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Abstract

We extend Lutz’s resource-bounded measure to probabilistic classes, and obtain
notions of resource-bounded measure on probabilistic complexity classes such as
BPE and BPEXP. Unlike former attempts, our resource bounded measure notions
satisfy all three basic measure properties, that is every singleton {L} has measure
zero, the whole space has measure one, and “enumerable infinite unions” of measure
zero sets have measure zero.
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1 Introduction

Resource-bounded measure was introduced by Lutz in [4,5] for both complexity classes
EXP and E. It provides a means of investigating the sizes of various subsets of E and EXP.
Given a subset C of EXP such as P, NP or BPP, one tries to determine whether C is
a small subset of EXP, i.e. has measure zero, or is a large subset, i.e. has measure one.
Resource-bounded measure has been successfully used to understand the structure of the
exponential time classes E and EXP.

The first goal of Lutz’s approach was to extend existence results, such as “there is a
language in C satisfying property P”, to abundance results such as “most languages in C
satisfy property P”, which is more informative since an abundance result reflects the typical
behavior of languages in a class, whereas an existence result could as well correspond to an
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exception in the class. For instance it was shown [3] that the set of ≤p
m-complete languages

for E has measure zero in E.

Plausible but unproven hypothesis such as P 6= NP and “the polynomial time hierarchy does
not collapse” are useful to provide information concerning complexity theoretical propo-
sitions. Resource-bounded measure can also be used to formulate new plausible working
hypothesis such as “NP is not a small subset of E”. For instance it was shown in [2], that
under the hypothesis “NP does not have p-measure zero” full derandomization of AM is
possible, i.e. NP = AM. For a more detailed survey on Lutz’s resource bounded measure
see [6].

Resource-bounded measure can be seen as a general framework which for many complexity
classes C , yields a notion of “measure in C” which satisfies the following three basic
properties. First, every singleton {L} (where L ∈ C ) has measure zero in C , second the
whole space C has measure one in C , and finally “enumerable infinite unions” of measure
zero sets have measure zero in C . These basic properties meet the essence of Lebesgue’s
measure and ensure that it is impossible for a subset of C to have both measure zero and
one in C .

Unfortunately, Lutz’s formulation only works for measure in C ⊇ E. In [8,1,15,11] Lutz’s
measure was generalized to subexponential classes with the introduction of measure notions
in classes such as P, SUBEXP and PSPACE. And what about probabilistic classes?

In [14], the notion of measure on probabilistic classes has been investigated. Probabilistic
martingales were introduced in [14], where the overwhelming majority of the branches of a
probabilistic computation compute values that are close approximations to the actual value
of the martingale (different branches might produce different approximations). Several
classes were shown to be small according to this notion in [14], including the classes that
the “natural proofs” of [13] are useful against, the Turing-complete sets for EXP, and
BPTIME(2cn) (for any constant c). Unfortunately the notion of [14] is not known to satisfy
the three basic measure properties (and a proof thereof would imply settling some long-
standing open questions namely the existence of a time-hierarchy theorem for probabilistic
classes).

It was thus left open whether it is possible to define a measure on probabilistic classes which
satisfies all three basic measure properties. We give an affirmative answer to this question
by constructing a measure notion on both probabilistic classes BPEXP and BPE, which
satisfies all three basic measure properties. The idea is to consider martingales for which the
overwhelming majority of the branches of a probabilistic computation compute the same
value that is a close approximation to the actual value of the martingale. This combined
with standard techniques used to prove the three basic properties for Lutz measure on E,
yields a measure notion on BPE that satisfies the three basic properties. The price to pay is
that being same-valued probabilistically computable, our probabilistic martingales cannot
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use random sampling (as opposed to the martingales in [14]), hence the measure of the
classes shown to be small in [14] is not known with regard to our notion.

The idea of same-valued probabilistic computation carries over to measure on small prob-
abilistic classes (using the approach of [1,15,11]) to yield measure notions on BPP.

