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ABSTRACT 

An understanding of the photochemical and photo-physical processes, which occur during photo-polymerization, is of 
extreme importance when attempting to improve a photopolymer material’s performance for a given application.  
Recent work carried out on the modeling of photopolymers during- and post-exposure, has led to the development of a 
tool, which can be used to predict the behavior of a number of photopolymers subject to a range of physical conditions.  
In this paper, we explore the most recent developments made to the Non-local Photo-polymerization Driven Diffusion 
model, and illustrate some of the useful trends, which the model predicts and then analyze their implications on 
photopolymer improvement.   
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1. INTRODUCTION 
 
Extensive research and development of photopolymer materials and their photochemical kinetics [1-10] has been 
carried out in both academia and industry due to the growing interests in applications involving photopolymers [12-19].  
To maximise the potential of these materials, the provision of a physically comprehensive theoretical model of the 
effects occurring during and post- photo-polymerization is becoming ever more important.  Such a model will enable 
potential trends in a material’s performance to be recognized and optimised, [20-30].  An example of this is the two part 
paper published by Guo et al. [31,32] whereby chain transfer agents were added to reduce the effects of non-local 
polymer chain growth and hence improve the high density resolution of the photopolymer under examination.   
 
A recent publication by the authors [33] has presented a number of simulations of ratios of various key material 
components which offer possible methods to further improve photopolymer materials.  This model’s versatility has also 
been shown through its application to a number of other photopolymers, [34,35] including a material developed by 
Bayer MaterialScience (BMS), Germany.  In this paper we extend the Non-local Photo-polymerization Driven 
Diffusion (NPDD) model used in the analysis provided in Ref. [33], to generate a more physically accurate 
representation of the processes occurring during photo-polymerisation.  These extensions include;  

(i) time varying kinetic rates of reactions as a result of increased material viscosity (reduction in free volume),  
(ii) temporal and spatial variations in monomer and polymer diffusion due to increased material viscosity,  
(iii) full multicomponent analysis, inclusive of free space hole generation,  
(iv) independent monomer and crosslinker reactions and diffusion effects, 
(v)  inter-diffusion effects between monomers and free space holes.   

It must also be clearly noted at this point, that the model includes; (a) non-steady state kinetics, (b) spatial and temporal 
non-local polymer chain growth, (c) time varying photon absorption, (d) temporal and spatial primary radical 
generation, (e) the effects of both primary and bimolecular termination, and (f) polymerisation inhibitory effects.   
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This paper is structured as follows.  In Section 2 we examine the photochemical processes involved during holographic 
grating formation, implementing the various extensions to the model which are listed above.  The governing set of 
truncated first-order coupled differential equations for this more physically accurate improved model can then be 
generated.  Then in Section 3 by applying suitable initial conditions, the first-order coupled differential equations are 
solved numerically and simulations highlighting the predictions of the extended model are made.   
 

2. NPDD Model 
2.1 Photo-kinetics 
The photochemical processes, which are present during photo-polymerization, are complex; however an understanding 
of these processes is of utmost importance in the production of a material optimisation tool.  In a recent review, [30] 
many of the assumptions made in developing photochemical models of free radical photo-polymerisation were 
discussed and a number of physical effects which were not included in the current models were listed indicating a lack 
of physicality under certain exposure conditions.  Following the appearance of this review, a series of papers were 
published, [9-11] which addressed many of these issues and provided a model containing a consistent set of chemical 
reaction equations to take into account many of these neglected effects.  In this paper, we further develop and extend 
this NPDD model to include a number of the outstanding processes which were not included in this series of papers [9-
11].  The resulting reaction mechanisms which constitute this model are listed as follows in Eqs (1-4): 
I. Initiation, 

*DhD ka→+ υ , 

(1a) 

Dye LeucoZD Dkz→+ ,* , 

(1b) 

DD kr→* , 

(1c) 
••−•+• +→++→+ HDRDHRCID kd* , 

(1d) 

int2 CIDHHDCI kb +→+ • , 

(1e) 

