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Abstract

Understanding the relationship between queueing delays and link utilization for general traffic conditions is an important open
problem in networking research. Difficulties in understanding this relationship stem from the fact that it depends on the complex
nature of arriving traffic and the problems associated with modelling such traffic. Existing AQM schemes achieve a “low delay”
and “high utilization” by responding early to congestion without considering the exact relationship between delay and utilization.
However, in the context of exploiting the delay/utilization tradeoff, the optimal choice of a queueing scheme’s control parameter
depends on the cost associated with the relative importance of queueing delay and utilization. The optimal choice of control
parameter is the one that maximizes a benefit that can be defined as the difference between utilization and cost associated with
queuing delay. We present two practical algorithms, Optimal Drop-Tail (ODT) and Optimal BLUE (OB), that are designed with
a common performance goal: namely, maximizing this benefit. Their novelty lies in fact that they maximize the benefit in an
online manner, without requiring knowledge of the traffic conditions, specific delay-utilization models, nor do they require complex
parameter estimation. Packet level ns2 simulations are given to demonstrate the efficacy of the proposed algorithms and the
framework in which they are designed.
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1. Introduction

Measurements from a number of sources suggest that
traffic generated by TCP users accounts for 85-95% of the
Internet traffic [5,7]. Van Jacobson’s congestion control al-
gorithm [14] is one of the main reasons for the robustness of
the Internet and the prevention of the congestion collapse
over last two decades. Given the success of TCP and the sta-
bility of the current Internet, it is unlikely that other, con-
ceptually different, transport protocols will replace TCP in
the near future.

Most Internet routers use FIFO Drop-Tail buffers. Cur-
rent router buffers are generally sized by the rule-of-thumb
given in the Villamizar&Song paper [30]: router buffers re-
quire approximately space for B = RTT×C packets, where
RTT is the “average” round trip time for connections that
use the link and C is capacity of the link. Following this
rule, most router buffers are designed in such a fashion that
they result in up to 100ms to 250ms of queueing. This,
together with TCP’s mechanism of congestion avoidance,
serves to ensure a high link utilization. In the last few years
several studies related to buffer sizing for congested routers
have appeared. It is claimed in [1] that the amount of buffer

space required for high link utilization can in some circum-
stances be far less than that suggested by the Bandwidth-
Delay-Product rule. However, it is also shown in this paper
that the required buffering highly depends on the number
of active flows using the link. In particular, briefly, assum-
ing a single congested link topology, and N homogenous,
unsynchronized, long TCP flows, with a “typical” 1 round
trip time RTT , then the buffer space required for a link
utilization of u · C is given by:

BAKM (u) = A(u)
RTT × C√

N
. (1)

Here, A : (0, 1) 7→ (0,∞) is a real function for which
A(0.99) ≈ 1 and A(0.9999997) ≈ 2. One should note that,
although the bound (1) is derived in the context of drop-
tail queues, it is also applicable to other AQM schemes as
well. Namely, in order to ensure utilization of u · C, one
needs a physical buffer space for accommodating packets
of N unsynchronized TCP flows, given by (1).

1 It is suggested in [3] that in environments without synchronization,
one should use harmonic mean of the RTTs of the active connections
as ”typical” RTT.
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t t1 t2 t3 t4

aQd(t)(sec) 0.1 0.02 0.005 0.001

u(t) 1.00 0.98 0.90 0.60

Table 1
Synthetic example of aQd(t) and u(t) for 4 different possible choices
of parameter t.

Although the bound (1) yields important theoretical
insights into the relation between link utilization and the
required buffering it is not immediately applicable to size
buffers in the real Internet routers for a number of reasons.
Firstly, the bound (1) depends on the number of active
users that are bottlenecked at the link, as well as their RTT
distribution. These quantities vary, and are also usually
hard to estimate. Secondly, the mathematical assumptions
used in deriving (1) are not realistic and do not take into
account the various and variable traffic mixes possible,
the level of synchronization, the existence of non-TCP
traffic, etc. Most importantly, while it is useful to know
that delay and utilization are related in some manner, it
is not immediately clear how to utilize this relationship in
a meaningful manner. Specifically, an important practical
question that arises in the queue management design is:

(*) “What is more important: low queueing de-
lays or high utilization?”

This question arises particularly in the context of Ser-
vice Level Agreements (SLA); we refer interested reader to
the measurement study [27]. To illustrate the question (∗),
consider the following hypothetical example. Suppose that
for a given traffic mix, the relation between average queue-
ing delays (aQd) and utilization (u) is given in Table 3:

In this table, t is some parameter that defines the queue
management scheme. For example, t can be interpreted as
available buffer space, or the per packet drop probability.
Now, the important practical question is, which t should a
network operator chose under this traffic mix? The answer
to this question depends on the relative importance of uti-
lization and queueing delays. To formalize this notion we
can define the benefit B(t) as the difference between uti-
lization and cost a network operator is willing to pay that is
an increasing function of queueing delays. Having defined
this cost function, which specifies formally the tradeoff be-
tween utilization and delays, the problem then becomes
that of choosing the optimal queueing scheme parameter t.
This is a problem of maximizing the benefit B(t) and can
be solved in an optimization framework. In the Section 3
we will formalize the framework described above.

As we already noted, although there exist number of
mathematical models [1–4] that can give us some insight
into the delay-utilization relationship, it appears extremely
hard to evaluate this relationship for general traffic envi-
ronments. Moreover, even if one has reasonably accurate
theoretical predictions between delay and utilization for
a given traffic mix, these predictions would certainly be a
function of traffic parameters such as the number of ac-

tive flows, the number of active TCP flows, the proportion
of TCP traffic, per flow responsiveness, the distribution
of round trip times, the level of loss synchronization, the
level of congestion on other links in the network, etc. From
a measurement point of view, estimation of these quan-
tities is very demanding and requires significant amount
of computational and physical resources [6,16,17,29]. We
summarize the discussion from this paragraph with the
following statement to briefly describe a difficultly in ap-
plying the existing models on real-world Internet links.

(**) “It is highly nontrivial to predict or estimate
in real-time, relation between queueing delays and
utilization, for congested high-speed Internet links.”

