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Abstract— Biochemical networks typically exhibit intricate  the stability of one of the fixed points. The application of
topologies that hinder their analysis with control-theordic tools.  gqur methodology to the EXAP model reveals that it can be
In this work we present a systematic methodology for the yohrasented as an equivalent decentralized control system
identification of the control structure of a reaction network. The . ’
method is based on a bandwidth reduction technique applied At_ a 5600”‘?‘ s_tage, we deal W'th_ the computat!on O_f
to the incidence matrix of the network’s graph. In addition, the time-domain integrals of the species’ concentrations i
in the case of mass-action and stable networks we show that biochemical networks. The importance of this problem was
it is possible to iQentify linear algebraic erendencies hween stressed in Heinriclet al [12], whereby by comparing the
the time-domain integrals of some species’ concentration§Ve integrals of certain signals the authors showed an input
consider the extrinsic apoptosis pathway and an activation . .
inhibition mechanism to illustrate the application of our results. ampllflcc_';ltlon phenomenon in the MAP-K pathway. In the

same direction, Sontag and Chaves [13] tackled the more
general problem of computing th& norm of a biochemical
I. INTRODUCTION system, and identified conditions under which its value is

The use of Systems and Control methods to analyi'gentical to that of an associated linear system. In thiskyor

biochemical networks has gained recent attention in the fielV® consider stable mass—a}ctlon n_etworks of b_'”aTy reaction
of Systems Biology [1], [2]. However, their intricate topol and shov_v that one can find a linear comb_maﬂon of the
ogy usually renders the use of control-theoretic prinple?tate' which has an integral that can be gxphmtly_ pomputed
difficult to apply [3]. An ubiquitous example of this difficyl in terms of the model parameters, initial conditions and

is the lack of an explicit plant/controller separation, re¥er the £; nc;rrrr\] of tge Input. TQe z_afpp(yc.atlorr: OI;;&; resudltl
regulated processes in the biological context. to one of the subsystems identified in the mode

The identification of the modular structure of a comple>{eveals an algebraic dependency between the integralwof tw

biochemical network is an appealing approach, as it mr?pecies concentrations. As a second case study, we use the

allow to reveal how the interaction among the subsyste sglt in a model for an activation—inh.ibition mechanisnd an
determines the behavior of the system as a whole [1]. Th erive a clgsed—form formula for the integral of one species
idea has been used, for example, in model analysis [4] aﬁancentratmn.

model estimation from time-series data [5]. In this paper, Il. BACKGROUND

we tackle the problem of identifying possible subsystems pynamical models of biochemical networks
within a given dynamical model. We present a method to . . L .
perform a modular decomposition of a biochemical network.. A blochemlcal network com_posed ofspecies interacting
This is done by a bandwidth reduction technique applie}{i'a m reactions can be described by

to the incidence matrix of the network’s graph, which ¢ = Nv(c) + Du. 1)

reveals lower-dimensional subsystems that may be simple
to analyze g Y ptherec € R", N € R™™ wv(c) € R™, D € R"™?, and

We illustrate the method with the Extrinsic Apoptosisu € R?. The statec is the vector of species concentrations.

Pathway (EXAP) as presented in [6], which has been subje-gpe ma_ttrmNﬂescnbes the st0|ch|o_metry of _the_ netW(_)rk,
of several analyses. The bistability of this model has beet) that (7, 7) en&y, denoted ad;;, is th'?hstomhu_)memc
studied e.qg. in [7], [8] and [9], using Montecarlo approach}:\?eﬁlcIent of the™ compound in the;™ reaction. If
bifurcation analysis, and the notion of input-to-statéity, ij > 0 (Nij < 0), the compound appears as a product
respectively. In [10] the model sensitivity was assess@tgus (subs?rate) in the correspondlng reacyon. The veel@n)

the Structured Singular Value (SSV) analysis [11] so agontalns the rates at which the reaction occur, whekeas

to identify the most robust and fragile reactions regardin cts as a control input and repres_ents the rate at Wh".:h
ome of) the compounds are supplied to the network. This
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molecule numbers, the rate of tii& reaction is proportional The incidence matrix associated to the (graph of) network
to the probability of the reactants to collide, which in turn(1) is then defined a§ = {s;;} with

is proportional to the product of their concentrations te th

power of the molecularity. The mass—action reaction rate fo sy = { Lo Ji 7_’é 0 for ¢ #0 ’
a reaction withn,. reactants and,, products is 0 ,Jij=0forc#0

