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A Test for the Number of Factors in an
Approximate Factor Model

GREGORY CONNOR and ROBERT A. KORAJCZYK*

ABSTRACT

An important issue in applications of multifactor models of asset returns is the
appropriate number of factors. Most extant tests for the number of factors are valid
only for strict factor models, in which diversifiable returns are uncorrelated across
assets. In this paper we develop a test statistic to determine the number of factors
in an approximate factor model of asset returns, which does not require that
diversifiable components of returns be uncorrelated across assets. We find evidence
for one to six pervasive factors in the cross-section of New York Stock Exchange and
American Stock Exchange stock returns.

THE ARBITRAGE PRICING THEORY (APT) of Ross (1976) has generated an in-
creased interest in the application of linear factor models in the study of
capital asset pricing. The APT has the attractive feature that it makes a
minimal number of assumptions about the nature of the economy (a factor
structure for the returns generating process, a large number of assets, and
frictionless trading). The costs of these minimalist assumptions include cer-
tain ambiguities such as an approximate pricing relation and an unknown
number of pervasive factors.

In order to estimate and test the APT, one must specify the number of
pervasive factors in asset returns. The issue of the appropriate number of
factors has been the subject of some controversy (see, for example, Roll and
Ross (1980, 1984); Dhrymes, Friend, and Gultekin (1984); Luedecke (1984);
Trzcinka (1986); Conway and Reinganum (1988); and Brown (1989)). In this
paper we propose a new approach to estimating the number of pervasive
economic factors generating asset returns. An important feature of our
approach is that it is valid when asset returns follow an approximate, rather
than a strict, factor model.

A strict factor structure is one in which the idiosyncratic, or diversifiable,
components of asset returns have zero correlation across assets. Ross (1976)
assumes a strict factor structure in his original development of the APT.
However, he notes that this assumption can be weakened. The key require-
ment for the APT is that nonfactor risk can be diversified away in many-asset
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portfolios. This diversification criterion does not require strictly zero correla-
tion across idiosyncratic returns. Rather, it requires that the correlations be
sufficiently weak so that the law of large numbers applies.

Chamberlain and Rothschild (1983) and Ingersoll (1984) generalize the
pricing results of the APT to the case of an approximate factor structure. In
an approximate factor structure the idiosyncratic components of returns need
not be uncorrelated and, hence, the idiosyncratic covariance matrix need not
be diagonal. However, an asymptotic limit is assumed on the amount of
covariance between idiosyncratic returns. This is expressed as a bound on the
eigenvalues of the idiosyncratic covariance matrix as the number of cross-
sections increases. Intuitively, as the number of cross-sections increases,
the proportion of total variation explained by any nonpervasive source of
risk must approach zero.

In addition to being more general, the use of an approximate factor model
is intuitively more appealing. It seems possible that a few firms in the same
industry might have industry-specific components to their returns which are
not pervasive sources of uncertainty for the whole economy. For example,
awarding a defense contract to one aerospace firm might affect the stock
prices of several firms in the industry. Assuming a strict factor structure
would force us to treat this industry-specific uncertainty as a pervasive
factor.

A strict factor structure is assumed in the standard factor analysis litera-
ture (see Anderson (1984, chapter 14)). There are well-known likelihood ratio
tests for the appropriate number of factors in this case. Intuitively, the test
that k is a sufficient number of factors is a test of whether the idiosyncratic
covariance matrix is diagonal under a k-factor structure. In the presence of
an approximate factor model, tests which assume a strict factor model (such
as those commonly used in maximum likelihood factor analysis) will tend to
identify too many factors.

Since the definition of an approximate factor model relies on the limiting
properties of the eigenvalues of the return covariance matrix, a natural test
would be to investigate the behavior of the eigenvalues of the sample covari-
ance matrix as the number of assets increases. This type of analysis is done
in Luedecke (1984) and Trzcinka (1986). Some difficulties with this approach
are discussed in Brown (1989) and in Section IL.C below.

We take a somewhat different approach. We develop a simple statistic
which is based on the result that, if & is the correct number of pervasive
factors, then there should be no significant decrease (adjusting for degrees of
freedom) in the cross-sectional mean square of idiosyncratic returns in mov-
ing from k to & + 1 factors. We develop statistics for testing for a significant
decrease. The tests allow for cross-sectional dependence and heteroskedastic-
ity in the idiosyncratic returns.

In Section I we relate the approximate factor model assumptions to the
statistical concept of strong (alpha) mixing. We show that the nonpervasive-
ness of idiosyncratic risk can be characterized as strong mixing of the
cross-section of idiosyncratic variates. In Section II we use the assumption of
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strong mixing to derive our statistic and compare our approach to previous
research. In Section III we present the empirical results. We find evidence for
between one and six pervasive factors. Section IV concludes.

I. Nonpervasiveness as a Mixing Condition on Idiosyncratic
Returns

In this section we show how the theory of strong mixing can be applied to the
analysis of approximate factor structures. We begin by defining strict and
approximate factor structures. Let r" denote an n-vector of asset returns in
period ¢. We assume that returns are independently and identically dis-
tributed through time,! and have the usual linear factor structure:

Fm=c" + B"f + &" 1)
E[z"f] =0 @)

Here ¢ denotes an n-vector of constants, f the k-vector of pervasive factors,
B" the n X k-matrix of factor betas, and &" the n-vector of idiosyncratic
returns. A strict factor structure imposes the condition that the covariance
matrix of idiosyncratic returns, V" = E[ £""'], is a diagonal matrix. Under a
strict factor model, the APT also requires that the diagonal elements of V"
are bounded for all n.

Chamberlain and Rothschild (1983) and Ingersoll (1984) show that the
diagonality of V" is not necessary for the proof of the APT. Rather than
assuming diagonality of V" they assume that:

lim ~ B"'B" = H; E nonsingular (3)
n—oo
lim [Vl <y < @)

where || || is the matrix 2-norm.? Using the terminology of Chamberlain and
Rothschild (1983), we call a model obeying (1) to (4) an approximate k-factor
model. Note that, from (4), V" is not required to be diagonal but is required
to have bounded eigenvalues as n increases. This limits the amount of
cross-sectional correlation in the idiosyncratic returns.