Having (∗∗) as the starting point, we will try to maxi-
mize overall the benefit B(t) online rather than estimating
the delay-utilization relationship. In this paper we propose
two practical queue management schemes that have the
same common goal: namely, maximizing the benefit B(t),
by controlling the parameter t online. In the first scheme,
called Optimal Drop-Tail (ODT), t is the maximum avail-
able buffer space in the FIFO Drop-Tail queue, while in the
second scheme, called Optimal BLUE (OB), the parameter
t is the probability that an arriving packet is dropped.

The rest of the paper is organized as follows. Exist-
ing models of the delay-utilization relationship and AQM
schemes are disscused in the Section 2. In Section 3 we de-
fine the optimization problem to be addressed and provide
a theoretical analysis of the possible approaches to solv-
ing it. The queue management schemes Optimal Drop-Tail
and Optimal BLUE are introduced in Sections 4 and 5 re-
spectively. In Section 6 we provide detailed packet level ns2
simulations to show behavior of both ODT and OB. Fi-
nally we summarize our findings and discuss open issues in
Section 7.

2. Previous work

In this section we discuss existing models for the delay-
utilization relationship as well as Active Queue Manage-
ment schemes that aim to reduce queueing delays.

Models. Over the last few years, a number of models
have been proposed to estimate the relationship between
queueing delays and utilization. Most of these consider the
problem of sizing FIFO Drop-Tail buffers for achieving a
certain level of link utilization under the assumption of a
single bottleneck link servicing N long TCP transfers. In
[1] the authors give a O( 1√

n
) bound (1). Another bound

of this type is given in [2]. It is showed there (under the
assumption of N unsynchronised homogenous TCP users
with the same round trip time RTT ) that to achieve 100%
of utilization one needs a buffer size of :

BAAP =
(RTT × C)2

2N(4N − 1)2
≈ (RTT × C)2

32N3
. (2)
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The bound (2) is derived from a fluid model which as-
sumes full unsynchronization (ie. only one source loses
packets per congestion event). The authors [4] are even
more optimistic and claim that if TCP users have bounded
the maximal congestion window maxcwnd−, then the
needed queue size for achieving high throughput is of form
of O(log(maxcwnd−)). Such an approach assumes a low
maximum cwnd−, or equivalently a high loss rate, and
does not allow high speed connections[10,19].

Another important problem that could result from extra
small buffers is the problem of extreme unfairness between
flows. To see this, consider a congested link, without per-
flow management, with a loss rate p and an average queue-
ing delay d0. From the square root formula [25], the sending
rate (in packets per second) of flow with base RTT given
by RTTb is equal to

r = θ
1√

p(RTTb + d0)
. (3)

Bearing in mind that a typical range for base RTT’s
spans a few microseconds to several seconds, and assum-
ing that d0 is in range of few microseconds (as suggested
in all-optical framework in [31,4]), then this would imply
unfairness between competing connections in the range 1 :
105. In such situations, long-RTT connections would suffer
heavily, and will not have any benefit in reducing queue-
ing delays. Allowing a few milliseconds of queueing delays
would decrease unfairness level to range 1 : 100, which is
several orders of magnitude more acceptable.

A very different approach has been presented in [3].
Namely, they suggest that an important performance met-
ric in dimensioning router buffers is loss rate. By exploiting
the window based nature of the TCP congestion control
algorithm, they provide bound for buffer sizes that ensure
loss rates lower than certain, prescribed, value.

As we already have noted, the insight obtained by the-
oretical analysis of proposed models is highly valuable for
understanding the problem of interest, but there is signifi-
cant gap between them and their application in real Inter-
net links.

AQMs. Active queue management generally stands for
a mechanism that has, as its ultimate objective, of keep-
ing utilization as high as possible without incurring “large
queueing delays”. In TCP environments, the main cause
of low utilization is synchronization. By breaking synchro-
nization and responding early (but not “too early”), AQM
schemes like RED, BLUE, PI and AVQ, aims to achieve
high throughput together with low delays. However, no ex-
isting AQM takes in account the interaction between queue-
ing delays and utilization. Low queueing delays and high
utilization are mainly an ad hoc consequence of early re-
sponse, rather than a formal performance goal.

3. Optimization framework

Lets go back to the example from the introduction illus-
trated in Table 1. For simplicity, assume for the moment
that the parameter t is the available buffer space on the
congested FIFO Drop-Tail queue; for buffer size equal to
t1 the average queue delay is 100ms and the utilization is
100%, for buffer size equal to t2 the average queue delay is
20ms and the utilization is 98%, and so on. Which choice
of t is optimal (among 4 possible in this example), depends
on the “importance” of low queueing delays. To formalize
this, one can identify the “importance” by the relative price
between utilization and queueing delays. Let P : [0,∞) 7→
[0,∞) be a function that specifies relative price between
utilization and delays. In other words, a queueing delay of
d seconds has same price as utilization of P (d). Formally,
a price function is any function that satisfies the following
definition.
Definition 1 The function P : [0,∞) 7→ [0,∞) is a price
function if it is twice differentiable, increasing and convex.
In other words if:
(a) ∀d ∈ [0,∞) ∃P ′′(d)
(b) ∀d ∈ [0,∞) P ′(d) ≥ 0
(c) ∀d ∈ [0,∞) P ′′(d) ≥ 0

The following simple technical lemma will be useful in
later discussion.
Lemma 1 Let E ⊂ R be a segment (E = [a1, a2] for some
real a1 and a2). If f : E 7→ [0,∞) is a twice differentiable,
convex function and P an arbitrary price function, then
P ◦ f : E → [0,∞) is convex as well.
Proof The proof is straightforward. It is enough to prove
that (P (f(t))′′ ≥ 0 for all t ∈ E.

(P (f(t))′′ = (P ′(f(t)) · f ′(t))′ =

P ′′(f(t)) · (f ′(t)))2 + P ′(f(t)) · f ′′(t) ≥ 0.

