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ABSTRACT 

An important issue in applications of multifactor models of asset returns is the 
appropriate number of factors. Most extant tests for the number of factors are valid 
only for strict factor models, in which diversifiable returns are uncorrelated across 
assets. In this paper we develop a test statistic to determine the number of factors 
in an approximate factor model of asset returns, which does not require that 
diversifiable components of returns be uncorrelated across assets. We find evidence 
for one to six pervasive factors in the cross-section of New York Stock Exchange and 
American Stock Exchange stock returns. 

THE ARBITRAGE PRICING THEORY (APT) of Ross (1976) has generated an in- 
creased interest in the application of linear factor models in the study of 
capital asset pricing. The APT has the attractive feature that it makes a 
minimal number of assumptions about the nature of the economy (a factor 
structure for the returns generating process, a large number of assets, and 
frictionless trading). The costs of these minimalist assumptions include cer- 
tain ambiguities such as an approximate pricing relation and an unknown 
number of pervasive factors. 

In order to estimate and test the APT, one must specify the number of 
pervasive factors in asset returns. The issue of the appropriate number of 
factors has been the subject of some controversy (see, for example, Roll and 
Ross (1980, 1984); Dhrymes, Friend, and Gultekin (1984); Luedecke (1984); 
Trzcinka (1986); Conway and Reinganum (1988); and Brown (1989)). In this 
paper we propose a new approach to estimating the number of pervasive 
economic factors generating asset returns. An important feature of our 
approach is that it is valid when asset returns follow an approximate, rather 
than a strict, factor model. 

A strict factor structure is one in which the idiosyncratic, or diversifiable, 
components of asset returns have zero correlation across assets. Ross (1976) 
assumes a strict factor structure in his original development of the APT. 
However, he notes that this assumption can be weakened. The key require- 
ment for the APT is that nonfactor risk can be diversified away in many-asset 
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portfolios. This diversification criterion does not require strictly zero correla- 
tion across idiosyncratic returns. Rather, it requires that the correlations be 
sufficiently weak so that the law of large numbers applies. 

Chamberlain and Rothschild (1983) and Ingersoll (1984) generalize the 
pricing results of the APT to the case of an approximate factor structure. In 
an approximate factor structure the idiosyncratic components of returns need 
not be uncorrelated and, hence, the idiosyncratic covariance matrix need not 
be diagonal. However, an asymptotic limit is assumed on the amount of 
covariance between idiosyncratic returns. This is expressed as a bound on the 
eigenvalues of the idiosyncratic covariance matrix as the number of cross- 
sections increases. Intuitively, as the number of cross-sections increases, 
the proportion of total variation explained by any nonpervasive source of 
risk must approach zero. 

In addition to being more general, the use of an approximate factor model 
is intuitively more appealing. It seems possible that a few firms in the same 
industry might have industry-specific components to their returns which are 
not pervasive sources of uncertainty for the whole economy. For example, 
awarding a defense contract to one aerospace firm might affect the stock 
prices of several firms in the industry. Assuming a strict factor structure 
would force us to treat this industry-specific uncertainty as a pervasive 
factor. 

A strict factor structure is assumed in the standard factor analysis litera- 
ture (see Anderson (1984, chapter 14)). There are well-known likelihood ratio 
tests for the appropriate number of factors in this case. Intuitively, the test 
that k is a sufficient number of factors is a test of whether the idiosyncratic 
covariance matrix is diagonal under a k-factor structure. In the presence of 
an approximate factor model, tests which assume a strict factor model (such 
as those commonly used in maximum likelihood factor analysis) will tend to 
identify too many factors. 

Since the definition of an approximate factor model relies on the limiting 
properties of the eigenvalues of the return covariance matrix, a natural test 
would be to investigate the behavior of the eigenvalues of the sample covari- 
ance matrix as the number of assets increases. This type of analysis is done 
in Luedecke (1984) and Trzcinka (1986). Some difficulties with this approach 
are discussed in Brown (1989) and in Section II.C below. 

We take a somewhat different approach. We develop a simple statistic 
which is based on the result that, if k is the correct number of pervasive 
factors, then there should be no significant decrease (adjusting for degrees of 
freedom) in the cross-sectional mean square of idiosyncratic returns in mov- 
ing from k to k + 1 factors. We develop statistics for testing for a significant 
decrease. The tests allow for cross-sectional dependence and heteroskedastic- 
ity in the idiosyncratic returns. 

In Section I we relate the approximate factor model assumptions to the 
statistical concept of strong (alpha) mixing. We show that the nonpervasive- 
ness of idiosyncratic risk can be characterized as strong mixing of the 
cross-section of idiosyncratic variates. In Section II we use the assumption of 
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strong mixing to derive our statistic and compare our approach to previous 
research. In Section III we present the empirical results. We find evidence for 
between one and six pervasive factors. Section IV concludes. 

I. Nonpervasiveness as a Mixing Condition on Idiosyncratic 
Returns 

In this section we show how the theory of strong mixing can be applied to the 
analysis of approximate factor structures. We begin by defining strict and 
approximate factor structures. Let rn denote an n-vector of asset returns in 
period t. We assume that returns are independently and identically dis- 
tributed through time,1 and have the usual linear factor structure: 

in = cn + Bnf + (1) 

E[ ?If] = 0 (2) 

Here cn denotes an n-vector of constants, f the k-vector of pervasive factors, 
Bn the n x k-matrix of factor betas, and Z_ nthe n-vector of idiosyncratic 
returns. A strict factor structure imposes the condition that the covariance 
matrix of idiosyncratic returns, V' = Et n?n '], is a diagonal matrix. Under a 
strict factor model, the APT also requires that the diagonal elements of Vn 
are bounded for all n. 

Chamberlain and Rothschild (1983) and Ingersoll (1984) show that the 
diagonality of Vn is not necessary for the proof of the APT. Rather than 
assuming diagonality of Vn they assume that: 

1 
lim - Bn'Bn = ' ; S nonsingular (3) 

nxn 
lim lIVnll < zy < 0 4 

n ---- oo 

where 11 1 is the matrix 2-norm.2 Using the terminology of Chamberlain and 
Rothschild (1983), we call a model obeying (1) to (4) an approximate k-factor 
model. Note that, from (4), V' is not required to be diagonal but is required 
to have bounded eigenvalues as n increases. This limits the amount of 
cross-sectional correlation in the idiosyncratic returns. 

The strict factor model, assumed in the standard factor analysis literature, 
allows for cross-sectional heterogeneity in idiosyncratic variability (i.e., differ- 
ent diagonal elements in V) but does not allow for cross-sectional dependence 
(i.e., all off-diagonal elements in V are assumed to equal zero). An approxi- 
mate factor structure allows both heterogeneity and limited amounts of 
dependence. 

1 It is possible to allow some heterogeneity across time. We have chosen not to do so because it 
complicates the analysis without changing the ultimate form of the tests. 

2For symmetric, positive semidefinite matrices the matrix 2-norm is the largest eigenvalue of 
the matrix. See Stewart (1973, pp. 179, 180) for definitions of various matrix norms. 
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We incorporate heterogeneity and dependence in idiosyncratic returns into 
our model by assuming that the cross-sectional sequence {t }i=Y is a mixing 
process. Our brief description of mixing processes relies on the more detailed 
discussion provided in WVhite (1984). Let {Zi}iYl be a sequence of random 
variables defined on a probability space (fQ, X, P) and let gab be the 
information set (ou-algebra) generated by ('a . ... ? Zb). A measure of the depen- 
dence between o-fields S and X is given by a( , = SUP{G E, H 1,IP(G n 
H) - P(G)P(H)I which is the maximal difference between the joint probabil- 
ity of events in S and X and the product of the probabilities of each event. 
The mixing coefficients of the process {Z-} are defined as a(m) = 

SUPn a(Yxx , n + m). If a(m) ->0 as m -> oo the sequence { iJ is called strong 
mixing or a-mixing. We assume that the cross-sectional heterogeneity and 
dependence is of the following form: 

MIXING ASSUMPTION: There exists an ordering of the sequence {-i}>i 1 such that 
{ki} is a strong mixing process with mixing coefficients, a(m) that are O(m-A) 

for A > 2. 

The notation O(m-A) denotes that the sequence a(m) is "at most of order 
(m-A)." That is, there exists a real number M (M < oo) such that mAIa(m)l < 
M for all m. 

An intuitive description of alpha mixing might be useful for the reader 
unfamiliar with the concept. Note that the independence of two events G and 
H implies P(G n H) = P(G)P(H). Roughly speaking, the mixing condition 
says that if m is very large, then for any two random variables si and 8i?m' 

P(G n H) = P(G)P(H) where G is the realization of si and H is the 
realization of si+m, Intuitively, if two random variables are "far enough 
apart" then they are "almost independent." While the mixing conditions are 
most naturally interpreted in a time series context we are applying them in a 
cross-sectional problem. Our statistics are structured such that we do not 
need to know the appropriate ordering, we only need to assume that one 
exists.3 

Consider some specific examples of idiosyncratic covariance matrices, V, 
which would satisfy the mixing assumptions. If the (i, j) element of V is 
equal to o2 p pli-i and -1 < p < 1 then the idiosyncratic returns have 
dependence which "dies off" sufficiently fast for {Ii} to be a-mixing. An 
alternative covariance structure might be a block diagonal structure where 
the blocks are defined by industry. Let I < oo be the maximum number of 
firms in a given industry. Then the assumption of block diagonality implies 
a(m) = 0 for all m > I, hence the process is a-mixing. 