2 Preliminaries

We use standard notation for traditional complexity classes, see for instance [12]. Let us fix
some notation for strings and languages. A string is an element of {0, 1}n for some integer
n. For a string x, its length is denoted by |x|. s0, s1, s2 . . . denotes the standard enumeration
of the strings in {0, 1}∗ in length-lexicographical order, where s0 = λ denotes the empty
string. Note that n = 2O(|sn|). A sequence is an element of {0, 1}ω. If w is a string or a
sequence and 1 ≤ i ≤ |w| then w[i] and w[si] denotes the ith bit of w. Similarly w[i . . . j]
and w[si . . . sj] denote the ith through jth bits. For two strings x, y, the concatenation of
x and y is denoted xy.

A language is a set of strings. A class is a set of languages. We identify language L with
its characteristic function χL, where χL is the sequence such that χL[i] = 1 iff si ∈ L. Thus
a language can be seen as a sequence in {0, 1}∞.

2.1 Martingales

Lutz’s [5] measure on E is obtained by imposing an appropriate resource-bound on a game
theoretical characterization of the classical Lebesgue measure, via martingales. A martin-
gale is a function d : {0, 1}∗ → R+ such that, for every w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2
. (1)

This definition can be motivated by the following betting game in which a gambler puts bets
on the successive membership bits of a hidden language A. The game proceeds in infinitely
many rounds where at the end of round n, it is revealed to the gambler whether sn ∈ A or
not. The game starts with capital 1. Then, in round n+1, depending on the first n outcomes
w = χA[0 . . . n− 1], the gambler bets a certain fraction εwd(w) of his current capital d(w),
that sn+1 ∈ A, and bets the remaining capital (1 − εw)d(w) on the complementary event
sn+1 6∈ A. The game is fair, i.e. the amount put on the correct event is doubled, the one put
on the wrong guess is lost, as stated in Equation 1. The value of d(w), where w = χA[0 . . . n]
equals the capital of the gambler after round n + 1 on language A. The player wins on a
language A if he manages to make his capital arbitrarily large during the game. We say
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that a martingale d succeeds on a language A, if d(A) := lim supw@A,w→A d(w) = ∞, where
we identify language A with its characteristic sequence χA. The success set S∞[d] of a
martingale d is the class of all languages on which d succeeds.

3 A Measure on BPE

Our measure on BPE is defined via the following probabilistic martingales.

Definition 1 A martingale d : {0, 1}∗ → R+ is BPE-approximable if there exists a family
of approximations {d̂k}k≥0, where d̂k : {0, 1}∗ → Q+, and a probabilistic Turing machine
M , such that for every w ∈ {0, 1}∗ and every k, n ∈ N

|d̂k(w)− d(w)| ≤ 2−k, and

Pr[M(w, k, n) = d̂k(w)] ≥ 1− 2−n

where the probability is taken over the internal coin tosses of M and the running time of
M is polynomial in |w|+ k + n.

Remark 2 By using standard Chernoff bound arguments it is easy to show that Definition
1 is robust, i.e. the error probability can range from 1

2
+ 1

p(n)
to 1−2q(n) for any polynomials

p, q, without enlarging (resp. reducing) the class of functions defined this way.

Definition 3 A martingale d : {0, 1}∗ → Q+ is said to be BPE-computable if there exists
a probabilistic Turing machine M , such that for every w ∈ {0, 1}∗ and every n ∈ N

Pr[M(w, n) = d(w)] ≥ 1− 2−n

where the probability is taken over the internal coin tosses of M and the running time of
M is polynomial in |w|+ n.

We often consider indexed martingales. An indexed BPE-approximable martingale is a
martingale d (where di(w) := d(i, w)) such that there exists a family of approximations
{d̂k,i}k,i≥0, where

d̂k,i : {0, 1}∗ → Q+

and a probabilistic Turing machine M such that for every w ∈ {0, 1}∗ and every k, i, n ∈ N

|d̂k,i(w)− di(w)| ≤ 2−k, and

Pr[M(w, k, i, n) = d̂k,i(w)] ≥ 1− 2−n

where the probability is taken over the internal coin tosses of M and the running time of
M is polynomial in |w|+ k + i + n.
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Following Lutz [5] we say that a set has measure zero if there is a single martingale that
succeeds on it.