2

Having defined a price function, the overall benefit, in the
case given by the parameter t, can be written in the form:

B(t) = u(t)− P (aQd(t)). (4)

The definition of benefit allows us to define a notion of
optimal choice, as the value of t that maximizes the benefit.
Formally:
Definition 2 For a given price function P and set T of pos-
sible choices of t, an optimal Delay-Utilization(D-U) choice
is any t0 such that

B(t0) = max{B(t) | t ∈ T }, (5)

if the maximum on the right hand side exist.
Comment. In the rest of the paper we will consider

exclusively the following two cases: (1) the set T is finite;
then the maximum in (5) clearly exists; (2) the set T is
closed and bounded in metric space R, and B : T 7→ R
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is continuous function - in this case the maximum in (5)
exists as well.

In the example given in Table 1, if we completely ignore
the importance of low queueing delays, by setting P (d) ≡
0 for all d, then the optimal D-U choice is given by t1,
as this maximizes the benefit B(t) = u(t) − P (aQd(t)) =
u(t) on the set T = {t1, t2, t3, t4}. For the price function
P (d) = 5 · d, the optimal D-U choice is t2, and for the
price function P (d) = 100 · d, the optimal D-U choice is
t4. Linear price functions P (d) = γ · d, are a simple way of
specifying the relative price of queueing delays in sense that
a% of utilization is equivalent with a·0.01

γ sec = 10·a
γ msec

of queueing delays. Thus, a high γ gives high importance
of low queueing delays, while a low γ gives priority to high
utilization.

Throughout this paper we assume:
Assumption 1 Under static traffic conditions the overall
benefit given by (4) is a concave function of t.

In the previous discussion, we have referred to t as a pa-
rameter which defines a queueing scheme. In later sections
we will be concerned with the following two cases:

Case A. tS defines the available buffer space, and pack-
ets are queued in Drop-Tail queue of size tS .

Case B. tp defines the drop probability, and each packet
is dropped on arrival with probability tp.

In the next two sections we present two queue manage-
ment algorithms: Optimal Drop-Tail (ODT) and Optimal
BLUE (OB). Both of these have a common performance
goal: to maximize the overall benefit given by (4). ODT
achieves this goal by adaptation of the available buffer
space, while OB tunes the drop probability tp in order to
maximize B(tp).

Comment. Other approaches might be possible as well.
For example, in the framework of Virtual Queue (VQ)
schemes [12], t can be seen as virtual queue capacity. Fol-
lowing our optimization methodology, one can design an
virtual queue management algorithm by adapting the vir-
tual queue capacity subject to the performance goal that
maximize the benefit B(t) rather than keeping the utiliza-
tion at certain level γ as it has been done in the Kunniyur
and Srikant’s AVQ [23] algorithm.

In the rest of this section we discuss the validity of the
Assumption 1, the existance/uniqueness of optimal D-U
choice and possible strategies for online solving optimiza-
tion problem (5).

Assumption 1 is very hard to formally check. In a the-
oretical framework, this would require accurate models of
various traffic mixes, and as we already noted, modelling
such complex environments is highly nontrivial. Some re-
sults related to the convex relationship between utilization
and buffer size in non-elastic traffic environments are devel-
oped in [21,22]. However, our empirical observations sug-
gest that for the traffic mix that is consisted from the static
number of TCP and UDP flows, Assumption 1 holds in
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both Case A and Case B. To illustrate this we run two sets
of packet level ns2 simulations, and evaluate the utilization
and the average queueing delay.

Simulation A. In the first set of simulations, we consider
a FIFO Drop-Tail queue with a service rate of 10MBps
and size of tS packets. This queue is shared by 50 TCP
connections with round trip times uniformly distributed in
range [20, 220]ms and with packet size of 1000 bytes. We
varied tS from 1 to 300 packets, and plotted u(tS) and
aQd(tS) in Figure 1. The convexity of aQd(tS), by Lemma
1, implies the convexity of P (aQd(tS)), and this together
with concavity of u(tS) implies concavity of the benefit
B(tS), for arbitrary price function P .

Simulation B. In the second set of simulations, we con-
sider a queue with service rate of 10MBps, of size of 10000
packets (so that no packet is dropped because of overflow),
such that every packet is dropped with probability tp on
the arrival to the queue. This queue is shared by the same
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Fig. 3. d∆(k) (top), and d∆(k) (bottom); ∆ = 2sec, qw = 0.2.

set of 50 TCP connections as in first simulation. We varied
tp in the range [10−3, 10−2], and plotted u(tp) and aQd(tp)
in Figure 2. As in the previous case, convexity of aQd(tp),
together with concavity of u(tp) implies concavity of the
benefit B(tp), for arbitrary price function P .

Convex optimization has been widely employed in the
networking community. For example, optimization meth-
ods are essential in the analysis and design of distributed
congestion control algorithms [28,18]. In our case, we need
efficient algorithms for solving (5). A standard control
strategy for solving (5) is given by

ṫ = g(t) ·B′(t), g(t) ≥ ε > 0, (6)

or its discrete version:

t(k + 1) = t(k)
(

1 + g(k)
B(t(k))−B(t(k − 1))

t(k)− t(k − 1)

)
, (7)

g(k) ≥ ε > 0.

The problem with employing one of these strategies in
the present case is twofold. First, as we do not have ex-
plicit relationship between t and B(t), we can not instantly
compute the derivative B′(t). Second, the signal to noise 2

ratio in measuring of both queueing delays and utilization
can be very large especially in the neighborhood of the so-
lution of (5). This would potentially imply low confidence
in the estimation of B′(t) in the neighborhood of the so-
lution of (5). One approach to this problem is the use of
larger sampling times and low pass filter for smoothing out
the results. To illustrate the level of noise one can expect in
queue measurements we ran the following ns2 simulation.

Simulation C. We consider the same setup of 50 TCP
flows competing over a link with service rate of 10MBps,
as in Simulation B. We drop each packet on arrival with

2 By definition B(t) is function of average utilization u(t) and aver-
age queueing delay aQd(t). Instantaneous utilization (queueing de-
lay) can be seen as random variable that is sum of u(t) (aQd(t)) and
appropriate zero mean random variable, that we refer to as noise.
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constant probability tp = 0.005. The quantities of interest
are the following: d∆(k) is the average queueing delay in
the k-th sampling period [(k− 1)∆, k∆], and the weighted
average d∆(k), with weighting factor qw, given by:

d∆(k) = (1− qw) · d∆(k − 1) + qw · d∆(k).

