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Abstract: In this paper, the predictor design, for altitude control of a seaweed harvester, is
investigated. The harvesting system consists of a vessel and a suspended harvester device, the
altitude of which is controlled by a winch. The control approach of Gallieri and Ringwood
(2010), including a feedforward action, which requires a single step disturbance prediction, is
investigated further, focusing on the disturbance prediction, for noisy sensors. The prediction is
performed using AR and ARMA models, identified online, by using the Recursive Least Squared
with Forgetting Factor (RLSFF) algorithm and the Kalman Filter (KF). The dependance
between the error spectrum and the quality of the control is shown, and the prediction per-
formances are evaluated, using an FFT-based criterion, oriented to the feedforward application.
The control performances are then evaluated, and the results are compared to Gallieri and
Ringwood (2010).
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1. INTRODUCTION

The seaweed harvester system under consideration is
shown in Figure 1. The challenge of maintaining a sus-
pended device at a specific distance from an undulating
sea bed is new, though the adopted solution draws upon
considerable prior art in the area of marine systems and
hydrodynamics, Gallieri and Ringwood (2010); Gallieri
(2009a,b) and reference therein. In particular, the body of
knowledge available on offshore cranes is particularly rel-
evant: Falat et al. (2005); Messineo et al. (2008); Sagatun
et al. (2003). In the previous work, Gallieri and Ring-
wood (2010), a detailed hydrodynamic model has been
formulated for the vessel/harvester system, and a control
strategy has been proposed, including a vessel motion feed-
forward action, using a Motion Reference Unit (MRU),
and an altitude feedback loop, using a sonar device for
altitude measurement. In particular, Gallieri and Ring-
wood (2010), shown the feasibility of the harvester alti-
tude control within ±10cm. This is necessary in order to
maintain an optimum cutting height while avoiding any
environmental damage to the seabed. The ship is subject
to ocean wave disturbances, and moves at an average
constant speed, with a periodical turning manoeuvre, in
relatively shallow water.

The feed-forward control strategy, proposed in Gallieri and
Ringwood (2010), which compensates the heave variations

Fig. 1. The seaweed harvester, Gallieri and Ringwood
(2010)

in the harvester due to the wave motions experienced by
the vessel, requires a one-step prediction. The signal to
predict is the nonlinear motion of the harvester, induced
by the vessel in ocean waves. The seastate is represented
as a stochastic process finite realization, defined by a
JONSWAP spectrum, Fossen (2002), with a directional
spreading factor, Perez (2005). In this paper, linear AR
and ARMA models are proposed as predictor candidates,
while a Recursive Least Squares with Forgetting Factor
(RLSFF) and a Kalman Filter (KF) are used for the
model parametrization. The AR, ARMA are parametrized
online, unlike in Gallieri and Ringwood (2010), where the
identification has been performed on a fixed sized samples
window.



The feedforward control performances depends on the pre-
diction error dynamics. In particular, the high frequency
components are filtered by the control law. The proposed
candidate model classes and estimation techniques are
compared, first by computing the prediction Root of Mean
Squared Error (RMSE), and then computing the error
spectrum Low Frequency components RMSE (LFRMSE).
The control performances are evaluated using again the
RMSE, and the IAE and ISE integral indexes. The pre-
diction and control results are discussed, and compared to
Gallieri and Ringwood (2010), featuring a Periodical Least
Squared AR (PLSAR) predictor. A simulator, obtained by
modifying the Simulink MSS Toolbox, MSS (2010), is used
to evaluate the estimation and control performances.

The paper addresses the problem as follows: Section 2
summarizes the dynamics of the vessel and the winch
system, along with any simplifying modelling assumptions.
Section 3 details the feedforward/feedback control design,
while Section 4 issues the predictor design and the used
identification techniques. Section 5 summarizes the pre-
diction and control results. Finally, conclusions are drawn
in Section 6.

2. VESSEL AND WINCH DYNAMICS

The considered ship and harvester model, has 9 degree of
freedom (DOF), and its reference frames are defined in
Gallieri and Ringwood (2010). The coordinates, used to
describe the system dynamics, are defined by the Society
of Naval Architects and Marine Engineers (SNAME), and
shown in Table 1.

