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Abstract — This work utilises data from a mobile phone network to observe the com-
munication and movement patterns of the Irish population between specific locations.
A novel technique is applied to mobile phone network billing data to estimate the distri-
bution of the phone network population across the country at key times, namely home
times and work times. From these population distributions, sets of weighted trans-
portation and communications links between locations are generated. These networks
are analysed using indicators commonly employed in network theory such as cluster-
ing coefficients and betweenness centrality. Furthermore, the ability to generate such
weighted links when phone network data is unavailable is investigated.
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I Introduction

The ubiquity of cellular network infrastructure is
leading to interesting avenues of research due to
its prevalence in many aspects of modern life. By
viewing human movements and interactions from
the perspective of a cellular network it is possi-
ble to obtain a broad understanding of behaviours
which have previously been impossible to observe
in their entirety. When a phone network’s billing
data is considered, two types of behaviour are ob-
servable; movement and communication.

A phone network’s billing data provides details
of the cell tower to which a phone is connected
when a communication event takes place.1 This
enables the estimation of locations of interest for
users, such as locations where they live and loca-
tions where they work. This knowledge allows an
estimation of the strength of the transport links
between locations. Hence, road network planners
can exploit this information to enable better plan-
ning decisions. Billing data also enables visibil-
ity of the strength of the communication connec-

1Communication events include calls, Short Messaging
Services (SMSs) and data services.

tions between individuals within the network. Fur-
thermore, knowledge of the source and destination
locations of these connections enables an under-
standing of the volume of traffic between locations.
With this information the phone network can be
analysed, enabling more informed phone network
planning decisions.

As a result, this paper analyses the Irish land-
scape in two aspects; the transport network and
the communication network. Section II highlights
relevant prior work in the areas of communica-
tion and transport network analysis. Section III
presents a novel technique of inferring the loca-
tions of interest for individuals. These locations of
interest, along with a social network structure, are
then used to infer the communication and trans-
port networks. Section IV analyses the networks
on a high-level inter-county scale and attempts to
derive the networks in the absence of phone billing
data. Finally, V summarises the findings of this
work.

II Background

This work focuses on the estimation and analysis of
the communication and transport networks from a



phone network’s Call Detail Records (CDR). Pre-
vious work has used similar CDR data to estimate
traffic parameters [1], predict communication in-
tensities [2] and estimate population densities [3].
This work combines elements from that work to
characterise the Irish road and telecommunication
networks.

It has been shown in the past that many sys-
tems can be represented as a network of nodes,
connected by weighted or unweighted links [4]. So-
cial networks have commonly been represented as
a network in which each node is a person and
links between the nodes represent social connec-
tions. Onnela et al. [5] use a CDR-like dataset to
illustrate the importance of weak ties to the prop-
agation of information through a communication
network. Krings et al. [2] also consider a CDR
dataset. Unlike Onnela et al. they associate users
with locations and aggregate links between users
to links between geographical locations. They con-
firm that the strength of the links between loca-
tions is proportional to the populations at the lo-
cations and inversely proportional to the distance
between the locations. Hence, this is referred to as
a “gravity model”.

Transport networks have also been considered in
the past from a network theory perspective. La-
tora and Marchiori [6] use a network representation
to evaluate the efficiency of the Boston subway sys-
tem. A larger transport system is considered by
Colizza et al. [7] who use a database of the in-
ternational links between airports to simulate the
international spreading of a hypothetical epidemic.
In this sense, the spreading of an epidemic through
a physical network can be considered analogous to
the spreading of news through a social network.