Figures 3 and 4, depict measured values of d∆(k) (left
top) and d∆(k) (left bottom) from the simulation, for ∆ =
2sec and ∆ = 5sec. The right hand side plots show the
histograms of quantities depicted on left plots.

We observed a similar level of noise in measurements of
link utilization. We also ran the same simulation over Drop-
Tail instead of constant drop rate queues, and the level
of noise in queueing delay and utilization measurements
are approximately of the same order of magnitude as in
Simulation C.

In the next two sections we will present two novel queue
management algorithms for which the performance goal is
given by maximization of the benefit defined by (4). The
first one, Optimal Drop-Tail(ODT), achieves this goal, by
adaptation of tS - the available Drop-Tail queue space,
while the second one, Optimal BLUE(OB), adapts tp - the
per packet drop probability. Both ODT and OB use a form
of MIMD 3 algorithm, where at the end of each sampling
period control variable t (that is tS or tp) is updated by the
rule:

t(k + 1) = t(k) ·m(k). (8)

where m(k) is either α or 1/α, for some α greater 1,
and m(k) determines direction in which t should go. Al-
gorithms of this type cannot settle to constant value, but
rather continuously search for the point on the grid Tα =
{t(0) · αn, n ∈ Z}, that maximizes B(t), t ∈ Tα. However,
choosing α to be close to 1, the point on the grid Tα that
maximizes B(t) will be close to the global optimal value.

3 Multiplicative Increase Multiplicative Decrease.
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4. Optimal Drop-Tail

Drop-Tail queueing is the scheme that is employed by the
majority of the current Internet routers. Drop-Tail queues
have a single parameter S that determines the available
size 4 of the queue, and is usually manually configured by
a network operator. The following simple observation is
the basis for the spectrum of algorithms presented here.
That, by controlling the value tS - available queue size 5 ,
the objective of achieving certain performance goals, given
in terms of utilization and queueing delays, can be met.

By controlling tS, one can control both utilization
and queueing delays.

For example, if the performance goal is given by keeping
the average utilization at a certain level λ, one can design a
strategy for achieving that goal by controlling tS . Similarly,
if the performance objective is keeping the average queueing
delay (at the times of congestion) at a prescribed level d0,
another control strategy can be designed for solving that
problem. At this point we should note that by controlling
tS one can control not only utilization and queueing delays,
but also other (important) performance metrics such as
jitter and loss rate. Embedding them into an optimization
framework could be done in straightforward manner, but
is out of scope of the present paper.

Following the delay-utilization optimization framework
developed in the previous section, the performance goal of
interest will be the maximization of the benefit B(tS). We
proceed by presenting an ODT algorithm, a strategy with
that performance goal.

The ODT algorithm controls the variable tS that repre-
sent available queue size. In other words, on every packet
arrival, a packet is dropped, if by its enqueuing to the ex-
isting queue, the queue length would be greater than tS ,
otherwise the packet is enqueued. The value tS is updated
once per sample time period (∆) in the following manner:

tS(k + 1) = tS(k) ·m(k), (9)

where m(k) is defined by:

m(k) = α, if
B̂(l(k))− B̂(l(k − 1))

tS(k)− tS(k − 1)
≥ 0, (10)

m(k) =
1
α

, if
B̂(l(k))− B̂(l(k − 1))

tS(k)− tS(k − 1)
< 0. (11)

Here, α > 1 is a constant parameter, close to 1. The
choice of α determines the responsiveness of the algorithm.
Since tS is either multiplied with α or divided by α, in
each step k, tS(k) = tS(0) · αl(k), for some integer l(k). By
B̂(l(k)) we denote the estimated value of B(x) at the point

4 Size can be configured in either bytes or packets.
5 We write tS instead S to distinguish cases between variable queue
size (for which we use tS) and constant queue size (for which we use
S).

x = tS(k) = tS(0) · αl(k). Algorithms of this type can be
seen as a version of (7) that do not allow arbitrarily small
steps. Strategies of the form of (7) are inappropriate in the
our problem for the following two reasons. First, any al-
gorithm of type (7) that allows very small changes in the
parameter tS would suffer from a high noise to signal ra-
tio around global maximum of B(tS), and would require
long time for accurate estimation of B in the neighbor-
hood of the global maximum. Second, it has been proved in
[26], using information-theoretical techniques, that any al-
gorithm for finding an optimum using noisy observations of
a benefit function has slow expected convergence. Namely,
O(ε−4) queries have to be made before one can ensure
ε-accuracy in the estimation of the optimum x∗. Under
dynamic, Internet-like traffic conditions, frequent (small)
changes of the traffic patterns might not allow such algo-
rithms to converge, and can potentially cause undesirable
large oscillations.

Algorithms of the form of (9) that do not converge to
the certain value, but rather continuously search for the
optimal value have been extensively used in the networking
literature. Examples of such algorithms are AIMD 6 cwnd−
control in TCP [14], AIAD algorithm for controlling the
drop probability in BLUE[9] as well as MIMD algorithm
for the adaptation of RED parameters in Self-Configuring
RED [8].

Now we proceed by describing the technique for estima-
tion of B̂(l(k)).

In every sampling interval, we have that tS(k) = t(0)αl(k)

for some integer l(k), and this integer is uniquely deter-
mined. In other words the mapping between the set of
all possible values of tS , Tα, and set of integers given by
t(0)αm 7→ m is bijective. This allows us to use the history
at each possible value of tS(k) independently for comput-
ing the estimate B̂(l(k)). For each possible integer m we
will keep the value: n−(m) which is the number of sample
intervals within previous W0 sampling intervals for which
l(k) was equal to m. Thus at sampling interval k we have:

n−(m) = #{k1 : k1 ∈ (k −W0, k], l(k1) = m}.
Denote by ˜B(k) the instantaneous benefit in the k-th

sampling interval : [(k − 1)∆, k∆], i.e.:

˜B(k) = ũ(k)− P (d̃(k)),

where ũ(k) and d̃(k) are the instantaneous utilization and
queueing delay in the k-th sampling interval respectively,
we will estimate B̂(l(k)) using the following weighted aver-
age:

B̂(l(k)) = û(k)− P (d̂(k)), (12)

where:

û(l(k)) =
1

n−(l(k))
û(l(k)) + (1− 1

n−(l(k))
)ũ(k),

6 Additive Increase Multiplicative Decrease.
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and

d̂(l(k)) =
1

n−(l(k))
d̂(l(k)) + (1− 1

n−(l(k))
)d̃(k).

