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Abstract: This paper concerns the interplay between the physical geometry of a wave energy
converter (WEC) and the control strategy adopted for the converter, with the ultimate aim of
optimising the energy output of the device. An energy-based performance function is employed
and we attempt to perform numerical optimisation of a heaving buoy employing a latching
control strategy. We allow both draught and radius of the axisymmetric buoy to be adjusted
using a numerical optimisation. A linear time-domain hydrodynamic program is used in order
to simulate the device motion, while the optimization problem is solved by means of a simplex
method. Results show the difference in the frequency response of an optimal buoy for a particular
sea-state designed with and without knowledge of the control system.
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1. INTRODUCTION

Traditionally, WECs are designed independently of the
control system (McCabe et al., 2009; Alves et al., 2007;
Babarit and Clement, 2006b), with the focus being on
(control-free) optimisation of the geometry of the device
for the prevailing sea conditions. In essence, this can in-
volve matching the frequency response of the device to
the average spectral description of the wave environment.
It is well known that control techniques, such as latching,
have the ability to change the characteristics of a WEC,
allowing it to achieve a resonance other than natural.
However, since latching only has the ability to slow down
the dynamics of the WEC, the resonant frequency of the
WEC must be placed well above the predominant sea
condition if energy is to be optimally captured over the
range of sea states encountered over a typical year. How-
ever, exactly where the resonance frequency of the WEC
should be placed is a complex function of the statistical
sea state description, the device hydrodynamics and the
exact nature of the latching strategy employed.

The present work is part of a project aiming at the eco-
nomical optimization of a real wave energy device. This
paper presents preliminary results with a simple geometry
in order to validate the optimisation program and to get
straightforward results as part of the learning process of
this kind of problem. This can be seen as an illustrative
case study where we investigated the influence of latch-
ing control on the geometric optimization of a generic
heaving device under the action of random waves. That
is why some simplifications were used such as the device
dynamics which is described by one-degree of freedom
(heave motion), or the fluid-structure interaction solved by
means of a linear potential program while the numerical
optimization is performed with a simplex algorithm.

The paper layout is as follow: we first introduce the gov-
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erning equations of the problem, then the optimization
procedure is described in details. Eventually, results are
presented in order to show effect of considering control on
a sample WEC and clearly demonstrate the difference in
the frequency response of an optimal buoy for a particular
wave climate designed with and without knowledge of the
control system.

2. MATHEMATICAL MODELLING

2.1 Body dynamics

A generic point absorber is considered for the purpose of
this study. The body is a generic point absorber repre-
sented as a truncated vertical cylinder with a diameter D
and a draught d. We have allowed the device to oscillate
vertically under the action of excitation forces, radiation
damping forces and restoring forces as depicted on Fig.
1. The fluid is considered homogeneous, uncompressible,
inviscid and with an irrotational flow.

According to Cummins (1962), the dynamics of such a
system is governed by the following integro-differential
equation

(M + µ∞)ζ̈(t) +

∫ t

0

ζ̇(τ)K(t− τ)dτ +BPTO ζ̇(t) +KHζ(t)

= Fex(t) (1)

where

• µ∞ is the added mass at infinite frequency
• M the mass of the cylinder
• K the impulse response for the radiation forces
• KH the hydrostatic stiffness
• BPTO the power take-off damping coefficient
• Fex the excitation forces



Latching
z

x

BPTO

(t)

Fig. 1. Schematic of the generic heaving buoy.

The calculation of the hydrodynamical coefficients µ∞,
K,and KH were performed by using the time-domain
seakeeping code ACHIL3D (Clément, 1997).

2.2 Absorbed power

Since PTO modelling is beyond the scope of the study,
the power take-off was modelled as a linear damping force
FPTO (cf. Fig. 1) as follow

FPTO = −BPTO ζ̇ . (2)

while this is not ideal for WEC analysis, this approxima-
tion is usually used in wave energy and has already been
used several times in the past (Babarit et al., 2004; Babarit
and Clement, 2006a; Alves et al., 2007; Ricci et al., 2006)
when the focus is on other issues. Consequently, the mean
power P̂ absorbed by the device over a time T is

P̂ =
1

T

∫ T

0

BPTO ζ̇(τ)
2dτ . (3)

2.3 The resource

The excitation force in Eq. 1 was derived by discretizing
the ITTC spectrum model (Rawson and Tupper, 1992) as
follows

S(ω) =
A

ω5
exp

(

−B

ω4

)

. (4)

with

A = 173
H2

S

T 4

1

. (5)

B =
691

T 4

1

. (6)

and parameterised by the significant wave height HS and
the mean period T1.

