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Abstract

Fundamental limitations in feedback control is a well established area of research.
In recent years it has been extended to the study of limitations imposed by the
consideration of a communication channel in the control loop. Previous results char-
acterised these limitations in terms of a minimal data transmission rate necessary
for stabilisation. In this paper a signal-to-noise ratio (SNR) approach is used to
obtain a tight condition for the linear time invariant output feedback stabilisation
of a continuous-time, unstable, non minimum phase (NMP) plant with time-delay
over an additive Gaussian coloured noise communication channel. By working on a
linear setting the infimal SNR for stabilisability is defined as the infimal achievable
Hy norm between the channel noise input and the channel signal input. The result
gives a guideline in estimating the severity of the fundamental SNR limitation im-
posed by the plant unstable poles, NMP zeros, time-delay as well as the channel
NMP zeros, bandwidth, and channel noise colouring.
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1 Introduction

The study of fundamental limitations in control design is an established area of
research with important early results from Bode (1945) and Horowitz (1963).
For a linear time invariant (LTI) plant it is well understood that its unstable
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poles, non minimum phase (NMP) zeros and time-delay will cause unavoidable
limitations in performance (see for example Seron et al. (1997) and references
therein). In more recent years, the study of fundamental limitations has been
extended to problems of control over communication channels and has at-
tracted growing interest (see for example Antsaklis and Baillieul (2004) and
the recent survey by Nair et al. (2007)).

A communication channel in the feedback loop can impose a number of con-
straints to control design. For example, it is shown in Nair and Evans (2004)
that for a noiseless (error-free) channel the minimal data transmission rate
necessary and sufficient for stabilisation must satisfy a lower bound expressed
as a function of the open loop unstable poles of the plant. This result is ob-
tained using fairly complex information theoretic arguments, but is valid for
a large class of feedback controllers assumed only to be casual.

A framework for the study of control over a communication channel with a
constraint on its signal-to-noise ratio (SNR) has been developed in Braslavsky
et al. (2007). In that paper, the authors derive the infimal SNR required
to stabilise an unstable plant by feedback over an additive white Gaussian
noise (AWGN) communication channel. It is shown that the limitations to
control imposed by a SNR constraint can be studied in a completely linear
scenario, linking with a large body of well-established tools and techniques.
For the problem of feedback stabilisation, such limitations are quantified by
the optimal Hy norm of the closed-loop transfer function between the channel
noise input and the channel signal input, and are expressed as a function of the
plant unstable poles, NMP zeros, and time-delay. It is also shown in Braslavsky
et al. (2007) that for state feedback, or for a minimum-phase, delay-free plant,
the infimal SNR condition matches the exact same requirement on channel
transmission data rate derived in the general formulation by Nair and Evans

(2004).

Time-delays are ubiquitous in real systems and constitute a fundamental ob-
stacle to feedback stabilisation. In Braslavsky et al. (2007) time-delays are
treated only in discrete-time, wherein they are simpler because they appear
as an increase in relative degree of a finite dimensional transfer function. It
is shown in Braslavsky et al. (2007) that the presence of time-delay increases
the SNR required to stabilise an unstable system. In Braslavsky et al. (2005),
time-delays are treated in continuous time, with a similar conclusion, albeit
with the considerably greater technical complexity required to treat infinite
dimensional systems. It follows from Braslavsky et al. (2005) that for a system
with one unstable pole the increase in SNR is exponential in the magnitude
of the time-delay and that of the unstable pole. A consistent deterioration in
control performance imposed by time-delays has been characterised in Nair
et al. (2007) in a (discrete-time) data-rate constrained control framework.
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Fig. 1. Stabilisation via output feedback over an ACGN channel with bandwidth
limitation.

The present paper extends the continuous-time results by Braslavsky et al.
(2007) to systems with time-delay and feedback over bandwidth-limited ad-
ditive coloured Gaussian noise (ACGN) channels. ACGN channels with a
bandwidth limitation are a simple, yet more realistic model for a feedback
communication link than an AWGN channel. The imposition of a bandwidth
limitation, for example, is common in practice to avoid interference between
different channels in a communication network.

We consider the control structure with feedback over an ACGN communica-
tion channel shown in figure 1. Of the two possible locations for the ACGN
channel (measurement path and actuation path), we consider the actuation
path location, as in Figure 1. Such a setting is common in practice and arises,
for example, when actuators are far from the controller and have to com-
municate through a communication network. Nonetheless, in a single-input
single-output (SISO) LTI setting both forms are equivalent, and it is a simple
matter to restate the results for the case of measurement performed over a
communication channel.

