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Abstract

In this work a robust nonlinear model predictive controller for nonlinear

convection-diffusion-reaction systems is presented. The controller makes use

of a collection of reduced order approximations of the plant (models) re-

constructed on-line by projection methods on POD (Proper Orthogonal De-

composition) basis functions. The model selection and model update step

is based on a sufficient condition that determines the maximum allowable

process-model mismatch to guarantee stable control performance despite pro-

cess uncertainty and disturbances. Proofs on the existence of a sequence of

feasible approximations and control stability are given.

Since plant approximations are built on-line based on actual measure-

ments the proposed controller can be interpreted as a multi-model nonlin-

ear predictive control (MMPC). The performance of the MMPC strategy is
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illustrated by simulation experiments on a problem that involves reactant

concentration control of a tubular reactor with recycle.

Keywords: Plant Model Mismatch; Proper Orthogonal Decomposition;

Controller Stability; Projection methods.

1. Introduction

The success of Model Predictive Control (MPC) industrial applications in the

1970s [1, 2] led to a wide spread of this control technology in industry [3]. The

MPC algorithm relies on two main concepts: a predictive horizon to perform

process dynamics model based predictions, and the solution of an open-loop

control problem at every sampling-time. MPC proved over the years to be

an efficient control tool for a wide class of multivariable nonlinear dynamic

systems. Its appeal must be found essentially in its conceptual simplicity

although, behind this formulation, a number of “not that simple” questions

and problems hide. The vast and rich literature, with several books, e.g.,

[4, 5], available on this subject testifies the research efforts undertaken so

far. It also reflects the degree of success attained in overcoming theoretical

and practical issues related with stability, robustness and implementation.

An early summary on predictive control research and applications can be

found in [6]. Surveys on MPC theory and practice are given for instance

in [7, 8], while [9, 10] provide an overview on robust MPC. The developments

and challenges in nonlinear model predictive control (NMPC) are discussed

in [11, 12, 13, 14, 15]. Optimality and stability issues related to MPC can

be found in [16]. Robustness assessment of the controller has been recently

addressed in the context of “Input to State Stability” concepts by [17, 18].

2



Distributed parameter systems (DPS) are examples of infinite dimen-

sional nonlinear dynamic systems that challenge the efficiency of MPC im-

plementations due to a number of reasons directly or indirectly related with

the following issues: the high level of spatial discretization required to ap-

proximate the original set of partial differential equations; the dependence of

the discretization scheme on the dynamic properties of the plant; the poten-

tially stiff nature of the resulting nonlinear differential algebraic or ordinary

equations or the usually large times of convergence associated with the sub-

sequent optimization problems.

This may be tackled by formulating simpler ODE (Ordinary Differen-

tial Equation) models to describe the behavior of the DPS. For instance,

in [19, 20] NMPC of a fixed-bed water-gas shift reactor is formulated using

a simplified model with fewer equations and states. Also a lumped model-

ing approach is considered in [21] where a lexicographic optimization based

MPC is applied to control a continuous pulp digester. In a strategy to apply

on-line MPC to an experimental drying process [22], the partial differential

equations are solved off-line, and then a linearized PDE (Partial Differen-

tial Equation) model around the previous off-line behavior is used to find

the optimal variations for the on-line predictive control. This MPC strategy

combines a two phase approximation of the PDE model in an internal model

control (IMC) structure [23, 24]. Also, in [25, 26] to avoid the spatial dis-

cretization of the system the authors develop a neural network based model

for the predictive controller. From another perspective, the development of

more efficient NMPC algorithm strategies can greatly reduce the computa-

tional burden associated to the large-scale problems that arise in distributed
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parameter systems when using a full discretization of the PDE model [27].

Besides the various approaches taken in the aforementioned works, these

challenges have been usually overcome in control and optimization applica-

tions by the so-called projection techniques [28, 29, 30, 31]. These techniques

stand on the dissipative nature of the parabolic (diffusion based) PDE set

and the time scale separation of dynamic modes, transforming the original

PDE model into a low dimensional dynamic system capturing the most repre-

sentative (slow) dynamics [32]. This approach has been successfully applied

in the context of dynamic matrix control [33, 34] and MPC [35, 36, 37].

The so-called POD (Proper Orthogonal Decomposition) technique lies

into this category. It was firstly proposed by Sirovich [38] and exploited by

the group of Holmes and Lumley [39, 40, 41] in the context of fluid dynamics

as a way to explore the routes to turbulence phenomena, and was rapidly

extended to other fields such as chemical reaction and biological systems. In

this technique, measurements of the spatio-temporal evolution of the field are

employed to derive the ROM (Reduced Order Model). We can envisage the

application of these techniques in processes with process tomography devices

to measure spatial state fields, that is, to capture the so called snapshots of

the spatial distribution in order to track the states spatial variations inside

the process. In fact, a recent review on control of DPS recognizes that the

POD has emerged as a popular tool for model reduction towards model-

based control applications [42] and it has been exploited as an off-line model

reduction technique for MPC [43].

The main disadvantage of PODs however, lies in that their accuracy is

limited to a certain region of the state space defined by the field measure-
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ments employed to derive the ROM [44]. In the context of Model Predictive

Control, this limitation translates into a divergence between the plant and

its reduced order representation known as plant-process mismatch that if not

properly assessed, for instance at the control design stage, it will deteriorate

control performance or even drive the plant unstable. A detailed discus-

sion about different approaches to waive this limitation can be found in [45]

and references therein. Among those, particularly interesting is the work by

[46] which presented a methodology to update the snapshots based on an

optimization procedure which is able to find those regions where the ROM

significantly differs from the full model. Although the aforementioned tech-

niques increase the validity region of the POD technique, problems may arise

when plant perturbations lead the system far away from such region. From

another point of view, Atwell and King [47, 48] approached the problem for

closed loop systems by using an alternative type of input collection which

takes into account the derivation of the infinite dimensional feedback law.

Using this input collection does not require guesswork and, as pointed out

by the authors, controllers designed in this way perform better as compared

with those designed using the traditional snapshot approach.

Independently of the order reduction technique, however, the dissipative

nature of convection-diffusion-reaction systems ensures the existence of a

reduced order representation capable of approximating at arbitrary accuracy

the real plant dynamics for a given operation region [32]. Therefore, it is

desirable to update the ROM currently in use by an MPC controller whenever

closed loop performance and/or stability can not be guaranteed.