n Thei*® row of S shows whether or not there exists a depen-
vi(e) = kiH[ci]d”’, (2) dence of theit" differential equation on thg*" chemical

i=1 species. Therefore, the block entries in the diagonal will

whered,; is the molecularity of reactaat in the " reaction appear when a set of variables is interacting with each pther

and[c;] denotes its concentration. In this paper we considdpus defining a subsystem. The structure of the network can
then be inferred from the sparsity structureSnThe block

networks of binary reactions with molecularity one, i. e., ) e ‘ h
reactions of the form matrices appearing in the diagonal 8fcan be interpreted
as subsystems, whereas the off-diagonal entries repribgent
vi(e) = ki fi(e), (3) interconnection among them (See Figure 2 in Section I1I-B).
From the above discussion we see that one way of

where_ file) is thg product. of t\.NO elements af. In th_e rearranging the structure of the network is by reducing the
following a reversible reaction will be modeled as two inde;

. ) .~ . _bandwidth ofS. The resulting labeling provides a means of
pendent reactions (one in the forward (backward) dlremlonidentifying subsystems in the network, together with their

B. Bandwidth reduction for the incidence matrix of a graptForresponding interconnections. The proposed method can

A graph is a pair of set§/ = (V, E) with E € V x V. be summgrlzed -as-follows: )
The elements o/ are called theverticesof the graphG ~ S-1 Obtain the incidence matri§
and the elements of are its edges[15]. Two vertices,> S.2 Reorder the label of the vetices in order to reduce the
andg, are calledadjacentif (z,¢) € E; the set of vertices bandwidth _ _ _ o
adjacent toz is denoted ag’(z). The incidence matrix of S-3 Reorder the labeling so biochemical meaning is pre-
G is defined asS = {s;;} with s;; = 1 if (i,j) € E and served (heuristic) _
si;; = 0 otherwise. Letr(z) be a chosen labeling for vertex S.4 Identify the subsystems present as the blocks in the

2, then bandwidth of with respect to the labeling is main diagonal and the interconnection signals as the
off-diagonal terms (biologically motivated)

B,(z) = max{|r(z) —r(q)], Vg € T(2)}. In the next section we illustrate the proposed decompasitio
The bandwidth of a grapti with respect to a labeling is technique for a model of the extrinsic apoptosis pathway
(EXAP) [6].

B,.(G) = max{B,(z), Vz € V}.
B. Case study: EXAP model
Apoptosis is a programmed cell death mechanism based
upon the activation of caspases. The caspases are enzymes
apable of dismantling proteins. Initiator caspases eeav
§nactive pro-forms of effector caspases, thereby actigati
them. In turn, effector caspases trigger the apoptoticga®c
by cleaving essential proteins for the cell survival. The
igitiation of this reaction network is regulated by caspimse
Iaibitors, which avoid caspases to further react. The famncti
his cellular process is the removal of diseased and older
s for recycling and is essential for maintaining home-
ostasis. In general, two different pathways are considered
I1l. CONTROL STRUCTURE IDENTIFICATION the intrinsic and extrinsic pathway. Further details on the
modeling and systems analysis of the apoptotic process can
Y%e found in [17].

Let B(G) be the minimumB3,.(G) over all possible labelings
r, then thebandwidth reduction probleroonsists in finding
a labelingr that minimizesB,.(G). In terms of the incidence
matrix, the bandwidth reduction problem consists in findin
a permutation of the rows and the columnsSthat keeps
all the non-zero elements & in a band that is as close as
possible to the main diagonal. Several algorithms for sgjvi
this problem have been proposed since the late 1960
including the Reverse Cuthill-McKee procedure, GPS, an
Tabu search based algorithms (see [16] and the referené)é?t
therein). cell

The control analysis of biochemical networks is usuall
impeded by the complexity of their topologies. In this sewti In the EXAP the initi s C 8 and th
we present a method for splitting a biochemical network into n the the initiator caspase is Caspase 8 and the

: ; ffector caspase is Caspase 3. CARP (Cellular Apoptosis
subsystems that may be simpler to analyze independently:
4 y P y P )}Faeegulatory Protein) represents the inhibitor(af, ; and IAP

A. Modular decomposition of a biochemical network (Inhibitor of Apoptosis Protein), the inhibitor af’s,. The

ﬁubindex &' denotes the active form of the caspase and the

absence of the subindex, the pro-form versidg, can either

be degradedia its inhibitor or activate the effector caspase

dv(c) @) Cs. In turn, theCs, can be either degraded by its inhibitor
oc or can activate the initiator caspasg. Once a considerable

Consider the biochemical network in (1) and its Jacobial
matrix J(c) = {Ji;(c)} given by

J()=N
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the subsystems in which the whole systems can be decomposed.