The mixing processes explicitly allow a tradeoff between the dependence in 
the process and moment restrictions required for laws of large numbers and 
central limit theorems. As A decreases, the series is allowed to exhibit more 

3Mei and Newey (1990) consider a test which relies on knowing the appropriate ordering of 
assets. 
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dependence while the existence of more moments is required. For our pur- 
poses, assuming the sequence { IZ} is mixing allows us to have cross- 
sectionally dependent and heteroskedastic idiosyncratic returns but still 
maintain the conditions necessary for an approximate factor structure. This 
is shown in the following theorem. 

THEOREM 1: Assume the above Mixing Assumption for the sequence of idiosyn- 
cratic returns and that E[ I Zi 12(1 + 8)] is bounded for all i and for some 8 > 2/(A 
- 2). Then the eigenvalues of Vn are bounded as n approaches infinity. 

Proof: By corollary 6.16 of White (1984) the assumptions above imply that 
there exists a constant M* < o0 such that IVjI < M*Ii _ji-A8/(2 +28) i 7# j 

where ViJ is the (i, j) element of Vn. Let s = A8/(2 + 28). The restrictions 
on A and 8 imply that s > 1. Consider the matrix 1-norm (sometimes 
referred to as the column-sum norm) of Vn. This norm is defined as 

n 

max EVjnj j= 1 2,...,n 

The bound placed on the absolute value of the elements of V n by the mixing 
conditions implies that the column-sum norm of Vn, denoted I Vnlli, is 
bounded by M *[1 + 2 ;(s)] where ;(s) is the Riemann zeta-function: 

x1 

v= 1 

which converges for s > 1. Thus, IIVnIll K1 c. The column-sum norm of a 
matrix is an upper bound on the eigenvalues of that matrix (see Schwarz, 
Rutishauser, and Stiefel (1973, pp. 10, 11)). Hence, the eigenvalues of Vn are 
bounded as n -> oc. Since the largest eigenvalue is increasing in n, all 
eigenvalues are uniformly bounded for all n. w 

The representation of returns in (1) and the bounded eigenvalues of Vn are 
conditions which imply an approximate factor structure (see Chamberlain 
and Rothschild (1983)). Thus, the assumptions of Theorem 1 are sufficient for 
asset returns to follow an approximate factor structure. We believe that 
Theorem 1 is a useful characterization since it ties together the approximate 
factor model conditions and the mixing conditions. 

Some approaches to estimating pervasive factors (e.g., Connor and 
Korajczyk (1986)) assume that the average squared idiosyncratic returns, 

n 'eZ_n/n, converge in probability. The mixing assumptions imply this 
convergence. 

THEOREM 2: Under the assumptions of Theorem 1, En nZ_/n converges in 
probability to or- as n -> oc, where o0 = 1im nxE[ _n_n/n] 

Proof: The moment restrictions assumed in Theorem 1 imply that Vi = 

E(_2) is bounded. Therefore, o- exists and is finite. Since {si} is mixing, {12} 
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is mixing, (White (1984, theorem 3.49)). Since the sequence {Z-} is mixing 
-n' in/n converges almost surely to o-, (White (1984, corollary 3.48)). Almost 
sure convergence implies convergence in probability. E 

II. A Test Statistic for the Number of Factors in Approximate 
Factor Models 

In Section II. A we derive the test statistic under the assumption that we 
observe the diversifiable returns on assets without error. This serves to 
provide the main intuition behind the test without the added complications of 
dealing with estimation error. In Section II.B we generalize the test to the 
case where the factor returns and idiosyncratic returns are estimated. In 
Section II.C we relate our approach to other approaches that focus on the 
behavior of the eigenvalues of return covariance matrices as the number of 
cross sections increases, such as Luedecke (1984), Trzcinka (1986), and 
Brown (1989). 

A. Test Statistics with Observed Idiosyncratic Returns 

In this section we present the basic statistic. We assume that asset returns 
are given by an approximate factor structure and that the idiosyncratic 
returns are strong mixing. Let f* denote some random variable which is not 
one of the pervasive factors and is not perfectly correlated with them. We will 
call this variable "factor k + 1" of the approximate k-factor model. This 
pseudofactor can be some combination of the idiosyncratic variates or some 
industry-wide influence which is not widespread enough to be a pervasive 
factor. We want a test which can distinguish this pseudofactor from the k 
true factors. 

Note that we can rewrite the factor model in its original form (equation (1)) 
and in a form which includes the "k + lst" factor: 

fn = cn + Bnf + nf* + _*n 

where 3n is the n x 1 vector of least squares projections of rn on f 
(controlling for f). A k-factor approximate factor structure implies that 
3n f3fn _< to < o? for all n (Ingersoll (1984)). 

Note that En = f3nf* + _*n. If asset returns are described by an approxi- 
mate factor structure with k factors then the k + 1st factor can have 
nontrivial factor loadings for some assets (since Vn is not diagonal) but not 
for a significant proportion of assets. The basic logic behind our tests is that: 

plim _ 6,ntffln = f *2 . nrn - nt3f + plim - ' n 

n o n noo n , n 

= plim Z_ *n' *n 
noo n 



A Test For Number of Factors in Approximate Factor Models 1269 

so that plim n (Zf'f ?*n?*n)/n = 0, where plim denotes the limit in 
probability. The cross-sectional mean square of E_n approaches the mean 
square of *n because / n/ 'n/n ? co/n which approaches zero as n increases. 
That is, the cross-sectional average asset variability explained by the k + 1st 
factor is asymptotically zero.4 

In this subsection we assume that the idiosyncratic returns are observable. 
In Section IJ.B we will generalize to the case in which they are estimated via 
time series ordinary least squares. Previously, e and e* denoted n-vectors of 
idiosyncratic returns. We will now use them to denote the n x T matrices of 
observed idiosyncratic returns for n assets over T time periods using k 
factors, and using k factors plus one pseudofactor, respectively. We let 8.t 
denote the tth column of e and ei. denote the ith row of e. Consider the 
following statistics: 

=-t 8tt/n;,y * - es.*s*/n, t = T. 

A natural statistic to investigate is t - At ft* p '3 3/n. The difficulty 
with this statistic is that, under the null hypothesis, it converges to a 
degenerate distribution as n approaches infinity.5 Because of this, we devise 
an alternative statistic which has a mean of zero (under the null) and a 
nondegenerate asymptotic distribution. We do this by taking the difference 
between ,. in one time period and A* in the next period. We then calculate 
means and variances using every other observation. Define the (T/2)-vector6 
A' by: 

AS s-12s I - 1-2 s s=1,.., T/2 . 

Note that, by the assumed return structure, eit and ej, are independent for 
t ? r, and identically distributed. This implies that the (T/2)-vector An 

consists of independent random variables. E[ A' s] converges to f22 1 /3 n" p 
n /n 

so that the expectation of Ans goes to zero as n approaches infinity, under the 
null hypothesis that there are k factors. Under the alternative hypothesis 
that there are k + 1 pervasive factors, we expect the values of the A.s to be 
positive because the term f21 /3ntw "n/n will not converge to zero. We are 
now ready to state our main result. As the cross-sectional sample increases, 
An converges in distribution to a (T/2)-vector of independent, normally 
distributed random variables with means of zero and equal variances. We 

4An alterative approach to testing for the number of factors relies on the fact that an 
approximate factor structure implies that well-diversified portfolios will have betas relative to 
the pseudofactor that approach zero as n approaches infinity. This approach is used in Korajczyk 
and Viallet (1989) and is extended by Heston (1992). 

5 To see this note that: 

fl fl* 2p p n2 n t nt n 

F; n ,n* ) = I t 

which is equal to 0 in the limit. 
6 We assume, without loss of generality, that T is even. 
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first need the following definition. Let 
a+n 

a,an =var n-1/2. E 12 

i=a +1 

We assume that there exists qf, 0 < qf < oo such that q a, n 
I/ Jf as n -*oo 

uniformly in a. 

THEOREM 3: Given the assumptions of Theorem 1 and the convergence of l/1a,n, 

then, 

dlim FnAn -N(0,~2 qI) 
n --00 

where dlim denotes convergence in distribution and N(-, ) denotes the multi- 
variate normal distribution. 

Proof: Note that, under the null hypothesis, E[ Anf2 f2 *s2 f1n,B n '3 /n 
0, as n -*oo because f3'nf3n/n -* 0 while f2*s2 is fixed. The mixing 

assumption and moment restrictions of Theorem 1 plus the convergence of 
la, n satisfy the conditions of Theorem 5.19 of White (1984). It follows 
immediately from that theorem that dlimn, (n - / . ) N(O, St). The 
(T/2)-vector An consists of differences between these independent, identically 
distributed Normals and so has zero means and twice the variances. E 

Standard cross-sectional variance estimates (which assume that the C's are 
uncorrelated across cross-sections) will not yield valid estimates of qp because 
of the cross-sectional dependence allowed in an approximate factor structure.7 
Instead, we use the time series of the estimates An to estimate the mean and 
variance. This is the same as the approach taken by Fama and MacBeth 
(1973) to estimate the mean and variance of the equity risk premium in the 
capital asset pricing model. Define the time-series sample mean and variance 
of An, respectively, by: 

2T/2 

T E S 

and 
T/2 2 

E(As An) 

2mn= SlT 

2 - 1 2 

If follows immediately from Theorem 3 that, as n oo, the time series 
statistic in (2 n) -1/2 is asymptotically t-distributed with T/2 degrees of 
freedom. 