The rationale for the estimation technique given by (12)
is the following. If some m has a large number of occupan-
cies in the recent history of l(k) then this indicates that the
corresponding tS = tS(0)αm is close to the optimal value
and a finer estimation of the benefit is required. If m has
a small number of appearances in the previous W0 sam-
pling periods we need less accuracy, but a faster response
to changes in the traffic conditions. If m had no appear-
ances in the previous W0 sampling periods, all history will
be forgotten in the future estimation of B̂(tS(0)αm).

We use one additional correction step, that is rarely
needed under static conditions but is important for im-
proving accuracy for new values tS that have had very few
visits in the recent history. Namely, we do not allow non-
monotonicity in the estimation of û and d̂. Set i = l(k).
Then:

if û(i) > û(i + 1) or û(i) < û(i− 1) then

û(i) =
n−(i− 1)û(i− 1) + n−(i)û(i) + n−(i + 1)û(i + 1)

n−(i− 1) + n−(i) + n−(i + 1)
,(13)

if d̂(i) > d̂(i + 1) or d̂(i) < d̂(i− 1) then

d̂(i) =
n−(i− 1)d̂(i− 1) + n−(i)d̂(i) + n−(i + 1)d̂(i + 1)

n−(i− 1) + n−(i) + n−(i + 1)
.(14)

Recall that n−(m) represents the number of sampling
periods k, in the recent history (driven by sliding window of
size W0), in which l(k) was equal to m. We have a confidence
in the estimate of û and d̂ that is roughly proportional to
n−. This is exploited in (13) and (14).

Note that we need to store four sequences, aug (augment-
ing sequence of length W0 for computing n−), n−, û and d̂,
for implementing this estimator. The size of the sequence
aug is W0, while the size of sequences n−, d̂ and û depend
on the choice of α in a logarithmic fashion: if the physical
buffer space is S0 bytes, then the size of sequences d̂, û and
n− should be logα S0 to cover the range from 1 to S0 bytes.
For example, with α = 1.01, a sequence of size 2000 will
cover the range from 1 to S0 = 1.012000 ≈ 439286205 bytes
with a granularity of 1%.

From the computational point of view, ODT is a very
light scheme. Namely, for the computation of the instan-
taneous utilization ũ(k), and the instantaneous queueing
delay d̃(k), we use three counters: NmbBytes (number of
processed bytes since last update), NmbArrivals (number
of packet arrivals since last update) and TotQDelay (sum
of potential queueing delays for all NmbArrivals packets
since last update) 7 . All of these three counters are updated
once per packet and these updates are the only per packet
operations required.

7 Having this information ũ(k) is computed as ratio NmbBytes/∆,
while d̃(k) = TotQDelay/NmbArrivals, at the end of the k-th sam-
pling period.

P (d) price function

∆ length of sampling period

α MIMD parameter

W0 history window

Table 2
Parameters of ODT, OB.

The input parameters for ODT are given in the Table
2. While in general P (d) can be an arbitrary function that
satisfies Definition 1, throughout this paper we will mainly
use functions that are linear in d:

Pγ(d) = γd, γ > 0. (15)

If we restrict ourselves to price functions of this form then
the parameter Pγ(d) can be specified by a single scalar γ. A
higher value of γ assigns more importance to low delays and
vise versa. The sampling period time ∆ should be chosen to
cover several “typical” round trip times, in order to allow
traffic to respond to change of tS . Choosing ∆ in range
[1sec, 5sec] usually satisfies this condition. The parameter
α determines the responsiveness of ODT, and should be
selected such that it allows doubling/halving of tS within
several seconds (up to one minute). The parameter W0, is
the one that determines importance of old measurements in
the current estimation, a large W0 is appropriate for static
or very slowly varying environments, while a small W0 is
necessary for more dynamic conditions. In our experiments
we use W0 such that ∆W0 is within an order of magnitude
of one minute.

At this point we discuss the notion of variability in the
traffic conditions. Measurements from [24] show that on
typical 150Mbps+ links, basic IP parameters such as the
number of active connections, the proportion of TCP traf-
fic, the aggregate IP traffic, etc., do not change dramati-
cally. Although we do not exclude the possibility that there
can be drastic changes in the traffic mixes, our basic pre-
sumption in the design of ODT is that such events are
rare enough to be considered as exception rather than rule.
Thus, ODT is designed to search for an optimal solution in
the “regular” intervals, during which traffic conditions vary
slowly. In the cases of dynamic traffic conditions, one can
perform self tuning of the parameters W0 and ∆ depending
on the level of changes in the traffic conditions. However,
for the reasons discussed above, present ODT algorithm
does not incorporate this adaptation of the parameters.

The following theorem shows that, assuming that estima-
tors B̂ preserves order of B on the grid Tα = {t(0) ·αn, n ∈
Z} the controller (9) runs system to the state that is close
to global optima.
Theorem 1 Let t∗ be the point where global maximum of
B is attained. Suppose that estimator B̂ preserves the order
on the grid Tα, ie. for all m1,m2 ∈ Z:

B̂(m1) ≥ B̂(m2) ⇔ B(t(0)αm1) ≥ B(t(0)αm2). (16)

Then there exist m0 such that for all positive integers r:

t(m0 + 2r) = t(m0 + 2r + 2) = t̄
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t(m0 + 4r + 1) = t̄α, and t(m0 + 4r − 1) =
t̄

α
,

and the relative error between t̄ and t∗ satisfies:

t̄− t∗

t∗
≤ α− 1. (17)

Proof Suppose without loss of generality that t(0) < t∗.
Then by Assumption 1 and (16) there exist positive integer
k0 such that for all k < k0:

t(k + 1) = αt(k) > t(k)

and
t(k0) > t∗.