Fig. 1. Normalized trajectories of the states of the EXAPhwibminal
parameters ando = (130000, 1000, 21000, 0, 40000, 0, 40000, 0). .
a decentralized control structure for the EXAP model, as

shown in Figure 3. The plant and controller blocks are
pool of Cy, is present in the cytosol, the cell undergoes théefined as
apoptotic process. The reactions of this pathway are:

= —kacac1 — kgc1 + kmo
Cso +Cs 1 Ca + Ca Caa + IAP 4, O, = kacacr — ksca —ki1c2er + kmiics
—_—
k
Csa + AP —2= [AP : Ca, Csa 250 v
km3 N
. =~
Caw 5.0 AP 2o Kiiq e = kmiicg — ki2er + kmi2 — ki1 “c2 e
Kms = —(km11 + k13)cs + k11cacr
IAP : Csq 2750 Oy =20 g
P80 3 Seio ¢z = —kicacz — kiocz + kmio
ko K1z Gy = kicaez — keca —kscacs + kmace
Cy : 0 CARP ——0 —_——
kmo km12 ug
Csa + CARP CARP: C CARP : Cg, 213, 0 NG
8a : 8a : 8a — .
K11 2 s = km3ce —kgcs +kms — (k3 +ka) "ca o5
Csa +Cs 224 Cgo + Caa és = —(kms+kr)ce + kscacs

Let ¢ = ([Cs] [Csa] [C3] [C3a] [TAP] [TAP : Cs4) whereas the interconnection signals are
[CARP] [CARP : Cs,])T. Assuming a mass-action reac-

) . . ) = Csq, v1 = Cgq, w1 = C3g,
tion mechanism the mathematical model is n Bar T sa ! sa

Y2 = C3q, Uz = C3q, wy = Cg,.

C.l = ~kacacr = koc1+ Kmo In this example, the modular decomposition proposed is used
2 = kacacr — ksca — kuicocr + Emacs to show the structure of the system. This interconnection
¢3 = —kicacs — kioes + kmio scheme may be used to identify input-output propertiesef th
€1 =  kicges — kecq — kscacs + kmace (5) subsystems and hence infer properties of the whole system
) dynamics.

s = kmace — kgcs + kg — (k3 + ka)cacs y

¢o = —(kms+ kr)ce + kscacs IV. TIME-DOMAIN LIMITATIONS

G = kmiics — k12¢r 4+ k1o — k11c2¢7 The structure of the network in (1) may impose algebraic

. dependencies to the state variables. For example, when
s = —(kmi1+kiz)cs + kiicacy P b

rank N < n some species satisfy conservation laws that

Under nominal conditions and parameters [18], the sys-
tem’s dynamic is shown in Figure 1, where the response

is due only to initial concentrations. The phase portrait o, ) wow () [w
of this model with nominal parameters shows three fixed P ; Pe }
points, two of them are stable nodes and one is a saddle __ ! __ |
[18]. This model was built to reproduce a switch behavior, vro 2 v2 |
which resembles the initiation of the apoptosis process by 4_ | 4_ |
high level of Cs,. By applying the procedure of previous [ |

section we can identify the subsystems shown in Figure — TTTTTTTTTTOOT
2. In addition, in each subsystem we can identify blocksig. 3. Decentralized controller structure of system (SeHotted line
that can be interpreted as plant and controller. This reveadncircles the system to which the further analysis is peréat.