In this work a sufficient condition for robust stability of nominal MPC
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with modeling error similar to the one proposed in [49, 50] will be extended

to the application of MPC of dissipative distributed process systems. It will

be employed to select a reduced order model of the plant among a sequence

of possible approximations so that the stabilizing properties of MPC are

preserved despite uncertainties and disturbances. The authors in [49, 50]

address the question of how much mismatch a given MPC algorithm can

tolerate and how it can be assessed for stability of the MPC controller. Then

an off-line procedure is developed to evaluate constants which determine

sufficient conditions for robust stability. In this work, the proposed sufficient

condition is applied to trigger the needed on-line updates of the ROM model

used by the MPC controller in order to ensure robust stability. Therefore,

when the sufficient condition is not satisfied, new plant measurements are

taken to update on-line the POD basis, thus overcoming the reduced order

model accuracy limitations discussed above.

Since the model is built on-line, based on actual measurements from the

plant, the proposed approach can be interpreted as an MPC controller mak-

ing use of multiple models, that is, a multi-model predictive control (MMPC).

Early versions of the proposed strategy have been reported in [51, 52] and

were applied to the control of simulated moving bed (SMB) separation pro-

cesses [53]. The present contribution concentrates on the theoretical of the

approach related with the model selection criterion and the convergence of

the resulting control configuration.

The paper is organized as follows: The class of systems under consider-

ation in this work is described in Section 2. This includes the role of dissi-

pation in model reduction, the POD method and its main properties to be
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exploited later in the MMPC strategy. Section 3 summarizes the robust MPC

approach to tackle plant/reduced order model mismatch and discusses con-

ditions under which the closed-loop system remains stable. The final MMPC

configuration comprising the reduced model update scheme and MPC, and

its convergence properties, are described along Section 5. The performance

of the MMPC strategy is illustrated by simulation experiments on a problem

that involves the reactant concentration control of a tubular reactor with

recycle (Section 6). Finally, main conclusions are drawn in Section 7.

2. Dissipative systems and its dynamic approximations

2.1. System description and properties

The class of systems we consider is that described by quasi-linear partial

differential equations representing convection-diffusion-reaction mechanisms

for mass or energy transport with (possibly non-linear) chemical reactions.

For the sake of clarity we will concentrate in the present work on one di-

mensional partial differential equations. Note however that methods are not

restricted to 1D but can be extended in a straightforward manner to 2D or

3D cases using arguments presented in [32, 54]. Let the field z(ξ, t) represent

the evolution in space and time of a physical property, such as species con-

centration or temperature, in deviation form with respect to a given reference

state. Formally, the resulting quasi-linear PDE takes the form:

∂z(ξ, t)

∂t
+
∂j(z)

∂ξ
= f(z) + p(ξ, t) , (1)

where ξ ∈ V = [0, L] ⊂ R denotes spatial position with L being the length of

the spatial domain and t ∈ [0,∞) denotes time. Function j(z) includes both
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convective and diffusive fluxes so that:

j(z) = vz(ξ, t)− k∂z(ξ, t)

∂ξ
. (2)

As it is standard in tubular reactors, we will assume that the velocity field

v will be independent of space, thus
∂v

∂ξ
= 0. Note however that equivalent

conclusions can be drawn for the more general case of v ≡ v(ξ) as it is

described in [55]. The terms f(z) and p(ξ, t) represent the nonlinear reaction

term and the, possibly distributed, control input, respectively. The system

is completed with boundary conditions of the form:
[
n ·
(
k
∂z(ξ, t)

∂ξ

)
+ hz(ξ, t)

]

ξ=B
= 0 , (3)

where n is a unit normal vector pointing outwards of the boundary B and h >

0 is a constant representing a property (mass or energy) transfer coefficient

at the boundary. In what follows some of the function arguments will be

omitted for the sake of clarity. We assume that the system is dissipative in

the sense of references [56, 55]. This implies, among other things, that k in

(2) must be positive and that the nonlinear term f(z) satisfies the following

assumption:

Assumption 1 (Lipschitz condition). There exist some nonnegative param-

eters µ and ε and a positive definite function `(z, µ) > 0, with `(z, 0) > 0 for

‖ z ‖> ε, such that the following relation holds for f(z) in (1):

zf(z) + `(z, µ) = µz2 . (4)

Integrating (4) over the spatial domain V leads to

〈z, f〉V + Lµ = µ 〈z, z〉V , Lµ =

∫

V
`(z, µ)dξ , (5)
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where 〈g, h〉V should be understood as integration over V, i.e., 〈g, h〉V =
∫
V g

Th dξ. Given a field z(ξ, t), let us define a L2 norm as follows: ‖z‖22 =

〈z, z〉V.

As shown in [32, 55] a field that obeys equations (1)-(4) is dissipative

and therefore bounded in L2, provided that the control input field p(ξ, t) is

bounded. On the other hand, since f(z) is Lipschitz, it is also bounded and

thus belongs to L2. Because of this, both functions accept Fourier series

expansions of the form [57]:

z(t, ξ) =
∞∑

i=1

mi(t)φi(ξ) , f (z) =
∞∑

i=1

σi(t)φi(ξ) , (6)

where mi(t) and σi(t) are the system dynamic modes, and φi(ξ) are eigen-

functions that constitute the solutions of the so-called Euler-Lagrange equa-

tion [58] (see also [32] for a discussion in the context of distributed passive

systems):
∂2φi(ξ)

∂ξ2
= −λiφi(ξ) . (7)

Equation (7) must be solved with the appropriate boundary conditions (in

our case equation (3)) to produce a complete set of orthonormal eigen-

functions {φi(ξ)}∞i=1 with their corresponding positive eigenspectrum {λi}∞i=1

where each λi is an eigenvalue. As proved elsewhere (see for instance [58]),

the eigenvalues are ordered such that λi 6 λj for all integers i, j whenever

i < j and λn →∞ as n→∞. To simplify the notation we denote φi ≡ φi(ξ).

Note that projecting relation (7) over the eigenfunctions leads to:

〈
φi,

∂2φj
∂ξ2

〉

V
= −λj 〈φi, φj〉V = −λjδij , (8)

where δij is the Kronecker delta.
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The background material we have just outlined in this section will allow us

to construct a dynamic approximation of the plant capable of reproducing

the behavior of the system at arbitrary precision (reduced order models).

These will constitute the models employed by the predictive controllers to

command the operation. A brief description of reduced order models (ROMs)

is presented in Appendix A. The dynamics of the error associated to the

approximation and its bounds are discussed next.