Definition 4 A language A has BPE-measure zero if there exists a BPE-approximable
martingale d : {0, 1}∗ → R+ such that

lim sup
n→∞

d(χA[0 . . . n]) = ∞

We say that martingale d succeeds on A whenever this is the case.

The success set S∞[d] of a martingale d is the class of all languages on which d succeeds.

In order to formalize the third basic property, we need to define what we mean by enu-
merable infinite union of measure zero sets.

Definition 5 X =
⋃

i∈N Xi is a BPE-union of BPE-measure zero sets if there exists an
indexed BPE-approximable martingale d such that Xi ⊆ S∞[di].

The following Lemma states that any BPE-approximable martingale can be replaced by a
BPE-computable martingale with the same success set. Its proof is similar to the standard
exact computation lemma proof that is found in the literature, see [7] for instance.

Lemma 6 (Exact Computation Lemma) Let d : {0, 1}∗ → R+ be a BPE-approximable
martingale. Then there exists a BPE-computable martingale d′ : {0, 1}∗ → Q+ such that
S∞[d] ⊆ S∞[d′].

PROOF. Let d̂ be an approximation of d, and let M be a probabilistic Turing machine
computing d̂. Let us define c(w) := d̂|w|(w). We construct the following martingale d′

recursively.

d′(λ) = c(λ) + 2

d′(wb) = d′(w) +
c(wb)− c(wb̄)

2

where w ∈ {0, 1}∗ and b ∈ {0, 1}.

Claim 7 d′ is BPE-computable.

Indeed computing d′(wb) requires computing |w| recursive steps, each step requiring two
computations of c. By computing c (via M) with error probability smaller than 2−s(n)

(where s(n) is a polynomial to be determined later), we obtain a total error probability
smaller than 2|w|2−s(n). Putting s(n) = log(|w|) + n + 1 yields a total error probability
smaller than 2−n.
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Let us check that d′ defines a martingale. It is easy to check that Equation 1 is satisfied.
In order to check that d′(w) ≥ 0 for every w ∈ {0, 1}∗, we show by induction that

d′(w) ≥ d(w) + 2−|w|. (2)

We have

d′(λ) = c(λ) + 2 ≥ d(λ)− 20 + 2 ≥ d(λ) + 20.

For w ∈ {0, 1}∗, b ∈ {0, 1}, we have

d′(wb) = d′(w) +
c(wb)− c(wb̄)

2

≥ d(w)− 2−|w| +
c(wb)− c(wb̄)

2

≥ d(w) + 2−|w| +
d(wb)− d(wb̄)

2
− 2−|w|−1

= d(wb) + 2−|w|−1

where the first inequality holds by induction and the second holds because |d(w)− c(w)| ≤
2−|w| by definition of c. ut

4 The Three Basic Properties

Let us prove that all three basic properties of Lutz measure hold for our measure on BPE.

Theorem 8 Let L be any language in BPE. Then the singleton {L} has BPE-measure
zero.

PROOF. Let L ∈ BPE be any language and let M be a Turing machine deciding it.
We construct a probabilistic Turing machine T computing martingale d yielded by the
following game strategy; On input w = w0w1 . . . wN−1 the martingale d will have value
2N if w is a prefix of χL, and 0 otherwise. d is BPE-computable since on input (w, n),
T simply computes χL(s1), χL(s1), . . . , χL(sN), (each with error probability smaller than
2−(n+N)) and checks whether w is a prefix of χL. The total error probability is smaller than
N2−(n+N) which is less than 2−n. ut

The second basic property is proved using the Exact Computation Lemma.