7We assume that {--it), - is mixing but do not assume that we know the appropriate 
ordering. If we knew the appropriate ordering, consistent estimates of Xr could be obtained using 
the methods of White and Domowitz (1984). An extension of that approach is Mei and Newey 
(1990). 
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B. Test Statistics with Estimated Idiosyncratic Returns 

Theorem 3 cannot be directly applied to our asset return model since, in 
practice, en and *n must be estimated rather than observed directly. We 
will now modify the procedure to allow for estimated en and *n. 

We assume that we have data on a set of prespecified factors or a set of 
factor estimates. The prespecification of factors is the approach taken, for 
example, by Chen, Roll, and Ross (1986). Factors can be estimated in a 
number of ways, the most common of which are factor analysis (e.g., Roll and 
Ross (1980) and Lehmann and Modest (1988)) or principal components 
techniques (e.g., Luedecke (1984) or Connor and Korajczyk (1988)). Our test 
statistic requires that the factor estimates are n-consistent. For simplicity of 
exposition, in the main text we treat the case in which the factors are 
observed exactly, and extend the result to the case of n-consistent estimated 
factors in the appendix. 

Given the factor structure in (1) and the observed k-vector of factors, ft, a 
natural way to obtain estimates of the idiosyncratic returns is through time 
series regressions of returns on the factors and a constant. For each asset, i, 
we estimate the regression: 

Fit = ci + Bi ft + Z-fit t = 1,2,3,...,IT (5) 

which can be expressed as a system of regressions: 

r= [cB]F + e 

where r is an n x T matrix of asset excess returns, c is an n-vector of 
constants, B is an n x k matrix of factor sensitivities, F is a k + 1 x T 
matrix whose first row has entries equal to one and whose rows 2 through 
k + 1 are time series for factors 1 through k, and e is an n x T matrix of 
idiosyncratic returns. 

The regressions give ordinary least squares regression residuals: 

-'it = -fi-(IT- F'(FF') 1F)t. (6) 

where F't = (1 ft). The same regression can be repeated with the additional 
pseudofactor ft* added to the matrix of regressors: 

^* = E* (IT- F*'(F*F*-) F) 

Ordinary least squares induces a bias in the squared residuals, but we can 
eliminate this with a simple adjustment (see Theil (1971), Theorem 5.2). For 
each asset, define the T-vector of adjusted squared residuals: 

^ 
t = ^2/(IT- F'(FF')1F)tt. (7) 

Define 6* in the same way using F*. This is a generalization of the usual 
degrees of freedom adjustment. For example, consider the case where we just 
fit a mean to each cross-section. In this case F = lT' (where lT denotes a 
T-vector of ones) and 1/(IT - F'(FF')-1F)tt = T/(T - 1) which is the 
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standard degrees of freedom correction for variance estimators after fitting a 
mean. More generally, if F has k + 1 rows then, by the properties of the 
trace of an idempotent matrix, the average of 1/(IT - F'(FF')-'F)tt across t 
is T/(T - k - 1), which is the standard degrees of freedom correction for 
variance estimators from ordinary least squares. 

Let 5iM denote the T-vector whose odd components are the odd compo- 
nents of 6r. and whose even components are the even components of &*. For 
any T-vector x such that x'x = 1 define rx = X'&cM. For any integer a, 
define 

1a+n 
tJfxa, n = var ^g E ^i x. 

We make two assumptions about o-a. First, for every x there exists a fx such 
that: 

limit x = qfx (8) 
n -- 

uniformly in a. Second, for every x there exists yx < w and S. > 2/(A - 2) 
such that: 

E [ 1ASx 12 SX < Yx (9 

for all i, where A denotes the size of the mixing process {Zi}. 

THEOREM 4: Given (8) and (9) together with the conditions for Theorem 3, 
there exists a (T/2) x (T/2) matrix F such that: 

dlim /nLAAn -N(O,r). 
n - 00 

Proof See the Appendix. 

Suppose now that we replace the true factors with n-consistent estimated 
factors Fn. Replacing the true factors by these estimates does not affect the 
asymptotic distribution of the statistic, as we show in Theorem 5 in the 
Appendix. 

To adjust for the fact that we are using estimated factors rather than true 
ones, we use a simple degrees of freedom correction:8 

= ? t/(1 - (k + 1)/T - k/n). (10) 

8 We can write the n x T matrix of returns as R = [c B]F + e, where c is an n-vector of 
constants and F is a (k + 1) x T matrix consisting of a T-vector of ones and the k x T matrix of 
factor realizations. Given that c, B, and F (except the constant vector in F) are estimated, this 
system of equations has nT observations and n(k + 1) + kT estimated parameters. Taking an 
analogy from least squares regression, we use the degrees of freedom correction (number of 
observations)/(number of observations - number of estimated parameters) which is nT/(nT - 

n(k + 1) - kT) = 1/(1 - (k + 1)/T - k/n). Note that as n -> oo we get the standard time series 
regression degrees of freedom correction T/(T - k - 1). We found via simulation analysis that 
this simple correction worked better than the more complicated correction given by (7), which 
does not adjust for the estimation of F. 
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Although we have only derived the asymptotic distribution, in Section III.B 
below we provide simulation evidence on the finite sample distribution. 

We implement our procedure as follows: 

1. Given a time series of returns on asset i and a time series of k factors 
and a k + 1st pseudofactor, estimate fit and fit by ordinary least 
squares. 

2. Calculate adjusted squared residuals t= /[l - (k + 1)/T- k/n] 
and Si = i2/[t - (k + 2)/T - (k + 1)/n]. 

3. Calculate the (T/2)-vector A'n by subtracting the cross-sectional means 
of Sit in odd months from the cross-sectional means of 6 * in even ffit C~~~~~~~~~~~~~~~it+1 
months. Under the null hypothesis of k factors, l' f-1/2 is asymptoti- 
cally standard normal as n -* oo. 

4. Use the time series A'n to calculate its time series mean A'n and covari- 
ance matrix F and test for a positive mean. 

We apply this algorithm in Section III. 

C. Comparison to Previous Empirical Studies 

Note that, with an approximate factor structure, the standard likelihood 
ratio tests (which assume Vn is diagonal) will tend to extract too many 
factors. Also, as n, the number of assets used to estimate In, increases the 
probability of including multiple assets with correlated idiosyncratic returns 
will increase. This may be one reason why Dhrymes, Friend, and Gultekin 
(1984) find that the number of statistically significant factors, identified by 
the standard likelihood ratio test, grows with the number of assets studied. 

Let ,n denote the covariance matrix of the return vector, rt/ A primary 
result from the analyses of Chamberlain and Rothschild (1983) and Ingersoll 
(1984) is that an approximate k-factor structure implies that the largest k 
eigenvalues of En grow without bound (with n) while the remaining eigenval- 
ues are bounded. This suggests that a natural test would be to investigate the 
behavior of the eigenvalues of the sample covariance matrix, En, as n 
increases. This type of analysis is done in Luedecke (1984) and Trzcinka 
(1986). As noted by both of these authors, testing that the eigenvalues of En 

are bounded, as n approaches infinity, is not a well-posed problem with a 
finite amount of data. In addition, interpreting the behavior of sample 
eigenvalues as if they are population eigenvalues can be misleading, as we 
argue below. 

Let Ank denote the kth largest eigenvalue of the true covariance matrix En 
and Ank denote the kth largest eigenvalue of the sample covariance matrix 
ELn. The general empirical findings in Luedecke (1984) and Trzcinka (1986), 
regarding the behavior of eigenvalues, are that A1 dominates the remaining 
eigenvalues but that all of the eigenvalues increase as n increases. Thus, by 
one metric (dominance of the largest eigenvalue) it is possible to argue that 
there is only one pervasive factor while by another metric (growing eigenval- 
ues) it is possible to argue that there are many factors. 
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Brown (1989) provides an example of a strict factor economy in which there 
are k equally important factors and in which he is able to describe the 
population eigenvalues. He shows that the population eigenvalues, 
A, ... ., A k, increase with n with An, dominating the remaining ones while the 
eigenvalues beyond the k th do not grow with n. One implication of this 
analysis is that the dominance of the largest eigenvalue should not be taken 
as evidence that there is only one factor. 

The empirical work in Luedecke (1984) and Trzcinka (1986) shows all of 
the sample eigenvalues growing with n. Brown (1989) shows through simula- 
tions of his k-factor model that all of the sample eigenvalues grow with n (as 
found by Luedecke (1984) and Trzcinka (1986)) even though only the first k 
population eigenvalues grow with n. 

Our analysis, which allows for large cross-sectional samples with fixed time 
periods, predicts the results from Brown's simulations. In particular, we show 
that for fixed time series sample size, T, and growing n, all of the sample 
eigenvalues grow with n even though only k of the population eigenvalues 
are growing. 