2.2. Dynamic approximations

Let us make use of relation (2) to rewrite system (1) as:

∂z(ξ, t)

∂t
+ v

∂z(ξ, t)

∂ξ
=

∂

∂ξ

(
k
∂z(ξ, t)

∂ξ

)
+ f(z) + p(ξ, t) . (9)

By what has been mentioned previously, fields in (9) accept expansion in

Fourier series of the form of (6). Such series can be split into two contribu-

tions: one containing a finite number of elements N and the other containing

the remaining so that:

z(ξ, t) =
∞∑

i=1

mi(t)φi(ξ) =
N∑

i=1

mi(t)φi(ξ) +
∞∑

i=N+1

mi(t)φi(ξ) , (10)

f(z) =
∞∑

i=1

σi(t)φi(ξ) =
N∑

i=1

σi(t)φi(ξ) +
∞∑

i=N+1

σi(t)φi(ξ) , (11)

p(ξ, t) =
∞∑

i=1

πi(t)φi(ξ) =
N∑

i=1

πi(t)φi(ξ) +
∞∑

i=N+1

πi(t)φi(ξ) . (12)

In the same way first spatial derivatives of the field can be expressed by

convergent series expansions since, as shown in Appendix B, they belong to

L2 so that:

∂z(ξ, t)

∂ξ
=
∞∑

i=1

τi(t)φi(ξ) =
N∑

i=1

τi(t)φi(ξ) +
∞∑

i=N+1

τi(t)φi(ξ) . (13)
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In the remaining of the paper, we will employ the subindex A to denote the

part of the field related to the finite dimensional contribution in Eqns (10)-

(13) and a subindex B to refer to the part of the field corresponding to the

infinite dimensional contribution. In this way,

rA(ξ, t) =
N∑

i=1

αi(t)φi(ξ); rB(ξ, t) =
∞∑

i=N+1

αi(t)φi(ξ)

with r(ξ, t) representing any of the fields z(ξ, t), f(ξ, t), p(ξ, t) or
∂z(ξ, t)

∂ξ
,

and α(t) denoting the time dependent coefficients m(t), σ(t), π(t) or τ(t).

In all the expressions above, N + 1 will turn out to be the mode number

after which one can assure that the remaining modes will relax exponentially

fast. This will be shown next together with the fact that under Assumption

1 such N can always be found.

To simplify the notation we denote z ≡ z(ξ, t), zA ≡ zA(ξ, t), zB ≡
zB(ξ, t). In addition, by orthogonality of the eigenfunctions and relations

(10) we have that 〈zA, zB〉V = 0, so that:

‖z‖22 = ‖zA‖22 + ‖zB‖22 . (14)

By the same token, and using expansions (10) and (13), it follows that:

〈
zB,

∂z

∂t

〉

V
=

〈
zB,

∂zB
∂t

〉

V
and

〈
zB,

∂z

∂ξ

〉

V
=

〈
zB,

∂zB
∂ξ

〉

V
.

With these preliminary statements, let us define a Lyapunov function as

W = 1
2
‖zB‖22 and compute its time derivative along (9):

dW

dt
=

〈
zB,

∂zB
∂t

〉

V
= −v

〈
zB,

∂zB
∂ξ

〉

V
+

〈
zB,

∂

∂ξ

(
k
∂zB
∂ξ

)〉

V

+ 〈zB, fB〉V + 〈zB, pB〉V .
(15)
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Let us now examine the different terms in the RHS of equation (15). Using

the first Green’s identity, the convection term in (15) is given by:

v

〈
zB,

∂zB
∂ξ

〉

V
=

1

2
v

∫

V

∂

∂ξ

(
z2B
)

dξ =
1

2
v
(
z2B(L)− z2B(0)

)
, (16)

or in terms of the Lyapunov function

v

〈
zB,

∂zB
∂ξ

〉

V
= v(W (L)−W (0)) . (17)

By assuming no disturbance at ξ = 0, z2B(0) = 2W (0) = 0 which makes the

left hand side of (17) positive definite.

Expanding the field of the diffusion term in (15) in series of the form (10)

we have:

〈
zB,

∂

∂ξ

(
k
∂zB
∂ξ

)〉

V
=

〈
∞∑

i=N+1

miφi, k
∞∑

i=N+1

mi
∂2φi
∂ξ2

〉

V

.

Using (7) and orthonormality of eigenfunctions we get:

〈
zB,

∂

∂ξ

(
k
∂zB
∂ξ

)〉

V
=

〈
∞∑

i=N+1

miφi, k
∞∑

i=N+1

mi(−λi)φi
〉

V

= k
∞∑

i=N+1

(−λi)m2
i .

Taking into account that the smallest eigenvalue in the previous series is

λN+1 and ‖zB‖22 =
∑∞

i=N+1m
2
i , the diffusive terms can be bounded as

〈
zB,

∂

∂ξ

(
k
∂zB
∂ξ

)〉

V
6 −kλN+1‖zB‖22 = −2kλN+1W . (18)

Finally, invoking the Lipschitz condition (4) in its integral form (5), we derive

a bound on the nonlinear term in (15), being of the form:

〈zB, fB〉V 6 −Lµ + 2µW 6 2µW . (19)
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Combining (17), (18), and (19), with (15), we obtain the following inequali-

ties:

dW

dt
6 −vW (L)− 2kλN+1W + 2µW + 〈zB, pB〉V

6 −2εNW + 〈zB, pB〉V , (20)

where εN = kλN+1 − µ. Note that because of the ordering property of

eigenvalues λi mentioned in the previous section, for a given µ and k it is

always possible to find a number of modes large enough such that εN > 0.

In fact, let N be such number. Following these preliminary developments we

establish a bound on the error associated to the N -mode approximation of

the field, that is, a bound on ‖zB‖22 quite connected to the notion of input to

state stability [59]. This is formally stated in the following proposition:

Proposition 1. Let N be such that εN = kλN+1 − µ > 0 and the input

control field be bounded as ‖pB‖2 6 β
√

2 over a time interval T with β ∈ R+.

Then the error associated to the approximation is bounded as follows:

‖zB(T )‖22 6 ‖zB(0)‖22 exp (−εNT ) +
2β2

ε2N
(1− exp (−εNT )) . (21)

Proof: First note that since the control field pB is assumed to be bounded,

using Hölder’s inequality, we have that 〈zB, pB〉V 6
√

2‖zB‖2β. Substituting

in (20) and using the fact that ‖zB‖2 =
√

2W 1/2 we have that:

dW

dt
6 −2εNW + 2βW 1/2 . (22)

Because the second term on the RHS (square root ofW ) is a concave function,

it is upper bounded by its supporting hyperplane [56], what allows us to write:

W 1/2 6 W
1/2
1 +

1

2W
1/2
1

(W −W1) . (23)
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Let W1 be of the form W1 = 1
ω2

(
β

2εN

)2
, with 0 < ω < 1 an auxiliary

parameter. Substituting W1 in (23), inequality (22) can be rewritten as:

dW

dt
6 −2

(
εN −

β

2W
1/2
1

)
W + βW

1/2
1

6 −2εN(1− ω)W +
β2

2ωεN
.

