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Abstract—Time domain control of wave energy converters
requires knowledge of future incident wave elevation in order to
approach conditions for optimal energy extraction. Autoregres-
sive models revealed to be a promising approach to the prediction
of future values of the wave elevation only from its past history.
Results on real wave observations from different ocean locations
show that AR models allow to achieve very good predictions
for more than one wave period in the future if the focus is put
on low frequency components, which are the most interesting
from a wave energy point of view. For real-time implementation,
however, the lowpass filtering introduces an error in the wave
time series, as well as a delay, and AR models need to be designed
so to be as robust as possible to these errors.

I. INTRODUCTION

Wave energy conversion in most devices is based either on
relative oscillation between bodies or on oscillating pressure
distributions within fixed or moving chambers. Oscillators
generally have pronounced resonances, which enable efficient
power absorption in certain wave conditions. In order, how-
ever, to cope with the variations of wave spectra a control
system can be designed to alter the oscillator dynamics such
that the efficient energy conversion occurs in a wide range of
wave conditions [1].

The control approach in the early stage of wave energy,
consisted of frequency domain relationships regulating the
dynamics of the system to be tuned for maximum energy
absorption at different peak frequencies corresponding to
different incoming wave spectra [1],[2]. Although being an
advantageous approach in real sea spectra, it does not generally
allow control on a wave by wave basis, that is a real-time
control that could significantly raise the device productivity
and therefore its economical viability. Real-time optimal con-
trol can be directly derived from the aforementioned optimal
frequency relationships, and its main difficulties raise from the
fact that their transformation in the time domain results in non
causal transfer functions, so that the conditions for optimal
power absorption can be realised only if future motion of the
device, or future incident wave, are known [1],[2],[3].

As an example, Fig. 1 represents a possible control scheme
for a generic oscillating body, where the controlled variable is
its oscillation velocity, u, and the control action is performed
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through a force F.. The optimal reference velocity, g, is
computed by an algorithm that requires future values of the
incident wave elevation 7, that must be provided by a predictor,
which in this case is based only on the past history of the signal
itself. Depending on the specific device operating principle,
as well as on the general control strategy adopted and on the
available instrumentation, the involved quantities may vary, but
the logic can always be described by a structure as the one
proposed in Fig. 1, where a certain physical quantity needs
to be predicted in order for the reference to be as close as
possible to the optimality condition. This quantity may be
the wave excitation force or the oscillation velocity for an
oscillating body, the dynamic air pressure inside the chamber
for an oscillating water column, the overtopping water for an
overtopping device, and all of them are ultimately dependent
on the incident wave elevation.

The approach to prediction from only the past history of
the signal itself presents several advantages with respect to
the reconstruction of the wave field from distant observations,
which requires an array of measurements (to deal with multi-
directionality and to separate incident from refracted waves)
and complex prediction models, thus resulting in increased
instrumentation costs. Linear Autoregressive (AR) models
have been proposed as an efficient and effective solution for
the prediction of the oscillation velocity [4] and the wave
elevation [5],[6],[7]. Particularly in [6] and [7], AR models
were shown to outperform even neural networks, with very
accurate predictions obtained for more than one period on
real wave elevation time series, when the high frequency
components were filtered out.

In this paper, the identification and estimation of AR models
for short term wave forecasting is presented in section II,
together with a methodology for the characterisation of the
probability distribution of the predictions through confidence
intervals. More exhaustive results on real observations from
different ocean locations and in a variety of climates are
presented in section III. A real-time implementation of this
prediction procedure, however, requires the design of a real-
isable lowpass filter (so far, only ideal off-line lowpass filters
were applied). This issue and the consequences on the AR
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Fig. 1. Time domain control of wave energy converters requires future
knowledge of the incident wave elevation to approach optimality

model are discussed in section IV.

II. AUTOREGRESSIVE MODEL

The wave elevation 7)(k) is supposed to be linearly depen-
dent on a number n of its past values:

= Zam(k — i)+ ¢(k) (1)

where a disturbance term (k) has been also included. If the
parameters a; are estimated and the noise is supposed to be
Gaussian and white, the best [-step ahead prediction of the
future wave elevation at instant k, 7(k + [|k), is given by:

>l

where, obviously, 7j(k +1 —ilk) =n(k) if k+1—14i <k (i.e.
information already acquired and no need of prediction).