HoleAMMR A
k

A
iA +→+ ••

,1 , 
(1f) 

HoleBMMR B
k

B
iB +→+ ••

,1 . 
(1g) 

where D represents the concentration of photosensitiser (dye), hν represents the photon energy incident on the material, 
D* is the excited state of the dye, CI is the co-initiator, R• represents the primary radical concentration, Z is the inhibitor, 
HD• represents a radicalised dye, which has abstracted a hydrogen from the co-initiator, and H2D is the di-hydro 
transparent form of the dye.  CIint is an intermediate form of the co-initiator, which is no longer available for reaction.  
kr (s-1) is the rate of recovery or regeneration of photo-absorber, kd (cm3mol-1s-1) is the rate of dissociation of the 
initiator, kb (cm3mol-1s-1) is the rate associated with photo-bleaching of the dye and kz,D (cm3mol-1s-1) is the inhibition 
rate constant associated with the reaction with excited dye molecules.  The rate of production of the excited state 
photosensitiser, appearing in Eq (1a) can be represented by '

0dIka φε=  (s-1), where φ (mol/Einstein) is the quantum 
efficiency of the reaction, ε (cm2/mol) is the molar absorptivity, and d (cm) is the material layer thickness [11].  If the 
photosensitiser’s initial concentration, molar absorptivity, quantum efficiency, and layer thickness are known, the rate 
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of generation of excited state photosensitiser, D*, can be determined for a given exposure intensity.  For a full 
examination of the steps involved in the Initiation mechanisms, see Ref [11].   

 

MA and MB represent the monomer and crosslinker concentrations respectively, •
AM ,1  and •

BM ,1  represent growing 
macroradicals (or chain initiator species) of length n = 1.  HoleA and HoleB denote the free volume vacuoles created by 
breaking the carbon double bonds when the monomer and crosslinker are polymerised.  The rates of initiation kiA and kiB 
(cm3mol-1s-1) incorporate the variation in the material’s fractional free volume as a result of the photo-polymerisation of 
the monomers and will be discussed in more detail later in the paper.   

II. Propagation, 

HoleAMMM n
k

An
pA +→+ •

+
•

1 , 
(2a) 

HoleBMMM n
k

Bn
pB +→+ •

+
•

1 . 
(2b) 

III. Termination, 
Polymer DeadMMM mn

k
mn

tc =→+ +
•• , 

(3a) 
Polymer DeadMMMM mn

k
mn

td =+→+ •• , 
(3b) 

Polymer DeadRMRM n
k

n
tp =→+ •• . 

(3c) 
In Eqs (2) and (3), •

nM , •
mM  and •

+1nM   represent growing macroradical chains of length n, m and n+1.  In the NPDD 
model discussed later, these growing macroadical chains (polymer) represent the number of carbon double bonds which 
are broken by polymerisation, but say nothing about the number of repeat monomeric units in the polymer chains.  

nM , mM , mnM + , MnR denote terminated polymer species with no active propagating tip, i.e. Dead Polymer.  ktc and 
ktd (cm3mol-1s-1) are the rate constants of termination by combination and termination by disproportionation 
respectively, which for this analysis will be combined into one kinetic constant kt.  We note that the polymer chains 
produced by the polymerisation of monomer, MA, and the polymer chains produced by the polymerisation of 
crosslinker, MB, are assumed to be of the same species with the same physical attributes, i.e. refractive index.   
 
The kinetic rate constants, kiA, kiB, kpA, kpB and kt, in Eqs (1), (2) and (3), are in general dependent on the viscosity of a 
photopolymer material.  As polymerization proceeds, the resulting increase in viscosity of the material, (due to 
densification and cross-linking), can cause a significant reduction in the mobility of large molecules, (growing polymer 
chains.  When the diffusional limitations become large enough to restrict the diffusion of growing polymer chains, they 
can no longer diffuse into close enough proximity to react with other macroradicals, and as a result the termination rate, 
kt, decreases.  This decrease in termination leads to a build-up in macroradical concentration, which subsequently 
causes a sudden increase in the rate of polymerization, which is known as autoacceleration, (gel or Trommsdorff 
effect), [35].  Once termination drops below a critical level, a different mechanism will become dominant, this 
mechanism is known as reaction-diffusion.   
 
