J. Braz. Chem. Soc., Vol. 17, No. 8, 1558-1565, 2006.
Printed in Brazil - ©2006 Sociedade Brasileira de Quimica
0103 - 5053 $6.00+0.00

Article

Inhibition Studies of Purple Acid Phosphatases: Implications for the Catalytic Mechanism
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Fosfatases 4cidas pirpuras (PAP) pertencem a familia das metalo-hidrolases binucleares que
catalisam a hidrélise de um grande grupo de substratos fosfoésteres em pH dcido. Apesar dos seus
sitios ativos serem estruturamente conservados as PAP apresentam versatilidade mecanistica. Neste
trabalho sdo investigados alguns aspectos do mecanismo catalitico de duas PAP, usando os inibidores
vanadato e fluoreto como sondas. Enquanto as magnitudes das constantes de inibi¢do das duas
enzimas pelo vanadato sdo semelhantes, as enzimas diferem com relacdo ao modo de inibigdo;
vanadato interage de forma ndo-competitiva com a PAP de porco (K, = 40 pumol L"), porém inibe a
PAP de feijao competitivamente (K, = 30 umol L''). De modo semelhante, o fluoreto também age
como inibidor competitivo da PAP de feijao, independentemente do pH, enquanto que o fluoreto
simplesmente interage com o complexo formado pela enzima de porco e seu substrato(PAP-
substrato) em pH baixo e inibe de forma ndo competitiva esta enzima em pH mais alto,
independentemente da composicdo do fon metélico. Além disso, enquanto a inibi¢do pelo fluoreto
se da através da interagdo lenta com a PAP de porco, ele se liga rapidamente ao sitio catalitico da
enzima do feijdo. Visto que se propde que o vanadato e o fluoreto mimetizem o estado de transicao
e o nucledfilo, respectivamente, as diferengas observadas na cinética de inibicdo indicam sutis,
porém distintas diferencas no mecanismo de reacdo destas enzimas.

Purple acid phosphatases (PAPs) belong to the family of binuclear metallohydrolases and catalyse
the hydrolysis of a large group of phosphoester substrates at acidic pH. Despite structural conservation
in their active sites PAPs appear to display mechanistic versatility. Here, aspects of the catalytic
mechanism of two PAPs are investigated using the inhibitors vanadate and fluoride as probes. While
the magnitude of their vanadate inhibition constants are similar the two enzymes differ with respect
to the mode of inhibition; vanadate interacts in a non-competitive fashion with pig PAP (K, = 40
umol L") while it inhibits red kidney bean PAP competitively (K, = 30 pmol L™'). Similarly, fluoride
also acts as a competitive inhibitor for red kidney bean PAP, independent of pH, while the inhibition
of pig PAP by fluoride is uncompetitive at low pH and non-competitive at higher pH, independent of
metal ion composition. Furthermore, while fluoride acts as a slow-binding inhibitor in pig PAP it
binds rapidly to the catalytic site of the red kidney bean enzyme. Since vanadate and fluoride are
proposed to act as transition state and nucleophile mimics, respectively, the observed differences in
inhibition kinetics indicate subtle but distinct variations in the reaction mechanism of these enzymes.
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Introduction

Purple acid phosphatases (PAPs) belong to the family
of binuclear metallohydrolases, with members differing
widely with respect to physicochemical properties, tissue
localisation and proposed biological function.'? The
characteristic purple colour of these enzymes is due to a
charge transfer transition between a ligand (tyrosinate)
donor orbital and an acceptor orbital on the ferric ion.'#
PAPs catalyse the hydrolysis of a variety of phosphorylated
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substrates at acidic to neutral pH, and have been identified
in, and characterised from animal, plant and fungal sources.>®
The enzyme extracted from mammalian organisms is a 35
kDa monomer and contains a redox-active Fe-Fe™!
centre.” In contrast, plant PAPs are homodimeric with a
molecular mass of 110 kDa and redox-inactive Fe™-Zn" or
Fe™-Mn" centres.!*!?