Multiplying both sides of the above inequality by exp(rt), with r = 2εN(1−
ω), and integrating over time in the interval (0, T ) we obtain:

W (T ) 6 exp (−rT )W (0) +
β2

4ε2Nω(1− ω)
(1− exp (−rT )) . (24)

The second term on the right hand side attains a minimum for ω = 1/2 for

which r = εN . Consequently, a minimum bound for the propagation of the

approximation error ‖zB‖22 takes the form given by Eqn (21). 4
Note that the larger N (and hence εN), the smaller the bound on the

field zB. Thus the error associated to neglecting the field zB can be made

arbitrarily small by increasing the number of modes in the field zA.

3. Model Predictive Control. Problem Statement

As it is well known in process control, the essential idea behind any

model predictive controller is that of finding at regular time intervals those

control actions which minimize a given cost function indicative of the process

performance. To that purpose a reliable dynamic description of the process

to be controlled, usually in the form of algebraic and difference or differential

equations (DAES) is needed together with appropriate sensors to determine

the present state of the process.
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For the case considered in this work, and in order to construct the cost

function to be minimized during operation we define the state and control

variables in deviation form with respect to a reference which is chosen as the

controller setpoint, i.e.,

z = ẑ − zsp , p = p̂− pref , (25)

where z ∈ Rq and p ∈ Rr are the vector fields, and q and r are the number

of states and control variables, respectively. From (25) it follows that at the

setpoint we have that z = 0, and p = 0.

• Cost function at time tk

In the MPC problem formulation we consider a predictive horizon M and a

control horizon Mc, with Mc 6 M . Let zk, and pk represent the deviation

variables at every sampling time tk, k > 0. Let us define a positive definite

function h(z, p) : Rq × Rr → R+, and denote by h(zk, pk) the value of such

function at time tk. A possible candidate cost function, frequently employed

in the MPC formulations, is the quadratic function:

h(zk, pk) =
1

2

(
zTkQz,k zk + pTkQp,kpk

)
, (26)

where Qz,k and Qp,k are appropriate positive definite symmetric matrices.

We define the functional (cost function) to be minimized over the spatial

domain V with boundary B subject to dynamic system (9) as follows:

J(zk,Pk) =

∫

V
H(zk,Pk)dξ , (27)

where zk is the field initial condition and Pk collects the control actions

(control fields) over a control horizon of Mc sampling times, Pk = {pi}k+Mc−1
i=k .
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Accordingly, Pk produces over the predictive horizon the state sequence Zk =

{zi}k+Mi=k+1. Function H(zk,Pk) in (27) takes the form:

H(zk,Pk) =
k+M−1∑

i=k

h(zi, pi) + hF(zk+M) , (28)

with hF(zk+M) = zTk+MQz,k+Mzk+M . It is important to remark that since

functions h(z, p) and hF(z) are lower bounded there exists a positive constant

αh such that:

h(z, p) > αhz
T z , and hF(z) > αhz

T z . (29)

• Optimal Control problem at time tk

The optimal control problem to be solved at every k is that of finding

the control profile P∗k over a given control horizon Mc which minimizes the

deviation between the state trajectory and the state reference or setpoint

over the predictive horizon M >Mc. In this formulation, the plant – Eq. (9)

– will be approximated by a number N of slow modes. Each approximation

constitutes a model of the plant described by a set of nonlinear differential

equations (see Appendix A for details), we formally express as:

dmA

dt
= AAmA + FA , (30)

with each field is approximated as z ≈ zA =
∑N

i=1 φimi. With some abuse of

notation, m should be understood as a vector associated to each field within

the vector z. Accordingly, a plant approximation would require as many

equations of the form (30) as fields considered. The corresponding NMPC
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problem to be solved at every k is then stated as:

min.
Pk

J(zk,Pk) (31a)

s.t.
dmA

dt
= AAmA + FA (31b)

zk+M = 0 . (31c)

Optional constraints may be added to problem (31) for Mc 6 M . This for-

mulation comprises two types of constraints as described in [50] to enforce

the nominal stability of the NMPC controller, the terminal cost term in (28)

and the terminal state constraint (31c). At this point we are not considering

any additional bounds and/or constraints on the problem solution. Given

the NMPC problem with a field initial condition zk, we assume that Pk

is a feasible solution for (31) and that there exists a sufficiently long hori-

zon that ensures an admissible trajectory to satisfy the terminal constraints.

Therefore, from solving (31) we obtain an optimal solution P∗k which when

implemented in the system will produce an optimal state sequence Z∗k, and

the corresponding optimal objective function value J(zk,P
∗
k).

3.1. Assumptions

Regarding the developments of the robust stability analysis in the next

sections it is essential to list here the main assumptions on which that analysis

is based [49, 50].

Assumption 2. All the states z can be measured (or estimated) at every

time index k.

Assumption 3. Both the plant model (9) and the reduced order model (30)

17



satisfy zk+1 = 0 for the steady state reference values (zk, pk) = (0, 0). Note

that because of cost function definition (26), it follows that J(0,P∗k) = 0.

Assumption 4. There exists a sufficiently long horizon to ensure an ad-

missible trajectory (i.e., with zk+M = 0). This is a controllability property

termed Property C in [60].

4. Robustness conditions for Multi-Model Predictive Control

The stability analysis follows from familiar arguments developed by [61].

We first consider the perfect model case in order to discuss some of the

arguments that will be employed to address the mismatch case, resulting

from using the reduced order approximation (30).

