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Abstract — A novel methodology to infer transportation mode taken by mobile device users
between regions of interest is introduced. It relies on analysing anonymised billing data, namely
call detail records, supplied by mobile network operators as the primary source of user-created
data. Coupled with the spatial coverage and distribution of mobile network cells and geographical
route map information of major transportation modes, assumed to be partially non-overlapping,
user travel paths can be predicted. Journey specific trajectories are constructed and analysed using
the concept of virtual cell path for each qualified pre-processed list of activities from each unique
user. After classification, kernel density paths for each route were generated both for illustration
and validation purposes. Differentiation between rail and road users travelling between Dublin and
Cork in the Republic of Ireland is shown as an example application case study.
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I Introduction

Transportation surveys are one of the most impor-
tant instruments for gathering sample data used
by government agencies and transportation sci-
entists for strategic infrastructural planning and
service provision. Such surveys, while informa-
tive, are both time consuming and expensive to
undertake.

The mobility patterns of mobile phones are in-
trinsically linked to human travel behaviour. It
can be used to reveal some of the space-time be-
haviour patterns relating to human mobility [1, 2],
social structure [3] and land use [4]. The data in-
dividual working groups have at their disposal
strongly influences the type of possible analysis,
and information that can be extracted.

In this context, mobile phone networks may
provide sources that convey transportation sur-
vey parameters. Rose [5] critics the use of mo-
bile phones as traffic probes, noting several issues
and opportunities in the extraction of transport

related information. Caceres et al. [6] reviews traf-
fic data estimations using a variety of metrics ex-
tracted from mobile phone networks. The devel-
opment of origin-destination matrices traffic flow
estimates, user speed, travel time calculations and
traffic volumes is also discussed.

However, due to spatial and temporal sampling
issues, it has proven difficult to segregate mobility
patterns observed through the mobile telephony
data to specific transportation modes. For ex-
ample, Wang et al. [7] examined transportation
mode inference from mobile billing records but
their technique fails to account for transportation
modes that have similar travel times. The con-
tribution of this paper is to provide the means to
infer transportation modes or major routes taken
by mobile telephone users between regions of in-
terest via their anonymised billing records. By fo-
cusing on the likelihood of a user travelling along a
spatial transportation route, given their recorded
travel path through the mobile phone network,
users with similar travel times but different travel



modes can readily be segregated.
The data set used in this publication is a contin-

uous one week sample of call detail records (CDR)
provided by Meteor, a mobile network operator in
the Republic of Ireland, collected between the 26th
of November and the 2nd of December 2009. This
data contains in excess of 300 million entries and
provides temporal and cell tower connecting in-
formation relating to over a million users across
the whole of the Republic of Ireland. The records
are comprised of billable interactions between a
mobile phone network and their customers. This
consist of anonymised information relating to the
SIM cards inserted into mobile devices that are in
connection with the network, consisting of those
who initiated activities and their intended recipi-
ents. CDR also contain the nature of the commu-
nication (voice, SMS, data, etc.), duration of the
activity, starting time of the activity and cell iden-
tification numbers of both the sender and receiver
where available.

This paper is organised as follows. Section II
describes the process of constructing CDR jour-
ney trajectories while section III summarises trans-
portation mode inference using virtual cell paths.
Section IV discusses the procedure for estimating
user travel paths based on the spatial distribution
of their activities. Section V shows the results of
the transportation mode inference processes while
the conclusions are discussed in section VI.

II CDR Journey Trajectories

To infer transportation mode from CDR, it is first
required to extract mobility information for each
unique user in the form of journey trajectories. To
transform a unique user’s list of CDR activities
into journey trajectories, spatial information must
be first derived from the serving cells associated
to the logged events. Common cell parameters in-
clude network type, site location, allocated trans-
mitter reference and transmitter azimuth angle.
This information can collectively be converted to
cell site coordinates or coverage areas of the serv-
ing cells via Voronoi tessellation [8] of the site lo-
cations. A section of the approximate coverage
map is depicted in Fig. 1. The accuracy of the tes-
sellation is affected by physical layer parameters
such as the channel characteristics, transmitter fre-
quency, tilt, height, transmission power etc.

User event trajectories are formed by associat-
ing the centroid location of the connecting cell
Voronoi polygons to the temporally sequenced
events. Location information of trajectories gener-
ated in this way will display spatial heteroskedas-
ticity, as the variance in estimation accuracy will
be influenced by the physical topology of the mo-
bile network (i.e. the size and density of the cells).
For example, it is less likely for a user 20 km away
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Fig. 1: Sample of idealised Voronoi tessellation
used to calculate cell network coverage map.

from a cell tower to be associated to that cell in a
city compared to one located in a rural area.

To develop journey specific trajectories (Ji), re-
gions of interest RA and RB are defined. Cells
located within each region boundary are assigned
to belong to that region. This provides a means
of capturing each region in terms of the cell net-
work coverage as well as restricting CDR to sam-
ples related directly to the regions of interest. The
next step is to find the users who were deemed to
travel directly between the cells in RA and RB. For
the propose of this investigation journeys between
the Republic of Ireland’s two largest cities, Dublin
and Cork, were chosen. Both regions of interest
are depicted in Fig. 2a and Fig. 2b, respectively.
Hereafter, only trajectories between RA and RB are
considered.