Plant and mammalian PAPs have very similar
geometries at the catalytically relevant active site with
all seven metal ion-coordinating residues being
invariant."*'3'®  Additional residues that play important
roles in various aspects of catalysis are also well
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conserved, including the proposed proton donor to the
leaving group (His296 and His195 in red kidney bean and
pig PAP, respectively).'*!® The observations that PAPs
from different organisms have similar K values for a
variety of substrates and are inhibited to a similar extent
by inorganic phosphate also illustrate the structural
similarity of the active sites of different PAPs.!*11:19-21

The inhibition of reactivity by a range of antagonists
is a common method to investigate an enzyme’s catalytic
mechanism; additionally such a study may provide
valuable information and guidance for the design and
development of specific and potent drugs. PAPs from
mammalian organisms have been shown to play an integral
part in bone metabolism, and an increase in PAP activity
is directly linked to osteoporosis,>?? making this enzyme
a major target for the development of anti-osteoporotic
chemotherapeutics.?! For metallohydrolases, fluoride and
vanadate are known inhibitors which have been shown to
coordinate directly to the metal ion(s) in the active site
and thus interfere with catalytic turnover."?*?% The two
inhibitors are likely to affect different aspects of catalysis
and hence may provide insight into different steps of the
reaction mechanism.

The ability of fluoride to readily replace nucleophilic
hydroxide groups can provide (i) an insight into the
number of labile water/hydroxide binding sites in the
active site, and (ii) the role of the terminally bound or
bridging hydroxides in the reaction mechanism.?%
Fluoride, a well established osteogenic agent which
promotes osteoblastic proliferation and differentiation at
clinically relevant concentrations, inhibits animal PAPs
in a pH-dependent manner. The mode of inhibition of
the FeZn derivative of bovine spleen PAP changes from
uncompetitive at pH 5.0 (K, . = 0.2 mmol L) to non-
competitive at pH 6.5 (K, . =2 mmol L''; K, = 3.4 mmol
L").>* In contrast, for human PAP it has recently been
shown that the mode of inhibition is only pH dependent
for the enzyme that is proteolytically cleaved in a mobile
loop in the vicinity of the active site, changing from non-
to uncompetitive as the pH is raised; for the intact form
fluoride acts as a non-competitive inhibitor at pH 3.30
and 4.90.%°

Stable five-coordinate oxovanadium species are a
suitable mimic for the five-coordinate phosphoryl
transition state proposed for a number of phosphorolytic
reactions.**3! Previously, it was reported that the inhibition
constant of pig PAP for vanadate is 40 wumol L' at pH 5.5,
and the mode of binding of the inhibitor is non-
competitive.”® The di-zinc alkaline phosphatase from
Escherichia coli is inhibited by vanadate with similar
efficiency (K, = 12 umol L' at pH 8.0), and the crystal
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structure of the enzyme-inhibitor complex shows that
vanadate binds in a penta-coordinate geometry to the
active site with three of its oxygen atoms coordinating
the two metal ions in the active site in a tripodal
arrangement (Figure 1).%

In this work, the inhibitory effects of fluoride and
vanadate on the activity of red kidney bean and pig PAP
are assessed and compared with those measured for other
PAPs. The mechanistic implications of these studies are
also discussed.

Asp369

His331 i g
¥ His370
Asp51
Asp327

Figure 1. Active site of E. coli alkaline phosphatase with bound vana-
date. Vanadate is five-coordinate and interacts with three of its oxygen
atoms with the binuclear metal centre. In addition, residue Ser102 forms
a covalent bond with the inhibitor.

Experimental
Materials

All solutions were prepared with analytical grade
reagents purchased from Sigma, Merck or Fluka.

Protein purification

Pig PAP was extracted from the uterine fluid of a
pregnant sow and the plant PAP was purified from the
pulp of red kidney beans as described elsewhere.!** In
brief, both enzymes underwent an initial ion-exchange
chromatography step using CM-cellulose resin, followed
by gel filtration on a Sephadex G-75 (pig PAP) or
Sephadex S-300 column (red kidney bean PAP). Purified
pig PAP was stored at -20 °C in 100 mmol L' acetate
buffer at pH 4.9 and red kidney bean PAP was stored in
0.5 mol L' NaCl at 4 °C until further use. Protein
concentrations were determined by measuring the
absorbance at 280 nm using the specific extinction of 1.41
for a 1 mg mL" solution (28.6 umol L") of pig PAP and
2.1 for a 1 mg mL" solution (9.1 pmol L) of rkbPAP.
SDS-Page analysis confirmed the purity of the enzymes.
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>V Nuclear Magnetic Resonance Spectroscopy

The 3'V NMR spectra were recorded at 132 MHz with
a Bruker Avance 400MHz NMR. All experiments were
conducted at 25 °C with a spectrum width of 8064 Hz, no
relaxation delay, a 90° pulse angle and an accumulation
time of 0.2 s. The chemical shifts reported are relative to
the external reference (VOCIL,; 0 ppm).