The general shape of the prediction function is completely
determined by the poles, p;, of the corresponding transfer
function, and its particular realisation is determined, at each
sampling instant, by the past values of the time series [8]. It is
particularly interesting to analyse the shape of the forecasting
function (2) in the case of m/2 (when m is even) couples of
complex-conjugate poles p; and p;:

Ak + 1)k) = Ak +1— i|k) )

m/2

Z ci(k)|pi\l sin(Zp;k + @i (k)) 3)

i=1

ik + ) =

Thus, an AR model with only complex-conjugate poles is
implicitly a cyclical model, where the frequencies are related
to the phase, Zp;, of each pole and the amplitudes and
phases of the harmonic components are related to the last n
measurements of each time instant k, so that they adapt to the
observations [7].

A. Estimation

The AR coefficients can be estimated from a number N
of batch wave elevation observations. The standard approach,
under the assumption of Gaussian error, is to minimise the
sum of squares of the one-step ahead prediction error, through
regular least squares. Because the model will be utilised for
multi-steps ahead forecasting, however, either the estimation
and the identification problems turn out to be ill-posed, since
many models can be found which are almost equivalent in
terms of one-step ahead prediction, but fare quite differently

in longer-term prediction [9]. A multi-steps ahead cost func-
tional is therefore applied, referred to as long-range predictive
identification (LPRI) [10]:

N N

2. 2. I

klj N1

JLpRrI = i(klk — J)] “)

This functional can be minimised using a standard algo-
rithm for solving nonlinear least-squares problems, such as
the Gauss-Newton approach, initialised with the results from
regular least squares [10]. In our specific case we set N; =1
and N, as the maximum prediction horizon (N, = 50 for
the Galway Bay data and Ny = 25 for the Pico Island data),
because we want to optimise the prediction accuracy at any
lead time.

Note that, from (3), the frequencies are related to the poles,
so if the parameters are kept constant, the frequencies are
constant as well. An adaptivity mechanism based on the LPRI
cost function (4) could then be considered, which is also
proposed in [10]. However, as it will be shown in the results,
section III, a static AR model keeps its validity for long time
after being estimated (more than 2 hours), in spite of wave
spectral variations. Adaptive AR models do not represent,
therefore, a big issue at the moment and are not considered in
this paper.

B. Identification

An indication about the appropriate order n of the AR model
to predict the wave elevation, can be obtained through min-
imisation of the classical criteria AIC, proposed by Akaike
[11], and BIC, proposed by Schwarz [12] :

AIC = log(6?) + 7“% (5)
BIC = log(62) + rlogjifN ) ©6)

Here, »r = n 4 1 is the number of parameters to be estimated,
&2 is the value of the minimised functional (4), and not,
as normally utilised, the one-step ahead error variance, a
modification which is coherent with the estimation criterion
and with the use of the AR model for multi-step ahead

prediction purposes.

C. Confidence intervals

The predictions alone, as given by (2), do not give a
complete enough information about the future of the wave
elevation, because they are inevitably affected by an estimation
error, so that it would be fundamental to have an indication
about the entity of this error and about how reliable the
predictions are.

If the [-steps ahead prediction error is Gaussian:

é(k+1k) =n(k+1) — ik +1/k) ~ R (0,07)  (7)

then the variance, 012, is all we need in order to define its
probability distribution. Moreover, we can assume a confidence
interval where the error is contained with a probability a:

—pg < eé(k+1k) < +pg ®)
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Here, pg is the value of the probability distribution such that:

+pa
P{—ps <é(k+1k)<+ps}= [ ~ply)dy=a 9

,p%

where p(-) is a Gaussian probability density function.

The estimate of the variance o7 could be calculated from
the specific model parameters and from the statistics of its
estimation algorithm [8]. The problem with this approach is
that the confidence intervals can result to be misleading if the
model is not perfectly appropriate and if its accuracy changes
accordingly with the wave conditions. A more straightforward
alternative is adopted at this stage, where the estimate of the
variance of the forecasting error is based on the past history

of the predictions:

N
1
A2 5 2
0 =51 > [ek + 1]k)] (10)
k=1
where N is the number of past observations available. This

estimate can also be recursively updated as soon as new
observations become available [13].