constraint their possible trajectories [14]. Although Isuc Condition (10) indicates tha€ has to be chosen so that
limitations can be recognized by inspecting the stoichiemeits rows form a basis for the kernel dBBNT AT, We
ric matrix, there may be other ones that are not as ea$yresee two possible applications of Proposition 4.1:lfirst
to detect; in this section we present a method to detesincey is a linear combination of the species’ concentrations
algebraic dependencies that may appear between the tinfier deviation coordinates), the formula in (11) allows the
domain integrals of the state variables. identification of algebraic constraints between the iraegf
the different species’ concentrations. Secondly, if eletmie
) of y are also elements af, then (11) gives a closed-form
Assume that for a constant contral= u the dynamics formuyla for their integral in terms of the initial conditien
of (1) are stable and let € RZ, be the corresponding the £, norm of the input, and the parameters of the network.
equilibrium. Define the deviation coordinates@s- ¢ — ¢ Next we present an example for each of these two scenarios.
andu. = u—u. We further assume that the control satisfies
oo B. Case study: EXAP system
ur = / Uedt < 0. (6) As a follow-up to the case study in Section I1I-B, here we
0 analyze time-domain limitations that appear in the dynamic
of subsystemsP, and Iy in Figure 3. To isolate these

A. Computation of time-domain integrals

A Taylor expansion of (1) around the equilibriu(e, @)

yields subsystems form the rest of the netwouk, = ¢ is treated
el H (Nvv(e))|._z€ as a constant input tB5. As a simplification of the network,
e = J(@e+ - : + Due,(7) the degradation gnd s_ynthes!s [GM_P] are replaced with
T (N : the controlu.. With this considerations, the model can be
€ (Nmv(€))|o—c € rewritten as in (8) with:
WhereN; is theit row of the the stoichiometric matrix and -1 0 0 0 0 0 0 0 -1 1
H denotes the Hessian operator. Note that the expressioiV = < (1) . *(1) 8 00 g 8 )7
in (7) is exact, since for binary reactions the higher order 0o 1 -1 0 0 -1 0 0 0 O
derivatives ofv(c) vanish. Equation (7) can be rewritten as B = diag {0, k3,0, k4,0,0,0,0,0,0}
é = J(@e+ NBg(e)+ Due, (8)
where B = diag {b;} with kiwacs 0
k304C5 €9€3
b k; ,if the i*? reaction is binary FenacCo 0
‘10 ,otherwise. kycscs eses 0
and the entries of(e) € R™ defined as v(cg) = Foca (e) = 0 p=|"
e 2 I{7C6 , g 0 9 1
fi(e) ,if the i*" reaction is binary kscs 0 0
gi(e) = . Koms 0
0 , otherwise.
/{1063 0
Integration of (8) yields km1o 0
oo [ee]
e(o0) —e(0) = A/ edt+NB/ gle)dt Heree = ¢z — &2, ca = (3 1 ¢5 ¢)" and
0 0
o0 Go — km1o kmiokiwe 00 T
+D/0 e b : k1o + kqwz k1o + k1wa '
where we have definedt = J(¢). The stability of (1) This system is stable for constant inputs and the matrix
togethoeozr with (6) imply that(cc) = 0 and hi?ce C— (0 10 llz_;) (12)
/ edt = —A"'e(0) - A‘lNB/ gl(e)dt satisfies (10). Thus we can use expression (11) to compute
0 - 0 the integral ofy = Ce.
—A7 Dur. ) Considering nil initial concentrations and the inputs in
From this equation the forthcoming proposition is straightFigure 4, we get
forward. o0
Proposition 4.1:Definey = Ce with C € R?*"™ and /0 ydt =0,
such that

which implies
CA'NB=0. (10) i~ b [
/ €9 dt = — - / €4 dt.
0 ke Jo

This means that the integral ef is proportional to the one
of e4. This is a consequence of a trade-off in the dynamic

Then,

/OO ydt = —CA'(e(0)+ Dur). (11)
0
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in the form of (8), where:
250( 1 1 0 0 0 k1
7 —1 1 0 0 kafziw
S 2001 b 1 -1 0 0 kopxow
g =— nput 1 T 0 —1 —1 1 . kngEQCES
5 1501 ——Input 2 { N = 0 1 1 -1 ’ 'U(.’B) - k3pxa
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Fig. 4. Inputs to the network. Note that the area of all thealg is the D = (010 O)T

same.
Herex = ([z1] [z2] [z3] [z4])T, e = © — & whereZ is the
unigue positive fixed point:
behavior. In the biological context, this fact shows thatP :
Csq and Cs, will mutually degrade. It is a well known fact - _ ( k1 (koo + ks) kikoyw o O)T
that the role ofl AP is a regulator of the triggering of the kavka + ks (kapw + ka) - kavka + ks (kapw + ka)

apoptosis mechanism. Here this fact is shown by the dynamig this case the matrixd —* N B has only one nonzero entry:
constraint among the integrals 6%, andIAP : Cs,.

