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F. López-Caamal†∗, D. A. Oyarzún†, J. A. Moreno◦, D. Kalamatianos†

Abstract— Biochemical networks typically exhibit intricate
topologies that hinder their analysis with control-theoretic tools.
In this work we present a systematic methodology for the
identification of the control structure of a reaction network. The
method is based on a bandwidth reduction technique applied
to the incidence matrix of the network’s graph. In addition,
in the case of mass-action and stable networks we show that
it is possible to identify linear algebraic dependencies between
the time-domain integrals of some species’ concentrations. We
consider the extrinsic apoptosis pathway and an activation–
inhibition mechanism to illustrate the application of our r esults.

I. I NTRODUCTION

The use of Systems and Control methods to analyze
biochemical networks has gained recent attention in the field
of Systems Biology [1], [2]. However, their intricate topol-
ogy usually renders the use of control-theoretic principles
difficult to apply [3]. An ubiquitous example of this difficulty
is the lack of an explicit plant/controller separation, even for
regulated processes in the biological context.

The identification of the modular structure of a complex
biochemical network is an appealing approach, as it may
allow to reveal how the interaction among the subsystems
determines the behavior of the system as a whole [1]. This
idea has been used, for example, in model analysis [4] and
model estimation from time-series data [5]. In this paper,
we tackle the problem of identifying possible subsystems
within a given dynamical model. We present a method to
perform a modular decomposition of a biochemical network.
This is done by a bandwidth reduction technique applied
to the incidence matrix of the network’s graph, which
reveals lower-dimensional subsystems that may be simpler
to analyze.

We illustrate the method with the Extrinsic Apoptosis
Pathway (EXAP) as presented in [6], which has been subject
of several analyses. The bistability of this model has been
studied e.g. in [7], [8] and [9], using Montecarlo approach,
bifurcation analysis, and the notion of input-to-state stability,
respectively. In [10] the model sensitivity was assessed using
the Structured Singular Value (SSV) analysis [11] so as
to identify the most robust and fragile reactions regarding
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the stability of one of the fixed points. The application of
our methodology to the EXAP model reveals that it can be
represented as an equivalent decentralized control system.

At a second stage, we deal with the computation of
the time-domain integrals of the species’ concentrations in
biochemical networks. The importance of this problem was
stressed in Heinrichet al [12], whereby by comparing the
integrals of certain signals the authors showed an input
amplification phenomenon in the MAP-K pathway. In the
same direction, Sontag and Chaves [13] tackled the more
general problem of computing theL2 norm of a biochemical
system, and identified conditions under which its value is
identical to that of an associated linear system. In this work,
we consider stable mass–action networks of binary reactions
and show that one can find a linear combination of the
state, which has an integral that can be explicitly computed
in terms of the model parameters, initial conditions and
the L1 norm of the input. The application of this result
to one of the subsystems identified in the EXAP model
reveals an algebraic dependency between the integrals of two
species concentrations. As a second case study, we use the
result in a model for an activation–inhibition mechanism and
derive a closed–form formula for the integral of one species
concentration.

II. BACKGROUND

A. Dynamical models of biochemical networks

A biochemical network composed ofn species interacting
via m reactions can be described by

ċ = Nv(c) + Du. (1)

wherec ∈ R
n, N ∈ R

n×m, v(c) ∈ R
m, D ∈ R

n×p, and
u ∈ R

p. The statec is the vector of species concentrations.
The matrixN describes the stoichiometry of the network,
so that its(i, j)th entry, denoted asNij , is the stoichiometric
coefficient of the ith compound in thejth reaction. If
Nij > 0 (Nij < 0), the compound appears as a product
(substrate) in the corresponding reaction. The vectorv(c)
contains the rates at which the reaction occur, whereasu

acts as a control input and represents the rate at which
(some of) the compounds are supplied to the network. This
control input (and the matrixD) allows to describe the
interaction of the network with its surrounding. The reaction
rates inv(c) are usually nonlinear functions of the state
c, the form of which depends on the specific chemical
mechanisms enabling the reaction. A simple and commonly
used model for these reactions is given by the Law of Mass
Action (see [14], for example): under the assumption that
the medium is homogeneous and the species appear in large



molecule numbers, the rate of theith reaction is proportional
to the probability of the reactants to collide, which in turn
is proportional to the product of their concentrations to the
power of the molecularity. The mass–action reaction rate for
a reaction withnr reactants andnp products is

vi(c) = ki

n
∏

i=1

[ci]
dij , (2)

wheredij is the molecularity of reactantci in thejth reaction
and [ci] denotes its concentration. In this paper we consider
networks of binary reactions with molecularity one, i. e.,
reactions of the form

vi(c) = kifi(c), (3)

where fi(c) is the product of two elements ofc. In the
following a reversible reaction will be modeled as two inde-
pendent reactions (one in the forward (backward) direction).