The strict factor model, assumed in the standard factor analysis literature,
allows for cross-sectional heterogeneity in idiosyncratic variability (i.e., differ-
ent diagonal elements in V') but does not allow for cross-sectional dependence
(i.e., all off-diagonal elements in V are assumed to equal zero). An approxi-
mate factor structure allows both heterogeneity and limited amounts of
dependence.

! It is possible to allow some heterogeneity across time. We have chosen not to do so because it
complicates the analysis without changing the ultimate form of the tests.

% For symmetric, positive semidefinite matrices the matrix 2-norm is the largest eigenvalue of
the matrix. See Stewart (1973, pp. 179, 180) for definitions of various matrix norms.
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We incorporate heterogeneity and dependence in idiosyncratic returns into
our model by assuming that the cross-sectional sequence {z;J7_, is a mixing
process. Our brief description of mixing processes relies on the more detailed
discussion provided in White (1984). Let {£,)7_, be a sequence of random
variables defined on a probability space (2, %, P) and let % be the
information set (o-algebra) generated by (&, ..., £,). A measure of the depen-
dence between o-fields & and % is given by a(Z,%) = supgc 5,y | P(G N
H) — P(G)P(H)| which is the maximal difference between the joint probabil-
ity of events in & and .# and the product of the probabilities of each event.
The mixing coefficients of the process {z]} are defined as a(m) =
sup, (F" ., .. ). If a(m) - 0 as m — » the sequence {&,} is called strong
mixing or a-mixing. We assume that the cross-sectional heterogeneity and
dependence is of the following form:

MIXING ASSUMPTION: There exists an ordering of the sequence {&};_, such that
{2,} is a strong mixing process with mixing coefficients, a(m) that are O(m~*)
for A > 2.

The notation O(m ~*) denotes that the sequence a(m) is “at most of order
(m~*).” That is, there exists a real number M (M < ) such that m* a(m)| <
M for all m.

An intuitive description of alpha mixing might be useful for the reader
unfamiliar with the concept. Note that the independence of two events G and
H implies P(G N H) = P(G)P(H). Roughly speaking, the mixing condition
says that if m is very large, then for any two random variables ¢; and ¢, ,,,
P(GNH) = P(G)P(H) where G is the realization of ¢ and H is the
realization of ¢&;,,,. Intuitively, if two random variables are “far enough
apart” then they are “almost independent.” While the mixing conditions are
most naturally interpreted in a time series context we are applying them in a
cross-sectional problem. Our statistics are structured such that we do not
need to know the appropriate ordering, we only need to assume that one
exists.?

Consider some specific examples of idiosyncratic covariance matrices, V,
which would satisfy the mixing assumptions. If the (i, j) element of V is
equal to o2 -pf ™/ and —1 < p <1 then the idiosyncratic returns have
dependence which “dies off” sufficiently fast for {Z,} to be a-mixing. An
alternative covariance structure might be a block diagonal structure where
the blocks are defined by industry. Let I < © be the maximum number of
firms in a given industry. Then the assumption of block diagonality implies
a(m) = 0 for all m > I, hence the process is a-mixing.

The mixing processes explicitly allow a tradeoff between the dependence in
the process and moment restrictions required for laws of large numbers and
central limit theorems. As A decreases, the series is allowed to exhibit more

3 Mei and Newey (1990) consider a test which relies on knowing the appropriate ordering of
assets.
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dependence while the existence of more moments is required. For our pur-
poses, assuming the sequence {Z;} is mixing allows us to have cross-
sectionally dependent and heteroskedastic idiosyncratic returns but still
maintain the conditions necessary for an approximate factor structure. This
is shown in the following theorem.

THEOREM 1: Assume the above Mixing Assumption for the sequence of idiosyn-
cratic returns and that E[I.?s"ilz(“r 9] is bounded for all i and for some & > 2 /(A
— 2). Then the eigenvalues of V" are bounded as n approaches infinity.

Proof: By corollary 6.16 of White (1984) the assumptions above imply that
there exists a constant M* < « such that IVi?I <M*i —jlﬁm/(“”),i # ],
where V;} is the (i, j) element of V". Let s = A5/(2 + 28). The restrictions
on A and & imply that s > 1. Consider the matrix 1-norm (sometimes

referred to as the column-sum norm) of V". This norm is defined as
n
max| ) [V3:j=1,2,...,n|.
J i=1

The bound placed on the absolute value of the elements of V" by the mixing
conditions implies that the column-sum norm of V", denoted |[V"|, is
bounded by M *[1 + 2{(s)] where {(s) is the Riemann zeta-function:

i |
(=Y —
v=1

14

which converges for s > 1. Thus, |[V"|l; < ©. The column-sum norm of a
matrix is an upper bound on the eigenvalues of that matrix (see Schwarz,
Rutishauser, and Stiefel (1973, pp. 10, 11)). Hence, the eigenvalues of V" are
bounded as n — . Since the largest eigenvalue is increasing in n, all
eigenvalues are uniformly bounded for all n. O

The representation of returns in (1) and the bounded eigenvalues of V" are
conditions which imply an approximate factor structure (see Chamberlain
and Rothschild (1983)). Thus, the assumptions of Theorem 1 are sufficient for
asset returns to follow an approximate factor structure. We believe that
Theorem 1 is a useful characterization since it ties together the approximate
factor model conditions and the mixing conditions.

Some approaches to estimating pervasive factors (e.g., Connor and
Korajezyk (1986)) assume that the average squared idiosyncratic returns,
g"'g"/n, converge in probability. The mixing assumptions imply this
convergence.

THEOREM 2: Under the assumptions of Theorem 1, £"'&"/n converges in
probability to o, as n — », where o, = lim, , ,E[£"'2" /n].