Reaction-diffusion-controlled termination arises when termination is controlled by the ability of monomer, MA and 
crosslinker, MB molecules and to diffuse to the restricted active macroradical tips.  It occurs when the termination of a 
macroradical is faster and more likely to take place, due to the continued growth of a propagating chain (until it 
encounters another macroradical for bimolecular termination), than it is likely to diffuse to and thus ‘locate’ another 
macroradical chain for termination by bimolecular termination.  Since the controlling step in this termination 
mechanism relies on macroradical chain growth, (propagation through available monomer), the termination kinetic 
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constant becomes dependent on the propagation kinetic constant, as indicated in Eq (4), (an amended version of the 
analysis provided by Goodner et al.) [3,4], 
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(4) 
where kt0 is the initial termination kinetic constant in the absence of diffusional limitations, RDA and RDB are the reaction 
diffusion parameters defined as the termination kinetic constant in the reaction-diffusion region divided by the product 
of the initial propagation kinetic constant and the instantaneous un-reacted monomer, MA, or crosslinker, MB, 
concentrations.  
 

vf is the fractional free volume of the system, [3,4], and v
ctf  is the critical fractional free volume at which termination 

becomes diffusionally controlled and At is a parameter which governs the rate at which the termination kinetic constant 
decreases in this diffusion controlled region.  As the monomer and crosslinker molecules are converted to polymer, 
there is a resulting increase in the material’s viscosity.  This increase in viscosity results in a reduction in the amount of 
free volume in the photopolymer material and hence leads to diffusional limitations.  The variation in fractional free 
volume can be described using the equation, 

( )∑ −+= giiiemp
v TTff αφ , 

(5) 
where femp is an assumed empirical free volume of each of the components at their glass transition temperatures.  φi is 
the volume fraction of each constituent of the material, αi (L/C) is the expansion coefficient of each component, Tgi (C) 
are the glass transition temperatures of the components and T (C) is the local temperature.  All of these parameters can 
be readily measured or determined.   
 
Returning to the processes occurring during exposure, as the viscosity effects begin to increase further, the mobility of 
un-reacted monomer molecules, MA, and crosslinker molecules, MB, become even more limited.  Under these 
conditions, monomer and crosslinker can no longer easily diffuse to the reactive sites and as a result the propagation 
rates, kpA and kpB, and consequently the rate of polymerisation, decreases.  This effect is known as autodeceleration, 
[3,4,35].  Again following the work presented by Goodner et al., [3,4], on the effects of viscosity changes on the 
propagation, we write that, 
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(6b) 
where kpA0 and kpB0 are the initial propagation kinetic constants of monomer and crosslinker in the absence of 
diffusional limitations, v

cpAf and v
cpBf  are the critical fractional free volumes of monomer and crosslinker at which 



 5 

propagation becomes diffusionally controlled and ApA, and ApB are the parameters which governs the rate at which the 
propagation kinetic constants decreases in this diffusion controlled region.   
 
Similarly, the diffusion controlled kinetic constants for the rate of initiation, kiA and kiB, will be of the same form as the 
propagation rates, giving the expressions, 
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(7b) 
where, kiA0, kiB0 are the initial initiation kinetic constants of monomer and crosslinker in the absence of diffusional 
limitations, AiA and AiB are the rates at which the initiation kinetic constant decreases in the diffusion controlled region 
and v

ciAf and v
ciBf  are the critical fractional free volumes of monomer and crosslinker at which initiation becomes 

diffusionally controlled.   
 