Ensuring anonymity of individual users whose
trajectories are being tracked is important. Re-
searchers have shown that the combination of
anonymised user data with external information
sources can reveal the identity of the previously
unidentifiable users [9]. To address this issue we
have chosen to remove anonymised user IDs here-
after. While this decimation may not guarantee
the anonymised user associated with a particular
journey may never be identified. The omission of
anonymised user ID breaks the linkage between
blocks of travel information at different time in-
tervals, meaning no individual may be tracked
for prolonged periods of time.

III TransportationMode Inference based on
VCP

The travel mode discovery technique focuses on
identifying journeys taken by the major modes
of transport, namely rail-line and primary road
(the M7-M8 motorway) between Dublin and Cork.
The first step in the process is to select those
users whose journey travel times are related to
the achievable travel time along the particular pri-
mary routes. The non-flight travel time between
Dublin and Cork is approximately 3 hours, thus
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Fig. 2: Regions of interest (a) cells assigned Dublin
region; (b) cells assigned Cork region.

by extracting those users who had journey travel
times of less than 3.5 hours, we can focus on users
who travel directly between the two regions on
primary routes. This reduces the number of indi-
vidual journeys from 7500 to 2537.

Proximity measurements may fail to account for
the topology of the network given that each Ji is
artificially fixed to the connecting cell towers. This
is due to the fact that cell towers are unlikely to
be aligned in parallel routes to the rail and roads.
In other words, ’zig-zag’ shaped Ji would nor-
mally be expected, contributing noise during sub-
sequent analyses.

Instead, we measure similarity based on the
proportion of locating events that occur at cells
that are deemed to represent a route of interest
(Ti). We call such a collection of cells a virtual cell
path (VCP), defined as a representation of the path
through a mobile telephony network along which
a user may travel while on Ti. Cells in the VCP
are selected if their area of coverage overlaps with
Ti. Additional cells associated with Ti as manually
identified from training data (c.f. ’zig-zag’ Ji) are
collected to improve the spatial coverage of the
resultant VCP. Training data consists of randomly
select Ji whose transportation mode is manually
identified. Once completed, each VCP consists of
a list of cells whose spatial coverage either coin-
cides with part of Ti or serviced as a connecting
cell to a user while they travelled along Ti.

Fig. 3: Virtual cell path after training of rail and
road (M7-M8) route corridors between Dublin and
Cork.

Inference of the transportation mode taken by
the Ji based on VCP is accomplished by labelling
Ji as a particular Ti if the probability P(Ti|Ji) is
deemed sufficient in comparison to the probabil-
ity P(T j|Ji), where T j are other plausible trans-
portation routes. Equation 1 shows the simplified
transport inference decision between Trail and Troad
trajectories.

Decision =


Road if [P(road) − P(rail)] > ε
Rail if [P(rail) − P(road)] > ε
Unknown if |P(rail) − P(road)| ≤ ε

(1)

where P(road) and P(rail) are the likelihood of be-
ing on the trajectory Troad and Trail, respectively.

However the variances in VCP measures alone
is not necessarily enough to classify travel path if
those VCP have large regions of overlap. As de-
picted in Fig. 3 there are several regions of overlap
between Trail and Troad VCP in this case study. As a
result some necessary conditions are required for
VCP based travel path identification to be feasible.
These conditions are

1. a minimum number of cell connections in the
areas of spatial divergence between Ti; and

2. a minimum weight εof difference in measures
of similarity among all Ti.

IV Estimated Path Generation

The estimated travel path (ETP) represents the
likely path travelled by a group of similar CDR
trajectories migrating between regions of interest.



The ability to observe this path, with no trans-
portation mode assumptions, enables the compar-
ison of the CDR trajectory groups solely based
on their on-route travel characteristics with trans-
portation travel paths.

The process used to develop the ETP consists of
developing a path of least cost between a chosen
start and end location. Firstly, bin activity counts
from users trajectories between the start and end
location onto their servicing cell towers. Once
completed, weight each spatial sample point in
a dispersed grid with annealed distributed cell
tower counts. Using the spatial sample point
weights, derive a transition cost matrix for each
sample point to its neighbouring points. This is
effectively the cost of moving from one sample
point to its neighbour. Sample points can then
be selected to form the least cost path, if the cost
of moving from the start location to end location
while visiting those points is minimal in compari-
son to alternative routes, given that you may only
transverse to a neighbouring cell in any one hop.

The spatial points chosen consist of centre of
gravity locations from an evenly dispersed hexag-
onal grid over the study area. The size of each
hexagon (5 km in diameter) is chosen to be much
smaller than the rural area cells typically (10 km
to 20 km). The reason for this choice is to bal-
ance the compromise between speed and spa-
tial accuracy. In areas such as the city centre,
where cell diameters are sometimes smaller than
that of the hexagon grid, the error margin will be
max{diameter of hexagon, diameter of cell}.