Our main contribution (Theorem 2) is a necessary and sufficient condition on
the channel SNR for closed-loop stabilisability using LTI feedback. The SNR
required for stabilisability is characterised as the infimal Hs norm of the trans-
fer function between n and u in the feedback loop of Figure 1, and is given as
an explicit function of the plant unstable poles, NMP zeros and time-delay,
and the channel transfer functions F'(s) and H(s). We express this infimal H
norm in a formula that shows the exponential dependence on the time-delay
and the unstable poles of the plant, in agreement with results in Braslavsky
et al. (2005) and Mirkin and Raskin (2003). The formulas in these papers,
however, are in terms of a state-space description of the plant and involve a
Grammian-type definite integral, which can be readily computed numerically,
but does not show any explicit dependency on the system unstable poles, NMP
zeros, and time-delays. On the other hand, the formula proposed here provides
a direct quantification of the impact of these plant parameters on optimal Hs



performance, and thereby on the problem of closed-loop stabilisation by feed-
back over a SNR constrained communication channel. A preliminary version
of this result has been communicated in Rojas et al. (2006).

Terminology: let C=, C~, C* and C* denote respectively the open-left, closed-
left, open-right and closed-right halves of the complex plane C. Let R denote
the set of real numbers, R the set of positive real numbers and R} the set of
positive real numbers including zero. A continuous-time signal is denoted by
x(t), t € R}, and its Laplace transform by X (s), s € C. Where the meaning is
clear from the context, we omit the argument of x(¢) or X (s). The expectation
operator is denoted by £. A rational transfer function P(s) of a continuous-
time system is termed minimum phase (MP) if all its zeros lie in C~, and is
non minimum phase (NMP) if it has zeros in C*. The H,, norm of a system
P(s), denoted by ||P| g, , is given by ||P||x., = sup,egr |P(jw)|. Define Lo as
the space of functions f : jR — C such that 5= [% [f(jw)[?’dw < oo; Hy as
the space of functions f : C* — C such that sup,-g 5= /o | f(0 + jw)[*dw <
oo; and also define Hi- as the space of functions f : C~ — C such that
D, o 2 [, | flo + joo) P < oo,

2 SNR Constrained Stabilisation

Consider the control feedback loop in Figure 1 for a continuous-time plant
with time-delay defined as

G(s) = Gi(s)e™™", (1)

where G4 (s) is a rational transfer function with relative degree n, > 1, which
contains m distinct unstable poles (p; € CT,i = 1,--- ,m), ¢ distinct NMP
zeros (z; € CT,j = 1,---,¢) and 7 € R}. The assumption of distinct zeros
and distinct poles simplifies the proof of the main result but is not essential
to it, and may be relaxed.

We assume in the present paper the channel model to be the bandwidth-
limited ACGN channel as in Figure 1. The signals involved in the channel
model are u(t) the channel input, 7(¢) the channel output, and n(t) a zero-
mean stationary white Gaussian noise process with power spectral density
®. The channel transfer function F(s) modelling the bandwidth limitation
and channel dynamics is assumed to be stable, with f distinct NMP zeros
(wj € C*,j = 1,---, f) and relative degree ny > 0. The channel transfer
function H(s), colouring the additive white Gaussian noise, is assumed to be
stable, minimum phase and with relative degree n, > 0. The channel input is
required to satisfy the power constraint

P > Jlullpow (2)



for some predetermined input power level P > 0, where |jul|%,, = € {u?(t)}. A
power constraint such as (2) may arise from a range of factors such as electronic
hardware limitations or regulatory constraints introduced to minimise inter-
ference to other communication system users. The bandwidth-limited ACGN
channel is thus characterised by two stable transfer functions, F'(s) and H(s),
and two parameters: the admissible input power level P, and the noise spectral
density .

We restrict our attention to the case where the overall feedback system is
stabilised, such that for any distribution of initial conditions, the distribution
of all signals converges exponentially fast to a stationary distribution. Without
loss of generality, we therefore consider directly the properties of the stationary
distribution of the relevant signals. Denote the power spectral density of u(t)
by S, (w). The power in the channel input is related to its spectral density by

1 e
lulibon = 5= [ Su(w) do 3)

The closed-loop transfer function T,,(s) from channel noise n(t) to channel
input u(t) is equal to —(T'(s)/F(s))H(s), where T'(s) = C(s)G(s)F(s)/(1 +
C(s)G(s)F(s)) is the complementary sensitivity function of the output feed-
back loop, thus T,,(s) is

C(s)G(s)

Tun(s) = =(T(s)/F(s))H(s) = =7 +C(s)G(s)F(s)

H(s). (4)

If the feedback system is stable, then the power of the channel input signal is
given by
2 2
[l pow = ITunlly, ®-

We see that the input power constraint (2) may be restated as a constraint
imposed on the transfer function (4) by the admissible channel SNR, specifi-

cally

P 2
6 > ||Tun||H2 (5)

Notice that the proposed SNR involves ®, the power spectral density of the
channel noise and not its power, which is ill-defined in continuous-time (this
can be seen by directly replacing u with n in (3)).