Variable name Description

ni, ei, di North, east, down positions, n-frame

ϕi, θi, ψi Roll, pitch, yaw (Euler) angles, n→ bi
ui, vi, wi Surge, sway, heave velocities, bi-frame

pi, qi, ri Roll, pitch, yaw rate, bi-frame

zb2m , vb2m Linear motor position and velocity, b2-frame

vb2
d

Motor velocity input, b2-frame

q, s Generalized displacements and velocities

P Velocity transformation matrix, b→NEEC

v
bi
ci CoG linear velocity vector, bi-frame

ω
bi
nbi

CoG angular velocity vector, n→ bi

ν Velocity vector, b-frame

η Position vector, n-frame

x, y State, output vectors

µ Fluid memory state, NEEC reference

U Vessel forward speed

Uin Control input vector

Wx, Wy State, measurement noise vectors

e(k), ê(k) Altitude control and estimation errors, n-frame

Ts Sample time

dw Harvester heave measurement noise, n-frame

d(t) Harvester heave disturbance, n-frame

d̂(k) Harvester heave disturbance estimation, n-frame

Table 1. Nomenclature

The 9 DOF dynamical model, detailed in Gallieri and
Ringwood (2010), includes the effects of a forward vessel
speed, the wave loads, the ship propellers and motion
control forces, and the winch motor dynamics. This formu-
lation arises from the unified ship model, Perez (2005), and
includes the seakeeping fluid memory effects, where a state
space approximation of the Cummins’ equation, Cummins

(1962), is computed for both the vessel and the harvester
device, using the approach in Kristiansen and Egeland
(2003). From a control prospective, using the modelling
approach of Perez (2005), the control design becomes
more challenging, because the wave induced disturbance
is considered to be acting on the system input, rather
than the output. To model the linear wave-excitation
forces, the force response amplitude operator (Force-RAO)
Perez (2005), is used, consisting of a set of linear transfer
functions. The hydrodynamic parameters and the Force-
RAO are computed in WAMIT, Wamit (2008), for both
the vessel and the harvester device, and processed using
the Matlab/Simulink MSS toolbox, MSS (2010).

The modelling approach, presented in Gallieri and Ring-
wood (2010), is a more general extension of the formula-
tion of Gallieri and Ringwood (2009), where the coupled
dynamics of the vessel and the harvester are formulated
by using the Newton-Euler equations with Eliminated
Constraints (NEEC), as in O’Cathain et al. (2008). The
harvester, the specific design of which is currently confi-
dential, is assumed to be a vertical circular cylinder.

2.1 Modelling assumptions

The system dynamics are formulated under the assump-
tion that the b2-frame dynamics, between the real motor
speed vb2m ≡ żb2m and the desired motor speed vb2d , is given
by the following first order LTI system, after Messineo
et al. (2008); Sagatun et al. (2003):

v̇b2m = [−λ]vb2m + [λ]vb2d , (1)

where 1
λ is the time constant of the closed loop speed servo

system. The servomotor has an incremental encoder, which
measures the drum rotational speed, and the measurement
noise is assumed to be white. The vessel is equipped
with a motion reference unit (MRU 5) Seatex (2006),
an accelerometer-based position, velocity and acceleration
estimation device, which uses an ad-hoc Kalman filter,
Jazwinski (1970), and provides the measurement, of the
vessel roll, pitch and yaw angles, in the vehicle frame, and
the relative heave, surge and sway positions. The MRU
measurement noise is also modelled as a zero mean white
noise, where the variance is given by the user manual,
Seatex (2006). The harvester device is equipped with a
sonar device, which senses the instantaneous seabed pro-
file. To simulate the real sonar measurement, it’s assumed
that the sonar has a cone-shaped beam dispersion surface,
with a dispersion angle αs, and an additional (white)
measurement noise, Gallieri (2009b). In this study, the
stiffness of the cable connecting vessel and harvester is
assumed to be infinitely stiff.

2.2 State space representation

Expanding the formulation of Perez (2005), a 2-body
unconstrained 12 DOF motion model can be obtained, as
in Gallieri and Ringwood (2010); Gallieri (2009b). Then,
using the NEEC approach, the model presented here will
have 9 DOF. To apply the NEEC, the following 9 × 1
independent velocity vector (generalized coordinates) is
choosen:

s = [ u1 v1 w1 p1 q1 r1 p2 q2 żm ]T , (2)



defined in Table 1, where the subscripts 1 and 2 denote,
respectively, the vessel and the harvester. The partial
velocity matrix, P ∈ R9×12, given by:

P =

[(
∂vb1c1
∂s

)T (
∂ωb1

nb1

∂s

)T (
∂vb2c2
∂s

)T (
∂ωb2

nb2

∂s

)T ]
(3)

is defined. The generalized velocities, ν, and accelerations
ν̇, are given by:

