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Abstract

Background: Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid
phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants,
animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-
related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain,
or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain
of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising

target for the development of anti-osteoporotic chemotherapeutics.

Findings: A new human gene product encoding a metallohydrolase distantly related to the ~55
kDa plant TRACcP was identified and characterised. The gene product is found in a number of animal
species, and is present in all tissues sampled by the RIKEN mouse transcriptome project.
Construction of a homology model illustrated that six of the seven metal-coordinating ligands in
the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand
associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine.

Conlusion: The gene product identified here may represent an evolutionary link between TRAcPs
and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be

associated with bone metabolism.

Background by L(+)-tartrate, a potent inhibitor of other acid phos-
Purple acid phosphatases (PAPs) are a diverse group of  phatases, and as such are also known as tartrate-resistant
metalloenzymes that catalyse the hydrolysis of phosphate  acid phosphatases (TRAcPs; alternative names include
esters and anhydrides [1]. PAPs are resistant to inhibition =~ ACP5, TRAP) [1]. They contain a bimetallic active site
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comprising seven coordinating amino acids that are con-
served in all PAP isoforms identified to date [1,2]. One
metal site is invariably an Fe(IlI) and the characteristic
purple color of TRAcPs arises from a tyrosine to Fe(III)
charge transfer transition [1]. The other site contains a
divalent metal ion where M(II) = Fe, Zn or Mn depending
on the source of the protein [1-5]. The X-ray crystal struc-
tures of TRAcPs from several sources, including human,
pig, red kidney bean and sweet potato have been deter-
mined [6-9]. Notably, although their sequence identity is
only < 20%, these enzymes have a common core structure
with five motifs that contain the invariant seven metal
coordinating amino acids in the catalytic site [2].

TRACPs have been isolated from a range of plants, mam-
mals and fungi, and TRAcP-like sequences have also been
identified in a number of bacteria [1]. Structural and bio-
chemical characterisation of the TRAcPs from the red kid-
ney bean, Phaseolus vulgaris, and sweet potato, Ipomoea
batatas, have demonstrated their existence as homodimers
with subunits of ~55 kDa [1,5]. The plant isoforms may
also exist as heterodimers of 57 and 63 kDa subunits [1].
The catalytic centres of the red kidney bean, soybean and
one isoform from sweet potato enzyme contain an Fe(III)-
Zn(II) complex, whereas Fe(III)-Mn(II) is present in the
other sweet potato form [1]. Plant TRAcPs have been
shown to exhibit an amino acid sequence similarity of >
70% [2]. Mammalian TRAcPs have been characterised
from multiple species including human, pig, cow, mouse
and rat, and all exist as monomers of ~35 kDa, that share
> 80% sequence identity and contain redox-active Fe(III)-
Fe(I1I)/Fe(II) centers [2,10]. A number of distinct TRACP
isoforms were identified in plants and bacteria, clearly
illustrating the existence of multiple TRAcP genes in dif-
ferent kingdoms [1,2]. This is further supported by the
existence of a plantlike TRACP in animals [1].

The biological roles for TRAcPs are diverse and species-
dependent. Evidence has accumulated that links the
mammalian enzymes to bone metabolism and bacterial
killing, while plant enzymes maybe have a function in
phosphate metabolism [10]. Specifically, it could be
shown that in transgenic mice the level of TRAcP expres-
sion correlates with the extent of bone resorption; TRAcP-
knockout mice display symptoms characteristic for oste-
oporosis, while mice overexpressing TRAcP display an
osteoporotic phenotype [11,12]. TRAcP is a major histo-
chemical marker for the diagnosis of bone-related dis-
eases, and elevated serum concentrations of are also
observed in patients with Paget's disease, osteosarcoma,
breast and prostate cancer. Due to its role in bone resop-
tion TRAcP has become a target for the development of
anti-osteoporotic chemotherapeutics [13].

http://www.biomedcentral.com/1756-0500/1/78

The design of such chemotherapeutics necessitates a high
degree of specificity, in particular since enzymes closely
related to TRAcPs may function in completely different
roles in metabolism. We have thus extended our previous
work on investigation of TRAcP and TRAcPlike protein
content in animal genomes and identified a new gene
product that is a remote homolog to both TRAcPs and Ser/
Thr protein phosphatases.