The free surface elevation η is modeled as a linear super-
position of monochromatic waves, by sampling the energy
spectrum S(ω) by a constant frequency step. One can
synthesize a representative sample of the waves for a sea
state defined by the couple (HS ,T1) by using

η(t) =

Nω
∑

j=1

a(ωj) cos (ωjt+ φj). (7)

where a(ωj) corresponds to the wave amplitude of the jth

frequency component given by

a(ωj) = 2
√

S(ωj)δω (8)

where ωj and φj are circular frequency and phase of the
jth wave component respectively, and where phase are
randomly determined.
According to Cummins (1962), the corresponding excita-
tion force introduced in Eq. 1 is then given by

Fex(t) =

∫ t

0

Kex(t− τ)η(τ)dτ (9)

where Kex is the impulse response in excitation computed
with ACHIL3D.

3. OPTIMIZATION PROCEDURE

A Nelder-Mead simplex algorithm (Nelder and Mead,
1965) was used for resolving the optimization problem.
This derivative-free deterministic algorithm has been cho-
sen for its flexibility and robustness for solving complex
optimization problems. The all optimization procedure is
described on Fig. 2. First, the simplex algorithm evaluates
the initial shape predefined by the user. Then, the sea-
keeping program is used for computing the hydrodynamic
parameters used in Eq. 1. This program is considered as a
black box, it first generates a mesh of the shape and then
solves the hydrodynamic problem in the time-domain.
Once all the hydrodynamic parameters are known, the
next stage is the simulation of device motion under the
action of random waves defined by the power spectrum
S(ω) as defined in Eq. 4. The simulation stage finished,
the objective function is then evaluated as the average
power absorbed by the device during the simulation (Eq.
3). Eventually, the objective function is evaluated by the
simplex routine which calculates a new radius and draugth
for the next iteration if and only if the convergence crite-
rion is not fulfilled.
This optimization procedure has to be performed automat-
ically, that is why criteria have to be implemented in the
program for tuning the different input parameters to the
device dimension. In addition to deal with different shape,
these criteria have to be optimal insofar as they have to
provide both a simulation time as short as possible and
results as accurate as possible.
Hence, different criteria were used during the differ-
ent stages of the optimization procedure. Regarding
ACHIL3D, the position of the center of gravity ZG has
to fulfill



ZG < ZB (10)

where ZB corresponds to the center of buoyancy, in order
to get the hydrostatic stability. One has to notice that this
criterion does not affect the optimization as only heave
motion is considered here.
Regarding the hydrodynamic parameters, ACHIL3D has
to solve the hydrodynamic problem as fast as possible
while guaranteeing a very good accuray. Accuracy is laid
down the refinement of the mesh that discretizes the body
and down the simulation duration over which the hydro-
dynamic problem is solved. Since both mesh refinement
and simulation duration depend on body dimension, they
have to be automatically computed by the optimization
program. Concerning the simulation duration, ACHIL3D
uses a non-dimensional simulation duration T ∗

sim defined
as follow

T ∗

sim = Tsim

√

g

draught
(11)

where Tsim is the dimensional simulation duration defined
by the user and g the gravitational constant. So, we de-
cided to evaluate a non-dimensional simulation time for a
vertical cylinder with regards to its dimensions. We have
then run several simulations with different geometries until
a simulation duration that satisfy both requirements in
terms of accuracy and simulation time was found.
Regarding the mesh refinement, a similar approach was
used. We have run several simulations with different mesh
refinements and for one particular geometry until a con-
vergence was reached. We have then considered the corre-

sponding mesh refinement as a reference nref
mesh from which

all the mesh refinements nmesh will be deducted as follow

nmesh = n
ref
mesh

Sw

S
ref
w

× 100 (12)

where Sw corresponds to the wetted surface of the body
for which nmesh is being calculated and Sref

w to the wetted
surface of the body of reference.
For the simulation part, a criterion was also used to tune
the damping value BPTO of the power take-off to device
dimensions. Hence, the following relation was used

BPTO =
5

100
×M (13)

Regarding the optimization problem itself, the objective
of the Nelder-Mead algorithm was to maximize the mean
absorbed power P̂ (cf. Eq. 3), or in more suitable form for
an optimization problem, the objective was to minimize
the energy function P̂ ∗ defined as follow

P̂ ∗ = −

1

T

∫ T

0

BPTO ζ̇(τ)
2dτ (14)

Hence, the present optimization problem is a mono-
objective optimization problem with two parameters: ra-
dius and draugth which have to be strictly positive.
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Fig. 2. Flow diagram of the optimization program

4. RESULTS

The results presented in this section come from optimiza-
tions carried out by using an Intel quad-core/2.4 GHz pro-
cessor giving a computational time about a week for each
of them. The non-dimensional simulation duration used
to evaluate the hydrodynamic coefficients was T ∗

sim = 13s,
device motion was simulated over 600 s while the average
absorbed power P̂ was calculated over the last 300 s in
order to get rid of the transient motion. The sea-state used
here and defined by Eq. 4 had a significant wave height
HS=3.5 m, a mean period T1=9.14 s and 150 components
(Nω) were used for sampling the sea spectrum. Phases
were pre-computed once in order to be exactly the same
for every simulation of both optimization problems.