Vanadate stock solutions were prepared by boiling a
concentrated solution (200 mmol L) of (Na),VO, in
deionised water (MilliQ) for 10 min to maximise the
presence of the VO, monomers.” Small volumes from
these stocks were added to 0.1 mol L' MES buffer, pH
6.2, containing 0.2 mol L' KCI and 10% (v/v) D,O to
generate final vanadate concentrations of 0.025-2.00 mmol
L. These solutions matched the conditions employed in
the kinetics experiments (see below). Relative amounts
of the individual species were obtained by peak
integration, and total concentrations were calculated by
multiplication of the relative amounts by the total vanadate
concentration in solution (Figure 2).

Tetramer

N
Monomer

2.0 mmol L
H / 1.5 mmol L
il ‘\,\ Decamer :/ 1.0 mmol L
/ ‘\\\ N ;//// 0.75 mmol L

\ - -1
]\ T 0.50 mmol L

L 0410 mmol L

2580 585 ~590

Chemical Shift / ppm

Figure 2. 'V NMR analysis of vanadate speciation under conditions
identical to those employed in the enzymatic assays. The sample solu-
tions contained total vanadate concentrations ranging from 0.1 - 2.0 mmol
L' (as indicated on the right side) in 0.1 mol L' MES buffer at pH 6.2
with 0.2 mol L' KCl and 10% (v/v) D,O. The data were measured at 139-
MHz at 25 °C.

Enzyme kinetics

The rates of product formation by pig and red kidney
bean PAPs were determined at 25 °C using a continuous
assay with para-nitrophenol phosphate (p-NPP) as
substrate. Measurements were carried out at pH 4.90 (0.1
mol L acetate buffer, 0.2 mol L' KCI) or pH 6.20 (0.1
mol L' MES buffer, 0.2 mol L' KCl), the respective pH
optima for pig and red kidney bean PAPs.*'** Product (p-
NP) formation was monitored at A = 390 nm with Ag, =
342.9 mol'' L cm™ and 1834.4 mol' L cm™ at pH 4.90 and
pH 6.20, respectively. Substrate concentrations ranged
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from 1 to 15 mmol L. Enzyme concentrations in steady-
state assays were 20 nmol L' and 2 nmol L' for the two
enzymes, respectively, and 50 nmol L' in stopped-flow
measurements. Concentrations of the inhibitors ranged
from 0.1 to 25 mmol L' (NaF) and 0.01 to 0.5 mmol L
(Na,vo,).

All steady-state assays were performed with a Varian
Cary50 UV-Vis spectrophotometer with 1 cm path length
quartz cuvettes. The possibility of measurable pre-steady
state reactions was assessed by stopped-flow kinetics using
an Applied Photophysics SX18 stopped-flow spectrometer
with a 1 cm path length. The data were analysed using
GraphPad Prism 4.0 software or WinCurveFit (Kevin Raner
software). The catalytic parameters were evaluated by non-
linear regression using the Michaelis-Menten (equation 1)
or general inhibition equation (equation 2), respectively:

po Voan[S]
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v: Vmax[S]
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Here, V(= k_[E]) and K  are the maximum rate
and the Michaelis constant, [S] and [I] the concentrations
of substrate and inhibitor, and K,  and K, _the equilibrium
dissociation constants for competitive and uncompetitive
inhibitor binding, respectively.* Pre-steady state data were
analysed with equation 3, where A and A represent the
absorbance (at 390 nm) of product at time 0 and t, v, and
v, the rates in the initial and final (steady state) phases of
the reaction, and k , the rate constant for the change from

the fast initial rate to the slower final rate.>*333¢
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Results and Discussion