Findings

Homolog identification and characterisation

The human TRAcP (ACP5) sequence (accession number
NP_001602; unless stated otherwise accession codes are
NCBI reference sequence numbers) was used to perform a
five iteration PSI-BLAST search of the non-redundant
database (the search conditions were the same as
described previously [14]). This search identified a dis-
tantly related human sequence with the accession number
NP_060810, that had 15% sequence identity and 29%
similarity to the original acp5 query sequence. Related
gene products from other eukaryotes were identified in
the NCBI Homologene database http://
www.ncbi.nlm.nih.gov/sites/entrez?db=homologene and
ENSEMBL resources http://www.ensembl.org, and
included Bos taurus (NP_001026941) Pan troglodytes
(XP_001145620), Canis familiaris (XP_536969), Mus mus-
culus (NP_666179), Rattus norvegicus (NP_001013985),
Gallus gallus (XP_414732) and Plasmodium falciparum
(XP_001348209) indicating that this new gene product is
evolutionarily conserved. The new human sequence was
used to query the nr database to search for the closest rel-
ative with known structure, and identified the catalytic
domain of TRAcPs from red kidney bean (P. vulgaris),
4KBP [6], and sweet potato (I. batatas), 1XZW [8].
Although sequence identities were low (18% across 246
residues as determined by PSI BLAST analysis) the E-val-
ues for the profile based search were 2 x 10-72and 8 x 10-
68 respectively, clearly indicating a significant relationship
between these proteins and the novel sequence. Alterna-
tive transcripts for the mouse and human sequences were
also included.

The sequences identified here were aligned using T-coffee,
as shown in Figure 1[15]. As can be seen from the align-
ment, the sequence conservation across species is high,
with the G. gallus gene product 70% identical to the
human, dropping to approximately 32% for the P. falci-
parum. Illustrated within this figure are five motifs, that
are reminiscent of known TRAcP sequences that contain
the metal coordinating ligands and can be represented by
the patterns (1) DxG, (2) GDx2Y, (3) GNH [E, D], (4)
Vx2H, (5) GHxH, where x represents any amino acid [2].
The notable difference is the concerted substitution of the
Tyr in motif 2 by a His in the new sequences. This Tyr is
essential for the purple color and the presence of an iron
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Multiple sequence alignment of the eukaryotic aTRACP gene products. Alternative transcripts identified in mouse and human
are appended. The five motifs containing the seven metal coordinating residues observed in TRAcPs have been superimposed
on the alignment (Me_motif I XZW). The position is based on the WURST generated pairwise alignment between the human
gene product and the sweet potato enzyme. For comparison the sequence of human TRAcP (Hsa_TRAcP) is also included,

together with its secondary structure elements (h: helix; s: B-sheet; sheet 14 is omitted). Species identifiers: Hsa, Homo sapiens;
Ptr, Pan troglodytes; Mmu, Mus musculus; Rno, Rattus norvegicus; Cfa, Canis familiaris; Bta, Bos Taurus; Gga, Gallus gallus; Pfa, Plasmo-

dium falciparum.
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in the trivalent oxidation state in the active site of TRAcPs
(see above), whereas a His residue in this position is seen
in other binuclear metallohydrolases including the Ser/
Thr protein phosphatases [1]. Based on the identity of the
amino acid residues that are likely to line the active site
pocket in the novel gene product it is probably that this
protein is a non-purple enzyme with phosphatase activity.
We have thus labelled it Hsa_aTRAcP (aTRAcP: alternative
TRACP).

A large number of phosphatases are present in eukaryotic
organisms. Many acid phosphatases, including the mam-
malian TRAcPs, are lysosomal enzymes and have signal
peptides and lysosomal targeting sequences. No such
sequences are evident in this new protein. To test the loca-
tion within the cell, we constructed a mammalian expres-
sion plasmid with a V5 epitope tag (Figure 2). When this
tagged protein is expressed in RAW264 macrophages, the
predominant location is diffuse cytoplasmic with no evi-
dent membrane association. It is thus likely that the bio-
logical role of Hsa_aTRAcP is different from that of its
purple counterparts.

Figure 2

Subcellular localisation of Hsa_aTRACP. Immunofluoresence
staining of RAW264.7 cells transfected with a Hsa_aTRACP-
V5 using the Alexa488 goat anti-mouse antibody (Invitrogen)
in combination with the mouse anti-V5 IgG2a (Serotec) and
visualised using Alexa594 Phalloidin stain (Invitrogen). DNA
was stained with DAPI (Roche). Evident is the diffuse cyto-
plasmic distribution of Hsa_aTRACP.

http://www.biomedcentral.com/1756-0500/1/78

The intron-exon structure of the gene encoding this puta-
tive phosphatase (C530044N13Rik; ENSEMBL Gene
ENSMUSG00000065979) comprises only 4 exons, spread
over more than 100 kb of genomic DNA, a structure that
is widely conserved in vertebrates. From analysis of RIKEN
transcriptome data for the mouse homolog (GenelD
223978) using the CAGE analysis viewer http://fan
tom.gsc.riken.go.jp/, it is evident that the gene locus is
actively transcribed in almost all tissues examined, includ-
ing embryonic tissue as well as adult liver, lung, macro-
phages and neural tissue with little variation in CAGE Tag
frequency (an index of gene expression). The promoter is
conserved between mice and human, is relatively GC-rich,
and initiates transcription at multiple sites in a 100 bp
window around the site of the largest CAGE tag cluster,
features consistent with a possible "housekeeping" gene
function.