Now, we can distinguish two cases:

1st Case: B(t(k0)) ≥ B(t(k0 − 1)). Then t(k0 + 1) =
αt(k0). By concavity B(t(k0+1)) < B(t(k0)) and therefore
t(k0 + 2) = t(k0+1)

α = t(k0), and t(k0 + 3) = t(k0+1)
α .

2nd Case: B(t(k0)) < B(t(k0 − 1)). Then t(k0 + 1) =
t(k0)

α = t(k0−1) and t(k0 +2) = t(k0−1)
α . From concavity of

B we get t(k0 + 3) = t(k0 − 1) and t(k0 + 4) = αt(k0 − 1).
By taking t̄ = t(k0) and m0 = k0 in the first case, or t̄ =

t(k0 − 1) and m0 = k0 − 1 in the second case, we conclude
the first part of the Theorem. To obtain the inequality (17),
note that t̄ ∈ ( t∗

α , t∗α) which is equivalent to

t̄− t∗

t∗
∈ (

1− α

α
, α− 1) ⊂ (−(α− 1), α− 1).

2

5. Optimal BLUE

BLUE is an active queue management algorithm that
maintains a single internal variable pm which is used for
calculating the drop probability of arriving packets: each
packet is dropped with probability pm on arrival. Roughly
speaking, the performance goal of BLUE is to keep the loss
probability as low as possible such that no buffer overflow
occurs. The variable pm is updated once per interval of
length freeze−time, in an Additive Increase - Additive
Decrease (AIAD) fashion with parameters δ1 and δ2: if dur-
ing the previous freeze−time interval no buffer-overflow
losses has occurred then pm is reduced by δ2, otherwise
pm is increased by δ1. By using a strategy of this type,
BLUE searches for the “correct” rate at which it should
drop packets. As we can see, there is no formal objective
in terms of utilization or delays. However, we use the idea
of controlling the drop probability tp (that is same as pm

in the original BLUE) in order to maximize overall benefit
B(tp). The first step in the design of such scheme is the
following observation.

By controlling drop probability, one can control
both utilization and queueing delays.

Low drop probabilities keep both queueing delays and
utilization large, and high drop probabilities keep both
queueing delays and utilization low; see Simulation B in the
Section 3. By specifying a price function P (d) that defines
a relative price between delays and utilization, our perfor-
mance goal in the design of Optimal BLUE is maximization
of the benefit:

B(tp) = u(tp)− P (aQd(tp)).

The quantities of interest for the calculation of the ben-
efit are the average values of utilization and the queueing
delays, and can be seen as the expected values of appro-
priate random variables. Because of large noise in the es-
timation of these quantities, it is helpful to use filtering in
conjunction with an algorithm that continuously searches
for the optimum. OB will use same strategy for controlling
of tp as ODT uses for controlling the available queue size
tS . We update tp once per sample period of length ∆ in an
MIMD fashion:

tp(k + 1) = tp(k) ·m(k), (18)

where m(k) is defined by:

m(k) = α, if
B̂(l(k))− B̂(l(k − 1))

tp(k)− tp(k − 1)
≥ 0 (19)

m(k) =
1
α

, if
B̂(l(k))− B̂(l(k − 1))

tp(k)− tp(k − 1)
< 0. (20)

Here l(k) denotes an integer such that tp(k) = tp(0)·αl(k),
and B̂(l(k)) is the estimated value of the benefit B(x) at
the point x = tp(k) = tp(0) ·αl(k). The method for estimat-
ing B̂(l(k)) is same as in ODT and is given by (12). We also
exclude non-monotonic estimation of û and d̂. Recall that
u(tS) and aQd(tS) are increasing functions of the available
queue size tS , while u(tp) and aQd(tp) are decreasing func-
tions of tp(see Figures 1 and 2). Because of this (13) is ex-
ecuted if û(i) < û(i + 1) or û(i) > û(i − 1), and (14) is
executed if d̂(i) < d̂(i + 1) or d̂(i) > d̂(i− 1); i = l(k).

We use an MIMD strategy for the control of the drop
probability tp rather than the original BLUE-like AIAD,
because of scalability reasons. Namely, with an MIMD
strategy, if the algorithm runs in a low drop probability
regime, absolute changes in tp per step are smaller than
absolute changes in tp per step in higher drop probability
regimes. On the other hand, in AIAD schemes, absolute
changes per step are constant and are given by AI and AD
parameters.

The memory requirements of OB are same as ODT. Stor-
ing four sequences, aug, n−, û and d̂, requires just several
kilobytes. Since all these quantities are used just once per
∆, then they can be stored off-chip and their size is not im-
portant. From the computational point, OB requires one
more operation per packet: random drop. This, makes OB
roughly equivalent to RED from the level of the computa-
tional resources they require. The parameters of OB are the
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same as in ODT and are given in the Table 2. Comments
related to the selection of the parameters of ODT applies
to the OB as well.

6. Simulations

Simulation D. Our first set of simulations illustrate
the dynamics of tS and tp under static conditions of 50
TCP flows with RTT’s uniformly distributed in range
[20, 220]msec and with packet sizes of 1000 bytes. We
run ODT and OB with parameters ∆ = 2sec, α = 1.05,
W0 = 30. The price function used in both cases is P10(d) =
10 · d. Initially: tS(0) = 100Kbytes, tp = 0.002. The off-
line (see Simulation E) optimal values are approximately
t∗S ≈ 130Kbytes and t∗p ≈ 0.0048.

Simulation E. The second set of simulations shows how
close the average queueing delays and average utilization
are to the optimal values, in static conditions with a con-
stant number TCP flows, for both ODT and OB. We ran
the same set of 50 TCP flows, with RTT’s uniformly dis-
tributed in range [20, 220]ms and packet sizes of 1000 bytes,
as in Simulations A and B (Section 3). By running a se-
quence of long simulations in Section 3 we obtained plots
given in Figures 1 and 2, that represent the dependance
between tS , (tp respectively), the average utilization, and
the queueing delays. Having these graphs, we can, in an off-
line manner, find the value of tS (tp) that maximizes ben-
efit B(tS) (resp B(tp)). The red stars on Figures 7 (ODT)
and 8 (OB) show these off-line optimal values for this opti-
mization problem (5) (defined by price functions Pγ(d) =
γ · d) for γ = 2, 10, 20. Having Pγ(d) as a parameter of the
scheme, we ran ODT and OB. The other simulation param-
eters were: ∆ = 2sec, α = 1.05, W0 = 30. The blue crosses
on Figures 7 and 8 represent the long-run (5 minutes) av-
erages of queueing delays and utilization for γ = 2, 10, 20.
The numerical results for this simulation are shown in the
Table 3.