4.1. Perfect model case

Consider the optimal solution of problem (31) at time index k, P∗k, with

cost J(zk,P
∗
k), and hF (zk+M) = 0, and apply the first element of the optimal

control sequence (p∗k). As a result, the system will evolve to a state z∗k+1

at time index k + 1. The optimal solution computed in the previous step

(P∗k) is also a feasible candidate for the optimization problem at time index

k + 1 starting from the initial condition zk+1 = z∗k+1. Let P′k+1 = P∗k\p∗k
be the sequence computed at time index k without the first element, and

J(zk+1,P
′
k+1) be its corresponding cost (which of course might not be the
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optimal one). Then, we can write:

J(zk,P
∗
k)− J(zk+1,P

′
k+1) =

∫

V

k+M−1∑

i=k

h(zi, p
∗
i )dξ +

∫

V
hF(zk+M)dξ

−
∫

V

k+M∑

i=k+1

h(zi, p
∗
i )dξ −

∫

V
hF(zk+M+1)dξ

=

∫

V
h(zk, p

∗
k)dξ −

∫

V
hF(zk+M+1)dξ (32)

According to Assumption 4 and Eq (31c) the last term of Eq (32) becomes

zero. Thus it simplifies to

J(zk,P
∗
k)− J(zk+1,P

′
k+1) =

∫

V
h(zk, p

∗
k)dξ . (33)

Consider now the NMPC problem at time index k+ 1. As mentioned above,

P′k+1 is a feasible candidate for the optimization problem at time index

k + 1, however it might not be the optimal one. Note that, in the worst

case, P∗k+1 = P′k+1 which implies J(zk+1,P
∗
k+1) = J(zk+1,P

′
k+1). In other

words, it is always possible to find a sequence P∗k+1 such that J(zk+1,P
∗
k+1) 6

J(zk+1,P
′
k+1). Therefore from (33) it follows that

J(zk,P
∗
k)− J(zk+1,P

∗
k+1) >

∫

V
h(zk, p

∗
k)dξ . (34)

Thus the sequence J(zk,P
∗
k) over n time indices decreases, and because h(·)

is bounded from below by zero it converges, and h(zk, p
∗
k)→ 0 with k → n.

4.2. Mismatch case

In order to ensure stability of MPC under mismatch we essentially will

follow the arguments given by [49, 50]. The outcome of the approach will be

a criterion on the objective function value of problem (31) which when satis-

fied it will ensure its decrease along the computed trajectories and therefore
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stability of the closed-loop system. In essence, the criterion will be employed

to show that approximations of the slow dynamics for system (9) can always

be found such that the system is closed-loop stable in the presence of the

plant/reduced order model mismatch.

Assumption 5. In what follows we assume that the optimal control problem

at every time index k is feasible in the sense that for any bounded initial

condition zk there exists a bounded set of control actions P∗k ≡ P∗(zk) which

minimizes (31a) subject to (31b) and (31c), being J(zk,P
∗
k) the minimum of

the cost function for the initial condition zk.
1

In this way, for any pair of initial conditions z1,k and z2,k there exists a

positive constant αP such that:

‖P∗(z1,k)−P∗(z2,k)‖22 6 αP‖z1,k − z2,k‖22 . (35)

Since function (28) is Lipschitz in its arguments we also have that:

|J (z1,k,P
∗(z1,k))− J (z2,k,P

∗(z2,k))| 6 αJ‖z1,k − z2,k‖22 . (36)

With these preliminary observations we are in the position to state next the

main robustness condition.

Proposition 2. A predictive controller that makes use of the solution to

problem (31) will be stable provided that, for each k, the following inequality

holds:

J(zk+1,P
∗
k+1)− J(zA,k+1,P

∗
A,k+1) 6 ρ

∫

V
h(zk, p

∗
k)dξ , (37)

1Note that the set of optimal control actions must be itself function of the initial

condition
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where ρ ∈ [0, 1).

Moreover, at each k it is always possible to find a number N of slow modes

so to ensure that the above inequality (mismatch condition) holds.

Proof: To prove the first part we add and subtract J(zA,k+1,P
∗
A,k+1) to the

LHS of (34) so that:

J(zk,P
∗
k)− J(zk+1,P

∗
k+1) =J(zk,P

∗
k)− J(zA,k+1,P

∗
A,k+1)

−
(
J(zk+1,P

∗
k+1)− J(zA,k+1,P

∗
A,k+1)

)
. (38)

Note that since at time index k state measurements are available, zA,k ≡ zk.

Thus, applying (34) to the first term on the RHS of equation (38) leads to:

J(zk,P
∗
k)− J(zk+1,P

∗
k+1) >

∫

V
h(zk, p

∗
k)dξ

−
(
J(zk+1,P

∗
k+1)− J(zA,k+1,P

∗
A,k+1)

)
. (39)

Combining (37) with (39) we obtain:

J(zk,P
∗
k)− J(zk+1,P

∗
k+1) > (1− ρ)

∫

V
h(zk, p

∗
k)dξ . (40)

Since h(zk, p
∗
k) is bounded from below by a quadratic function of the field

(Eqn (29)) we also have:

J(zk,P
∗
k)− J(zk+1,P

∗
k+1) > (1− ρ)αh‖zk‖22 ,

what leads to limk→∞ ‖zk‖22 = 0, since 1− ρ > 0.

To prove the second part of the proposition we make use of (36) and the

orthogonality property of the eigenfunctions to show that the left hand side

of (37) is bounded as follows:

∣∣J(zk+1,P
∗
k+1)− J(zA,k+1,P

∗
A,k+1)

∣∣ 6 αJ‖zB,k+1‖22 . (41)
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According to proposition 1, ‖zB,k+1‖22 is bounded by its corresponding norm

at k as:

‖zB,k+1(T )‖22 6 ‖zB,k‖22 exp (−εNT ) +
2β2

ε2N
(1− exp (−εNT )) . (42)

and the result follows since for any ‖zB,k‖22, εN →∞ as N →∞ so the right

hand side can be made arbitrarily small by increasing N . 4

5. The Multi-Model Predictive Control framework

We demonstrated in the previous section that approximations of the slow

dynamics can always be found such that the resulting system is closed-loop

stable in the presence of the plant/reduced order model mismatch. Those ap-

proximations, however, are not known a priori or even can change depending

on the range of operation. In this section, we describe the MMPC method-

ology to assure close-loop stability and illustrate the main steps with a flow

chart (Figure 1).

The basic idea consists of using a given system approximation of the

form of equation (31b) to compute the optimal solution of problem (31a).

Then, when the sufficient condition for stability described in Proposition 2

(Eq (37)) is not satisfied a new model of the form (30) is recomputed by

updating the POD basis. Let us rewrite (37) such that:

J(zk,P
∗
k)− J(zA,k,P

∗
A,k) 6 ρ

∫

V
h(zk−1, p

∗
k−1)dξ . (43)

In order to check this condition, it is necessary to know at any time tk the

term in the RHS and the optimal cost function of two optimizations that we

denote here as “standard optimization” – since standard MPC also needs its
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calculation – and “non-standard optimization”. The only difference between

both is the initial condition. In the former such initial condition is the current

measure of the field zk while in the “non-standard optimization” it is given

by zA,k which is to be estimated by using the previous field measurement

zk−1 and the approximation of the system.