Structure prediction of Hsa_aTRAcP

To further assess the novel sequences as non-purple binu-
clear metallohydrolases, a structural model of
Hsa_aTRAcP was constructed by comparative modelling
using the sweet potato TRAcP coordinates [8]. The only
proteins with known structure identified from the PSI-
BLAST search were the plant TRAcPs and the phosphodi-
esterase from Mycobacterium tuberculosis (Rv0805, 2HY1
[16]). An additional phosphodiesterase was identified
from Enterobacter aerogenes (2dxn [17]), using the thread-
ing based approach mGenThreader [18]. The prediction
reliability scores for the bacterial diesterases were 114.5
and 105.8, respectively, with corresponding p-values
(probabilities of false positives) of 1 x 10-10and 1 x 10-°.
These values are similar to those obtained for the closest
TRAcCP homologue, the enzyme from sweet potato
(1XZW, with a reliability score of 87.3 and a p-value of 8
x 10-8. This strongly implies that Hsa_aTRAcP will adopt a
fold similar to these proteins.

Due to the low sequence identity between the
Hsa_aTRACP and the sweet potato enzyme, the sequence-
to-structure alignment method WURST was used to gener-
ate an alignment (Figure 3), that was subsequently used as
input into MODELLER for coordinate generation.

In general, TRACPs typically consist of two B-sheets each
with seven strands and flanked by two a-helices, and is
illustrated in Figure 4A for both the plant template struc-
ture, and the smaller mammalian isoform. Five of the beta
strands position loop structures that contain metal coor-
dinating ligands [7]. Inspection of the model indicates
that Hsa_aTRACP has both sheets conserved, however,
one has only six strands and the second, three (Figure 4A
and 4B). Notably, the strands contributing the metal coor-
dinating ligands are all conserved in Hsa_aTRACP. Fur-
thermore, loops contributing to substrate binding in
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1xzZwA LPNAEDVDMPWDSDVFAVPSGYNAPQQVHITQGDYEGRGVIISWTTPYDKAGANKVEYWSENSKSQKR
IxzwA + 20 + 40 + 60
Hsa_aTRACP + 20 + 40
Hsa aTRACP ——————————"——————————— MSAAEAGGVFHRARGRTLDAFPAEKESEWKGPEFYFIL-—-GADPQFG
1xXzZwA AMGTVVTYKYYNYTSAFIHHCTIKDLEYDTKYY-————-— YR-LGF-GDAKRQ—-FWEVTPPKPGPDVP
IxzwA + 80 + 100 + 120
Hsa_aTRACP + 60 + 80 + 100
Hsa_aTRACP LIKAWSTGDCDNGGDEWEQEIRLTEQAVQAINELNP-KPKFFVLCGDLIHA--MPGKPWRTEQTEDLK
1xzwA YV-FGLIGD--I-GQTHDSN————— TTLTHY-EQNSAKGQAVLEMGDLSYSNRWPN—-—HDNNRWDTWG
IxzwA + 140 + 160 + 180
Hsa_aTRACP + 120 + 140 + 160
Hsa aTRACP RVL-RAVDRAIPLVLVSGNHDIGNTPTA-—-ETVEEF-CRTW———————— G-DDYFSFWVGGVLFEFLVL
1xzwA RESERSVA-YQPWIWTAGNHEIDYAPDIGEYQPFVPFTNRYPTPHEASGSGDPLWYAIKRASAHIIVL
1xzwA + 200 + 220 + 240
Hsa_aTRACP + 180 + 200 + 220 +
Hsa aTRACP NSQFYENPSKCPSLKQAQDOWLDEQLSIARQRHCQHAIVFQHIPLFLESIDEDDDYYEFNLSKSTRKEL
1xzwA SSYSGE-VKYSPQYK————-— WFTSELEKVNRSETPWLIVLVHAPLYN-SYE—-——--AHYMEGEAMRAIF
IxzwA + 260 + 280 + 300
Hsa_aTRACP 240 + 260 + 280 +
Hsa_aTRACP ADKFIHAGVRVVESGHYHRNAGGTYQNLDMVVSSAIGC-QL--G-RDPHGLRVVVVTAEKIVHRYYSL
1xzwA EPYFVYYKVDIVEFSGHVH-———— SYERSERVSNVAYNIVNAKCTPVSDESAPVYITIGD-GGNSEGLA
IxzwA + 320 + 340 + 360
Hsa_aTRACP 300
Hsa_aTRACP DELSE
1xzwA SEMTQ
1xzwA +

Figure 3

Sequence to structure alignment generated by WURST for the query sequence, Hsa_aTRACP (Accession number
Hsa_NP_060810), and the template structure from sweet potato TRAcP, pdb code IXZW.