4.1 Optimization with a passive PTO

On figures 4, 5, 6, and 7, optimizations results with a
passive PTO are presented where the evolution of average
power absorbed, natural resonance period, radius and
draught are plotted as a function of iteration, respectively.
On figure 5, one can see that the optimization algorithm
converges to a device with a natural resonance period
close to the mean period of the sea-state. This result
was expected since mean period (also called energy period
TE) is defined as the period of the spectrum where the
energy is maximal in average. One can also notice that
simplex method seems to be well suited for this kind
of optimization problem as it converges relatively fastly
despite initial conditions far to the optimal ones.

4.2 Optimization with latching control

In this section, optimization results with latching control
are presented. We chose latching control because it is the
simplest way of creating parametric resonance within the
dynamics of the device in order to improve its efficiency
(Budal et al., 1982). Under the action of a passive PTO,
the device catches energy only from the wave components
whose frequency lays in the bandwidth of the system.
The principle of latching control principle is to lock the
motion of the body when its velocity vanishes at the end
of one oscillation, and waiting (over a time that has to be



determined) for the most favorable situation to release the
body.
While in regular waves optimal latching control can be
determined semi-analytically (Babarit, 2005), under the
action of random waves it is not as trivial (Eidsmoen,
1998) and it is necessary to define an appropriate strategy
to determine when the body must be latched (Babarit
and Clement, 2006a). Here, we chose to use both the
instantaneous zero-crossing period T i

z and the natural
resonance period Tr to determine the latching time TL

over which the cylinder will be locked, as follow

TL =
T i
z − Tr

2
(15)

where the natural resonance period of the vertical cylinder
Tr is defined as

Tr =

√

KH

(M + µ∞)
(16)

and where T i
z is the instantaneous zero-crossing period

corresponding to the period of the next zero-upcross wave
by assuming that we are able to forecast the free surface
elevation over 10s.
On figures 8, 9, 10, and 11 optimization results with
laching control are presented, where the evolution of aver-
age power absorbed, natural resonance period, radius and
draught are plotted as a function of iteration, respectively.

Table 1. Optimization results

Tr (s) Radius (m) Draft (m)

No control 9.14 12.52 14.08
Latching 6.22 6.38 6.19

Table 1 summarizes the optimization results for both opti-
mization problems. It shows that both optimal geometries
are completly different and are characterized by two dif-
ferent natural resonance periods. Fig. 3, compares trans-
fer functions also called Response Amplitude Operators
(RAO) of the optimal devices between each other and
with the power spectrum. It shows that, for this particular
case i.e. with a heaving vertical cylinder, a linear PTO,
a specific sea-state, and with latching control, the device
geometry is highly control dependent. It highlights the
fact that numerical optimization with control may play an
important role in the sense that it may change the original
natural resonance period of the device. In the optimization
without latching, the optimal device obtained is not opti-
mal if one want, afterwards, to apply latching control on it.
The same remark can be stated for the optimization with
latching, the natural mechanic properties of the optimal
shape are not longer optimal for the specific sea-state,
nevertheless with latching control, one can be sure that
performance will be optimal. Similar results were already
outlined by Babarit (2005), who optimized by means of a
genetic algorithm the shape of the SEAREV wave energy
device with and without latching control and where the
optimization program ends up with two slighty different
geometries.
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Fig. 3. Plot of power spectrum and RAOs for both op-
timal geometries obtained with and without latching
control.

5. CONCLUSION

In the present paper a procedure was presented for the
geometric optimization of a generic heaving wave energy
device under the action of random waves. The optimiza-
tion procedure was splitted into several stages, and used
a linear potential program for computing the hydrody-
namic coefficients. The optimization problem was solved
by means of a simplex algorithm and used an energy based
cost function.
Results for two optimization problems were presented.
First, the shape of a vertical cylinder was optimized for
a particular sea-state while a passive PTO was consid-
ered. Then, a second optimization problem was presented
where latching control was used instead of passive loading.
Results show that the optimal shape is relatively control
dependent and both optimization problem end up with
two geometries with different mechanical properties. It
points out that, with regards to mechanical principle, sea-
state properties, PTO and control strategy, the control
dependence of wave energy devices should be checked
when shape optimization is performed. Finally, in the
present study only latching control was used, other control
strategies should arguably give different results, neverthe-
less likely effects are not trivial and differ regarding the
type of WEC and PTO, that is why when one want to
perform a geometric optimization of a real device all those
parameters must be take into consideration.
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