III. RESULTS WITH IDEAL LOWPASS FILTERS

The wave forecasting AR models are tested against real
wave observations from different sea locations:

1) The Irish Marine Institute provided real observations
from a data buoy located in Galway Bay, on the
West Coast of Ireland, at approximately 53° 130" N,
9° 180’ W (water depth nearly 20m). Data consist of
20 minute records sets for each hour, collected at a
sampling frequency of 2.56 H z.

2) Wave elevation time series are also available from
the Atlantic Ocean at the Pico Island, in the Azores
archipelago, at approximately 38°330'N, 28°340' W
(water depth around 40 m). The Pico data are collected
in the form of two contiguous 30 minute records sets
for each hour, with a sampling frequency of 1.28 Hz
[14],[15],[16].

Some significant data sets, reflecting different wave cli-
mates, were picked up from all the ones available, and their
spectrum is shown in Fig. 2. In particular one wide banded and
one narrow banded sea state from the two sites is considered.
Then, a situation where wind waves predominate is picked up
from the Galway Bay data and a very high energy wave sys-
tem, where the sea bottom slightly affects the wave symmetry
(this was analysed through higher order spectral analysis and
skewness and kurtosis indices [6]), is chosen from the Pico
Island data.

The accuracy of some AR models on the selected wave time
series is measured, for any lead time [, through the following
index of fitness:

FOy=[1- \/Zk n(k+ 1) — Ak + 1|k))?
> xn(k)?

-100% (11)
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Fig. 2. Spectrum of some significant data sets: (a) Galway bay; (b) Pico

island. Hy is the significant wave height.

Here n(k + 1) is the wave elevation and 7j(k + [|k) is its
prediction based on the information up to instant k. A 100%
value for F(!) means that the wave elevation time series
is perfectly predicted ! steps into the future. Note that the
quantity F has a direct correspondence with the variance of the
prediction error, that, as discussed in section II-C, is utilised to
characterise the forecasts confidence intervals (the gaussianity
of the multi-steps ahead prediction error distribution has been
verified through analysis of skewness and kurtosis).

Focus has been put on the low frequency components, as
they are the more interesting from a wave energy point of view,
and this allows for a significant improvement of the prediction,
as shown through a predictability analysis in [6],[7]. The cutoff
frequency w, has been chosen accordingly to the spectral
distribution of the specific sea state.

Fig. 3 shows the very good accuracy achievable with AR
models when narrow banded sea states occur, with F(I) >
80% for predictions more than 15 s in the future. In the case
of wide banded sea states, G; and P, the accuracy is still
F(l) > 80% for prediction horizons of about 10 — 12 s. The
sea state GG3, dominated by wind waves and affected by strong
non linearities (detected through the Bispectrum [6]), gives
more problems and neural networks gave better results in this
case [6],[7].

It is interesting to note how the poles of the AR models
are estimated very close to the unit circle of the complex
plane, and the corresponding frequencies map the training
wave spectrum, as shown in Fig. 4.

For the sake of completeness, a screenshot comparing the
25-steps ahead prediction from an AR model and the real
wave, together with the 90% confidence interval, is plotted
in Fig. 5.

IV. EFFECTS OF REAL TIME FILTERS

In order to improve the prediction accuracy and the fore-
casting horizon a lowpass filtering of the wave elevation is
performed on the original signal. This procedure is reasonable
in view of the fact that wave energy devices, and therefore
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Fig. 4. Poles and frequency response of an AR model trained on a wave
elevations data set.

their control algorithms, are to be optimised at the waves
that contain the most energy, and they are the low frequency
ones [6]. Lowpass filtering is also reasonable because what is
really required to be predicted, in the control of wave energy
converters, may be one of the consequences of the incident
wave elevation on the device, such as the wave excitation
force, and they are all filtered by the lowpass dynamics of
the device itself.

AR models achieved great performance in predicting the

real wave n(k)
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Fig. 5. Confidence interval and 25-steps-ahead predictions of an AR model

with order n = 24 on the data set P>, filtered with cut-off frequency w. =
0.7rad/s.

low frequencies, as shown in section III and in [6],[7]. In
real time applications, however, lowpass filtering inevitably
introduces an error, in terms of signal amplitude and delay
and its effects on the forecasts need to be addressed.