ν = PT s ν̇ = PT ṡ+ ṖT s (4)

Defining the vector q, such that q̇ = s, where s is given by
eq.(2), the following state, input and output vectors can
be defined respectively as:

x =



q

s

µ

η

 , Uin =

[
(τ̃c + τ̃p)

vd

]
, y =

[
s̃

η̃

]
, (5)

where:
s̃ = [ u1 v1 w1 p1 q1 r1 w2 ]

T
, (6)

and x ∈ R84×1, Uin ∈ R10×1, y ∈ R14×1. The vectors τ̃c
and τ̃p, provide the generalized propeller and ship motion
control forces in the b-frames, as given in Perez (2005) and
Fossen (2002), and vd, the desired winch motor speed, is
the altitude control (manipulated) signal.

The seaweed harvester dynamics are given by the follow-
ing non-linear stochastic state space system, Gallieri and
Ringwood (2010):

ẋ = A(x) x +B(x) Uin +Wx

y = C(x) x +Wy,
(7)

where the matrices, B (x) ∈ R84×10, A(x) ∈ R84×84, are
given in Gallieri and Ringwood (2010).

The state disturbance vector, Wx ∈ R84×1, appearing in
(7) and due to the first and second order wave forces
Journee and Massie (2001), is given by:

Wx =
[
0 (τ̃gw)

T 0 0
]T

(8)

where τ̃gw contains the first 8 elements of the first and
second order wave induced force vector, τgw Perez (2005),
which is computed using the RAO approach as in Perez
(2005) and Journee and Massie (2001). The output distur-
bance vector, Wy ∈ R14×1, in (7), is a zero mean white
noises vector, with unknown variance. The output matrix,
C(x) ∈ R14×84, in (7), is given by:

C(x) =

[
0 Cs 0 0

0 0 0 Cη(x)

]
(9)

where Cs and Cη(x), are given in Gallieri (2009a,b).

3. CONTROL DESIGN

For the altitude control of the harvesting device, three
control strategies have been implemented and compared,
in Gallieri and Ringwood (2010), where the best perfor-
mances have been achieved by using a combined control
strategy. The proposed combined strategy, shown in Figure

2, which includes a feed-forward controller to counteract
the vessel-induced altitude motion of the cutter, and an
altitude feedback controller, to follow the seabed profile.
The feed-forward scheme, shown in Figure 2, uses the
Seatex MRU and the seaweed harvester kinematics to
compute the nonlinear motion of the harvester, induced
by the vessel, which is the input for the feed forward (FF)
controller. Assuming that the motor dynamics are linear,
the FF control law is a LTI discrete time transfer function.

The wave induced disturbance, d(k), acting on the har-
vester altitude, is a function of the system state x. To
compute the current value of d(k), an estimator is needed,
as shown in Section 3.1. The estimation error affects the
quality of the control, as shown in Section 4.3. The feed-
back scheme, shown in Figure 2, uses the sonar device to
sense the distance between the harvester and the seabed.
A Nomoto PID vessel heading controller, Perez (2005),
included in the MSS toolbox, is used for course keeping.
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Fig. 2. The altitude control scheme

3.1 The feed-forward vessel motion compensator

The harvester motion satisfies the following kinematic
relation, Gallieri (2009b):

ż2 = Rn
2 w2

= Row3{Rn
1 }

[
u1

v1
w1

]
+Row3{Rn

1S
T (rb1o2)}

[
p1
q1
r1

]

+Row3{Rn
2 }

[
lc2q2
−lc2p2
vm

] (10)

Assuming that the position, velocity and acceleration of
the vessel are measurable, taking the small angle approx-
imation for the harvester motion, and substituting the
results of eq.(13), we obtain the following model:

v̇m(t) = −λ vm(t) + λ vd
ż2(t) = vm(t) + d(t) + dw(t),

(11)

where
d(t) = −sθ1 u1 + cθ1sϕ1 v1 + cθ1cϕ1 w1 − z̄o2cθ1sϕ1 p1

−[z̄o2sθ1 + x̄o2cθ1cϕ1]q1 + [x̄o2cθ1sϕ1]r1,
(12)

is the vessel induced heave velocity disturbance, which is
a function of the vessel attitude and speed, while dw(t) is
a Gaussian zero mean white noise disturbance, including



the model uncertainties and the measurement noise. From
eq.(11), we have:

vm(s) =
λ

s+ λ
vd, (13)

z2(s) =
1

s

(
vm(s) + d(s) + dw(s)