Let Rn be the n x T matrix of demeaned asset returns,' F be the k x T 
matrix of demeaned factor realizations, B n be the n x k matrix of factor 
loadings, and en be the n x T matrix of demeaned idiosyncratic returns. By 
definition Rn = BnF + en and En = RnRn'/T. We use the fact that the 
nonzero eigenvalues of R R ' are equal to the nonzero eigenvalues of R 'R . 

Now, as n approaches infinity: 

R 'Rn/T = (n/T) - [F'(Bn'Bn/n)F + en/En/n + ?n/gnF/n + FIBn En/n] 

(11) 

(n/T) - (F'`F + ojT) (12) 

where E is as defined in (3), and o-, is as defined in Theorem 2. The limiting 
result in (12) follows from (3), Theorem 2, and the fact that (,n 'B nF)/n -* 0. 
Note that F',F is positive semidefinite and of rank k and, hence, has no 
effect on the k + 1st through the Tth eigenvalues. The k + 1st to the Tth 
eigenvalues of In approach (n/T)o-, as n becomes large (the T + 1st through 
nth eigenvalues are zero for n > T). Thus, even though we have a k-factor 
economy, sample eigenvalues beyond the kth largest will increase as n 
increases, since for fixed T, and growing n, (n/T)a, will increase. Thus, the 
empirical observation that all of the sample eigenvalues increase with n 
should not be interpreted as evidence in favor of a very large number of 
factors. In our analysis Ak +1 through AT increase with n even though Ak +1 
through AT do not increase with n. 

Some intuition for why sample eigenvalues, for fixed T, behave differently 
from population eigenvalues can be obtained from (11) and (12). The esti- 

9 That is R t = - Ri, where Ri is the time series mean return for asset i. In matrix 
notation, Rn = Rn[I - (1/T)tt'] where I is the T x T identity matrix and t is a T-vector of 
ones. 
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mated covariance matrix In approaches In as T approaches infinity. How- 
ever, the error in estimating the covariance matrix does not go away as n 
increases, for fixed T. In (12), the largest k eigenvalues of F'"F increase 
with T while the largest k eigenvalues of oI IT do not. Thus, letting T 
approach infinity before considering n (which is equivalent to assuming we 
have the true covariance matrix, E) gives us a matrix whose largest k 
eigenvalues increase with n while the remaining eigenvalues do not. Evi- 
dence presented by Trzcinka (1986) indicates that the values of Anj, increase 
(as n -* oo) at a faster rate for j < 6 than for j > 6 and that the eigenvalues 
increase at approximately the same rate for all j> 6. Using the analysis of 
this section, his results are consistent with an economy with six factors. 

III. Empirical Results 

A. The Number of Factors for New York Stock Exchange and American Stock 
Exchange Stocks 

We apply our test to a sample of monthly returns on common stocks traded 
on the New York Stock Exchange (NYSE) and American Stock Exchange 
(AMEX) for the period January 1967 to December 1991. There are 300 
months in the sample, which we divide into five blocks of 60 months each. 
Within each block, we use all the securities which have full monthly return 
records on the Center for Research in Security Prices (CRSP) monthly 
returns file, giving 1647, 1796, 1869, 1651, and 1626 securities in the periods 
1967-1971, 1972-1976, 1977-1981, 1982-1986, and 1987-1991, respectively. 
We use the monthly Treasury bill returns from CRSP to calculate excess 
returns. 

The first step in the analysis is to determine the set of factors to be used. 
There are a variety of different approaches which can be taken here. One 
could derive factor returns from a set of macroeconomic variables (as in Chen, 
Roll, and Ross (1986)) or use statistically generated factors. We use statisti- 
cally generated factors based on the asymptotic principal components tech- 
nique from Connor and Korajczyk (1986). The k-factor-estimates equal the 
first k eigenvectors of the T x T cross-product matrix of security excess 
returns, R n 'Rn/n. 

The factor estimates from the asymptotic principal components procedure 
are used as ft in the time series regression (5). For each five-year block, we 
estimate the idiosyncratic returns for a k-factor model via a set of n time 
series ordinary least squares regressions, one for each security in the sample. 
We regress each security's excess return on a constant and the k factors. The 
residuals from this regression are the estimated idiosyncratic returns of the 
stock. We then find the mean squared idiosyncratic return for each month as 
the cross-sectional average of these residuals squared: 

1 nt 

Ak t = n ti- 
nti=1 
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where &it is the adjusted squared residual return of security i in month t 
(see equation (10)). The estimated time series Ikt' t = 1,... ,60 from the five 
sixty-month blocks are linked together to form Akt t = 1 to 300. 

In Table I we present the time series averages of Akt, /k, for k = O,... ,15. 
We also show the change in 71k as we increase the number of factors and the 
change in -k as a proportion of average return variance. These statistics are 
presented for all months, January separately, and all non-January months. 

There is a large decrease in extra explanatory power in moving from one to 
two factors, and then a slow decline in explanatory power from adding each 
additional factor. As so often in empirical analysis of returns data, January 
stands out. It has twice the average return variance of other months, and the 
statistical factors have substantially higher explanatory power, both in abso- 
lute terms and as a percentage of total variance. The greater marginal 
explanatory power of multiple factors in January compared to other months 
conforms to findings elsewhere in the APT literature. Using daily data, Cho 
and Taylor (1987) find that the covariance matrix of returns differs in 
January from other months. Gultekin and Gultekin (1987) and Connor and 
Korajczyk (1988) find that the factors beyond the first factor are most 
important to APT pricing tests in January. Given that these factors are more 
significant for pricing in January, it is perhaps not surprising that they are 
more important in explaining cross-sectional variance as well. It is clear from 
Table I that we must adjust for the difference between January and non- 
January months. While the statistics presented in Table I do not constitute 
formal tests, we do feel that Table I provides useful descriptive statistics 
about factor structure in the context of an approximate factor model. 

There is a definite seasonal pattern in idiosyncratic variances. We test for 
this by regressing Akt on a constant and eleven monthly dummy variables 
that are equal to one in their respective months and zero otherwise. The 
seasonality in idiosyncratic variance is confined to January. In all cases, no 
other month carries a significant coefficient; the January dummy is usually 
significant. The detailed results from these regressions are not reported here 
but are available from the authors. 

We treat January and non-January months separately to calculate As. For 
January months, we define As by taking the year-to-year differences in the 
January values of ykt. For non-January months we take month-to-month 
differences, but delete the December-January and January-February differ- 
ences. We show two configurations (A and B) of the sample, corresponding to 
the two ways to construct A (A: odd months for k and even months for k + 1 
and B: even months for k, odd months for k + 1). The analysis is equally 
valid using configuration A or B; for completeness we perform the analysis 
both ways, although one should bear in mind that the results are not 
independent (they are negatively correlated) across configurations. 

Table II shows the test results. For both the January and non-January 
tests, we try both the standard ordinary least squares t-test and a test with 
the robust covariance estimator of Newey and West (1987), which is consis- 
tent with time series correlation and heteroskedasticity. We do not adjust for 
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Table 
I 

Mean 

Square 

Idiosyncratic 

Risk 

for 
0 
to 
15 

Factors 
f 
k. 

(Time 

Series 

Averages 

for 

All 

Months, 

January, 

and 

Non-January 

Months) 

This 

table 

shows 

the 

pooled 

time 

series 

cross-sectional 

average 

mean-squared 

idiosyncratic 

return 

after 
k 

factors 

have 

been 

extracted 

from 

the 

returns 
(k 
= 

0,..., 

15). 
Thk 

is 

the 

time 

series 

mean 
of 
A' 
= 

8^' 
e 

t/nt 

where 
?' 
e 

Jnt 
is 

the 

cross-sectional 

average 
of 

adjusted 

estimated 

residual 

returns 

from 
a 

k-factor 

model. 

For 
k 

equal 
to 

zero 

the 

time 

series 

sample 

mean 
of 

each 

asset 
is 

subtracted 

from 
its 

time 

series 

returns 

and 

the 

number 

shown 
is 

the 

cross-sectional 

average 
of 
the 

assets' 

time 

series 

variances. 

The 

idiosyncratic 

returns 

are 

adjusted 
for 

degrees 
of 

freedom 

using 

the 

correction 

given 
by 

equation 

(10). 

The 

monthly 

numbers 

have 

been 

converted 
to 

annualized 

percentages 
by 

multiplying 
by 

1200. 

The 

time 

series 

sample 

differs 

across 

the 

three 

sets 
of 

columns: 
all 

months, 

Januaries 

only, 

and 
all 

months 

except 

Januaries. 

The 

data 

are 

monthly 

returns 
on 

NYSE 

and 

AMEX 

stocks 

from 

January 

1967 
to 

December 

1991. 