Proof: The moment restrictions assumed in Theorem 1 imply that V;} =
E(&?) is bounded. Therefore, g, exists and is finite. Since {&,)} is mixing, (&2}
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is mixing, (White (1984, theorem 3.49)). Since the sequence {7} is mixing
&"'g" /n converges almost surely to o, (White (1984, corollary 3.48)). Almost
sure convergence implies convergence in probability. O

II. A Test Statistic for the Number of Factors in Approximate
Factor Models

In Section II.A we derive the test statistic under the assumption that we
observe the diversifiable returns on assets without error. This serves to
provide the main intuition behind the test without the added complications of
dealing with estimation error. In Section II.B we generalize the test to the
case where the factor returns and idiosyncratic returns are estimated. In
Section II.C we relate our approach to other approaches that focus on the
behavior of the eigenvalues of return covariance matrices as the number of
cross sections increases, such as Luedecke (1984), Trzcinka (1986), and
Brown (1989).

A. Test Statistics with Observed Idiosyncratic Returns

In this section we present the basic statistic. We assume that asset returns
are given by an approximate factor structure and that the idiosyncratic
returns are strong mixing. Let f* denote some random variable which is not
one of the pervasive factors and is not perfectly correlated with them. We will
call this variable “factor %2 + 1” of the approximate k-factor model. This
pseudofactor can be some combination of the idiosyncratic variates or some
industry-wide influence which is not widespread enough to be a pervasive
factor. We want a test which can distinguish this pseudofactor from the &
true factors.

Note that we can rewrite the factor model in its original form (equation (1))
and in a form which includes the “k + 1st” factor:

F" =c" + B"f + B"f* + &*"

where B” is the n X 1 vector of least squares projections of 7" on f*
(controlling for f). A k-factor approximate factor structure implies that
B"'B" < w < = for all n (Ingersoll (1984)).

Note that " = B*f* + &*". If asset returns are described by an approxi-
mate factor structure with % factors then the % + 1lst factor can have
nontrivial factor loadings for some assets (since V" is not diagonal) but not
for a significant proportion of assets. The basic logic behind our tests is that:

1, 1 1 ,
plim — 875" = f*2. lim — B"B" + plim — &*"5*"
n—o n n—o N n—o

1
plim — g*"g*"

n— o
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so that plim, ., ("™ — £*"&*")/n = 0, where plim denotes the limit in
probability. The cross-sectional mean square of £" approaches the mean
square of *" because 8"B8"/n < w/n which approaches zero as n increases.
That is, the cross-sectional average asset variability explained by the & + 1st
factor is asymptotically zero.*

In this subsection we assume that the idiosyncratic returns are observable.
In Section II.B we will generalize to the case in which they are estimated via
time series ordinary least squares. Previously, ¢ and ¢* denoted n-vectors of
idiosyncratic returns. We will now use them to denote the n X T matrices of
observed idiosyncratic returns for n assets over 7' time periods using k&
factors, and using k% factors plus one pseudofactor, respectively. We let &,
denote the ¢th column of ¢ and &; denote the ith row of £. Consider the
following statistics:

uy=cehe,/myur*=¢e¥et/n,t=1,...,T.

A natural statistic to investigate is u} — uf* = f* 28"'B"/n. The difficulty
with this statistic is that, under the null hypothesis, it converges to a
degenerate distribution as n approaches infinity.® Because of this, we devise
an alternative statistic which has a mean of zero (under the null) and a
nondegenerate asymptotic distribution. We do this by taking the difference
between u in one time period and u* in the next period. We then calculate
means and variances using every other observation. Define the (T /2)-vector®
A" by:

At =l —pil o s=1,...,T/2.

Note that, by the assumed return structure, ¢;, and ¢;, are independent for
¢t # 7, and identically distributed. This implies that the (T/2)—vector A
consists of independent random variables. E[A"] converges to ff2 , B B"/n
so that the expectation of A” goes to zero as n approaches infinity, under the
null hypothesis that there are & factors. Under the alternative hypothesis
that there are 2 + 1 pervaswe factors, we expect the values of the A’“s to be
positive because the term f2s 1B B"/n will not converge to zero. "We are
now ready to state our main result. As the cross-sectional sample increases,
A" converges in distribution to a (T /2)-vector of independent, normally
distributed random variables with means of zero and equal variances. We

*An alterative approach to testing for the number of factors relies on the fact that an
approximate factor structure implies that well-diversified portfolios will have betas relative to
the pseudofactor that approach zero as n approaches infinity. This approach is used in Korajczyk
and Viallet (1989) and is extended by Heston (1992).

® To see this note that:

nr n
Vn (up — pp*) = __‘/;_B

which is equal to 0 in the limit.
® We assume, without loss of generality, that T is even.
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first need the following definition. Let

atn
Yor = var(n_1/2~ Y aizt).
i=a+1
We assume that there exists ¢, 0 < ¢y < © such that ¢y*" - ¢ as n »
uniformly in a.

THEOREM 3: Given the assumptions of Theorem 1 and the convergence of y*",
then,

dlim Vn A" ~ N(0,2¢1)

n—o
where dlim denotes convergence in distribution and N(-, -) denotes the multi-
variate normal distribution.

Proof: Note that, under the null hypothesis, E[A”]f2s d=Ff2 . B"B"/n
— 0, as n — » because B"'B"/n — 0 while f;?, is fixed. The mixing
assumption and moment restrictions of Theorem 1 plus the convergence of
Y@ " satisfy the conditions of Theorem 5.19 of White (1984). It follows
immediately from that theorem that dlim, _, (n~'/%!,&, — 0,) ~ N(0, ). The
(T'/2)-vector A™ consists of differences between these 1ndependent identically
distributed Normals and so has zero means and twice the variances. 0O

Standard cross-sectional variance estimates (which assume that the £’s are
uncorrelated across cross-sections) will not yield valid estimates of ¢ because
of the cross-sectional dependence allowed in an approximate factor structure.”
Instead, we use the time series of the estimates A" to estimate the mean and
variance. This is the same as the approach taken by Fama and MacBeth
(1973) to estimate the mean and variance of the equity risk premium in the
capital asset pricing model. Define the time-series sample mean and variance
of A, respectively, by:

and

If follows immediately from Theorem 3 that, as n — «, the time series
statistic A"(2¢)"1/2 is asymptotically ¢-distributed with T/2 degrees of
freedom.