In the case that (43) is not satisfied, we need to update the model, i.e., to

recalculate the set of PODs representative of the current range of operation.

To this purpose we make use of the last Nm measurements obtained from the

plant, i.e. {zk−Nm , ..., zk}. The technique to re-calculate the PODs is outlined

in Appendix A, and the criterion to choose the dimension of the POD set

is determined by the percentage of energy captured by the approximation.

It must be highlighted that considering different sets of snapshots will, in

general, lead to different sets of PODs. Therefore, the number of PODs nec-

essary to capture a given percentage of energy will depend on the considered

set of snapshots. A nominal criterion for the energy captured could be 99%

as proposed by [38]. A good selection of number of measurements, Nm, and

the energy captured by the PODs, E(%), could accelerate considerably the

computation of the optimal profiles. When Nm and E(%) are small, numer-

ous updates must be done. On the contrary, when these indices are large, few

updates of the model are required but its dimension is higher. Consequently

it leads to an increase of the computational effort to solve the optimization

problem.

Simulation studies with the system described in Section 6, indicate that

these parameters must be selected with a compromise between the quality of

the model approximation and the computational cost to solve the optimiza-
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tion problem.

When implementing this technique, there are also other important as-

pects which will speed up substantially the calculations (see Figure 1). For

example, the RHS term required at time tk in (43) is implicitly calculated

by the “standard optimization” at time tk−1. The schematic representation

of the algorithm in Figure 1 gives also the basic steps to follow taking into

account scenarios where numerical errors may result in unnecessary updates

of the model. Note that when the plant is close to the reference point, the

terms in (43) are close to zero and therefore very small values may trigger

unnecessary model updates. As it is illustrated in Section 6, this can be

avoided by permitting model updates only when the cost function value is

higher than a given tolerance ε, i.e.,

J(zk,P
∗
A,k) > ε . (44)

Finally, we recall that in this work we focus on nonlinear diffusion-convection-

reaction systems, and that their dissipative nature ensures the existence of a

reduced order representation capable of approximating at arbitrary accuracy

the real plant dynamics for a given operation region. Nevertheless, we empha-

size that it is not possible to define precisely the typical range of N values for

this class of systems. Previous works on this class of systems ([62, 32, 54, 53])

show that for most systems the range of the number of ODEs per field is not

larger than 102 (even for the most complex hydrodynamic systems in 2D or

3D) in order to obtain a reasonably accurate description of the dynamics. A

priori, this range of values renders NMPC practical. Among other aspects

to take into consideration regarding the practicability of NMPC are the for-

mulation, algorithm, and numerical implementation strategies. For example,
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[27] report the application of their advanced-step NMPC to a distributed

system described by a DAE model with 350 states and differential-algebraic

equations. Thus, the adoption of the reduced order methodology described

in this work can contribute to the application of existing advanced NMPC

technology to distributed systems of higher dimension.

6. Case study

The performance of the multimodel MPC approach is demonstrated by sim-

ulation experiments on a non-isothermal tubular reactor with recycle. The

reactant concentration, C ≡ C(ξ, t), and the temperature inside the reactor,

T ≡ T (ξ, t), are described by the following set of PDEs [63, 64]:

∂C

∂t
=

1

PeC

∂2C

∂ξ2
− ∂C

∂ξ
− f(C, T ) ,

∂T

∂t
=

1

PeT

∂2T

∂ξ2
− ∂T

∂ξ
+ BTf(C, T ) + βT (Tc − T ) ,

(45)

where Tc is the control variable and represents the cooling jacket temperature

which is assumed to be uniform along the reactor. The nonlinear kinetic term

f(C, T ) is given by

f(C, T ) = BC(1 + C) exp

(
γT

1 + T

)
.

The reactant of the outlet stream is recycled to the reactor feed at a ratio r

which results into the following boundary conditions:

ξ = 0 :





∂C
∂ξ

= PeC

[
(1− r)C0 + r C(L, t)− C(0, t)

]

∂T
∂ξ

= PeT

[
(1− r)T0 + r T (L, t)− T (0, t)

] ,

ξ ≡ L = 1 :
∂C

∂ξ
=
∂T

∂ξ
= 0 .
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The values of the parameters are chosen from [63, 65]:

PeC = 7 , BC = 0.1 , γ = 10 ,

PeT = 7 , BT = 2.5 , βT = 2 .

Under the operating conditions C0 = T0 = 0, Tc = 0, and with a recycle ratio

r = 0.5, the reactor exhibits limit cycle behavior (Figure 2). The objective

of the MMPC strategy (Figure 1) is to stabilize the limit cycle around a

given outlet concentration setpoint, Csp
out, using Tc as the manipulated input.

The objective function consists of a weighted quadratic cost function with

two terms. One term is defined as the square of the deviation between the

output concentration, Cout ≡ C(L, t), and the concentration setpoint, and

the other one penalizes the square of deviation of Tc with respect to a given

reference value T ref
c . The optimal control problem becomes:

min.
Tc

Jk =
k+M−1∑

i=k

[
α
(
Cout,i − Csp

out,i

)2
+ β

(
Tc,i − T ref

c,i

)2]
(46a)

s.t.
dmC

A

dt
=

∫

V
φCA

(
1

PeC

∂2C

∂ξ2
− ∂C

∂ξ
− f(C, T )

)
dξ , (46b)

dmT
A

dt
=

∫

V
φTA

(
1

PeT

∂2T

∂ξ2
− ∂T

∂ξ
+ BTf(C, T ) + βT (Tc − T )

)
dξ ,

(46c)

where α and β are the weighting parameters, and mx
A = [mx

1 ,m
x
2 , ...,m

x
Nx

]T ,

φxA = [φx1 , φ
x
2 , ..., φ

x
Nx

]T , x = [C, T ]. We consider in this example that Csp
out,k =

−0.9 and T ref
c,k = −0.01 for every tk although other values (even a time depen-

dent function) could be also considered for Csp
out,k. The weighting parameters

in (46a) are α = 100 and β = 100.

In this simulation experiment the real plant will consist of a finite ele-

ment implementation of model (45) using a uniform spatial grid. The degree

26



of discretization (31 nodes in this example) is selected such as further dis-

cretizations do not significantly alter the solution. The model employed to

approximate the plant behavior is constructed using the POD technique (see

(46b)-(46c)) where the number of slow modes in the approximation (NC , NT )

is computed using the energy criteria (see Appendix A for more details).