All 

Months 

January 

Non-January 

P-k 

Lk-1 

- 

ilk 

iltk 
- 

- 
1 

-k 

J/PO 

Jk 

yk1 
- 

ilk 

(i1k 
- 
1 

jk 

J/O 

Pk 

Pk 

-1 

P-k 

(ik 
- 
1 
- 

k) 

k 

x 

1200 

x 

1200 

x 

100 

x 

1200 

x 

1200 

x 

100 

x 

1200 

x 

1200 

x 

100 

0 

18.08 

32.67 

16.61 

1 

12.86 

5.16 

28.56 

16.84 

14.62 

44.76 

12.39 

3.84 

23.12 

2 

12.23 

0.62 

3.40 

15.49 

0.41 

1.24 

11.84 

0.13 

0.77 

3 

11.75 

0.46 

2.54 

13.18 

2.64 

8.09 

11.64 

-0.01 

-0.05 

4 

11.43 

0.31 

1.71 

12.52 

1.02 

3.11 

11.35 

0.12 

0.74 

5 

11.17 

0.23 

1.28 

11.36 

1.22 

3.72 

11.17 

0.07 

0.42 

6 

10.91 

0.24 

1.32 

10.96 

0.63 

1.92 

10.93 

0.17 

1.01 

7 

10.67 

0.22 

1.19 

10.21 

1.01 

3.09 

10.74 

0.18 

1.10 

8 

10.45 

0.18 

1.00 

9.39 

1.00 

3.05 

10.58 

0.22 

1.30 

9 

10.25 

0.17 

0.92 

8.69 

0.86 

2.64 

10.42 

0.26 

1.54 

10 

10.07 

0.15 

0.85 

8.27 

0.58 

1.78 

10.25 

0.30 

1.81 

11 

9.91 

0.14 

0.77 

8.16 

0.29 

0.88 

10.09 

0.30 

1.80 

12 

9.76 

0.14 

0.75 

7.68 

0.63 

1.92 

9.97 

0.32 

1.89 

13 

9.62 

0.14 

0.75 

7.61 

0.22 

0.67 

9.82 

0.35 

2.08 

14 

9.49 

0.13 

0.70 

7.43 

0.33 

1.00 

9.70 

0.35 

2.09 

15 

9.36 

0.13 

0.69 

7.19 

0.36 

1.12 

9.58 

0.36 

2.16 
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Table 
II 

Tests 

for 
k 
- 
1 

vs. 
k 

Pervasive 

Factors 

(January 

and 

Non-January 

Months 

Considered 

Separately) 

The 

January 

and 

non-January 

samples 

are 

considered 

separately 

because 
of 

the 

higher 

variances 

evident 
in 

January. 

2k- 
1 
k 

is 

the 

difference 

between 

the 

cross-sectional 

average 

mean-squared 

idiosyncratic 

return 

with 
k 

and 
k 
- 
1 

factors 

estimated 
on 

separate 

subsamples 

(odd 

and 

even 

months). 

The 

third 

column 

(t-value) 

divides 

column 

two 
by 
its 

time 

series 

estimated 

standard 

error 

(scaled 
by 

the 

square 

root 
of 

the 

time 

series 

sample 

size) 
to 

form 
a 

t-statistic. 

The 

fourth 

column 

(robust-z) 

recalculates 

the 

t-statistic 

from 

column 

three 

using 
a 

Newey-West 

(1987) 

robust 

estimate 
of 
the 

time 

series 

standard 

error. 

The 

fifth 

column 

(p-value) 

gives 

the 

one-sided 

tail 

area 
of 

the 

t-statistic 

found 
in 

the 

third 

column. 

The 

next 

four 

columns 

repeat 

columns 

two 

through 

five 
on 

the 

January 

sample. 

The 

last 

column 

aggregates 

the 

p-values 
of 

the 

two 

t-statistics. 

The 

first 

half 
of 

the 

table 

(Configuration 
A) 

estimates 

the 

idiosyncratic 

mean-squared 

return 

for 
k 

factors 

using 

the 

even 

months 
of 

the 

sample 

and 
for 
k 
- 
1 

factors 

using 

odd 

months. 

The 

second 

half 
of 

the 

table 

(Configuration 
B) 

repeats 

the 

analysis 

using 

odd 

months 
to 

estimate 

the 

idiosyncratic 

mean 

square 

return 

for 
k 

factors 

and 

even 

months 

for 
k 
- 
1 

factors. 

The 

data 

are 

monthly 

returns 
on 

NYSE 

and 

AMEX 

stocks 

from 

January 

1967 
to 

December 

1991. 

Non-January 

January 

Ak- 
1, 
k 

Ak-l,k 

k 

x 

1200 

t-Value 

Robust-z 

p-Value 

x 

1200 

t-Value 

Robust-z 

p-Value 

Aggregate 

p-Value 

Configuration 
A 

1 

3.48 

5.05 

4.94 

0.00 

19.59 

1.50 

1.57 

0.08 

0.00 

2 

0.30 

0.82 

0.96 

0.21 

-0.71 

-0.35 

-0.36 

0.63 

0.37 

3 

0.03 

0.09 

0.10 

0.47 

1.18 

1.02 

1.06 

0.17 

0.22 

4 

0.20 

0.74 

0.90 

0.23 

0.16 

0.10 

0.10 

0.46 

0.28 

5 

0.11 

0.45 

0.53 

0.33 

-0.18 

-0.10 

-0.10 

0.54 

0.40 

6 

0.18 

0.62 

0.78 

0.27 

- 

1.10 

- 

0.56 

-0.58 

0.71 

0.48 

7 

0.26 

0.77 

0.70 

0.22 

0.29 

0.23 

0.24 

0.41 

0.24 

8 

0.33 

0.98 

0.87 

0.17 

0.67 

0.54 

0.56 

0.30 

0.14 

9 

0.32 

1.04 

0.94 

0.15 

0.54 

0.42 

0.44 

0.34 

0.15 

10 

0.36 

1.18 

1.12 

0.12 

0.81 

0.62 

0.65 

0.27 

0.10 

11 

0.44 

1.56 

1.67 

0.06 

0.81 

0.62 

0.65 

0.27 

0.06 

12 

0.52 

1.83 

1.96 

0.04 

1.44 

1.24 

1.29 

0.12 

0.02 

13 

0.60 

2.15 

2.19 

0.02 

1.21 

1.02 

1.06 

0.17 

0.01 

14 

0.59 

2.10 

2.21 

0.02 

1.35 

1.21 

1.26 

0.13 

0.01 

15 

0.47 

1.63 

1.73 

0.05 

1.16 

1.02 

1.07 

0.16 

0.03 
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Table 

II-Continued 

Non-January 

January 

Ak-1,k 

Ak-k,k 

k 

x 

1200 

t-Value 

Robust-z 

p-Value 

x 

1200 

t-Value 

Robust-z 

p-Value 

Aggregate 

p-Value 

Configuration 
B 

1 

5.43 

5.08 

5.07 

0.00 

9.65 

1.51 

1.57 

0.08 

0.00 

2 

0.72 

1.74 

1.79 

0.04 

1.52 

0.50 

0.52 

0.31 

0.06 

3 

0.16 

0.52 

0.54 

0.30 

4.11 

1.90 

1.98 

0.04 

0.04 

4 

0.15 

0.48 

0.48 

0.32 

1.87 

1.47 

1.54 

0.09 

0.08 

5 

-0.05 

-0.14 

-0.16 

0.56 

2.61 

1.80 

1.88 

0.05 

0.12 

6 

0.01 

0.04 

0.04 

0.49 

2.35 

1.44 

1.50 

0.09 

0.15 

7 

-0.14 

-0.45 

-0.50 

0.67 

1.73 

0.94 

0.98 

0.18 

0.37 

8 

-0.29 

- 

0.91 

-0.83 

0.82 

1.32 

0.81 

0.85 

0.22 

0.53 

9 

-0.31 

-0.97 

-0.87 

0.83 

1.19 

0.75 

0.78 

0.24 

0.56 

10 

-0.28 

-0.97 

-0.92 

0.83 

0.35 

0.22 

0.23 

0.42 

0.70 

11 

- 

0.33 

- 

1.21 

- 

1.19 

0.89 

- 

0.24 

-0.14 

-0.14 

0.55 

0.83 

12 

-0.38 

- 

1.48 

- 

1.53 

0.93 

- 

0.18 

-0.10 

- 

0.10 

0.54 

0.87 

13 

-0.37 

-1.53 

-1.57 

0.94 

-0.77 

-0.49 

-0.51 

0.68 

0.92 

14 

-0.33 

- 

1.36 

- 

1.41 

0.91 

- 

0.70 

- 

0.43 

-0.45 

0.66 

0.90 

15 

-0.20 

-0.81 

- 

0.81 

0.79 

- 

0.44 

- 

0.27 

-0.28 

0.61 

0.78 
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the autocorrelation in the January A's. We use a first-order lag for the 
non-January tests. 

We find one or two significant factors in the non-January months. In the 
January months, we find up to six significant factors (at 10 percent confi- 
dence) for one configuration, and one significant factor in the other. The 
aggregated test statistic, equally weighting the January and non-January 
tests,10 gives one significant factor in one configuration and four factors in 
the other. 

For non-January months, a one-factor or two-factor model seems adequate 
to describe stock returns. Including January, up to six factors are necessary 
to provide an adequate description. Since January mean returns and vari- 
ances are unusually large, and many interesting asset-pricing phenomena 
are concentrated in this month, we argue for a three- to six-factor model. 