It is important to notice here that in TCP environments,
OB outperforms ODT in terms of maximization the ben-
efit B. This is because a Drop-Tail queue that achieves
average queueing delay d0 achieves less throughput than
a queue with on-arrival random dropping, with the same
average queueing delay d0. The reason for this lies in the
phenomenon of (partial) synchronization of losses that is
a feature of Drop-Tail queues. Figure 9 illustrates this dif-
ference for queues servicing 50 TCP flows, and is based on
data from the simulations A and B.

Remark. At this point we note an important practical
issue related to applicability of our algorithms in the ex-
isting Internet routers. The only two pieces of information
they require are the ”achieved utilization” and the ”aver-
age queueing delay” experienced during one sampling pe-
riod. At the end of each sampling period we set new values
of the available buffer space (tS in ODT) or drop probabil-
ity (tp in OB). While most routers allow configuration of
the available buffer space, we are not aware of option for
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Fig. 5. Simulation D. Queue occupancy, available buffer space(tS),
and utilization for ODT servicing 50 TCP flows.
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Fig. 6. Simulation D. Queue occupancy, drop probability(tp), and
utilization for OB servicing 50 TCP flows.

configurability of the drop probability.
Simulation F. In this simulation we present the behavior

of ODT and OB in the case of mixtures of TCP and UDP
traffic. In this simulation, the same set of 50 TCP flows
that were defined previously compete for a bandwidth on
10Mbyte/sec link, with 50 UDP flows that have exponen-
tially distributed on and off periods. The on-periods have a
mean of 1000ms, and the off-periods have mean of 3000ms.
The sending rate for the on-periods is 1000Kbit/sec. The
aggregate UDP arrival rate has a mean of 1.4867Mbyte/sec
which is approximately 14.9% of the link’s service rate. A
histogram, given in Figure 10, shows the distribution of the
aggregate UDP sending rate sampled on 100ms intervals.

The ODT and OB parameters are the same as in previous
simulations: ∆ = 2sec, α = 1.05, W0 = 30. The price
function used in both cases is P10(d) = 10 · d. Initially:
tS(0) = 100Kbytes and tp(0) = 0.002.
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Fig. 7. ODT: Off-line vs. online average queueing delays and utiliza-
tion. Price functions Pγ(d), for γ = 2, 10, 20.
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Fig. 8. OB: Off-line vs. online average queueing delays and utilization.
Price functions Pγ(d), for γ = 2, 10, 20.

Figures 11 and 12 depict plots of utilization, queue occu-
pancy and tS(tp resp.). We observed a slightly larger fluc-
tuation in tS and tp compared to Simulation D. This is
consequence of the stochastic nature of the non-responsive
traffic.

Simulation G. In the following simulation we show the
behavior of ODT and OB in the case of sudden changes
in the traffic conditions. Two sets of 50 TCP flows in this
simulation compete for bandwidth on a 10Mbyte/sec link.
The first set is active during whole simulation in the interval
[0, 900] seconds; connections from the second set are active
only in the interval from [300, 600] seconds. Thus, at time
t1 = 300sec, the number of TCP connections is doubled
while at time t2 = 600sec, the number of connections is
halved, as is depicted in the Figure 13. The ODT and OB
parameters are the same as in previous simulations: ∆ =
2sec, α = 1.05, W0 = 30. The price function used in both

Scheme, γ aQd(sec) u Bγ

ODT, γ = 2, online 0.01075 0.9890 0.9675

DT, γ = 2, off-line 0.01058 0.9876 0.9664

ODT, γ = 10, online 0.00471 0.9544 0.9074

DT, γ = 10, off-line 0.00521 0.9589 0.9067

ODT, γ = 20, online 0.00283 0.9222 0.8655

DT, γ = 20, off-line 0.00293 0.9269 0.8683

OB, γ = 2, online 0.00975 0.9941 0.9730

CDP, γ = 2, off-line 0.00973 0.9945 0.9749

OB, γ = 10, online 0.00591 0.9745 0.9153

CDP, γ = 10, off-line 0.00531 0.9725 0.9193

OB, γ = 20, online 0.00385 0.9493 0.8723

CDP, γ = 20, off-line 0.00394 0.9562 0.8774

Table 3
Numerical results: off-line optima and online ODT and OB averages.
The last column represents Bγ(t) = u(t)−γ ·aQd(t). (CDP - stands
for Constant Drop Probability queuing)
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Fig. 9. Average queueing delays vs. average utilization for drop tail
and constant loss rate queues.

cases is P10(d) = 10 · d. Initially: tS(0) = 50Kbytes and
tp(0) = 0.002.

Figures 14 and 15 illustrate the behavior of ODT and OB
in this case. Although ODT and OB are not designed for
environments with sudden changes we see that they adjust
their parameters to the sudden traffic changes. However,
“convergence” to the optimal region takes 1-2 minutes in
the present simulation.

Simulation H. Here we demonstrate how other perfor-
mance metrics are impacted by changes in queueing delay.
We concentrate on fairness and loss rate. We use Jain’s Fair-
ness Index (JFI) [15] as a fairness indicator and is defined
as follows. For set of users u1, . . . , uk let r = (r1, . . . , rk) be
vector of their achieved average rates during the measure-
ment interval. Then
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Fig. 11. Simulation F. Queue occupancy, available buffer space(tS),
and utilization for ODT servicing 50 TCP flows and 50 on-off UDP
flows.
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Fig. 12. Simulation F. Queue occupancy, drop probability(tp), and
utilization for OB servicing 50 TCP flows and 50 on-off UDP flows.
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Fig. 13. Simulation G. Number of active TCP flows in time.
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Fig. 14. Simulation G. Queue occupancy, available buffer space(tS),
and utilization for ODT servicing a varying number of TCP flows.