Let K denote the class of all proper controllers C(s) that internally stabilise
the feedback system of Figure 1.

Problem 1 (Continuous-Time SNR Constrained Output Feedback
Stabilisation). Find a proper rational function C(s) € K such that the trans-

fer function (4) satisfies the constraint (5) imposed by the admissible channel
SNR.



To solve Problem 1 we need to first introduce the following Blaschke products

m

By(s) = [] =%, Bz<s>—H3‘ZJH (6)

i1 S+ D ]ls+zjjls+wj

containing respectively the C* poles of G(s) and the C* zeros of G(s) and
F(s). The residue of B, "(s) at s = p; is given by

Pi +Dj
Res,—p, B, ' (s) := 2Re {p;} [ —. (7)
j=1 Pi — Pj
J#

The following theorem presents the main result of the paper: a closed-form
expression of the infimal SNR required for stabilisability.

Theorem 2 Consider the feedback system of Figure 1 with T,,(s) defined as
in (4). Assume also that there are no unstable pole-zero cancellations in G(s),
or between G(s) and F(s). Then, for the feedback system to be stabilisable, the
channel SNR P/® must satisfy

P s 1T .
— > inf ||Tun L Pitps)T, 8
&7 ol I, = ;lepﬂrpj (®)
where
= Res,—y, B, () B (p:) F~ (pi) H (ps) - (9)

PROOF. Consider a coprime factorisation for F'(s)G(s) as

e *TN(s)

F(s)G(s) = TM(s)

(10)

where N(s), M(s) € RH,. Further, without loss of generality, consider

N(s) = B(s)No(s)F(s),

M(s) = By(s)M,(s). 1

where N,(s), M,(s) € RHw, No(s) and M,(s) are stable and MP transfer
functions, B,(s), B.(s) are as defined in (6).

Following Braslavsky et al. (2005, Lemma 3.1), a Youla parameterisation of
all controllers that stabilise G(s) is given by

X(s) + M(s)Q(s)
Y(s) —e"N(s)Q(s)’

where X (s) is in RH., Q(s),Y (s) are in H, and X (s) and Y (s) satisfy the
Bezout identity

O(s) = (12)

e TN (s)X(s)+ M(s)Y(s) = 1. (13)



A demonstration of the Bezout identity (13) can be found for example in
Meinsma and Zwart (2000, Lemma 3.2). Replacing these factorisations for
F(s)G(s) and C(s) into (4) gives

Tun(s) = = (€77 B.(s)No(s) F(5) X (s)
+e7 By (5) B.(s) M(5) No(s) F(5)Q(s) ) F~*(s) H(s).

Since B,(s) and B,(s) are all pass they have norm one, we have

inf || T,,l|% = inf STBAIN XH + e " M,N,QH
Q(sl)%HooH I Q(slﬁHooHe P e ?

(14)

2
Ly’

Since e~*" has magnitude one at all frequencies, the norm expression on the
RHS of equation (14) is not affected by it

inf HTunH?{g =

inf HB“NOXH + M,N,QH
Q(s)€H P

Q(s)€H

(15)

2
Lo
Also notice that the second term inside the norm expression in (15) belongs

to Hs, whilst the first term is a mixed term that can be decomposed as

B (8)N,(5)X (s)H(s) = T+ (s) +T'(s), (16)

p

where I'(s) is in Hy, whilst 't (s) is in H3 and therefore by Lemma 3 in Doyle
et al. (1992)

: 2 |pL]? : 2
o Tt~ I vn

By means of a partial fraction expansion and the Bezout identity in (13), it is
possible to quantify T'*(s)

I'(s) = - ,
(s) ; p—

where

r; = Res,—y, B, () B (i) ™4 (pi) H (i) -
Note that from (13) we have N,(p;) X (p;) = F~(p;) B; *(p;)eP™ at any p;, Vi =
1,- -+ ,m unstable poles of G(s). The result for the first norm term on the RHS
of equation (17), by use of the Residue theorem (see for example Churchill and