Other work, which analyses transport networks
in more detail, utilises more sophisticated tech-
niques of acquiring network data, such as travel
surveys [8] or video camera networks [9]. Hence,
the acquisition of more detailed transport network
data requires significant effort or sensing infras-
tructure. CDR data has been used in the past
to estimate communication network configuration,
but has never been utilised to generate transport
network representations. Due to the omnipres-
ence of mobile phone networks, the development
of techniques to estimate individual’s locations
of interest from CDR data would enable high-
resolution transport analysis to take place with
little data acquisition effort. It would also allow
communication network analysis to take place in
the common scenario where users’ declared home
locations are inaccurate or incomplete. Hence, the
aim of this work is to generate estimates of lo-
cations of interest for individuals to estimate the
strengths of links between network nodes, both for
transport networks and communication networks.

III Estimation of Locations of Interest

Previous work which used CDR data for network
analysis [2] had the advantage that all customer’s
home locations were known, on the level of home
zip code. One disadvantage of such data is that it
only indicates home locations, it does not suggest
other locations, such as work or recreational loca-
tions. Another potential issue with such data is the
reliability of the user’s stated home address. Cus-
tomers with a bill phone must submit correct home
address details. However, as a result of the re-
cent growth in popularity of pre-pay mobile phone
plans, bill-pay customers account for just over 10%
of the users in our dataset. Hence, there are de-
ficiencies in the resolution and reliability of pre-
pay customers’ stated place of residence, as exm-
plified by the encountered home addresses; “Un-
known Address”, “Fake Street” and “Ballyfake”.

Hence, before communication and transport net-
work analysis can take place it is necessary to es-
timate individual user’s home and work locations
from CDR data, by translating the daily sets of
events from each user into an estimate of home
cell tower and work cell tower. Two techniques
of home location estimation are considered, one
which has recently been suggested in literature
and another which is optimised for our compar-
atively large dataset. The latter technique is then
extended to the estimation of user work locations.

a) Call Detail Records

This work utilises CDR data from one of the Re-
public of Ireland’s cellular phone networks, Me-
teor. This network has just over 1 million cus-
tomers which represents just under a quarter of
the country’s 4.5 million inhabitants. Hence, this
dataset is not a complete representation of the
population, rather suggesting the efficacy of our
techniques when further mobile phone companies’
data becomes available. For this early stage of the
research we make the somewhat naive assumption
that the Meteor phone network penetration is con-
stant across all regions.

The CDR dataset which we employ for this work
was obtained for a week in February 2011. This
CDR data consists of a consistently anonymised
user ID, exact time and cell location informa-
tion for every event which occurs on the net-
work. The events include all incoming and out-
going calls, SMSs, Multimedia Messaging Services
(MMSs) and data connections. The data used in
previous work only utilises records of outgoing calls
[3], so this work has higher visibility of users since
more events are detectable. This data is used to
estimate home location in two ways, as described
in the proceeding sections.



b) Prior Technique

The work conducted by Ahas et al. [3] takes an
approach similar to ours in that they are using
CDR data to estimate people’s homes throughout
the study country, Estonia. The application of the
work is to determine multiple places of interest
such as work and home locations with the home
location densities compared with census data.

The central steps of the algorithm detailed in
[3] are as follows. For each user, a list of regularly
visited cells is compiled. Regular cells are defined
to be cells in which calls are made on two sepa-
rate days each month. Next, regular cells which
are used on less than 7 days a month are removed
from the list. Users with too many calls are then
removed because they are likely to be organised
call procedures and users with too few calls are re-
moved since they would not have enough informa-
tion to make an informed decision on their places
of interest. The regular cells are organised in de-
scending order of number days on which they are
detected. For each user, the two regular cells which
are used on the most days are analysed. If the
standard deviation of the call times at a given cell
tower on a given day is above 0.175 the cell tower
is said to be the home cell. If the standard devia-
tion is below 0.175 but with the average call time
is after 5pm the cell is also said to be a home cell.
Otherwise the cell is a work location.