It must be noted at this point that as the monomer and crosslinker are different species, with different behaviours, their 
kinetic constants will also differ.  Thus the onset of diffusional limitations and the rate at which the kinetic constants 
decrease in the diffusion controlled region will be different.  Simulations presented later in the paper will highlight these 
effects.   
IV. Inhibition, 

** *, ZLeucoDyeZD Dyez
k

+ →+ , 
(8a) 

( •• + →+ • ZRZR Rz
k

, , and/or ) Radical ScavengedRZ =• , 
(8b) 

( •• + →+ • ZMZM n
k

n
Mz , , and/or ) Polymer DeadZM n =• . 

(8c) 
In Eq (8), Z denotes the inhibitor concentration, •ZM n  represents polymer species which have no active propagating 
tip, i.e. Dead Polymer and Z* is the concentration of singlet oxygen [11].  As before the term Dead Polymer signifies 
the cessation of the growth of a propagating macroradical of n monomer repeat units, [35], while the term Scavenged 
Radical signifies the removal of a primary radical, [11]. 
 
2.2  Coupled Differential Equations 
When recording holographic gratings in photopolymers, a co-sinusoidal spatial distribution of irradiance is used, which 
can be represented as ( ) ( )[ ]KxVItxI cos1, '

0 += , where V is the fringe visibility and K = 2π/Λ, where Λ is the 

grating period.  The exposure intensity in (Einsteins/cm3s) is 







=

hcNd
BIT

I
a

sf λ0
0 ' , where I0 (mW/cm2) is the 

incident intensity, λ (nm) is the wavelength of incident light, Na (mol-1) is Avogadro’s constant, c (m/s) is the speed of 
light, and h (Js) is Plank’s constant.  ( )dDB 0exp1 ε−−= , is the absorptive fraction which determines a material 
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layer’s initial absorptive capacity and is a function of the dye’s initial concentration D0 (mol/cm3), Tsf a fraction 
associated with the light lost by Fresnel and scattering losses, and the material’s molar absorptivity and layer thickness 
[11].   

 

The spatial variation in irradiance sets up spatial concentration gradients of the constituents of the photopolymer 
through the photo-kinetic reactions presented in Section 2.1, yielding a set of first-order coupled differential equations 
which form the NPDD model.  These equations are presented in the following subsections, through Eqs (9–15) and Eqs 
(22) and (24-27), with all parameters and notation as presented above unless otherwise specified.  Note that all 
equations are coupled together, but have been grouped by relevance to make it easier for the reader to follow. 

 

2.2.1  Absorptive Species 

The first set of coupled differential equations deal with the absorptive species, which consists of the photosensitiser and 
the co-initiator with subsequent reactions and photo-products.   

( ) ( ) ( )txDktxDk
dt

txdD
ra ,,, *+−= , 

(9) 
( ) ( ) ( ) ( ) ( ) ( ) ( )txZtxDktxCItxDktxDktxDk

dt
txdD

Dzdra ,,,,,,, *
,

**
*

−−−= , 

(10) 
( ) ( ) ( ) ( ) ( )txCItxHDktxCItxDk

dt
txdCI

bd ,,,,, * •−−= , 

(11) 
( ) ( ) ( ) ( ) ( )txCItxHDktxCItxDk

dt
txdHD

bd ,,,,, * •
•

−= , 

(12) 
 
2.2.2  Oxygen Inhibtion 

As in the previous analysis, [9-11] it is assumed that the effect of inhibition during exposure is due solely to the initially 
dissolved oxygen present within the photopolymer layer.  The non-uniform recording irradiance causes concentration 
gradients of oxygen as it is consumed in inhibitory reactions.  This then results in the diffusion of oxygen from the dark 
non-illuminated regions to the bright illuminated regions.  As oxygen molecules are small compared to the other 
material components which constitute the photopolymer layer, it can be assumed that the oxygen is relatively free to 
diffuse rapidly, resulting in a one-dimensional standard diffusion equation for the concentration of inhibitor, 