B. Simulations 

In order to examine the finite sample distribution of our model we simu- 
lated the empirical analysis with random draws from an exact four-factor 
model calibrated to U.S. equity returns data. In our actual data, the five 
60-month blocks of returns contained 1646, 1796, 1869, 1651, and 1626 
securities; we simulated using 1718 securities (the average number from the 
five actual blocks). For simplicity we let each of the four factors have the 
same variance, and let the average cross-sectional beta of each factor equal 
one. We assume that the cross-sectional distribution of each of the betas is 
independent normal, each with variance o-b. We assume that the time series 
distributions of the factors and idiosyncratic returns are also independent 
normal. We assume that the exact version of the APT holds (that is, expected 
excess returns are linear in betas) and that the four factors have the same 
risk premium, denoted rr. Let MVN(-, -) denote the multivariate normal 
distribution. Our model of excess returns for the generated data is: 

rit =Bift+ 8it,i = 1...,n;t = T 

Bi -MVNOi4, Ub'4) 

ft MVN( f 4,0f14) 

.t MVN(0 , In) 

where e, is the n x 1 vector of idiosyncratic returns for period t and o'n is an 
n x 1 vector of zeros. 

10 Let Znj and z. denote the t-statistics for non-January and January months. We compute 
z = (znj + zj)/12 and derive the p-value of this statistic from a one-sided standard normal 

distribution. 
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The simulation model has four parameters, ub, X, of, and o>. If there are 
four true factors, then Table I, row 5 (k = 4), column 2 (4) gives an 
(annualized percentage) estimate of o-; dividing this figure by 1200 to undo 
the annualized percentages gives o- = 0.009525. We calibrated the other 
three parameters to match three empirical observations over our 1967 to 
1991 sample period: the average excess return to the equally weighted 
portfolio, denoted E[ rEw] (0.004167 per month, using the CRSP Equally 
Weighted Index), the variance of the equally weighted portfolio, denoted SrEW 

(0.0039162 per month, again using the CRSP Index), and the variance of the 
average asset, denoted o. [0.01507 per month; see Table I, row 1 (k = 0), 
column 2 (Th0)]. Note that the equally weighted portfolio has a factor beta of 1 
for each of the four factors (since, by assumption, this is the average cross- 
sectional beta for each factor). Therefore excess return to the equally weighted 
portfolio is rEW = (fl + T) + (f2 + ?T) + (f3 + 7T) + (f4 + 7T) + CEW- It is 
easy to see from this equation that 7r = (1/4)E[rEw]. We treat the equally 
weighted portfolio as approximately well diversified, so that its idiosyncratic 
variance is approximately zero. Using var(eEW) = 0 gives SEW = 40>f. The 
return variance of a given asset i is (BA1 + Bi2 + Bi3 + B24 f + var(e); 
therefore the cross-sectional average variance is o;r = 4E[Bg] of + o-. Since 
the B 's are assumed to be independently and identically distributed cross- 
sectionally with means of one, E[ B?] = (1 + Ob). Rearranging the equations 
gives cob = (or - o-,)/4of - 1. Using the values for or-, o-, and off gives 
Cb = 0.4151. To summarize the results of this calibration exercise: we used 
the parameter values Cb = 0.4151, of = 0.0009569, ir = 0.0010417, and o- = 

0.009525. 
We generated 1000 random draws of 60 months of returns data on 1718 

assets. Different betas were drawn randomly for each of the 1000 blocks. 
Recall that our empirical work used 5 blocks of 60 months each. To match the 
simulation exercise with the actual empirical work, we partitioned the gener- 
ated data into 200 sets of 5 blocks each and ran our tests using the same 
estimation method used in the previous section. Table III shows the averages 
over 200 realizations of the statistics reported in Table I. 

Not surprisingly, the first factor carries much higher explanatory power 
than factors two through four. This does not violate the asymptotic model: in 
the calibrated model the first four factors have equal explanatory power, but 
there exist nonsingular rotations of the factors which assign higher power to 
the first factor over sixty observations (but always with nonzero explanatory 
power to all four factors). 

Table III shows some positive explanatory power for factors five through 
fifteen. This implies a small n-sample bias in our model: for k > 5, the values 
of 1k-1 - Ik should be close to zero, and approximately half of them should 
be negative and half positive; the actual values are small, but consistently 
positive. In our simulated model, the distinction between "Januaries" (every 
twelfth month) and other months is arbitrary, except for the smaller number 
of observations for "Januaries." 
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Table 
III 

Average 

Simulated 

Values 
of 

Statistics 

Reported 
in 

Table 
I 

(Mean 

Square 

Idiosyncratic 

Risk 

for 
0 
to 
15 

Factors, 
ilk 
) 

This 

table 

shows 

the 

averages 

from 

200 

simulations 
of 
a 

strict 

factor 

model 

with 

four 

equally 

important 

factors. 

The 

table 

reports 

the 

pooled 

time 

series 

cross-sectional 

average 

mean-squared 

idiosyncratic 

return 

after 
k 

factors 

have 

been 

extracted 

from 

the 

returns 
(k 
= 

0,..., 

15). 

I-1k 

is 

the 

time 

series 

mean 
of 

l 

= 

t 

tint 

where 

?'t 

?.t/nt 
is 

the 

cross-sectional 

average 
of 

adjusted 

estimated 

residual 

returns 

from 
a 

k-factor 

model. 

For 
k 

equals 

zero 

the 

time 

series 

sample 

mean 
of 

each 

asset 
is 

subtracted 

from 
its 

time 

series 

returns 

and 

the 

number 

shown 
is 

the 

cross-sectional 

average 

of 

the 

assets' 

time 

series 

variances. 

The 

idiosyncratic 

returns 

are 

adjusted 

for 

degrees 
of 

freedom 

using 

the 

correction 

given 

by 

equation 

(10). 

The 

monthly 

numbers 

have 

been 

converted 
to 

annualized 

percentages 

by 

multiplying 

by 

1200. 

The 

time 

series 

sample 

differs 

across 

the 

three 

sets 
of 

columns: 

all 

months, 

"Januaries" 

only, 

and 

all 

months 

except 

"Januaries." 

There 

are 

1718 

assets 

in 

the 

cross-section 

and 

300 

time 

series 

observations 

(corresponding 
to 

25 

years 
of 

monthly 

data). 

Each 

number 
in 

the 

table 
is 

the 

simple 

average 

from 

200 

simulations 
of 

the 

statistics. 

All 

Months 

"January" 

"Non-January" 