A. Digital filters: error and delay

If the observed time series representing the wave elevation
is n°(k), then the prediction will be focused on the filtered
wave:

n(k) = F(e)n°(k)

where F(e/%) is a digital filter.

Ideally, F'(e?*) would have a perfectly zero phase response
and a piecewise constant amplitude response being 1 in the
pass band and O in the stop band. This, however, leads to
a non causal impulse response and, therefore, to a filter
non computationally realisable in real time [17]. Inevitably, a
realisable digital filter will introduce two inconvenient issues:

12)

1) A non zero phase response, which in the time domain
means a delay. In the best of the hypothesis this delay
is a constant, if the phase response is linear in the
frequency, otherwise different frequency components of
the wave elevation will be delayed by a different time.
In any case it is important that the delay is very small,
because any sample of delay introduced by the filter is
a sample lost in the achievable prediction horizon.

2) A transition band in the amplitude response, which
causes frequency components in the stop band being not
completely removed by the filter and components in the
pass band being attenuated.

The two traditional approaches to digital filters design are
the discretisation of an analogue filter, which generates an
Infinite Impulse Response (IIR) filter, or the direct synthesis of
a Finite Impulse Response (FIR) discrete time filter (frequency
response with only zeros). The big advantage of FIR filters is
the possibility to obtain a perfect linear phase response and so
a constant delay. IIR filters, on the other hand, allow to obtain
far better amplitude responses with very low orders, although
they have a non-linear phase response.

Several FIR and IIR filters were designed and their perfor-
mance was quantified through:

o The delay 7, which is perfectly known for FIR filters.
In the case of IIR filters it is identified by matching the
output of the filter with the ideal filtered signal.

e The Mean Error, M FE, between the filtered time series,
n(k), and the correspondent ideally filtered time series,
n*(k), normalised with respect to the standard deviation
of the ideally filtered time series:

1 "o Ik 4 T) — i (k)]

N—-7—t.+1 1 N ;
" ~V k=1 0 (F)?
N k=1 13

Here N is the length of the filtered signal, 7 is the
estimated delay (or exact for a FIR filter) and ¢, is the
transient time (in samples), which in theory is infinitely

ME =
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Fig. 6. Performance of digital filters on P» data set: (a) IIR filters; (b) FIR
filters.

long for IIR filters, but that tends towards zero if they are
stable so it can be negligible after a certain point.

Figure 6 shows the distribution of a number of digital
filters, with cutoff frequency w. = 1rad/s, with respect
to 7 and percentage M F, tested against the wave elevation
data set from Pico island, P» in Fig. 2. The FIR filters were
designed through Kaiser windows with different specifications
for the transition band and the filter’s order [17], while the
IIR filters are discretisation, through, the bilinear transform
of classical analogue filters. In particular, from figure 6(a),
the best IIR filters seem to be low order Elliptic, Butterworth
and type I Chebyshev filters. The higher the order, in fact,
the stronger the non-linearity of the phase, so that the phase
distortion raises the error, in spite of a sharper transition of
the amplitude response. In the case of FIR filters, figure 6(b),
the M E decreases with increasing order (directly proportional
to the delay) because of the perfectly linear phase. The delay,
however, quickly gets very high, so that only very small order
FIR filters can be acceptable.

In any case, it seems hard to obtain a ME < 10% with
a delay 7 < 5s so that it is important for the prediction
algorithm, in this case Autoregressive models, to be robust
enough in response to errors of this order of magnitude. Of
course, deeper research may be led in the direction of finding
an optimal filter minimising both the delay and the ME,
but the focus at the moment is put on the ability of wave
forecasting AR models to properly deal with such errors in
the observations time series.

B. AR model wave forecasts sensitivity

The sensitivity of the forecasts of an AR model to errors
in the observations is the same as the sensitivity to its initial

conditions. From (2), in fact, the predictions are computed
from the free evolution of the model based on the last n
measurements, where n is the order. In order to analyse the
sensitivity, it is handy to write the state space form of the AR
predictor, where the state vector is defined as:

2 (5) £ [k + jk) Ak +j—1[k)
Ak +j+1—nlk)]" 14

Here, 7(k + j|k) is the j-steps ahead prediction of the wave
elevation based on the information up to instant k& and 7(k +
j/k) =n(k +j) if K+ j <k, as the information is already
acquired.

