 

V: Conclusions 

This paper examines the distribution of 10-pin bowling scores and uses the statistical results 

to examine the impact of alternative handicapped scoring systems. We show that while the 

raw bowling scores are not normally distributed, there is strong evidence that bowling scores 

are normally distributed after a log-transformation. The simplicity of this transformation 

helps when calculating the likelihood of victory in any match-up. Handicap scoring systems 

are used in many bowling leagues with the explicit purpose of allowing players to compete 

on a level playing field with players of lesser or greater skill. We use our results to examine 

the performance of currently used handicap systems in Ireland. We show that the current 

systems still leave large biases in favour of high ability players. Using a 100% weighting 

factor produces a more level playing field but goes too far in the sense that players have no 

incentive to improve their handicap. We propose a compromise weighting factor equal to .95 

and shows that this system allows lower ability players to compete across all match-ups yet 

still provides some incentives for players to improve their game. 
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Figure 1: Kernel density of raw bowling scores for each player 
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Figure 1 (continued) 
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Figure 2: Kernel density of log transformed bowling scores for each player 
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Figure 2: Continued 
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Figure 3: Variance of log transformed bowling scores and average bowling score 
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Table 1: Summary of raw bowling scores 
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Table 2: Shapiro Francia Normality Test on the Raw Data 
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Table 3: Skewness Kurtosis Normality Test on the Raw Data 
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Table 4: Summary Statistics of Transformed Bowling Scores 
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Table 5: Shapiro-Francia Test on Transformed Bowling Scores 
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Table 6: Skewness Kurtosis Test on Transformed Bowling Scores 
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Table 7: Probabilities of favourite winning unadjusted scores and adjusted scores under 
handicap systems 1 and 6 

 

Ability  100 120 140 160 180 200 220 

100  .8184 

.5665 

.6178 

.9527 

.617 

.7059 

.9904 

.661 

.7672 

.9985 

.6981 

.827 

.9998 

.7332 

.8680 

1 

.7566 

.8913 

120 8184 

.5665 

.6178 

 .7775 

.5604 

.6036 

.9236 

.5963 

.6761 

.9812 

.6411 

.7394 

.9962 

.6800 

.7944 

.9989 

.7035 

.8332 

140 .9527 

.617 

.7059 

.7775 

.5604 

.6036 

 .7430 

.5461 

.5835 

.8959 

.5920 

.6567 

.9628 

.6308 

.7239 

.9882 

.6579 

.7683 

160 .9904 

.661 

.7672 

.9236 

.5963 

.6761 

.7430 

.5461 

.5835 

 .7299 

.5457 

.5808 

.8722 

.5845 

.6462 

.9514 

.6207 

.7033 

180 9985 

.6981 

.827 

.9812 

.6411 

.7394 

.8959 

.5920 

.6567 

.7299 

.5457 

.5808 

 .7063 

.5419 

.5754 

.8503 

.5797 

.6346 

200 .9998 

.7332 

.8680 

.9962 

.6800 

.7944 

.9628 

.6308 

.7239 

.8722 

.5845 

.6462 

.7063 

.5419 

.5754 

 .6848 

.5348 

.5633 

220 1 

.7566 

.8913 

.9989 

.7035 

.8332 

.9882 

.6579 

.7683 

.9514 

.6207 

.7033 

.8503 

.5797 

.6346 

.6848 

.5348 

.5633 
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Table 8: Probabilities of favourite winning unadjusted and New handicap system based on 
100% factor weighting 

Ability  100 120 140 160 180 200 220 

100  .8184 

.4958 

.9527 

.4841 

.9904 

.4773 

.9985 

.4772 

.9998 

.4805 

1 

.4747 

120 .8184 

.4958 

 .7775 

.4984 

9236 

.4838 

.9812 

.4806 

.9962 

.4833 

.9989 

.4775 

140 .9527 

.4841 

.7775 

.4984 

 .7430 

.4918 

.8959 

.4891 

.9628 

.4908 

.9882 

.4836 

160 .9904 

.4773 

.9236 

.4838 

.7430 

.4918 

 .7299 

.4934 

.8722 

.4963 

.9514 

.4907 

180 .9985 

.4772 

.9812 

.4806 

.8959 

.4891 

.7299 

.4934 

 .7063 

.4973 

.8503 

.4949 

200 .9998 

.4805 

.9962 

.4833 

.9628 

.4908 

.8722 

.4963 

.7063 

.4973 

 .6848 

.4952 

220 1 

.4747 

.9989 

.4775 

.9882 

.4836 

.9514 

.4907 

.8503 

.4949 

.6848 

.4952 

 

Table 9: Probabilities of favourite winning unadjusted and New handicap system based on 95% 
weighting factor “Adjusted score = rawscoreplayer+.95(220-mi)” 

Ability  100 120 140 160 180 200 220 

100  .8184 

.5155 

.9527 

.5184 

.9904 

.5264 

.9985 

.5330 

.9998 

.5465 

1 

.5472 

120 .8184 

.5155 

 .7775 

.5152 

.9236 

.5133 

.9812 

.5196 

.9962 

.5311 

.9989 

.5353 

140 .9527 

.5184 

.7775 

.5152 

 .7430 

.5039 

.8959 

.5137 

.9628 

.5291 

.9882 

.5268 

160 .9904 

.5264 

.9236 

.5133 

.7430 

.5039 

 .7299 

.5057 

.8722 

.5187 

.9514 

.5243 

180 .9985 

.5330 

.9812 

.5196 

.8959 

.5137 

.7299 

.5057 

 .7063 

.5080 

.8503 

.5186 

200 .9998 

.5465 

.9962 

.5311 

.9628 

.5291 

.8722 

.5187 

.7063 

.5080 

 .6848 

.5050 

220 1 

.5472 

.9989 

.5353 

.9882 

.5268 

.9514 

.5243 

.8503 

.5186 

.6848 

.5050 
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