( ) ( ) ( ) ( )txZtxDk
dx

txdZD
dx
d

dt
txdZ

Dzz ,,,, *
,−



=  

( ) ( ) ( ) ( )txMtxZktxRtxZk MzRz ,,,, ,,
••

•• −− , 

(13) 
where Z is the instantaneous inhibiting oxygen concentration and Dz is the diffusion constant of oxygen in the dry 
material layer, which in this analysis will be assumed to be time and space independent.  This assumption is reasonable, 
as this fast rate of diffusion of the small oxygen molecule will not be significantly affected by any small changes in 
material viscosity.  The inhibition rate constants, •Rzk ,

and •Mzk ,
, will in general have different values (of reactivity) 

due to the differences in the relative molecular size, [37].  However in this analysis, for the sake of simplicity we 
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assume •• == MzRzz kkk ,,
.  Furthermore it is expected that the reactivity of oxygen with the excited state form of the 

photosensitiser will be much lower, i.e. kz,D << kz and therefore we assume it is negligible.   
2.2.3  Primary Radicals 
The equation governing the concentration of primary radicals can be given by, 

( ) ( ) ( ) ( ) ( )txutxRktxCItxDk
dt

txdR
AiAd ,,,,, * •

•

−=  

( ) ( ) ( ) ( ) ( ) ( )txZtxRktxMtxRktxutxRk ztpBiB ,,,,,, •••• −−− , 
(14) 

where uA(x, t) and uB(x, t) are the monomer and crosslinker concentrations, (denoted earlier in the chemical reactions by 
MA and MB respectively).  This equation states that the rate of change of primary radical concentration is proportional to 
the concentration of primary radicals generated by photon absorption, minus the amounts removed by:  the initiation of 
macroradicals, by primary termination with growing polymer chains, and by inhibiting oxygen.   
 
2.2.4  Macroradicals 
With the inclusion of both types of termination mechanism (primary and bimolecular) and the effects of oxygen 
inhibition, the equation governing macroradical concentration is given by, 

( ) ( ) ( ) ( ) ( ) ( )[ ]2,2,,,,, txMktxutxRktxutxRk
dt

txdM
tBiBAiA

•••
•

−+=  

( ) ( ) ( ) ( )txMtxZktxMtxRk ztp ,,,, ••• −−  
(15) 

where again uA(x, t) and uB(x, t) denotes the monomer and crosslinker concentrations and the squared term on the right 
hand side represents the effects of bimolecular termination.  The generation terms in this equation previously appear as 
the removal terms due to macroradical initiation in Eq (14).   
 
2.2.5  Monomer, Crosslinker and Holes 
The effect of material shrinkage is a physical characteristic of the free radical polymerization process [3,35].  As briefly 
mentioned earlier, the covalent single carbon bond linking the molecules in a polymer chain can be up to 50% shorter 
than the van der Waals bond which exists between the monomer and crosslinker molecules in an unpolymerised state 
[36].  Thus, as polymerization takes place the overall density of the material increases rapidly (which causes a 
modulation in refractive index), and the material’s volume decreases causing shrinkage in the areas polymerised.  This 
shrinkage effect can lead to Bragg detuning between grating recording and replay particularly when recording unslanted 
or reflection type gratings and is therefore of crucial importance when attempting to model the behaviour of these 
photopolymers.   
 
Recently, much work has been carried out to account for the effects of shrinkage during and post holographic exposure 
in photopolymers [36-38].  Qi et al. [38] modelled the processes of material shrinkage using the concept of holes.  They 
suggested that free volume is created in the form of temporary holes, which then collapse instantaneously resulting in an 
overall reduction in the systems volume.  Sutherland et al. [36] extended this concept to account for the fact that 
shrinkage does not necessarily occur instantaneously by allowing for the collapse of the holes at some characteristic rate 
constant, depending on the material.  Karpov et al. [37] had, previous to this, also used the hole concept to model the 
shrinkage process.  However unlike the previous authors, Karpov et al. developed a two component PDD model which 
allowed for hole diffusion prior to their collapse.  Following on from this analysis, Kelly et al. [28] examined two 
methods to account for the shrinkage behaviour.  The first assumed that hole collapse occurs quickly as the vacuum is 
filled and therefore the diffusion of holes is negligible.  The second, included the effects of hole diffusion after they 
were create.  The predictions produced by both models were then examined and contrasted.   
 