The specific activity of pig PAP at pH 4.9 (optimum
pH) and pH 6.2 is 635 U mg"' (k=370 s") and 371 U
mg' (k =216s"), respectively, similar to values reported
previously.?'#%33¥  For the red kidney bean enzyme the
specific activity at pH 4.9 and pH 6.2 (optimum pH) is
~100 Umg" (k_ =180s")and 170 Umg"' (k  =312s"),
respectively, also in good agreement with previous
studies.!® The kinetic parameters are summarised in Table
1. For both enzymes the K  values for the substrate
p-NPP increase as the pH is increased, an observation
which is likely to be due to the deprotonation of a histidine
residue in the substrate binding pocket of the enzyme.'®¥
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The inhibitory effect of vanadate on the activity of
red kidney bean PAP was determined at optimum pH (pH
6.2). At that pH vanadate monomers tend to oligomerise
in solution provided the total concentration of the tetraoxo
anion is > 0.25 mmol L"'.** Since the monomeric form is
the main inhibitor of PAPs* it was essential to estimate
the concentration of this species under conditions
employed in the kinetic assays. Vanadium-51 (99.75%
natural abundance) NMR is a convenient method to
measure the relative concentrations of vanadate species
in solutions.”’ Despite the 7/2 spin, line widths for 5'V
are relatively narrow and are easily resolved.* The 'V
NMR (Figure 2), indicated that under the conditions
applied in the kinetic assays the monomer concentration
maximised at ~0.6 mmol L. Total vanadate concen-
trations in the kinetic assays were chosen to yield
monomer concentrations ranging from 10 umol L to
500 wmol L. Fitting the data in Figure 3 (equation 2)
resulted in K,/ = 30 wmol L' (Table 2), indicating that
vanadate acts as a moderately strongly binding competitive
inhibitor. No accurate estimate of the inhibition constant
could be obtained at pH 4.9 due to the tighter binding (K|
< 10 umol L") and the complex speciation of vanadate at
this pH. For pig PAP the inhibition by vanadate was
assessed previously at pH 5.5,” resulting in a K, of 40
umol L. In contrast to the red kidney bean enzyme, for
pig PAP the inhibition mode appears to be non-competitive
with K =K_=K,_. Furthermore, the same study has
revealed that the substitution of the divalent iron by zinc
reduces the inhibitory effect of vanadate (K, = 360 pmol
L") but not the mode of inhibition.?* Thus, the protein
environments in the active sites of pig and red kidney
bean PAPs, but not the metal ion compositions, are likely
to be responsible for the different modes of inhibition
observed. The results obtained for the red kidney bean

Table 1. Kinetic parameters for pig and red kidney bean PAP at pH 4.9 and 6.2
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enzyme resemble those obtained for the di-Zn" alkaline
phosphatase from E. coli, where vanadate acts as a
competitive inhibitor with K, = 12 umol L' at pH 8.0.%
The crystal structure of this enzyme, complexed with
vanadate, has been solved and supports the hypothesis
that vanadate is a suitable mimic of the proposed five-
coordinate phosphoryl transition state (Figure 1). Based
on the similarity of the inhibition data it appears likely
that red kidney bean PAP has a transition state similar to
that observed in E. coli alkaline phosphatase. However,
pig PAP may differ from these two enzymes based on the
variation in the vanadate inhibition kinetics (non-
competitive binding of the inhibitor). Hence, subtle
variations in the active site structures may have a
significant effect on the formation of the transition state.

The inhibitory effect of fluoride was determined for pig
and red kidney bean PAPs at pH 4.9 and pH 6.2 and the data
were analysed by non-linear regression using equation 2
(Figure 4). For the pig enzyme the mode of inhibition changes
from uncompetitive to non-competitive upon raising the pH
(Table 3). A similar result has been reported for the Fe"Zn"
derivative of PAP from bovine spleen (Table 3).2* The

270
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Figure 3. Steady-state inhibition of red kidney bean PAP by vanadate at
pH 6.2. Vanadate concentrations ranged from 0 to 500 pmol L' (as indi-
cated on the right side). Data was analysed by non-linear regression us-
ing equation 2.