r 

- 

- 

- 

z- 

- 

X 

- 

_ 

- 

- 

/~ 

~ 

~~~~~~~~-k 

_ 

t 

Xt 

_t 

- 

_ 

_ 

bk 
_ 

X 

k 

yk 

yk-1 
- 

yk 

Thk-l 

- 

l 

yk 

/OO 

IFLk 

/-kk-1 

- 

Itk 

t 
lk 

- 

l 

k 

/Vo 

IFLk 

/-Lk-1 

-k 

kk1 

J 

k 

x 

1200 

x 

1200 

x 

100 

x 

1200 

x 

1200 

x 

100 

x 

1200 

x 

1200 

x 

100 

0 

17.81 

18.11 

17.96 

1 

12.85 

5.12 

29.02 

12.81 

5.29 

28.68 

12.85 

5.11 

28.41 

2 

12.25 

0.60 

3.39 

12.24 

0.57 

3.16 

12.25 

0.60 

3.35 

3 

11.78 

0.47 

2.66 

11.78 

0.47 

2.60 

11.78 

0.47 

2.61 

4 

11.42 

0.36 

2.04 

11.42 

0.36 

1.99 

11.42 

0.36 

2.01 

5 

11.35 

0.07 

0.40 

11.35 

0.07 

0.40 

11.35 

0.07 

0.40 

6 

11.29 

0.07 

0.37 

11.29 

0.06 

0.35 

11.29 

0.07 

0.37 

7 

11.22 

0.06 

0.36 

11.22 

0.07 

0.38 

11.22 

0.06 

0.35 

8 

11.16 

0.06 

0.35 

11.16 

0.06 

0.32 

11.16 

0.06 

0.34 

9 

11.10 

0.06 

0.34 

11.11 

0.06 

0.33 

11.10 

0.06 

0.33 

10 

11.05 

0.06 

0.33 

11.05 

0.06 

0.30 

11.04 

0.06 

0.32 

11 

10.99 

0.06 

0.32 

11.01 

0.04 

0.25 

10.99 

0.06 

0.31 

12 

10.93 

0.06 

0.32 

10.97 

0.05 

0.27 

10.93 

0.05 

0.29 

13 

10.88 

0.05 

0.31 

10.91 

0.06 

0.32 

10.88 

0.05 

0.28 

14 

10.83 

0.05 

0.30 

10.86 

0.06 

0.32 

10.82 

0.05 

0.27 

15 

10.77 

0.05 

0.30 

10.80 

0.06 

0.35 

10.77 

0.05 

0.27 
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Table IV shows the average values of the simulated statistics correspond- 
ing to those reported in Table IL The average t-statistics for one through four 
factors are quite large indicating that the statistic has reasonable power. As 
one would expect, there is a sharp drop in the average t-statistic in moving 
from four to five factors. The average t-statistics for factors five through 
fifteen are all slightly positive. The average p-values for factors five through 
fifteen (the last column) should be 0.5 but are below that value, because of 
the same small sample bias as discussed above. 

Table V shows the Type I and Type II error frequencies for our simulation. 
The model always finds four factors, but often finds more than four. The test 
has high power, but the size of the test is somewhat too large, because of the 
small sample bias. 

Table VI describes the average and minimum coefficients of determination, 
R2, of regressions of the kth estimated factors, k = 1, . .. , 4, on the four true 
factors. The table indicates that asymptotic principal components estimation 
procedure provides accurate estimates of the factors for the cross-sectional 
sample sizes typical of U.S. equity returns data. The same basic simulation 
finding appears in Connor and Korajczyk (1988) and McCulloch and Rossi 
(1989) using different approaches. 

The simulation results are reasonably satisfactory, at least for the case of a 
strict factor model with equally important factors. The power of the test is 
good, but the small sample size is somewhat too large for finite n. The test 
might tend to show slightly more factors than are actually in the data. The 
magnitude of the small sample bias is not large in our simulations (see Table 
III, column 3), but the low standard error of Ak- 1 k and the long time series 
sample makes the bias have some effect on the test size. 

IV. Conclusions 

In this paper we develop a new approach to testing for the appropriate 
number of factors in an approximate factor model of asset returns. We show 
that the assumptions of an approximate factor model can be related to strong 
mixing conditions on the cross-sectional dependence of idiosyncratic returns. 
We use the theory of strong mixing to develop a new statistic which is 
asymptotically valid as the number of cross-sections grows large. 

Our test does not require a strict factor structure, and is valid in large 
cross-sections. Test statistics which assume a strict factor model, such as the 
standard likelihood ratio tests from the factor analysis literature, will tend to 
identify too many pervasive factors (even in large time series samples) if 
asset returns follow an approximate factor model. Alternative procedures 
which investigate the behavior of eigenvalues for large cross-sectional sample 
sizes may give misleading inferences for finite time series samples. 

We apply our test to the cross-section of monthly stock returns on the 
NYSE and AMEX over the period 1967 to 1991. We find evidence for one to 
six pervasive factors generating returns on NYSE and AMEX stocks. The 
influence of the factors beyond the first is particularly strong in January. In 
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Table 
IV 

Average 

Simulated 

Values 
of 

Statistics 

Reported 
in 

Table 
II 

(Tests 

for 
k 
- 
1 

vs. 
k 

Pervasive 

Factors 

Ak- 
1, 
k) 

This 

table 

shows 

the 

averages 

from 

200 

simulations 
of 
a 

strict 

factor 

model 

with 

four 

equally 

important 

factors. 

This 

table 

shows 

the 

results 

from 

applying 

our 

test 

for 

the 

number 
of 

factors. 
A 
k 
- 
1, 
k 

is 

the 

difference 

between 

the 

cross-sectional 

average 

mean-squared 

idiosyncratic 

return 

with 
k 

and 
k 
- 
1 

factors 

estimated 

on 

separate 

subsamples 

(odd 

and 

even 

months). 

The 

third 

column 

(t-value) 

divides 

column 

two 

by 

its 

time 

series 

estimated 

standard 

error 

(scaled 
by 

the 

square 

root 
of 

the 

time 

series 

sample 

size) 
to 

form 
a 

t-statistic. 

The 

fourth 

column 

(robust-z) 

recalculates 

the 

t-statistic 

from 

column 

three 

using 
a 

Newey-West 

(1987) 

robust 

estimate 
of 

the 

time 

series 

standard 

error. 

The 

fifth 

column 

(p-value) 

gives 

the 

one-sided 

tail 

area 
of 

the 

t-statistic 

found 
in 

the 

third 

column. 

The 

next 

four 

columns 

repeat 

columns 

two 

through 

five 
on 

the 

"January" 

sample. 

The 

last 

column 

aggregates 

the 

p-values 
of 

the 

two 

t-statistics. 

The 

first 

half 
of 

the 

table 

(Configuration 
A) 

estimates 

the 

idiosyncratic 

mean-squared 

return 

for 
k 

factors 

using 

even 

months 
of 

the 

sample 

and 

for 
k 
- 
1 

factors 

using 

odd 

months. 

The 

second 

half 
of 

the 

table 

(Configuration 
B) 

repeats 

the 

analysis 

using 

odd 

months 
to 

estimate 

the 

idiosyncratic 

mean 

square 

return 

for 
k 

factors 

and 

even 

months 

for 
k 
- 
1 

factors. 

There 

are 

1718 

assets 
in 

the 

cross-section 

and 

300 

time 

series 

observations 

(corresponding 
to 

25 

years 
of 

monthly 

data). 

Each 

number 
in 

the 

table 
is 

the 

simple 

average 

from 

200 

simulations 
of 

the 

statistics. 
"Non-January" 

"January" 

k 

A 

-1,k 
X 

1200 

t-Value 

Robust-z 

p-Value 

Ak-1,k 

X 

1200 

t-Value 

Robust-z 

p-Value 

Aggregate 

p-Value 

Configuration 
A 

1 

5.08 

7.76 

7.84 

0.00 

5.50 

2.76 

3.02 

0.02 

0.00 

2 

0.59 

4.11 

4.27 

0.00 

0.55 

1.24 

1.72 

0.21 

0.00 

3 

0.46 

4.02 

4.16 

0.00 

0.44 

1.26 

1.73 

0.21 

0.00 

4 

0.37 

3.88 

4.02 

0.00 

0.33 

1.13 

1.64 

0.22 

0.00 

5 

0.08 

0.91 

1.31 

0.25 

0.06 

0.19 

1.15 

0.45 

0.28 

6 

0.08 

0.81 

1.25 

0.28 

0.06 

0.18 

1.18 

0.46 

0.31 

7 

0.08 

0.75 

1.25 

0.30 

0.06 

0.17 

1.11 

0.46 

0.32 

8 

0.08 

0.72 

1.26 

0.30 

0.04 

0.11 

1.26 

0.47 

0.34 

9 

0.08 

0.68 

1.23 

0.32 

0.05 

0.13 

1.25 

0.46 

0.35 

10 

0.07 

0.61 

1.19 

0.34 

0.07 

0.18 

1.28 

0.46 

0.36 

11 

0.07 

0.54 

1.13 

0.35 

0.06 

0.17 

1.25 

0.47 

0.37 

12 

0.07 

0.52 

1.12 

0.36 

0.06 

0.17 

1.25 

0.47 

0.38 

13 

0.06 

0.46 

1.12 

0.38 

0.07 

0.16 

1.23 

0.47 

0.39 

14 

0.06 

0.41 

1.11 

0.39 

0.07 

0.17 

1.25 

0.46 

0.40 

15 

0.06 

0.40 

1.09 

0.40 

0.07 

0.16 

1.23 

0.46 

0.40 
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Table 

IV-Continued 

"Non-January" 

"January" 

k 

Ak-1,k 

X 

1200 

t-Value 

Robust-z 

p-Value 

2k 

-1, 
k 

X 

1200 

t-Value 

Robust-z 

p-Value 

Aggregate 

p-Value 

Configuration 
B 

1 

5.14 

7.78 

7.89 

0.00 

5.09 

2.76 

3.01 

0.02 

0.00 

2 

0.61 

4.23 

4.41 

0.00 

0.59 

1.34 

1.83 

0.19 

0.00 

3 

0.47 

4.10 

4.27 

0.00 

0.50 

1.44 

1.85 

0.16 

0.00 

4 

0.35 

3.74 

3.88 

0.00 

0.39 

1.33 

1.81 

0.20 

0.00 

5 

0.06 

0.67 

1.14 

0.31 

0.09 

0.33 

1.21 

0.42 

0.31 

6 

0.06 

0.57 

1.07 

0.34 

0.07 

0.24 

1.10 

0.44 

0.34 

7 

0.05 

0.47 

1.06 

0.37 

0.08 

0.28 

1.24 

0.44 

0.36 

8 

0.04 

0.40 

1.04 

0.39 

0.07 

0.26 

1.20 

0.44 

0.37 

9 

0.04 

0.37 

1.05 

0.40 