Brown (1990, pp. 169-172)), is

m m -
2oy e
Hy

1
HF ‘ iZ1;PitDj

Replacing in (17) will give

m m

7T ,
inf (|75 = Y9 eiHp)T 4 inf I+ M,N,QH|* . (18
Q(s)€Hoo Henl, ;]; Di +Dj Q(s)€Hoo | QH|ly, - (18)



By choosing Q(s) we can make the expression I'(s) + M,(s)N,(s)Q(s)H (s)
arbitrarily small in Hy obtaining the infimal norm that can be achieved in
(18) as

m m

rf _
inf || Tull%, = I pitpi)T
ot 1ol ;;pﬁﬁj ’

which completes the proof. O

Theorem 2 gives a necessary and sufficient condition for the infimal channel
SNR for which the system can be stabilised by LTI feedback control. This
condition is expressed in a form that explicitly shows the dependence on the
plant unstable poles, NMP zeros and time-delay, thereby allowing a direct
characterisation of their impact in the proposed feedback control over a com-
munication channel problem. We see from this formula that open loop NMP
zeros and time-delays worsen the constraints imposed by unstable poles to L'T1
feedback stabilisation. This conclusion holds in contrast to the result by Nair
and Evans (2004), which shows that only the unstable poles impose constraints
to feedback stabilisation—NMP zeros and time-delays have no effect—if non-
linear, time-varying feedback is allowed. Moreover, it has been pointed out in
Braslavsky et al. (2007, § IV), that such relaxation of constraints by using
time-varying feedback may come at the expense of stability robustness.

An explicit formula for the optimal Hy norm similar to that in (8) has been
recently reported in Bakhtiar and Hara (2007), however, only for a plant with
a single unstable pole. The formula in (8) holds for a plant with multiple
(distinct) unstable poles.

Remark 3 Observe from the result of Theorem 2 that F(s) and H(s) are rele-

vant to the analysis through the factor F~'(s)H(s). A SNR constrained output
feedback stabilisation problem defined by the triplet of models {G(s), F(s), H(s)}
(a bandwidth-limited, coloured noise case) has the same solution of a SNR con-

strained output feedback stabilisation problem defined by the triplet of models

{G(s),1,F~Y(s)H(s)} (a coloured noise case with no bandwidth-limitation,).

* K x

The following examples illustrate the application of Theorem 2 in the analysis
of the limiting effects of channel and plant parameters on the stability by LTI
feedback over a communication channel, as measured by the required channel
SNR.

Example 4 Consider a plant model G(s) with an unstable pole at p =5, no
NMP zeros and T = 0. The LTI filters used to model the finite bandwidth

***  A.J. Rojas wishes to thank one of the anonymous reviewer of Rojas (2006)
for the remark.



and coloured noise of the communication link are both chosen to be low-pass
Butterworth filters of order 4 (with the filters bandwidth defined by the —3[dB]

cut-off frequency).

Figure 2 shows the effect of bandwidth limitation on one axis and coloured noise
on the other axis. The vertical scale is the SNR value in decibels required to
guarantee stabilisability. Two facts can be appreciated from Figure 2. First, a

P/® [dB]

H Bandwidth [rad/sec] 0 o F Bandwidth [rad/sec]

Fig. 2. SNR bound for stabilisability, unstable pole at 5. Bandwidth-limited coloured
noise case.

reduction in the available bandwidth of the communication channel forces an
increase in the value of SNR required to guarantee stabilisability. Second, if
the noise is coloured by a low pass filter, the reduction of its cut-off frequency
has the opposite effect of reducing the value of SNR required for stabilisability.
The overall result approaches the case of SNR for an infinite bandwidth AWGN
communication channel, that is 10log,y(2p) = 10[dB] in this case.

More generally, for the case of one unstable real pole p and two possible selec-
tions for MP filters F'(s) and H(s), say (Fi(s), H1(s)) and (Fy(s), Hy(s)), with
|Fi(jw) ' Hy(jw)| > |Fe(jw) P Ha(jw)| Vw, it is possible to verify through the
Poisson integral formula, see for example Churchill and Brown (1990); Seron



et al. (1997), that

_ L feo 1, . D
log | (p) i (p)| = — [ lo | ™ () ()| e >

(19)

1 foo 1, . p -
;/_OO log | F, I(Jw)Hz(]WHZde = log |[F5 " (p) Ha(p)|.