Parameter Pig PAP Red kidney bean PAP

pH 4.9 pH 6.2 pH 4.9 pH 6.2
V,../ (U mgh 635.3 = 14.9 371.0 £ 26.4 98.6+72 170.6 = 6.7
k. /s" 370.6 = 8.7 2164+ 154 180.7 + 13.1 312.8 + 14.7
K/ (mmol L") 37+0.2 7.0+ 1.0 26x0.5 59+0.7

Table 2. Inhibition of pig and red kidney bean PAP by vanadate. K. and K

iuc

.. are the dissociation constants for uncompetitive and competitive inhibition,

respectively. “-“ indicates that no inhibition could be detected. In the case of noncompetitive inhibition K, . and K, are of similar magnitude*
pH Kiuc Kic

Pig PAP* 55 40.0 £ 5.0 umol L"! 40.0 £ 5.0 umol L"!

Red kidney bean PAP 6.2 - 29.5 + 5.8 umol L!

*from reference 23.
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observation of uncompetitive binding of the inhibitor at low
pH indicates that fluoride only interacts with the enzyme-
substrate (ES) complex. However, at higher pH fluoride can
also bind to the free enzyme, competing with the substrate.
The competitive binding site has previously been identified
in terms of a terminal coordination to the divalent metal ion
in the active site.****** The observation that metal ion
substitutions in the divalent sites of pig and bovine PAP
moderately affect the magnitude of the inhibition (but not its
mode) is consistent with this assignment (Table 3). At lower
pH the substrate binds tighter to the active site, most likely
due to interactions between a positively charged histidine
residue and the negatively charged phosphate group of the
substrate.'*17?° Consequently, fluoride is not an efficient
competitor for interactions between the enzyme and the
substrate, resulting in the observed uncompetitive mode of
inhibition. Uncompetitive interactions between fluoride and
Fe™ are clearly demonstrated by the effect of metal ion
substitutions on the K, = of bovine PAP (Table 3). The
inhibition of the AI"Zn" derivative of bovine PAP at low pH
is greatly enhanced in comparison to the Ga"Zn" and Fe""Zn"
derivatives, in agreement with the prediction that Al™ is a
harder acid than Ga™ and Fe™.* In principle, two possibilities
for uncompetitive binding exist (Figure 5), (i) a terminal
coordination of fluoride to the trivalent iron, or (ii) the
formation of a p-fluoro complex, where the inhibitor bridges
the two metal centres, thus displacing the p-hydroxo group.

Inhibition Studies of Purple Acid Phosphatases: Implications
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Table 3. Inhibition of PAPs by fluoride. K, and K, are the dissociation
constants for uncompetitive and competitive inhibition, respectively. “-”
indicates the absence of inhibition. In the case of noncompetitive inhibi-
tion K, and K, are of similar magnitude.** The metal ion compositions
for pig and bovine PAP are indicated; red kidney bean PAP and human
PAP have FeZn and FeFe centres, respectively. “Intact” and “cleaved”
indicate the proteolytic state of human PAP*

Enzyme source pH K,/ (mmol L") K,/ (mmol L)
Pig (FeFe) 4.9 0.12 £ 0.01 -

Pig (FeZn)* 4.9 0.20 £ 0.09 -

Pig (FeFe) 6.2 1.84 £ 0.40 5.99 +3.40
Red kidney bean 4.9 - 0.17 £ 0.08
Red kidney bean 6.2 - 1.1+0.33
Bovine (FeZn)® 5.0 0.20 = 0.03 -
Bovine (GaZn)" 5.0 0.14 £ 0.07 -
Bovine (AlZn)° 5.0 0.003 + 0.0002 -
Bovine (FeZn)® 6.5 2.05+ 0.10 3.40 + 0.30
Bovine (FeFe)® 6.5 4.44 +0.50 4.80 £ 0.40
Human (intact) 33 0.19 £0.02 0.17 £ 0.02
Human (intact)* 4.9 0.50 = 0.05 0.51 +0.04
hPAP (cleaved)® 33 0.16 £ 0.01 0.16 = 0.01
hPAP (cleaved)® 49 0.12 £0.01 -

*from reference 29; from reference 24; *from reference 20.

From kinetic data alone these two possibilities cannot be
distinguished, but EXAFS and resonance Raman
spectroscopy have shown that the likely uncompetitive
binding mode, at least in pig PAP, is the formation of the p-
fluoro complex.”