B. Bandwidth reduction for the incidence matrix of a graph

A graph is a pair of setsG = (V, E) with E ∈ V × V .
The elements ofV are called theverticesof the graphG

and the elements ofE are its edges[15]. Two vertices,z
and q, are calledadjacentif (z, q) ∈ E; the set of vertices
adjacent toz is denoted asT (z). The incidence matrix of
G is defined asS = {sij} with sij = 1 if (i, j) ∈ E and
sij = 0 otherwise. Letr(z) be a chosen labeling for vertex
z, then bandwidth ofz with respect to the labelingr is

Br(z) = max{|r(z) − r(q)|, ∀q ∈ T (z)}.

The bandwidth of a graphG with respect to a labelingr is

Br(G) = max{Br(z), ∀z ∈ V }.

Let B(G) be the minimumBr(G) over all possible labelings
r, then thebandwidth reduction problemconsists in finding
a labelingr that minimizesBr(G). In terms of the incidence
matrix, the bandwidth reduction problem consists in finding
a permutation of the rows and the columns ofS that keeps
all the non-zero elements ofS in a band that is as close as
possible to the main diagonal. Several algorithms for solving
this problem have been proposed since the late 1960’s,
including the Reverse Cuthill-McKee procedure, GPS, and
Tabu search based algorithms (see [16] and the references
therein).

III. C ONTROL STRUCTURE IDENTIFICATION

The control analysis of biochemical networks is usually
impeded by the complexity of their topologies. In this section
we present a method for splitting a biochemical network into
subsystems that may be simpler to analyze independently.

A. Modular decomposition of a biochemical network

Consider the biochemical network in (1) and its Jacobian
matrix J(c) ≡ {Jij(c)} given by

J(c) = N
∂v(c)

∂c
. (4)

The incidence matrix associated to the (graph of) network
(1) is then defined asS ≡ {sij} with

sij =

{

1 , Jij 6= 0 for c 6= 0
0 , Jij = 0 for c 6= 0

,

The ith row of S shows whether or not there exists a depen-
dence of theith differential equation on thejth chemical
species. Therefore, the block entries in the diagonal will
appear when a set of variables is interacting with each other,
thus defining a subsystem. The structure of the network can
then be inferred from the sparsity structure inS. The block
matrices appearing in the diagonal ofS can be interpreted
as subsystems, whereas the off-diagonal entries representthe
interconnection among them (See Figure 2 in Section III-B).

From the above discussion we see that one way of
rearranging the structure of the network is by reducing the
bandwidth ofS. The resulting labeling provides a means of
identifying subsystems in the network, together with their
corresponding interconnections. The proposed method can
be summarized as follows:

S.1 Obtain the incidence matrixS
S.2 Reorder the label of the vetices in order to reduce the

bandwidth
S.3 Reorder the labeling so biochemical meaning is pre-

served (heuristic)
S.4 Identify the subsystems present as the blocks in the

main diagonal and the interconnection signals as the
off-diagonal terms (biologically motivated)

In the next section we illustrate the proposed decomposition
technique for a model of the extrinsic apoptosis pathway
(EXAP) [6].

B. Case study: EXAP model

Apoptosis is a programmed cell death mechanism based
upon the activation of caspases. The caspases are enzymes
capable of dismantling proteins. Initiator caspases cleave
inactive pro-forms of effector caspases, thereby activating
them. In turn, effector caspases trigger the apoptotic process
by cleaving essential proteins for the cell survival. The
initiation of this reaction network is regulated by caspasein-
hibitors, which avoid caspases to further react. The function
of this cellular process is the removal of diseased and older
cells for recycling and is essential for maintaining home-
ostasis. In general, two different pathways are considered:
the intrinsic and extrinsic pathway. Further details on the
modeling and systems analysis of the apoptotic process can
be found in [17].