In this analysis, we assume that as the monomer and crosslinker are polymerised the associated volume changes are 
accounted for by the creation of free space holes.  In this way, the total volume of the material is conserved throughout, 
yielding the expression,  
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( ) ( ) ( ) ( ) ( ) 1=+++++ ttttt HoleBHoleAbpmBmA φφφφφφ , 
(16) 

where φmA, φmB, φp, φb, φHoleA and φHoleB are the respective volume fractions of monomer, crosslinker, polymer, 
background, holes created by the polymerisation of monomer and crosslinker.  These volume fractions are determined 
using the expression, i i i i ii

x v x vφ = ∑ , where xi is the mole fraction and vi is the molar volume of the ith component.  

The material is therefore modelled as being made up of monomer, crosslinker, polymer, holes and an unchanging 
background material.  Also, it must be noted that the polymer volume fraction, φp(t), consists of the contributions of 
polymerised monomer, φpA(t), and polymerised crosslinker, φpB(t), as discussed earlier in Section 2.1, i.e., φp(t) = φpA(t) 
+ φpB(t).   
 
Furthermore, it is assumed that the volume fraction of monomer with time, φmA(t), is converted directly into the volume 
fraction of polymerised monomer, φpA(t), and holes, φHoleA(t), yielding the expression, 

( ) ( ) ( )ttt HoleApAmA φφφ += , 
(17) 

and the volume fraction of crosslinker, φmB(t), is converted directly into the volume fraction of polymerised crosslinker, 
φpB(t), and holes, φHoleB(t), 

( ) ( ) ( )ttt HoleBpBmB φφφ += . 
(18) 

Following on from the work presented by Karpov et al. [37] on multicomponent diffusion, it is then assumed that the 
diffusion of monomer and crosslinker into the bright regions of the interference pattern (in an attempt to equalising the 
concentration gradients), must be met with a counter flow of HoleA and HoleB, which is equal and opposite.  Thus the 
total net flux in the material is zero and the condition of total volume conservation is satisfied.   
 
We therefore construct a set of mutual diffusion equations, whereby the flow density of each component will be 
dependent on the concentrations of each of the other components and their gradients.  Assuming that the flow of 
monomer, juA is coupled to the flow of HoleA, jHoleA, with a mutual diffusion coefficient DmA, we obtain,  

( ) ( ) ( ) ( )[ ]txHoletxutxutxHoleDjj AAAAmAHoleAuA ,,,, ∇−∇−=−= , 
(19) 

where uA(x,t) and HoleA(x,t) are the concentrations of monomer and HolesA respectively.  The equivalent expression for 
mutual diffusion of the crosslinker, uB(x,t), and HoleB(x,t) concentrations can be given as, 

( ) ( ) ( ) ( )[ ]txHoletxutxutxHoleDjj BBBBmBHoleBuB ,,,, ∇−∇−=−= , 
(20) 

where DmB is the mutual diffusion coefficient associated with the flow of crosslinker, juB, and HoleB, jHoleB.  Note that as 
the crosslinker is much less mobile than the monomer, we expect that DmB < DmA.  If diffusion of holes is neglected, we 
see that Eqs (19) and (20) will return to a Fick’s law based relation.  In order to include the effects of viscosity on the 
diffusion coefficients DmA and DmB, a Doolittle-type equations is used to cast these diffusion coefficients in terms of the 
fractional free volume, f, which is presented in Eq (5), [39,40].  Thus yielding, 

[ ]fADD DmAmAmA /exp0 −= , 
(21a) 

and 
[ ]fADD DmBmBmB /exp0 −= , 

(21b) 
where, DmA0 and DmB0 are the pre-exponential factors for the diffusion of monomer and crosslinker respectively, and 
ADmA and ADmB are parameters which govern the rate of decrease of the diffusion of monomer and crosslinker with 
decreasing free volume.   
 