A I'NB =

[=Neloioe}
[eNeloNo)
[eNeloNo)
O * OO
(=N =]

0 0
0 0
0 0
0 0

(=)

C. Case study: activation—inhibition mechanism
i , L i Hence the area of any linear combination of the first, second
Consider a simple activation inhibition mechanism repreznq forth states can be calculated in terms of the strycture
sented by the forthcoming reactions: parameters and exogenous inputs to the system. Choose,
for exampleC = (0 1 0 0). Note this vector lies in the

k1 ka
0=z —0 left kernel of A—*NB. Then its integral is given by the

k

T1 4w == 2y +w following closed—form expression:
kap

]C o0
z9 — 0 i / ydt = a(kgfw kojw +ky  — (kgf’w + k4) 0) .
3f ke 0

: O

T2 + T3 o Ty — . [60 + DUT] ’

Here|w] is assumed to be constant andcan be interpreted where o = (ksks + kapkaw + kskopw)~!. For the initial

as an inactive form of a species of interestas the activated concentrations and parameteff$’ e, dt = 106.0377 x 10°.
version,zs as the inhibitor andr, as the complex formed Figure 6 shows the response of the system due to initial
by the inhibitor andrs. The dynamical model can be written

6 =
5 |
— B
g 2000¢ 1 3 4 — Input 1 ||
3 2 3 = Input 2 {
O J— o
2 Input 1 = = |nput 3
= 0 — Input 2 A o« 2 1
= V Wl — input 3 s k \ \ i
o
X
*& —2000F i | h ; . ; ;
o 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
; ; ; ; ; ; ; ; ; Time [min]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 7
Time [min] 15% 10
s 5
£
— 8 x10 <
£ )
£ @ 10-
< 6F A 3 = Input 1
s 2 —Input 2
% 4f = |nput 1 H % sk —Input3
4 = Input 2 .,
o, 2f —— Input 3 [{ 2
i‘N \\ \ S i i i i i i i i i
o 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
8 Time [min]
< -2

0 1(;00 2(;00 30‘00 4dOO 50‘00 60‘00 7(;00 8(;00 90‘00 10000

Time [min] Fig. 6.  Upper: Trajectories oty with the initial conditionsey =

(2100 60000 1000 1000)T and {k1, kay, kop, ks s, ksp, ka, ks, ke} =

Fig. 5. Upper: Trajectories of> + 2—264. Lower: [ (e2 + 2—7@4)dt. {1,0.1,0.02/w,0.1,1,1,0.003, 1}. Lower: The integral of2. Note that

Note that the final value in all cases is equal, despite thetiappﬁed. The despite the form of the inputs is different in all cases, thalfvalue of the
inputs are shown in Figure 4. integral is the same.



concentrations and three different inputs which affect thg2]
concentration ofe. These inputs are shown in Figure 4.
Note that all of them have the same area. This is consisterji?f]
with the result proposed in Proposition 4.1, since the vafue [4]
the integral only depends on the integral of the input, rathe
than the shape. We also note that, although the dynamiqgl
depend on velocity constanks, ksy, ksy, kg, they do not

affect the integral’s value. 6]

V. CONCLUSIONS

In this work, two studies which can be useful for the
analysis of biochemical networks are presented.

Firstly the identification of subsystems and its intercon-
nection topology are achievefh the bandwidth reduction of
the incidence matrix associated to the dynamical model. Thé!
effectiveness of the methodology depends on the sparsity of
this matrix, since in highly coupled systems the subsystems
identification and isolation might be difficult. The casedstu [l
is the extrinsic apoptosis pathway, in which an eight-state
model was decomposed into four subsystems of dimension
two. The structure in which these subsystems are intercolt?)
nected resembles a decentralized controller scheme.

The second analysis focuses on the identification of [a1]
linear combination of the state whose time—domain integr’ﬁZ]
can be computed in terms of the initial concentrations, rhod
parameters and th&€; norm of the inputs. Here such a
subspace is determined for mass—action reaction networks!
The use of this linear transformation is exemplified with two
case studies. In the first one a subsystem previously idehtifi[14]
on the EXAP is analyzed, whence a dynamic trade—off
between two states arises. The later case study shows h@yy
a closed—form expression for computing one state’'s time6]
domain integral can be obtained. This formula is function
of someparameters solely, showing that the integral will bg;7)
insensitive to variations of the rest.

(7]
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