"We assume that {s;,} _,, is mixing but do not assume that we know the appropriate
ordering. If we knew the appropriate ordering, consistent estimates of i could be obtained using
the methods of White and Domowitz (1984). An extension of that approach is Mei and Newey
(1990).
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B. Test Statistics with Estimated Idiosyncratic Returns

Theorem 3 cannot be directly applied to our asset return model since, in
practice, £” and &£*" must be estimated rather than observed directly. We
will now modify the procedure to allow for estimated " and &*".

We assume that we have data on a set of prespecified factors or a set of
factor estimates. The prespecification of factors is the approach taken, for
example, by Chen, Roll, and Ross (1986). Factors can be estimated in a
number of ways, the most common of which are factor analysis (e.g., Roll and
Ross (1980) and Lehmann and Modest (1988)) or principal components
techniques (e.g., Luedecke (1984) or Connor and Korajczyk (1988)). Our test
statistic requires that the factor estimates are n-consistent. For simplicity of
exposition, in the main text we treat the case in which the factors are
observed exactly, and extend the result to the case of n-consistent estimated
factors in the appendix.

Given the factor structure in (1) and the observed k-vector of factors, f,, a
natural way to obtain estimates of the idiosyncratic returns is through time
series regressions of returns on the factors and a constant. For each asset, i,
we estimate the regression:

Fe=ci+Bif,+& ¢t=123,.T (5)
which can be expressed as a system of regressions:
r=I[cB]F + &

where r is an n X T matrix of asset excess returns, ¢ is an n-vector of
constants, B is an n X k matrix of factor sensitivities, F is a £+ 1 X T
matrix whose first row has entries equal to one and whose rows 2 through
k + 1 are time series for factors 1 through %, and ¢ is an n X T matrix of
idiosyncratic returns.
The regressions give ordinary least squares regression residuals:

&, = &.(Ip— F'(FF)'F), (6)
where F', = (1 f1). The same regression can be repeated with the additional
pseudofactor f;* added to the matrix of regressors:

& = & (Ip — F*'(F*F*) ' F*) .

l t°

Ordinary least squares induces a bias in the squared residuals, but we can
eliminate this with a simple adjustment (see Theil (1971), Theorem 5.2). For
each asset, define the T-vector of adjusted squared residuals:

Gy = g‘it/(IT - F,(FF,)_IF)”' )

Define ¢;* in the same way using F*. This is a generalization of the usual
degrees of freedom adjustment. For example, consider the case where we just
fit a mean to each cross-section. In this case F = 7’ (where .7 denotes a
T-vector of ones) and 1/(I, — F'(FF')"'F),,= T/(T — 1) which is the
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standard degrees of freedom correction for variance estimators after fitting a
mean. More generally, if F has & + 1 rows then, by the properties of the
trace of an idempotent matrix, the average of 1/(I; — F'(FF')"'F),, across ¢
is T/(T — k — 1), which is the standard degrees of freedom correction for
variance estimators from ordinary least squares.

Let &;,, denote the T-vector whose odd components are the odd compo-
nents of &;. and whose even components are the even components of 4;*. For
any T-vector x such that x'x = 1 define &;; = X'd;),. For any integer a,
define

1 a+n
“t = yar| — g |.

We make two assumptions about o,. First, for every x there exists a ¢, such
that:

limit ¢2°" = ¢, (8)
n—o

uniformly in a. Second, for every x there exists vy, < © and &, > 2/(A — 2)
such that:

E[16,.P] <% )
for all i, where A denotes the size of the mixing process {Z;}.

THEOREM 4: Given (8) and (9) together with the conditions for Theorem 3,
there exists a (T'/2) X (T'/2) matrix T such that:

dlim vn - A* ~ N(0,T).

n— o

Proof: See the Appendix.

Suppose now that we replace the true factors with n-consistent estimated
factors F". Replacing the true factors by these estimates does not affect the
asymptotic distribution of the statistic, as we show in Theorem 5 in the
Appendix.

To adjust for the fact that we are using estimated factors rather than true
ones, we use a simple degrees of freedom correction:®

6, = 82/(1 — (k + 1) /T — k/n). (10)

8 We can write the n X T matrix of returns as R = [¢ B]F + &, where ¢ is an n-vector of
constants and F is a (k + 1) X T matrix consisting of a T-vector of ones and the £ X T' matrix of
factor realizations. Given that ¢, B, and F (except the constant vector in F') are estimated, this
system of equations has nT' observations and n(k + 1) + kT estimated parameters. Taking an
analogy from least squares regression, we use the degrees of freedom correction (number of
observations)/(number of observations — number of estimated parameters) which is nT/(nT —
n(k + 1) — kT) =1/ — (k + 1)/T — k/n). Note that as n — » we get the standard time series
regression degrees of freedom correction T/(T — k — 1). We found via simulation analysis that
this simple correction worked better than the more complicated correction given by (7), which
does not adjust for the estimation of F.
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Although we have only derived the asymptotic distribution, in Section III.B
below we provide simulation evidence on the finite sample distribution.
We implement our procedure as follows:

1. Given a time series of returns on asset i and a time series of £ factors
and a k + 1st pseudofactor, estimate &, and 2} by ordinary least
squares.