With the inclusion of the above, we can now construct the 1D diffusion equations for the monomer, crosslinker, holes 
and polymer.  The coupled differential equation representing the monomer concentration, uA(x,t) can be given by, 
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( ) ( ) ( ) ( ) ( ) ( ) ( )∫
∞

∞−

•• −−∇= '',,',',,,, dxxxGtxutxMktxutxRktxj
dt

txdu
ApAAiAuA

A , 

(22) 
where ∇juA(x,t) is the divergence of monomer and G(x,x’) is the non-local material spatial response function given by: 

( ) ( )







 −−
=

σπσ 2
'exp

2
1',

2xxxxG , 

(23) 
with σ as the constant non-local response parameter which is normalized with respect to the grating period, Λ.  As 
before [26], the non-local spatial response function represents the effect of initiation at location x’ on the amount of 
monomer polymerized at location x.   
 
The coupled differential equation representing the crosslinker concentration, uB(x,t) can be given by, 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫
∞

∞−

•• −−∇= '',,',',,,, dxxxGtxutxMktxutxRktxj
dt

txdu
BpBBiBuB

B , 

(24) 
where ∇juB(x,t) is the divergence of monomer.   
 
The corresponding coupled differential equations for the free space holes created by polymerisation of the monomer 
and crosslinker, i.e. HoleA(x,t) and HoleB(x,t) respectively, can then be given as, 

( ) ( ) ( ) ( ) ( ) ( )txutxMktxutxRktxj
dt

txdHole
ApAAiAHoleA

A ,,,,,, •• ++∇= , 

(25) 
and 

( ) ( ) ( ) ( ) ( ) ( )txutxMktxutxRktxj
dt

txdHole
BpBBiBHoleB

B ,,,,,, •• ++∇= , 

(26) 
where ∇jHoleA(x,t) is the divergence of monomer and ∇jHoleB(x,t) is the divergence of the crosslinker.   
The equation governing the polymer concentration can then be given by,  

( ) ( ) ( ) ( ) ( )∫
∞

∞−

•+



= '',,',',, dxxxGtxutxMk

dx
txdND

dx
d

dt
txdN

ApAN  

( ) ( ) ( )∫
∞

∞−

•+ '',,',' dxxxGtxutxMk BBp , 
(27) 

where the polymer diffusion coefficient, DN, is again represented in a Doolittle type equation [39,40] to account for the 
reduction in fractional free volume, f, as a result of polymerisation, where, 

[ ]fADD DNNN /exp0 −= , 
(28) 

where ADN represents the rate of decrease of the polymer diffusion with decreasing free volume, and DN0 is the pre-
exponential factor.  We note that the mobility of the polymer chains in the presence of an appropriate concentration of 
crosslinker is expected to be negligible, which will result in the production of stable holographic gratings, therefore DN 
<< DmB < DmA.   
 
Since the above coupled differential equations presented in Eqs (9-15), (22) and (24-27), depend upon the spatial 
distribution of the exposing intensity, they will all be periodic even functions of x and can therefore be written as 

Fourier series, i.e., ( ) ( ) ( )∑
∞

=

=
0

cos,
j

j jKxtXtxX , where X  represents the species concentrations, D, D*, CI, HD•, 
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R•, M•, uA, uA, HoleA, HoleB, N and Z.  A set of first-order coupled differential equations can then be obtained in the 
same manner presented in Refs [9-11], by gathering the coefficients of the various co-sinusoidal spatial contributions 
and writing the equations in terms of these time varying spatial harmonic amplitudes.  These coupled equations can then 
be solved using the following initial conditions,  

( ) 00 0 ZtZ == , ( ) 00 0 DtD == , ( ) 00 0 CItCI == , ( ) 00 0 AA Utu == , ( ) 00 0 BB Utu == , 

( ) ( ) ( ) ( ) 00000 00
*

00 ======== >
•
≥≥> tCItHDtDtD nnnn , and 

( ) ( ) ( ) ( ) ( ) ( ) 0000000 000000 ============ ≥≥≥
•
≥

•
≥> tNtHoletHoletMtRtZ nnBnAnnn . 