In the EXAP the initiator caspase is Caspase 8 and the
effector caspase is Caspase 3. CARP (Cellular Apoptosis
Regulatory Protein) represents the inhibitor ofC8a; and IAP
(Inhibitor of Apoptosis Protein), the inhibitor ofC3a. The
subindex ‘a’ denotes the active form of the caspase and the
absence of the subindex, the pro-form version.C8a can either
be degradedvia its inhibitor or activate the effector caspase
C3. In turn, theC3a can be either degraded by its inhibitor
or can activate the initiator caspaseC8. Once a considerable
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Fig. 1. Normalized trajectories of the states of the EXAP with nominal
parameters andc0 = (130000, 1000, 21000, 0, 40000, 0, 40000, 0).

pool of C3a is present in the cytosol, the cell undergoes the
apoptotic process. The reactions of this pathway are:

C8a + C3

k1
−−→ C3a + C8a C3a + IAP

k4
−−→ C3a

C3a + IAP
k3

−−−−⇀↽−−−−
km3

IAP : C3a C3a

k6
−−→ 0

C8a

k5
−−→ 0 IAP

k8
−−−−⇀↽−−−−

km8

0

IAP : C3a

k7
−−→ 0 C3

k10
−−−−⇀↽−−−−

km10

0

C8

k9
−−−−⇀↽−−−−

km9

0 CARP
k12

−−−−⇀↽−−−−
km12

0

C8a + CARP
k11

−−−−⇀↽−−−−
km11

CARP : C8a CARP : C8a

k13
−−−→ 0

C3a + C8

k2
−−→ C8a + C3a

Let c = ([C8] [C8a] [C3] [C3a] [IAP ] [IAP : C3a]
[CARP ] [CARP : C8a])T . Assuming a mass-action reac-
tion mechanism the mathematical model is

ċ1 = −k2c4c1 − k9c1 + km9

ċ2 = k2c4c1 − k5c2 − k11c2c7 + km11c8

ċ3 = −k1c2c3 − k10c3 + km10

ċ4 = k1c2c3 − k6c4 − k3c4c5 + km3c6 (5)

ċ5 = km3c6 − k8c5 + km8 − (k3 + k4)c4c5

ċ6 = −(km3 + k7)c6 + k3c4c5

ċ7 = km11c8 − k12c7 + km12 − k11c2c7

ċ8 = −(km11 + k13)c8 + k11c2c7

Under nominal conditions and parameters [18], the sys-
tem’s dynamic is shown in Figure 1, where the response
is due only to initial concentrations. The phase portrait
of this model with nominal parameters shows three fixed
points, two of them are stable nodes and one is a saddle
[18]. This model was built to reproduce a switch behavior,
which resembles the initiation of the apoptosis process, bya
high level of C3a. By applying the procedure of previous
section we can identify the subsystems shown in Figure
2. In addition, in each subsystem we can identify blocks
that can be interpreted as plant and controller. This reveals

Fig. 2. Incidence matrix of the system (5). The green squaresrepresent
the subsystems in which the whole systems can be decomposed.

a decentralized control structure for the EXAP model, as
shown in Figure 3. The plant and controller blocks are
defined as

P1 :

8

<

:

ċ1 = −k2c4c1 − k9c1 + km9

ċ2 = k2c4c1 − k5c2 −k11c2c7 + km11c8
| {z }

u1

K1 :

8

<

:

ċ7 = km11c8 − k12c7 + km12 − k11

v1=y1

z}|{

c2 c7
ċ8 = −(km11 + k13)c8 + k11c2c7

P2 :

8

<

:

ċ3 = −k1c2c3 − k10c3 + km10

ċ4 = k1c2c3 − k6c4 −k3c4c5 + km3c6
| {z }

u2

K2 :

8

<

:

ċ5 = km3c6 − k8c5 + km8 − (k3 + k4)

v2=y2

z}|{

c4 c5
ċ6 = −(km3 + k7)c6 + k3c4c5

whereas the interconnection signals are

y1 = C8a, v1 = C8a, w1 = C3a,

y2 = C3a, v2 = C3a, w2 = C8a.

In this example, the modular decomposition proposed is used
to show the structure of the system. This interconnection
scheme may be used to identify input-output properties of the
subsystems and hence infer properties of the whole system
dynamics.