2. Calculate adjusted squared residuals &, = £2/[1 — (k + 1)/T — k/nl]
and 65 = 8% /[1 — (k + 2)/T — (k + D/nl.

3. Calculate the (T /2)-vector A" by subtracting the cross- sect10nal means
of 6;, in odd months from the cross-sectional means of &,f,, in even
months. Under the null hypothesis of & factors, A"I'"/2 is asymptoti-

cally standard normal as n — o.

4. Use the time series A" to calculate its time series mean A" and covari-

ance matrix I' and test for a positive mean.

We apply this algorithm in Section III.

C. Comparison to Previous Empirical Studies

Note that, with an approximate factor structure, the standard likelihood
ratio tests (which assume V" is diagonal) will tend to extract too many
factors. Also, as n, the number of assets used to estimate 3", increases the
probability of including multiple assets with correlated idiosyncratic returns
will increase. This may be one reason why Dhrymes, Friend, and Gultekin
(1984) find that the number of statistically significant factors, identified by
the standard likelihood ratio test, grows with the number of assets studied.

Let X" denote the covariance matrix of the return vector, r". A primary
result from the analyses of Chamberlain and Rothschild (1983) and Ingersoll
(1984) is that an approximate k-factor structure implies that the largest %
eigenvalues of ¥ grow without bound (with n) while the remaining eigenval-
ues are bounded. This suggests that a natural test would be to investigate the
behavior of the eigenvalues of the sample covariance matrix, Z” as n
increases. This type of analysis is done in Luedecke (1984) and Trzcinka
(1986). As noted by both of these authors, testing that the eigenvalues of ¥."
are bounded, as n approaches infinity, is not a well-posed problem with a
finite amount of data. In addition, interpreting the behavior of sample
eigenvalues as if they are population eigenvalues can be misleading, as we
argue below.

Let A’ denote the kth largest eigenvalue of the true covariance matrix L"
and A” denote the kth largest eigenvalue of the sample covariance matrix
s, The general empirical findings in Luedecke (1984) and Trzcinka (1986),
regarding the behavior of eigenvalues, are that A dominates the remaining
eigenvalues but that all of the eigenvalues increase as n increases. Thus, by
one metric (dominance of the largest eigenvalue) it is possible to argue that
there is only one pervasive factor while by another metric (growing eigenval-
ues) it is possible to argue that there are many factors.
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Brown (1989) provides an example of a strict factor economy in which there
are k equally important factors and in which he is able to describe the
population eigenvalues. He shows that the population -eigenvalues,
A4, ..., A, increase with n with A} dominating the remaining ones while the
eigenvalues beyond the k2th do not grow with n. One implication of this
analysis is that the dominance of the largest eigenvalue should not be taken
as evidence that there is only one factor.

The empirical work in Luedecke (1984) and Trzcinka (1986) shows all of
the sample eigenvalues growing with n. Brown (1989) shows through simula-
tions of his k-factor model that all of the sample eigenvalues grow with n (as
found by Luedecke (1984) and Trzcinka (1986)) even though only the first k
population eigenvalues grow with n.

Our analysis, which allows for large cross-sectional samples with fixed time
periods, predicts the results from Brown’s simulations. In particular, we show
that for fixed time series sample size, T, and growing n, all of the sample
eigenvalues grow with n even though only % of the population eigenvalues
are growing.

Let R" be the n X T matrix of demeaned asset returns,’ F be the £ X T
matrix of demeaned factor realizations, B™ be the n X & matrix of factor
loadings, and ¢" be the n X T' matrix of demeaned idiosyncratic returns. By
definition, R" = B"F + ¢" and S$» = R"R™ /T. We use the fact that the
nonzero eigenvalues of R"R"' are equal to the nonzero eigenvalues of R*'R".
Now, as n approaches infinity:

R"R"/T = (n/T)-[F'(B"'B"/n)F + £"'¢"/n + ¢"'B"F/n + F'B"'¢" /n]
(11)

— (n/T)-(F'EF + a.I) (12)

where E is as defined in (3), and o, is as defined in Theorem 2. The limiting
result in (12) follows from (3), Theorem 2, and the fact that (¢*'B"F)/n — 0.
Note that F'EF is positive semidefinite and of rank %2 and, hence, has no
effect on the & + 1st through the T'th eigenvalues. The £ + 1st to the T'th
eigenvalues of 2" approach (n/T)ao, as n becomes large (the T' + 1st through
nth eigenvalues are zero for n > T'). Thus, even though we have a k-factor
economy, sample eigenvalues beyond the kth largest will increase as n
increases, since for fixed T, and growing n, (n/T)o, will increase. Thus, the
empirical observation that all of the sample eigenvalues increase with n
should not be interpreted as evidence in favor of a very large number of
factors. In our analysis A z+1 through AT increase with n even though A,
through A, do not increase with n.

Some intuition for why sample eigenvalues, for fixed 7', behave differently
from population eigenvalues can be obtained from (11) and (12). The esti-

® That is R}, = R%, — R,, where R, is the time series mean return for asset i. In matrix
notation, R" = R"[I — (1/T)w'] where I is the T X T identity matrix and ¢ is a T-vector of
ones.
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mated covariance matrix 3" approaches 3" as T approaches infinity. How-
ever, the error in estimating the covariance matrix does not go away as n
increases, for fixed T. In (12), the largest k eigenvalues of F'EF increase
with T while the largest k eigenvalues of 0., do not. Thus, letting T
approach infinity before considering n (which is equivalent to assuming we
have the true covariance matrix, %) gives us a matrix whose largest &
eigenvalues increase with n while the remaining eigenvalues do not. Evi-
dence presented by Trzcinka (1986) indicates that the values of A", increase
(as n — ) at a faster rate for j < 6 than for j > 6 and that the eigenvalues
increase at approximately the same rate for all ;> 6. Using the analysis of
this section, his results are consistent with an economy with six factors.