(29) 
As in previous analysis, the Fourier series expansion of the monomer and polymer harmonics involve the use of the 
non-local response parameter G(x,x’) which is represented in the coupled differential equations by 

( )2/exp 22 σKiSi −= .   
 
In the next section we examine some predictions generated as a result of the developments made to the NPDD model.   
 

3. MODEL PREDICTIONS AND CONCLUSIONS 
 
Utilising the developed NPDD derived in the previous section, we now look at some of the key new predictions that the 
model can produce, indicating the increased physicality of the model.  The first of these is shown in Figure 1, whereby 
the time evolution of the first two normalised spatial concentration harmonics of the monomer, uA and crosslinker, uB 
are presented.  The exposure intensity used is I0 = 1 mW/cm2 at a spatial frequency, SF = 1428 lines/mm, with fringe 
visibility, V = 1 in an acrylamide based photopolymer material such as those examined in Refs [9-11].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1(a). Simulation of the first two spatial concentration harmonics of monomer, uA (red curve) and crosslinker, uB (blue curve).  

Figure 1(b) shows the temporal variation of propagation and termination rates against monomer and crosslinker conversion.  Red 
squares represent, kpA, Green circles represent, kpB, Blue triangles represent, kt, (scaled down by a factor of 50 for illustration). 

 
As can be observed in Figure 1(a), as the exposure time, t (s) is increased, the normalised monomer and crosslinker 
concentrations, uA and uB, decrease, due to photo-polymerisation.  As discussed in Section2, this polymerisation causes 
an increase in the material’s viscosity, which acts to decrease the rate at which polymerisation proceeds.  This decrease 
occurs due to the reduction in the kinetic rates of initiation, propagation and termination, and the fall off in diffusional 
effects with the reduced fractional free volume.  Examined Figure 1(b), we see the effect of viscosity on the kinetic 
rates, kpA, kpB and kt.  Analysing the propagation rate of the monomer, kpA, we see that as the conversion of carbon 
double bonds (monomer to polymer) reaches ~ 40% a dramatic reduction in its rate can be observed.  This is the point at 
which diffusional limitations set in.  The same effect occurs for kpB but at an earlier conversion due to the complex 
structure of the crosslinker and its low mobility.  Analysing kt we see that its evolution is not as simplistic.  There is an 
initial drop off which is caused by growing polymer chains experiencing diffusional limitations and autoacceleration 

0 50 100 150 200
20

0

20

40

60

80

100

ts













0 20 40 60 80 100
0

2107

4107

6107

8107

1108

Conversion

kp
,k

t

uA0 

uB0 

uA1 uB1 

(a) (b) 

kt 

kpA 

kpB 

t (s) (%) 

Normalised Conc. 



 11 

occurs.  Then the effect of reaction-diffusion termination starts to dominate and the initial rapid decrease is curtailed.  
Examining Eq (4), we see that this corresponds to proportionality between the reaction-diffusion termination and the 
unreacted monomer and crosslinker concentrations, which decrease as the exposure continues.  Then as the propagation 
rates, kpA and kpB, start to decrease in the autodeceleration region, kt starts to decrease in proportion with the reaction-
diffusion.  The effects of the variations in the kinetic rates presented in Figure 1(b) can be easily observed in Figure 
1(a), inclusive of the rapid removal of monomer and crosslinker leading to autoacceleration, followed diffusional 
limitations leading to autodeceleration.  Taking a brief look at the first harmonics of the monomer and crosslinker in 
Figure 1(a), we note the presence of diffusion effects which act to equalise the concentration gradients set up by 
polymerisation.  It can be clearly seen that the viscosity effects have caused a reduction in the mobility of monomer 
molecules, and more significantly a severe reduction to the movement of the larger crosslinker molecules.   
 
A lot of work still remains to be done, including a full examination of the predictions of this NPDD model.  In 
particular; a) a full analysis of the effects of viscosity on the refractive index modulation, b) the effects of the 
introduction of free space holes, and c) an examination of the effects of operating temperatures and various 
concentration ratios to optimise material performance.   
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