The spatial sample points weights are calculated
based a kernel density smoothing of user activity
counts on servicing cell towers. The non-negative
spatial kernel density weight W(x, y) at each grid
point is calculated as in equation 2,

W(x, y) =
nc

2πr2k

M∑
i=1

exp

(
(x−Xi )2+(y−Yi )2

2r2

)
, (2)

where x, y are the spatial points Easting and Nor-
thing coordinates respectively, k is a normalisation
factor such that the largest value of W(x, y) = 1 and
r is the Gaussian kernel width, in this instance
r = 10000. Xi and Yi are the spatial coordinates
of the cell towers associated to each activity, while
nc represent the number of CDR activities at that
cell.

However, kernel density weights cannot be di-
rectly employed in a transition cost matrix be-
tween neighbouring spatial sample points. The
following transition matrix Mn relates W(x, y) at
each sample point to the cost of moving to a neigh-
bouring sample point.

Mn =
W(xn, yn)
W(x, y)

[
(
2 −W(xn, yn)

)
] , (3)

where W(xn, yn) is the kernel weight of a neigh-
bouring grid section of W(x, y). The ratio
W(xn, yn)/W(x, y) scales the transition cost such
that the cost of moving from a high W(x, y) to low
W(xn, yn) is large, while the cost of moving from
a low W(x, y) to high W(xn, yn) is small. The tran-
sition cost of moving from similar weights is also
small, so to penalise the transition of low W(x, y)
to low W(xn, yn),

(
2 −W(xn, yn)

)
is introduced. We

then utilise Dijkstra’s algorithm [10] to select the
sample points which form the path of least cost
between the chosen start and end locations.
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Fig. 4: Estimated travel paths derived from empir-
ical CDR trajectories between Dublin and Cork,
with annealed distributed cell tower counts dis-
played (a) estimated travel paths associated with
50 empirical rail journeys; (b) estimated travel
paths associated with 50 empirical road journeys.

The paths depicted in Figs. 4a and 4b visually
demonstrate the relationship between the ETP and
respective rail and road trajectories. The paths are
constructed using 50 journeys manually identified
as rail and road journeys. The results highlights
that it may be possible to use the estimated travel
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Fig. 5: Results from the VCP classification of the mode of transport used by persons travelling between
Dublin and Cork (a) the classification result for each individual journey; (b) ETP with annealed dis-
tributed cell tower counts displayed of identified rail journeys; (c) ETP with annealed distributed cell
tower counts displayed of identified road journeys; and (d) ETP with annealed distributed cell tower
counts displayed of non-classified journeys.

paths to help verify the accuracy of the classifica-
tion process.

V Results

Table 1 contains the number of road, rail and non-
classifiable journeys inferred through VCP classi-
fication from our test data set. Fig. 5a depicts the
weights corresponding to each Ti.

Rail Road Unknown Total
1331 960 246 2537

Table 1: Classification of transportation mode

Depicted in Figs. 5b, 5c and 5d is the spatial rela-
tionship between classified Ji and Ti as described
by a kernel density map for each of the classes (rail,
road, unknown). As expected, the kernel density

map for non-classified journeys clearly demon-
strates a lack of CDR activities in spatial regions
where Trail and Troad do not overlap. The kernel
density map of both rail and road journeys high-
lights the ability of transport mode identification
using VCP on CDR data when necessary condi-
tions are met. From Figs. 5b, 5c, it is noted that
the estimated paths do not necessarily follow the
true transport trajectories because of the Dijkstra
algorithm attempts to follow a least cost weighted
shortest path through the spatially overlain hexag-
onal grid.

VI Conclusions

In this paper, a novel methodology is described for
inferring transportation mode taken by individu-
als between regions of interest via mobile phone
network billing records. User trajectories are con-
structed from a qualified pre-processed list of ac-



tivities from each unique user and the spatial pa-
rameters of the servicing cells. The development
of virtual cell paths is described, for the purpose
of mapping user journey trajectories to individ-
ual modes of transport between Dublin and Cork.
The technique may be expanded to other routes,
by developing route specific virtual cell paths.

Kernel density path generation can be used both
for illustration and validation of transport mode
predictions. The computation complexity associ-
ated with the generation of these paths is a com-
promise between grid diameter and spatial reso-
lution.

Inferring the transportation mode of users al-
lows a more accurate association of anonymised
mobile billing data to transportation survey pa-
rameters. Thus mobile phone CDR could be pro-
posed as an alternative to conventional regional
transportation surveys with the advantages of less
costly execution and a reduction in completion
time.

Rose [5] suggests that the use of mobile phone
sourced data for traffic monitoring may be more
suited to an interurban motorway context rather
than an urban setting, due to spatial and temporal
sampling issues. However, as mobile device usage
increases, sampling issues become less significant,
and may lead to more reliable traffic monitoring
for urban environments.

There are other issues to be considered that
may affect the accuracy of transport mode pre-
diction [5, 6]. These include market penetration,
customer profile and network infrastructure of the
mobile network operator supplying the billing in-
formation, citizens who do not carry or have their
mobile devices turned off during travelling. From
the technical point of view, analysis may poten-
tially be complicated by the fact that some citizens
carry more than one mobile device.
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