3607 A [F] 0 mmol L-! 180 C
[F]: 0 mmol L
W 207 [F]: 0.1 mmol L1 2 1207 [F]: 0.25 mmol L
3 [F]:0.2 mmol L' § [F]: 1.0 mmol L
1207 : 60 1
s [F]: 0.5 mmol L-! [F]: 2.5 mmol L
* [F]: 1.0 mmol L-!
0 1 T 0
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Figure 4. Steady-state inhibition of pig and red kidney bean PAP by fluoride. Fluoride concentrations ranged from 0 to 20 mmol L' (as indicated on the
right side) for pig (A and B) and red kidney bean (C and D) PAP. Data were collected at pH 4.9 (A and C) and 6.2 (B and D) and analysed by non-linear
regression using equation 2.
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Figure 5. Schematic illustration of the active site of red kidney bean 2.5 mmol L

PAP. The two possible uncompetitive binding sites for the inhibitor fluo-
ride are indicated.

The magnitude of the inhibition of red kidney bean
PAP by fluoride is similar to that determined for both pig
and bovine PAP, but the mode of inhibition is competitive,
independent of pH (Table 3). In this respect the plant
enzyme resembles intact human PAP, where the mode of
fluoride inhibition is also not affected by the change in
pH, although for the human enzyme inhibition data were
only collected at low pH values (pH 3.3 and pH 4.9; Table
3).2% Interestingly, the mode of fluoride inhibition in intact
human PAP is non-competitive, contrasting both red
kidney bean PAP and other mammalian PAPs (where the
competitive inhibition site is inaccessible at low pH; see
above). Upon proteolytic cleavage human PAP displays
fluoride inhibition kinetics at pH 4.9 similar to those of
pig and bovine PAP.* It appears thus that the cleaved
FeFe" form of human PAP is mechanistically related to
pig and bovine PAP, while the intact form of this enzyme
is similar to red kidney bean PAP although the apparent
lack of fluoride binding to the enzyme-substrate complex
in the red kidney bean enzyme suggests a mechanistic
variation. Furthermore, the competitive nature of the
inhibition of red kidney bean PAP by fluoride indicates
that the inhibitor mainly interacts with the divalent metal
ion (see above).

Fluoride has been shown to act as a slow binding
inhibitor to a number of enzymes, including the
bimetallic Ni ureases from jack bean* and Klebsiella
aerogenes,* and bovine PAP.>* In the presence of
fluoride reaction progress curves of urease and bovine
PAP are biphasic, indicating a gradual change from an
initial uninhibited (v,) to a final inhibited (v, steady-
state) rate as fluoride binds. In both enzymes the rate
of fluoride binding (k , ) depends on the concentration
of the inhibitor. For Fe™Fe" and FeZn" bovine PAP

v 10.0 mmol L1
17.5 mmol L

(3

[p-NP*)/(umol L)
2

time/min

Figure 6. Inhibition of pig and red kidney bean PAPs by fluoride. (Top
Panel) Pig PAP was incubated in the absence of fluoride for O min (trace
1) and 60 min (trace 2) at 25 °C, pH 4.9, before the addition of p-NPP (5
mmol L), Linear regression analysis of the progress curves revealed
that only 5% of the activity was lost due to the incubation (Table 4).
Reaction progress curves measured in the presence of 2.5 mmol L™ (traces
3 and 4 with 0 min and 5 min incubation, respectively) and 10 mmol L
(traces 5 and 6 with 0 min and 60 min incubation, respectively) fluoride
indicate biphasic behaviour. The data was analysed using equation 3.
(Bottom Panel) Red kidney bean PAP was incubated in the absence of
fluoride for O min (trace 1) and 60 min (trace 2) at 25 °C, pH 6.2, before
the addition of p-NPP (5 mmol L'). Linear regression analysis of the
progress curves revealed that less than 5% of the activity was lost due to
the incubation. Reaction progress curves measured in the presence of
2.5 mmol L' (traces 3 and 4 with 0 min and 5 min incubation, respec-
tively) and 10 mmol L' (traces 5 and 6 with O min and 60 min incuba-
tion, respectively) fluoride indicate linear behaviour, and the data was
analysed using linear regression (Table 4B) Inset: linear reaction progress
curves were also measured in the initial 10 s after substrate addition with
a stopped flow spectrophotometer for various concentrations of fluoride
without preincubation. The linear behaviour indicates rapid binding of
fluoride, leading to immediate inhibition.