JFI(r) =

(∑N
i=1 ri

)2

N
∑N

i=1 r2
i

. (21)

The simulation setup is same as in Simulations A and
B and consists of 50 TCP flows serviced by 10MBps link
with RTT’s uniformly distributed in [20, 200]ms. A basic
observation is that the performance of TCP-like congestion
control algorithms, whose dynamics depend on round-trip
time, is significantly affected by queueing delays. By in-
creasing the queueing delay, the aggressiveness of TCP
senders is increased, implying lower loss rates. From a
fairness perspective, larger queueing delays decrease bias
against long-RTT connections. Indeed, for two TCP con-
nections, with round trip times RTT1, RTT2, RTT1 <
RTT2, bottlenecked at a single link with queueing delay
d0, the ratio of their expected rates 8 is RTT1+d0

RTT2+d0
. Increas-

8 This follows from the square root formula (3).
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Fig. 15. Simulation G. Queue occupancy, drop probability(tp), and
utilization for OB servicing a varying number of TCP flows.
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Fig. 16. Simulation H. Loss rates (top) and JFI (bottom) for 50 TCP
flows serviced by Drop-Tail queues of different sizes.

ing, d0 leads this ratio to a value closer to one. Figure 16
presents the dependance between available space in FIFO
Drop-Tail queue and loss rate and JFI. Each ’+’ corre-
sponds to a 5 minute average. We note that for very small
queue sizes (< 50 packets), loss rates are large and TCP
dynamics is dominated by timeouts. In this regime the
square root formula is not valid and fairness is impacted
mainly by timeout mechanism. Corresponding average
queueing delays and utilization are depicted in Figure 1.

Figure 17 depicts the JFI for the same set of 50 flows, on
link where each packet is dropped on arrival with constant
probability tp. The corresponding average queueing delays
and utilization are depicted in Figure 2. Note that for tp in
range [0.005, 0.01], queueing delays are small (< 5ms) com-
pared to the RTT’s and that the loss rate is small enough
implying good accuracy of the square root formula. As re-
sult of this, the JFI is roughly constant in this range.

Simulation I. Our final simulation compares ODT and
OB with the queueing strategies that does not explicitly
exploit the tradeoff between the queueing delays and the
link utilization. The key observation is the fact that ODT
and OB have direct control over both parameters and can
therefore work on the “knee” of the curve. The simulation
setup is the following. We run N = 1, 10, 100 TCP flows
over a link with speed C = 10MBps. The RTT of the flows
are taken randomly in the range [100, 300]ms and the ODT
and OB parameters are the same as in the previous simu-
lations; in particular we set γ = 10. We compare ODT and
OB with: droptail queue worth Qmax = 10ms of buffering
(DT small); droptail queue with Qmax = 200ms buffering
(DT large) that corresponds to the buffer-delay product
[30]; and adaptive RED queue that aims to achieve high
utilization and low queueing delay by dropping packets
early and avoiding TCP synchronization[1]. The results are
shown in Table 8. While DT-small can achieve very small
queueing delays, it consequently harms the utilization of
the egress link. Large buffer droptail queue (DT large) in
contrast achieves 100% utilization while at the same time
it results in very large queuing delays. Adaptive RED has
results that lie between the above two but however does not
directly try to optimize for the queueing delay versus uti-
lization tradeoff. Both ODT and OB manage to optimize
the relevant cost function in an efficient manner.

Scheme N = 1 N = 10 N = 100

ODT 0.88/58ms 0.95/16ms 0.99/3ms

OB 0.89/60ms 0.96/14ms 0.99/3ms

DT small 0.76/1ms 0.85/3ms 0.95/5ms

DT large 1.00/105ms 1.00/161ms 1.00/187ms

ARED 0.81/22ms 0.99/31ms 1.00/54ms

Table 4
Numerical comparison between different queueing strategies. Each
entry is a pair of average utilization/average queueing delay (in
milliseconds).

7. Summary

In this paper we have addressed the problem of utilizing
the tradeoff between queueing delays and link utilization.
By specifying the relative importance of queueing delays
and utilization, an optimal choice of a queue management
parameter is the one that maximizes the overall benefit
defined by (4).

The optimization problem (5) assumes a linear depen-
dance between utilization and benefit, and completely ne-
glected other important performance metrics such as jitter,
loss probability, and fairness. In fact, one can define the
general overall benefit of the queueing scheme controlled
by parameter t as:
BG(t) = V (u(t))− P1(aQd(t))− P2(j(t))− P3(L(t))−
−P4(f(t)), (22)
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Fig. 17. Simulation H. JFI for 50 TCP flows serviced by queue with
constant drop probability.

where j(t) is jitter, L(t) is the loss rate, f(t) is a fairness
indicator, V (u(t)) is the value of the utilization u(t), and
Pi, i = 1, 2, 3, 4 are appropriate price functions. We again
emphasize the importance of fairness in TCP environments
where long-RTT connections could heavily suffer from low
queueing delays at the congested links. The embedding of
jitter and loss rate into current framework can be done in
straightforward manner. However, including fairness into
the optimization framework, would be much more challeng-
ing as we are not aware of any, computationally light, es-
timation technique that would faithfully indicate level of
fairness. One possible approach to estimate level of the fair-
ness could be by counting runs 9 as suggested in [20]. How-
ever, a runs counter would give estimate of Jain’s fairness
index [15] only for flows that have experienced runs and
Jain’s fairness index is just one possible fairness indicator.

In this paper we implemented two strategies for settling
the underlying optimization problem: in one, the control
variable is the available queue space, while another controls
the drop probability. Queueing schemes that use different
control parameters are possible as well. For example, vir-
tual queue capacity could be powerful in the control of de-
lay/utilization, and therefore could be basis for ODT/OB-
like scheme.

From the theoretical point of view, an important open
issue is convexity (concavity) of the average utilization/Q-
delays/ loss-rates as function of control parameter t (avail-
able buffer space, random drop probability, virtual queue
capacity, etc). While some results exist for the nonelastic
traffic [21,22], in the case of elastic traffic, arrival process
depends on the control parameter, which makes modelling
of the corresponding tradeoff curve much more challenging.

9 Run is event where arriving packet belongs to the same flow as
some, previously arrived packet.
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