IT1. Empirical Results

A. The Number of Factors for New York Stock Exchange and American Stock
Exchange Stocks

We apply our test to a sample of monthly returns on common stocks traded
on the New York Stock Exchange (NYSE) and American Stock Exchange
(AMEX) for the period January 1967 to December 1991. There are 300
months in the sample, which we divide into five blocks of 60 months each.
Within each block, we use all the securities which have full monthly return
records on the Center for Research in Security Prices (CRSP) monthly
returns file, giving 1647, 1796, 1869, 1651, and 1626 securities in the periods
1967-1971, 1972-1976, 1977-1981, 1982-1986, and 1987-1991, respectively.
We use the monthly Treasury bill returns from CRSP to calculate excess
returns.

The first step in the analysis is to determine the set of factors to be used.
There are a variety of different approaches which can be taken here. One
could derive factor returns from a set of macroeconomic variables (as in Chen,
Roll, and Ross (1986)) or use statistically generated factors. We use statisti-
cally generated factors based on the asymptotic principal components tech-
nique from Connor and Korajczyk (1986). The k-factor-estimates equal the
first & eigenvectors of the T' X T cross-product matrix of security excess
returns, R*'R"/n.

The factor estimates from the asymptotic principal components procedure
are used as f, in the time series regression (5). For each five-year block, we
estimate the idiosyncratic returns for a k-factor model via a set of n time
series ordinary least squares regressions, one for each security in the sample.
We regress each security’s excess return on a constant and the % factors. The
residuals from this regression are the estimated idiosyncratic returns of the
stock. We then find the mean squared idiosyncratic return for each month as
the cross-sectional average of these residuals squared:

1 ™
Mpe = — Z Oy
Ny =1
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where §;, is the adjusted squared residual return of security i in month ¢

(see equation (10)). The estimated time series fi,,, ¢t = 1,...,60 from the five
sixty-month blocks are linked together to form f,, ¢ = 1 to 300.
In Table I we present the time series averages of f,,, u,, for £ = 0,...,15.

We also show the change in 1, as we increase the number of factors and the
change in u, as a proportion of average return variance. These statistics are
presented for all months, January separately, and all non-January months.

There is a large decrease in extra explanatory power in moving from one to
two factors, and then a slow decline in explanatory power from adding each
additional factor. As so often in empirical analysis of returns data, January
stands out. It has twice the average return variance of other months, and the
statistical factors have substantially higher explanatory power, both in abso-
lute terms and as a percentage of total variance. The greater marginal
explanatory power of multiple factors in January compared to other months
conforms to findings elsewhere in the APT literature. Using daily data, Cho
and Taylor (1987) find that the covariance matrix of returns differs in
January from other months. Gultekin and Gultekin (1987) and Connor and
Korajezyk (1988) find that the factors beyond the first factor are most
important to APT pricing tests in January. Given that these factors are more
significant for pricing in January, it is perhaps not surprising that they are
more important in explaining cross-sectional variance as well. It is clear from
Table I that we must adjust for the difference between January and non-
January months. While the statistics presented in Table I do not constitute
formal tests, we do feel that Table I provides useful descriptive statistics
about factor structure in the context of an approximate factor model.

There is a definite seasonal pattern in idiosyncratic variances. We test for
this by regressing fi,, on a constant and eleven monthly dummy variables
that are equal to one in their respective months and zero otherwise. The
seasonality in idiosyncratic variance is confined to January. In all cases, no
other month carries a significant coefficient; the January dummy is usually
significant. The detailed results from these regressions are not reported here
but are available from the authors.

We treat January and non-January months separately to calculate A For
January months, we define A by taking the year-to-year differences in the
January values of fi,,. For non-January months we take month-to-month
differences, but delete the December-January and January-February differ-
ences. We show two configurations (A and B) of the sample, corresponding to
the two ways to construct A (A: 0dd months for # and even months for £ + 1
and B: even months for k£, odd months for &2 + 1). The analysis is equally
valid using configuration A or B; for completeness we perform the analysis
both ways, although one should bear in mind that the results are not
independent (they are negatively correlated) across configurations.

Table II shows the test results. For both the January and non-January
tests, we try both the standard ordinary least squares ¢-test and a test with
the robust covariance estimator of Newey and West (1987), which is consis-
tent with time series correlation and heteroskedasticity. We do not adjust for
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the autocorrelation in the January A’s. We use a first-order lag for the
non-January tests.

We find one or two significant factors in the non-January months. In the
January months, we find up to six significant factors (at 10 percent confi-
dence) for one configuration, and one significant factor in the other. The
aggregated test statistic, equally weighting the January and non-January
tests,!® gives one significant factor in one configuration and four factors in
the other.

For non-January months, a one-factor or two-factor model seems adequate
to describe stock returns. Including January, up to six factors are necessary
to provide an adequate description. Since January mean returns and vari-
ances are unusually large, and many interesting asset-pricing phenomena
are concentrated in this month, we argue for a three- to six-factor model.

B. Simulations

In order to examine the finite sample distribution of our model we simu-
lated the empirical analysis with random draws from an exact four-factor
model calibrated to U.S. equity returns data. In our actual data, the five
60-month blocks of returns contained 1646, 1796, 1869, 1651, and 1626
securities; we simulated using 1718 securities (the average number from the
five actual blocks). For simplicity we let each of the four factors have the
same variance, and let the average cross-sectional beta of each factor equal
one. We assume that the cross-sectional distribution of each of the betas is
independent normal, each with variance o,. We assume that the time series
distributions of the factors and idiosyncratic returns are also independent
normal. We assume that the exact version of the APT holds (that is, expected
excess returns are linear in betas) and that the four factors have the same
risk premium, denoted 7. Let MVN(:, -) denote the multivariate normal
distribution. Our model of excess returns for the generated data is:

r,=B;fi+e&,i=1,...,n;t=1,...,T
B, ~ MVN(.*, o, 1,)
fi ~MVN(’ITL4,0'fI4)
e, ~MVN(™",o.1,)

where ¢, is the n X 1 vector of idiosyncratic returns for period ¢ and 0" is an
n X 1 vector of zeros.