Some relevant aspects of the MMPC implementation are outlined next (see

also Figure 1):

1. At the beginning of the process operation there are no snapshots avail-

able to derive the POD basis. Hence, the reactor operates in open-loop

mode until t = 1, and several snapshots are taken during this period

of time. It should be noted that this is a limitation of the methodol-

ogy that can be mitigated by building an off-line reduced model based

on measurements of a similar plant or on data obtained from a model

available in the literature.

2. Using these snapshots the POD basis that captures 99.9 % of the energy

is computed and the ROM is This value of energy was selected to

compensate for the poor information available from the snapshots at

this point.

3. This ROM is employed to solve the nonlinear MPC problem (46a)

with a predictive horizon M = 6 and control horizon Mc = 2. It is

noted that long predictive horizons are required to satisfy Assumption

4. However, as it will be shown, short horizons can be used as well.

In our case study, off-line tests of the optimal control problem were

carried out to estimate such values.

4. New concentration and temperature measurements are taken at every
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sampling time, ∆t = 0.5 time units.

5. Before each new optimization problem, criteria (43) and (44) are checked.

In case they do not fulfill, new POD basis that captures 99.5 % of the

energy is computed using the snapshots obtained from the measure-

ments in step 4, and a new ROM is derived. Note that the value of

energy in this step is lower than that one considered in step 2 because

a richer information (snapshots) is available at this point. Also it was

selected larger than the one recommended in [38] because it ensures

a good representation of the plant behavior while keeping the model

dimensionality adequate for MPC purposes.

6. Steps 3-5 are repeated.

It must be noted that from a practical implementation point of view, the

solution of the optimal control problem should remain small as compared

to the process time constants for the controller to operate properly. This

implies a ratio `/v large enough as compared with the time to complete each

optimization2. In our case, where optimizations where performed in the order

of 10 seconds, ratios of about 100 seconds should suffice.

First of all, in order to emphasize the importance of the updating pro-

cedure, a conventional MPC scheme (which employs a ROM of the form

(30) without model updating) was applied. It must be noted that since the

model employed in this scheme may not be accurate enough to represent the

oscillatory behavior of the plant (due to, for instance, not enough process

information is available), the conventional MPC scheme is neither able to

2` and v correspond with physical reactor length and fluid velocity, respectively
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target the concentration setpoint nor to stabilize the system. This is the

case illustrated in Figures 3 and 5. Alternatively a more representative sam-

pling could capture the precise behavior but at the expenses of exhaustive

off-line experiments to be carried out beforehand.

On the contrary, the proposed MMPC methodology is able to detect

through (43) and (44) when the current ROM is not accurate enough to

track the outlet concentration setpoint producing new representative POD

sets in the sense of ensuring controller stability. The circle marks in Figures

5 and 6 indicate when the model was updated using the new available state

measurements. Figures 4 and 5 show that the MMPC approach is able to

stabilize the system around the desired outlet concentration setpoint. Four

model updates were required, respectively at t = 3, 10, 12, and 12.5 units

of time. It is important to note that the ROM obtained with 99.5 % of the

energy always consisted of less than 6 ODEs per field.

Finally, the evolution of objective function (46a) as well as inequality

(43) are represented in Figure 6 illustrating that, for the MMPC approach,

asymptotic convergence is ensured. Besides, the evolution of the mismatch

term, expressed in terms of the L2 norm of the differences between the mea-

sured (real) states, y = [Cout, Tout], and the predicted states, ŷ = [Ĉout, T̂out])

is also represented in Figure 6. When applying the conventional MPC scheme

this term keeps oscillating whereas the MMPC approach is able to reduce it

to zero.
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7. Conclusions

Robustness in MPC is at a high extent conditioned by the available model

of the plant on which the accuracy of predictions rely. It is well known that

although process-model mismatch can lead to serious control performance

deterioration, a certain amount can be tolerated in the sense that it will not

destroy the stability of the control loop. However the question is on how to

determine such a bound on the allowable amount of mismatch. In this work

we have shown that a positive answer to this question is possible at least

for dissipative systems as those described by convection-diffusion-reaction

mechanisms.

In that purpose, arguments similar as those proposed by [49, 50] have

been employed to demonstrate that it is always possible to choose within a

collection of reduced approximations (models) one that preserves the stabi-

lizing properties of MPC despite uncertainties and disturbances.

The practical implication of this evidence is a robust nonlinear model

predictive controller that makes use of a collection of reduced order approx-

imations of the plant (models) reconstructed on-line by projection methods

on POD (Proper Orthogonal Decomposition) basis functions. Since plant ap-

proximations are built on-line based on actual measurements the proposed

controller can be interpreted as a multi-model nonlinear MPC or MMPC.

The performance of the MMPC strategy has been illustrated by simula-

tion experiments on a problem that involves temperature and concentration

control of a tubular reactor with recycle. Extensions of this methodology to

more general classes of systems can be foreseen as long as their representa-

tions can be cast into complete sets.
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Appendix A. Reduced order models

Let us start the derivation of reduce order models (ROM) by expanding

the field into a Fourier series of the form (6):

z(t, ξ) =
∞∑

i=1

mi(t)φi(ξ) (A.1)

where {φi(ξ)}∞i=1 is the set of basis functions containing the spatial infor-

mation of the solution. The time information is encoded in the so-called

mode set {mi(t)}∞i=1. Each element φi(ξ) of the set of basis functions is com-

puted off-line as the solution of the following integral eigenvalue problem

[38, 63, 66]:

λi

∫

V
R(ξ, ξ′)φi(ξ

′)dξ′ = φi(ξ) (A.2)

where λi corresponds with the eigenvalue associated with each global eigen-

function φi. In this work, the proper orthogonal decomposition (POD) will

be selected as the technique to compute the basis functions due to its effi-

ciency [54]. In the POD, the kernel R(ξ, ξ′) in equation (A.2) corresponds
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with the two point spatial correlation function, defined as follows [54]:

R(ξ, ξ′) =
1

`

∑̀

j=1

z(ξ, tj)z(ξ′, tj). (A.3)

where z(ξ, tj) corresponds with the value of the field at each instant tj and the

summation extends over a sufficiently rich collection of uncorrelated snap-

shots at j = 1, · · · , ` [38]. The basis functions obtained by means of the

POD technique are also known as empirical basis functions or POD basis.