If neither of the two most frequent regular cells
are classified as home cells, the the remaining reg-
ular cells are evaluated for the relevant event time
mean and standard deviation. If none of these cells
fit the call time profile, this user is discarded. This
recursive step of including further cell towers is
the most costly part of the algorithm since a large
number of cell towers may need to be evaluated
for call time statistics. It is important to note that
this is only a summary of the algorithm, for a more
detailed outline the reader should refer to [3].

c) Our Technique

A significant implementation overhead of the
original algorithm is the fact that all data for an
individual user is retrieved and then the statistics
of the most frequent cell towers are recursively es-
timated on each cell tower until the necessary pro-
file is met. Our algorithm takes a different ap-
proach. Our algorithm is outlined in Algorithm
1. Step 1 takes the initial dataset and extracts
only events which occur during the specified “home
times” with a single MySQL query. The “home
times” are defined to be between the hours of 8pm
on a particular night and 7am the following morn-
ing on the nights of Monday through to Thurs-
day. Only these nights are considered since it is
more likely that users spend significant quantities

Algorithm 1 Our home location estimation al-
gorithm. A similar algorithm is used to estimate
work-time locations which uses “work times” in-
stead of “home times”.
1: homeEvents ← all events which occur at

“home times”
2: homeEventsSummary ← summarise home-

Events in terms of distinctWeekday, distinct-
Cell, corresponding eventCount

3: users ← distinct users from homeEventsSum-
mary

4: for user ← each users do
5: for day ← each distinctWeekday do
6: distinctCells,eventCounts

← homeEventsSummary(user,day)
7: dailyCells[day]

← distinctCells(argmax(eventCounts))
8: homeCell ← mode(dailyCells)

of time in non-home locations during these times
at weekends than during the middle of the week.

Step 2 uses a MySQL query to efficiently gen-
erate a dataset which summarises the number of
events a user makes or receives for each cell tower
on each day. Step 3 compiles a list of users to
be evaluated in step 4. Step 4 iterates through
all users and determines the most frequent cell for
each day. Then step 8 uses a majority vote of each
day’s most frequent cell to determine the home of
each user. This is based on the assumption that
during the specified home hours a user makes the
most of their events at a home location. Hence,
steps 1,2 and 3 are executed using MySQL queries
to reduce the data remaining to process in the pro-
ceeding steps. Steps 4 to 8 are implemented in
Python for simplicity but could be implemented
in C or C++ to minimise execution time.

To determine the work-time locations an algo-
rithm similar to Algorithm 1 is implemented which
utilises work times rather than home times. We
define work times to be 9am-4pm on Monday to
Thursday and 9am-3pm on Friday. It should be
noted that we consider these estimates to be work-
time locations rather than actual work places since
it cannot be assumed that all individuals work
during these times. The dataset will include peo-
ple who work at home, people who work irregular
shifts and unemployed people, for example. In-
stead it is intended to provide an estimate of large-
scale movements between locations which are typ-
ically a result of work-time schedules.

d) Technique Comparison

Both techniques are applied to the available Irish
CDR data. County-level home and work loca-
tions are estimated by approximating an individ-
ual’s home or work county to be the county which



their home or work cell tower falls within.

To appraise the performance of the algorithms
the home location estimates are compared with the
CSO data. Unfortunately, the most recent CSO
data was obtained in 2006 and the CDR data for
these experiments was obtained in 2011, so there
will be unavoidable discrepancies in the results. It
should be noted that population projections exist
after 2006 but they are not on the geographical res-
olution necessary for this study, hence the popula-
tion density estimates are directly compared with
the 2006 census data.

The proportion of the total population resid-
ing in each area is considered for all data sources
rather than people count, since people counts are
not directly comparable across data sources, due
to the fact that the phone network only represents
a subset of the entire CSO population. Hence, for
this early iteration of this work we must assume
that the phone network users are a uniformly sam-
pled subset of the entire population. Accordingly,
when comparing the accuracy of home county den-
sities we compare the proportion of the popula-
tion within the counties rather than people counts.
The error for each technique is the difference be-
tween CSO population proportion and the esti-
mated population proportion, normalised by the
CSO population proportion.