)
. (14)

Choosing the following feed-forward control law:

vd(s) = −γ
s+ λ

λ(s+ γ)
d(s) (15)

the system dynamic becomes:

z2(s) =
1

s+ γ
d(s) +

1

s
dw(s) (16)

3.2 The gain scheduled feedback loop

Combining the predictive heave feed-forward, shown in
Section 3.1, with a gain scheduling P controller, we obtain
the following control law:

vd(k) = ṽd(k) + v⋆d(k), (17)

where ṽd(k) is given by the feed forward controller, a
discrete-time Tustin’s equivalent of eq.(15), as shown in
Gallieri and Ringwood (2010), and:

v⋆d(k) = Kp e(k), (18)

where Kp is adapted with the rule:

Kp =


KMAX

p , |e(k)| ≥ e⋆

(KMAX
p −KMIN

p )
|e(k)|
e⋆

+KMIN
p , |e(k)| < e⋆

,

(19)
where e(k) is the altitude error, and with e⋆ = 0.1 m, and
KMAX

p = 3, KMIN
p = 1.5.

4. PREDICTOR DESIGN

4.1 Candidate model classes

The estimation will be performed by a dynamical model,
identified online. The following candidate model classes
have been chosen:

• AutoRegressive (AR):

d̂(k) = −a1d(k − 1)− ...− and(k − n), (20)

• AutoRegressiveMovingAverage (ARMA):

d̂(k) = −a1d(k − 1)− ...− and(k − n)+
c1ê(k − 1) + ...+ cnê(k − n).

(21)

4.2 Identification approaches

Two linear regressors are compared:

• Recursive Least Squares with Forgetting Fac-
tor (RLSFF), Ljung (1999): for the AR identifica-
tion, a forgetting factor, σ, is used, to deal with time
varying parameters. The significative samples for the
estimation algorithm are contained in a window of
length:

Ns =
1

(1− σ)
. (22)

For the AR model σ = 0.999 is used, having Ns =
1000, while for the ARMA model, the Recursive

Extended Least Squares (RELSFF), Ljung (1999),
are used, with σ = 0.99, and Ns = 100. The
polynomial instability has been avoided using the
roots reflection into the unit circle, Ljung (1999).

• Kalman Filter (KF): Kalman filter is used for
parameter estimation, as in Jazwinski (1970); Ander-
son and Moore (1979). Tests are made to tune the
covariance matrices of the process and measurements
noise. As shown in Fioretti and Jetto (1994), it is
possible to put the process noise covariance, in the
form:

Q = qI , (23)

where I is the identity matrix. The measurement
noise variance r is also a scalar. The optimal values
for q and r are determined by their ratio, q/r, as
in Fioretti and Jetto (1994), instead of the absolute
value. This value is determined by trial and error,
considering the signal dynamics and the measurement
noise. Considering that, from experimental results,
the model parameters are slowly varying, the measure
uncertainties are dominant, determining a small q/r
ratio. Best results are achieved by setting q/r ≈ 10−6.

The AR and ARMA model order can be chosen with
an appropriate data analysis. The spectral norm of the
observation matrix is used to provide a lower bound,
while the cross validation is performed, to determine
the correct complexity, Ljung (1999). To optimize the
accuracy/memory ratio, the MDL index is preferred, as
in Ljung (1999). A sample of the tests made to optimize
the model order is shown in Figure 3, for the AR model.
The chosen predictors are: AR 9, ARMA (9, 9).

Fig. 3. Results of MDL, AIC and Best Fit tests for the AR
model order choice.

4.3 Performance indexes

In Gallieri and Ringwood (2010), the prediction perfor-
mances have been evaluated using the RMSE index, which
can provide only partial information about the estima-
tion influence on the control performances. The prediction
residual error dynamics has, in fact, a strong influence on
the quality of the feedforward control, and therefore of
the altitude control. This can be shown, by expressing

the prediction as d̂(k) = d(k) − ê(k), and substituting
eq.(15,13) into eq.(14), obtaining the following feedforward
controlled harvester heave dynamic:



Fig. 4. Estimation error spectrum (RLSFF AR 9), only
the low frequency components affect the control

z2(s) =
1

s

(
G1(s)d(s) +G2(s)ê(s) + dw(s)

)
,

G1(s) =
s

s+ γ
, G2(s) =

γ

s+ γ
,

(24)

where the transfer function G2(s) between the estimation
error and the heave velocity, is a low pass filter and its
cutoff frequency, γ is a project parameter, in this case
γ = 40 [rad/sec] ≈ 6.3 [Hz]. From the spectrum of the
LRSFF AR prediction error, shown in Fig.4, it’s possible to
see that the AR prediction has some residual low frequency
dynamics.