Theorem 9 BPE does not have BPE-measure zero.
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PROOF. Let d be a BPE-approximable martingale. By Lemma 6 we can suppose that d
is BPE-computable. We construct a language L ∈ BPE such that

d(χL[0 . . . N ]) ≤ d(λ)

for every N ≥ 1, i.e. L 6∈ S∞[d]. For N > 0, let

L(sN) = 1 iff d(L(s0)L(s1) . . . L(sN−1)1) ≤ d(L(s0)L(s1) . . . L(sN−1)0)

where d is computed with error probability 2−s(n) (where s(n) is a polynomial to be deter-
mined later). L ∈ BPE because each of the N recursive steps to compute L(sN) requires
two computations of d. This yields a total error probability smaller than 2N2−s(n). Putting

s(n, N) = log(N) + n + 1

yields a total error probability smaller than 2−n. Moreover d never increases its initial
capital along L which ends the proof. ut

Finally let us prove the third basic property.

Theorem 10 Let X =
⋃

i≥1 Xi be a BPE-union of BPE-measure zero sets. Then X has
BPE-measure zero.

PROOF. Let d be a BPE-approximable indexed martingale such that Xi ⊆ S∞[di], and
let d̂ be an approximation of d. We construct a BPE-approximable indexed martingale D
such that for every j ∈ N,

S∞[dj] ⊆ S∞[Dj]

and
Dj(λ) ≤ 2−j .

Let w ∈ {0, 1}∗ and j, k ∈ N. Consider

Dj(w) = 2min(0,− log(d̂j,1(λ))−2−j)dj(w) and

D̂j,k(w) = 2min(0,− log(d̂j,1(λ))−2−j)d̂j,k(w).

We have
|D̂j,k(w)−Dj(w)| ≤ |d̂j,k(w)− dj(w)| ≤ 2−k

i.e. D is BPE-approximable.

Consider the following martingale

d′(w) :=
∞∑

j=0

Dj(w).
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The function d′ is a well defined martingale because

d′(λ) ≤
∞∑

j=0

2−j < ∞

and

d′(w) ≤
∞∑

j=0

2|w|Dj(λ) = 2|w|d′(λ)

where the last inequality holds because a martingale’s value at most doubles in each step.
It is clear that X ⊆ S∞[d′]. Let us show that d′ is BPE-approximable. Consider

d̂′k(w) :=
k+|w|+1∑

j=0

D̂j,j+k+2(w)

where each D̂j,j+k+2(w) is computed with probability 2−s(n) where s(n) is a polynomial to
be determined later. We have

|d̂′k(w)− d′(w)| ≤
k+|w|+1∑

j=0

|D̂j,j+k+2(w)−Dj(w)|+
∞∑

j=|w|+k+2

Dj(w)

≤
k+|w|+1∑

j=0

2−(j+k+2) +
∞∑

j=|w|+k+2

2|w|Dj(λ)

≤
k+|w|+1∑

j=0

2−(j+k+2) +
∞∑

j=|w|+k+2

2|w|2−j ≤ 2−k.

Since computing d̂′k(w) requires computing k+|w|+1 terms D̂j,j+k+2, each being computed

with error probability smaller than 2−s(n), d̂′k(w) can be computed with error probability
smaller than (k + |w|+ 1)2−s(n). Letting

s(n) := log(k + |w|+ 1) + n

yields a total error probability smaller than 2−n, thus d′ is BPE-approximable which ends
the proof. ut

Remark 11 • Replacing the time bounds in Definition 3 by 2logk |w| + poly(n) where k is
a constant yields a measure on the probabilistic class BPEXP.

• Several measure notions on P were introduced in the last decade [1,15,11]. One can show
that the idea of same-valued probabilistic computable martingales carries over to these
notions thus yielding measure notions on BPP.
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5 Open Question

Although we now have measure notions on two types of complexity classes: deterministic
and probabilistic, the nondeterministic case is still unsettled. We believe that a measure no-
tion on nondeterministic classes would be of some interest. We anticipate that the measure
notions we have developed here will be useful in future work.
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