Table 1: A technique accuracy comparison for
county-level home location estimation.

Mean Error Correlation [3]
Ahas Tech 0.3555 0.9852
Our Tech 0.3614 0.9843

Table 1 summarises the mean errors for the Ahas
technique and our technique for county-level pop-
ulation estimates. It can be seen that the differ-
ence in performance between the two techniques
is negligible. The correlation measure used by
Ahas et al. is also included in this table. This
measure simply indicates the correlation between
CSO data and the population predictions per area.
Even though we are using census data which is five
years older than the phone data, we obtain a cor-
relation value similar to previous work which uses
census data from the same period. It is assumed
that the work home location predictions have sim-
ilar fidelity. More detailed information on these
techniques can be found in [10].

e) Communication Network and Transport Net-
work Estimation

The result of the location estimation algorithm
is a home location and a work location for each
user. With this it is possible to construct an
Origin-Destination (O-D) matrix for the home-

work routes, similar to that employed by [8]. The
phone network has 1346 distinct cell tower sites,
hence, the O-D matrix is a 1346x1346 matrix. This
O-D structure is then converted to a network struc-
ture in which each node represents a cell tower lo-
cation and each edge represents a transport route.
The weight of each edge is the number of people
who take that route. Montis et al. obtained their
network of 375 locations using a survey of peo-
ple’s travel behaviours, whereas we obtained our
network of 1346 nodes using CDR data which is
considerably easier to obtain.

To generate the communication network we
summarise all links between all pairs of users for
a selected day in the same week in February for
which the home locations were estimated. All user
pairs which only have a single event are discarded,
since these are possibly erroneous communications.
We then determine the corresponding home loca-
tions for both users in each link. Then the weight
of link between locations is the number of minutes
of calls between the people who live in those areas.
A separate dataset is also created where the edge
weights are the number of SMSs, which is com-
pared to the call network in Section IV. We ag-
gregate by home location rather than the location
that the calls were made from since the likelihood
of a link between users is more dependent on their
home locations than the location they happen to
be in when the call occurs.

IV High-Level Network Exploration

For a high level exploration of the Irish commu-
nication and transport network we consider the
network on the county level. The original nodal
structure with 1346 nodes is aggregated to a 26
node structure where each node corresponds to
each county in the Republic of Ireland.

a) Network Analysis

The two main aspects in which we compare the
communication and transport networks are clus-
tering coefficients and betweenness centrality. Be-
tweenness centrality for a given node indicates
what proportion of routes between arbitrary nodes
are routed though the given node. Hence, remov-
ing a node with high betweenness centrality will
reduce the efficiency of the network, or the ease
at which one node can be reached from another
node. For a road network this would reduce the
speed at which epidemics may spread and for a
social network it would affect the speed at which
news spreads.

For our datasets we evaluated the betweenness
centrality for the top 20% strongest links. Intu-
itively the most central county for both transport
and communication networks is Dublin. The next
most central counties for the communication net-



work are the large cities such as Cork and Gal-
way. For transport network, on the other hand,
the most central counties are the counties which
are spatially central to the country, such as Meath,
Westmeath and Waterford. Hence, this confirms
that communication networks are independant of
the spatially intermediate locations, whereas the
transport networks depend heavily on the inter-
mediate links between counties.