IV. T IME-DOMAIN LIMITATIONS

The structure of the network in (1) may impose algebraic
dependencies to the state variables. For example, when
rankN < n some species satisfy conservation laws that

P1

K1

P2

K2

w1

v1

y1

u1 u2

y2w2

v2

Fig. 3. Decentralized controller structure of system (5). The dotted line
encircles the system to which the further analysis is performed.



constraint their possible trajectories [14]. Although such
limitations can be recognized by inspecting the stoichiomet-
ric matrix, there may be other ones that are not as easy
to detect; in this section we present a method to detect
algebraic dependencies that may appear between the time-
domain integrals of the state variables.

A. Computation of time-domain integrals

Assume that for a constant controlu = ū the dynamics
of (1) are stable and let̄c ∈ R

n
≥0 be the corresponding

equilibrium. Define the deviation coordinates ase = c − c̄

andue = u−ū. We further assume that the control satisfies

uT =

∫ ∞

0

uedt < ∞. (6)

A Taylor expansion of (1) around the equilibrium(c̄, ū)
yields

ė = J(c̄)e +
1

2







eT H (N1v(c))|
c=c̄

e
...

eT H (Nmv(c))|
c=c̄

e






+ Due,(7)

WhereNi is theith row of the the stoichiometric matrix and
H denotes the Hessian operator. Note that the expression
in (7) is exact, since for binary reactions the higher order
derivatives ofv(c) vanish. Equation (7) can be rewritten as

ė = J(c̄)e + NBg(e) + Due, (8)

whereB = diag {bi} with

bi =

{

ki , if the ith reaction is binary

0 , otherwise.

and the entries ofg(e) ∈ R
m defined as

gi(e) =

{

fi(e) , if the ith reaction is binary

0 , otherwise.

Integration of (8) yields

e(∞) − e(0) = A

∫

∞

0

e dt + NB

∫ ∞

0

g(e) dt

+D

∫

∞

0

ue dt,

where we have definedA = J(c̄). The stability of (1)
together with (6) imply thate(∞) = 0 and hence
∫ ∞

0

edt = −A−1e(0) − A−1NB

∫ ∞

0

g(e) dt

−A−1DuT . (9)

From this equation the forthcoming proposition is straight-
forward.

Proposition 4.1:Define y = Ce with C ∈ R
q×n and

such that

CA−1NB = 0. (10)

Then,
∫ ∞

0

y dt = −CA−1 (e(0) + DuT ) . (11)

Condition (10) indicates thatC has to be chosen so that
its rows form a basis for the kernel ofBNT A−T . We
foresee two possible applications of Proposition 4.1: firstly,
sincey is a linear combination of the species’ concentrations
(in deviation coordinates), the formula in (11) allows the
identification of algebraic constraints between the integral of
the different species’ concentrations. Secondly, if elements
of y are also elements ofe, then (11) gives a closed-form
formula for their integral in terms of the initial conditions,
theL1 norm of the input, and the parameters of the network.
Next we present an example for each of these two scenarios.

B. Case study: EXAP system

As a follow-up to the case study in Section III-B, here we
analyze time-domain limitations that appear in the dynamics
of subsystemsP2 and K2 in Figure 3. To isolate these
subsystems form the rest of the network,w2 = c2 is treated
as a constant input toP2. As a simplification of the network,
the degradation and synthesis of[IAP ] are replaced with
the controlue. With this considerations, the model can be
rewritten as in (8) with:

N =

(

−1 0 0 0 0 0 0 0 −1 1
1 −1 1 0 −1 0 0 0 0 0
0 −1 1 −1 0 0 −1 1 0 0
0 1 −1 0 0 −1 0 0 0 0

)

,

B = diag {0, k3, 0, k4, 0, 0, 0, 0, 0, 0}

v(c2) =

































k1w2c3

k3c4c5

km3c6

k4c4c5

k6c4

k7c6

k8c5

km8

k10c3

km10

































, g(e) =

































0
e2e3

0
e2e3

0
0
0
0
0
0

































, D =









0
0
1
0









.

Heree = c2 − c̄2, c2 = (c3 c4 c5 c6)
T and

c̄2 =

(

km10

k10 + kaw2

km10k1w2

k10 + k1w2
0 0

)T

.

This system is stable for constant inputs and the matrix

C =
(

0 1 0 k7

k6

)

(12)

satisfies (10). Thus we can use expression (11) to compute
the integral ofy = Ce.

Considering nil initial concentrations and the inputs in
Figure 4, we get

∫ ∞

0

y dt = 0,

which implies
∫ ∞

0

e2 dt = −
k7

k6

∫ ∞

0

e4 dt.