The result in (19) is equivalent to |Fy ' (p)Hi(p)| > |Fy '(p)Ha(p)| and since
for the case studied in the present example the SNR required for stabilisability
is given by 2p|F~1(p)H (p)|?, we can conclude that the first pair of LTI filters
will always demand a higher SNR for stabilisability than the second pair.

The following example considers an infinite bandwidth AWGN channel (i.e.
F(s)=1and H(s) =1) and a MP unstable plant with time-delay, recovering
results by Braslavsky et al. (2005).

Example 5 Consider the case of two unstable real poles py and ps, and an
infinite bandwidth AWGN communication channel. For this selection equation
(8) becomes:

7) . 2 ’I“%
- f Ty, — 1 2p7
o~ ol M Tunll, =5 €™+

2

21179 T
e(p1+p2)‘r+ 2 o2p2m _

p1+ D2 2ps

2 2 2
%W, (pl + pz) 2T _ 8p1p2 <p1 +p2> ePte)T | o, <p1 +p2> o227
P1— D2 p1+Dp2 \p1— P2 P1— P2

(20)

The expression obtained in (20) matches the result in Example 2.2, Equation
(21), in Braslavsky et al. (2005).

The implementation of a stabilising controller for an unstable plant with time
delay requires special care, as we illustrate in the following example.

Example 6 Consider an AWGN channel with infinite bandwidth and the
plant

e—ST
G(s) = 21
5= @)
where p € RY and 7 € RY. A coprime factorisation for G(s) as in (10) is
given by

1 _
N(s) = ——, M(s) = —L. (22)
s+p S+p
From the Bezout Identity (13), we can observe the interpolation condition that
X(s) has to satisfy at s = p and from it we can propose a suitable choice for

10



X(s) itself.
4p?eP™
X(p) =2pe?™ = X(s) = . 23
(p) = 2pe (s) =~ s (23)

From the knowledge of X (s) we can obtain Y (s)

S+p B 4]926107—6787—
s—p (s+p)(s—p)

Y(s)=(1—e*"N(s)X(s)M '(s) = , (24)

and by following the proof of Theorem 2 for the present example is possible
to verify that the infimum of the Hy term on the RHS of (18) is achieved by
Q(s) = 2peP™. Thus, from (12), we can obtain the stabilising controller C(s)
that achieves the infimal SNR as

Ci(s) = X+ MQ _ 2peP(s —p) (25)

Y —e5"NQ "~ (s+p) —2perTesT

At this point we can observe from (25), via a L’Hépital’s argument, that

,,,,,,,,,,,,,,,

************

\ \
\ \
\ \
\ \
u + o Y
2peP” : : G(s) -0

—e
s—p

|
|
|
|
|
| e—PT —sT
|
|
|

,,,,,,,,,,,,,,,

Fig. 3. Stabilisation via output feedback with a modified Smith predictor interpre-
tation of the controller in (25) over an AWGN channel with infinite bandwidth.

A

lim,_,, C(s) is well defined. Nonetheless the same L’Hopital’s argument implies
that an unstable cancellation at s = p is taking place, not between the controller
and the plant, but within the controller itself. As a consequence, the stabilising
controller in (25) is not implementable in its current form (if 7 # 0). A
standard approach to circumvent this difficulty is to use a Padé’s approximant
for the plant time-delay, see for example Goodwin et al. (2001, p.429), so
that we obtain a rational controller in which this internal cancellation can be
explicitly accounted for. A different approach is to consider that the controller
can be interpreted as a modified Smith predictor with the primary controller
given by 2peP™ and the (distributed time-delay) predictor

ST

e PT —e”

— e PT /T e(p—5)0d07
5—0p 0

as in Figure 3. The above predictor expression can be then approximated using,
for example, the results in Mirkin (2004).

11



3 Conclusion

We have addressed the problem of stabilisability of a NMP continuous-time
LTT unstable plant with time-delay over an ACGN communication channel.
The main result is expressed as a lower bound on the channel SNR, below
which stability is not achievable. The lowest SNR bound is quantified by an
expression of the optimal transfer function Hy-norm between the channel noise
input and the channel signal input. Most of the ideas presented here have cor-
responding dual concepts that apply to discrete-time systems (see for example
Rojas et al. (2006) for the discrete-time version of Theorem 2). Further investi-
gation will consider multiplicative model error, multiple channels/single user
scenario and sampled-data systems (a discussion for the infinite bandwidth
AWGN channel case can already be found in Braslavsky et al. (2007, Sec.4)).
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