0.07 

0.22 

1.22 

0.44 

0.39 

10 

0.05 

0.37 

1.04 

0.39 

0.05 

0.15 

1.22 

0.46 

0.40 

11 

0.05 

0.38 

1.01 

0.39 

0.03 

0.07 

1.23 

0.48 

0.41 

12 

0.04 

0.33 

1.03 

0.40 

0.04 

0.11 

1.29 

0.47 

0.41 

13 

0.04 

0.32 

1.05 

0.41 

0.05 

0.11 

1.23 

0.47 

0.41 

14 

0.05 

0.32 

1.08 

0.41 

0.04 

0.10 

1.23 

0.47 

0.42 

15 

0.04 

0.28 

1.06 

0.42 

0.06 

0.14 

1.29 

0.47 

0.42 
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Table 
V 

Percentages 
of 

Type 
I 

and 

Type 
II 

Errors 
in 

200 

Simulations 

(5 

Percent 

and 
10 

Percent 

Confidence 

Levels) 

This 

table 

shows 

the 

frequency 
of 

Type 
I 

and 

Type 
II 

errors 
in 

tests 
of 
k 

factor 
vs. 
k 
- 
1 

factor 

models 

found 
in 

200 

simulations. 

The 

data 

are 

generated 
by 
a 

strict 

factor 

model 

with 

four 

equally 

important 

factors. 

Type 
I 

error 

occurs 

when 

the 

simulated 

t-statistic 
is 

significantly 

greater 

than 

zero 

for 
k 

greater 

than 

four. 
A 

Type 
II 

error 

occurs 

when 

this 

t-statistic 
is 

not 

significantly 

greater 

than 

zero 

for 
k 

less 

than 
or 

equal 
to 

four. 

The 

table 

shows 

the 

frequency 
of 

these 

two 

errors 
in 

200 

simulations. 

The 

first 

half 
of 

the 

table 

(Configuration 
A) 

estimates 

the 

t-statistics 

using 

idiosyncratic 

mean-squared 

return 
for 
k 

factors 

from 

even 

months 
of 

the 

sample 

and 
for 
k 
- 
1 

factors 

from 

odd 

months. 

The 

second 

half 
of 

the 

table 

(Configuration 
B) 

repeats 

the 

analysis 

using 

odd 

months 
to 

estimate 

the 

idiosyncratic 

mean 

square 

return 

for 
k 

factors 

and 

even 

months 

for 
k 
- 
1 

factors. 

There 

are 

1718 

assets 
in 

the 

cross-section 

and 

300 

time 

series 

observations 

(corresponding 
to 
25 

years 
of 

monthly 

data). 

"Non-January" 

"January" 

5% 

Confidence 

10% 

Confidence 

5% 

Confidence 

10% 

Confidence 

Configuration 
A 

k 

Empirical 

type 
II 

error 

frequencies 

(1-empirical 

power) 

1 

0.00 

0.00 

0.12 

0.02 

2 

0.01 

0.01 

0.70 

0.53 

3 

0.00 

0.00 

0.71 

0.54 

4 

0.00 

0.00 

0.75 

0.61 

k 

Empirical 

type 
I 

error 

frequencies 

(empirical 

size) 

5 

0.22 

0.36 

0.06 

0.13 

6 

0.17 

0.27 

0.07 

0.13 

7 

0.17 

0.29 

0.06 

0.13 

8 

0.17 

0.29 

0.06 

0.12 

9 

0.18 

0.26 

0.06 

0.13 

10 

0.14 

0.27 

0.10 

0.16 

11 

0.13 

0.25 

0.09 

0.18 

12 

0.12 

0.24 

0.09 

0.16 

13 

0.12 

0.22 

0.08 

0.17 

14 

0.13 

0.21 

0.08 

0.15 

15 

0.12 

0.19 

0.06 

0.13 
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Table 

V-Continued 

"Non-January" 

"January" 

5% 

Confidence 

10% 

Confidence 

5% 

Confidence 

10% 

Confidence 

Configuration 
B 

k 

Empirical 

type 
II 

error 

frequencies 

(1-empirical 

power) 

1 

0.00 

0.00 

0.11 

0.03 

2 

0.01 

0.00 

0.67 

0.51 

3 

0.01 

0.00 

0.68 

0.50 

4 

0.01 

0.00 

0.69 

0.53 

k 

Empirical 

type 
I 

error 

frequencies 

(empirical 

size) 

5 

0.15 

0.27 

0.09 

0.15 

6 

0.12 

0.24 

0.06 

0.15 

7 

0.10 

0.20 

0.09 

0.16 

8 

0.09 

0.16 

0.10 

0.16 

9 

0.10 

0.18 

0.09 

0.15 

10 

0.11 

0.18 

0.07 

0.14 

11 

0.08 

0.17 

0.06 

0.12 

12 

0.08 

0.15 

0.07 

0.13 

13 

0.08 

0.14 

0.06 

0.12 

14 

0.08 

0.19 

0.06 

0.11 

15 

0.09 

0.18 

0.08 

0.12 
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Table VI 

Regressions of the k th Estimated Factor on the 
Four True Factors 

(Average and Minimum R2 from 1000 Simulations) 
This table examines the fit of the asymptotic principal components estimated factors using 1000 
simulations of an exact factor model with four equally important factors. Sixty months of returns 
data are simulated for 1718 securities. Four factors are estimated on each simulated data set. 
For each of the 1000 simulations, each of the four estimated factors is regressed against the four 
true factors which generated the returns data. The table shows the averages of the 1000 R2's 
from these regressions and the minimum of the 1000 R2's. 

Estimated Factor: k Average R2 (%) Minimum R2 (%) 

1 99.870 99.727 
2 98.620 97.368 
3 98.058 95.236 
4 97.117 92.855 

non-January months, we find only one or two significant factors. Given the 
importance of January returns (both for expected returns and per annum 
volatility), we argue for a three- to six-factor model. 

Appendix 

Proof of Theorem 4: First we show that 

n 

plim - E oi =x LO r 
n - i-n 

for all x with x'x = 1. Using (6) note that: 

- E eit = - (AeA)tt [( - F) (I - F(FF F 
,n 

i-i nt 

1 
Since plim n -o = OWIT and (I- F'(FF')-1F) is idempotent this gives: 

n 

plim -Cee)tt = o (I - F'(FF') 1F)tt. 
no n 

Dividing by (I - F'(FF') -F)tt gives 

in 

plim Sit= 0> 

n-m i=1 

The steps are identical to show that 

i n 

plim - E A* = 
n ni=1 
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Since 6i is a linear combination of T different series each with plim equal to 
o-r, this implies 

1 n 

plim - OriX =x 'Jur. 
n-cxn in i 

Next we show that 6i is alpha-mixing of the same size as Z*. Consider the 
scalar series of random variables {e)7Jj T={e ,*** fiTn= 1 Using the defini- 
tion of alpha-mixing coefficients (see White (1984, Definition 3.42)) it is easy 
to see that {ej) is alpha-mixing of the same size as {ej). Note from (6) and (7) 
that {o-rix is a function of {ej? using fixed finite lags. By White (1984, Theorem 
3.49) {orixj is an alpha-mixing series of the same size as {ej). 

Given that orix is alpha-mixing of the same size as ei, and given (8) and (9), 
it follows from White (1984, Theorem 5.19) that 

1 n 

E (0iX - X Ic TO- 
i on i=l 

converges in distribution to a zero mean univariate Normal. 
We have shown that any linear combination x of n-1 /2( 0iM - (rT) with 

x'x = 1 converges in distribution to a zero mean univariate Normal. By the 
Cramer-Wold device (see, e.g., White (1984, p. 108)) this implies that 
n1-/2(6M - rLiT) approaches a multivariate Normal with zero means. Since 
n-1/2^n consists of the differences between the odd and even components of 
n -1/2( - a;T), it approaches a T/2-element multivariate Normal with 
zero means. C1 

Test Statistics with Estimated Factors 

The matrix of estimated factors has dimension k x T, and so is "small," 
relative to the sample size nT, as n goes to infinity. This allows us to prove 
that the estimation error in F does not affect the n-asymptotic distribution of 
our statistic, as long as the estimate of F is n-consistent. 

Define M = (I - F'(FF')-1F) and Mn = (I - F'(FF')1F). Let gffl denote 
the residuals estimated using the true factors, f = e'M, and f flnthe residu- 
als using the estimated factors, ifn = enMn + BnFM. Note that the het- 
eroskedasticity-corrected mean-squared residuals are 

diag( e n'/n)(diag(M))1 and diag( enen/n)(diag(Mn)) 

THEOREM 5: Given that plimn-(Fn - F) = 0 then 

dlim 1on diag(c c /n)(diag(M)) _ diag(?nI n/n)(diag(Mn)) ] ( 

Proof of Theorem 5: We show that dl - iMn)n= 

dlimn-on1n2(n- 'g - oCM) and then the result follows by considering the 
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diagonal elements of these two matrices. First consider the cross-product 
matrix of the residuals estimated with the true factors: 

dlim n /2(n - 1 o n M) = dlim ,0n,1 nn 2 ( n 1M ? - M) 

= M[dliMn,c,n 
1/2 (n -le n ? n 

I- a )M. 

The second equality uses the fact that M is symmetric and idempotent so 
that MM = M. Next consider the cross-product matrix of residuals estimated 
using the n-consistent estimated factors: 

dlim n (n M - oE M ) 

= dlim ~ ~n1/2(n -lMnent nMn + MnFnI-Bn'BnFMn- osM) (Al) 

Next we show that the middle term of (Al) disappears from the distribution 
limit, that is: 

dlim n -o n/2 (n - 1M nFB OB.FM) _ (A2) 

If gO is a function differentiable at plimn xn, then plimn Og(xn)= 
g(plim x n). Therefore, plimn Fn = F implies plim M n = M. Recall 
that, if Ln and Kn are sequences of fixed dimension random matrices, then 

dlimn _ _LnKn = (pliM n -L ndlimn -Kn) as long as plimn--oLn and 
dlim K n exist. Applying this to (A2): 

dlim n - ocn1/2 ( n- 1MnFB n ,B nFMn ) 

= plim M MF[dlimn ,n 

= MF[dlimn xn1/2(n- 1Bn 'Bn)]FM = 0 

where the last equality follows from MF = 0. Substituting (A2) into (Al): 

dlimn +7n1/2(n 1nZ_ n- dlimn nl/2(n 1pn2 Mnen'nMn- 

-dlimn - 
M Mn n2(n - 0-J IT)Mn 

(A3) 

where the last equality uses that M' is symmetric and idempotent. Applying 
dlimn cLnKn = (plim nx -Ln)(dlimnO -cKn) to (A3) implies that (A3) is equal 
to: 

plimnMn[dlimn xn1/2(n-nlen- M 

=M[dlimn nn/2(n- 's' _ JIT)] M. El 
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