This means that the integral ofe2 is proportional to the one
of e4. This is a consequence of a trade-off in the dynamic
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Fig. 4. Inputs to the network. Note that the area of all the signals is the
same.

behavior. In the biological context, this fact shows thatIAP :
C3a andC3a will mutually degrade. It is a well known fact
that the role ofIAP is a regulator of the triggering of the
apoptosis mechanism. Here this fact is shown by the dynamic
constraint among the integrals ofC3a andIAP : C3a.

C. Case study: activation–inhibition mechanism

Consider a simple activation inhibition mechanism repre-
sented by the forthcoming reactions:

0
k1−→ x1

k4−→ 0

x1 + w
k2f
−−⇀↽−−
k2b

x2 + w

x2
k5−→ 0

x2 + x3

k3f

−−⇀↽−−
k3b

x4
k6−→ 0

Here[w] is assumed to be constant andx1 can be interpreted
as an inactive form of a species of interest,x2 as the activated
version,x3 as the inhibitor andx4 as the complex formed
by the inhibitor andx2. The dynamical model can be written
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e4. Lower:

R ∞
0

(e2 + k7

k6
e4)dt.

Note that the final value in all cases is equal, despite the input applied. The
inputs are shown in Figure 4.

in the form of (8), where:

NT =













1 0 0 0
−1 1 0 0

1 −1 0 0
0 −1 −1 1
0 1 1 −1

−1 0 0 0
0 −1 0 0
0 0 0 −1













, v(x) =













k1

k2f x1w
k2bx2w

k3f x2x3

k3bx4

k4x1

k5x2

k6x4













B = diag {0, 0, 0, k3f , 0, 0, 0, 0}

g(e) = (0 0 0 e2e3 0 0 0 0)T

D = (0 1 0 0)T

Herex = ([x1] [x2] [x3] [x4])
T , e ≡ x − x̄ wherex̄ is the

unique positive fixed point:

x̄ =

“

k1 (k2b + k5)

k2bk4 + k5(k2f w + k4)

k1k2f w

k2bk4 + k5(k2f w + k4)
0 0

”T

In this case the matrixA−1NB has only one nonzero entry:

A−1NB =

(

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 ⋆ 0 0 0 0
0 0 0 0 0 0 0 0

)

.

Hence the area of any linear combination of the first, second
and fourth states can be calculated in terms of the structure,
parameters and exogenous inputs to the system. Choose,
for exampleC = (0 1 0 0). Note this vector lies in the
left kernel of A−1NB. Then its integral is given by the
following closed–form expression:
∫ ∞

0

y dt = α(k2fw k2fw + k4 − (k2fw + k4) 0) ·

· [e0 + DuT ] ,

where α = (k5k4 + k2bk4w + k5k2fw)−1. For the initial
concentrations and parameters

∫∞

0
e2 dt = 106.0377× 106.

Figure 6 shows the response of the system due to initial
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concentrations and three different inputs which affect the
concentration ofe2. These inputs are shown in Figure 4.
Note that all of them have the same area. This is consistent
with the result proposed in Proposition 4.1, since the valueof
the integral only depends on the integral of the input, rather
than the shape. We also note that, although the dynamics
depend on velocity constantsk1, k3f , k3b, k6, they do not
affect the integral’s value.

V. CONCLUSIONS

In this work, two studies which can be useful for the
analysis of biochemical networks are presented.

Firstly the identification of subsystems and its intercon-
nection topology are achievedvia the bandwidth reduction of
the incidence matrix associated to the dynamical model. The
effectiveness of the methodology depends on the sparsity of
this matrix, since in highly coupled systems the subsystems
identification and isolation might be difficult. The case study
is the extrinsic apoptosis pathway, in which an eight–states
model was decomposed into four subsystems of dimension
two. The structure in which these subsystems are intercon-
nected resembles a decentralized controller scheme.

The second analysis focuses on the identification of a
linear combination of the state whose time–domain integral
can be computed in terms of the initial concentrations, model
parameters and theL1 norm of the inputs. Here such a
subspace is determined for mass–action reaction networks.
The use of this linear transformation is exemplified with two
case studies. In the first one a subsystem previously identified
on the EXAP is analyzed, whence a dynamic trade–off
between two states arises. The later case study shows how
a closed–form expression for computing one state’s time–
domain integral can be obtained. This formula is function
of someparameters solely, showing that the integral will be
insensitive to variations of the rest.
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