TRACcPs and TRAcP-like proteins are partially conserved in
our model structure. The I-TASSER server was used to pro-
duce alternative predicted structures, and gave a top
ranked model that appeared to be a composite of the
plant PAP and bacterial Rv0805 structures, and that has a
confidence score of 0.24 [19]. This model predicted that
the second sheet may have two additional strands, similar
to the sheet composition of the bacterial enzyme, while
the active site loop conformations were highly similar to
the plant TRAcP rather than the bacterial metallohydro-
lase.

The model of Hsa_aTRACP reveals that the side chains of
seven metal coordinating residues are likely to be spatially
conserved in comparison to other binuclear metallohy-
drolases. The identity of six of the seven residues in
Hsa_aTRACP are identical to that in TRAcPs with the

exception that Tyr166 (sweet potato TRACP numbering) is
replaced by His93 in Hsa_aTRACP (Figure 5). Closer
inspection of the model indicates that although Tyr219,
220 and 292 are located within a putative substrate bind-
ing site, they are not likely to form a charge transfer inter-
action with the metal ions in the active site. This places
Hsa_aTRACP into a separate, nonpurple class of binuclear
metallohydrolases with two soft metal binding sites that
are likely favour the coordination of two divalent metal
ions. A similar active site structure was reported for other
members of the binuclear metallohydrolase family, nota-
bly Ser/Thr type protein phosphatases (PPs) such as the
ones from bacteriophage A (APP) [20] and several mam-
malian organisms, i.e. one from rabbit (PP1) [21,22] and
cow (PP2B) [23] and two from human (PP2B and PP5)
[24], and more recently the Rv0805 cyclic nucleotide
phosphodiesterase from M. tuberculosis [16]. PP2B is also
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Figure 4

(A) Cartoon diagrams of the high molecular weight sweet potato TRAcP template structure, | XZW, the low molecular weight
human TRACcP (Acp5), IWAR, and the query sequence, Hsa_aTRACP. Secondary structure elements not shared between the
known structures and Hsa_aTRACP model are colored magenta. The Fe(lll) Fe(ll) atoms in the active site are represented as
spheres. (B) Comparison of topologies for the low molecular weight human TRAcP and Hsa_aTRACP. Secondary structure
elements that are common to both proteins are colored yellow (for B-strands) and red for (o-helices). Secondary structure
regions that are only observed in human TRACP are colored blue. For Hsa_aTRACcP the regions of secondary structureare

Sl (residues 49-51), HI (67-74), S2(85-87), H2(102—-110), S3(121-122), H3(127-130), H4(141-144), S5(151-155), S6(158-
162), H6(180-191), S7(199-203), H7(225-238), S8(242-245), S9(256-258) and S10(280-284). For human TRAcP
(Hsa_TRACP; see also Fig. 1) the regions of secondary structure are S1(5-10), H1(24-39), S2(44-47), H2(64-68), S3(83-85),
H3(91-93), H4(96—104), S4(109—-110), S5(1 16—121), S6(128-133), H5(136—145), H6(157-173), S7(178-182), H7(197-209),

$8(214-217), $9(223-227), S10(233-237), H8(250-252), S11(258-262), S12 (270-276), SI3 (280-287) and S14(292-299).

known as calcineurin and plays a major role in the signal
transduction cascade in T-cell activation [25]. The in vivo
metal ion contents of PPs is not certain, but all are
reported as M(II)-M(II) forms, where M = Fe, Zn or Mn

[1].

Conclusion

Previously we identified a high molecular weight human
TRACP [14]. Here we have extended this study through the
characterisation of a second transcript, Hsa_aTRACP, that
is a remote relative of the PAPs, sharing 18% sequence
identity with the plant enzymes as the closest relatives

with known structure. Analysis of the active site of
Hsa_aTRACP indicates that it is not likely to be a purple
protein due to the absence of an essential tyrosine ligand
(Figure 5). In this respect, Hsa_aTRACP resembles some
cyclic nucleotide phosphodiesterases and novel Ser/Thr
PPs. This may therefore represent an event of divergent
evolution in the binuclear metallohydrolase family. Based
upon the pattern of expression and putative cytoplasmic
location, we speculate that Hsa_aTRACP is another mem-
ber of the cytoplasmic protein phosphatase family that is
likely to have a role in the regulation of signalling.
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Figure 5
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>

Hsa aTRAcP

Structure of the modelled active site of Hsa_aTRAcP and that of I XZW illustrating the difference in the Fe(lll) coordination
site. Substitution of the sweet potato TRAcP Tyr for His in Hsa_aTRACP (yellow, ball and stick representation) indicates that
Hsa_aTRACP is not a member of the TRAcP family as the charge transfer transition required for the purple color is absent.
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