At any instant k, the evolution of the state vector z*(3)
represents the evolution of the j-steps ahead wave prediction
starting from the initial state z*(0) and it is regulated by the
following iterative form:

25 +1) = A"(j)

) ) . (15)
Ak + jlk) = Ca*(j)
where
ay az (07
1 0 0
A= (16)
0 1 0
C=[1 0 ... 0] (17)

It follows that the direct relationship between the initial state
2%(0) and the j-steps ahead prediction is:
Ak + jlk) = CAIz*(0) (18)

where the initial state contains the last n observations available
at instant k:

4(0) = k) (k- 1)

An error in the wave observations 7(k), such as the one
introduced by a real time digital filter, means an error in
the initial state 2*(0), named Az*(0), which will have some
additive effect A7j(k + j|k) on the j-steps ahead prediction:

Ak + jlk) + Ai(k + jlk) = CA7 [%(0) + Az"(0)] (20)

Lopk+1-n)..0"  (19)

By exploiting some results about linear algebra, it can be
shown that, for any error Az*(0) and for any norm operator
- 1I:

A7 + E[R)]]

[|Az*(0)]|

where o(-) and T(-) are respectively the minimum and the
maximum singular value operators.

In our specific case C A7 € R1*™ so that only 1 singular
value is non zero and will be considered as a measure of
sensitivity. In Fig. 7 the singular value of C' A’ is shown, in
dB, where the matrix A corresponds to an AR model of order
n = 16, trained on the wave elevation data set P,, as from
figure 2(b). The sensitivity is clearly very high and gets worse

a(CA) < <T(CA7) @21
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and worse while the forecasting horizon increases, as the error
accumulates:

[|AG(K + 1]k)|| < 1.5402 x 10%||Az"(0)]
|| AR (K + 5|k)|| < 3.0381 x 107||Az*(0)]
||AR(k + 10[k)|| < 3.7629 x 10°||Az" (0)|]

A very small error in the observations has a huge effect on
the prediction and in fact this AR model heavily diverges if a
very small noise is added to the observations. This is a serious
issue to deal with and further work should be focused on the
design of robust AR models, which are able to reject certain
kind of disturbances, in particular the ones introduced by a
real time filter, while still maintaining a good accuracy in the
wave predictions.

V. CONCLUSION

This study was focused on the problem of short term
wave prediction, which is a central topic in the wave energy
field, in order to allow a better effectiveness and economic
viability of any WEC. An analysis of AR models, in section
II, highlighted how they implicitly represent cyclical models
where the frequencies are easily estimated with linear least
squares (as they are related to the regression coefficients).
The amplitudes and phases of each harmonic component is,
moreover, implicitly adaptive to the recent observations due
to the regression terms of the model.

Results on real wave elevation data from the Galway Bay
and from the Pico Island, in section III, showed how an AR
model estimated on a batch training data set, offered very good
accuracy up to 15 seconds (in some cases even 20 seconds)
predictions for the low frequency components of the waves.
It was shown also how the frequencies are automatically
estimated in the significant range of the wave spectrum of the
training set. The possibility to adapt the model in order to track
variations of the wave spectrum through variable frequencies
in the model, was also analysed. Because, however, static AR
models were shown to maintain their prediction ability for
long times (no performance decrease for 2 hours simulations),
their adaptivity is not seen as a main issue at the moment,
and also a simple periodic batch estimate may be a feasible
solution, or the use of a set of AR models, estimated from
different sea conditions, and a switching logic deciding which
one is the more appropriate in real time.

In real-time applications, however, the lowpass filtering
introduces an error in the wave elevation time series and a

delay. A preliminary analysis of the sensitivity of the estimated
AR models, in section IV-B, showed how they can diverge for
very small deviations of the initial conditions, and therefore
of the observations. The issue of designing a more robust AR
models was highlighted and further work needs therefore to be
done in this direction, in order to make this promising wave
forecasting approach ready for use in a time domain control
framework for wave energy converters.
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