The dissipative nature of the kind of systems considered in this work

allows us to separate the system dynamics in two subsets [67, 68, 31]: one

stable with fast dynamics and infinite dimensional (zB) and the other (zA)

composed by a finite number of elements with slow dynamics which may be

unstable and will capture the relevant dynamics of the system. The number

of elements (N) in the stable subset is usually chosen using a criteria based

on the energy captured by the POD basis. Such energy is connected to the

eigenspectrum {λi}`i=1 or, to be more precise, to the inverse of the eigenvalues

µi = 1/λi as follows (for a deeper insight see [63, 38]):

E(%) = 100×

N∑

i=1

µi

∑̀

i=1

µi

(A.4)

Note that µi → 0 as i → ∞ since, as pointed out in section 2.1, λi → ∞ as

i→∞.

In this work, the numerical solution of Eqn (A.2) has been computed by

taking advantage of the finite element structure. A detailed explanation of

such procedure is provided in [69]. It is worth mentioning that the compu-

tational time for solving the eigenvalue problem (A.2) rapidly increase with
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the number of discretization points. For most of 1D problems this should

not be an issue. However, when considering 2D or 3D systems, solving (A.2)

may render impractical for MPC purposes. In those cases, the method of

snapshots or strobes proposed in [38] can be employed.

Finally, in order to recover the field zA(ξ, t), the original PDE system (9)

is projected onto the slow basis set3. As a result, the following set of ODEs

is obtained:
dmA

dt
= AAmA + FA (A.5)

where mA = [m1,m2, · · · ,mN ]T , AA =

〈
φA,

∂

∂x

(
k
∂φA

∂x

)
− v

∂φA

∂x

〉

V
, FA =

〈φA, f(z) + p(x, t)〉V and φA = [φ1, φ2, · · · , φN ]T .

It is important to highlight that, as shown in section 2, the number of

elements N in the slow subset zA can be increased to approximate the original

state z with an arbitrary degree of accuracy.

Appendix B. Boundedness of the convective term

In order to show the conditions under which the first derivative can be

expanded in convergent series of the form (13) let us start with a definition:

Definition 1 (Passive systems). A system is said to be passive if there exists

a function W(t) bounded from below so that

W(T + t)−W(t) >
∫ T+t

t

〈y, p〉V ∀t, T > 0 (B.1)

with p and y being, respectively, the input and the output of the system.

3The basis set has been previously normalized so that
∫
V φiφidξ = 1, ∀i = 1, .., N .
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Consider the quadratic function W(t) = 1
2
〈z, z〉V = 1

2
‖z‖22. Multiplying

Eq (9) by z and integrating over the spatial coordinates, we obtain:

dW
dt

=

〈
z,

∂

∂ξ

(
k
∂z

∂ξ

)〉

V
−
〈
z, v

∂z

∂ξ

〉

V
+ 〈z, f〉V + 〈z, p〉V (B.2)

The first two terms on the RHS of Eq (B.2) were proved to be non positive

in [55], therefore using Eq (5) with µ = 0 leads to:

dW
dt

6 −L0 + 〈z, p〉V (B.3)

Taking into account that L0 is a positive quantity, time integration of Eq

(B.3) yields:

W(T ) 6W(0) +

∫ T

0

〈z, p〉V ds (B.4)

Note that this inequality implies that W(T ) is upper bounded for all T > 0

provided that the controls are also bounded so that 〈z, p〉V <∞.

Let us now consider the diffusive term in Eq (B.2):

∫

V

∂

∂x

(
zk
∂z

∂ξ

)
dξ =

∫

V

∂z

∂ξ
k
∂z

∂ξ
dξ +

〈
z,

∂

∂ξ

(
k
∂z

∂ξ

)〉

V

or, by means of the divergence theorem

∫

B
n

(
zk
∂z

∂ξ

)
dξ =

∫

V

∂z

∂ξ
k
∂z

∂ξ
dξ +

〈
z,

∂

∂ξ

(
k
∂z

∂ξ

)〉

V

It should be noted that, making use of boundary condition (3), the LHS is

negative and we obtain

−
∫

V

∂z

∂ξ
k
∂z

∂ξ
dξ >

〈
z,

∂

∂ξ

(
k
∂z

∂ξ

)〉

V
⇒

−k
∥∥∥∥
∂z

∂ξ

∥∥∥∥
2

2

>

〈
z,

∂

∂ξ

(
k
∂z

∂ξ

)〉

V
(B.5)
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Substituting expression (B.5) into (B.2) and using the Lipschitz condition

(5) with µ = 0:

dW
dt

6 −k
∥∥∥∥
∂z

∂ξ

∥∥∥∥
2

2

−
〈
z, v

∂z

∂ξ

〉

V
− L0 + 〈z, p〉V

Taking into account that

〈
z, v

∂z

∂ξ

〉

V
> 0 – see Eqn (17) –

dW
dt

6 −k
∥∥∥∥
∂z

∂ξ

∥∥∥∥
2

2

− L0 + 〈z, p〉V

Finally, time integration of the former expression leads to:

∫ T

0

k

∥∥∥∥
∂z

∂ξ

∥∥∥∥
2

2

ds 6W(0)−W(T ) +

∫ T

0

(−L0 + 〈z, p〉V)ds

Since the all the terms in the RHS are upper bounded – see Eq. (B.4) – we

conclude that the first derivative is bounded.
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∗
A,k) > ε
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∗
k)dξ
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check sufficient
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Figure 1: Illustrative flow chart of the MMPC algorithm.
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Figure 2: Open-loop concentration and temperature responses.
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Figure 3: Closed-loop concentration and temperature responses with a conventional MPC

strategy using a ROM that captures 99.9 % of the energy.

47



0.0

0.2

0.4

0.6

0.8

1.0

ξ
0

5
10

15
20

25t

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

C
(ξ
,t
)

0.0

0.2

0.4

0.6

0.8

1.0

ξ
0

5
10

15
20

25t

0.0

0.4

0.8

1.2

1.6

T
(ξ
,t
)

Figure 4: Closed-loop concentration and temperature responses with the MMPC strategy

using updated ROMs that capture 99.5 % of the energy.
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Figure 5: Outlet reactor concentration and temperature closed-loop responses, and con-

troller actuation: a) conventional MPC; b) MMPC strategy. The dots on the MMPC

profiles indicate when a model update occurred.
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Figure 6: Evolution of the optimal cost function in (46a), inequality (43), and of the

states plant/model mismatch: a) conventional MPC; b) MMPC strategy. The dots on the

MMPC profiles indicate when a model update occurred.
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