0 Let 2z, ; and 2z, denote the t-statistics for non-January and January months. We compute
z =(z,; +2;)/y2 and derive the p-value of this statistic from a one-sided standard normal
distribution.
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The simulation model has four parameters, o, 7, oz, and o,. If there are
four true factors, then Table I, row 5 (k = 4), column 2 () gives an
(annualized percentage) estimate of o,; dividing this figure by 1200 to undo
the annualized percentages gives o, = 0.009525. We calibrated the other
three parameters to match three empirical observations over our 1967 to
1991 sample period: the average excess return to the equally weighted
portfolio, denoted E[rgy ] (0.004167 per month, using the CRSP Equally
Weighted Index), the variance of the equally weighted portfolio, denoted ogy,
(0.0039162 per month, again using the CRSP Index), and the variance of the
average asset, denoted o, [0.01507 per month; see Table I, row 1 (k = 0),
column 2 (,)]. Note that the equally weighted portfolio has a factor beta of 1
for each of the four factors (since, by assumption, this is the average cross-
sectional beta for each factor). Therefore excess return to the equally weighted
portfolio is rgy =(fi + M)+ (fo+ D+ (f5+ )+ (fy + 7) + egy. It is
easy to see from this equation that = = (1/4)E[rgy]. We treat the equally
weighted portfolio as approximately well diversified, so that its idiosyncratic
variance is approximately zero. Using var(egy) = 0 gives ogzy = 40;. The
return variance of a given asset i is (B3 + B% + B} + BY)o, + var(s));
therefore the cross-sectional average variance is o, = 4E[B}]o; + g,. Since
the B;/’s are assumed to be independently and identically distributed cross-
sectionally with means of one, E[ Bizj] = (1 + 03,). Rearranging the equations
gives o, = (g, — 0,)/40; — 1. Using the values for o,, g,, and o; gives
o, = 0.4151. To summarize the results of this calibration exercise: we used
the parameter values ¢, = 0.4151, a; = 0.0009569, 7 = 0.0010417, and o, =
0.009525.

We generated 1000 random draws of 60 months of returns data on 1718
assets. Different betas were drawn randomly for each of the 1000 blocks.
Recall that our empirical work used 5 blocks of 60 months each. To match the
simulation exercise with the actual empirical work, we partitioned the gener-
ated data into 200 sets of 5 blocks each and ran our tests using the same
estimation method used in the previous section. Table III shows the averages
over 200 realizations of the statistics reported in Table I.

Not surprisingly, the first factor carries much higher explanatory power
than factors two through four. This does not violate the asymptotic model: in
the calibrated model the first four factors have equal explanatory power, but
there exist nonsingular rotations of the factors which assign higher power to
the first factor over sixty observations (but always with nonzero explanatory
power to all four factors).

Table III shows some positive explanatory power for factors five through
fifteen. This implies a small n-sample bias in our model: for £ > 5, the values
of ,_, — #, should be close to zero, and approximately half of them should
be negative and half positive; the actual values are small, but consistently
positive. In our simulated model, the distinction between “Januaries” (every
twelfth month) and other months is arbitrary, except for the smaller number
of observations for “Januaries.”
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Table IV shows the average values of the simulated statistics correspond-
ing to those reported in Table II. The average ¢-statistics for one through four
factors are quite large indicating that the statistic has reasonable power. As
one would expect, there is a sharp drop in the average ¢-statistic in moving
from four to five factors. The average t-statistics for factors five through
fifteen are all slightly positive. The average p-values for factors five through
fifteen (the last column) should be 0.5 but are below that value, because of
the same small sample bias as discussed above.

Table V shows the Type I and Type II error frequencies for our simulation.
The model always finds four factors, but often finds more than four. The test
has high power, but the size of the test is somewhat too large, because of the
small sample bias.

Table VI describes the average and minimum coefficients of determination,
R?2, of regressions of the kth estimated factors, £ = 1,...,4, on the four true
factors. The table indicates that asymptotic principal components estimation
procedure provides accurate estimates of the factors for the cross-sectional
sample sizes typical of U.S. equity returns data. The same basic simulation
finding appears in Connor and Korajczyk (1988) and McCulloch and Rossi
(1989) using different approaches.

The simulation results are reasonably satisfactory, at least for the case of a
strict factor model with equally important factors. The power of the test is
good, but the small sample size is somewhat too large for finite n. The test
might tend to show slightly more factors than are actually in the data. The
magnitude of the small sample bias is not large in our simulations (see Table
ITI, column 3), but the low standard error of A,_, , and the long time series
sample makes the bias have some effect on the test size.

IV. Conclusions

In this paper we develop a new approach to testing for the appropriate
number of factors in an approximate factor model of asset returns. We show
that the assumptions of an approximate factor model can be related to strong
mixing conditions on the cross-sectional dependence of idiosyncratic returns.
We use the theory of strong mixing to develop a new statistic which is
asymptotically valid as the number of cross-sections grows large.

Our test does not require a strict factor structure, and is valid in large
cross-sections. Test statistics which assume a strict factor model, such as the
standard likelihood ratio tests from the factor analysis literature, will tend to
identify too many pervasive factors (even in large time series samples) if
asset returns follow an approximate factor model. Alternative procedures
which investigate the behavior of eigenvalues for large cross-sectional sample
sizes may give misleading inferences for finite time series samples.

We apply our test to the cross-section of monthly stock returns on the
NYSE and AMEX over the period 1967 to 1991. We find evidence for one to
six pervasive factors generating returns on NYSE and AMEX stocks. The
influence of the factors beyond the first is particularly strong in January. In
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Table VI

Regressions of the kth Estimated Factor on the
Four True Factors

(Average and Minimum R? from 1000 Simulations)
This table examines the fit of the asymptotic principal components estimated factors using 1000
simulations of an exact factor model with four equally important factors. Sixty months of returns
data are simulated for 1718 securities. Four factors are estimated on each simulated data set.
For each of the 1000 simulations, each of the four estimated factors is regressed against the four
true factors which generated the returns data. The table shows the averages of the 1000 R?’s
from these regressions and the minimum of the 1000 R?’s.