Clustering coefficients represent the number of
links a node has to its neighbours as a ratio of the
total number of neighbouring nodes. Hence, it in-
dicates the level of cohesiveness around each node
[8]. Unlike betweenness centrality, the clustering
coefficients follow the same profile for both the
communication and transport networks. For both
types of network, the highest clustering coefficients
are for Dublin. The next highest coefficients are for
the counties surrounding Dublin, such as Meath
and Kildare. Following that the next highest co-
efficients are for the major cities, Limerick, Cork
and Galway. The parity between coefficients for
both types of networks suggests that one network
caused the emergence of the other, most likely the
clustering of the geographical network caused the
clustering of the social network.

b) Urban Gravity Model

This type of network analysis is only possible when
the interactions between locations is detectable.
Hence, it may be difficult to perform the same
analysis for countries where CDR data is unavail-
able. Hence, this section attempts to estimate the
link strengths from auxiliary information. CDR
data was used to generate the link strengths be-
tween locations. Previous work represented trans-
portation link strength [9] and communication
link strength [2] between locations as a “gravity
model”;

Wij = K
MiMj

d2ij
, (1)

where Wij is the weight of the link between node i
and node j, dij is the distance between the nodes
and Mi and Mj are the masses of the nodes. The
masses of the nodes are the total populations at
those nodes, calculated from CDR data. For the
communication network Mi and Mj are both cal-
culated from the home locations, whereas for the
transportation network Mi is calculated from the
home locations and Mj is calculated from the work
locations.

Hence, when CDR data is unavailable, Mi and
Mj can be calculated for the communication net-
work from census data. For the transportation
network, Mj must be calculated from survey data,
such as the Places of Work Census of Anonymised

Records (POWCAR) data. Figures 1.(a) and 1.(b)
illustrate the efficacy of this model for the com-
munications network and transportation network
respectively when this model is applied. The con-
stant, K, is estimated using linear regression and
the black dashed line indicates the mean actual
weights for the corresponding weights predicted us-
ing this model. For both types of networks, the
line does not fully follow the theoretically perfect
model, represented by the solid black line, hence
the model would benefit from modifications.

c) Optimised Gravity Model

Previous work [4] utilised different exponents for
different types of networks. Hence, we can rear-
range Equation 1 to the form;

Wij = exp(a0+a1 logMi+a2 logMj−a3 log d), (2)

where a0 = logK. This allows the distance ex-
ponent, a3, to be optimised, while also introduc-
ing location mass exponents, a1 and a2. These
mass exponents provide extra degrees of freedom
which can account for the disparity between our
estimated location masses and the true location
masses.

These parameters are optimised using linear re-
gression and the performance for the new weight
prediction model is presented in Figure 1.(c) and
1.(d). Hence, the model in Equation 2 provides a
appropriate fit than that in Equation 1. The opti-
mised distance exponents are 1.68 for the commu-
nication network and 2.16 for the transportation
network. The communication distance exponent
of 1.68 is calculated using network weights derived
from call intensity. As stated earlier, the weights
could also be derived from SMS intensity. When
SMS-derived link weights are employed a distance
exponent of 1.86 is generated. This indicates that
SMS communications generally occur over greater
distances for this dataset. Hence, estimation of
call and SMS link strength should be performed
independently and with different parameters.

V Conclusions

This paper outlines work on the estimation of
Irish transportation and communication network
representations from mobile phone network CDR
data. Central to this goal are techniques to in-
fer locations of interest from mobile phone users
by analysing their phone usage trends at specific
times. This allows the analysis of the networks
to establish the importance of specific locations to
the propagation of phenomena such as epidemics
and information. This work also investigates tech-
niques of inferring such network representations
when mobile phone network data is unavailable.
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Fig. 1: Comparison of actual link intensities and corresponding model predictions. The solid diagonal line represents the
perfect model and the dashed line represents the mean of the actual link weights corresponding to a given prediction.

Hence, such analysis could take place using census
data in the future.

Even though this work has focused on county-
level interaction for intuitiveness of results, it could
take place at the sub-county level, with resolution
limited only by cell tower density. However, a sig-
nificant limitation of this work is that it utilises
phone data from a single phone network. As a re-
sult the data represents a potentially biased sub-
set of the population. Hence, future work seeks
to improve the representativeness of the network
estimates by scaling the population estimates ac-
cording to geographically linked demographic in-
formation.
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