From the above considerations, we will evaluate the predic-
tion performance using both the RMSE, and the following
index:

LFRMSE = RMS
(
XLF (jω)

)
(25)

where X(jω) is the amplitude spectrum of the prediction
error, computed using the Fast Fourier Transform (FFT),
while the subscript LF indicates that only the components
having ω < ωc are considered, where ωc is the dominant
pole frequency of the LTI filter, in this case G2(s), from
eq.(24), excluding s = 0. The LFRMSE provides a com-
parison index, between the prediction strategies, as a raw
measure of how much the prediction error will be filtered
out, preventing the control error increase. The use of the
LFRMSE can be extended to similar applications, whereas
an estimation is followed by a low-pass LTI dynamics.

To evaluate the control performances we use the RMSE,
and the following indexes, as in Hsiao-Ping and Yung-
Cheng (1982): the Integral of Absolute Error (IAE), which
penalizes the control error, and the Integral of Squared
Error (ISE), which penalizes the error peakedness.

5. RESULTS

The simulated system is subject to variations in free
surface elevation and seabed profile, as shown in Fig.5. The
surface variations come from a JONSWAP, Hasselmann
and Olbers (1973), model with a significant wave height
of 1.5 m, a directional spreading factor of 4, Fossen
(2002), and a mean relative wave direction of π rads/s.
The vessel keeps an average forward speed of 0.5 m/s.
The seabed variations constitute both abrupt and smooth
changes, with a variance of 2.15 m around the mean
seabed height. The prediction and control results are

Fig. 5. Variations in seabed profile and free surface eleva-
tion

summarized, respectively, in Table 2, 3, for noisy sensors.
The results are compared to the PLSAR, presented in
Gallieri and Ringwood (2010). Figure 6 shows the RLSFF
AR prediction, while Fig.7 shows the convergence of the
prediction RMSEs, after 350 sec. Considering Table 2, 3

Fig. 6. Disturbance prediction, using the RLSFF AR
approach

Fig. 7. Prediction RMSE vs simulation time

it’s possible to see that, the KF ARMA model provides a
prediction RMSE smaller than the KF AR model, versus
a bigger control IAE, ISE and RMSE. On the other
hand, the LFRMSE index behavior agrees with the control
results, for all the considered approaches. The best control



performances, shown in Figure 8, are achieved using an
RLSFF AR 9, with an RMSE of 3.76 [cm] versus the 8 [cm]
of the PLSAR. However, as linear regressors, the RLSFF
and KF offers very similar results, for continuously varying
parameters, and a different parametrization could state
the KF AR as the best predictor.

Strategy RMSE LFRMSE

AR (RLSFF) 0.0901 [m] 6.7295 10−4[m]

ARMA (RELSFF) 0.1238 [m] 7.2511 10−4 [m]

AR (KF) 0.0969 [m] 7.4793 10−4 [m]

ARMA (KF) 0.0947 [m] 7.8203 10−4 [m]

PLSAR 0.1555 [m] 0.019 [m]

Table 2. Prediction performances

Strategy IAE ISE RMSE

AR (RLSFF) 8.9108 [m] 0.7062 [m] 0.0376 [m]

ARMA (RELSFF) 10.2238 [m] 0.7827 [m] 0.0396 [m]

AR (KF) 10.8082 [m] 0.8371 [m] 0.0409 [m]

ARMA (KF) 11.0121 [m] 0.8435 [m] 0.0411 [m]

PLSAR 17.5438 [m] 1.7103 [m] 0.08 [m]

Table 3. Control performances

Fig. 8. Altitude control, with an RLSFF AR 9 predictor

6. CONCLUSION

In this paper, the predictor design for heave compensation
and altitude control of a seaweed harvester, in ocean waves,
with non-ideal sensors, has been investigated. The depen-
dance of the the control performances on the estimation
error spectrum has been addressed, and the quality of the
control is only affected by the low frequency error com-
ponents. The best control performances are achieved by
using an RLSFF AR 9 model, with an IAE of 8.9108 [m],
in 500 sec, and an RMSE of 3.76 [cm]. Practical tests will
be addressed, in cooperation with BioAtlantis LTD.
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