Estimated Factor: Average R? (%) Minimum R? (%)
1 99.870 99.727
2 98.620 97.368
3 98.058 95.236
4 97.117 92.855

non-January months, we find only one or two significant factors. Given the
importance of January returns (both for expected returns and per annum
volatility), we argue for a three- to six-factor model.

Appendix
Proof of Theorem 4: First we show that

n
T

plim — ) 6,, =x"o,
n—oe Moy
for all x with x’'x = 1. Using (6) note that:
1 1 1 1 -1
— Y 8 =—(8'8)u=|(I—-F(FF') 'F) ~ e'e|(I-F'(FF') 'F
n n

tt

1
Since plim, ,,, — ¢'e = g,I; and (I — F'(FF')"'F) is idempotent this gives:
n

1 _
plim —(&'8)u = o,(I — F'(FF") "' F)s..

n— o

Dividing by (I — F'(FF')"'F),, gives

n
plim — Y &, = o,.
now Mg
The steps are identical to show that

n
N Aw _
plim — 3} 6 = o,.
n—ow My
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Since 4;, is a linear combination of T' different series each with plim equal to
o, this implies
1
plim — Y 6, =x"Jo,.
n-e Mg
Next we show that d;, is alpha-mixing of the same size as &;. Consider the
scalar series of random variables {¢;)'; = {&;y, ..., &}~ ;. Using the defini-
tion of alpha-mixing coefficients (see White (1984, Definition 3.42)) it is easy
to see that {¢} is alpha-mixing of the same size as {¢;}. Note from (6) and (7)
that {o;,} is a function of {ej} using fixed finite lags. By White (1984, Theorem
3.49) {o,,} is an alpha-mixing series of the same size as {g;}.
Given that o, is alpha-mixing of the same size as &;, and given (8) and (9),
it follows from White (1984, Theorem 5.19) that

1 » r
(ix_x, s)
T X Lo i

converges in distribution to a zero mean univariate Normal.

We have shown that any linear combination x of n~'/2(g;,, — 0,.") with
x'x = 1 converges in distribution to a zero mean univariate Normal. By the
Cramer-Wold device (see, e.g.,, White (1984, p. 108)) this implies that

n~ Y 2(0’ u — 0,t7) approaches a multivariate Normal with zero means. Since

~1/2An consists of the differences between the odd and even components of

‘1/ 2(6,y — 0.17), it approaches a T/2-element multivariate Normal with
zero means. O

Test Statistics with Estimated Factors

The matrix of estimated factors has dimension 2 X T, and so is “small,”
relative to the sample size nT, as n goes to infinity. This allows us to prove
that the estimation error in F does not affect the n-asymptotic distribution of
our statistic, as long as the estimate of F is n-cor}sis:cgnt. )

Define M = (I — F'(FF')"'F)and M" = (I — F'(FF')"'F). Let &" denote
the residuals estimated using the true factors, £” = ¢"M, and &" the residu-
als using the estimated factors, " = e"M" + B"FM. Note that the het-
eroskedasticity-corrected mean-squared residuals are

diag(3"'2" /n)(diag(M)) " and diag(z"'z" /n)(diag(M™))
THEOREM 5: Given that plimn_,m(lf' "—F)=0 then

dlim,, _.n"/2| diag("'8" /n)(diag(M)) " — diag(éﬂ’g"/n)(diag(M"))‘l] -

Proof of Theorem 5: We show that dlim,  .nY2(n"%"'s" — o, M") =
dlim, _, ,n'/2(n"1"'&" — o, M) and then the result follows by considering the
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diagonal elements of these two matrices. First consider the cross-product

matrix of the residuals estimated with the true factors:
dlim,, ,,n'/%(n"8"'8" — g, M) = dlim,_, .n"/*(n " 'Me"'e"M — 0, M)

= M[dlim, _.nY%(n"e"'e" — 0, I;)| M.

n—oo

The second equality uses the fact that M is symmetric and idempotent so
that MM = M. Next consider the cross-product matrix of residuals estimated
using the n-consistent estimated factors:

dlim, _,.n/*(n"%"'&" - o, M

= dlim,, ,.n¥/*(n"'M"e"'e"M" + M"Fn~'B"'B"FM" — o, M ). (A1)

n—wx

Next we show that the middle term of (A1) disappears from the distribution
limit, that is:

dlim, ,.nY2(n"*M"FB"' B"FM") = 0. (A2)

If g(-) is a function differentiable at plim,_,.x", then plim,_ g(x") =
g(plim, _, ,x™). Therefore, plimn_,mlf'" = F implies plim, , . M" = M. Recall
that, if L” and K" are sequences of fixed dimension random matrices, then
dlim,_,.L"K" = (plim, . L")dlim,_,,K") as long as plim,_ .L" and
dlim, , K" exist. Applying this to (A2):

dlim, ,.n"*(n"'M"FB"' B"FM")
= plim,_,,M"F|[dlim, ,.n*/?(n"*B"'B")| Fplim, . M"
= MF|[dlim,, _, ,n*?(n"'B"'B")|FM = 0
where the last equality follows from MF = 0. Substituting (A2) into (A1):
dlimn_,wnl/z(n_lé”’é” - O;M) = dlimn_mnl/z(n_lﬁ"s”’e"]ﬂ” - o;M)
= dlim, , . M"n"?(n " e"'e" — 0, I;)M",
(A3)

where the last equality uses that M™ is symmetric and idempotent. Applying
dlim, ,.L"K" = (plim, _, . L")(dlim, _, ,K") to (A3) implies that (A3) is equal
to:

n-—ow

plim, . M"[dlim,_,.n"2(n "' e" — o I,)|plim, ,  M"
n n et T n

= M[dlim, ,,n"%(n" " e" — o, I)|M. O
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