k . increases linearly with increasing fluoride
concentrations at pH 5.0, reaching a value of ~0.12 s°!
and ~0.25 s at [F] = 2 mmol L, respectively.** The
moderate variation in k upon metal ion substitution
in the divalent site suggests that the observed slow

binding of fluoride is mainly due to the interaction of
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Table 4. Data for the fluoride binding to pig (A) and red kidney bean (B) PAP. Note that a product formation rate of 1000 umol L' min™ and 20
pmol L' min™' correspond to a specific activity of 420 U mg" and 175 U mg™' for the pig and red kidney bean enzymes, respectively

A

[F]/ (mmol L) Incubation time/ min k, /s v,/ (umol L' min™) v,/ ( pmol L' min™)
0 0 - 1213 £9 1213+ 9
0 60 - 1153 £ 12 1153 £ 12
2 0 0.047 + 0.0005 1043 + 10 354 +0.5
2 5 0.039 + 0.0004 552+3 274 +0.2
10 0 0.042 + 0.0002 870 + 24 33+0.1
10 60 0.025 + 0.0004 119+7 6.5+0.3
B

[F]/ (mmol L) Incubation time/ min V// (wmol L' min™")

0 0 21.2 £0.05

0 60 20.0 + 0.02

2 0 12.4 +0.01

2 5 12.5 +0.01

10 0 4.8 +0.01

10 60 4.5 +0.01

the inhibitor with the trivalent metal ion. The
observation that the rate of fluoride binding drastically
increases upon replacing Fe™ by AI™ and Ga™ is in
agreement with this hypothesis.?® In this study the
FeFe!! pig PAP reaction was monitored at pH 4.9
(optimal pH for activity) at several fluoride concen-
trations (Figure 6). In the presence of 2 mmol L'
inhibitor k , is 0.047 s (Table 4), approximately 40%
of the value obtained for bovine PAP, suggesting a
conserved mode of interaction between enzyme and
inhibitor in animal PAPs. This is not surprising based
on the similarity of the inhibition constants determined
for the two enzymes (Table 3). An intriguing
observation is the fact that the pre-incubation of the
enzyme with fluoride does not greatly affect the final
steady-state rate (v,) of the reaction, but the initial rates
are reduced (Table 4). A similar result has been reported
for K. aerogenes urease and has been interpreted in
terms of this enzyme existing in two distinct confor-
mations in the resting state, one with low and one with
high affinity for fluoride.* It is thus possible that the
resting state of pig PAP occurs in at least two distinct
conformations that co-exist in equilibrium. Addition
of the substrate shifts this equilibrium in favour of the
state with higher fluoride affinity. The existence of at
least two distinct conformations in the resting state may
explain catalytic variations observed between various
mammalian PAPs (e.g. Table 3), and may be associated
with the mobile repression loop in the vicinity of the
active site. 82028

Fluoride inhibition of red kidney bean PAP appears
instantaneous (Figure 6), within the technical limitations
of the stopped-flow instrument, indicating a vastly

increased k , . Also, prolonged incubation with fluoride
did not affect the rate (Table 4). The loss of activity upon
incubation for 60 min is small and comparable in the
inhibited and uninhibited enzyme (Figure 6). Hence, in
agreement with the results above red kidney bean PAP
interacts in a distinctly different manner with fluoride than
mammalian PAPs. The rapid establishment of inhibition
is consistent with fluoride binding predominantly to the
divalent metal ion (rapid ligand exchange) and agrees with
the observed competitive inhibition (Table 3).

Conclusions

PAPs display a high degree of structural similarity in
their active sites, and consequently their catalytic reactions
are anticipated to employ the same mechanism.
Interestingly, variations are observed in the interactions
between representatives of these enzymes and vanadate
and fluoride. Since these anions have been proposed to
mimic the transition state of phosphorolytic enzymes,*
or displace the reaction-initiating nucleophile,'?*?* the
kinetic variations between red kidney bean and
mammalian PAPs indicate that these enzymes employ
alternative mechanistic strategies. Specifically, the precise
nature of their transition states and the identity of their
nucleophiles may vary. A structural understanding of these
differences may be particularly significant in terms of the
design and development of site-specific inhibitors for
PAPs. Considering the crucial role(s) mammalian PAPs
have in bone metabolism such inhibitors are anticipated
to be promising lead compounds in the development of
new anti-osteoporotic chemotherapeutics. Efforts towards
these aims are currently in progress in our group.
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